What is a scientific hypothesis?

It's the initial building block in the scientific method.

A girl looks at plants in a test tube for a science experiment. What's her scientific hypothesis?

Hypothesis basics

What makes a hypothesis testable.

  • Types of hypotheses
  • Hypothesis versus theory

Additional resources

Bibliography.

A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method . Many describe it as an "educated guess" based on prior knowledge and observation. While this is true, a hypothesis is more informed than a guess. While an "educated guess" suggests a random prediction based on a person's expertise, developing a hypothesis requires active observation and background research. 

The basic idea of a hypothesis is that there is no predetermined outcome. For a solution to be termed a scientific hypothesis, it has to be an idea that can be supported or refuted through carefully crafted experimentation or observation. This concept, called falsifiability and testability, was advanced in the mid-20th century by Austrian-British philosopher Karl Popper in his famous book "The Logic of Scientific Discovery" (Routledge, 1959).

A key function of a hypothesis is to derive predictions about the results of future experiments and then perform those experiments to see whether they support the predictions.

A hypothesis is usually written in the form of an if-then statement, which gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include "may," according to California State University, Bakersfield .

Here are some examples of hypothesis statements:

  • If garlic repels fleas, then a dog that is given garlic every day will not get fleas.
  • If sugar causes cavities, then people who eat a lot of candy may be more prone to cavities.
  • If ultraviolet light can damage the eyes, then maybe this light can cause blindness.

A useful hypothesis should be testable and falsifiable. That means that it should be possible to prove it wrong. A theory that can't be proved wrong is nonscientific, according to Karl Popper's 1963 book " Conjectures and Refutations ."

An example of an untestable statement is, "Dogs are better than cats." That's because the definition of "better" is vague and subjective. However, an untestable statement can be reworded to make it testable. For example, the previous statement could be changed to this: "Owning a dog is associated with higher levels of physical fitness than owning a cat." With this statement, the researcher can take measures of physical fitness from dog and cat owners and compare the two.

Types of scientific hypotheses

Elementary-age students study alternative energy using homemade windmills during public school science class.

In an experiment, researchers generally state their hypotheses in two ways. The null hypothesis predicts that there will be no relationship between the variables tested, or no difference between the experimental groups. The alternative hypothesis predicts the opposite: that there will be a difference between the experimental groups. This is usually the hypothesis scientists are most interested in, according to the University of Miami .

For example, a null hypothesis might state, "There will be no difference in the rate of muscle growth between people who take a protein supplement and people who don't." The alternative hypothesis would state, "There will be a difference in the rate of muscle growth between people who take a protein supplement and people who don't."

If the results of the experiment show a relationship between the variables, then the null hypothesis has been rejected in favor of the alternative hypothesis, according to the book " Research Methods in Psychology " (​​BCcampus, 2015). 

There are other ways to describe an alternative hypothesis. The alternative hypothesis above does not specify a direction of the effect, only that there will be a difference between the two groups. That type of prediction is called a two-tailed hypothesis. If a hypothesis specifies a certain direction — for example, that people who take a protein supplement will gain more muscle than people who don't — it is called a one-tailed hypothesis, according to William M. K. Trochim , a professor of Policy Analysis and Management at Cornell University.

Sometimes, errors take place during an experiment. These errors can happen in one of two ways. A type I error is when the null hypothesis is rejected when it is true. This is also known as a false positive. A type II error occurs when the null hypothesis is not rejected when it is false. This is also known as a false negative, according to the University of California, Berkeley . 

A hypothesis can be rejected or modified, but it can never be proved correct 100% of the time. For example, a scientist can form a hypothesis stating that if a certain type of tomato has a gene for red pigment, that type of tomato will be red. During research, the scientist then finds that each tomato of this type is red. Though the findings confirm the hypothesis, there may be a tomato of that type somewhere in the world that isn't red. Thus, the hypothesis is true, but it may not be true 100% of the time.

Scientific theory vs. scientific hypothesis

The best hypotheses are simple. They deal with a relatively narrow set of phenomena. But theories are broader; they generally combine multiple hypotheses into a general explanation for a wide range of phenomena, according to the University of California, Berkeley . For example, a hypothesis might state, "If animals adapt to suit their environments, then birds that live on islands with lots of seeds to eat will have differently shaped beaks than birds that live on islands with lots of insects to eat." After testing many hypotheses like these, Charles Darwin formulated an overarching theory: the theory of evolution by natural selection.

"Theories are the ways that we make sense of what we observe in the natural world," Tanner said. "Theories are structures of ideas that explain and interpret facts." 

  • Read more about writing a hypothesis, from the American Medical Writers Association.
  • Find out why a hypothesis isn't always necessary in science, from The American Biology Teacher.
  • Learn about null and alternative hypotheses, from Prof. Essa on YouTube .

Encyclopedia Britannica. Scientific Hypothesis. Jan. 13, 2022. https://www.britannica.com/science/scientific-hypothesis

Karl Popper, "The Logic of Scientific Discovery," Routledge, 1959.

California State University, Bakersfield, "Formatting a testable hypothesis." https://www.csub.edu/~ddodenhoff/Bio100/Bio100sp04/formattingahypothesis.htm  

Karl Popper, "Conjectures and Refutations," Routledge, 1963.

Price, P., Jhangiani, R., & Chiang, I., "Research Methods of Psychology — 2nd Canadian Edition," BCcampus, 2015.‌

University of Miami, "The Scientific Method" http://www.bio.miami.edu/dana/161/evolution/161app1_scimethod.pdf  

William M.K. Trochim, "Research Methods Knowledge Base," https://conjointly.com/kb/hypotheses-explained/  

University of California, Berkeley, "Multiple Hypothesis Testing and False Discovery Rate" https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf  

University of California, Berkeley, "Science at multiple levels" https://undsci.berkeley.edu/article/0_0_0/howscienceworks_19

Sign up for the Live Science daily newsletter now

Get the world’s most fascinating discoveries delivered straight to your inbox.

Alina Bradford

'Uncharted territory': El Niño to flip to La Niña in what could be the hottest year on record

What's the largest waterfall in the world?

Scientists may have pinpointed the true origin of the Hope Diamond and other pristine gemstones

Most Popular

  • 2 Nightmare fish may explain how our 'fight or flight' response evolved
  • 3 Lyrid meteor shower 2024: How to watch stunning shooting stars and 'fireballs' during the event's peak this week
  • 4 Scientists are one step closer to knowing the mass of ghostly neutrinos — possibly paving the way to new physics
  • 5 What's the largest waterfall in the world?
  • 2 Enormous dinosaur dubbed Shiva 'The Destroyer' is one of the biggest ever discovered
  • 3 2,500-year-old skeletons with legs chopped off may be elites who received 'cruel' punishment in ancient China
  • 4 Rare 'porcelain gallbladder' found in 100-year-old unmarked grave at Mississippi mental asylum cemetery

form a hypothesis or testable explanation

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

form a hypothesis or testable explanation

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

form a hypothesis or testable explanation

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Scientific Method

Illustration by J.R. Bee. ThoughtCo. 

