CProgramming Tutorial

  • C Programming Tutorial
  • C - Overview
  • C - Features
  • C - History
  • C - Environment Setup
  • C - Program Structure
  • C - Hello World
  • C - Compilation Process
  • C - Comments
  • C - Keywords
  • C - Identifiers
  • C - User Input
  • C - Basic Syntax
  • C - Data Types
  • C - Variables
  • C - Integer Promotions
  • C - Type Conversion
  • C - Constants
  • C - Literals
  • C - Escape sequences
  • C - Format Specifiers
  • C - Storage Classes
  • C - Operators
  • C - Decision Making
  • C - if statement
  • C - if...else statement
  • C - nested if statements
  • C - switch statement
  • C - nested switch statements
  • C - While loop
  • C - Functions
  • C - Main Functions
  • C - Return Statement
  • C - Scope Rules
  • C - Properties of Array
  • C - Multi-Dimensional Arrays
  • C - Passing Arrays to Function
  • C - Return Array from Function
  • C - Variable Length Arrays
  • C - Pointers
  • C - Pointer Arithmetics
  • C - Passing Pointers to Functions
  • C - Strings
  • C - Array of Strings
  • C - Structures
  • C - Structures and Functions
  • C - Arrays of Structures
  • C - Pointers to Structures
  • C - Self-Referential Structures
  • C - Nested Structures
  • C - Bit Fields
  • C - Typedef
  • C - Input & Output
  • C - File I/O
  • C - Preprocessors
  • C - Header Files
  • C - Type Casting
  • C - Error Handling
  • C - Recursion
  • C - Variable Arguments
  • C - Memory Management
  • C - Command Line Arguments
  • C Programming Resources
  • C - Questions & Answers
  • C - Quick Guide
  • C - Useful Resources
  • C - Discussion
  • Selected Reading
  • UPSC IAS Exams Notes
  • Developer's Best Practices
  • Questions and Answers
  • Effective Resume Writing
  • HR Interview Questions
  • Computer Glossary

Assignment Operators in C

In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operand to the left of = symbol, which is defined as a simple assignment operator in C. In addition, C has several augmented assignment operators.

The following table lists the assignment operators supported by the C language −

Simple assignment operator (=)

The = operator is the most frequently used operator in C. As per ANSI C standard, all the variables must be declared in the beginning. Variable declaration after the first processing statement is not allowed. You can declare a variable to be assigned a value later in the code, or you can initialize it at the time of declaration.

You can use a literal, another variable or an expression in the assignment statement.

Once a variable of a certain type is declared, it cannot be assigned a value of any other type. In such a case the C compiler reports a type mismatch error.

In C, the expressions that refer to a memory location are called "lvalue" expressions. A lvalue may appear as either the left-hand or right-hand side of an assignment.

On the other hand, the term rvalue refers to a data value that is stored at some address in memory. A rvalue is an expression that cannot have a value assigned to it which means an rvalue may appear on the right-hand side but not on the left-hand side of an assignment.

Variables are lvalues and so they may appear on the left-hand side of an assignment. Numeric literals are rvalues and so they may not be assigned and cannot appear on the left-hand side. Take a look at the following valid and invalid statements −

Augmented assignment operators

In addition to the = operator, C allows you to combine arithmetic and bitwise operators with the = symbol to form augmented or compound assignment operator. The augmented operators offer a convenient shortcut for combining arithmetic or bitwise operation with assignment.

For example, the expression a+=b has the same effect of performing a+b first and then assigning the result back to the variable a.

Similarly, the expression a<<=b has the same effect of performing a<<b first and then assigning the result back to the variable a.

Here is a C program that demonstrates the use of assignment operators in C:

When you compile and execute the above program, it produces the following result −

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

C Assignment Operators

  • 6 contributors

An assignment operation assigns the value of the right-hand operand to the storage location named by the left-hand operand. Therefore, the left-hand operand of an assignment operation must be a modifiable l-value. After the assignment, an assignment expression has the value of the left operand but isn't an l-value.

assignment-expression :   conditional-expression   unary-expression assignment-operator assignment-expression

assignment-operator : one of   = *= /= %= += -= <<= >>= &= ^= |=

The assignment operators in C can both transform and assign values in a single operation. C provides the following assignment operators:

In assignment, the type of the right-hand value is converted to the type of the left-hand value, and the value is stored in the left operand after the assignment has taken place. The left operand must not be an array, a function, or a constant. The specific conversion path, which depends on the two types, is outlined in detail in Type Conversions .

  • Assignment Operators

Was this page helpful?

Coming soon: Throughout 2024 we will be phasing out GitHub Issues as the feedback mechanism for content and replacing it with a new feedback system. For more information see: https://aka.ms/ContentUserFeedback .

Submit and view feedback for

Additional resources

Learn C practically and Get Certified .

Popular Tutorials

Popular examples, reference materials, learn c interactively, c introduction.

  • Keywords & Identifier
  • Variables & Constants
  • C Data Types
  • C Input/Output
  • C Operators
  • C Introduction Examples

C Flow Control

  • C if...else
  • C while Loop
  • C break and continue
  • C switch...case
  • C Programming goto
  • Control Flow Examples

C Functions

  • C Programming Functions
  • C User-defined Functions
  • C Function Types
  • C Recursion
  • C Storage Class
  • C Function Examples
  • C Programming Arrays
  • C Multi-dimensional Arrays
  • C Arrays & Function
  • C Programming Pointers
  • C Pointers & Arrays
  • C Pointers And Functions
  • C Memory Allocation
  • Array & Pointer Examples

C Programming Strings

  • C Programming String
  • C String Functions
  • C String Examples

Structure And Union

  • C Structure
  • C Struct & Pointers
  • C Struct & Function
  • C struct Examples

C Programming Files

  • C Files Input/Output
  • C Files Examples

Additional Topics

  • C Enumeration
  • C Preprocessors
  • C Standard Library
  • C Programming Examples

Bitwise Operators in C Programming

C Precedence And Associativity Of Operators

  • Compute Quotient and Remainder
  • Find the Size of int, float, double and char

C if...else Statement

  • Make a Simple Calculator Using switch...case

C Programming Operators

An operator is a symbol that operates on a value or a variable. For example: + is an operator to perform addition.

C has a wide range of operators to perform various operations.

C Arithmetic Operators

An arithmetic operator performs mathematical operations such as addition, subtraction, multiplication, division etc on numerical values (constants and variables).

Example 1: Arithmetic Operators

The operators + , - and * computes addition, subtraction, and multiplication respectively as you might have expected.

In normal calculation, 9/4 = 2.25 . However, the output is 2 in the program.

It is because both the variables a and b are integers. Hence, the output is also an integer. The compiler neglects the term after the decimal point and shows answer 2 instead of 2.25 .

The modulo operator % computes the remainder. When a=9 is divided by b=4 , the remainder is 1 . The % operator can only be used with integers.

Suppose a = 5.0 , b = 2.0 , c = 5 and d = 2 . Then in C programming,

C Increment and Decrement Operators

C programming has two operators increment ++ and decrement -- to change the value of an operand (constant or variable) by 1.

Increment ++ increases the value by 1 whereas decrement -- decreases the value by 1. These two operators are unary operators, meaning they only operate on a single operand.

Example 2: Increment and Decrement Operators

Here, the operators ++ and -- are used as prefixes. These two operators can also be used as postfixes like a++ and a-- . Visit this page to learn more about how increment and decrement operators work when used as postfix .

