Charles Sturt University

Literature Review: Types of literature reviews

  • Traditional or narrative literature reviews
  • Scoping Reviews
  • Systematic literature reviews
  • Annotated bibliography
  • Keeping up to date with literature
  • Finding a thesis
  • Evaluating sources and critical appraisal of literature
  • Managing and analysing your literature
  • Further reading and resources

Types of literature reviews

4 major types of literature review pdf

The type of literature review you write will depend on your discipline and whether you are a researcher writing your PhD, publishing a study in a journal or completing an assessment task in your undergraduate study.

A literature review for a subject in an undergraduate degree will not be as comprehensive as the literature review required for a PhD thesis.

An undergraduate literature review may be in the form of an annotated bibliography or a narrative review of a small selection of literature, for example ten relevant articles. If you are asked to write a literature review, and you are an undergraduate student, be guided by your subject coordinator or lecturer.

The common types of literature reviews will be explained in the pages of this section.

  • Narrative or traditional literature reviews
  • Critically Appraised Topic (CAT)
  • Scoping reviews
  • Annotated bibliographies

These are not the only types of reviews of literature that can be conducted. Often the term "review" and "literature" can be confusing and used in the wrong context. Grant and Booth (2009) attempt to clear up this confusion by discussing 14 review types and the associated methodology, and advantages and disadvantages associated with each review.

Grant, M. J. and Booth, A. (2009), A typology of reviews: an analysis of 14 review types and associated methodologies . Health Information & Libraries Journal, 26 , 91–108. doi:10.1111/j.1471-1842.2009.00848.x

What's the difference between reviews?

Researchers, academics, and librarians all use various terms to describe different types of literature reviews, and there is often inconsistency in the ways the types are discussed. Here are a couple of simple explanations.

  • The image below describes common review types in terms of speed, detail, risk of bias, and comprehensiveness:

Description of the differences between review types in image form

"Schematic of the main differences between the types of literature review" by Brennan, M. L., Arlt, S. P., Belshaw, Z., Buckley, L., Corah, L., Doit, H., Fajt, V. R., Grindlay, D., Moberly, H. K., Morrow, L. D., Stavisky, J., & White, C. (2020). Critically Appraised Topics (CATs) in veterinary medicine: Applying evidence in clinical practice. Frontiers in Veterinary Science, 7 , 314. https://doi.org/10.3389/fvets.2020.00314 is licensed under CC BY 3.0

  • The table below lists four of the most common types of review , as adapted from a widely used typology of fourteen types of reviews (Grant & Booth, 2009).  

Grant, M.J. & Booth, A. (2009).  A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26 (2), 91-108. https://doi.org/10.1111/j.1471-1842.2009.00848.x

See also the Library's  Literature Review guide.

Critical Appraised Topic (CAT)

For information on conducting a Critically Appraised Topic or CAT

Callander, J., Anstey, A. V., Ingram, J. R., Limpens, J., Flohr, C., & Spuls, P. I. (2017).  How to write a Critically Appraised Topic: evidence to underpin routine clinical practice.  British Journal of Dermatology (1951), 177(4), 1007-1013. https://doi.org/10.1111/bjd.15873 

Books on Literature Reviews

Cover Art

  • << Previous: Home
  • Next: Traditional or narrative literature reviews >>
  • Last Updated: May 12, 2024 12:18 PM
  • URL: https://libguides.csu.edu.au/review

Acknowledgement of Country

Charles Sturt University is an Australian University, TEQSA Provider Identification: PRV12018. CRICOS Provider: 00005F.

U.S. flag

An official website of the United States government

The .gov means it's official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you're on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Browse Titles

NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.

Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.

Cover of Handbook of eHealth Evaluation: An Evidence-based Approach

Handbook of eHealth Evaluation: An Evidence-based Approach [Internet].

Chapter 9 methods for literature reviews.

Guy Paré and Spyros Kitsiou .

9.1. Introduction

Literature reviews play a critical role in scholarship because science remains, first and foremost, a cumulative endeavour ( vom Brocke et al., 2009 ). As in any academic discipline, rigorous knowledge syntheses are becoming indispensable in keeping up with an exponentially growing eHealth literature, assisting practitioners, academics, and graduate students in finding, evaluating, and synthesizing the contents of many empirical and conceptual papers. Among other methods, literature reviews are essential for: (a) identifying what has been written on a subject or topic; (b) determining the extent to which a specific research area reveals any interpretable trends or patterns; (c) aggregating empirical findings related to a narrow research question to support evidence-based practice; (d) generating new frameworks and theories; and (e) identifying topics or questions requiring more investigation ( Paré, Trudel, Jaana, & Kitsiou, 2015 ).

Literature reviews can take two major forms. The most prevalent one is the “literature review” or “background” section within a journal paper or a chapter in a graduate thesis. This section synthesizes the extant literature and usually identifies the gaps in knowledge that the empirical study addresses ( Sylvester, Tate, & Johnstone, 2013 ). It may also provide a theoretical foundation for the proposed study, substantiate the presence of the research problem, justify the research as one that contributes something new to the cumulated knowledge, or validate the methods and approaches for the proposed study ( Hart, 1998 ; Levy & Ellis, 2006 ).

The second form of literature review, which is the focus of this chapter, constitutes an original and valuable work of research in and of itself ( Paré et al., 2015 ). Rather than providing a base for a researcher’s own work, it creates a solid starting point for all members of the community interested in a particular area or topic ( Mulrow, 1987 ). The so-called “review article” is a journal-length paper which has an overarching purpose to synthesize the literature in a field, without collecting or analyzing any primary data ( Green, Johnson, & Adams, 2006 ).

When appropriately conducted, review articles represent powerful information sources for practitioners looking for state-of-the art evidence to guide their decision-making and work practices ( Paré et al., 2015 ). Further, high-quality reviews become frequently cited pieces of work which researchers seek out as a first clear outline of the literature when undertaking empirical studies ( Cooper, 1988 ; Rowe, 2014 ). Scholars who track and gauge the impact of articles have found that review papers are cited and downloaded more often than any other type of published article ( Cronin, Ryan, & Coughlan, 2008 ; Montori, Wilczynski, Morgan, Haynes, & Hedges, 2003 ; Patsopoulos, Analatos, & Ioannidis, 2005 ). The reason for their popularity may be the fact that reading the review enables one to have an overview, if not a detailed knowledge of the area in question, as well as references to the most useful primary sources ( Cronin et al., 2008 ). Although they are not easy to conduct, the commitment to complete a review article provides a tremendous service to one’s academic community ( Paré et al., 2015 ; Petticrew & Roberts, 2006 ). Most, if not all, peer-reviewed journals in the fields of medical informatics publish review articles of some type.

The main objectives of this chapter are fourfold: (a) to provide an overview of the major steps and activities involved in conducting a stand-alone literature review; (b) to describe and contrast the different types of review articles that can contribute to the eHealth knowledge base; (c) to illustrate each review type with one or two examples from the eHealth literature; and (d) to provide a series of recommendations for prospective authors of review articles in this domain.

9.2. Overview of the Literature Review Process and Steps

As explained in Templier and Paré (2015) , there are six generic steps involved in conducting a review article:

  • formulating the research question(s) and objective(s),
  • searching the extant literature,
  • screening for inclusion,
  • assessing the quality of primary studies,
  • extracting data, and
  • analyzing data.

Although these steps are presented here in sequential order, one must keep in mind that the review process can be iterative and that many activities can be initiated during the planning stage and later refined during subsequent phases ( Finfgeld-Connett & Johnson, 2013 ; Kitchenham & Charters, 2007 ).

Formulating the research question(s) and objective(s): As a first step, members of the review team must appropriately justify the need for the review itself ( Petticrew & Roberts, 2006 ), identify the review’s main objective(s) ( Okoli & Schabram, 2010 ), and define the concepts or variables at the heart of their synthesis ( Cooper & Hedges, 2009 ; Webster & Watson, 2002 ). Importantly, they also need to articulate the research question(s) they propose to investigate ( Kitchenham & Charters, 2007 ). In this regard, we concur with Jesson, Matheson, and Lacey (2011) that clearly articulated research questions are key ingredients that guide the entire review methodology; they underscore the type of information that is needed, inform the search for and selection of relevant literature, and guide or orient the subsequent analysis. Searching the extant literature: The next step consists of searching the literature and making decisions about the suitability of material to be considered in the review ( Cooper, 1988 ). There exist three main coverage strategies. First, exhaustive coverage means an effort is made to be as comprehensive as possible in order to ensure that all relevant studies, published and unpublished, are included in the review and, thus, conclusions are based on this all-inclusive knowledge base. The second type of coverage consists of presenting materials that are representative of most other works in a given field or area. Often authors who adopt this strategy will search for relevant articles in a small number of top-tier journals in a field ( Paré et al., 2015 ). In the third strategy, the review team concentrates on prior works that have been central or pivotal to a particular topic. This may include empirical studies or conceptual papers that initiated a line of investigation, changed how problems or questions were framed, introduced new methods or concepts, or engendered important debate ( Cooper, 1988 ). Screening for inclusion: The following step consists of evaluating the applicability of the material identified in the preceding step ( Levy & Ellis, 2006 ; vom Brocke et al., 2009 ). Once a group of potential studies has been identified, members of the review team must screen them to determine their relevance ( Petticrew & Roberts, 2006 ). A set of predetermined rules provides a basis for including or excluding certain studies. This exercise requires a significant investment on the part of researchers, who must ensure enhanced objectivity and avoid biases or mistakes. As discussed later in this chapter, for certain types of reviews there must be at least two independent reviewers involved in the screening process and a procedure to resolve disagreements must also be in place ( Liberati et al., 2009 ; Shea et al., 2009 ). Assessing the quality of primary studies: In addition to screening material for inclusion, members of the review team may need to assess the scientific quality of the selected studies, that is, appraise the rigour of the research design and methods. Such formal assessment, which is usually conducted independently by at least two coders, helps members of the review team refine which studies to include in the final sample, determine whether or not the differences in quality may affect their conclusions, or guide how they analyze the data and interpret the findings ( Petticrew & Roberts, 2006 ). Ascribing quality scores to each primary study or considering through domain-based evaluations which study components have or have not been designed and executed appropriately makes it possible to reflect on the extent to which the selected study addresses possible biases and maximizes validity ( Shea et al., 2009 ). Extracting data: The following step involves gathering or extracting applicable information from each primary study included in the sample and deciding what is relevant to the problem of interest ( Cooper & Hedges, 2009 ). Indeed, the type of data that should be recorded mainly depends on the initial research questions ( Okoli & Schabram, 2010 ). However, important information may also be gathered about how, when, where and by whom the primary study was conducted, the research design and methods, or qualitative/quantitative results ( Cooper & Hedges, 2009 ). Analyzing and synthesizing data : As a final step, members of the review team must collate, summarize, aggregate, organize, and compare the evidence extracted from the included studies. The extracted data must be presented in a meaningful way that suggests a new contribution to the extant literature ( Jesson et al., 2011 ). Webster and Watson (2002) warn researchers that literature reviews should be much more than lists of papers and should provide a coherent lens to make sense of extant knowledge on a given topic. There exist several methods and techniques for synthesizing quantitative (e.g., frequency analysis, meta-analysis) and qualitative (e.g., grounded theory, narrative analysis, meta-ethnography) evidence ( Dixon-Woods, Agarwal, Jones, Young, & Sutton, 2005 ; Thomas & Harden, 2008 ).

9.3. Types of Review Articles and Brief Illustrations

EHealth researchers have at their disposal a number of approaches and methods for making sense out of existing literature, all with the purpose of casting current research findings into historical contexts or explaining contradictions that might exist among a set of primary research studies conducted on a particular topic. Our classification scheme is largely inspired from Paré and colleagues’ (2015) typology. Below we present and illustrate those review types that we feel are central to the growth and development of the eHealth domain.

9.3.1. Narrative Reviews

The narrative review is the “traditional” way of reviewing the extant literature and is skewed towards a qualitative interpretation of prior knowledge ( Sylvester et al., 2013 ). Put simply, a narrative review attempts to summarize or synthesize what has been written on a particular topic but does not seek generalization or cumulative knowledge from what is reviewed ( Davies, 2000 ; Green et al., 2006 ). Instead, the review team often undertakes the task of accumulating and synthesizing the literature to demonstrate the value of a particular point of view ( Baumeister & Leary, 1997 ). As such, reviewers may selectively ignore or limit the attention paid to certain studies in order to make a point. In this rather unsystematic approach, the selection of information from primary articles is subjective, lacks explicit criteria for inclusion and can lead to biased interpretations or inferences ( Green et al., 2006 ). There are several narrative reviews in the particular eHealth domain, as in all fields, which follow such an unstructured approach ( Silva et al., 2015 ; Paul et al., 2015 ).