  • Cell Biology
  • Weather & Climate
  • B.A., Biology, Emory University
  • A.S., Nursing, Chattahoochee Technical College

The scientific method is a series of steps followed by scientific investigators to answer specific questions about the natural world. It involves making observations, formulating a hypothesis , and conducting scientific experiments . Scientific inquiry starts with an observation followed by the formulation of a question about what has been observed. The steps of the scientific method are as follows:

Observation

The first step of the scientific method involves making an observation about something that interests you. This is very important if you are doing a science project because you want your project to be focused on something that will hold your attention. Your observation can be on anything from plant movement to animal behavior, as long as it is something you really want to know more about.​ This is where you come up with the idea for your science project.

Once you've made your observation, you must formulate a question about what you have observed. Your question should tell what it is that you are trying to discover or accomplish in your experiment. When stating your question you should be as specific as possible.​ For example, if you are doing a project on plants , you may want to know how plants interact with microbes. Your question may be: Do plant spices inhibit bacterial growth ?

The hypothesis is a key component of the scientific process. A hypothesis is an idea that is suggested as an explanation for a natural event, a particular experience, or a specific condition that can be tested through definable experimentation. It states the purpose of your experiment, the variables used, and the predicted outcome of your experiment. It is important to note that a hypothesis must be testable. That means that you should be able to test your hypothesis through experimentation .​ Your hypothesis must either be supported or falsified by your experiment. An example of a good hypothesis is: If there is a relation between listening to music and heart rate, then listening to music will cause a person's resting heart rate to either increase or decrease.

Once you've developed a hypothesis, you must design and conduct an experiment that will test it. You should develop a procedure that states very clearly how you plan to conduct your experiment. It is important that you include and identify a controlled variable or dependent variable in your procedure. Controls allow us to test a single variable in an experiment because they are unchanged. We can then make observations and comparisons between our controls and our independent variables (things that change in the experiment) to develop an accurate conclusion.​

The results are where you report what happened in the experiment. That includes detailing all observations and data made during your experiment. Most people find it easier to visualize the data by charting or graphing the information.​

The final step of the scientific method is developing a conclusion. This is where all of the results from the experiment are analyzed and a determination is reached about the hypothesis. Did the experiment support or reject your hypothesis? If your hypothesis was supported, great. If not, repeat the experiment or think of ways to improve your procedure.

  • Six Steps of the Scientific Method
  • What Is an Experiment? Definition and Design
  • Scientific Method Flow Chart
  • Scientific Method Lesson Plan
  • How To Design a Science Fair Experiment
  • Science Projects for Every Subject
  • How to Do a Science Fair Project
  • What Are the Elements of a Good Hypothesis?
  • How to Write a Lab Report
  • What Is a Hypothesis? (Science)
  • Biology Science Fair Project Ideas
  • Understanding Simple vs Controlled Experiments
  • Null Hypothesis Definition and Examples
  • Stove Top Frozen Pizza Science Experiment
  • Dependent Variable Definition and Examples
  • What Is the Difference Between Hard and Soft Science?

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

4.13: Summary- The Process of Science

  • Last updated
  • Save as PDF
  • Page ID 46088

Learning Outcomes

  • Compare inductive reasoning with deductive reasoning
  • Describe the process of scientific inquiry
  • Describe the goals of basic science and applied science

Biology is the science that studies living organisms and their interactions with one another and their environments. Science attempts to describe and understand the nature of the universe in whole or in part. Science has many fields; those fields related to the physical world and its phenomena are considered natural sciences.

A hypothesis is a tentative explanation for an observation. A scientific theory is a well-tested and consistently verified explanation for a set of observations or phenomena. A scientific law is a description, often in the form of a mathematical formula, of the behavior of an aspect of nature under certain circumstances. Two types of logical reasoning are used in science. Inductive reasoning uses results to produce general scientific principles. Deductive reasoning is a form of logical thinking that predicts results by applying general principles. The common thread throughout scientific research is the use of the scientific method. Scientists present their results in peer-reviewed scientific papers published in scientific journals.

Science can be basic or applied. The main goal of basic science is to expand knowledge without any expectation of short-term practical application of that knowledge. The primary goal of applied research, however, is to solve practical problems.

Practice Questions

A suggested and testable explanation for an event is called a ________.

[reveal-answer q=”354047″]Show Answer[/reveal-answer] [hidden-answer a=”354047″]A suggested and testable explanation for an event is called a hypothesis .

[/hidden-answer]

Give an example of how applied science has had a direct effect on your daily life. [reveal-answer q=”886421″]Show Answer[/reveal-answer] [hidden-answer a=”886421″]Answers will vary. One example of how applied science has had a direct effect on daily life is the presence of vaccines. Vaccines to prevent diseases such polio, measles, tetanus, and even the influenza affect daily life by contributing to individual and societal health.[/hidden-answer]

Contributors and Attributions

  • Concepts of Biology. Provided by : OpenStax CNX. Located at : http://cnx.org/contents/[email protected] . License : CC BY: Attribution . License Terms : Download for free at http://cnx.org/contents/[email protected]
  • Publications
  • Conferences & Events
  • Professional Learning
  • Science Standards
  • Awards & Competitions
  • Daily Do Lesson Plans
  • Free Resources
  • American Rescue Plan
  • For Preservice Teachers
  • NCCSTS Case Collection
  • Partner Jobs in Education
  • Interactive eBooks+
  • Digital Catalog
  • Regional Product Representatives
  • e-Newsletters
  • Bestselling Books
  • Latest Books
  • Popular Book Series
  • Prospective Authors
  • Web Seminars
  • Exhibits & Sponsorship
  • Conference Reviewers
  • National Conference • Denver 24
  • Leaders Institute 2024
  • National Conference • New Orleans 24
  • Submit a Proposal
  • Latest Resources
  • Professional Learning Units & Courses
  • For Districts
  • Online Course Providers
  • Schools & Districts
  • College Professors & Students
  • The Standards
  • Teachers and Admin
  • eCYBERMISSION
  • Toshiba/NSTA ExploraVision
  • Junior Science & Humanities Symposium
  • Teaching Awards
  • Climate Change
  • Earth & Space Science
  • New Science Teachers
  • Early Childhood
  • Middle School
  • High School
  • Postsecondary
  • Informal Education
  • Journal Articles
  • Lesson Plans
  • e-newsletters
  • Science & Children
  • Science Scope
  • The Science Teacher
  • Journal of College Sci. Teaching
  • Connected Science Learning
  • NSTA Reports
  • Next-Gen Navigator
  • Science Update
  • Teacher Tip Tuesday
  • Trans. Sci. Learning

MyNSTA Community

  • My Collections

Formative Assessment Probe

What Is a Hypothesis?