C Assignment Operators

An assignment operator is used for assigning a value to a variable. The most common assignment operator is =

Example 3: Assignment Operators

C relational operators.

A relational operator checks the relationship between two operands. If the relation is true, it returns 1; if the relation is false, it returns value 0.

Relational operators are used in decision making and loops .

Example 4: Relational Operators

C logical operators.

An expression containing logical operator returns either 0 or 1 depending upon whether expression results true or false. Logical operators are commonly used in decision making in C programming .

Example 5: Logical Operators

Explanation of logical operator program

  • (a == b) && (c > 5) evaluates to 1 because both operands (a == b) and (c > b) is 1 (true).
  • (a == b) && (c < b) evaluates to 0 because operand (c < b) is 0 (false).
  • (a == b) || (c < b) evaluates to 1 because (a = b) is 1 (true).
  • (a != b) || (c < b) evaluates to 0 because both operand (a != b) and (c < b) are 0 (false).
  • !(a != b) evaluates to 1 because operand (a != b) is 0 (false). Hence, !(a != b) is 1 (true).
  • !(a == b) evaluates to 0 because (a == b) is 1 (true). Hence, !(a == b) is 0 (false).

C Bitwise Operators

During computation, mathematical operations like: addition, subtraction, multiplication, division, etc are converted to bit-level which makes processing faster and saves power.

Bitwise operators are used in C programming to perform bit-level operations.

Visit bitwise operator in C to learn more.

Other Operators

Comma operator.

Comma operators are used to link related expressions together. For example:

The sizeof operator

The sizeof is a unary operator that returns the size of data (constants, variables, array, structure, etc).

Example 6: sizeof Operator

Other operators such as ternary operator ?: , reference operator & , dereference operator * and member selection operator  ->  will be discussed in later tutorials.

Table of Contents

  • Arithmetic Operators
  • Increment and Decrement Operators
  • Assignment Operators
  • Relational Operators
  • Logical Operators
  • sizeof Operator

Video: Arithmetic Operators in C

Sorry about that.

Related Tutorials

Assignment Operators in C

C++ Course: Learn the Essentials

Operators are a fundamental part of all the computations that computers perform. Today we will learn about one of them known as Assignment Operators in C. Assignment Operators are used to assign values to variables. The most common assignment operator is = . Assignment Operators are Binary Operators.

Types of Assignment Operators in C

LHS and RHS Operands

Here is a list of the assignment operators that you can find in the C language:

  • basic assignment ( = )
  • subtraction assignment ( -= )
  • addition assignment ( += )
  • division assignment ( /= )
  • multiplication assignment ( *= )
  • modulo assignment ( %= )
  • bitwise XOR assignment ( ^= )
  • bitwise OR assignment ( |= )
  • bitwise AND assignment ( &= )
  • bitwise right shift assignment ( >>= )
  • bitwise left shift assignment ( <<= )

Working of Assignment Operators in C

This is the complete list of all assignment operators in C. To read the meaning of operator please keep in mind the above example.

Example for Assignment Operators in C

Basic assignment ( = ) :

Subtraction assignment ( -= ) :

Addition assignment ( += ) :

Division assignment ( /= ) :

Multiplication assignment ( *= ) :

Modulo assignment ( %= ) :

Bitwise XOR assignment ( ^= ) :

Bitwise OR assignment ( |= ) :

Bitwise AND assignment ( &= ) :

Bitwise right shift assignment ( >>= ) :

Bitwise left shift assignment ( <<= ) :

This is the detailed explanation of all the assignment operators in C that we have. Hopefully, This is clear to you.

Practice Problems on Assignment Operators in C

1. what will be the value of a after the following code is executed.

A) 10 B) 11 C) 12 D) 15

Answer – C. 12 Explanation: a starts at 10, increases by 5 to 15, then decreases by 3 to 12. So, a is 12.

2. After executing the following code, what is the value of num ?

A) 4 B) 8 C) 16 D) 32

Answer: C) 16 Explanation: After right-shifting 8 (binary 1000) by one and then left-shifting the result by two, the value becomes 16 (binary 10000).

Q. How does the /= operator function? Is it a combination of two other operators?

A. The /= operator is a compound assignment operator in C++. It divides the left operand by the right operand and assigns the result to the left operand. It is equivalent to using the / operator and then the = operator separately.

Q. What is the most basic operator among all the assignment operators available in the C language?

A. The most basic assignment operator in the C language is the simple = operator, which is used for assigning a value to a variable.

  • Assignment operators are used to assign the result of an expression to a variable.
  • There are two types of assignment operators in C. Simple assignment operator and compound assignment operator.
  • Compound Assignment operators are easy to use and the left operand of expression needs not to write again and again.
  • They work the same way in C++ as in C.

PrepBytes Blog

ONE-STOP RESOURCE FOR EVERYTHING RELATED TO CODING

Sign in to your account

Forgot your password?

Login via OTP

We will send you an one time password on your mobile number

An OTP has been sent to your mobile number please verify it below

Register with PrepBytes

Assignment operator in c.

' src=

Last Updated on June 23, 2023 by Prepbytes

assignment operator c

This type of operator is employed for transforming and assigning values to variables within an operation. In an assignment operation, the right side represents a value, while the left side corresponds to a variable. It is essential that the value on the right side has the same data type as the variable on the left side. If this requirement is not fulfilled, the compiler will issue an error.

What is Assignment Operator in C language?

In C, the assignment operator serves the purpose of assigning a value to a variable. It is denoted by the equals sign (=) and plays a vital role in storing data within variables for further utilization in code. When using the assignment operator, the value present on the right-hand side is assigned to the variable on the left-hand side. This fundamental operation allows developers to store and manipulate data effectively throughout their programs.

Example of Assignment Operator in C

For example, consider the following line of code:

Types of Assignment Operators in C

Here is a list of the assignment operators that you can find in the C language:

Simple assignment operator (=): This is the basic assignment operator, which assigns the value on the right-hand side to the variable on the left-hand side.

Addition assignment operator (+=): This operator adds the value on the right-hand side to the variable on the left-hand side and assigns the result back to the variable.

x += 3; // Equivalent to x = x + 3; (adds 3 to the current value of "x" and assigns the result back to "x")

Subtraction assignment operator (-=): This operator subtracts the value on the right-hand side from the variable on the left-hand side and assigns the result back to the variable.

x -= 4; // Equivalent to x = x – 4; (subtracts 4 from the current value of "x" and assigns the result back to "x")

* Multiplication assignment operator ( =):** This operator multiplies the value on the right-hand side with the variable on the left-hand side and assigns the result back to the variable.

x = 2; // Equivalent to x = x 2; (multiplies the current value of "x" by 2 and assigns the result back to "x")

Division assignment operator (/=): This operator divides the variable on the left-hand side by the value on the right-hand side and assigns the result back to the variable.

x /= 2; // Equivalent to x = x / 2; (divides the current value of "x" by 2 and assigns the result back to "x")

Bitwise AND assignment (&=): The bitwise AND assignment operator "&=" performs a bitwise AND operation between the value on the left-hand side and the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x &= 3; // Binary: 0011 // After bitwise AND assignment: x = 1 (Binary: 0001)