Despite these criticisms, this type of review can be very useful in gathering together a volume of literature in a specific subject area and synthesizing it. As mentioned above, its primary purpose is to provide the reader with a comprehensive background for understanding current knowledge and highlighting the significance of new research ( Cronin et al., 2008 ). Faculty like to use narrative reviews in the classroom because they are often more up to date than textbooks, provide a single source for students to reference, and expose students to peer-reviewed literature ( Green et al., 2006 ). For researchers, narrative reviews can inspire research ideas by identifying gaps or inconsistencies in a body of knowledge, thus helping researchers to determine research questions or formulate hypotheses. Importantly, narrative reviews can also be used as educational articles to bring practitioners up to date with certain topics of issues ( Green et al., 2006 ).

Recently, there have been several efforts to introduce more rigour in narrative reviews that will elucidate common pitfalls and bring changes into their publication standards. Information systems researchers, among others, have contributed to advancing knowledge on how to structure a “traditional” review. For instance, Levy and Ellis (2006) proposed a generic framework for conducting such reviews. Their model follows the systematic data processing approach comprised of three steps, namely: (a) literature search and screening; (b) data extraction and analysis; and (c) writing the literature review. They provide detailed and very helpful instructions on how to conduct each step of the review process. As another methodological contribution, vom Brocke et al. (2009) offered a series of guidelines for conducting literature reviews, with a particular focus on how to search and extract the relevant body of knowledge. Last, Bandara, Miskon, and Fielt (2011) proposed a structured, predefined and tool-supported method to identify primary studies within a feasible scope, extract relevant content from identified articles, synthesize and analyze the findings, and effectively write and present the results of the literature review. We highly recommend that prospective authors of narrative reviews consult these useful sources before embarking on their work.

Darlow and Wen (2015) provide a good example of a highly structured narrative review in the eHealth field. These authors synthesized published articles that describe the development process of mobile health ( m-health ) interventions for patients’ cancer care self-management. As in most narrative reviews, the scope of the research questions being investigated is broad: (a) how development of these systems are carried out; (b) which methods are used to investigate these systems; and (c) what conclusions can be drawn as a result of the development of these systems. To provide clear answers to these questions, a literature search was conducted on six electronic databases and Google Scholar . The search was performed using several terms and free text words, combining them in an appropriate manner. Four inclusion and three exclusion criteria were utilized during the screening process. Both authors independently reviewed each of the identified articles to determine eligibility and extract study information. A flow diagram shows the number of studies identified, screened, and included or excluded at each stage of study selection. In terms of contributions, this review provides a series of practical recommendations for m-health intervention development.

9.3.2. Descriptive or Mapping Reviews

The primary goal of a descriptive review is to determine the extent to which a body of knowledge in a particular research topic reveals any interpretable pattern or trend with respect to pre-existing propositions, theories, methodologies or findings ( King & He, 2005 ; Paré et al., 2015 ). In contrast with narrative reviews, descriptive reviews follow a systematic and transparent procedure, including searching, screening and classifying studies ( Petersen, Vakkalanka, & Kuzniarz, 2015 ). Indeed, structured search methods are used to form a representative sample of a larger group of published works ( Paré et al., 2015 ). Further, authors of descriptive reviews extract from each study certain characteristics of interest, such as publication year, research methods, data collection techniques, and direction or strength of research outcomes (e.g., positive, negative, or non-significant) in the form of frequency analysis to produce quantitative results ( Sylvester et al., 2013 ). In essence, each study included in a descriptive review is treated as the unit of analysis and the published literature as a whole provides a database from which the authors attempt to identify any interpretable trends or draw overall conclusions about the merits of existing conceptualizations, propositions, methods or findings ( Paré et al., 2015 ). In doing so, a descriptive review may claim that its findings represent the state of the art in a particular domain ( King & He, 2005 ).

In the fields of health sciences and medical informatics, reviews that focus on examining the range, nature and evolution of a topic area are described by Anderson, Allen, Peckham, and Goodwin (2008) as mapping reviews . Like descriptive reviews, the research questions are generic and usually relate to publication patterns and trends. There is no preconceived plan to systematically review all of the literature although this can be done. Instead, researchers often present studies that are representative of most works published in a particular area and they consider a specific time frame to be mapped.

An example of this approach in the eHealth domain is offered by DeShazo, Lavallie, and Wolf (2009). The purpose of this descriptive or mapping review was to characterize publication trends in the medical informatics literature over a 20-year period (1987 to 2006). To achieve this ambitious objective, the authors performed a bibliometric analysis of medical informatics citations indexed in medline using publication trends, journal frequencies, impact factors, Medical Subject Headings (MeSH) term frequencies, and characteristics of citations. Findings revealed that there were over 77,000 medical informatics articles published during the covered period in numerous journals and that the average annual growth rate was 12%. The MeSH term analysis also suggested a strong interdisciplinary trend. Finally, average impact scores increased over time with two notable growth periods. Overall, patterns in research outputs that seem to characterize the historic trends and current components of the field of medical informatics suggest it may be a maturing discipline (DeShazo et al., 2009).

9.3.3. Scoping Reviews

Scoping reviews attempt to provide an initial indication of the potential size and nature of the extant literature on an emergent topic (Arksey & O’Malley, 2005; Daudt, van Mossel, & Scott, 2013 ; Levac, Colquhoun, & O’Brien, 2010). A scoping review may be conducted to examine the extent, range and nature of research activities in a particular area, determine the value of undertaking a full systematic review (discussed next), or identify research gaps in the extant literature ( Paré et al., 2015 ). In line with their main objective, scoping reviews usually conclude with the presentation of a detailed research agenda for future works along with potential implications for both practice and research.

Unlike narrative and descriptive reviews, the whole point of scoping the field is to be as comprehensive as possible, including grey literature (Arksey & O’Malley, 2005). Inclusion and exclusion criteria must be established to help researchers eliminate studies that are not aligned with the research questions. It is also recommended that at least two independent coders review abstracts yielded from the search strategy and then the full articles for study selection ( Daudt et al., 2013 ). The synthesized evidence from content or thematic analysis is relatively easy to present in tabular form (Arksey & O’Malley, 2005; Thomas & Harden, 2008 ).

One of the most highly cited scoping reviews in the eHealth domain was published by Archer, Fevrier-Thomas, Lokker, McKibbon, and Straus (2011) . These authors reviewed the existing literature on personal health record ( phr ) systems including design, functionality, implementation, applications, outcomes, and benefits. Seven databases were searched from 1985 to March 2010. Several search terms relating to phr s were used during this process. Two authors independently screened titles and abstracts to determine inclusion status. A second screen of full-text articles, again by two independent members of the research team, ensured that the studies described phr s. All in all, 130 articles met the criteria and their data were extracted manually into a database. The authors concluded that although there is a large amount of survey, observational, cohort/panel, and anecdotal evidence of phr benefits and satisfaction for patients, more research is needed to evaluate the results of phr implementations. Their in-depth analysis of the literature signalled that there is little solid evidence from randomized controlled trials or other studies through the use of phr s. Hence, they suggested that more research is needed that addresses the current lack of understanding of optimal functionality and usability of these systems, and how they can play a beneficial role in supporting patient self-management ( Archer et al., 2011 ).

9.3.4. Forms of Aggregative Reviews

Healthcare providers, practitioners, and policy-makers are nowadays overwhelmed with large volumes of information, including research-based evidence from numerous clinical trials and evaluation studies, assessing the effectiveness of health information technologies and interventions ( Ammenwerth & de Keizer, 2004 ; Deshazo et al., 2009 ). It is unrealistic to expect that all these disparate actors will have the time, skills, and necessary resources to identify the available evidence in the area of their expertise and consider it when making decisions. Systematic reviews that involve the rigorous application of scientific strategies aimed at limiting subjectivity and bias (i.e., systematic and random errors) can respond to this challenge.

Systematic reviews attempt to aggregate, appraise, and synthesize in a single source all empirical evidence that meet a set of previously specified eligibility criteria in order to answer a clearly formulated and often narrow research question on a particular topic of interest to support evidence-based practice ( Liberati et al., 2009 ). They adhere closely to explicit scientific principles ( Liberati et al., 2009 ) and rigorous methodological guidelines (Higgins & Green, 2008) aimed at reducing random and systematic errors that can lead to deviations from the truth in results or inferences. The use of explicit methods allows systematic reviews to aggregate a large body of research evidence, assess whether effects or relationships are in the same direction and of the same general magnitude, explain possible inconsistencies between study results, and determine the strength of the overall evidence for every outcome of interest based on the quality of included studies and the general consistency among them ( Cook, Mulrow, & Haynes, 1997 ). The main procedures of a systematic review involve:

  • Formulating a review question and developing a search strategy based on explicit inclusion criteria for the identification of eligible studies (usually described in the context of a detailed review protocol).
  • Searching for eligible studies using multiple databases and information sources, including grey literature sources, without any language restrictions.
  • Selecting studies, extracting data, and assessing risk of bias in a duplicate manner using two independent reviewers to avoid random or systematic errors in the process.
  • Analyzing data using quantitative or qualitative methods.
  • Presenting results in summary of findings tables.
  • Interpreting results and drawing conclusions.

Many systematic reviews, but not all, use statistical methods to combine the results of independent studies into a single quantitative estimate or summary effect size. Known as meta-analyses , these reviews use specific data extraction and statistical techniques (e.g., network, frequentist, or Bayesian meta-analyses) to calculate from each study by outcome of interest an effect size along with a confidence interval that reflects the degree of uncertainty behind the point estimate of effect ( Borenstein, Hedges, Higgins, & Rothstein, 2009 ; Deeks, Higgins, & Altman, 2008 ). Subsequently, they use fixed or random-effects analysis models to combine the results of the included studies, assess statistical heterogeneity, and calculate a weighted average of the effect estimates from the different studies, taking into account their sample sizes. The summary effect size is a value that reflects the average magnitude of the intervention effect for a particular outcome of interest or, more generally, the strength of a relationship between two variables across all studies included in the systematic review. By statistically combining data from multiple studies, meta-analyses can create more precise and reliable estimates of intervention effects than those derived from individual studies alone, when these are examined independently as discrete sources of information.

The review by Gurol-Urganci, de Jongh, Vodopivec-Jamsek, Atun, and Car (2013) on the effects of mobile phone messaging reminders for attendance at healthcare appointments is an illustrative example of a high-quality systematic review with meta-analysis. Missed appointments are a major cause of inefficiency in healthcare delivery with substantial monetary costs to health systems. These authors sought to assess whether mobile phone-based appointment reminders delivered through Short Message Service ( sms ) or Multimedia Messaging Service ( mms ) are effective in improving rates of patient attendance and reducing overall costs. To this end, they conducted a comprehensive search on multiple databases using highly sensitive search strategies without language or publication-type restrictions to identify all rct s that are eligible for inclusion. In order to minimize the risk of omitting eligible studies not captured by the original search, they supplemented all electronic searches with manual screening of trial registers and references contained in the included studies. Study selection, data extraction, and risk of bias assessments were performed inde­­pen­dently by two coders using standardized methods to ensure consistency and to eliminate potential errors. Findings from eight rct s involving 6,615 participants were pooled into meta-analyses to calculate the magnitude of effects that mobile text message reminders have on the rate of attendance at healthcare appointments compared to no reminders and phone call reminders.

Meta-analyses are regarded as powerful tools for deriving meaningful conclusions. However, there are situations in which it is neither reasonable nor appropriate to pool studies together using meta-analytic methods simply because there is extensive clinical heterogeneity between the included studies or variation in measurement tools, comparisons, or outcomes of interest. In these cases, systematic reviews can use qualitative synthesis methods such as vote counting, content analysis, classification schemes and tabulations, as an alternative approach to narratively synthesize the results of the independent studies included in the review. This form of review is known as qualitative systematic review.

A rigorous example of one such review in the eHealth domain is presented by Mickan, Atherton, Roberts, Heneghan, and Tilson (2014) on the use of handheld computers by healthcare professionals and their impact on access to information and clinical decision-making. In line with the methodological guide­lines for systematic reviews, these authors: (a) developed and registered with prospero ( www.crd.york.ac.uk/ prospero / ) an a priori review protocol; (b) conducted comprehensive searches for eligible studies using multiple databases and other supplementary strategies (e.g., forward searches); and (c) subsequently carried out study selection, data extraction, and risk of bias assessments in a duplicate manner to eliminate potential errors in the review process. Heterogeneity between the included studies in terms of reported outcomes and measures precluded the use of meta-analytic methods. To this end, the authors resorted to using narrative analysis and synthesis to describe the effectiveness of handheld computers on accessing information for clinical knowledge, adherence to safety and clinical quality guidelines, and diagnostic decision-making.