By Page Keeley

Uncovering Student Ideas in Science, Volume 3: Another 25 Formative Assessment Probes

Share Discuss

This is the new updated edition of the first book in the bestselling  Uncovering Student Ideas in Science  series. Like the first edition of volume 1, this book helps pinpoint what your students know (or think they know) so you can monitor their learning and adjust your teaching accordingly. Loaded with classroom-friendly features you can use immediately, the book includes 25 “probes”—brief, easily administered formative assessments designed to understand your students’ thinking about 60 core science concepts.

What Is a Hypothesis?

Access this probe as a Google form:  English

Download this probe as an editable PDF: English

The purpose of this assessment probe is to elicit students’ ideas about hypotheses. The probe is designed to find out if students understand what a hypothesis is, when it is used, and how it is developed.

Type of Probe

Justified List

Related Concepts

hypothesis, nature of science, scientific inquiry, scientific method

Explanation

The best choices are A, B, G, K, L, and M. However, other possible answers open up discussions to contrast with the provided definition. A hypothesis is a tentative explanation that can be tested and is based on observation and/or scientific knowledge such as that that has been gained from doing background research. Hypotheses are used to investigate a scientific question. Hypotheses can be tested through experimentation or further observation, but contrary to how some students are taught to use the “scientific method,” hypotheses are not proved true or correct. Students will often state their conclusions as “My hypothesis is correct because my data prove…,” thereby equating positive results with proof (McLaughlin 2006, p. 61). In essence, experimentation as well as other means of scientific investigation never prove a hypothesis—the hypothesis gains credibility from the evidence obtained from data that support it. Data either support or negate a hypothesis but never prove something to be 100% true or correct.

Hypotheses are often confused with questions. A hypothesis is not framed as a question but rather provides a tentative explanation in response to the scientific question that leads the investigation. Sometimes the word hypothesis is oversimplified by being defined as “an educated guess.” This terminology fails to convey the explanatory or predictive nature of scientific hypotheses and omits what is most important about hypotheses: their purpose. Hypotheses are developed to explain observations, such as notable patterns in nature; predict the outcome of an experiment based on observations or prior scientific knowledge; and guide the investigator in seeking and paying attention to the right data. Calling a hypothesis a “guess” undermines the explanation that underscores a hypothesis.

Predictions and hypotheses are not the same. A hypothesis, which is a tentative explanation, can lead to a prediction. Predictions forecast the outcome of an experiment but do not include an explanation. Predictions often use if-then statements, just as hypotheses do, but this does not make a prediction a hypothesis. For example, a prediction might take the form of, “If I do [X], then [Y] will happen.” The prediction describes the outcome but it does not provide an explanation of why that outcome might result or describe any relationship between variables.

Sometimes the words hypothesis , theory , and law are inaccurately portrayed in science textbooks as a hierarchy of scientific knowledge, with the hypothesis being the first step on the way to becoming a theory and then a law. These concepts do not form a sequence for the development of scientific knowledge because each represents a different type of knowledge.

Not every investigation requires a hypothesis. Some types of investigations do not lend themselves to hypothesis testing through experimentation. A good deal of science is observational and descriptive—the study of biodiversity, for example, usually involves looking at a wide variety of specimens and maybe sketching and recording their unique characteristics. A biologist studying biodiversity might wonder, “What types of birds are found on island X?” The biologist would observe sightings of birds and perhaps sketch them and record their bird calls but would not be guided by a specific hypothesis. Many of the great discoveries in science did not begin with a hypothesis in mind. For example, Charles Darwin did not begin his observations of species in the Galapagos with a hypothesis in mind.

Contrary to the way hypotheses are often stated by students as an unimaginative response to a question posed at the beginning of an experiment, particularly those of the “cookbook” type, the generation of hypotheses by scientists is actually a creative and imaginative process, combined with the logic of scientific thought. “The process of formulating and testing hypotheses is one of the core activities of scientists. To be useful, a hypothesis should suggest what evidence would support it and what evidence would refute it. A hypothesis that cannot in principle be put to the test of evidence may be interesting, but it is not likely to be scientifically useful” (AAAS 1988, p. 5).

Curricular and Instructional Considerations

Elementary Students

In the elementary school grades, students typically engage in inquiry to begin to construct an understanding of the natural world. Their inquiries are initiated by a question. If students have a great deal of knowledge or have made prior observations, they might propose a hypothesis; in most cases, however, their knowledge and observations are too incomplete for them to hypothesize. If elementary school students are required to develop a hypothesis, it is often just a guess, which does little to contribute to an understanding of the purpose of a hypothesis. At this grade level, it is usually sufficient for students to focus on their questions, instead of hypotheses (Pine 1999).

Middle School Students

At the middle school level, students develop an understanding of what a hypothesis is and when one is used. The notion of a testable hypothesis through experimentation that involves variables is introduced and practiced at this grade level. However, there is a danger that students will think every investigation must include a hypothesis. Hypothesizing as a skill is important to develop at this grade level but it is also important to develop the understandings of what a hypothesis is and why and how it is developed.

High School Students

At this level, students have acquired more scientific knowledge and experiences and so are able to propose tentative explanations. They can formulate a testable hypothesis and demonstrate the logical connections between the scientific concepts guiding a hypothesis and the design of an experiment (NRC 1996).

Administering the Probe

This probe is best used as is at the middle school and high school levels, particularly if students have been previously exposed to the word hypothesis or its use. Remove any answer choices students might not be familiar with. For example, if they have not encountered if-then reasoning, eliminate this distracter. The probe can also be modified as a simpler version for students in grades 3–5 by leaving out some of the choices and simplifying the descriptions.

K–4 Understandings About Scientific Inquiry

  • Scientific investigations involve asking and answering a question and comparing the answer with what scientists already know about the world.
  • Scientists develop explanations using observations (evidence) and what they already know about the world (scientific knowledge).

5–8 Understandings About Scientific Inquiry

  • Different kinds of questions suggest different kinds of investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.
  • Current scientific knowledge and understanding guide scientific investigations. Different scientific domains employ different methods, core theories, and standards to advance scientific knowledge and understanding.

5–8 Science as a Human Endeavor

  • Science is very much a human endeavor, and the work of science relies on basic human qualities such as reasoning, insight, energy, skill, and creativity.