Bitwise OR assignment (|=): The bitwise OR assignment operator "|=" performs a bitwise OR operation between the value on the left-hand side and the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x |= 3; // Binary: 0011 // After bitwise OR assignment: x = 7 (Binary: 0111)

Bitwise XOR assignment (^=): The bitwise XOR assignment operator "^=" performs a bitwise XOR operation between the value on the left-hand side and the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x ^= 3; // Binary: 0011 // After bitwise XOR assignment: x = 6 (Binary: 0110)

Left shift assignment (<<=): The left shift assignment operator "<<=" shifts the bits of the value on the left-hand side to the left by the number of positions specified by the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x <<= 2; // Binary: 010100 (Shifted left by 2 positions) // After left shift assignment: x = 20 (Binary: 10100)

Right shift assignment (>>=): The right shift assignment operator ">>=" shifts the bits of the value on the left-hand side to the right by the number of positions specified by the value on the right-hand side. It then assigns the result back to the left-hand side variable.

x >>= 2; // Binary: 101 (Shifted right by 2 positions) // After right shift assignment: x = 5 (Binary: 101)

Conclusion The assignment operator in C, denoted by the equals sign (=), is used to assign a value to a variable. It is a fundamental operation that allows programmers to store data in variables for further use in their code. In addition to the simple assignment operator, C provides compound assignment operators that combine arithmetic or bitwise operations with assignment, allowing for concise and efficient code.

FAQs related to Assignment Operator in C

Q1. Can I assign a value of one data type to a variable of another data type? In most cases, assigning a value of one data type to a variable of another data type will result in a warning or error from the compiler. It is generally recommended to assign values of compatible data types to variables.

Q2. What is the difference between the assignment operator (=) and the comparison operator (==)? The assignment operator (=) is used to assign a value to a variable, while the comparison operator (==) is used to check if two values are equal. It is important not to confuse these two operators.

Q3. Can I use multiple assignment operators in a single statement? No, it is not possible to use multiple assignment operators in a single statement. Each assignment operator should be used separately for assigning values to different variables.

Q4. Are there any limitations on the right-hand side value of the assignment operator? The right-hand side value of the assignment operator should be compatible with the data type of the left-hand side variable. If the data types are not compatible, it may lead to unexpected behavior or compiler errors.

Q5. Can I assign the result of an expression to a variable using the assignment operator? Yes, it is possible to assign the result of an expression to a variable using the assignment operator. For example, x = y + z; assigns the sum of y and z to the variable x.

Q6. What happens if I assign a value to an uninitialized variable? Assigning a value to an uninitialized variable will initialize it with the assigned value. However, it is considered good practice to explicitly initialize variables before using them to avoid potential bugs or unintended behavior.

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Linked List
  • Segment Tree
  • Backtracking
  • Dynamic Programming
  • Greedy Algorithm
  • Operating System
  • Company Placement
  • Interview Tips
  • General Interview Questions
  • Data Structure
  • Other Topics
  • Computational Geometry
  • Game Theory

Related Post

Null character in c, ackermann function in c, median of two sorted arrays of different size in c, number is palindrome or not in c, implementation of queue using linked list in c, c program to replace a substring in a string.

Codeforwin

Assignment and shorthand assignment operator in C

Quick links.

  • Shorthand assignment

Assignment operator is used to assign value to a variable (memory location). There is a single assignment operator = in C. It evaluates expression on right side of = symbol and assigns evaluated value to left side the variable.

For example consider the below assignment table.

The RHS of assignment operator must be a constant, expression or variable. Whereas LHS must be a variable (valid memory location).

Shorthand assignment operator

C supports a short variant of assignment operator called compound assignment or shorthand assignment. Shorthand assignment operator combines one of the arithmetic or bitwise operators with assignment operator.

For example, consider following C statements.

The above expression a = a + 2 is equivalent to a += 2 .

Similarly, there are many shorthand assignment operators. Below is a list of shorthand assignment operators in C.

MarketSplash

Mastering The Art Of Assignment: Exploring C Assignment Operators

Dive into the world of C Assignment Operators in our extensive guide. Understand the syntax, deep-dive into variables, and explore complex techniques and practical applications.

💡 KEY INSIGHTS

  • Assignment operators in C are not just for basic value assignment; they enable simultaneous arithmetic operations, enhancing code efficiency and readability.
  • The article emphasizes the importance of understanding operator precedence in C, as misinterpretation can lead to unexpected results, especially with compound assignment operators.
  • Common mistakes like confusing assignment with equality ('=' vs '==') are highlighted, offering practical advice for avoiding such pitfalls in C programming.
  • The guide provides real-world analogies for each assignment operator, making complex concepts more relatable and easier to grasp for programmers.
Welcome, bold programmers and coding enthusiasts! Let's set the stage: you're at your desk, fingers hovering over the keyboard, ready to embark on a journey deep into the belly of C programming. You might be wondering, why do I need to know about these 'assignment operators'?

Well, imagine trying to build a house with a toolbox that only has a hammer. You could probably make something that vaguely resembles a house, but without a screwdriver, wrench, or saw, it's going to be a bit...wobbly. This, my friends, is the importance of understanding operators in C. They're like the indispensable tools in your coding toolbox. And today, we're honing in on the assignment operators .

Now, our mission, should we choose to accept it, is to delve into the world of assignment operators in C. Like secret agents discovering the inner workings of a villain's lair, we're going to uncover the secrets that these '=' or '+=' symbols hold.

To all the night owls out there, I see you, and I raise you an operator. Just like how a cup of coffee (or three) helps us conquer that midnight oil, mastering operators in C can transform your coding journey from a groggy stumble to a smooth sprint.

But don't just take my word for it. Let's take a real-world example. Imagine you're coding a video game. You need your character to jump higher each time they collect a power-up. Without assignment operators, you'd be stuck adding numbers line by line. But with the '+=' operator, you can simply write 'jumpHeight += powerUpBoost,' and your code becomes a thing of elegance. It's like going from riding a tricycle to a high-speed motorbike.

In this article, we're going to unpack, examine, and get intimately acquainted with these assignment operators. We'll reveal their secrets, understand their behaviors, and learn how to use them effectively to power our C programming skills to new heights. Let's strap in, buckle up, and get ready for takeoff into the cosmic realms of C assignment operators!

The Basics Of C Operators

Deep dive into assignment operators in c, detailed exploration of each assignment operator, common use cases of assignment operators, common mistakes and how to avoid them, practice exercises, references and further reading.

Alright, get ready to pack your mental suitcase as we prepare to embark on the grand tour of C operators. We'll be stopping by the various categories, getting to know the locals (the operators, that is), and understanding how they contribute to the vibrant community that is a C program.

What Are Operators In C?

Operators in C are like the spicy condiments of coding. Without them, you'd be left with a bland dish—or rather, a simple list of variables. But splash on some operators, and suddenly you've got yourself an extravagant, dynamic, computational feast. In technical terms, operators are special symbols that perform specific operations on one, two, or three operands, and then return a result . They're the magic sauce that allows us to perform calculations, manipulate bits, and compare data.

Categories Of Operators In C

Now, just as you wouldn't use hot sauce on your ice cream (unless that's your thing), different operators serve different purposes. C language has been generous enough to provide us with a variety of operator categories, each with its distinct charm and role.