In recent years, the number of systematic reviews in the field of health informatics has increased considerably. Systematic reviews with discordant findings can cause great confusion and make it difficult for decision-makers to interpret the review-level evidence ( Moher, 2013 ). Therefore, there is a growing need for appraisal and synthesis of prior systematic reviews to ensure that decision-making is constantly informed by the best available accumulated evidence. Umbrella reviews , also known as overviews of systematic reviews, are tertiary types of evidence synthesis that aim to accomplish this; that is, they aim to compare and contrast findings from multiple systematic reviews and meta-analyses ( Becker & Oxman, 2008 ). Umbrella reviews generally adhere to the same principles and rigorous methodological guidelines used in systematic reviews. However, the unit of analysis in umbrella reviews is the systematic review rather than the primary study ( Becker & Oxman, 2008 ). Unlike systematic reviews that have a narrow focus of inquiry, umbrella reviews focus on broader research topics for which there are several potential interventions ( Smith, Devane, Begley, & Clarke, 2011 ). A recent umbrella review on the effects of home telemonitoring interventions for patients with heart failure critically appraised, compared, and synthesized evidence from 15 systematic reviews to investigate which types of home telemonitoring technologies and forms of interventions are more effective in reducing mortality and hospital admissions ( Kitsiou, Paré, & Jaana, 2015 ).

9.3.5. Realist Reviews

Realist reviews are theory-driven interpretative reviews developed to inform, enhance, or supplement conventional systematic reviews by making sense of heterogeneous evidence about complex interventions applied in diverse contexts in a way that informs policy decision-making ( Greenhalgh, Wong, Westhorp, & Pawson, 2011 ). They originated from criticisms of positivist systematic reviews which centre on their “simplistic” underlying assumptions ( Oates, 2011 ). As explained above, systematic reviews seek to identify causation. Such logic is appropriate for fields like medicine and education where findings of randomized controlled trials can be aggregated to see whether a new treatment or intervention does improve outcomes. However, many argue that it is not possible to establish such direct causal links between interventions and outcomes in fields such as social policy, management, and information systems where for any intervention there is unlikely to be a regular or consistent outcome ( Oates, 2011 ; Pawson, 2006 ; Rousseau, Manning, & Denyer, 2008 ).

To circumvent these limitations, Pawson, Greenhalgh, Harvey, and Walshe (2005) have proposed a new approach for synthesizing knowledge that seeks to unpack the mechanism of how “complex interventions” work in particular contexts. The basic research question — what works? — which is usually associated with systematic reviews changes to: what is it about this intervention that works, for whom, in what circumstances, in what respects and why? Realist reviews have no particular preference for either quantitative or qualitative evidence. As a theory-building approach, a realist review usually starts by articulating likely underlying mechanisms and then scrutinizes available evidence to find out whether and where these mechanisms are applicable ( Shepperd et al., 2009 ). Primary studies found in the extant literature are viewed as case studies which can test and modify the initial theories ( Rousseau et al., 2008 ).

The main objective pursued in the realist review conducted by Otte-Trojel, de Bont, Rundall, and van de Klundert (2014) was to examine how patient portals contribute to health service delivery and patient outcomes. The specific goals were to investigate how outcomes are produced and, most importantly, how variations in outcomes can be explained. The research team started with an exploratory review of background documents and research studies to identify ways in which patient portals may contribute to health service delivery and patient outcomes. The authors identified six main ways which represent “educated guesses” to be tested against the data in the evaluation studies. These studies were identified through a formal and systematic search in four databases between 2003 and 2013. Two members of the research team selected the articles using a pre-established list of inclusion and exclusion criteria and following a two-step procedure. The authors then extracted data from the selected articles and created several tables, one for each outcome category. They organized information to bring forward those mechanisms where patient portals contribute to outcomes and the variation in outcomes across different contexts.

9.3.6. Critical Reviews

Lastly, critical reviews aim to provide a critical evaluation and interpretive analysis of existing literature on a particular topic of interest to reveal strengths, weaknesses, contradictions, controversies, inconsistencies, and/or other important issues with respect to theories, hypotheses, research methods or results ( Baumeister & Leary, 1997 ; Kirkevold, 1997 ). Unlike other review types, critical reviews attempt to take a reflective account of the research that has been done in a particular area of interest, and assess its credibility by using appraisal instruments or critical interpretive methods. In this way, critical reviews attempt to constructively inform other scholars about the weaknesses of prior research and strengthen knowledge development by giving focus and direction to studies for further improvement ( Kirkevold, 1997 ).

Kitsiou, Paré, and Jaana (2013) provide an example of a critical review that assessed the methodological quality of prior systematic reviews of home telemonitoring studies for chronic patients. The authors conducted a comprehensive search on multiple databases to identify eligible reviews and subsequently used a validated instrument to conduct an in-depth quality appraisal. Results indicate that the majority of systematic reviews in this particular area suffer from important methodological flaws and biases that impair their internal validity and limit their usefulness for clinical and decision-making purposes. To this end, they provide a number of recommendations to strengthen knowledge development towards improving the design and execution of future reviews on home telemonitoring.

9.4. Summary

Table 9.1 outlines the main types of literature reviews that were described in the previous sub-sections and summarizes the main characteristics that distinguish one review type from another. It also includes key references to methodological guidelines and useful sources that can be used by eHealth scholars and researchers for planning and developing reviews.

Table 9.1. Typology of Literature Reviews (adapted from Paré et al., 2015).

Typology of Literature Reviews (adapted from Paré et al., 2015).

As shown in Table 9.1 , each review type addresses different kinds of research questions or objectives, which subsequently define and dictate the methods and approaches that need to be used to achieve the overarching goal(s) of the review. For example, in the case of narrative reviews, there is greater flexibility in searching and synthesizing articles ( Green et al., 2006 ). Researchers are often relatively free to use a diversity of approaches to search, identify, and select relevant scientific articles, describe their operational characteristics, present how the individual studies fit together, and formulate conclusions. On the other hand, systematic reviews are characterized by their high level of systematicity, rigour, and use of explicit methods, based on an “a priori” review plan that aims to minimize bias in the analysis and synthesis process (Higgins & Green, 2008). Some reviews are exploratory in nature (e.g., scoping/mapping reviews), whereas others may be conducted to discover patterns (e.g., descriptive reviews) or involve a synthesis approach that may include the critical analysis of prior research ( Paré et al., 2015 ). Hence, in order to select the most appropriate type of review, it is critical to know before embarking on a review project, why the research synthesis is conducted and what type of methods are best aligned with the pursued goals.

9.5. Concluding Remarks

In light of the increased use of evidence-based practice and research generating stronger evidence ( Grady et al., 2011 ; Lyden et al., 2013 ), review articles have become essential tools for summarizing, synthesizing, integrating or critically appraising prior knowledge in the eHealth field. As mentioned earlier, when rigorously conducted review articles represent powerful information sources for eHealth scholars and practitioners looking for state-of-the-art evidence. The typology of literature reviews we used herein will allow eHealth researchers, graduate students and practitioners to gain a better understanding of the similarities and differences between review types.

We must stress that this classification scheme does not privilege any specific type of review as being of higher quality than another ( Paré et al., 2015 ). As explained above, each type of review has its own strengths and limitations. Having said that, we realize that the methodological rigour of any review — be it qualitative, quantitative or mixed — is a critical aspect that should be considered seriously by prospective authors. In the present context, the notion of rigour refers to the reliability and validity of the review process described in section 9.2. For one thing, reliability is related to the reproducibility of the review process and steps, which is facilitated by a comprehensive documentation of the literature search process, extraction, coding and analysis performed in the review. Whether the search is comprehensive or not, whether it involves a methodical approach for data extraction and synthesis or not, it is important that the review documents in an explicit and transparent manner the steps and approach that were used in the process of its development. Next, validity characterizes the degree to which the review process was conducted appropriately. It goes beyond documentation and reflects decisions related to the selection of the sources, the search terms used, the period of time covered, the articles selected in the search, and the application of backward and forward searches ( vom Brocke et al., 2009 ). In short, the rigour of any review article is reflected by the explicitness of its methods (i.e., transparency) and the soundness of the approach used. We refer those interested in the concepts of rigour and quality to the work of Templier and Paré (2015) which offers a detailed set of methodological guidelines for conducting and evaluating various types of review articles.

To conclude, our main objective in this chapter was to demystify the various types of literature reviews that are central to the continuous development of the eHealth field. It is our hope that our descriptive account will serve as a valuable source for those conducting, evaluating or using reviews in this important and growing domain.

