Stratechi.com

  • What is Strategy?
  • Business Models
  • Developing a Strategy
  • Strategic Planning
  • Competitive Advantage
  • Growth Strategy
  • Market Strategy
  • Customer Strategy
  • Geographic Strategy
  • Product Strategy
  • Service Strategy
  • Pricing Strategy
  • Distribution Strategy
  • Sales Strategy
  • Marketing Strategy
  • Digital Marketing Strategy
  • Organizational Strategy
  • HR Strategy – Organizational Design
  • HR Strategy – Employee Journey & Culture
  • Process Strategy
  • Procurement Strategy
  • Cost and Capital Strategy
  • Business Value
  • Market Analysis
  • Problem Solving Skills
  • Strategic Options
  • Business Analytics
  • Strategic Decision Making
  • Process Improvement
  • Project Planning
  • Team Leadership
  • Personal Development
  • Leadership Maturity Model
  • Leadership Team Strategy
  • The Leadership Team
  • Leadership Mindset
  • Communication & Collaboration
  • Problem Solving
  • Decision Making
  • People Leadership
  • Strategic Execution
  • Executive Coaching
  • Strategy Coaching
  • Business Transformation
  • Strategy Workshops
  • Leadership Strategy Survey
  • Leadership Training
  • Who’s Joe?

“A fact is a simple statement that everyone believes. It is innocent, unless found guilty. A hypothesis is a novel suggestion that no one wants to believe. It is guilty until found effective.”

– Edward Teller, Nuclear Physicist

During my first brainstorming meeting on my first project at McKinsey, this very serious partner, who had a PhD in Physics, looked at me and said, “So, Joe, what are your main hypotheses.” I looked back at him, perplexed, and said, “Ummm, my what?” I was used to people simply asking, “what are your best ideas, opinions, thoughts, etc.” Over time, I began to understand the importance of hypotheses and how it plays an important role in McKinsey’s problem solving of separating ideas and opinions from facts.

What is a Hypothesis?

“Hypothesis” is probably one of the top 5 words used by McKinsey consultants. And, being hypothesis-driven was required to have any success at McKinsey. A hypothesis is an idea or theory, often based on limited data, which is typically the beginning of a thread of further investigation to prove, disprove or improve the hypothesis through facts and empirical data.

The first step in being hypothesis-driven is to focus on the highest potential ideas and theories of how to solve a problem or realize an opportunity.

Let’s go over an example of being hypothesis-driven.

Let’s say you own a website, and you brainstorm ten ideas to improve web traffic, but you don’t have the budget to execute all ten ideas. The first step in being hypothesis-driven is to prioritize the ten ideas based on how much impact you hypothesize they will create.

hypothesis driven example

The second step in being hypothesis-driven is to apply the scientific method to your hypotheses by creating the fact base to prove or disprove your hypothesis, which then allows you to turn your hypothesis into fact and knowledge. Running with our example, you could prove or disprove your hypothesis on the ideas you think will drive the most impact by executing:

1. An analysis of previous research and the performance of the different ideas 2. A survey where customers rank order the ideas 3. An actual test of the ten ideas to create a fact base on click-through rates and cost

While there are many other ways to validate the hypothesis on your prioritization , I find most people do not take this critical step in validating a hypothesis. Instead, they apply bad logic to many important decisions . An idea pops into their head, and then somehow it just becomes a fact.

One of my favorite lousy logic moments was a CEO who stated,

“I’ve never heard our customers talk about price, so the price doesn’t matter with our products , and I’ve decided we’re going to raise prices.”

Luckily, his management team was able to do a survey to dig deeper into the hypothesis that customers weren’t price-sensitive. Well, of course, they were and through the survey, they built a fantastic fact base that proved and disproved many other important hypotheses.

Why is being hypothesis-driven so important?

Imagine if medicine never actually used the scientific method. We would probably still be living in a world of lobotomies and bleeding people. Many organizations are still stuck in the dark ages, having built a house of cards on opinions disguised as facts, because they don’t prove or disprove their hypotheses. Decisions made on top of decisions, made on top of opinions, steer organizations clear of reality and the facts necessary to objectively evolve their strategic understanding and knowledge. I’ve seen too many leadership teams led solely by gut and opinion. The problem with intuition and gut is if you don’t ever prove or disprove if your gut is right or wrong, you’re never going to improve your intuition. There is a reason why being hypothesis-driven is the cornerstone of problem solving at McKinsey and every other top strategy consulting firm.

How do you become hypothesis-driven?

Most people are idea-driven, and constantly have hypotheses on how the world works and what they or their organization should do to improve. Though, there is often a fatal flaw in that many people turn their hypotheses into false facts, without actually finding or creating the facts to prove or disprove their hypotheses. These people aren’t hypothesis-driven; they are gut-driven.

The conversation typically goes something like “doing this discount promotion will increase our profits” or “our customers need to have this feature” or “morale is in the toilet because we don’t pay well, so we need to increase pay.” These should all be hypotheses that need the appropriate fact base, but instead, they become false facts, often leading to unintended results and consequences. In each of these cases, to become hypothesis-driven necessitates a different framing.

• Instead of “doing this discount promotion will increase our profits,” a hypothesis-driven approach is to ask “what are the best marketing ideas to increase our profits?” and then conduct a marketing experiment to see which ideas increase profits the most.

• Instead of “our customers need to have this feature,” ask the question, “what features would our customers value most?” And, then conduct a simple survey having customers rank order the features based on value to them.

• Instead of “morale is in the toilet because we don’t pay well, so we need to increase pay,” conduct a survey asking, “what is the level of morale?” what are potential issues affecting morale?” and what are the best ideas to improve morale?”

Beyond, watching out for just following your gut, here are some of the other best practices in being hypothesis-driven:

Listen to Your Intuition

Your mind has taken the collision of your experiences and everything you’ve learned over the years to create your intuition, which are those ideas that pop into your head and those hunches that come from your gut. Your intuition is your wellspring of hypotheses. So listen to your intuition, build hypotheses from it, and then prove or disprove those hypotheses, which will, in turn, improve your intuition. Intuition without feedback will over time typically evolve into poor intuition, which leads to poor judgment, thinking, and decisions.

Constantly Be Curious

I’m always curious about cause and effect. At Sports Authority, I had a hypothesis that customers that received service and assistance as they shopped, were worth more than customers who didn’t receive assistance from an associate. We figured out how to prove or disprove this hypothesis by tying surveys to transactional data of customers, and we found the hypothesis was true, which led us to a broad initiative around improving service. The key is you have to be always curious about what you think does or will drive value, create hypotheses and then prove or disprove those hypotheses.

Validate Hypotheses

You need to validate and prove or disprove hypotheses. Don’t just chalk up an idea as fact. In most cases, you’re going to have to create a fact base utilizing logic, observation, testing (see the section on Experimentation ), surveys, and analysis.

Be a Learning Organization

The foundation of learning organizations is the testing of and learning from hypotheses. I remember my first strategy internship at Mercer Management Consulting when I spent a good part of the summer combing through the results, findings, and insights of thousands of experiments that a banking client had conducted. It was fascinating to see the vastness and depth of their collective knowledge base. And, in today’s world of knowledge portals, it is so easy to disseminate, learn from, and build upon the knowledge created by companies.

NEXT SECTION: DISAGGREGATION

DOWNLOAD STRATEGY PRESENTATION TEMPLATES

168-PAGE COMPENDIUM OF STRATEGY FRAMEWORKS & TEMPLATES 186-PAGE HR & ORG STRATEGY PRESENTATION 100-PAGE SALES PLAN PRESENTATION 121-PAGE STRATEGIC PLAN & COMPANY OVERVIEW PRESENTATION 114-PAGE MARKET & COMPETITIVE ANALYSIS PRESENTATION 18-PAGE BUSINESS MODEL TEMPLATE

JOE NEWSUM COACHING

EXECUTIVE COACHING STRATEGY COACHING ELEVATE360 BUSINESS TRANSFORMATION STRATEGY WORKSHOPS LEADERSHIP STRATEGY SURVEY & WORKSHOP STRATEGY & LEADERSHIP TRAINING

THE LEADERSHIP MATURITY MODEL

Explore other types of strategy.