9–12 Abilities Necessary to Do Scientific Inquiry

  • Identify questions and concepts that guide scientific investigations.*

9–12 Understandings About Scientific Inquiry

  • Scientists usually inquire about how physical, living, or designed systems function. Conceptual principles and knowledge guide scientific inquiries. Historical and current scientific knowledge influence the design and interpretation of investigations and the evaluation of proposed explanations made by other scientists.

*Indicates a strong match between the ideas elicited by the probe and a national standard’s learning goal.

K–2 Scientific Inquiry

  • People can often learn about things around them by just observing those things carefully, but sometimes they can learn more by doing something to the things and noting what happens.

3–5 Scientific Inquiry

  • Scientists’ explanations about what happens in the world come partly from what they observe and partly from what they think. Sometimes scientists have different explanations for the same set of observations. That usually leads to their making more observations to resolve the differences.

6–8 Scientific Inquiry

  • Scientists differ greatly in what phenomena they study and how they go about their work. Although there is no fixed set of steps that all scientists follow, scientific investigations usually involve the collection of relevant evidence, the use of logical reasoning, and the application of imagination in devising hypotheses and explanations to make sense of the collected evidence.*

6–8 Values and Attitudes

  • Even if they turn out not to be true, hypotheses are valuable if they lead to fruitful investigations.*

9–12 Scientific Inquiry

  • Hypotheses are widely used in science for choosing what data to pay attention to and what additional data to seek and for guiding the interpretation of the data (both new and previously available).*

Related Research

  • Students generally have difficulty with explaining how science is conducted because they have had little contact with real scientists. Their familiarity with doing science, even at older ages, is “school science,” which is often not how science is generally conducted in the scientific community (Driver et al. 1996).
  • Despite over 10 years of reform efforts in science education, research still shows that students typically have inadequate conceptions of what science is and what scientists do (Schwartz 2007).
  • Upper elementary school and middle school students may not understand experimentation as a method of testing ideas, but rather as a method of trying things out or producing a desired outcome (AAAS 1993).
  • Middle school students tend to invoke personal experiences as evidence to justify their hypothesis. They seem to think of evidence as selected from what is already known or from personal experience or secondhand sources, not as information produced through experiment (AAAS 1993).

Related NSTA Resources

American Association for the Advancement of Science (AAAS). 1993. Benchmarks for science literacy. New York: Oxford University Press.

Keeley, P. 2005. Science curriculum topic study: Bridging the gap between standards and practice. Thousand Oaks, CA: Corwin Press.

McLaughlin, J. 2006. A gentle reminder that a hypothesis is never proven correct, nor is a theory ever proven true. Journal of College Science Teaching 36 (1): 60–62.

National Research Council (NRC). 1996. National science education standards. Washington, DC: National Academy Press.

Schwartz, R. 2007. What’s in a word? How word choice can develop (mis)conceptions about the nature of science. Science Scope 31 (2): 42–47.

VanDorn, K., M. Mavita, L. Montes, B. Ackerson, and M. Rockley. 2004. Hypothesis-based learning. Science Scope 27: 24–25.

Suggestions for Instruction and Assessment

  • The “scientific method” is often the first topic students encounter when using textbooks and this can erroneously imply that there is a rigid set of steps that all scientists follow, including the development of a hypothesis. Often the scientific method described in textbooks applies to experimentation, which is only one of many ways scientists conduct their work. Embedding explicit instruction of the various ways to do science in the actual investigations students do throughout the year as well as in their studies of investigations done by scientists is a better approach to understanding how science is done than starting off the year with the scientific method in a way that is devoid of a context through which students can learn the content and process of science.
  • Students often participate in science fairs that may follow a textbook scientific method of posing a question, developing a hypothesis, and so on, that incorrectly results in students “proving” their hypothesis. Make sure students understand that a hypothesis can be disproven, but it is never proven, which implies 100% certainty.
  • Help students understand that science begins with a question. The structure of some school lab reports may lead students to believe that all investigations begin with a hypothesis. While some investigations do begin with a hypothesis, in most cases, they begin with a question. Sometimes it is just a general question.
  • A technique to help students maintain a consistent image of science as inquiry throughout the year by paying more careful attention to the words they use is to create a “caution words” poster or bulletin board (Schwartz 2007). Important words that have specific meanings in science but are often used inappropriately in the science classroom and through everyday language can be posted in the room as a reminder to pay careful attention to how students are using these words. For example, words like hypothesis and scientific method can be posted here. Words that are banned when referring to hypotheses include prove, correct, and true.
  • Use caution when asking students to write lab reports that use the same format regardless of the type of investigation conducted. The format used in writing about an investigation may imply a rigid, fixed process or erroneously misrepresent aspects of science, such as that hypotheses are developed for every scientific investigation.
  • Avoid using hypotheses with younger children when they result in guesses. It is better to start with a question and have students make a prediction about what they think will happen and why. As they acquire more conceptual understanding and experience a variety of observations, they will be better prepared to develop hypotheses that reflect the way science is done.
  • Avoid using “educated guess” as a description for hypothesis. The common meaning of the word guess implies no prior knowledge, experience, or observations.
  • Scaffold hypothesis writing for students by initially having them use words like may in their statements and then formalizing them with if-then statements. For example, students may start with the statement, “The growth of algae may be affected by temperature.” The next step would be to extend this statement to include a testable relationship, such as, “If the temperature of the water increases, then the algae population will increase.” Encourage students to propose a tentative explanation and then consider how they would go about testing the statement.

American Association for the Advancement of Science (AAAS). 1988. Science for all Americans. New York: Oxford University Press.

Driver, R., J. Leach, R. Millar, and P. Scott. 1996. Young people’s images of science. Buckingham, UK: Open University Press.

Pine, J. 1999. To hypothesize or not to hypothesize. In Foundations: A monograph for professionals in science, mathematics, and technology education. Vol. 2. Inquiry: Thoughts, views, and strategies for the K–5 classroom. Arlington, VA: National Science Foundation.

You may also like

Reports Article

Journal Article

Evaluation Insights is a new column about program evaluation that will help readers build their capacity as program evaluators....

Mobile instructional spaces such as retrofit buses, customized trucks or trailers, and repurposed shipping containers are innovative, unique venues fo...

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

1.2: Science- Reproducible, Testable, Tentative, Predictive, and Explanatory

  • Last updated
  • Save as PDF
  • Page ID 152134

Learning Objectives

  • Describe the differences between hypothesis and theory as scientific terms.
  • Describe the difference between a theory and scientific law.
  • Identify the components of the scientific method.

Although many have taken science classes throughout their course of studies, incorrect or misleading ideas about some of the most important and basic principles in science are still commonplace. Most students have heard of hypotheses , theories , and laws , but what do these terms really mean? Before you read this section, consider what you have learned about these terms previously, and what they mean to you. When reading, notice if any of the text contradicts what you previously thought. What do you read that supports what you thought?