Let's break it down:

Imagine you're running a pizza shop. The arithmetic operators are like your basic ingredients: cheese, sauce, dough. They form the foundation of your pizza (program). But then you want to offer different pizza sizes. That's where your relational operators come in, comparing the diameter of small, medium, and large pizzas.

You're going well, but then you decide to offer deals. Buy two pizzas, get one free. Enter the logical operators , evaluating whether the conditions for the deal have been met. And finally, you want to spice things up with some exotic ingredients. That's your bitwise operators , working behind the scenes, adding that unique flavor that makes your customers keep coming back.

However, today, we're going to focus on a particular subset of the arithmetic operators: the assignment operators . These are the operators that don't just make the pizza but ensure it reaches the customer's plate (or in this case, the right variable).

Next up: We explore these unsung heroes of the programming world, toasting their accomplishments and discovering their capabilities. So, hold onto your hats and glasses, folks. This here's the wildest ride in the coding wilderness!

Prepare your diving gear and adjust your oxygen masks, friends, as we're about to plunge deep into the ocean of C programming. Hidden in the coral reef of code, you'll find the bright and beautiful creatures known as assignment operators.

What Are Assignment Operators?

In the broad ocean of C operators, the assignment operators are the dolphins - intelligent, adaptable, and extremely useful. On the surface, they may appear simple, but don't be fooled; these creatures are powerful. They have the capability to not only assign values to variables but also perform arithmetic operations concurrently.

The basic assignment operator in C is the '=' symbol. It's like the water of the ocean, essential to life (in the world of C programming). But alongside this staple, we have a whole family of compound assignment operators including '+=', '-=', '*=', '/=', and '%='. These are the playful dolphins leaping out of the water, each adding their unique twist to the task of assignment.

Syntax And Usage Of Assignment Operators

Remember, even dolphins have their ways of communicating, and so do assignment operators. They communicate through their syntax. The syntax for assignment operators in C follows a simple pattern:

In this dance, the operator and the '=' symbol perform a duet, holding onto each other without a space in between. They're the dancing pair that adds life to the party (aka your program).

Let's say you've won the lottery (congratulations, by the way!) and you want to divide your winnings between your three children. You could write out the arithmetic long-hand, or you could use the '/=' operator to streamline your process:

Just like that, your winnings are divided evenly, no calculator required.

List Of Assignment Operators In C

As promised, let's get to know the whole family of assignment operators residing in the C ocean:

Alright, we've taken the plunge and gotten our feet wet (or fins, in the case of our dolphin friends). But the dive is far from over. Next up, we're going to swim alongside each of these assignment operators, exploring their unique behaviors and abilities in the wild, vibrant world of C programming. So, keep your scuba gear on and get ready for more underwater adventure!

Welcome back, dear diver! Now that we've acquainted ourselves with the beautiful pod of dolphins, aka assignment operators, it's time to learn about each dolphin individually. We're about to uncover their quirks, appreciate their styles, and recognize their talents.

The Simple Assignment Operator '='

Let's start with the leader of the pack: the '=' operator. This unassuming symbol is like the diligent mail carrier, ensuring the right packages (values) get to the correct houses (variables).

Take a look at this:

In this code snippet, '=' ensures that the value '5' gets assigned to the variable 'chocolate'. Simple as that. No muss, no fuss, just a straightforward delivery of value.

The Addition Assignment Operator '+='

Next, we have the '+=' operator. This operator is a bit like a friendly baker. He takes what he has, adds more ingredients, and gives you the result - a delicious cake! Or, in this case, a new value.

Consider this:

We started with 12 doughnuts. But oh look, a friend dropped by with 3 more! So we add those to our box, and now we have 15. The '+=' operator made that addition quick and easy.

The Subtraction Assignment Operator '-='

Following the '+=' operator, we have its twin but with a different personality - the '-=' operator. If '+=' is the friendly baker, then '-=' is the weight-conscious friend who always removes extra toppings from their pizza. They take away rather than add.

For instance:

You've consumed 2000 calories today, but then you went for a run and burned 500. The '-=' operator is there to quickly update your calorie count.

The Multiplication Assignment Operator '*='

Say hello to the '*=' operator. This one is like the enthusiastic party planner who multiplies the fun! They take your initial value and multiply it with another, bringing more to the table.

Check this out:

You're at a level 7 excitement about your upcoming birthday, but then you learn that your best friend is flying in to celebrate with you. Your excitement level just doubled, and '*=' is here to make that calculation easy.

The Division Assignment Operator '/='

Here's the '/=' operator, the calm and composed yoga teacher of the group. They're all about division and balance. They take your original value and divide it by another, bringing harmony to your code.

You're pretty anxious about your job interview - let's say a level 10 anxiety. But then you do some deep breathing exercises, which helps you halve your anxiety level. The '/=' operator helps you reflect that change in your code.

The Modulus Assignment Operator '%='

Finally, we meet the quirky '%=' operator, the mystery novelist of the group. They're not about the whole story but the remainder, the leftovers, the little details others might overlook.

Look at this:

You have 10 books to distribute equally among your 3 friends. Everyone gets 3, and you're left with 1 book. The '%=' operator is there to quickly calculate that remainder for you.

That's the end of our detailed exploration. I hope this underwater journey has provided you with a greater appreciation and understanding of these remarkable creatures. Remember, each operator, like a dolphin, has its unique abilities, and knowing how to utilize them effectively can greatly enhance your programming prowess.

Now, let's swerve away from the theoretical and deep-dive into the practical. After all, C assignment operators aren't just sparkling little seashells you collect and admire. They're more like versatile tools in your programming Swiss Army knife. So, let's carve out some real-world use cases for our cherished assignment operators.

Variable Initialization And Value Change

Assignment operators aren't just for show; they've got some moves. Take our plain and humble '='. It's the bread-and-butter operator used in variable initialization and value changes, helping your code be as versatile as a chameleon.

In this scenario, our friend '=' is doing double duty—initializing 'a' with the value 10 and then changing it to 20. Not flashy, but oh-so-vital.

Calculation Updates In Real-Time Applications

Assignment operators are like those awesome, multitasking waitstaff you see in busy restaurants, juggling multiple tables and orders while still managing to serve everyone with a smile. They are brilliant when you want to perform real-time updates to your data.

In this scenario, '+=' and '-=' are the maitre d' of our code-restaurant, updating the user's balance with each buy or sell order.

Running Totals And Averages

Assignment operators are great runners - they don't tire and always keep the tally running.

Here, the '+=' and '-=' operators keep a running tally of points, allowing the system to adjust to the ebbs and flows of the school year like a seasoned marathon runner pacing themselves.

Iterations In Loop Constructs

The '*=' and '/=' operators often lurk within loop constructs, handling iterations with the grace of a prima ballerina. They're the choreographers of your loops, making sure each iteration flows seamlessly into the next.

In this case, '/=' is the elegant dancer gracefully halving 'i' with each twirl across the dance floor (iteration).

Working With Remainders

And let's not forget our mysterious '%=', the detective of the bunch, always searching for the remainder, the evidence left behind.

Here, '%=' is the sleuth, determining whether a number is even or odd by examining the remainder when divided by 2.

So, these are just a few examples of how assignment operators flex their muscles in the real world. They're like superheroes, each with their unique powers, ready to assist you in writing clean, efficient, and understandable code. Use them wisely, and your code will be as smooth as a well-choreographed ballet.