BIG PICTURE WHAT IS STRATEGY? BUSINESS MODEL COMP. ADVANTAGE GROWTH

TARGETS MARKET CUSTOMER GEOGRAPHIC

VALUE PROPOSITION PRODUCT SERVICE PRICING

GO TO MARKET DISTRIBUTION SALES MARKETING

ORGANIZATIONAL ORG DESIGN HR & CULTURE PROCESS PARTNER

EXPLORE THE TOP 100 STRATEGIC LEADERSHIP COMPETENCIES

TYPES OF VALUE MARKET ANALYSIS PROBLEM SOLVING

OPTION CREATION ANALYTICS DECISION MAKING PROCESS TOOLS

PLANNING & PROJECTS PEOPLE LEADERSHIP PERSONAL DEVELOPMENT

Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →

LogRocket blog logo

  • Product Management
  • Solve User-Reported Issues
  • Find Issues Faster
  • Optimize Conversion and Adoption

How to write an effective hypothesis

how to create a business hypothesis

Hypothesis validation is the bread and butter of product discovery. Understanding what should be prioritized and why is the most important task of a product manager. It doesn’t matter how well you validate your findings if you’re trying to answer the wrong question.

How To Write An Effective Hypothesis

A question is as good as the answer it can provide. If your hypothesis is well written, but you can’t read its conclusion, it’s a bad hypothesis. Alternatively, if your hypothesis has embedded bias and answers itself, it’s also not going to help you.

There are several different tools available to build hypotheses, and it would be exhaustive to list them all. Apart from being superficial, focusing on the frameworks alone shifts the attention away from the hypothesis itself.

In this article, you will learn what a hypothesis is, the fundamental aspects of a good hypothesis, and what you should expect to get out of one.

The 4 product risks

Mitigating the four product risks is the reason why product managers exist in the first place and it’s where good hypothesis crafting starts.

The four product risks are assessments of everything that could go wrong with your delivery. Our natural thought process is to focus on the happy path at the expense of unknown traps. The risks are a constant reminder that knowing why something won’t work is probably more important than knowing why something might work.

These are the fundamental questions that should fuel your hypothesis creation:

Is it viable for the business?

Is it relevant for the user, can we build it, is it ethical to deliver.

Is this hypothesis the best one to validate now? Is this the most cost-effective initiative we can take? Will this answer help us achieve our goals? How much money can we make from it?

Has the user manifested interest in this solution? Will they be able to use it? Does it solve our users’ challenges? Is it aesthetically pleasing? Is it vital for the user, or just a luxury?

Do we have the resources and know-how to deliver it? Can we scale this solution? How much will it cost? Will it depreciate fast? Is it the best cost-effective solution? Will it deliver on what the user needs?

Is this solution safe both for the user and for the business? Is it inclusive enough? Is there a risk of public opinion whiplash? Is our solution enabling wrongdoers? Are we jeopardizing some to privilege others?

how to create a business hypothesis

Over 200k developers and product managers use LogRocket to create better digital experiences

how to create a business hypothesis

There is an infinite amount of questions that can surface from these risks, and most of those will be context dependent. Your industry, company, marketplace, team composition, and even the type of product you handle will impose different questions, but the risks remain the same.

How to decide whether your hypothesis is worthy of validation

Assuming you came up with a hefty batch of risks to validate, you must now address them. To address a risk, you could do one of three things: collect concrete evidence that you can mitigate that risk, infer possible ways you can mitigate a risk and, finally, deep dive into that risk because you’re not sure about its repercussions.

This three way road can be illustrated by a CSD matrix :

Certainties

Suppositions.

Everything you’re sure can help you to mitigate whatever risk. An example would be, on the risk “how to build it,” assessing if your engineering team is capable of integrating with a certain API. If your team has made it a thousand times in the past, it’s not something worth validating. You can assume it is true and mark this particular risk as solved.

To put it simply, a supposition is something that you think you know, but you’re not sure. This is the most fertile ground to explore hypotheses, since this is the precise type of answer that needs validation. The most common usage of supposition is addressing the “is it relevant for the user” risk. You presume that clients will enjoy a new feature, but before you talk to them, you can’t say you are sure.

Doubts are different from suppositions because they have no answer whatsoever. A doubt is an open question about a risk which you have no clue on how to solve. A product manager that tries to mitigate the “is it ethical to deliver” risk from an industry that they have absolute no familiarity with is poised to generate a lot of doubts, but no suppositions or certainties. Doubts are not good hypothesis sources, since you have no idea on how to validate it.

A hypothesis worth validating comes from a place of uncertainty, not confidence or doubt. If you are sure about a risk mitigation, coming up with a hypothesis to validate it is just a waste of time and resources. Alternatively, trying to come up with a risk assessment for a problem you are clueless about will probably generate hypotheses disconnected with the problem itself.

That said, it’s important to make it clear that suppositions are different from hypotheses. A supposition is merely a mental exercise, creativity executed. A hypothesis is a measurable, cartesian instrument to transform suppositions into certainties, therefore making sure you can mitigate a risk.

How to craft a hypothesis

A good hypothesis comes from a supposed solution to a specific product risk. That alone is good enough to build half of a good hypothesis, but you also need to have measurable confidence.

More great articles from LogRocket:

  • How to implement issue management to improve your product
  • 8 ways to reduce cycle time and build a better product
  • What is a PERT chart and how to make one
  • Discover how to use behavioral analytics to create a great product experience
  • Explore six tried and true product management frameworks you should know
  • Advisory boards aren’t just for executives. Join LogRocket’s Content Advisory Board. You’ll help inform the type of content we create and get access to exclusive meetups, social accreditation, and swag.

You’ll rarely transform a supposition into a certainty without an objective. Returning to the API example we gave when talking about certainties, you know the “can we build it” risk doesn’t need validation because your team has made tens of API integrations before. The “tens” is the quantifiable, measurable indication that gives you the confidence to be sure about mitigating a risk.

What you need from your hypothesis is exactly this quantifiable evidence, the number or hard fact able to give you enough confidence to treat your supposition as a certainty. To achieve that goal, you must come up with a target when creating the hypothesis. A hypothesis without a target can’t be validated, and therefore it’s useless.

Imagine you’re the product manager for an ecommerce app. Your users are predominantly mobile users, and your objective is to increase sales conversions. After some research, you came across the one click check-out experience, made famous by Amazon, but broadly used by ecommerces everywhere.

You know you can build it, but it’s a huge endeavor for your team. You best make sure your bet on one click check-out will work out, otherwise you’ll waste a lot of time and resources on something that won’t be able to influence the sales conversion KPI.

You identify your first risk then: is it valuable to the business?

Literature is abundant on the topic, so you are almost sure that it will bear results, but you’re not sure enough. You only can suppose that implementing the one click functionality will increase sales conversion.

During case study and data exploration, you have reasons to believe that a 30 percent increase of sales conversion is a reasonable target to be achieved. To make sure one click check-out is valuable to the business then, you would have a hypothesis such as this:

We believe that if we implement a one-click checkout on our ecommerce, we can grow our sales conversion by 30 percent

This hypothesis can be played with in all sorts of ways. If you’re trying to improve user-experience, for example, you could make it look something like this:

We believe that if we implement a one-click checkout on our ecommerce, we can reduce the time to conversion by 10 percent

You can also validate different solutions having the same criteria, building an opportunity tree to explore a multitude of hypothesis to find the better one:

We believe that if we implement a user review section on the listing page, we can grow our sales conversion by 30 percent

Sometimes you’re clueless about impact, or maybe any win is a good enough win. In that case, your criteria of validation can be a fact rather than a metric:

We believe that if we implement a one-click checkout on our ecommerce, we can reduce the time to conversion

As long as you are sure of the risk you’re mitigating, the supposition you want to transform into a certainty, and the criteria you’ll use to make that decision, you don’t need to worry so much about “right” or “wrong” when it comes to hypothesis formatting.