  • Ammenwerth E., de Keizer N. An inventory of evaluation studies of information technology in health care. Trends in evaluation research, 1982-2002. International Journal of Medical Informatics. 2004; 44 (1):44–56. [ PubMed : 15778794 ]
  • Anderson S., Allen P., Peckham S., Goodwin N. Asking the right questions: scoping studies in the commissioning of research on the organisation and delivery of health services. Health Research Policy and Systems. 2008; 6 (7):1–12. [ PMC free article : PMC2500008 ] [ PubMed : 18613961 ] [ CrossRef ]
  • Archer N., Fevrier-Thomas U., Lokker C., McKibbon K. A., Straus S.E. Personal health records: a scoping review. Journal of American Medical Informatics Association. 2011; 18 (4):515–522. [ PMC free article : PMC3128401 ] [ PubMed : 21672914 ]
  • Arksey H., O’Malley L. Scoping studies: towards a methodological framework. International Journal of Social Research Methodology. 2005; 8 (1):19–32.
  • A systematic, tool-supported method for conducting literature reviews in information systems. Paper presented at the Proceedings of the 19th European Conference on Information Systems ( ecis 2011); June 9 to 11; Helsinki, Finland. 2011.
  • Baumeister R. F., Leary M.R. Writing narrative literature reviews. Review of General Psychology. 1997; 1 (3):311–320.
  • Becker L. A., Oxman A.D. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Overviews of reviews; pp. 607–631.
  • Borenstein M., Hedges L., Higgins J., Rothstein H. Introduction to meta-analysis. Hoboken, nj : John Wiley & Sons Inc; 2009.
  • Cook D. J., Mulrow C. D., Haynes B. Systematic reviews: Synthesis of best evidence for clinical decisions. Annals of Internal Medicine. 1997; 126 (5):376–380. [ PubMed : 9054282 ]
  • Cooper H., Hedges L.V. In: The handbook of research synthesis and meta-analysis. 2nd ed. Cooper H., Hedges L. V., Valentine J. C., editors. New York: Russell Sage Foundation; 2009. Research synthesis as a scientific process; pp. 3–17.
  • Cooper H. M. Organizing knowledge syntheses: A taxonomy of literature reviews. Knowledge in Society. 1988; 1 (1):104–126.
  • Cronin P., Ryan F., Coughlan M. Undertaking a literature review: a step-by-step approach. British Journal of Nursing. 2008; 17 (1):38–43. [ PubMed : 18399395 ]
  • Darlow S., Wen K.Y. Development testing of mobile health interventions for cancer patient self-management: A review. Health Informatics Journal. 2015 (online before print). [ PubMed : 25916831 ] [ CrossRef ]
  • Daudt H. M., van Mossel C., Scott S.J. Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. bmc Medical Research Methodology. 2013; 13 :48. [ PMC free article : PMC3614526 ] [ PubMed : 23522333 ] [ CrossRef ]
  • Davies P. The relevance of systematic reviews to educational policy and practice. Oxford Review of Education. 2000; 26 (3-4):365–378.
  • Deeks J. J., Higgins J. P. T., Altman D.G. In: Cochrane handbook for systematic reviews of interventions. Higgins J. P. T., Green S., editors. Hoboken, nj : John Wiley & Sons, Ltd; 2008. Analysing data and undertaking meta-analyses; pp. 243–296.
  • Deshazo J. P., Lavallie D. L., Wolf F.M. Publication trends in the medical informatics literature: 20 years of “Medical Informatics” in mesh . bmc Medical Informatics and Decision Making. 2009; 9 :7. [ PMC free article : PMC2652453 ] [ PubMed : 19159472 ] [ CrossRef ]
  • Dixon-Woods M., Agarwal S., Jones D., Young B., Sutton A. Synthesising qualitative and quantitative evidence: a review of possible methods. Journal of Health Services Research and Policy. 2005; 10 (1):45–53. [ PubMed : 15667704 ]
  • Finfgeld-Connett D., Johnson E.D. Literature search strategies for conducting knowledge-building and theory-generating qualitative systematic reviews. Journal of Advanced Nursing. 2013; 69 (1):194–204. [ PMC free article : PMC3424349 ] [ PubMed : 22591030 ]
  • Grady B., Myers K. M., Nelson E. L., Belz N., Bennett L., Carnahan L. … Guidelines Working Group. Evidence-based practice for telemental health. Telemedicine Journal and E Health. 2011; 17 (2):131–148. [ PubMed : 21385026 ]
  • Green B. N., Johnson C. D., Adams A. Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. Journal of Chiropractic Medicine. 2006; 5 (3):101–117. [ PMC free article : PMC2647067 ] [ PubMed : 19674681 ]
  • Greenhalgh T., Wong G., Westhorp G., Pawson R. Protocol–realist and meta-narrative evidence synthesis: evolving standards ( rameses ). bmc Medical Research Methodology. 2011; 11 :115. [ PMC free article : PMC3173389 ] [ PubMed : 21843376 ]
  • Gurol-Urganci I., de Jongh T., Vodopivec-Jamsek V., Atun R., Car J. Mobile phone messaging reminders for attendance at healthcare appointments. Cochrane Database System Review. 2013; 12 cd 007458. [ PMC free article : PMC6485985 ] [ PubMed : 24310741 ] [ CrossRef ]
  • Hart C. Doing a literature review: Releasing the social science research imagination. London: SAGE Publications; 1998.
  • Higgins J. P. T., Green S., editors. Cochrane handbook for systematic reviews of interventions: Cochrane book series. Hoboken, nj : Wiley-Blackwell; 2008.
  • Jesson J., Matheson L., Lacey F.M. Doing your literature review: traditional and systematic techniques. Los Angeles & London: SAGE Publications; 2011.
  • King W. R., He J. Understanding the role and methods of meta-analysis in IS research. Communications of the Association for Information Systems. 2005; 16 :1.
  • Kirkevold M. Integrative nursing research — an important strategy to further the development of nursing science and nursing practice. Journal of Advanced Nursing. 1997; 25 (5):977–984. [ PubMed : 9147203 ]
  • Kitchenham B., Charters S. ebse Technical Report Version 2.3. Keele & Durham. uk : Keele University & University of Durham; 2007. Guidelines for performing systematic literature reviews in software engineering.
  • Kitsiou S., Paré G., Jaana M. Systematic reviews and meta-analyses of home telemonitoring interventions for patients with chronic diseases: a critical assessment of their methodological quality. Journal of Medical Internet Research. 2013; 15 (7):e150. [ PMC free article : PMC3785977 ] [ PubMed : 23880072 ]
  • Kitsiou S., Paré G., Jaana M. Effects of home telemonitoring interventions on patients with chronic heart failure: an overview of systematic reviews. Journal of Medical Internet Research. 2015; 17 (3):e63. [ PMC free article : PMC4376138 ] [ PubMed : 25768664 ]
  • Levac D., Colquhoun H., O’Brien K. K. Scoping studies: advancing the methodology. Implementation Science. 2010; 5 (1):69. [ PMC free article : PMC2954944 ] [ PubMed : 20854677 ]
  • Levy Y., Ellis T.J. A systems approach to conduct an effective literature review in support of information systems research. Informing Science. 2006; 9 :181–211.
  • Liberati A., Altman D. G., Tetzlaff J., Mulrow C., Gøtzsche P. C., Ioannidis J. P. A. et al. Moher D. The prisma statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Annals of Internal Medicine. 2009; 151 (4):W-65. [ PubMed : 19622512 ]
  • Lyden J. R., Zickmund S. L., Bhargava T. D., Bryce C. L., Conroy M. B., Fischer G. S. et al. McTigue K. M. Implementing health information technology in a patient-centered manner: Patient experiences with an online evidence-based lifestyle intervention. Journal for Healthcare Quality. 2013; 35 (5):47–57. [ PubMed : 24004039 ]
  • Mickan S., Atherton H., Roberts N. W., Heneghan C., Tilson J.K. Use of handheld computers in clinical practice: a systematic review. bmc Medical Informatics and Decision Making. 2014; 14 :56. [ PMC free article : PMC4099138 ] [ PubMed : 24998515 ]
  • Moher D. The problem of duplicate systematic reviews. British Medical Journal. 2013; 347 (5040) [ PubMed : 23945367 ] [ CrossRef ]
  • Montori V. M., Wilczynski N. L., Morgan D., Haynes R. B., Hedges T. Systematic reviews: a cross-sectional study of location and citation counts. bmc Medicine. 2003; 1 :2. [ PMC free article : PMC281591 ] [ PubMed : 14633274 ]
  • Mulrow C. D. The medical review article: state of the science. Annals of Internal Medicine. 1987; 106 (3):485–488. [ PubMed : 3813259 ] [ CrossRef ]
  • Evidence-based information systems: A decade later. Proceedings of the European Conference on Information Systems ; 2011. Retrieved from http://aisel ​.aisnet.org/cgi/viewcontent ​.cgi?article ​=1221&context ​=ecis2011 .
  • Okoli C., Schabram K. A guide to conducting a systematic literature review of information systems research. ssrn Electronic Journal. 2010
  • Otte-Trojel T., de Bont A., Rundall T. G., van de Klundert J. How outcomes are achieved through patient portals: a realist review. Journal of American Medical Informatics Association. 2014; 21 (4):751–757. [ PMC free article : PMC4078283 ] [ PubMed : 24503882 ]
  • Paré G., Trudel M.-C., Jaana M., Kitsiou S. Synthesizing information systems knowledge: A typology of literature reviews. Information & Management. 2015; 52 (2):183–199.
  • Patsopoulos N. A., Analatos A. A., Ioannidis J.P. A. Relative citation impact of various study designs in the health sciences. Journal of the American Medical Association. 2005; 293 (19):2362–2366. [ PubMed : 15900006 ]
  • Paul M. M., Greene C. M., Newton-Dame R., Thorpe L. E., Perlman S. E., McVeigh K. H., Gourevitch M.N. The state of population health surveillance using electronic health records: A narrative review. Population Health Management. 2015; 18 (3):209–216. [ PubMed : 25608033 ]
  • Pawson R. Evidence-based policy: a realist perspective. London: SAGE Publications; 2006.
  • Pawson R., Greenhalgh T., Harvey G., Walshe K. Realist review—a new method of systematic review designed for complex policy interventions. Journal of Health Services Research & Policy. 2005; 10 (Suppl 1):21–34. [ PubMed : 16053581 ]
  • Petersen K., Vakkalanka S., Kuzniarz L. Guidelines for conducting systematic mapping studies in software engineering: An update. Information and Software Technology. 2015; 64 :1–18.
  • Petticrew M., Roberts H. Systematic reviews in the social sciences: A practical guide. Malden, ma : Blackwell Publishing Co; 2006.
  • Rousseau D. M., Manning J., Denyer D. Evidence in management and organizational science: Assembling the field’s full weight of scientific knowledge through syntheses. The Academy of Management Annals. 2008; 2 (1):475–515.
  • Rowe F. What literature review is not: diversity, boundaries and recommendations. European Journal of Information Systems. 2014; 23 (3):241–255.
  • Shea B. J., Hamel C., Wells G. A., Bouter L. M., Kristjansson E., Grimshaw J. et al. Boers M. amstar is a reliable and valid measurement tool to assess the methodological quality of systematic reviews. Journal of Clinical Epidemiology. 2009; 62 (10):1013–1020. [ PubMed : 19230606 ]
  • Shepperd S., Lewin S., Straus S., Clarke M., Eccles M. P., Fitzpatrick R. et al. Sheikh A. Can we systematically review studies that evaluate complex interventions? PLoS Medicine. 2009; 6 (8):e1000086. [ PMC free article : PMC2717209 ] [ PubMed : 19668360 ]
  • Silva B. M., Rodrigues J. J., de la Torre Díez I., López-Coronado M., Saleem K. Mobile-health: A review of current state in 2015. Journal of Biomedical Informatics. 2015; 56 :265–272. [ PubMed : 26071682 ]
  • Smith V., Devane D., Begley C., Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. bmc Medical Research Methodology. 2011; 11 (1):15. [ PMC free article : PMC3039637 ] [ PubMed : 21291558 ]
  • Sylvester A., Tate M., Johnstone D. Beyond synthesis: re-presenting heterogeneous research literature. Behaviour & Information Technology. 2013; 32 (12):1199–1215.
  • Templier M., Paré G. A framework for guiding and evaluating literature reviews. Communications of the Association for Information Systems. 2015; 37 (6):112–137.
  • Thomas J., Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. bmc Medical Research Methodology. 2008; 8 (1):45. [ PMC free article : PMC2478656 ] [ PubMed : 18616818 ]
  • Reconstructing the giant: on the importance of rigour in documenting the literature search process. Paper presented at the Proceedings of the 17th European Conference on Information Systems ( ecis 2009); Verona, Italy. 2009.
  • Webster J., Watson R.T. Analyzing the past to prepare for the future: Writing a literature review. Management Information Systems Quarterly. 2002; 26 (2):11.
  • Whitlock E. P., Lin J. S., Chou R., Shekelle P., Robinson K.A. Using existing systematic reviews in complex systematic reviews. Annals of Internal Medicine. 2008; 148 (10):776–782. [ PubMed : 18490690 ]

This publication is licensed under a Creative Commons License, Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0): see https://creativecommons.org/licenses/by-nc/4.0/

  • Cite this Page Paré G, Kitsiou S. Chapter 9 Methods for Literature Reviews. In: Lau F, Kuziemsky C, editors. Handbook of eHealth Evaluation: An Evidence-based Approach [Internet]. Victoria (BC): University of Victoria; 2017 Feb 27.
  • PDF version of this title (4.5M)
  • Disable Glossary Links

In this Page

  • Introduction
  • Overview of the Literature Review Process and Steps
  • Types of Review Articles and Brief Illustrations
  • Concluding Remarks

Related information

  • PMC PubMed Central citations
  • PubMed Links to PubMed

Recent Activity

  • Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Ev... Chapter 9 Methods for Literature Reviews - Handbook of eHealth Evaluation: An Evidence-based Approach

Your browsing activity is empty.

Activity recording is turned off.

Turn recording back on

Connect with NLM

National Library of Medicine 8600 Rockville Pike Bethesda, MD 20894

Web Policies FOIA HHS Vulnerability Disclosure

Help Accessibility Careers

statistics

  • Locations and Hours
  • UCLA Library
  • Research Guides
  • Biomedical Library Guides

Systematic Reviews

  • Types of Literature Reviews

What Makes a Systematic Review Different from Other Types of Reviews?

  • Planning Your Systematic Review
  • Database Searching
  • Creating the Search
  • Search Filters and Hedges
  • Grey Literature
  • Managing and Appraising Results
  • Further Resources

Reproduced from Grant, M. J. and Booth, A. (2009), A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26: 91–108. doi:10.1111/j.1471-1842.2009.00848.x

  • << Previous: Home
  • Next: Planning Your Systematic Review >>
  • Last Updated: Apr 17, 2024 2:02 PM
  • URL: https://guides.library.ucla.edu/systematicreviews

Research-Methodology

Types of Literature Review

There are many types of literature review. The choice of a specific type depends on your research approach and design. The following types of literature review are the most popular in business studies:

Narrative literature review , also referred to as traditional literature review, critiques literature and summarizes the body of a literature. Narrative review also draws conclusions about the topic and identifies gaps or inconsistencies in a body of knowledge. You need to have a sufficiently focused research question to conduct a narrative literature review

Systematic literature review requires more rigorous and well-defined approach compared to most other types of literature review. Systematic literature review is comprehensive and details the timeframe within which the literature was selected. Systematic literature review can be divided into two categories: meta-analysis and meta-synthesis.

When you conduct meta-analysis you take findings from several studies on the same subject and analyze these using standardized statistical procedures. In meta-analysis patterns and relationships are detected and conclusions are drawn. Meta-analysis is associated with deductive research approach.

Meta-synthesis, on the other hand, is based on non-statistical techniques. This technique integrates, evaluates and interprets findings of multiple qualitative research studies. Meta-synthesis literature review is conducted usually when following inductive research approach.

Scoping literature review , as implied by its name is used to identify the scope or coverage of a body of literature on a given topic. It has been noted that “scoping reviews are useful for examining emerging evidence when it is still unclear what other, more specific questions can be posed and valuably addressed by a more precise systematic review.” [1] The main difference between systematic and scoping types of literature review is that, systematic literature review is conducted to find answer to more specific research questions, whereas scoping literature review is conducted to explore more general research question.

Argumentative literature review , as the name implies, examines literature selectively in order to support or refute an argument, deeply imbedded assumption, or philosophical problem already established in the literature. It should be noted that a potential for bias is a major shortcoming associated with argumentative literature review.

Integrative literature review reviews , critiques, and synthesizes secondary data about research topic in an integrated way such that new frameworks and perspectives on the topic are generated. If your research does not involve primary data collection and data analysis, then using integrative literature review will be your only option.

Theoretical literature review focuses on a pool of theory that has accumulated in regard to an issue, concept, theory, phenomena. Theoretical literature reviews play an instrumental role in establishing what theories already exist, the relationships between them, to what degree existing theories have been investigated, and to develop new hypotheses to be tested.

At the earlier parts of the literature review chapter, you need to specify the type of your literature review your chose and justify your choice. Your choice of a specific type of literature review should be based upon your research area, research problem and research methods.  Also, you can briefly discuss other most popular types of literature review mentioned above, to illustrate your awareness of them.

[1] Munn, A. et. al. (2018) “Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach” BMC Medical Research Methodology

Types of Literature Review

  John Dudovskiy

  • Library Hours
  • Strategic Plan
  • Giving to the Libraries
  • Jobs at the Libraries
  • Find Your Librarian
  • View All →
  • Google Scholar
  • Research Guides
  • Textbook/Reserves
  • Government Documents
  • Get It For Me
  • Print/Copy/Scan
  • Renew Materials
  • Study Rooms
  • Use a Computer
  • Borrow Tech Gear
  • Student Services
  • Faculty Services
  • Users with Disabilities
  • Visitors & Alumni
  • Special Collections
  • Find Information

Basics of Systematic Reviews

  • About Systematic Review

Types of Reviews

Literature review.