Let's face it, even the best of us trip over our own feet sometimes. And when it comes to assignment operators in C, there are some pitfalls that could make you stumble. But don't worry! We've all been there. Let's shed some light on these common mistakes so we can step over them with the grace of a ballet dancer leaping over a pit of snapping alligators.

Confusing Assignment With Equality

A surprisingly common misstep is confusing the assignment operator '=' with the equality operator '=='. It's like mixing up salt with sugar while baking. Sure, they might look similar, but one will definitely not sweeten your cake.

In this snippet, instead of checking if 'a' equals 10, we've assigned 'a' the value 10. The compiler will happily let this pass and might even give you a standing ovation for your comedy of errors. The correct approach?

Overlooking Operator Precedence

C operators are a bit like the characters in "Game of Thrones." They've got a complex hierarchy and they respect the rule of precedence. Sometimes, this can lead to unexpected results. For instance, check out this bit of misdirection:

Here, '/=' doesn't immediately divide 'a' by 2. It waits for the multiplication to happen (due to operator precedence), and then performs the operation. So it's actually doing a /= (2*5), not (a/=2)*5. It's like arriving late to a party and finding out all the pizza is gone. To ensure you get your slice, use parentheses:

Misusing Modulo With Floats

Ah, the modulo operator, always looking for the remainder. But when you ask it to work with floats, it gets as confused as a penguin in a desert. It simply can't compute.

Modulo and floats go together like oil and water. The solution? Stick to integers when dealing with '%='.

So there you have it. Some common missteps while dancing with assignment operators and the quick moves to avoid them. Just remember, every great coder has tripped before. The key is to keep your chin up, learn from your stumbles, and soon you'll be waltzing with assignment operators like a seasoned pro.

Alright, amigos! It's time to put your newfound knowledge to the test. After all, becoming a master in the art of C assignment operators is not a walk in the park, it's a marathon run on a stony path with occasional dance-offs. So brace yourselves and let's get those brain cells pumping.

Exercise 1: The Shy Variable

Your task here is to write a C program that initializes an integer variable to 10. Then, using only assignment operators, make that variable as shy as a teenager at their first dance. I mean, reduce it to zero without directly assigning it to zero. You might want to remember the '/=' operator here. He's like the high school wallflower who can suddenly breakdance like a champ when the music starts playing.

Exercise 2: Sneaky Increment

The '+=' operator is like the mischievous friend who always pushes you into the spotlight when you least expect it. Create a program that initializes an integer to 0. Then, using a loop and our sneaky '+=' friend, increment that variable until it's equal to 100. Here's the catch: You can't use '+=' with anything greater than 1. It's a slow and steady race to the finish line!

Exercise 3: Modulo Madness

Remember the modulo operator? It's like the friend who always knows how much pizza is left over after a party. Create a program that counts from 1 to 100. But here's the twist: for every number that's divisible by 3, print "Fizz", and for every number divisible by 5, print "Buzz". If a number is divisible by both 3 and 5, print "FizzBuzz". For all other numbers, just print the number. This will help you get better acquainted with our friend '%='.

Exercise 4: Swapping Values

Create a program that swaps the values of two variables without using a third temporary variable. Remember, your only allies here are the assignment operators. This is like trying to switch places on the dance floor without stepping on anyone's toes.

Exercise 5: Converting Fahrenheit To Celsius

Let's play with the ' =' operator. Write a program that converts a temperature in Fahrenheit to Celsius. The formula to convert Fahrenheit to Celsius is (Fahrenheit - 32) * 5 / 9 . As a challenge, try doing the conversion in a single line using the '-=', ' =' and '/=' operators. It's like preparing a complicated dinner recipe using only a few simple steps.

Remember, practice makes perfect, especially when it comes to mastering C assignment operators. Don't be disheartened if you stumble, just dust yourself off and try again. Because as the saying goes, "The master has failed more times than the beginner has even tried". So, good luck, and happy coding!

References and Further Reading

So, you've reached the end of this riveting journey through the meadows of C assignment operators. It's been quite a ride, hasn't it? We've shared laughs, shed tears, and hopefully, we've learned a thing or two. But remember, the end of one journey marks the beginning of another. It's like eating at a buffet – you might be done with the pasta, but there's still the sushi to try! So, here are some materials to sink your teeth into for the next course of your coding feast.

1. The C Programming Language by Brian W. Kernighan and Dennis M. Ritchie

This book, also known as 'K&R' after its authors, is the definitive guide to C programming. It's like the "Godfather" of programming books – deep, powerful, and a little intimidating at times. But hey, we all know that the best lessons come from challenging ourselves.

2. Expert C Programming by Peter van der Linden

Consider this book as the "Star Wars" to the "Godfather" of 'K&R'. It has a bit more adventure and a lot of real-world applications to keep you engaged. Not to mention some rather amusing footnotes.

3. C Programming Absolute Beginner's Guide by Greg Perry and Dean Miller

This one's for you if you're still feeling a bit wobbly on your C programming legs. Think of it as a warm hug from a friend who's been there and done that. It's simple, straightforward, and gently walks you through the concepts.

4. The Pragmatic Programmer by Andrew Hunt and David Thomas

Even though it's not about C specifically, this book is a must-read for any serious programmer. It's like a mentor who shares all their best tips and tricks for mastering the craft. It's filled with practical advice and real-life examples to help you on your programming journey.

This is a great online resource for interactive C tutorials. It's like your favorite video game, but it's actually helping you become a better programmer.

6. Cprogramming.com

This website has a vast collection of articles, tutorials, and quizzes on C programming. It's like an all-you-can-eat buffet for your hungry, coding mind.

Remember, every master was once a beginner, and every beginner can become a master. So, keep reading, keep practicing, and keep coding. And most importantly, don't forget to have fun while you're at it. After all, as Douglas Adams said, "I may not have gone where I intended to go, but I think I have ended up where I needed to be." Here's to ending up where you need to be in your coding journey!

As our immersive journey into C Assignment Operators culminates, we've unraveled the nuanced details of these powerful tools. From fundamental syntax to intricate applications, C Assignment Operators have showcased their indispensability in coding. Equipped with this newfound understanding, it's time for you to embark on your coding adventures, mastering the digital realm with the prowess of C Assignment Operators!

Which C assignment operator adds a value to a variable?

Please submit an answer to see if you're correct!

Continue Learning With These C Guides

  • C Syntax Explained: From Variables To Functions
  • C Programming Basics And Its Applications
  • Basic C Programming Examples For Beginners
  • C Data Types And Their Usage
  • C Variables And Their Usage

Subscribe to our newsletter

Subscribe to be notified of new content on marketsplash..

C Functions

C structures, c operators.

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Although the + operator is often used to add together two values, like in the example above, it can also be used to add together a variable and a value, or a variable and another variable:

C divides the operators into the following groups:

  • Arithmetic operators
  • Assignment operators
  • Comparison operators
  • Logical operators
  • Bitwise operators

Arithmetic Operators

Arithmetic operators are used to perform common mathematical operations.

Assignment Operators

Assignment operators are used to assign values to variables.

In the example below, we use the assignment operator ( = ) to assign the value 10 to a variable called x :

The addition assignment operator ( += ) adds a value to a variable:

A list of all assignment operators:

Comparison Operators

Comparison operators are used to compare two values (or variables). This is important in programming, because it helps us to find answers and make decisions.