That’s why I avoided following up frameworks on this article. You can apply a neat hypothesis design to your product thinking, but if you’re not sure why you’re doing it, you’ll extract nothing out of it.

What comes after a good hypothesis?

The final piece of this puzzle comes after the hypothesis crafting. A hypothesis is only as good as the validation it provides, and that means you have to test it.

If we were to test the first hypothesis we crafted, “we believe that if we implement a one-click checkout on our ecommerce, we can grow our sales conversion by 30 percent,” you could come up with a testing roadmap to build up evidence that would eventually confirm or deny your hypothesis. Some examples of tests are:

A/B testing — Launch a quick and dirty one-click checkout MVP for a controlled group of users and compare their sales conversion rates against a control group. This will provide direct evidence on the effect of the feature on sales conversions

Customer support feedback — Track any inquiries or complaints related to the checkout process. You can use organic user complaints as an indirect measure of latent demand for one-click checkout feature

User survey — Ask why carts were abandoned for a cohort of shoppers that left the checkout step close to completion. Their reasons might indicate the possible success of your hypothesis

Effective hypothesis crafting is at the center of product management. It’s the link between dealing with risks and coming up with solutions that are both viable and valuable. However, it’s important to recognize that the formulation of a hypothesis is just the first step.

The real value of a hypothesis is made possible by rigorous testing. It’s through systematic validation that product managers can transform suppositions into certainties, ensuring the right product decisions are made. Without validation, even the most well-thought-out hypothesis remains unverified.

Featured image source: IconScout

LogRocket generates product insights that lead to meaningful action

Get your teams on the same page — try LogRocket today.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • #product strategy
  • #project management

how to create a business hypothesis

Stop guessing about your digital experience with LogRocket

Recent posts:.

Akash Gupta Leader Spotlight

Leader Spotlight: Empowering analytics and business intelligence teams, with Akash Gupta

Akash Gupta discusses the importance of empowering analytics and business intelligence teams to find “golden nuggets” of insights.

how to create a business hypothesis

What are product lines? Types, examples, and strategies

Product lines are more than just a collection of products. They are a reflection of a company’s strategic vision and market positioning.

how to create a business hypothesis

Leader Spotlight: The impact of macroeconomic trends on product roles, with Lori Edwards

Lori Edwards, Director of Product at Niche, discusses challenges with the transition from an individual contributor to a people manager.

how to create a business hypothesis

Techniques for building rapport in professional settings

Effective rapport fosters trust, facilitates communication, and creates a foundation for successful collaboration and conflict resolution.

how to create a business hypothesis

Leave a Reply Cancel reply

Business Analytics Institute

A Beginner’s Guide to Hypothesis Testing in Business Analytics

  • December 5, 2023
  • Analytics , Statistics

Hypothesis testing is a statistical method used to make decisions about a population based on a sample. It helps business analysts draw conclusions about business metrics and make data-driven decisions. This beginner’s guide will provide an introduction to hypothesis testing and how it is applied in business analytics.

What is a Hypothesis?

A hypothesis is an assumption about a population parameter. It is a tentative statement that proposes a possible relationship between two or more variables.

In statistical terms, a hypothesis is an assertion or conjecture about one or more populations. For example, a business hypothesis could be –

“Our social media advertising results in an increase in sales.”

“Customer ratings of our product have decreased this month compared to last month.”

A hypothesis can be:

  • Null hypothesis (H0) – a statement that there is no difference or no effect.
  • Alternative hypothesis (H1) – a claim about the population that is contradictory to H0.

Hypothesis testing evaluates two mutually exclusive statements (H0 and H1) to determine which statement is best supported by the sample data.

Why Hypothesis Testing is Important in Business

Hypothesis testing allows business analysts to make statistical inferences about a business problem. It is an objective data-driven approach to:

  • Evaluate business metrics against a target value. For example – is the current customer satisfaction score significantly lower than our target of 85%?
  • Compare business metrics across time periods or categories. For example – has website conversion rate increased this month compared to last month?
  • Quantify the impact of business initiatives. For example – did the email marketing campaign result in a significant increase in sales?

Some key benefits of hypothesis testing in business analytics:

  • Supports data-driven decision making with statistical evidence.
  • Helps save costs by making decisions backed by data insights.
  • Enables measurement of success for business initiatives like marketing campaigns, new product launches etc.
  • Provides a structured framework for business metric analysis.
  • Reduces the influence of individual biases in decision making.

By incorporating hypothesis testing in data analysis, businesses can make sound decisions that are supported by statistical evidence.

Steps in Hypothesis Testing

Hypothesis testing involves the following five steps:

1. State the Hypotheses

This involves stating the null and alternate hypotheses. The hypotheses are stated in a way that they are mutually exclusive – if one is true, the other must be false.

Null hypothesis (H0) – represents the status quo, states that there is no effect or no difference.

Alternative hypothesis (H1) – states that there is an effect or a difference.

For example –

H0: The average customer rating this month is the same as last month.

H1: The average customer rating this month is lower than last month.

2. Choose the Significance Level

The significance level (α) is the probability of rejecting H0 when it is actually true. It is the maximum risk we are willing to take in making an incorrect decision.

Typical values are 0.10, 0.05 or 0.01. A lower α indicates lower risk tolerance. For example α = 0.05 indicates only a 5% risk of concluding there is a difference when actually there is none.

3. Select the Sample and Collect Data

The sample should be representative of the population. Data is collected relevant to the hypotheses – for example, customer ratings this month and last month.

4. Analyze the Sample Data

An appropriate statistical test is applied to analyze the sample data. Common tests used are t-tests, z-tests, ANOVA, chi-square etc. The test provides a test statistic that can be compared against critical values to determine statistical significance.

5. Make a Decision

If the test statistic falls in the rejection region, we reject H0 in favor of H1. Otherwise, we fail to reject H0 and conclude there is not enough evidence against it.

The key question is – “Is the sample data unlikely, assuming H0 is true?” If yes, we reject H0.

Types of Hypothesis Tests

There are two main types of hypothesis tests:

1. Parametric Tests

These tests make assumptions about the shape or parameters of the population distribution.

Some examples are:

  • Z-test – Tests a population mean when population standard deviation is known.
  • T-test – Tests a population mean when standard deviation is unknown.
  • F-test – Compares variances from two normal populations.
  • ANOVA – Compares means of two or more populations.

Parametric tests are more powerful as they make use of the distribution characteristics. But the assumptions need to hold true for valid results.

2. Non-parametric Tests

These tests make no assumptions about the exact distribution of the population. They are based on either ranks or frequencies.

  • Chi-square test – Tests if two categorical variables are related.
  • Mann-Whitney U test – Compares medians from two independent groups.
  • Wilcoxon signed-rank test – Compares paired observations or repeated measurements.
  • Kruskal Wallis test – Compares medians from two or more groups.

Non-parametric tests are distribution-free but less powerful than parametric tests. They can be used when assumptions of parametric tests are violated.

The choice of statistical test depends on the hypotheses, data type and other factors.

One-tailed and Two-tailed Hypothesis Tests

Hypothesis tests can be one-tailed or two-tailed:

  • One-tailed test – When H1 specifies a direction. For example: H0: μ = 10 H1: μ > 10 (or μ < 10)
  • Two-tailed test – When H1 simply states ≠, not a specific direction. For example: H0: μ = 10 H1: μ ≠ 10

One-tailed tests have greater power to detect an effect in the specified direction. But we need prior knowledge on the direction of effect for using them.

Two-tailed tests do not assume any direction and are more conservative. They are used when we have no clear prior expectation on the directionality.

Interpreting Hypothesis Test Results

Hypothesis testing results can be interpreted based on:

  • p-value – Probability of obtaining sample results if H0 is true. Small p-value (< α) indicates significant evidence against H0.
  • Confidence intervals – Range of likely values for the population parameter. If it does not contain the H0 value, we reject H0.
  • Test statistic – Standardized value computed from sample data. Compared against critical values to determine statistical significance.
  • Effect size – Quantifies the magnitude or size of effect. Important for interpreting practical significance.