Collects key sources on a topic and discusses those sources in conversation with each other

  • Standard for research articles in most disciplines
  • Tells the reader what is known, or not known, about a particular issue, topic, or subject
  • Demonstrates knowledge and understanding of a topic
  • Establishes context or background for a case or argument
  • Helps develop the author’s ideas and perspective

Rapid Review

Thorough methodology but with process limitations in place to expeditethe completion of a review.

  • For questions that require timely answers
  • 3-4 months vs. 12-24 months
  • Limitations - scope, comprehensiveness bias, and quality of appraisal
  • Discusses potential effects that the limited methods may have had on results

Scoping Review

Determine the scope or coverage of a body of literature on a given topic and give clear indication of the volume of literature and studies available as well as an overview of its focus.

  • Identify types of available evidence in a given field
  • Clarify key concepts/definitions in the literature
  • Examine how research is conducted on a certain topic or field
  • Identify key factors related to a concept
  • Key difference is focus
  • Identify and analyze knowledge gaps

Systematic Review

Attempts to identify, appraise, and summarize all empirical evidence that fits pre-specified eligibility criteria to answer a specific research question.

  • clearly defined question with inclusion/exclusion criteria
  • rigorous and systematic search of the literature
  • thorough screening of results
  • data extraction and management
  • analysis and interpretation of results
  • risk of bias assessment of included studies

Meta-Analysis

Used to systematically synthesize or merge the findings of single, independent studies, using statistical methods to calculate an overall or ‘absolute’ effect.

  • Combines results from multiple empirical studies
  • Requires systematic review first
  • Use well recognized, systematic methods to account for differences in sample size, variability (heterogeneity) in study approach and findings (treatment effects)
  • Test how sensitive their results are to their own systematic review protocol

For additional types of reviews please see these articles:

  • Sutton, A., Clowes, M., Preston, L. and Booth, A. (2019), Meeting the review family: exploring review types and associated information retrieval requirements. Health Info Libr J, 36: 202-222. https://doi.org/10.1111/hir.12276
  • Grant, M.J. and Booth, A. (2009), A typology of reviews: an analysis of 14 review types and associated methodologies. Health Information & Libraries Journal, 26: 91-108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
  • << Previous: About Systematic Review
  • Next: Sources >>
  • Last Updated: May 17, 2024 10:04 AM
  • URL: https://libguides.utsa.edu/systematicreview
  • Library Locations
  • Staff Directory
  • 508 Compliance
  • Site Search
  • © The University of Texas at San Antonio
  • Information: 210-458-4011
  • Campus Alerts
  • Required Links
  • UTSA Policies
  • Report Fraud

Construction Safety Innovation and Barriers in Different Company Types and Sizes: A Survey in Vietnam

  • Construction Management
  • Published: 24 May 2024

Cite this article

4 major types of literature review pdf

  • Thao Nguyen Thach   ORCID: orcid.org/0009-0001-6696-9397 1 ,
  • Hyosoo Moon   ORCID: orcid.org/0000-0001-6555-3181 2 ,
  • Hoang Duy Pham   ORCID: orcid.org/0000-0003-4442-3390 3 ,
  • Nahyun Kwon   ORCID: orcid.org/0000-0001-9965-9611 4 &
  • Yonghan Ahn   ORCID: orcid.org/0000-0002-5542-7314 4  

In recent years, safety innovation has brought potential benefits to the sustainable development of building industries. However, safety innovation is still limited owing to a limited understanding of technology capabilities and associated barriers within construction organizations. This study aimed to evaluate the potential technologies and barriers based on company type and size toward construction safety innovation. The literature review identified twelve technologies and ten barriers to safety innovation. These technologies are classified into geospatial, image, and interactive technologies, whereas barriers are classified into technology, organization, and market-related problems. The rank-based non-parametric tests analyzed data collected from 184 industry practitioners in Vietnam to examine differences between groups of developers, consultants, and contractors with small, medium, and large construction organizations. The findings showed that developers and consultants are pioneers toward innovation in safety management practices compared to contractors. Additionally, image technologies are the top solutions for improving safety performance for SMEs, whereas organization-related problems are major challenges for their innovation. A comparison between countries reveals the growing trend of utilizing interactive technologies to enhance construction safety management. The results provide valuable insights into the context of global construction safety innovation. These findings are expected to provide innovative guidelines for the sustainable development of the building industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

Akinlolu M, Haupt TC, Edwards DJ, Simpeh F (2022) A bibliometric review of the status and emerging research trends in construction safety management technologies. International Journal of Construction Management 22(14):2699–2711, DOI: https://doi.org/10.1080/15623599.2020.1819584

Article   Google Scholar  

Amissah J, Badu E, Agyei-Baffour P, Nakua EK, Mensah I (2019) Predisposing factors influencing occupational injury among frontline building construction workers in Ghana. BMC Research Notes 12(728):1–8, DOI: https://doi.org/10.1186/s13104-019-4744-8

Google Scholar  

Atuahene BT (2016) Organizational culture in the Ghanaian construction industry. MSc Thesis, Kwame Nkrumah University of Science and Technology, Kmasi, Ghana

Baah C, Agyabeng-Mensah Y, Afum E, Mncwango MS (2021) Do green legitimacy and regulatory stakeholder demands stimulate corporate social and environmental responsibilities, environmental and financial performance? Evidence from an emerging economy. Management of Environmental Quality: An International Journal 32(4):787–803, DOI: https://doi.org/10.1108/MEQ-10-2020-0225

Balasubramanian S, Shukla V, Islam N, Manghat S (2021) Construction industry 4.0 and sustainability: An enabling framework. IEEE Transactions on Engineering Management 71:1–19, DOI: https://doi.org/10.1109/TEM.2021.3110427

Bohn JS, Teizer J (2010) Benefits and barriers of construction project monitoring using high-resolution automated cameras. Journal of Construction Engineering and Management 136(6):632–640, DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000164

Bonett DG, Wright TA (2015) Cronbach’s alpha reliability: Interval estimation, hypothesis testing, and sample size planning. Journal of Organizational Behavior 36(1):3–15, DOI: https://doi.org/10.1002/job.1960

Chan DW, Olawumi TO, Ho AM (2019) Perceived benefits of and barriers to building information modelling (BIM) implementation in construction: The case of Hong Kong. Journal of Building Engineering 25:100764, DOI: https://doi.org/10.1016/j.jobe.2019.100764

Chen H, Hou L, Zhang GK, Moon S (2021) Development of BIM, IoT and AR/VR technologies for fire safety and upskilling. Automation in Construction 125:103631, DOI: https://doi.org/10.1016/j.autcon.2021.103631

Darko A, Chan APC, Yang Y, Shan M, He B-J, Gou Z (2018) Influences of barriers, drivers, and promotion strategies on green building technologies adoption in developing countries: The Ghanaian case. Journal of Cleaner Production 200:687–703, DOI: https://doi.org/10.1016/j.jclepro.2018.07.318

Dobrucali E, Demirkesen S, Sadikoglu E, Zhang C, Damci A (2022) Investigating the impact of emerging technologies on construction safety performance. Engineering, Construction and Architectural Management 31(3):1322–1347, DOI: https://doi.org/10.1108/ECAM-07-2022-0668

Fang Y, Cho YK, Zhang S, Perez E (2016) Case study of BIM and cloud-enabled real-time RFID indoor localization for construction management applications. Journal of Construction Engineering and Management 142(7):05016003, DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001125

General of Statistics Office G (2021) Report on labour force survey 2021. Retrieved September 15, 2023, https://www.gso.gov.vn/en/data-and-statistics/2023/03/report-on-labour-force-survey-2021/

Han Y, Jin R, Wood H, Yang T (2019) Investigation of demographic factors in construction employees’ safety perceptions. KSCE Journal of Civil Engineering 23(7):2815–2828, DOI: https://doi.org/10.1007/s12205-019-2044-4

Harpe SE (2015) How to analyze Likert and other rating scale data. Currents in Pharmacy Teaching and Learning 7(6):836–850, DOI: https://doi.org/10.1016/j.cptl.2015.08.001

Hwang B-G, Ngo J, Her PWY (2020) Integrated digital delivery: Implementation status and project performance in the Singapore construction industry. Journal of Cleaner Production 262:121396, DOI: https://doi.org/10.1016/j.jclepro.2020.121396

Ibrahim FSB, Ebekozien A, Khan PAM, Aigbedion M, Ogbaini IF, Amadi GC (2022) Appraising fourth industrial revolution technologies role in the construction sector: How prepared is the construction consultants? Facilities 40(7/8):515–532, DOI: https://doi.org/10.1108/F-09-2021-0086

International Labour Organization (2015) Construction: A hazardous work. International Labour Organization. Retrieved August 8, 2023, https://www.ilo.org/data-and-statistics

Ismail NAA, Zulkifli MZA, Baharuddin HEA, Ismail WNW, Mustapha AA (2022) Challenges of adopting building information modelling (BIM) Technology amongst SME’s Contractors in Malaysia. IOP Conference Series: Earth and Environmental Science 1067(1):012047, DOI: https://doi.org/10.1088/1755-1315/1067/1/012047

Jin Z, Gambatese J, Liu D, Dharmapalan V (2019) Using 4D BIM to assess construction risks during the design phase. Engineering, Construction and Architectural Management 26(11):2637–2654, DOI: https://doi.org/10.1108/ECAM-09-2018-0379

Jung M, Lee Y-b, Lee H (2015) Classifying and prioritizing the success and failure factors of technology commercialization of public R&D in South Korea: Using classification tree analysis. The Journal of Technology Transfer 40:877–898, DOI: https://doi.org/10.1007/s10961-014-9376-5

Article   MathSciNet   Google Scholar  

Karakhan AA, Rajendran S, Gambatese J, Nnaji C (2018) Measuring and evaluating safety maturity of construction contractors: Multicriteria decision-making approach. Journal of Construction Engineering and Management 144(7):04018054, DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001503

Kim KW (2018) Costs of injuries and ill health in the workplace in South Korea. International Journal of Occupational Safety and Ergonomics 26:772–779, DOI: https://doi.org/10.1080/10803548.2018.1509825

Kim HS, Kim S-K, Borrmann A, Kang LS (2018) Improvement of realism of 4D objects using augmented reality objects and actual images of a construction site. KSCE Journal of Civil Engineering 22(8):2735–2746, DOI: https://doi.org/10.1007/s12205-017-0734-3

Kim Y-S, Lee JY, Yoon Y-G, Oh T-K (2022) Effectiveness analysis for smart construction safety technology (SCST) by test bed operation on small-and medium-sized construction sites. International Journal of Environmental Research and Public Health 19(9):5203, DOI: https://doi.org/10.3390/ijerph19095203

Khanh HD, Kim SY (2022) Construction productivity prediction through Bayesian networks for building projects: Case from Vietnam. Engineering, Construction and Architectural Management 30(5): 2075–2100, DOI: https://doi.org/10.1108/ECAM-07-2021-0602

Kheni NA, Gibb AG, Dainty AR (2010) Health and safety management within small-and medium-sized enterprises (SMEs) in developing countries: Study of contextual influences. Journal of construction Engineering and Management 136(10):1104–1115, DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0000218

Le-Hoai L, Lee YD, Lee JY (2008) Delay and cost overruns in Vietnam large construction projects: A comparison with other selected countries. KSCE Journal of Civil Engineering 12(6):367–377, DOI: https://doi.org/10.1007/s12205-008-0367-7

Lee P-C, Wei J, Ting H-I, Lo T-P, Long D, Chang L-M (2019) Dynamic analysis of construction safety risk and visual tracking of key factors based on behavior-based safety and building information modeling. KSCE Journal of Civil Engineering 23(10):4155–4167, DOI: https://doi.org/10.1007/s12205-019-0283-z

Lin Y-H, Han W, Kim CJ, Jiang L, Xia N (2022) Effect of commitment on the link between organizational culture and international project performance: A comparison between China and Korea. Engineering, Construction and Architectural Management 30(9):4518–4539, DOI: https://doi.org/10.1108/ECAM-12-2021-1116

Lundberg M, Engström S, Lidelöw H (2019) Diffusion of innovation in a contractor company: The impact of the social system structure on the implementation process. Construction Innovation 19(4):629–652, DOI: https://doi.org/10.1108/CI-08-2018-0061

MacFarland TW, Yates JM (2016) Kruskal–Wallis H-test for oneway analysis of variance (ANOVA) by ranks. Introduction to Nonparametric Statistics for the Biological Sciences Using R 2016:177–211, DOI: https://doi.org/10.1007/978-3-319-30634-66

Malá I, Sládek V, Bílková D (2021) Power comparisons of normality tests based on l-moments and classical tests. Mathematics and Statistics 9(6):994–1003, DOI: https://doi.org/10.13189/ms.2021.090615

Manu P, Mahamadu A-M, Nguyen TT, Ath C, Heng AYT, Kit SC (2018) Health and safety management practices of contractors in South East Asia: A multi country study of Cambodia, Vietnam, and Malaysia. Safety Science 107:188–201, DOI: https://doi.org/10.1016/j.ssci.2017.07.007