The return value of a comparison is either 1 or 0 , which means true ( 1 ) or false ( 0 ). These values are known as Boolean values , and you will learn more about them in the Booleans and If..Else chapter.

Comparison operators are used to compare two values.

Note: The return value of a comparison is either true ( 1 ) or false ( 0 ).

In the following example, we use the greater than operator ( > ) to find out if 5 is greater than 3:

A list of all comparison operators:

Logical Operators

You can also test for true or false values with logical operators.

Logical operators are used to determine the logic between variables or values:

C Exercises

Test yourself with exercises.

Fill in the blanks to multiply 10 with 5 , and print the result:

Start the Exercise

Get Certified

COLOR PICKER

colorpicker

Report Error

If you want to report an error, or if you want to make a suggestion, do not hesitate to send us an e-mail:

[email protected]

Top Tutorials

Top references, top examples, get certified.

Javatpoint Logo

  • Design Pattern
  • Interview Q

C Control Statements

C functions, c dynamic memory, c structure union, c file handling, c preprocessor, c command line, c programming test, c interview.

JavaTpoint

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Interview Questions

Company Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Artificial Intelligence

AWS Tutorial

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

Machine Learning

DevOps Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Control System

Data Mining Tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

  • C - Introduction
  • C - Comments
  • C - Data Types
  • C - Type Casting
  • C - Operators
  • C - Strings
  • C - Booleans
  • C - If Else
  • C - While Loop
  • C - For Loop
  • C - goto Statement
  • C - Continue Statement
  • C - Break Statement
  • C - Functions
  • C - Scope of Variables
  • C - Pointers
  • C - Typedef
  • C - Format Specifiers
  • C Standard Library
  • C - Data Structures
  • C - Examples
  • C - Interview Questions

AlphaCodingSkills

  • Programming Languages
  • Web Technologies
  • Database Technologies
  • Microsoft Technologies
  • Python Libraries
  • Data Structures
  • Interview Questions
  • PHP & MySQL
  • C++ Standard Library
  • Java Utility Library
  • Java Default Package
  • PHP Function Reference

C - Bitwise OR and assignment operator

The Bitwise OR and assignment operator (|=) assigns the first operand a value equal to the result of Bitwise OR operation of two operands.

(x |= y) is equivalent to (x = x | y)

The Bitwise OR operator (|) is a binary operator which takes two bit patterns of equal length and performs the logical OR operation on each pair of corresponding bits. It returns 1 if either or both bits at the same position are 1, else returns 0.

The example below describes how bitwise OR operator works:

The code of using Bitwise OR operator (|) is given below:

The output of the above code will be:

Example: Find largest power of 2 less than or equal to given number

Consider an integer 1000. In the bit-wise format, it can be written as 1111101000. However, all bits are not written here. A complete representation will be 32 bit representation as given below:

Performing N |= (N>>i) operation, where i = 1, 2, 4, 8, 16 will change all right side bit to 1. When applied on 1000, the result in 32 bit representation is given below:

Adding one to this result and then right shifting the result by one place will give largest power of 2 less than or equal to 1000.

The below code will calculate the largest power of 2 less than or equal to given number.

The above code will give the following output:

AlphaCodingSkills Android App

  • Data Structures Tutorial
  • Algorithms Tutorial
  • JavaScript Tutorial
  • Python Tutorial
  • MySQLi Tutorial
  • Java Tutorial
  • Scala Tutorial
  • C++ Tutorial
  • C# Tutorial
  • PHP Tutorial
  • MySQL Tutorial
  • SQL Tutorial
  • PHP Function reference
  • C++ - Standard Library
  • Java.lang Package
  • Ruby Tutorial
  • Rust Tutorial
  • Swift Tutorial
  • Perl Tutorial
  • HTML Tutorial
  • CSS Tutorial
  • AJAX Tutorial
  • XML Tutorial
  • Online Compilers
  • QuickTables
  • NumPy Tutorial
  • Pandas Tutorial
  • Matplotlib Tutorial
  • SciPy Tutorial
  • Seaborn Tutorial

cppreference.com

Operator overloading.

Customizes the C++ operators for operands of user-defined types.

[ edit ] Syntax

Overloaded operators are functions with special function names:

[ edit ] Overloaded operators

When an operator appears in an expression , and at least one of its operands has a class type or an enumeration type , then overload resolution is used to determine the user-defined function to be called among all the functions whose signatures match the following:

Note: for overloading co_await , (since C++20) user-defined conversion functions , user-defined literals , allocation and deallocation see their respective articles.

Overloaded operators (but not the built-in operators) can be called using function notation:

[ edit ] Restrictions

  • The operators :: (scope resolution), . (member access), .* (member access through pointer to member), and ?: (ternary conditional) cannot be overloaded.
  • New operators such as ** , <> , or &| cannot be created.
  • It is not possible to change the precedence, grouping, or number of operands of operators.
  • The overload of operator -> must either return a raw pointer, or return an object (by reference or by value) for which operator -> is in turn overloaded.
  • The overloads of operators && and || lose short-circuit evaluation.

[ edit ] Canonical implementations

Besides the restrictions above, the language puts no other constraints on what the overloaded operators do, or on the return type (it does not participate in overload resolution), but in general, overloaded operators are expected to behave as similar as possible to the built-in operators: operator + is expected to add, rather than multiply its arguments, operator = is expected to assign, etc. The related operators are expected to behave similarly ( operator + and operator + = do the same addition-like operation). The return types are limited by the expressions in which the operator is expected to be used: for example, assignment operators return by reference to make it possible to write a = b = c = d , because the built-in operators allow that.

Commonly overloaded operators have the following typical, canonical forms: [1]

[ edit ] Assignment operator

The assignment operator ( operator = ) has special properties: see copy assignment and move assignment for details.

The canonical copy-assignment operator is expected to be safe on self-assignment , and to return the lhs by reference:

In those situations where copy assignment cannot benefit from resource reuse (it does not manage a heap-allocated array and does not have a (possibly transitive) member that does, such as a member std::vector or std::string ), there is a popular convenient shorthand: the copy-and-swap assignment operator, which takes its parameter by value (thus working as both copy- and move-assignment depending on the value category of the argument), swaps with the parameter, and lets the destructor clean it up.

This form automatically provides strong exception guarantee , but prohibits resource reuse.

[ edit ] Stream extraction and insertion

The overloads of operator>> and operator<< that take a std:: istream & or std:: ostream & as the left hand argument are known as insertion and extraction operators. Since they take the user-defined type as the right argument ( b in a @ b ), they must be implemented as non-members.

These operators are sometimes implemented as friend functions .

[ edit ] Function call operator

When a user-defined class overloads the function call operator, operator ( ) , it becomes a FunctionObject type.

An object of such a type can be used in a function call expression:

Many standard algorithms, from std:: sort to std:: accumulate accept FunctionObject s to customize behavior. There are no particularly notable canonical forms of operator ( ) , but to illustrate the usage:

[ edit ] Increment and decrement

When the postfix increment or decrement operator appears in an expression, the corresponding user-defined function ( operator ++ or operator -- ) is called with an integer argument 0 . Typically, it is implemented as T operator ++ ( int ) or T operator -- ( int ) , where the argument is ignored. The postfix increment and decrement operators are usually implemented in terms of the prefix versions:

Although the canonical implementations of the prefix increment and decrement operators return by reference, as with any operator overload, the return type is user-defined; for example the overloads of these operators for std::atomic return by value.