Hypothesis testing indicates whether an effect exists or not. Measures like effect size and confidence intervals provide additional insights on the observed effect.

Common Errors in Hypothesis Testing

Some common errors to watch out for:

  • Having unclear, ambiguous hypotheses.
  • Choosing an inappropriate significance level α.
  • Using the wrong statistical test for data analysis.
  • Interpreting a non-significant result as proof of no effect. Absence of evidence is not evidence of absence.
  • Concluding practical significance from statistical significance. Small p-values don’t always imply practical business impact.
  • Multiple testing without adjustment leading to elevated Type I errors.
  • Stopping data collection prematurely when a significant result is obtained.
  • Overlooking effect sizes, confidence intervals while focusing solely on p-values.

Proper application of hypothesis testing methodology minimizes such errors and improves decision making.

Real-world Example of Hypothesis Testing

Let’s take an example of using hypothesis testing in business analytics:

A retailer wants to test if launching a new ecommerce website has resulted in increased online sales.

The retailer gathers weekly sales data before and after the website launch:

H0: Launching the new website did not increase the average weekly online sales

H1: Launching the new website increased the average weekly online sales

Significance level is chosen as 0.05. Appropriate parametric / non-parametric test is selected based on data. Test results show that the p-value is 0.01, which is less than 0.05.

Therefore, we reject the null hypothesis and conclude that the new website launch has resulted in significantly increased online sales at the 5% significance level.

The analyst also computes a 95% confidence interval for the difference in sales before and after website launch. The retailer uses these insights to make data-backed decisions on marketing budget allocation between traditional and digital channels.

Hypothesis testing provides a formal process for making statistical decisions using sample data. It helps assess business metrics against benchmarks, quantify impact of initiatives and compare performance across time periods or segments. By embedding hypothesis testing in analytics, businesses can derive actionable insights for data-driven decision making.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 15 April 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

Tips to Create and Test a Value Hypothesis: A Step-by-Step Guide

Tips to Create and Test a Value Hypothesis: A Step-by-Step Guide

Rapidr

Developing a robust value hypothesis is crucial as you bring a new product to market, guiding your startup toward answering a genuine market need. Constructing a verifiable value hypothesis anchors your product's development process in customer feedback and data-driven insight rather than assumptions.

This framework enables you to clarify the potential value your product offers and provides a foundation for testing and refining your approach, significantly reducing the risk of misalignment with your target market. To set the stage for success, employ logical structures and objective measures, such as creating a minimum viable product, to effectively validate your product's value proposition.

What Is a Verifiable Value Hypothesis?

A verifiable value hypothesis articulates your belief about how your product will deliver value to customers. It is a testable prediction aimed at demonstrating the expected outcomes for your target market.

To ensure that your value hypothesis is verifiable, it should adhere to the following conditions:

  • Specific : Clearly defines the value proposition and the customer segment.
  • Measurable : Includes metrics by which you can assess success or failure.
  • Achievable : Realistic based on your resources and market conditions.
  • Relevant : Directly addresses a significant customer need or desire.
  • Time-Bound : Has a defined period for testing and validation.

When you create a value hypothesis, you're essentially forming the backbone of your business model. It goes beyond a mere assumption and relies on customer feedback data to inform its development. You also safeguard it with objective measures, such as a minimum viable product, to test the hypothesis in real life.

By articulating and examining a verifiable value hypothesis, you understand your product's potential impact and reduce the risk associated with new product development. It's about making informed decisions that increase your confidence in the product's potential success before committing significant resources.

Value Hypotheses vs. Growth Hypotheses

Value hypotheses and growth hypotheses are two distinct concepts often used in business, especially in the context of startups and product development.

Value Hypotheses : A value hypothesis is centered around the product itself. It focuses on whether the product truly delivers customer value. Key questions include whether the product meets a real need, how it compares to alternatives, and if customers are willing to pay for it. Valuing a value hypothesis is crucial before a business scales its operations.

Growth Hypotheses : A growth hypothesis, on the other hand, deals with the scalability and marketing aspects of the business. It involves strategies and channels used to acquire new customers. The focus is on how to grow the customer base, the cost-effectiveness of growth strategies, and the sustainability of growth. Validating a growth hypothesis is typically the next step after confirming that the product has value to the customers.

In practice, both hypotheses are crucial for the success of a business. A value hypothesis ensures the product is desirable and needed, while a growth hypothesis ensures that the product can reach a larger market effectively.

Tips to Create and Test a Verifiable Value Hypothesis

Creating a value hypothesis is crucial for understanding what drives customer interest in your product. It's an educated guess that requires rigor to define and clarity to test. When developing a value hypothesis, you're attempting to validate assumptions about your product's value to customers. Here are concise tips to help you with this process:

1. Understanding Your Market and Customers

Before formulating a hypothesis, you need a deep understanding of your market and potential customers. You're looking to uncover their pain points and needs which your product aims to address.

Begin with thorough market research and collect customer feedback to ensure your idea is built upon a solid foundation of real-world insights. This understanding is pivotal as it sets the tone for a relevant and testable hypothesis.

  • Define Your Value Proposition Clearly: Articulate your product's value to the user. What problem does it solve? How does it improve the user's life or work?
  • Identify Your Target Audience. Determine who your ideal customers are. Understand their needs, pain points, and how they currently address the problem your product intends to solve.

2. Defining Clear Assumptions

The next step is to outline clear assumptions based on your idea that you believe will bring value to your customers. Each assumption should be an assertion that directly relates to how your customers will find your product valuable.

For example, if your product is a task management app, you might assume that the ability to share task lists with team members is a pain point for your potential customers. Remember, assumptions are not facts—they are educated guesses that need verification.

3. Identify Key Metrics for Your Hypothesis Test

Once you've defined your assumptions, delineate the framework for testing your value hypothesis. This involves designing experiments that validate or invalidate your assumptions with measurable outcomes. Ensure that your hypothesis can be tested with measurable outcomes. This could be in the form of user engagement metrics, conversion rates, or customer satisfaction scores.

Determine what success looks like and define objective metrics that will prove your product's value. This could be user engagement, conversion rates, or revenue. Choosing the right metrics is essential for an accurate test. For instance, in your test, you might measure the increase in customer retention or the decrease in time spent on task organization with your app. Construct your test so that the results are unequivocal and actionable.

4. Construct a Testable Proposition

Formulate your hypothesis in a way that can be tested empirically. Use qualitative research methods such as interviews, surveys, and observation to gather data about your potential users. Formulate your value hypothesis based on insights from this research. Plan experiments that can validate or invalidate your value hypothesis. This might involve A/B testing, user testing sessions, or pilot programs.

A good example is to posit that "Introducing feature X will increase user onboarding by Y%." Avoid complexity by testing one variable simultaneously. This helps you identify which changes are actually making a difference.

5. Applying Evidence to Innovation

When your data indicates a promising avenue for product development , it's imperative that you validate your growth hypothesis through experimentation. Align your value proposition with the evidence at hand.

Develop a simplified version of your product that allows you to test the core value proposition with real users without investing in full-scale production. Start by crafting a minimum viable product ( MVP ) to begin testing in the market. This approach helps mitigate risk by not investing heavily in unproven ideas. Use analytics tools to collect data on how users interact with your MVP. Look for patterns that either support or contradict your value hypothesis.

If the data suggests that your value hypothesis is wrong, be prepared to revise your hypothesis or pivot your product strategy accordingly.

6. Gather Customer Feedback

Integrating customer feedback into your product development process can create a more tailored value proposition. This step is crucial in refining your product to meet user needs and validate your hypotheses.