What is a Fact?

A fact is a basic statement established by experiment or observation. All facts are true under the specific conditions of the observation.

What is a Hypothesis?

One of the most common terms used in science classes is a " hypothesis ". The word can have many different definitions, dependent on the context in which it is being used:

  • An educated guess: a scientific hypothesis provides a suggested solution based on evidence.
  • Prediction: if you have ever carried out a science experiment, you probably made this type of hypothesis, in which you predicted the outcome of your experiment.
  • Tentative or proposed explanation: hypotheses can be suggestions about why something is observed. In order for a hypothesis to be scientific, a scientist must be able to test the explanation to see if it works, and if it is able to correctly predict what will happen in a situation. For example, "if my hypothesis is correct, I should see _____ result when I perform _____ test."
A hypothesis is tentative; it can be easily changed.

What is a Theory?

The United States National Academy of Sciences describes a theory as:

"Some scientific explanations are so well established that no new evidence is likely to alter them. The explanation becomes a scientific theory. In everyday language a theory means a hunch or speculation. Not so in science. In science, the word theory refers to a comprehensive explanation of an important feature of nature supported by facts gathered over time. Theories also allow scientists to make predictions about as yet unobserved phenomena."

"A scientific theory is a well-substantiated explanation of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed through observation and experimentation. Such fact-supported theories are not "guesses," but reliable accounts of the real world. The theory of biological evolution is more than "just a theory." It is as factual an explanation of the universe as the atomic theory of matter (stating that everything is made of atoms) or the germ theory of disease (which states that many diseases are caused by germs). Our understanding of gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact."

Note some key features of theories that are important to understand from this description:

  • Theories are explanations of natural phenomenon. They aren't predictions (although we may use theories to make predictions). They are explanations of why something is observed.
  • Theories aren't likely to change. They have a lot of support and are able to explain many observations satisfactorily. Theories can, indeed, be facts. Theories can change in some instances, but it is a long and difficult process. In order for a theory to change, there must be many observations or evidence that the theory cannot explain.
  • Theories are not guesses. The phrase "just a theory" has no room in science. To be a scientific theory carries a lot of weight—it is not just one person's idea about something
Theories aren't likely to change.

What is a Law?

Scientific laws are similar to scientific theories in that they are principles that can be used to predict the behavior of the natural world. Both scientific laws and scientific theories are typically well-supported by observations and/or experimental evidence. Usually, scientific laws refer to rules for how nature will behave under certain conditions, frequently written as an equation. Scientific theories are overarching explanations of how nature works, and why it exhibits certain characteristics. As a comparison, theories explain why we observe what we do, and laws describe what happens.

For example, around the year 1800, Jacques Charles and other scientists were working with gases to, among other reasons, improve the design of the hot air balloon. These scientists found, after numerous tests, that certain patterns existed in their observations of gas behavior. If the temperature of the gas increased, the volume of the gas increased. This is known as a natural law. A law is a relationship that exists between variables in a group of data. Laws describe the patterns we see in large amounts of data, but do not describe why the patterns exist.

Laws vs Theories

A common misconception is that scientific theories are rudimentary ideas that will eventually graduate into scientific laws when enough data and evidence has been accumulated. A theory does not change into a scientific law with the accumulation of new or better evidence. Remember, theories are explanations; laws are patterns seen in large amounts of data, frequently written as an equation. A theory will always remain a theory, a law will always remain a law.

Video \(\PageIndex{1}\) What is the difference between scientific law and theory?

The Scientific Method

Scientists search for answers to questions and solutions to problems by using a procedure called the scientific method . This procedure consists of making observations, formulating hypotheses, and designing experiments, which in turn lead to additional observations, hypotheses, and experiments in repeated cycles (Figure \(\PageIndex{1}\)).

1.4.jpg

  • Step 1: Make observations.

Observations can be qualitative or quantitative. Qualitative observations describe properties or occurrences in ways that do not rely on numbers. Examples of qualitative observations include the following: "the outside air temperature is cooler during the winter season," "table salt is a crystalline solid," "sulfur crystals are yellow," and "dissolving a penny in dilute nitric acid forms a blue solution and a brown gas." Quantitative observations are measurements, which by definition consist of both a number and a unit. Examples of quantitative observations include the following: "the melting point of crystalline sulfur is 115.21° Celsius," and "35.9 grams of table salt—the chemical name of which is sodium chloride—dissolve in 100 grams of water at 20° Celsius." For the question of the dinosaurs’ extinction, the initial observation was quantitative: iridium concentrations in sediments dating to 66 million years ago were 20–160 times higher than normal.

  • Step 2: Formulate a hypothesis.

After deciding to learn more about an observation or a set of observations, scientists generally begin an investigation by forming a hypothesis, a tentative explanation for the observation(s). The hypothesis may not be correct, but it puts the scientist’s understanding of the system being studied into a form that can be tested. For example, the observation that we experience alternating periods of light and darkness which correspond to observed movements of the sun, moon, clouds, and shadows, is consistent with either of two hypotheses:

  • Earth rotates on its axis every 24 hours, alternately exposing one side to the sun.
  • The sun revolves around Earth every 24 hours.

Suitable experiments can be designed to choose between these two alternatives. In the case of disappearance of the dinosaurs, the hypothesis was that the impact of a large extraterrestrial object caused their extinction. Unfortunately (or perhaps fortunately), this hypothesis does not lend itself to direct testing by any obvious experiment, but scientists can collect additional data that either supports or refutes it.

Step 3: Design and perform experiments.

After a hypothesis has been formed, scientists conduct experiments to test its validity. Experiments are systematic observations or measurements, preferably made under controlled conditions—that is, under conditions in which a single variable changes.

  • Step 4: Accept or modify the hypothesis.

A properly designed and executed experiment enables a scientist to determine whether the original hypothesis is valid. In the case of validity, the scientist can proceed to step 5. In other cases, experiments may demonstrate that the hypothesis is incorrect or that it must be modified, thus requiring further experimentation.

  • Step 5: Development of a law and/or theory.

More experimental data are then collected and analyzed, at which point a scientist may begin to think that the results are sufficiently reproducible (i.e., dependable) to merit being summarized in a law—a verbal or mathematical description of a phenomenon that allows for general predictions. A law simply states what happens; it does not address the question of why.

One example of a law, the law of definite proportions (discovered by the French scientist Joseph Proust [1754–1826]), states that a chemical substance always contains the same proportions of elements by mass. Thus, sodium chloride (table salt) always contains the same proportion by mass of sodium to chlorine—in this case, 39.34% sodium and 60.66% chlorine by mass. Sucrose (table sugar) is always 42.11% carbon, 6.48% hydrogen, and 51.41% oxygen by mass.