Maqbool R, Saiba MR, Ashfaq S (2023) Emerging industry 4.0 and Internet of Things (IoT) technologies in the Ghanaian construction industry: Sustainability, implementation challenges, and benefits. Environmental Science and Pollution Research 30(13):37076–37091, DOI: https://doi.org/10.1007/s11356-022-24764-1

Marefat A, Toosi H, Hasankhanlo RM (2018) A BIM approach for construction safety: Applications, barriers and solutions. Engineering, Construction and Architectural Management 26(9):1855–1877, DOI: https://doi.org/10.1108/ECAM-01-2017-0011

Ministry of Labor (2020) Distribution of fatal work accidents in Vietnam in 2018, by sector. Statistas. Retrieved August 23, 2023, https://www.statista.com/statistics/1005529/vietnam-dis1ribution-fatal-work-accidents-sector/

MLIT (2020) MOLIT to commercialize smart construction core technology by 2025. Ministry of Land, Infrastructure, and Transport. Retrieved Agust 23, 2023, https://smartcity.go.kr/en/

MPI (2021) Detailed provisions and instructions for implementation of some articles of the law supporting small and sme enterprise. Retrieved Agust 23, 2023, https://vanban.chinhphu.vn/default.aspx?pageid=27160&docid=203941

Nnaji C, Gambatese J, Karakhan A, Eseonu C (2019) Influential safety technology adoption predictors in construction. Engineering, Construction and Architectural Management 26(11):2655–2681, DOI: https://doi.org/10.1108/ECAM-09-2018-0381

Nnaji C, Karakhan AA (2020) Technologies for safety and health management in construction: Current use, implementation benefits and limitations, and adoption barriers. Journal of Building Engineering 29:101212, DOI: https://doi.org/10.1016/j.jobe.2020.101212

Noruwa BI, Arewa AO, Merschbrock C (2022) Effects of emerging technologies in minimising variations in construction projects in the UK. International Journal of Construction Management 22(11): 2199–2206, DOI: https://doi.org/10.1080/15623599.2020.1772530

Nguyen MV (2023) Barriers to innovation in construction organizations of different sizes: A case study in Vietnam. Engineering, Construction and Architectural Management , DOI: https://doi.org/10.1108/ECAM-07-2022-0701

Oh TK, Kwon YJ, Oh B-H, Gwon Y-I, Yoon H-K (2021) Suggestions for safety coordinator’s roles at each construction stage (client, designer, supervisor, and contractor) to improve safety and health activities in South Korea. Safety Science 133:104994, DOI: https://doi.org/10.1016/j.ssci.2020.104994

Qi B, Qian S, Costin A (2020a) A predictive analysis on emerging technology utilization in industrialized construction in the United States and China. Algorithms 13(8):180, DOI: https://doi.org/10.3390/a13080180

Qi B, Razkenari M, Li J, Costin A, Kibert C, Qian S (2020b) Investigating US industry practitioners’ perspectives towards the adoption of emerging technologies in industrialized construction. Buildings 10(5):85, DOI: https://doi.org/10.3390/buildings10050085

Sepasgozar SM, Davis S (2018) Construction technology adoption cube: An investigation on process, factors, barriers, drivers and decision makers using NVivo and AHP analysis. Buildings 8(6):74, DOI: https://doi.org/10.3390/buildings8060074

Sherafat B, Ahn CR, Akhavian R, Behzadan AH, Golparvar-Fard M, Kim H, Lee Y-C, Rashidi A, Azar ER (2020) Automated methods for activity recognition of construction workers and equipment: State-of-the-art review. Journal of Construction Engineering and Management 146(6):03120002, DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001843

Shrestha K, Shrestha PP, Bajracharya D, Yfantis EA (2015) Hard-hat detection for construction safety visualization. Journal of Construction Engineering 2015(1):1–8, DOI: https://doi.org/10.1155/2015/721380

Taherdoost H (2016) Sampling methods in research methodology; How to choose a sampling technique for research. How to Choose a Sampling Technique for Research (April 10, 2016) 5(2):18–27, DOI: https://doi.org/10.2139/ssrn.3205035

Taheri S, Hesamian G (2013) A generalization of the Wilcoxon signed-rank test and its applications. Statistical Papers 54(2):457–470, DOI: https://doi.org/10.1007/s00362-012-0443-4

Tran QH (2021) Organisational culture, leadership behaviour and job satisfaction in the Vietnam context. International Journal of Organizational Analysis 29(1):136–154, DOI: https://doi.org/10.1108/IJOA-10-2019-1919

Tran-Hoang-Minh H, Nguyen T-Q, Nguyen D-P, Pham Q-T (2021) Barriers of BIM adoption in vietnamese contractors. AIP Conference Proceedings 2428(1):020004, DOI: https://doi.org/10.1063/5.0070732

Trinh MT, Feng Y (2020) Impact of project complexity on construction safety performance: Moderating role of resilient safety culture. Journal of Construction Engineering and Management 146(2):04019103, DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0001758

Vietnam Ministry of Industry and Trade (2019) Manufacturing and Subsector Competitiveness. Retrieved September 15, 2023, https://moit.gov.vn/en

Won D, Chi S, Park M-W (2020) UAV-RFID integration for construction resource localization. KSCE Journal of Civil Engineering 24(6): 1683–1695, DOI: https://doi.org/10.1007/s12205-020-2074-y

World Bank (2020) World Bank Open Data. World Bank: World Bank Retrieved from, https://data.worldbank.org/

Xia M-p, Li H-b, Jiang N, Chen J-l, Zhou J-w (2023) Risk assessment and mitigation evaluation for rockfall hazards at the diversion tunnel inlet slope of jinchuan hydropower station by using three-dimensional terrestrial scanning technology. KSCE Journal of Civil Engineering 27(1):181–197, DOI: https://doi.org/10.1007/s12205-022-1679-8

Xue H, Zhang T, Wang Q, Liu S, Chen K (2022) Developing a unified framework for data sharing in the smart construction using text analysis. KSCE Journal of Civil Engineering 26(11):4359–4379, DOI: https://doi.org/10.1007/s12205-022-2037-6

Xue X, Zhang R, Yang R, Dai J (2014) Innovation in construction: A critical review and future research. International Journal of Innovation Science 6(2):111–126, DOI: https://doi.org/10.1260/1757-2223.6.2.111

Yang K, Meho LI (2006) Citation analysis: A comparison of Google Scholar, Scopus, and Web of Science. Proceedings of the American Society for Information Science and Technology 43(1):1–15, DOI: https://doi.org/10.1002/meet.14504301185

Yap JBH, Skitmore M, Lam CGY, Lee WP, Lew YL (2022) Advanced technologies for enhanced construction safety management: Investigating Malaysian perspectives. International Journal of Construction Management 24(6):1–10, DOI: https://doi.org/10.1080/15623599.2022.2135951

Download references

Acknowledgments

This work is supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant RS-2022-00141900).

Author information

Authors and affiliations.

Dept. of Smart City Engineering, Hanyang University (ERICA), Ansan, 15588, Korea

Thao Nguyen Thach

Dept. of Sustainable Smart City Convergence Educational Research Center, Hanyang University, Seoul, 04763, Korea

Hyosoo Moon

Dept. of Center for AI Technology in Construction at Industry-University Cooperation Foundation (ERICA), Hanyang University, Seoul, 04763, Korea

Hoang Duy Pham

Dept. of Architecture and Architectural Engineering, Hanyang University (ERICA), Ansan, 15588, Korea

Nahyun Kwon & Yonghan Ahn

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Nahyun Kwon .

Electronic supplementary material

Rights and permissions.

Reprints and permissions

About this article

Thach, T.N., Moon, H., Pham, H.D. et al. Construction Safety Innovation and Barriers in Different Company Types and Sizes: A Survey in Vietnam. KSCE J Civ Eng (2024). https://doi.org/10.1007/s12205-024-0779-z

Download citation

Received : 17 April 2023

Revised : 30 August 2023

Accepted : 13 March 2024

Published : 24 May 2024

DOI : https://doi.org/10.1007/s12205-024-0779-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Sustainable construction
  • Safety innovation
  • Information technologies
  • Safety and health management
  • Safety technologies
  • Find a journal
  • Publish with us
  • Track your research

McKinsey Global Private Markets Review 2024: Private markets in a slower era

At a glance, macroeconomic challenges continued.

4 major types of literature review pdf

McKinsey Global Private Markets Review 2024: Private markets: A slower era

If 2022 was a tale of two halves, with robust fundraising and deal activity in the first six months followed by a slowdown in the second half, then 2023 might be considered a tale of one whole. Macroeconomic headwinds persisted throughout the year, with rising financing costs, and an uncertain growth outlook taking a toll on private markets. Full-year fundraising continued to decline from 2021’s lofty peak, weighed down by the “denominator effect” that persisted in part due to a less active deal market. Managers largely held onto assets to avoid selling in a lower-multiple environment, fueling an activity-dampening cycle in which distribution-starved limited partners (LPs) reined in new commitments.

About the authors

This article is a summary of a larger report, available as a PDF, that is a collaborative effort by Fredrik Dahlqvist , Alastair Green , Paul Maia, Alexandra Nee , David Quigley , Aditya Sanghvi , Connor Mangan, John Spivey, Rahel Schneider, and Brian Vickery , representing views from McKinsey’s Private Equity & Principal Investors Practice.

Performance in most private asset classes remained below historical averages for a second consecutive year. Decade-long tailwinds from low and falling interest rates and consistently expanding multiples seem to be things of the past. As private market managers look to boost performance in this new era of investing, a deeper focus on revenue growth and margin expansion will be needed now more than ever.

A daytime view of grassy sand dunes

Perspectives on a slower era in private markets

Global fundraising contracted.

Fundraising fell 22 percent across private market asset classes globally to just over $1 trillion, as of year-end reported data—the lowest total since 2017. Fundraising in North America, a rare bright spot in 2022, declined in line with global totals, while in Europe, fundraising proved most resilient, falling just 3 percent. In Asia, fundraising fell precipitously and now sits 72 percent below the region’s 2018 peak.

Despite difficult fundraising conditions, headwinds did not affect all strategies or managers equally. Private equity (PE) buyout strategies posted their best fundraising year ever, and larger managers and vehicles also fared well, continuing the prior year’s trend toward greater fundraising concentration.

The numerator effect persisted

Despite a marked recovery in the denominator—the 1,000 largest US retirement funds grew 7 percent in the year ending September 2023, after falling 14 percent the prior year, for example 1 “U.S. retirement plans recover half of 2022 losses amid no-show recession,” Pensions and Investments , February 12, 2024. —many LPs remain overexposed to private markets relative to their target allocations. LPs started 2023 overweight: according to analysis from CEM Benchmarking, average allocations across PE, infrastructure, and real estate were at or above target allocations as of the beginning of the year. And the numerator grew throughout the year, as a lack of exits and rebounding valuations drove net asset values (NAVs) higher. While not all LPs strictly follow asset allocation targets, our analysis in partnership with global private markets firm StepStone Group suggests that an overallocation of just one percentage point can reduce planned commitments by as much as 10 to 12 percent per year for five years or more.

Despite these headwinds, recent surveys indicate that LPs remain broadly committed to private markets. In fact, the majority plan to maintain or increase allocations over the medium to long term.

Investors fled to known names and larger funds

Fundraising concentration reached its highest level in over a decade, as investors continued to shift new commitments in favor of the largest fund managers. The 25 most successful fundraisers collected 41 percent of aggregate commitments to closed-end funds (with the top five managers accounting for nearly half that total). Closed-end fundraising totals may understate the extent of concentration in the industry overall, as the largest managers also tend to be more successful in raising non-institutional capital.

While the largest funds grew even larger—the largest vehicles on record were raised in buyout, real estate, infrastructure, and private debt in 2023—smaller and newer funds struggled. Fewer than 1,700 funds of less than $1 billion were closed during the year, half as many as closed in 2022 and the fewest of any year since 2012. New manager formation also fell to the lowest level since 2012, with just 651 new firms launched in 2023.

Whether recent fundraising concentration and a spate of M&A activity signals the beginning of oft-rumored consolidation in the private markets remains uncertain, as a similar pattern developed in each of the last two fundraising downturns before giving way to renewed entrepreneurialism among general partners (GPs) and commitment diversification among LPs. Compared with how things played out in the last two downturns, perhaps this movie really is different, or perhaps we’re watching a trilogy reusing a familiar plotline.

Dry powder inventory spiked (again)

Private markets assets under management totaled $13.1 trillion as of June 30, 2023, and have grown nearly 20 percent per annum since 2018. Dry powder reserves—the amount of capital committed but not yet deployed—increased to $3.7 trillion, marking the ninth consecutive year of growth. Dry powder inventory—the amount of capital available to GPs expressed as a multiple of annual deployment—increased for the second consecutive year in PE, as new commitments continued to outpace deal activity. Inventory sat at 1.6 years in 2023, up markedly from the 0.9 years recorded at the end of 2021 but still within the historical range. NAV grew as well, largely driven by the reluctance of managers to exit positions and crystallize returns in a depressed multiple environment.