Use customer feedback tools to collect data on how users interact with your MVP. Look for patterns that either support or contradict your value hypothesis. Here are some ways to collect feedback effectively :

  • Feedback portals
  • User testing sessions
  • In-app feedback
  • Website widgets
  • Direct interviews
  • Focus groups
  • Feedback forums

Create a centralized place for product feedback to keep track of different types of customer feedback and improve SaaS products while listening to their customers. Rapidr helps companies be more customer-centric by consolidating feedback across different apps, prioritizing requests, having a discourse with customers, and closing the feedback loop.

how to create a business hypothesis

7. Analyze and Iterate Quickly

Review the data and analyze customer feedback to see if it supports your hypothesis. If your hypothesis is not supported, iterate on your assumptions, and test again. Keep a detailed record of your hypotheses, experiments, and findings. This documentation will help you understand the evolution of your product and guide future decision-making.

Use the feedback and data from your tests to make quick iterations of your product and drive product development . This allows you to refine your value proposition and improve the fit with your target audience. Engage with your users throughout the process. Real-world feedback is invaluable and can provide insights that data alone cannot.

  • Identify Patterns : What commonalities are present in the feedback?
  • Implement Changes : Prioritize and make adjustments based on customer insights.

how to create a business hypothesis

9. Align with Business Goals and Stay Customer-Focused

Ensure that your value hypothesis aligns with the broader goals of your business. The value provided should ultimately contribute to the success of the company. Remember that the ultimate goal of your value hypothesis is to deliver something that customers find valuable. Maintain a strong focus on customer needs and satisfaction throughout the process.

10. Communicate with Stakeholders and Update them

Keep all stakeholders informed about your findings and the implications for the product. Clear communication helps ensure everyone is aligned and understands the rationale behind product decisions. Communicate and close the feedback loop with the help of a product changelog through which you can ​​announce new changes and engage with customers.

how to create a business hypothesis

Understanding and validating a value hypothesis is essential for any business, particularly startups. It involves deeply exploring whether a product or service meets customer needs and offers real value. This process ensures that resources are invested in desirable and useful products, and it's a critical step before considering scalability and growth.

By focusing on the value hypothesis, businesses can better align their offerings with market demand, leading to more sustainable success. Placing customer feedback at the center of the process of testing a value hypothesis helps you develop a product that meets your customers' needs and stands out in the market.

Rapidr helps companies be more customer-centric by consolidating feedback across different apps, prioritizing requests, having a discourse with customers, and closing the feedback loop.

Build better products with user feedback

Rapidr helps SaaS companies understand what customers need through feedback, prioritize what to build next, inform the roadmap, and notify customers on product releases

Rapidr Blog: Customer Led Development & Building Better Products icon

Hypothesis Testing in Business Analytics – A Beginner’s Guide

img

Introduction  

Organizations must understand how their decisions can impact the business in this data-driven age. Hypothesis testing enables organizations to analyze and examine their decisions’ causes and effects before making important management decisions. Based on research by the Harvard Business School Online, prior to making any decision, organizations like to explore the advantages of hypothesis testing and the investigation of decisions in a proper “laboratory” setting. By performing such tests, organizations can be more confident with their decisions. Read on to learn all about hypothesis testing , o ne of the essential concepts in Business Analytics.  

What Is Hypothesis Testing?  

To learn about hypothesis testing, it is crucial that you first understand what the term hypothesis is.   

A hypothesis statement or hypothesis tries to explain why something happened or what may happen under specific conditions. A hypothesis can also help understand how various variables are connected to each other. These are generally compiled as if-then statements; for example, “If something specific were to happen, then a specific condition will come true and vice versa.” Thus, the hypothesis is an arithmetical method of testing a hypothesis or an assumption that has been stated in the hypothesis.  

Turning into a decision-maker who is driven by data can add several advantages to an organization, such as allowing one to recognize new opportunities to follow and reducing the number of threats. In analytics, a hypothesis is nothing but an assumption or a supposition made about a specific population parameter, such as any measurement or quantity about the population that is set and that can be used as a value to the distribution variable. General examples of parameters used in hypothesis testing are variance and mean. In simpler words, hypothesis testing in business analytics is a method that helps researchers, scientists, or anyone for that matter, test the legitimacy or the authenticity of their hypotheses or claims about real-life or real-world events.  

To understand the example of hypothesis testing in business analytics, consider a restaurant owner interested in learning how adding extra house sauce to their chicken burgers can impact customer satisfaction. Or, you could also consider a social media marketing organization. A hypothesis test can be set up to explain how an increase in labor impacts productivity. Thus, hypothesis testing aims to discover the connection between two or more than two variables in the experimental setting.  

How Does Hypothesis Testing Work?  

Generally, each research begins with a hypothesis; the investigator makes a certain claim and experiments to prove that the claim is false or true. For example, if you claim that students drinking milk before class accomplish tasks better than those who do not, then this is a kind of hypothesis that can be refuted or confirmed using an experiment. There are different kinds of hypotheses. They are:  

  • Simple Hypothesis : Simple hypothesis, also known as a basic hypothesis, proposes that an independent variable is accountable for the corresponding dependent variable. In simpler words, the occurrence of independent variable results in the existence of the dependent variable. Generally, simple hypotheses are thought of as true and they create a causal relationship between the two variables. One example of a simple hypothesis is smoking cigarettes daily leads to cancer.  
  • Complex Hypothesis : This type of hypothesis is also termed a modal. It holds for the relationship between two variables that are independent and result in a dependent variable. This means that the amalgamation of independent variables results in the dependent variables. An example of this kind of hypothesis can be “adults who don’t drink and smoke are less likely to have liver-related problems.  
  • Null Hypothesis : A null hypothesis is created when a researcher thinks that there is no connection between the variables that are being observed. An example of this kind of hypothesis can be “A student’s performance is not impacted if they drink tea or coffee before classes.  
  • Alternative Hypothesis : If a researcher wants to disapprove of a null hypothesis, then the researcher has to develop an opposite assumption—known as an alternative hypothesis. For example, beginning your day with tea instead of coffee can keep you more alert.  
  • Logical Hypothesis: A proposed explanation supported by scant data is called a logical hypothesis. Generally, you wish to test your hypotheses or postulations by converting a logical hypothesis into an empirical hypothesis. For example, waking early helps one to have a productive day.  
  • Empirical Hypothesis : This type of hypothesis is based on real evidence, evidence that is verifiable by observation as opposed to something that is correct in theory or by some kind of reckoning or logic. This kind of hypothesis depends on various variables that can result in specific outcomes. For example, individuals eating more fish can run faster than those eating meat.   
  • Statistical Hypothesis : This kind of hypothesis is most common in systematic investigations that involve a huge target audience. For example, in Louisiana, 45% of students have middle-income parents.  

Four Steps of Hypothesis Testing  

There are four main steps in hypothesis testing in business analytics :  

Step 1: State the Null and Alternate Hypothesis  

After the initial research hypothesis, it is essential to restate it as a null (Ho) hypothesis and an alternate (Ha) hypothesis so that it can be tested mathematically.  

Step 2: Collate Data  

For a test to be valid, it is essential to do some sampling and collate data in a manner designed to test the hypothesis. If your data are not representative, then statistical inferences cannot be made about the population you are trying to analyze.  

Step 3: Perform a Statistical Test  

Various statistical tests are present, but all of them depend on the contrast of within-group variance (how to spread out the data in a group) against between-group variance (how dissimilar the groups are from one another).  

Step 4: Decide to Reject or Accept Your Null Hypothesis  

Based on the result of your statistical test, you need to decide whether you want to accept or reject your null hypothesis.  

Hypothesis Testing in Business   

When we talk about data-driven decision-making, a specific amount of risk can deceive a professional. This could result from flawed observations or thinking inaccurate or incomplete information , or unknown variables. The threat over here is that if key strategic decisions are made on incorrect insights, it can lead to catastrophic outcomes for an organization. The actual importance of hypothesis testing is that it enables professionals to analyze their assumptions and theories before putting them into action. This enables an organization to confirm the accuracy of its analysis before making key decisions.  