Whereas a law states only what happens, a theory attempts to explain why nature behaves as it does. Laws are unlikely to change greatly over time, unless a major experimental error is discovered. A theory, in contrast, is incomplete and imperfect; it evolves with time to explain new facts as they are discovered.

Because scientists can enter the cycle shown in Figure \(\PageIndex{1}\) at any point, the actual application of the scientific method to different topics can take many different forms. For example, a scientist may start with a hypothesis formed by reading about work done by others in the field, rather than by making direct observations.

Example \(\PageIndex{1}\)

Classify each statement as a law, theory, experiment, hypothesis, or observation.

  • Ice always floats on liquid water.
  • Birds evolved from dinosaurs.
  • Hot air is less dense than cold air, probably because the components of hot air are moving more rapidly.
  • When 10 g of ice was added to 100 mL of water at 25°C, the temperature of the water decreased to 15.5°C after the ice melted.
  • The ingredients of Ivory soap were analyzed to see whether it really is 99.44% pure, as advertised.
  • This is a general statement of a relationship between the properties of liquid and solid water, so it is a law.
  • This is a possible explanation for the origin of birds, so it is a hypothesis.
  • This is a statement that tries to explain the relationship between the temperature and the density of air based on fundamental principles, so it is a theory.
  • The temperature is measured before and after a change is made in a system, so these are observations.
  • This is an analysis designed to test a hypothesis (in this case, the manufacturer’s claim of purity), so it is an experiment.

Exercise \(\PageIndex{1}\)

Classify each statement as a law, theory, experiment, hypothesis, qualitative observation, or quantitative observation.

  • Measured amounts of acid were added to a Rolaids tablet to see whether it really “consumes 47 times its weight in excess stomach acid.”
  • Heat always flows from hot objects to cooler ones, not in the opposite direction.
  • The universe was formed by a massive explosion that propelled matter into a vacuum.
  • Michael Jordan is the greatest pure shooter ever to play professional basketball.
  • Limestone is relatively insoluble in water, but dissolves readily in dilute acid with the evolution of a gas.
  • A hypothesis is a tentative explanation that can be tested by further investigation.
  • A theory is a well-supported explanation of observations.
  • A scientific law is a statement that summarizes the relationship between variables.
  • An experiment is a controlled method of testing a hypothesis.
  • Step 3: Test the hypothesis through experimentation.

Contributors and Attributions

Marisa Alviar-Agnew  ( Sacramento City College )

Henry Agnew (UC Davis)

The Biology of Sex and Death (Bio 1220)

  • The Biology of Sex and Death
  • 1.01 Scientific Methodology
  • What is life?
  • Life on earth
  • Tree Thinking
  • What is evolution and why do biologists think it’s important?
  • Population & Community Ecology
  • Life interacts
  • Reproduction without sex (Asexual Reproduction)
  • What is sex?
  • Trait Inheritance & Genetic Variation
  • Human Reproductive Cycle
  • Plant Growth and Reproduction
  • Sexual Dimorphism and Selection Selection
  • Animal Mating Systems
  • Chromosomes, genes, and DNA
  • Gene expression and development
  • In Vitro Fertilization and Gene Editing
  • Genetically Modified (Transgenic) Organisms
  • Senescence, Aging, and Death
  • Heritable disease and Complex traits
  • Infectious disease spread
  • Innate and Adaptive Immune Responses
  • Immunization and Allergies, or How the immune system can help or hurt us
  • Cancer Biology
  • Extinction & Conservation Biology

Scientific Methodology & Credible Sources

Learning objectives.

  • Outline the general scientific method and give an example.
  • Identify and describe the roles of basic elements of experimental design: dependent and independent variables, experimental treatments, positive and negative controls, sample size, and independent replicates.
  • Be able to recognize the elements of experimental design in an example and to create your own experimental design that includes all the relevant elements.
  • Explain the process of scientific peer-review and how to identify potential sources of bias in content found on the internet.

Introduction to Scientific Methodology

[modified from the khan academy ].

A biology investigation usually starts with an observation—that is, something that catches the biologist’s attention. For instance, a cancer biologist might notice that a certain kind of cancer can’t be treated with chemotherapy and wonder why this is the case. A marine ecologist, seeing that the coral reefs of her field sites are bleaching—expelling the algae that live inside them and provide energy resources—might set out to understand why.

How do biologists follow up on these observations? How can  you  follow up on your own observations of the natural world? In this article, we’ll walk through the  scientific method , a logical problem-solving approach used by biologists and many other scientists.

The scientific method

At the core of biology and other sciences lies a problem-solving approach called the scientific method. The  scientific method  has five basic steps, plus one feedback step:

  • Make an observation.
  • Ask a question.
  • Form a  hypothesis , or testable explanation.
  • Make a prediction based on the hypothesis.
  • Test the prediction.
  • Iterate: use the results to make new hypotheses or predictions.

The scientific method is used in all sciences—including chemistry, physics, geology, and psychology. The scientists in these fields ask different questions and perform different tests. However, they use the same core approach to find answers that are logical and supported by evidence.

Scientific method example: Failure to toast

Let’s build some intuition for the scientific method by applying its steps to a practical problem from everyday life.

1. Make an observation.

Let’s suppose that you get two slices of bread, put them into the toaster, and press the button. However, your bread does not toast.

form a hypothesis or testable explanation

2. Ask a question.

Why didn’t my bread get toasted?

form a hypothesis or testable explanation

3. Propose a hypothesis.

A  hypothesis  is a potential answer to the question, one that can somehow be tested and falsified. For example, our hypothesis in this case could be that the toast didn’t toast because the electrical outlet is broken.

form a hypothesis or testable explanation

This hypothesis is not necessarily the right explanation. Instead, it’s a possible explanation that we can test to see if it is likely correct, or if we need to make a new hypothesis.

4. Make predictions.

A prediction is an outcome we’d expect to see if the hypothesis is correct. In this case, we might predict that if the electrical outlet is broken, then plugging the toaster into a different outlet should fix the problem. Predictions are frequently in the form of an If-then statement.

form a hypothesis or testable explanation

5. Test the predictions.

To test the hypothesis, we need to make an observation or perform an experiment associated with the prediction. For instance, in this case, we would plug the toaster into a different outlet and see if it toasts.

form a hypothesis or testable explanation

If the toaster does toast, then the hypothesis is supported, which means it is likely correct.

If the toaster doesn’t toast, then the hypothesis is not supported, which means it is likely wrong.

The results of a test may either support or refute—oppose or contradict—a hypothesis. Results that support a hypothesis can’t conclusively prove that it’s correct, but they do mean it’s likely to be correct. On the other hand, if results contradict a hypothesis, that hypothesis is probably not correct. Unless there was a flaw in the test—a possibility we should always consider—a contradictory result means that we can discard the hypothesis and look for a new one.