Private equity strategies diverged

Buyout and venture capital, the two largest PE sub-asset classes, charted wildly different courses over the past 18 months. Buyout notched its highest fundraising year ever in 2023, and its performance improved, with funds posting a (still paltry) 5 percent net internal rate of return through September 30. And although buyout deal volumes declined by 19 percent, 2023 was still the third-most-active year on record. In contrast, venture capital (VC) fundraising declined by nearly 60 percent, equaling its lowest total since 2015, and deal volume fell by 36 percent to the lowest level since 2019. VC funds returned –3 percent through September, posting negative returns for seven consecutive quarters. VC was the fastest-growing—as well as the highest-performing—PE strategy by a significant margin from 2010 to 2022, but investors appear to be reevaluating their approach in the current environment.

Private equity entry multiples contracted

PE buyout entry multiples declined by roughly one turn from 11.9 to 11.0 times EBITDA, slightly outpacing the decline in public market multiples (down from 12.1 to 11.3 times EBITDA), through the first nine months of 2023. For nearly a decade leading up to 2022, managers consistently sold assets into a higher-multiple environment than that in which they had bought those assets, providing a substantial performance tailwind for the industry. Nowhere has this been truer than in technology. After experiencing more than eight turns of multiple expansion from 2009 to 2021 (the most of any sector), technology multiples have declined by nearly three turns in the past two years, 50 percent more than in any other sector. Overall, roughly two-thirds of the total return for buyout deals that were entered in 2010 or later and exited in 2021 or before can be attributed to market multiple expansion and leverage. Now, with falling multiples and higher financing costs, revenue growth and margin expansion are taking center stage for GPs.

Real estate receded

Demand uncertainty, slowing rent growth, and elevated financing costs drove cap rates higher and made price discovery challenging, all of which weighed on deal volume, fundraising, and investment performance. Global closed-end fundraising declined 34 percent year over year, and funds returned −4 percent in the first nine months of the year, losing money for the first time since the 2007–08 global financial crisis. Capital shifted away from core and core-plus strategies as investors sought liquidity via redemptions in open-end vehicles, from which net outflows reached their highest level in at least two decades. Opportunistic strategies benefited from this shift, with investors focusing on capital appreciation over income generation in a market where alternative sources of yield have grown more attractive. Rising interest rates widened bid–ask spreads and impaired deal volume across food groups, including in what were formerly hot sectors: multifamily and industrial.

Private debt pays dividends

Debt again proved to be the most resilient private asset class against a turbulent market backdrop. Fundraising declined just 13 percent, largely driven by lower commitments to direct lending strategies, for which a slower PE deal environment has made capital deployment challenging. The asset class also posted the highest returns among all private asset classes through September 30. Many private debt securities are tied to floating rates, which enhance returns in a rising-rate environment. Thus far, managers appear to have successfully navigated the rising incidence of default and distress exhibited across the broader leveraged-lending market. Although direct lending deal volume declined from 2022, private lenders financed an all-time high 59 percent of leveraged buyout transactions last year and are now expanding into additional strategies to drive the next era of growth.

Infrastructure took a detour

After several years of robust growth and strong performance, infrastructure and natural resources fundraising declined by 53 percent to the lowest total since 2013. Supply-side timing is partially to blame: five of the seven largest infrastructure managers closed a flagship vehicle in 2021 or 2022, and none of those five held a final close last year. As in real estate, investors shied away from core and core-plus investments in a higher-yield environment. Yet there are reasons to believe infrastructure’s growth will bounce back. Limited partners (LPs) surveyed by McKinsey remain bullish on their deployment to the asset class, and at least a dozen vehicles targeting more than $10 billion were actively fundraising as of the end of 2023. Multiple recent acquisitions of large infrastructure GPs by global multi-asset-class managers also indicate marketwide conviction in the asset class’s potential.

Private markets still have work to do on diversity

Private markets firms are slowly improving their representation of females (up two percentage points over the prior year) and ethnic and racial minorities (up one percentage point). On some diversity metrics, including entry-level representation of women, private markets now compare favorably with corporate America. Yet broad-based parity remains elusive and too slow in the making. Ethnic, racial, and gender imbalances are particularly stark across more influential investing roles and senior positions. In fact, McKinsey’s research  reveals that at the current pace, it would take several decades for private markets firms to reach gender parity at senior levels. Increasing representation across all levels will require managers to take fresh approaches to hiring, retention, and promotion.

Artificial intelligence generating excitement

The transformative potential of generative AI was perhaps 2023’s hottest topic (beyond Taylor Swift). Private markets players are excited about the potential for the technology to optimize their approach to thesis generation, deal sourcing, investment due diligence, and portfolio performance, among other areas. While the technology is still nascent and few GPs can boast scaled implementations, pilot programs are already in flight across the industry, particularly within portfolio companies. Adoption seems nearly certain to accelerate throughout 2024.

Private markets in a slower era

If private markets investors entered 2023 hoping for a return to the heady days of 2021, they likely left the year disappointed. Many of the headwinds that emerged in the latter half of 2022 persisted throughout the year, pressuring fundraising, dealmaking, and performance. Inflation moderated somewhat over the course of the year but remained stubbornly elevated by recent historical standards. Interest rates started high and rose higher, increasing the cost of financing. A reinvigorated public equity market recovered most of 2022’s losses but did little to resolve the valuation uncertainty private market investors have faced for the past 18 months.

Within private markets, the denominator effect remained in play, despite the public market recovery, as the numerator continued to expand. An activity-dampening cycle emerged: higher cost of capital and lower multiples limited the ability or willingness of general partners (GPs) to exit positions; fewer exits, coupled with continuing capital calls, pushed LP allocations higher, thereby limiting their ability or willingness to make new commitments. These conditions weighed on managers’ ability to fundraise. Based on data reported as of year-end 2023, private markets fundraising fell 22 percent from the prior year to just over $1 trillion, the largest such drop since 2009 (Exhibit 1).

The impact of the fundraising environment was not felt equally among GPs. Continuing a trend that emerged in 2022, and consistent with prior downturns in fundraising, LPs favored larger vehicles and the scaled GPs that typically manage them. Smaller and newer managers struggled, and the number of sub–$1 billion vehicles and new firm launches each declined to its lowest level in more than a decade.

Despite the decline in fundraising, private markets assets under management (AUM) continued to grow, increasing 12 percent to $13.1 trillion as of June 30, 2023. 2023 fundraising was still the sixth-highest annual haul on record, pushing dry powder higher, while the slowdown in deal making limited distributions.

Investment performance across private market asset classes fell short of historical averages. Private equity (PE) got back in the black but generated the lowest annual performance in the past 15 years, excluding 2022. Closed-end real estate produced negative returns for the first time since 2009, as capitalization (cap) rates expanded across sectors and rent growth dissipated in formerly hot sectors, including multifamily and industrial. The performance of infrastructure funds was less than half of its long-term average and even further below the double-digit returns generated in 2021 and 2022. Private debt was the standout performer (if there was one), outperforming all other private asset classes and illustrating the asset class’s countercyclical appeal.

Private equity down but not out

Higher financing costs, lower multiples, and an uncertain macroeconomic environment created a challenging backdrop for private equity managers in 2023. Fundraising declined for the second year in a row, falling 15 percent to $649 billion, as LPs grappled with the denominator effect and a slowdown in distributions. Managers were on the fundraising trail longer to raise this capital: funds that closed in 2023 were open for a record-high average of 20.1 months, notably longer than 18.7 months in 2022 and 14.1 months in 2018. VC and growth equity strategies led the decline, dropping to their lowest level of cumulative capital raised since 2015. Fundraising in Asia fell for the fourth year of the last five, with the greatest decline in China.

Despite the difficult fundraising context, a subset of strategies and managers prevailed. Buyout managers collectively had their best fundraising year on record, raising more than $400 billion. Fundraising in Europe surged by more than 50 percent, resulting in the region’s biggest haul ever. The largest managers raised an outsized share of the total for a second consecutive year, making 2023 the most concentrated fundraising year of the last decade (Exhibit 2).

Despite the drop in aggregate fundraising, PE assets under management increased 8 percent to $8.2 trillion. Only a small part of this growth was performance driven: PE funds produced a net IRR of just 2.5 percent through September 30, 2023. Buyouts and growth equity generated positive returns, while VC lost money. PE performance, dating back to the beginning of 2022, remains negative, highlighting the difficulty of generating attractive investment returns in a higher interest rate and lower multiple environment. As PE managers devise value creation strategies to improve performance, their focus includes ensuring operating efficiency and profitability of their portfolio companies.

Deal activity volume and count fell sharply, by 21 percent and 24 percent, respectively, which continued the slower pace set in the second half of 2022. Sponsors largely opted to hold assets longer rather than lock in underwhelming returns. While higher financing costs and valuation mismatches weighed on overall deal activity, certain types of M&A gained share. Add-on deals, for example, accounted for a record 46 percent of total buyout deal volume last year.

Real estate recedes

For real estate, 2023 was a year of transition, characterized by a litany of new and familiar challenges. Pandemic-driven demand issues continued, while elevated financing costs, expanding cap rates, and valuation uncertainty weighed on commercial real estate deal volumes, fundraising, and investment performance.

Managers faced one of the toughest fundraising environments in many years. Global closed-end fundraising declined 34 percent to $125 billion. While fundraising challenges were widespread, they were not ubiquitous across strategies. Dollars continued to shift to large, multi-asset class platforms, with the top five managers accounting for 37 percent of aggregate closed-end real estate fundraising. In April, the largest real estate fund ever raised closed on a record $30 billion.

Capital shifted away from core and core-plus strategies as investors sought liquidity through redemptions in open-end vehicles and reduced gross contributions to the lowest level since 2009. Opportunistic strategies benefited from this shift, as investors turned their attention toward capital appreciation over income generation in a market where alternative sources of yield have grown more attractive.

In the United States, for instance, open-end funds, as represented by the National Council of Real Estate Investment Fiduciaries Fund Index—Open-End Equity (NFI-OE), recorded $13 billion in net outflows in 2023, reversing the trend of positive net inflows throughout the 2010s. The negative flows mainly reflected $9 billion in core outflows, with core-plus funds accounting for the remaining outflows, which reversed a 20-year run of net inflows.

As a result, the NAV in US open-end funds fell roughly 16 percent year over year. Meanwhile, global assets under management in closed-end funds reached a new peak of $1.7 trillion as of June 2023, growing 14 percent between June 2022 and June 2023.

Real estate underperformed historical averages in 2023, as previously high-performing multifamily and industrial sectors joined office in producing negative returns caused by slowing demand growth and cap rate expansion. Closed-end funds generated a pooled net IRR of −3.5 percent in the first nine months of 2023, losing money for the first time since the global financial crisis. The lone bright spot among major sectors was hospitality, which—thanks to a rush of postpandemic travel—returned 10.3 percent in 2023. 2 Based on NCREIFs NPI index. Hotels represent 1 percent of total properties in the index. As a whole, the average pooled lifetime net IRRs for closed-end real estate funds from 2011–20 vintages remained around historical levels (9.8 percent).

Global deal volume declined 47 percent in 2023 to reach a ten-year low of $650 billion, driven by widening bid–ask spreads amid valuation uncertainty and higher costs of financing (Exhibit 3). 3 CBRE, Real Capital Analytics Deal flow in the office sector remained depressed, partly as a result of continued uncertainty in the demand for space in a hybrid working world.

During a turbulent year for private markets, private debt was a relative bright spot, topping private markets asset classes in terms of fundraising growth, AUM growth, and performance.

Fundraising for private debt declined just 13 percent year over year, nearly ten percentage points less than the private markets overall. Despite the decline in fundraising, AUM surged 27 percent to $1.7 trillion. And private debt posted the highest investment returns of any private asset class through the first three quarters of 2023.

Private debt’s risk/return characteristics are well suited to the current environment. With interest rates at their highest in more than a decade, current yields in the asset class have grown more attractive on both an absolute and relative basis, particularly if higher rates sustain and put downward pressure on equity returns (Exhibit 4). The built-in security derived from debt’s privileged position in the capital structure, moreover, appeals to investors that are wary of market volatility and valuation uncertainty.

Direct lending continued to be the largest strategy in 2023, with fundraising for the mostly-senior-debt strategy accounting for almost half of the asset class’s total haul (despite declining from the previous year). Separately, mezzanine debt fundraising hit a new high, thanks to the closings of three of the largest funds ever raised in the strategy.

Over the longer term, growth in private debt has largely been driven by institutional investors rotating out of traditional fixed income in favor of private alternatives. Despite this growth in commitments, LPs remain underweight in this asset class relative to their targets. In fact, the allocation gap has only grown wider in recent years, a sharp contrast to other private asset classes, for which LPs’ current allocations exceed their targets on average. According to data from CEM Benchmarking, the private debt allocation gap now stands at 1.4 percent, which means that, in aggregate, investors must commit hundreds of billions in net new capital to the asset class just to reach current targets.