Key Considerations for Hypothesis Testing  

Let us look at the following key considerations of hypothesis testing:  

  • Alternative Hypothesis and Null Hypothesis : If a researcher wants to disapprove of a null hypothesis, then the researcher has to develop an opposite assumption—known as an alternative hypothesis. A null hypothesis is created when a researcher thinks that there is no connection between the variables that are being observed.  
  • Significance Level and P-Value : The statistical significance level is generally expressed as a p-value that lies between 0 and 1. The lesser the p-value, the more it suggests that you reject the null hypothesis. A p-value of less than 0.05 (generally ≤ 0.05) is significant statistically.  
  • One-Sided vs. Two-Sided Testing : One-sided tests suggest the possibility of an effect in a single direction only. Two-sided tests test for the likelihood of the effect in two directions—negative and positive. One-sided tests comprise more statistical power to identify an effect in a single direction than a two-sided test with the same significance level and design.   
  • Sampling: For hypothesis testing , you are required to collate a sample of data that has to be examined. In hypothesis testing, an analyst can test a statistical sample with the aim of providing proof of the credibility of the null hypothesis. Statistical analysts can test a hypothesis by examining and measuring a random sample of the population that is being examined.  

Real-World Example of Hypothesis Testing  

The following two examples give a glimpse of the various situations in which hypothesis testing is used in real-world scenarios.  

Example: BioSciences  

Hypothesis tests are frequently used in biological sciences. For example, consider that a biologist is sure that a certain kind of fertilizer will lead to better growth of plants which is at present 10 inches. To test this, the fertilizer is sprayed on the plants in the laboratory for a month. A hypothesis test is then done using the following:  

  • H0: μ = 10 inches (the fertilizer has no effect on the plant growth)  
  • HA: μ > 10 inches (the fertilizer leads to an increase in plant growth)  

Suppose the p-value is lesser than the significance level (e.g., α = .04). In that case, the null hypothesis can be rejected, and it can be concluded that the fertilizer results in increased plant growth.  

Example: Clinical Trials  

Consider an example where a doctor feels that a new medicine can decrease blood sugar in patients. To confirm this, he can measure the sugar of 20 diabetic patients prior to and after administering the new drug for a month. A hypothesis test is then done using the following:  

  • H0: μafter = μbefore (the blood sugar is the same as before and after administering the new drug)  
  • HA: μafter < μbefore (the blood sugar is less after the drug)  

If the p-value is less than the significance level (e.g., α = .04), then the null hypothesis can be rejected, and it can be proven that the new drug leads to reduced blood sugar.  

Conclusion  

Now you are aware of the need for hypotheses in Business Analytics . A hypothesis is not just an assumption— it has to be based on prior knowledge and theories. It also needs to be, which means that you can accept or reject it using scientific research methods (such as observations, experiments, and statistical data analysis). Most genuine Hypothesis testing programs teach you how to use hypothesis testing in real-world scenarios. If you are interested in getting a certificate degree in Integrated Program In Business Analytics , UNext Jigsaw is highly recommended.

 width=

Fill in the details to know more

facebook

PEOPLE ALSO READ

staffing pyramid, Understanding the Staffing Pyramid!

Related Articles

how to create a business hypothesis

Understanding the Staffing Pyramid!

May 15, 2023

 width=

From The Eyes Of Emerging Technologies: IPL Through The Ages

April 29, 2023

img

Understanding HR Terminologies!

April 24, 2023

HR, How Does HR Work in an Organization?

How Does HR Work in an Organization?

Measurment Maturity Model, A Brief Overview: Measurement Maturity Model!

A Brief Overview: Measurement Maturity Model!

April 20, 2023

HR Analytics, HR Analytics: Use Cases and Examples

HR Analytics: Use Cases and Examples

, What Are SOC and NOC In Cyber Security? What&#8217;s the Difference?

What Are SOC and NOC In Cyber Security? What’s the Difference?

February 27, 2023

how to create a business hypothesis

Fundamentals of Confidence Interval in Statistics!

February 26, 2023

how to create a business hypothesis

A Brief Introduction to Cyber Security Analytics

, Cyber Safe Behaviour In Banking Systems

Cyber Safe Behaviour In Banking Systems

February 17, 2023

img

Everything Best Of Analytics for 2023: 7 Must Read Articles!

December 26, 2022

, Best of 2022: 5 Most Popular Cybersecurity Blogs Of The Year

Best of 2022: 5 Most Popular Cybersecurity Blogs Of The Year

December 22, 2022

, 10 Reasons Why Business Analytics Is Important In Digital Age

10 Reasons Why Business Analytics Is Important In Digital Age

February 28, 2023

how to create a business hypothesis

Bivariate Analysis: Beginners Guide | UNext

November 18, 2022

, Everything You Need to Know About Hypothesis Tests: Chi-Square

Everything You Need to Know About Hypothesis Tests: Chi-Square

November 17, 2022

, Everything You Need to Know About Hypothesis Tests: Chi-Square, ANOVA

Everything You Need to Know About Hypothesis Tests: Chi-Square, ANOVA

November 15, 2022

share

Are you ready to build your own career?

arrow

Query? Ask Us

how to create a business hypothesis

Enter Your Details ×

  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

how to create a business hypothesis

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

3 Statistical Analysis Methods You Can Use to Make Business Decisions

Business professionals using statistical analysis methods

  • 15 Dec 2021

Data is a driving force in business. More information is being collected than ever before, which professionals continually seek to leverage for success. Across all business functions, it’s essential to have analytical skills to interpret data and put it to use.

Statistical analysis is the basis for many business analytics approaches. Gaining a firm understanding of different statistical analysis methods is one of the first steps to unlocking the power of business analytics. With this knowledge, you can make sense of data, project future outcomes, and make more informed decisions.

Related: Examples of Business Analytics in Action

Below are three helpful statistical analysis methods that lead to better business decisions.

Access your free e-book today.

Statistical Analysis Methods for Business

1. hypothesis testing.

Hypothesis testing is a statistical method used to substantiate a claim about a population. This is done by formulating and testing two hypotheses: the null hypothesis and the alternative hypothesis.

Related: A Beginner’s Guide to Hypothesis Testing in Business

The null hypothesis (denoted by H₀) is a statement about the issue at hand, generally based on historical data and conventional wisdom. A hypothesis test always starts by assuming the null hypothesis is true and then testing to see if it can be nullified.

The alternative hypothesis (denoted by H₁) represents the theory or assumption being tested and is the opposite of the null hypothesis. If the data effectively nullifies the null hypothesis, then the alternative hypothesis can be substantiated.

In business, hypothesis testing is an effective means of assessing theories and assumptions before acting on them. For managers, leaders, and those looking to become more data-driven, this method of statistical analysis is a helpful decision-making tool. Putting this practice into action can lead to better foresight and positive outcomes when planning a business’s future.

For example, you might conduct a hypothesis test to substantiate that if your company launches a new product line, sales and revenue will increase as a result. Since this initiative would be expensive, your company might launch the product in a small test market and use the data it collects to justify rolling it out on a larger scale.

Hypothesis testing is a complex yet highly valuable statistical method for business. If you want to learn about hypothesis testing in more detail, taking an online statistics or business analytics course can be worthwhile.

2. Single Variable Linear Regression

Linear regression analysis is used for two main purposes: to identify and evaluate the relationship between two variables and forecast a variable based on its relationship to another one.

In single variable linear regression analysis, the relationship between a dependent variable and an independent variable is evaluated by identifying the line of best fit.

To find the line of best fit, use the following equation:

Single Variable Linear Regression Formula

Here, ŷ represents the expected value of the dependent variable for a given value of X, which represents the independent variable. α is equal to the Y-intercept, or the point at which the regression line crosses the Y-axis, when X is equal to zero. β is the slope that equals the average change of the dependent variable (Y) as the independent variable (X) increases by one. Finally, ε is the error term that equals Y – ŷ, or the difference between the actual value of the dependent variable and its expected value.

Using this method, you can forecast a defined variable based on known data.

Consider the relationship between advertising spend and revenue, for example. A business can use historical data relating the advertising dollars spent to the amount of revenue generated for various campaigns or time periods. Using a single variable linear regression analysis, it can use that information to find the line of best fit and subsequently use the slope to forecast revenue for future campaigns.