6. Iterate.

The last step of the scientific method is to reflect on our results and use them to guide our next steps.

form a hypothesis or testable explanation

If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.

If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there’s a broken wire in the toaster.

In most cases, the scientific method is an  iterative  process. In other words, it’s a cycle rather than a straight line. The result of one go-round becomes feedback that improves the next round of question asking.

How is the scientific method used by biologists?

Quick recap: Biologists and other scientists use the  scientific method to ask questions about the natural world. The scientific method begins with an observation, which leads the scientist to ask a question. They then come up with a hypothesis , a testable explanation that addresses the question.

A hypothesis isn’t necessarily right. Instead, it’s a “best guess,” and the scientist must test it to see if it’s actually correct. Scientists test hypotheses by making predictions: if hypothesis  X  is right, then  Y  should be true. Then, they do experiments or make observations to see if the predictions are correct. If they are, the hypothesis is supported. If they aren’t, it may be time for a new hypothesis.

Hypotheses are tested using controlled experiments

What are the key ingredients of a controlled experiment? To illustrate, let’s consider a simple (even silly) example.

Suppose I decide to grow bean sprouts in my kitchen, near the window. I put bean seeds in a pot with soil, set them on the windowsill, and wait for them to sprout. However, after several weeks, I have no sprouts. Why not? Well…it turns out I forgot to water the seeds. So, I hypothesize that they didn’t sprout due to lack of water.

To test my hypothesis, I do a controlled experiment. In this experiment, I set up two identical pots. Both contain ten bean seeds planted in the same type of soil, and both are placed in the same window. In fact, there is only one thing that I do differently to the two pots:

  • One pot of seeds gets watered every afternoon.
  • The other pot of seeds doesn’t get any water at all.

After a week, nine out of ten seeds in the watered pot have sprouted, while none of the seeds in the dry pot have sprouted. It looks like the “seeds need water” hypothesis is probably correct!

Let’s see how this simple example illustrates the parts of a controlled experiment.

form a hypothesis or testable explanation

Control and experimental groups

There are two groups in the experiment, and they are identical except that one receives a treatment (water) while the other does not. The group that receives the treatment in an experiment (here, the watered pot) is called the  experimental group , while the group that does not receive the treatment (here, the dry pot) is called the  control group . The control group provides a baseline that lets us see if the treatment has an effect. Controls can be positive controls to demonstrate that the process or treatment actually works, or they can be negative controls , where no change should occur during the experiment.

Independent and dependent variables

The factor that is different between the control and experimental groups (in this case, the amount of water) is known as the  independent variable . This variable is independent because it does not depend on what happens in the experiment. Instead, it is something that the experimenter applies or chooses him/herself. Experiments can have more than one independent variable.  

In contrast, the  dependent variable  in an experiment is the response that’s measured to see if the treatment had an effect. In this case, the fraction of bean seeds that sprouted is the dependent variable. The dependent variable (fraction of seeds sprouting)  depends  on the independent variable (the amount of water), and not vice versa.

Experimental  data  (singular:  datum ) are observations made during the experiment. In this case, the data we collected were the number of bean sprouts in each pot after a week.

Variability and repetition

Out of the ten watered bean seeds, only nine came up. What happened to the tenth seed? That seed may have been dead, unhealthy, or just slow to sprout. Especially in biology (which studies complex, living things), there is often variation in the material used for an experiment – here, the bean seeds – that the experimenter cannot see.

Because of this potential for variation, biology experiments need to have a large sample size and, ideally, be repeated several times.  Sample size  refers to the number of individual items tested in an experiment – in this case,  1 0  bean seeds per group. Having more samples and repeating the experiment more times makes it less likely that we will reach a wrong conclusion because of random variation.

In fact, the beans in pots experimental design here has a major flaw. All the beans for each treatment are planted in the same pot. What if there’s an effect of the pot itself, its soil, or its location, that causes the beans in one to germinate better. A better design would be to plant each seed in its own pot, so that each seed is completely independent of the next seed. That independence for each sample is required to correctly use the statistical tests that biologists and other scientists also use to help them distinguish real differences from differences due to random variation (e.g., when comparing experimental and control groups).

Consider this example: A farmer wants to maximize her tomato crop yield and wonders if re-potting her plants in soil with various concentrations of nitrogen:phosphorus ratios will affect growth of tomato plants. After consulting the literature, she hypothesized that fertilizers high in nitrogen will produce fewer tomatoes, and fertilizers high in phosphorus will produce many tomatoes. Use this information to:

  • Identify independent and dependent variables
  • Provide suggestions for independent variable
  • Suggest possible positive and negative controls
  • Sketch a graph for this experiment
  • What are some other variables that could affect the tomato crop? Suggest a follow-up experiment with a research question, hypothesis, independent, dependent, and control variables.

Credible Sources and how to find them

These days, when we have a question, we turn to the internet. Internet search engines like Google can link you to almost any content, and they even filter content based on your past searches, location, and preference settings. However, search engines do not vet content. Determination of whether content is credible is up to the end-user. We are also living in an era where misinformation can be mistaken for fact. How do we know what information to trust?

The process of scientific peer-review is one assurance that scientists place on the reporting of scientific results in scientific journals like Science , Nature , the Proceedings of the National Academy of Science (PNAS), and many hundreds of other journals. In peer review, research is read by anonymous reviewers who are experts in the subject. The reviewers provide feedback and commentary and ultimately provide the journal editor a recommendation to accept, accept with revisions, or decline for this journal. While this process is not flawless, it has a fairly high success rate in catching major issues and problems and improving the quality of the evidence.

In the rare situation when a study has passed through the sieve of peer review and is later found to be deeply flawed, the journal or the authors can choose to take the unusual action to retract the work. Retraction is infrequent but does happen in science, and it is reassuring to know that there are ways to flag problematic work that has slipped through the peer review process. A  prominent example of a retracted study in biology was one linking the MMR vaccine to autism ( https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831678/ ). Some sectors of the public still have misconceptions about supposed linkages between autism and vaccination. The putative autism-vaccination connection is a classic case of how correlation does not imply causation , meaning that just because two events co-occur—the recommended childhood vaccination schedule and the onset of autism symptoms—does not mean that one caused the other.

With the rapid spread of SARS-CoV-2 and the Covid-19 pandemic, the demand for scientific information about the novel coronavirus SARS-CoV-2 outpaced the rate that journals can peer-review and publish scientific research. Many research articles for SARS-CoV-2 have therefore been released as preprints, meaning they have been submitted to a journal for peer-review and eventual publication, but the authors wanted to release the information for immediate use.