[ edit ] Binary arithmetic operators

Binary operators are typically implemented as non-members to maintain symmetry (for example, when adding a complex number and an integer, if operator+ is a member function of the complex type, then only complex + integer would compile, and not integer + complex ). Since for every binary arithmetic operator there exists a corresponding compound assignment operator, canonical forms of binary operators are implemented in terms of their compound assignments:

[ edit ] Comparison operators

Standard algorithms such as std:: sort and containers such as std:: set expect operator < to be defined, by default, for the user-provided types, and expect it to implement strict weak ordering (thus satisfying the Compare requirements). An idiomatic way to implement strict weak ordering for a structure is to use lexicographical comparison provided by std::tie :

Typically, once operator < is provided, the other relational operators are implemented in terms of operator < .

Likewise, the inequality operator is typically implemented in terms of operator == :

When three-way comparison (such as std::memcmp or std::string::compare ) is provided, all six two-way comparison operators may be expressed through that:

[ edit ] Array subscript operator

User-defined classes that provide array-like access that allows both reading and writing typically define two overloads for operator [ ] : const and non-const variants:

If the value type is known to be a scalar type, the const variant should return by value.

Where direct access to the elements of the container is not wanted or not possible or distinguishing between lvalue c [ i ] = v ; and rvalue v = c [ i ] ; usage, operator [ ] may return a proxy. See for example std::bitset::operator[] .

Because a subscript operator can only take one subscript until C++23, to provide multidimensional array access semantics, e.g. to implement a 3D array access a [ i ] [ j ] [ k ] = x ; , operator [ ] has to return a reference to a 2D plane, which has to have its own operator [ ] which returns a reference to a 1D row, which has to have operator [ ] which returns a reference to the element. To avoid this complexity, some libraries opt for overloading operator ( ) instead, so that 3D access expressions have the Fortran-like syntax a ( i, j, k ) = x ; .

[ edit ] Bitwise arithmetic operators

User-defined classes and enumerations that implement the requirements of BitmaskType are required to overload the bitwise arithmetic operators operator & , operator | , operator ^ , operator~ , operator & = , operator | = , and operator ^ = , and may optionally overload the shift operators operator << operator >> , operator >>= , and operator <<= . The canonical implementations usually follow the pattern for binary arithmetic operators described above.

[ edit ] Boolean negation operator

[ edit ] rarely overloaded operators.

The following operators are rarely overloaded:

  • The address-of operator, operator & . If the unary & is applied to an lvalue of incomplete type and the complete type declares an overloaded operator & , it is unspecified whether the operator has the built-in meaning or the operator function is called. Because this operator may be overloaded, generic libraries use std::addressof to obtain addresses of objects of user-defined types. The best known example of a canonical overloaded operator& is the Microsoft class CComPtrBase . An example of this operator's use in EDSL can be found in boost.spirit .
  • The boolean logic operators, operator && and operator || . Unlike the built-in versions, the overloads cannot implement short-circuit evaluation. Also unlike the built-in versions, they do not sequence their left operand before the right one. (until C++17) In the standard library, these operators are only overloaded for std::valarray .
  • The comma operator, operator, . Unlike the built-in version, the overloads do not sequence their left operand before the right one. (until C++17) Because this operator may be overloaded, generic libraries use expressions such as a, void ( ) ,b instead of a,b to sequence execution of expressions of user-defined types. The boost library uses operator, in boost.assign , boost.spirit , and other libraries. The database access library SOCI also overloads operator, .
  • The member access through pointer to member operator - > * . There are no specific downsides to overloading this operator, but it is rarely used in practice. It was suggested that it could be part of a smart pointer interface , and in fact is used in that capacity by actors in boost.phoenix . It is more common in EDSLs such as cpp.react .

[ edit ] Notes

[ edit ] example, [ edit ] defect reports.

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

[ edit ] See also

  • Operator precedence
  • Alternative operator syntax
  • Argument-dependent lookup

[ edit ] External links

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 9 October 2023, at 05:12.
  • This page has been accessed 5,317,006 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

  • Trending Now
  • Foundational Courses
  • Data Science
  • Practice Problem
  • Machine Learning
  • System Design
  • DevOps Tutorial
  • Difference between For Loop and While Loop in Programming
  • Function Calling in Programming
  • Goto Statement in Programming
  • Function Declaration vs. Function Definition
  • Loops in Programming
  • What are Operators in Programming?
  • Write a Program to Print 2024 Calendar
  • Print Happy New Year 2024
  • Write a Program to Print Holiday Calendar 2024
  • Variables in Programming
  • Do While loop Syntax
  • Nested Loops in Programming
  • While loop Syntax
  • For loop Syntax
  • Functions in Programming
  • Unary Operators in Programming
  • Convert char to int (Characters to Integers)
  • Increment and Decrement Operators in Programming
  • Binary Operators in Programming

Bitwise OR Operator (|) in Programming

In programming, Bitwise Operators play a crucial role in manipulating individual bits of data. One of the fundamental bitwise operators is the Bitwise OR operator (|). In this article, we’ll discuss the Bitwise OR operator, its syntax, properties, applications, and optimization techniques, and conclude with its significance in programming.

Table of Content

What is Bitwise OR?

  • Bitwise OR Operator
  • Bitwise OR Operator Syntax
  • Bitwise OR Operator in C
  • Bitwise OR Operator in C++
  • Bitwise OR Operator in Java
  • Bitwise OR Operator in Python
  • Bitwise OR Operator in C#
  • Bitwise OR Operator in JavaScript
  • Applications of Bitwise OR Operator

Bitwise OR is a binary operation performed on two binary numbers or bits. It compares the corresponding bits of two numbers and produces a new number where each bit is 1 if at least one of the corresponding bits in the original numbers is 1.

The truth table for the Bitwise OR operation is as follows:

In this table, A and B are the variables, and A OR B is the expression representing the logical OR operation. The table shows all possible combinations of truth values for A and B, and the resulting truth value of A OR B for each combination.

The Botwise OR operation is a binary operation that takes two operands (A and B) and returns true (1) if at least one of the operands is true (1). It returns false (0) only when both operands are false (0).

Bitwise OR Operator:

The bitwise OR operator, symbolized by ‘|’, is utilized to perform a logical OR operation between corresponding bits of two operands. Operating at the bit level, this operator evaluates each bit of the operands and produces a result where a bit is set (1) if at least one of the corresponding bits of the operands is set to 1. If both bits are 0, the result bit is also set to 0.

Bitwise OR Operator Syntax:

The Bitwise OR operator (|) is a fundamental component of bitwise operations in programming languages. It operates on individual bits of two integers, comparing each corresponding bit and producing a result based on whether at least one of the bits is set.

Below, we’ll explore the syntax of the Bitwise OR operator in various programming languages:

Bitwise OR Operator in C:

In C , the syntax of the Bitwise OR operator is straightforward:

Bitwise OR Operator in C++:

In C++ , the syntax of the Bitwise OR operator is straightforward:

Bitwise OR Operator in Java:

In Java , the syntax of the Bitwise OR operator is straightforward:

Bitwise OR Operator in Python:

In Python , the syntax of the Bitwise OR operator is straightforward:

Bitwise OR Operator in C#:

In C# , the syntax of the Bitwise OR operator is straightforward:

Bitwise OR Operator in JavaScript:

In JavaScript , the syntax of the Bitwise OR operator is straightforward:

Applications of Bitwise OR Operator:

The bitwise OR operator finds applications in various programming scenarios, including:

  • Bitwise Operations : Similar to other bitwise operators, the bitwise OR operator is extensively used in bitwise operations, where individual bits of binary numbers need to be manipulated.
  • Setting or Enabling Flags : In software development, bitwise OR operations are commonly employed to set or enable specific flags within a bit field or integer.
  • Merging Bit Patterns : The bitwise OR operator is useful for merging or combining different bit patterns to form a single result, representing a union of the original patterns.