Business Analytics | Become a data-driven leader | Learn More

3. Multiple Regression

Whereas single variable linear regression analysis studies the relationship between two variables—a dependent variable and an independent variable— multiple regression analysis investigates the relationship between a dependent variable and multiple independent variables.

Forecasting with multiple regression analysis is similar to using single variable linear regression. However, instead of entering only one value for an independent variable, a value is input for each independent variable. Using the same notation as the single variable linear regression equation, the following equation applies to multiple regression:

Multiple Regression Formula

In business, multiple regression analysis is helpful for predicting the outcomes of complicated scenarios. For example, think back to the relationship between advertising spend and revenue. Instead of looking at total advertising expenditures, you can use multiple regression analysis to evaluate how different types of campaigns, such as television, radio, and social media ads, impact revenue.

Credential of Readiness | Master the fundamentals of business | Learn More

Developing Your Analytical Skills

An analytical mindset is essential to business success. After all, data is one of the most valuable resources in today’s world, and knowing how to leverage it can lead to better decision-making and outcomes.

Related: How to Improve Your Analytical Skills

Depending on your current knowledge of statistics and business analytics and long-term goals, there are many options you can pursue to develop your skills. Taking an online course dedicated to honing and applying analytical skills in a professional setting is a great way to get started.

Do you want to leverage the power of data within your organization? Explore our eight-week online course Business Analytics —one of three courses comprising our Credential of Readiness (CORe) program —to learn how to use data analysis to solve business problems.

how to create a business hypothesis

About the Author

Learn How To Write A Hypothesis For Your Next Research Project!

blog image

Undoubtedly, research plays a crucial role in substantiating or refuting our assumptions. These assumptions act as potential answers to our questions. Such assumptions, also known as hypotheses, are considered key aspects of research. In this blog, we delve into the significance of hypotheses. And provide insights on how to write them effectively. So, let’s dive in and explore the art of writing hypotheses together.

Table of Contents

What is a Hypothesis?

A hypothesis is a crucial starting point in scientific research. It is an educated guess about the relationship between two or more variables. In other words, a hypothesis acts as a foundation for a researcher to build their study.

Here are some examples of well-crafted hypotheses:

  • Increased exposure to natural sunlight improves sleep quality in adults.

A positive relationship between natural sunlight exposure and sleep quality in adult individuals.

  • Playing puzzle games on a regular basis enhances problem-solving abilities in children.

Engaging in frequent puzzle gameplay leads to improved problem-solving skills in children.

  • Students and improved learning hecks.

S tudents using online  paper writing service  platforms (as a learning tool for receiving personalized feedback and guidance) will demonstrate improved writing skills. (compared to those who do not utilize such platforms).

  • The use of APA format in research papers. 

Using the  APA format  helps students stay organized when writing research papers. Organized students can focus better on their topics and, as a result, produce better quality work.

The Building Blocks of a Hypothesis

To better understand the concept of a hypothesis, let’s break it down into its basic components:

  • Variables . A hypothesis involves at least two variables. An independent variable and a dependent variable. The independent variable is the one being changed or manipulated, while the dependent variable is the one being measured or observed.
  • Relationship : A hypothesis proposes a relationship or connection between the variables. This could be a cause-and-effect relationship or a correlation between them.
  • Testability : A hypothesis should be testable and falsifiable, meaning it can be proven right or wrong through experimentation or observation.

Types of Hypotheses

When learning how to write a hypothesis, it’s essential to understand its main types. These include; alternative hypotheses and null hypotheses. In the following section, we explore both types of hypotheses with examples. 

Alternative Hypothesis (H1)

This kind of hypothesis suggests a relationship or effect between the variables. It is the main focus of the study. The researcher wants to either prove or disprove it. Many research divides this hypothesis into two subsections: 

  • Directional 

This type of H1 predicts a specific outcome. Many researchers use this hypothesis to explore the relationship between variables rather than the groups. 

  • Non-directional

You can take a guess from the name. This type of H1 does not provide a specific prediction for the research outcome. 

Here are some examples for your better understanding of how to write a hypothesis.

  • Consuming caffeine improves cognitive performance.  (This hypothesis predicts that there is a positive relationship between caffeine consumption and cognitive performance.)
  • Aerobic exercise leads to reduced blood pressure.  (This hypothesis suggests that engaging in aerobic exercise results in lower blood pressure readings.)
  • Exposure to nature reduces stress levels among employees.  (Here, the hypothesis proposes that employees exposed to natural environments will experience decreased stress levels.)
  • Listening to classical music while studying increases memory retention.  (This hypothesis speculates that studying with classical music playing in the background boosts students’ ability to retain information.)
  • Early literacy intervention improves reading skills in children.  (This hypothesis claims that providing early literacy assistance to children results in enhanced reading abilities.)
  • Time management in nursing students. ( Students who use a  nursing research paper writing service  have more time to focus on their studies and can achieve better grades in other subjects. )

Null Hypothesis (H0)

A null hypothesis assumes no relationship or effect between the variables. If the alternative hypothesis is proven to be false, the null hypothesis is considered to be true. Usually a null hypothesis shows no direct correlation between the defined variables. 

Here are some of the examples

  • The consumption of herbal tea has no effect on sleep quality.  (This hypothesis assumes that herbal tea consumption does not impact the quality of sleep.)
  • The number of hours spent playing video games is unrelated to academic performance.  (Here, the null hypothesis suggests that no relationship exists between video gameplay duration and academic achievement.)
  • Implementing flexible work schedules has no influence on employee job satisfaction.  (This hypothesis contends that providing flexible schedules does not affect how satisfied employees are with their jobs.)
  • Writing ability of a 7th grader is not affected by reading editorial example. ( There is no relationship between reading an  editorial example  and improving a 7th grader’s writing abilities.) 
  • The type of lighting in a room does not affect people’s mood.  (In this null hypothesis, there is no connection between the kind of lighting in a room and the mood of those present.)
  • The use of social media during break time does not impact productivity at work.  (This hypothesis proposes that social media usage during breaks has no effect on work productivity.)

As you learn how to write a hypothesis, remember that aiming for clarity, testability, and relevance to your research question is vital. By mastering this skill, you’re well on your way to conducting impactful scientific research. Good luck!

Importance of a Hypothesis in Research

A well-structured hypothesis is a vital part of any research project for several reasons:

  • It provides clear direction for the study by setting its focus and purpose.
  • It outlines expectations of the research, making it easier to measure results.
  • It helps identify any potential limitations in the study, allowing researchers to refine their approach.

In conclusion, a hypothesis plays a fundamental role in the research process. By understanding its concept and constructing a well-thought-out hypothesis, researchers lay the groundwork for a successful, scientifically sound investigation.

How to Write a Hypothesis?

Here are five steps that you can follow to write an effective hypothesis. 

Step 1: Identify Your Research Question

The first step in learning how to compose a hypothesis is to clearly define your research question. This question is the central focus of your study and will help you determine the direction of your hypothesis.

Step 2: Determine the Variables

When exploring how to write a hypothesis, it’s crucial to identify the variables involved in your study. You’ll need at least two variables:

  • Independent variable : The factor you manipulate or change in your experiment.
  • Dependent variable : The outcome or result you observe or measure, which is influenced by the independent variable.

Step 3: Build the Hypothetical Relationship

In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection. This prediction should be specific, testable, and, if possible, expressed in the “If…then” format.

Step 4: Write the Null Hypothesis

When mastering how to write a hypothesis, it’s important to create a null hypothesis as well. The null hypothesis assumes no relationship or effect between the variables, acting as a counterpoint to your primary hypothesis.

Step 5: Review Your Hypothesis

Finally, when learning how to compose a hypothesis, it’s essential to review your hypothesis for clarity, testability, and relevance to your research question. Make any necessary adjustments to ensure it provides a solid basis for your study.