In the media, journalists use published and preprint articles, press releases, interviews, and public records requests, and other sources to find source information. They cite their sources when possible and are responsible to their editors for the quality and authenticity of their reporting. Some media sources have better track records than others for unbiased reporting.

Websites and social media posts are places where anyone can post anything and make claims that are or are not supported by evidence.

As the end-users, our job is to find sources supported by evidence, cited ethically, and otherwise credibly presented. We have the responsibility to notice whether an organization is funded or motivated in ways that might generate bias in their content. We have the obligation to cross reference ideas from unvetted sources to help us establish how believable or how credible the source of information is. Science is based in evidence, and we will work this semester to identify and interpret scientific evidence.

  • Search for:

Recent Comments

  • No categories
  • Entries RSS
  • Comments RSS
  • Sites@GeorgiaTech
  • Study Guides
  • Homework Questions

BIO1132SciMethodLab - SPR 24- O

IMAGES

  1. 13 Different Types of Hypothesis (2024)

    form a hypothesis or testable explanation

  2. PPT

    form a hypothesis or testable explanation

  3. PPT

    form a hypothesis or testable explanation

  4. How to Write a Hypothesis

    form a hypothesis or testable explanation

  5. Forming a Good Hypothesis for Scientific Research

    form a hypothesis or testable explanation

  6. How to Write a Hypothesis

    form a hypothesis or testable explanation

VIDEO

  1. Step 1. Form Null Hypothesis (H_0) and Alternative Hypothesis (H_1)

  2. Proportion Hypothesis Testing, example 2

  3. What does hypothesis mean?

  4. HYPOTHESIS AND TESTABLE QUESTION

  5. What is science?

  6. Research Methodology 1, Problem, Hypothesis

COMMENTS

  1. The scientific method (article)

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  2. What Is a Testable Hypothesis?

    Updated on January 12, 2019. A hypothesis is a tentative answer to a scientific question. A testable hypothesis is a hypothesis that can be proved or disproved as a result of testing, data collection, or experience. Only testable hypotheses can be used to conceive and perform an experiment using the scientific method .

  3. What is a scientific hypothesis?

    A scientific hypothesis is a tentative, testable explanation for a phenomenon in the natural world. It's the initial building block in the scientific method.Many describe it as an "educated guess ...

  4. How to Write a Strong Hypothesis

    4. Refine your hypothesis. You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain: The relevant variables; The specific group being studied; The predicted outcome of the experiment or analysis; 5.

  5. Scientific hypothesis

    hypothesis. science. scientific hypothesis, an idea that proposes a tentative explanation about a phenomenon or a narrow set of phenomena observed in the natural world. The two primary features of a scientific hypothesis are falsifiability and testability, which are reflected in an "If…then" statement summarizing the idea and in the ...

  6. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  7. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  8. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  9. Hypothesis

    The hypothesis of Andreas Cellarius, showing the planetary motions in eccentric and epicyclical orbits.. A hypothesis (pl.: hypotheses) is a proposed explanation for a phenomenon.For a hypothesis to be a scientific hypothesis, the scientific method requires that one can test it. Scientists generally base scientific hypotheses on previous observations that cannot satisfactorily be explained ...

  10. What Is a Hypothesis? The Scientific Method

    A hypothesis (plural hypotheses) is a proposed explanation for an observation. The definition depends on the subject. In science, a hypothesis is part of the scientific method. It is a prediction or explanation that is tested by an experiment. Observations and experiments may disprove a scientific hypothesis, but can never entirely prove one.

  11. Scientific Method: Definition and Examples

    A hypothesis is an idea that is suggested as an explanation for a natural event, a particular experience, or a specific condition that can be tested through definable experimentation. It states the purpose of your experiment, the variables used, and the predicted outcome of your experiment. It is important to note that a hypothesis must be ...

  12. The scientific method (article)

    The scientific method. At the core of physics and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  13. 4.14: Experiments and Hypotheses

    A hypothesis is a suggested explanation that is both testable and falsifiable. You must be able to test your hypothesis, and it must be possible to prove your hypothesis true or false. ... but a hypothesis would take a different form: "Having unprotected sex with many partners increases a person's risk for cervical cancer." Before the ...

  14. 4.13: Summary- The Process of Science

    A hypothesis is a tentative explanation for an observation. A scientific theory is a well-tested and consistently verified explanation for a set of observations or phenomena. A scientific law is a description, often in the form of a mathematical formula, of the behavior of an aspect of nature under certain circumstances.

  15. The scientific method (video)

    The scientific method. The scientific method is a logical approach to understanding the world. It starts with an observation, followed by a question. A testable explanation or hypothesis is then created. An experiment is designed to test the hypothesis, and based on the results, the hypothesis is refined.

  16. What Is a Hypothesis?

    A hypothesis, which is a tentative explanation, can lead to a prediction. Predictions forecast the outcome of an experiment but do not include an explanation. Predictions often use if-then statements, just as hypotheses do, but this does not make a prediction a hypothesis. For example, a prediction might take the form of, "If I do [X], then ...

  17. 1.2: Science- Reproducible, Testable, Tentative, Predictive, and

    A hypothesis is a tentative explanation that can be tested by further investigation. A theory is a well-supported explanation of observations. A scientific law is a statement that summarizes the relationship between variables. An experiment is a controlled method of testing a hypothesis.

  18. Scientific Methodology & Credible Sources

    The scientific method. At the core of biology and other sciences lies a problem-solving approach called the scientific method. The scientific method has five basic steps, plus one feedback step: Make an observation. Ask a question. Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis.

  19. Hypotheses vs Hypothesis: Deciding Between Similar Terms

    Hypotheses is the plural form of hypothesis. A hypothesis is a proposed explanation or prediction for a phenomenon that can be tested through experimentation or observation. ... and theories about the topic being studied. A hypothesis must be testable and falsifiable, meaning that it can be proven wrong if the evidence does not support it. For ...

  20. Biology

    Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis. Test the prediction. Iterate: use the results to make new hypotheses or predictions. control group. the group that does not receive the experimental treatment (light-colored mouse in light colored environment)

  21. BIOL STUDY TEST PREP ( Chap 1 2 and 3) Flashcards

    Form a hypothesis, or testable explanation. Make a prediction based on the hypothesis. Test the prediction. use the results to make new hypotheses or predictions. (Chap 1) - Recognize a hypothesis and determine if its valid. It must be possible to prove that the hypothesis is true.

  22. BIO1132SciMethodLab

    Hypothesis: The hypothesis is a tentative explanation about the phenomenon observed. Scientists propose many hypotheses about the world. A hypothesis must be testable. A hypothesis accepted after repeated test becomes part of a theory. Fact: something that has actual existence; an actual occurrence. Proof: something that induces certainty or establishes validity; the cogency of evidence that ...