Private debt was not completely immune to the macroeconomic conditions last year, however. Fundraising declined for the second consecutive year and now sits 23 percent below 2021’s peak. Furthermore, though private lenders took share in 2023 from other capital sources, overall deal volumes also declined for the second year in a row. The drop was largely driven by a less active PE deal environment: private debt is predominantly used to finance PE-backed companies, though managers are increasingly diversifying their origination capabilities to include a broad new range of companies and asset types.

Infrastructure and natural resources take a detour

For infrastructure and natural resources fundraising, 2023 was an exceptionally challenging year. Aggregate capital raised declined 53 percent year over year to $82 billion, the lowest annual total since 2013. The size of the drop is particularly surprising in light of infrastructure’s recent momentum. The asset class had set fundraising records in four of the previous five years, and infrastructure is often considered an attractive investment in uncertain markets.

While there is little doubt that the broader fundraising headwinds discussed elsewhere in this report affected infrastructure and natural resources fundraising last year, dynamics specific to the asset class were at play as well. One issue was supply-side timing: nine of the ten largest infrastructure GPs did not close a flagship fund in 2023. Second was the migration of investor dollars away from core and core-plus investments, which have historically accounted for the bulk of infrastructure fundraising, in a higher rate environment.

The asset class had some notable bright spots last year. Fundraising for higher-returning opportunistic strategies more than doubled the prior year’s total (Exhibit 5). AUM grew 18 percent, reaching a new high of $1.5 trillion. Infrastructure funds returned a net IRR of 3.4 percent in 2023; this was below historical averages but still the second-best return among private asset classes. And as was the case in other asset classes, investors concentrated commitments in larger funds and managers in 2023, including in the largest infrastructure fund ever raised.

The outlook for the asset class, moreover, remains positive. Funds targeting a record amount of capital were in the market at year-end, providing a robust foundation for fundraising in 2024 and 2025. A recent spate of infrastructure GP acquisitions signal multi-asset managers’ long-term conviction in the asset class, despite short-term headwinds. Global megatrends like decarbonization and digitization, as well as revolutions in energy and mobility, have spurred new infrastructure investment opportunities around the world, particularly for value-oriented investors that are willing to take on more risk.

Private markets make measured progress in DEI

Diversity, equity, and inclusion (DEI) has become an important part of the fundraising, talent, and investing landscape for private market participants. Encouragingly, incremental progress has been made in recent years, including more diverse talent being brought to entry-level positions, investing roles, and investment committees. The scope of DEI metrics provided to institutional investors during fundraising has also increased in recent years: more than half of PE firms now provide data across investing teams, portfolio company boards, and portfolio company management (versus investment team data only). 4 “ The state of diversity in global private markets: 2023 ,” McKinsey, August 22, 2023.

In 2023, McKinsey surveyed 66 global private markets firms that collectively employ more than 60,000 people for the second annual State of diversity in global private markets report. 5 “ The state of diversity in global private markets: 2023 ,” McKinsey, August 22, 2023. The research offers insight into the representation of women and ethnic and racial minorities in private investing as of year-end 2022. In this chapter, we discuss where the numbers stand and how firms can bring a more diverse set of perspectives to the table.

The statistics indicate signs of modest advancement. Overall representation of women in private markets increased two percentage points to 35 percent, and ethnic and racial minorities increased one percentage point to 30 percent (Exhibit 6). Entry-level positions have nearly reached gender parity, with female representation at 48 percent. The share of women holding C-suite roles globally increased 3 percentage points, while the share of people from ethnic and racial minorities in investment committees increased 9 percentage points. There is growing evidence that external hiring is gradually helping close the diversity gap, especially at senior levels. For example, 33 percent of external hires at the managing director level were ethnic or racial minorities, higher than their existing representation level (19 percent).

Yet, the scope of the challenge remains substantial. Women and minorities continue to be underrepresented in senior positions and investing roles. They also experience uneven rates of progress due to lower promotion and higher attrition rates, particularly at smaller firms. Firms are also navigating an increasingly polarized workplace today, with additional scrutiny and a growing number of lawsuits against corporate diversity and inclusion programs, particularly in the US, which threatens to impact the industry’s pace of progress.

Fredrik Dahlqvist is a senior partner in McKinsey’s Stockholm office; Alastair Green  is a senior partner in the Washington, DC, office, where Paul Maia and Alexandra Nee  are partners; David Quigley  is a senior partner in the New York office, where Connor Mangan is an associate partner and Aditya Sanghvi  is a senior partner; Rahel Schneider is an associate partner in the Bay Area office; John Spivey is a partner in the Charlotte office; and Brian Vickery  is a partner in the Boston office.

The authors wish to thank Jonathan Christy, Louis Dufau, Vaibhav Gujral, Graham Healy-Day, Laura Johnson, Ryan Luby, Tripp Norton, Alastair Rami, Henri Torbey, and Alex Wolkomir for their contributions

The authors would also like to thank CEM Benchmarking and the StepStone Group for their partnership in this year's report.

This article was edited by Arshiya Khullar, an editor in the Gurugram office.

Explore a career with us

Related articles.

" "

CEO alpha: A new approach to generating private equity outperformance

Close up of network data flowing on black background

Private equity turns to resiliency strategies for software investments

The state of diversity in global Private Markets: 2023

The state of diversity in global private markets: 2022

IMAGES

  1. types of literature review approaches

    4 major types of literature review pdf

  2. 15 Literature Review Examples (2024)

    4 major types of literature review pdf

  3. How To Write A Literature Review

    4 major types of literature review pdf

  4. Types of Literature Review

    4 major types of literature review pdf

  5. Types of Literature Review

    4 major types of literature review pdf

  6. how do you write a literature review step by step

    4 major types of literature review pdf

VIDEO

  1. 6 Types of Research Gaps in Literature Review

  2. Introduction To Research and Types of Literary Research| Research Methodology|

  3. Systematic Literature Review: An Introduction [Urdu/Hindi]

  4. LITERATURE REVIEW in Research Methodology Explained in Urdu and Hindi

  5. Lets Talk KETOGENIC DIETS + What I Ate Today in Hawaii

  6. What is Net-Zero? Should we even bother?

COMMENTS

  1. Literature Review: Types of literature reviews

    The common types of literature reviews will be explained in the pages of this section. Narrative or traditional literature reviews. Critically Appraised Topic (CAT) Scoping reviews. Systematic literature reviews. Annotated bibliographies. These are not the only types of reviews of literature that can be conducted.

  2. Types of Literature Review

    1. Narrative Literature Review. A narrative literature review, also known as a traditional literature review, involves analyzing and summarizing existing literature without adhering to a structured methodology. It typically provides a descriptive overview of key concepts, theories, and relevant findings of the research topic.

  3. PDF LITERATURE REVIEWS

    1. EXPLAIN KEY TERMS & CONCEPTS ¡ examine your research questions: do they contain any terms that need to be explained?(e.g. identity, discourse, culture, ideology, gender, narrative, collective memory) ¡ be aware that key definitions and background should be provided in the introduction to orient your reader to the topic. the literature review is the place to provide more extended ...

  4. PDF CHAPTER 3 Conducting a Literature Review

    A well-constructed literature review identifies major themes associated with a topic, and it demonstrates where there is agreement, and disagreement, about that topic. The review ... in writing the literature review. Step 4 begins the process of selecting the final set of primary sources, and steps 5 and 6 describe how to summarize and ...

  5. PDF COnDUCTInG AnD WRITInG LITERATURE REVIEWS

    when writing literature reviews. Types of Literature Reviews This section introduces four ways existing literature is used in research: an annotated bibliography, a literature review, a meta-analysis, and a meta-synthesis. All rely on existing published research, but each serves a different purpose.

  6. PDF Conducting Your Literature Review

    Conducting Your Literature Review. 3. A. literature reviewis an overview of the available research for a specific scientific topic. Literature reviews summarize existing research to answer a review question, provide the context for new research, or identify important gaps in the existing body of literature. We now have access to lots of ...

  7. Chapter 9 Methods for Literature Reviews

    9.4. Summary. Table 9.1 outlines the main types of literature reviews that were described in the previous sub-sections and summarizes the main characteristics that distinguish one review type from another. It also includes key references to methodological guidelines and useful sources that can be used by eHealth scholars and researchers for ...

  8. PDF Your essential guide to literature reviews

    The basic components of a literature review include: a description of the publication a summary of the publication's main points an evaluation of the publication's contribution to the topic identification of critical gaps, points of disagreement, or potentially flawed methodology or theoretical approaches indicates potential directions for ...

  9. PDF What is a Literature Review?

    literature review is an aid to gathering and synthesising that information. The pur-pose of the literature review is to draw on and critique previous studies in an orderly, precise and analytical manner. The fundamental aim of a literature review is to provide a comprehensive picture of the knowledge relating to a specific topic.

  10. PDF Writing a Literature Review

    In a quality literature review, the. "something" that is done to the literature should include synthesis or integrative. work that provides a new perspective on the topic (Boote & Penny 2005; Torraco. 2005), resulting in a review that is more than the sum of the parts. A quality.

  11. PDF Types of Literature Reviews

    A general term that captures a widening universe of methodologies; aims to reduce biases in the process of selecting studies that will be included in a review. Uses transparent and reproducible methods to exhaustively search for information on a topic and select studies on a well-defined predetermined topic. Eldermire, E., & Young, S. (2022).

  12. PDF Undertaking a literature review: a step'by-step approacii

    literature review process. While reference is made to diflFerent types of literature reviews, the focus is on the traditional or narrative review that is undertaken, usually either as an academic assignment or part of the research process. Key words: Aneilysis and synthesis • Literature review • Literature searching • Writing a review T

  13. PDF Literature Reviews What is a literature review? summary synthesis

    review is useful for exploring the validity of different types of methods used to examine a given topic and provide guidance about which methods should be used in the future. Systematic review : This type of literature review provides an overview of evidence addressing a specific,

  14. Guidance on Conducting a Systematic Literature Review

    Literature review is an essential feature of academic research. Fundamentally, knowledge advancement must be built on prior existing work. To push the knowledge frontier, we must know where the frontier is. By reviewing relevant literature, we understand the breadth and depth of the existing body of work and identify gaps to explore.

  15. (PDF) Literature Review as a Research Methodology: An overview and

    general(Murray, 2011). T wo primary types of literature review can occur. The most The most well-known is the 'lit erature r eview' or the 'backgr ound section' of the study paper

  16. Types of Literature Reviews

    Qualitative, narrative synthesis. Thematic analysis, may include conceptual models. Rapid review. Assessment of what is already known about a policy or practice issue, by using systematic review methods to search and critically appraise existing research. Completeness of searching determined by time constraints.

  17. PDF Conducting a Literature Review

    An overview of the subject, issue or theory under consideration, along with the objectives of the literature review. Division of works under review into categories (e.g. those in support of a particular position, those against, and those offering alternative theses entirely)

  18. PDF 3 The Literature Review

    and Newton, 2007, p. 63). Over the years, numerous types of literature reviews have emerged, but the four main types are traditional or narrative, systematic, meta-analysis and meta-synthesis. The primary purpose of a traditional or narrative literature review is to ana-lyse and summarise a body of literature. This is achieved by presenting

  19. Types of Literature Review

    Systematic literature review can be divided into two categories: meta-analysis and meta-synthesis. When you conduct meta-analysis you take findings from several studies on the same subject and analyze these using standardized statistical procedures. In meta-analysis patterns and relationships are detected and conclusions are drawn.

  20. How to Write a Literature Review

    Examples of literature reviews. Step 1 - Search for relevant literature. Step 2 - Evaluate and select sources. Step 3 - Identify themes, debates, and gaps. Step 4 - Outline your literature review's structure. Step 5 - Write your literature review.

  21. (PDF) Literature Reviews

    Literature reviews can be published as a book, a book chapter, a disserta-. tion, a stand-alone manuscript, or as a prelude that provides justification for a. clinical study submitted for ...

  22. Types of Reviews

    Systematic Review. Attempts to identify, appraise, and summarize all empirical evidence that fits pre-specified eligibility criteria to answer a specific research question. clearly defined question with inclusion/exclusion criteria. rigorous and systematic search of the literature. thorough screening of results. data extraction and management.

  23. (PDF) LITERATURE REVIEW, SOURCES AND METHODOLOGIES

    A literature review surveys books, scholarly articles, and any other sources relevant to a particular. issue, area of research, or theory, and by so doing, provides a description, summary, and ...

  24. Construction Safety Innovation and Barriers in Different Company Types

    In recent years, safety innovation has brought potential benefits to the sustainable development of building industries. However, safety innovation is still limited owing to a limited understanding of technology capabilities and associated barriers within construction organizations. This study aimed to evaluate the potential technologies and barriers based on company type and size toward ...

  25. Global private markets review 2024

    McKinsey Global Private Markets Review 2024: Private markets: A slower era. If 2022 was a tale of two halves, with robust fundraising and deal activity in the first six months followed by a slowdown in the second half, then 2023 might be considered a tale of one whole. Macroeconomic headwinds persisted throughout the year, with rising financing ...