Conclusion:

The bitwise OR operator is a powerful tool in programming, offering precise control over individual bits within binary data. Its versatility makes it invaluable for tasks ranging from bitwise operations to setting flags and merging bit patterns. By understanding and effectively utilizing the bitwise OR operator, programmers can write more efficient and concise code, especially in scenarios where manipulation of binary data is required.

Please Login to comment...

Similar reads.

  • Programming
  • 10 Best Todoist Alternatives in 2024 (Free)
  • How to Get Spotify Premium Free Forever on iOS/Android
  • Yahoo Acquires Instagram Co-Founders' AI News Platform Artifact
  • OpenAI Introduces DALL-E Editor Interface
  • Top 10 R Project Ideas for Beginners in 2024

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

IMAGES

  1. Assignment Operators in C

    assignment operator c

  2. [100% Working Code]

    assignment operator c

  3. Assignment Operators in C/C++

    assignment operator c

  4. Operators In C Logicmojo

    assignment operator c

  5. Assignment Operators in C Example

    assignment operator c

  6. C programming +=

    assignment operator c

VIDEO

  1. Assignment Operator in C Programming

  2. Operators in C programming

  3. Unary operator use to perform operation on single operand

  4. Assignment Operator in C Programming

  5. Augmented assignment operators in C

  6. Operators in C language

COMMENTS

  1. Assignment Operators in C

    Different types of assignment operators are shown below: 1. "=": This is the simplest assignment operator. This operator is used to assign the value on the right to the variable on the left. Example: 2. "+=": This operator is combination of '+' and '=' operators.

  2. Assignment Operators in C

    Assignment Operators in C - In C, the assignment operator stores a certain value in an already declared variable. A variable in C can be assigned the value in the form of a literal, another variable or an expression. The value to be assigned forms the right hand operand, whereas the variable to be assigned should be the operan

  3. Assignment operators

    for assignments to class type objects, the right operand could be an initializer list only when the assignment is defined by a user-defined assignment operator. removed user-defined assignment constraint. CWG 1538. C++11. E1 ={E2} was equivalent to E1 = T(E2) ( T is the type of E1 ), this introduced a C-style cast. it is equivalent to E1 = T{E2}

  4. C Assignment Operators

    The assignment operators in C can both transform and assign values in a single operation. C provides the following assignment operators: | =. In assignment, the type of the right-hand value is converted to the type of the left-hand value, and the value is stored in the left operand after the assignment has taken place.

  5. Assignment operators

    Assignment performs implicit conversion from the value of rhs to the type of lhs and then replaces the value in the object designated by lhs with the converted value of rhs . Assignment also returns the same value as what was stored in lhs (so that expressions such as a = b = c are possible). The value category of the assignment operator is non ...

  6. Copy assignment operator

    the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  7. Operators in C

    An operator is a symbol that operates on a value or a variable. For example: + is an operator to perform addition. In this tutorial, you will learn about different C operators such as arithmetic, increment, assignment, relational, logical, etc. with the help of examples.

  8. Assignment Operators in C Example

    The Assignment operators in C are some of the Programming operators that are useful for assigning the values to the declared variables. Equals (=) operator is the most commonly used assignment operator. For example: int i = 10; The below table displays all the assignment operators present in C Programming with an example. C Assignment Operators.

  9. Assignment Operators in C

    A. The most basic assignment operator in the C language is the simple = operator, which is used for assigning a value to a variable. Conclusion. Assignment operators are used to assign the result of an expression to a variable. There are two types of assignment operators in C. Simple assignment operator and compound assignment operator.

  10. Assignment Operator in C

    The assignment operator in C, denoted by the equals sign (=), is used to assign a value to a variable. It is a fundamental operation that allows programmers to store data in variables for further use in their code. In addition to the simple assignment operator, C provides compound assignment operators that combine arithmetic or bitwise ...

  11. Operators in C

    Operators are symbols used for performing some kind of operation in C. There are six types of operators, Arithmetic Operators, Relational Operators, Logical Operators, Bitwise Operators, Assignment Operators, and Miscellaneous Operators. Operators can also be of type unary, binary, and ternary according to the number of operators they are using.

  12. Assignment and shorthand assignment operator in C

    Assignment operator is used to assign value to a variable (memory location). There is a single assignment operator = in C. It evaluates expression on right side of = symbol and assigns evaluated value to left side the variable.. For example consider the below assignment table.

  13. Mastering The Art Of Assignment: Exploring C Assignment Operators

    Assignment operators in C are not just for basic value assignment; they enable simultaneous arithmetic operations, enhancing code efficiency and readability. The article emphasizes the importance of understanding operator precedence in C, as misinterpretation can lead to unexpected results, especially with compound assignment operators. ...

  14. C Operators

    Comparison operators are used to compare two values (or variables). This is important in programming, because it helps us to find answers and make decisions. The return value of a comparison is either 1 or 0, which means true ( 1) or false ( 0 ). These values are known as Boolean values, and you will learn more about them in the Booleans and If ...

  15. Assignment operator (C++)

    In the C++ programming language, the assignment operator, =, is the operator used for assignment. Like most other operators in C++, it can be overloaded . The copy assignment operator, often just called the "assignment operator", is a special case of assignment operator where the source (right-hand side) and destination (left-hand side) are of ...

  16. c++

    ClassName = Other.ClassName; return *this; } This is the general convention used when overloading operator=. The return statement allows chaining of assignments (like a = b = c) and passing the parameter by const reference avoids copying Other on its way into the function call. edited Dec 22, 2010 at 13:54.

  17. Assignment Operator in C

    Assignment Operator in C. There are different kinds of the operators, such as arithmetic, relational, bitwise, assignment, etc., in the C programming language. The assignment operator is used to assign the value, variable and function to another variable. Let's discuss the various types of the assignment operators such as =, +=, -=, /=, *= and %=.

  18. C Bitwise OR and assignment operator

    The Bitwise OR and assignment operator (|=) assigns the first operand a value equal to the result of Bitwise OR operation of two operands. The Bitwise OR operator (|) is a binary operator which takes two bit patterns of equal length and performs the logical OR operation on each pair of corresponding bits. It returns 1 if either or both bits at ...

  19. operator overloading

    In those situations where copy assignment cannot benefit from resource reuse (it does not manage a heap-allocated array and does not have a (possibly transitive) member that does, such as a member std::vector or std::string), there is a popular convenient shorthand: the copy-and-swap assignment operator, which takes its parameter by value (thus working as both copy- and move-assignment ...

  20. Bitwise OR Operator (|) in Programming

    The bitwise OR operator, symbolized by '|', is utilized to perform a logical OR operation between corresponding bits of two operands. Operating at the bit level, this operator evaluates each bit of the operands and produces a result where a bit is set (1) if at least one of the corresponding bits of the operands is set to 1.