In conclusion, understanding how to write a hypothesis is crucial for conducting successful scientific research. By focusing on your research question and carefully building relationships between variables, you will lay a strong foundation for advancing research and knowledge in your field.

Hypothesis vs. Prediction: What’s the Difference?

Understanding the differences between a hypothesis and a prediction is crucial in scientific research. Often, these terms are used interchangeably, but they have distinct meanings and functions. This segment aims to clarify these differences and explain how to compose a hypothesis correctly, helping you improve the quality of your research projects.

Hypothesis: The Foundation of Your Research

A hypothesis is an educated guess about the relationship between two or more variables. It provides the basis for your research question and is a starting point for an experiment or observational study.

The critical elements for a hypothesis include:

  • Specificity: A clear and concise statement that describes the relationship between variables.
  • Testability: The ability to test the hypothesis through experimentation or observation.

To learn how to write a hypothesis, it’s essential to identify your research question first and then predict the relationship between the variables.

Prediction: The Expected Outcome

A prediction is a statement about a specific outcome you expect to see in your experiment or observational study. It’s derived from the hypothesis and provides a measurable way to test the relationship between variables.

Here’s an example of how to write a hypothesis and a related prediction:

  • Hypothesis: Consuming a high-sugar diet leads to weight gain.
  • Prediction: People who consume a high-sugar diet for six weeks will gain more weight than those who maintain a low-sugar diet during the same period.

Key Differences Between a Hypothesis and a Prediction

While a hypothesis and prediction are both essential components of scientific research, there are some key differences to keep in mind:

  • A hypothesis is an educated guess that suggests a relationship between variables, while a prediction is a specific and measurable outcome based on that hypothesis.
  • A hypothesis can give rise to multiple experiment or observational study predictions.

To conclude, understanding the differences between a hypothesis and a prediction, and learning how to write a hypothesis, are essential steps to form a robust foundation for your research. By creating clear, testable hypotheses along with specific, measurable predictions, you lay the groundwork for scientifically sound investigations.

Here’s a wrap-up for this guide on how to write a hypothesis. We’re confident this article was helpful for many of you. We understand that many students struggle with writing their school research . However, we hope to continue assisting you through our blog tutorial on writing different aspects of academic assignments.

For further information, you can check out our reverent blog or contact our professionals to avail amazing writing services. Paper perk experts tailor assignments to reflect your unique voice and perspectives. Our professionals make sure to stick around till your satisfaction. So what are you waiting for? Pick your required service and order away!

Order Original Papers & Essays

Your First Custom Paper Sample is on Us!

timely deliveries

Timely Deliveries

premium quality

No Plagiarism & AI

unlimited revisions

100% Refund

Try Our Free Paper Writing Service

Related blogs.

blog-img

Connections with Writers and support

safe service

Privacy and Confidentiality Guarantee

quality-score

Average Quality Score

How To Validate Your Business Idea By Testing A Hypothesis!

how to create a business hypothesis

Many business founders start by building products without knowing if the problem they want to solve is something people actually need. After launching a solution to a non-existent problem, they wait for sweet sounds of the cash registers ringing, but all they hear are crickets chirping. Nobody cares!

Turning your idea into a testable hypothesis will help you to validate the problem before wasting time and money building a solution to a problem that might not exist. We will show you how to find out whether your idea is something that people will love, use and even better, pay for.

Fall in Love with the problem, not with the solution! ##

Many entrepreneurs focus on the solution rather than the problem. As soon as they have the first nugget of an idea, they start building it. In their mind’s eye, they’re already imagining their future lives as wealthy business owners, sipping champagne and cruising on the private yacht.

The truth is, the more thoughts, time and resources you invest in your idea, the harder it gets to detach from it if it doesn’t work out. Being completely focused on one item, one solution can cause you to base your decisions on emotions instead of cold, hard facts. If you are unwilling to budge on your solution, you’ll absolutely miss the right time where to change course and pivot.

Every problem has a solution, but not every solution solves a problem.

Solutions are replaceable, but the problem will stay the same. Focusing on the problem you want to solve will keep you from getting blinded by your enthusiasm for a single solution.

The following steps will help you how to create your hypothesis, find your potential customers, and validate your idea.

how to create a business hypothesis

Step 1: Form Your Hypothesis

A hypothesis is a statement, the validity of which needs to be proven under certain conditions. To help you form your own hypothesis, we have divided the origination process into four small parts to give you more detailed information about the purpose and goal of each stage.

a) Who is your customer?

The creation of your hypothesis begins by describing your target audience. Your customers are a group of people with a common pain or need. Picture the people you think have the problem you want to solve. Break your target customers down as precise and focused as possible. Knowing your customer will help you to get a clear picture about what really matters.

"I believe target group…"

b) What is their problem or need?

After targeting your audience, the first part of your core hypotheses is the so-called customer problem hypothesis. Don’t take it too academically - the goal is to prove that the problem or need you assume really exists or not. What is the specific problem this customer group has? Describe it from their point of view. How are customers trying to solve the problem today?

"I believe target grouphas a problem/need achieving this goal because problem/need."

c) How do you want to fix it?

Once you’ve confirmed the existence of the problem you want to solve, it’s time to ascertain your value proposition or problem-solution hypothesis. How do you solve the problem and what is the core benefit for your customer? Remember that you have to validate the customer problem hypothesis first! If there is no problem to your solution, there is no need to take further steps.

"By creating solution we will help target group to benefit."

d) How feasible is it?

If your business idea is feasible or not depends on more factors than just the solution-problem fit. It’s also important to consider your business-model from the beginning. For example, solving the need that people want to get in shape by offering home gym equipment for $1 would definitely create some awareness, but practically you should query this idea.

"We will offer product for pricing. Are you interested?"

Putting it all together, we get a simple pitch for your idea:

"I believe entrepreneurs have the problem to validate their idea business idea because they don’t know how to form a business hypothesis. By sharing our experiences we will help entrepreneurs to avoid wasting time and money by building solutions to non-existing problems. We will offer this article on our blog for free. Are you interested in learning more?"

how to create a business hypothesis

Step 2: Choose a Testing Method

There are several ways to get your hypothesis in front of your audience. Depending on your experiences and business or social networks, you can choose which one makes the most sense for you. We recommend starting with human dialogues, which give you a much better understanding of the first feedback than text-messages or landingpages. We also describe two more scaleable ways to pitch your idea.

Talk to your potential customers

It’s important to start testing if your problem really exists. The easiest way is to simply talk to the target group you described in Step 1. Start by creating a list of 10 people from your network, choosing persons whom you assume having the problem or need. Meet them in a nice, informal setting - over lunch, tea or coffee - while introducing your idea.

Put together a landing page

To get feedback from a broader audience you could set up a landing page. Potential customers who are willing to go through a sign-up process or even pay for your service before there is one, show you exactly how interested they are. Tools like unbounce.com or launchrock.co will help you to create landing pages without any programming skills. You could create ads using Google AdWords or Facebook Advertising to drive targeted traffic to your page. Remember: Your goal is not to get as many sign-ups and email addresses as possible, your goal is to learn more about your customers and the problems they have.

Build a Minimum Viable Product

The final and most important step is to offer your audience the solution they expected. Built a MVP without getting too complex. Find a simple and easy way to deliver your service to your customers. The goal is to find out how good your solution really is. Are they happy with it? Would they use it again or even refer friends to it? Get as much insight as possible. Read more on how to do MVPs right.

how to create a business hypothesis

Step 3: Set a Goal

Before you can start testing your hypothesis, you have to set goals on whether your idea succeeded or not. KISS - which stands for, Keep it Simple, Stupid - should be your guideline here. Let’s say you created a list of 10 people; at least seven of them should prove your hypothesis to be right.

"I expect x number out of y numberof people in the test will behave this way."

Once you have validated the hypothesis with a small group of potential customers, you can scale up the experiments to test it with a broader audience.

how to create a business hypothesis

Step 4: Run the Test & Analyze The Results

If you've completed the set-up, you are ready to run the test. Don’t forget that every element of your hypothesis has to have the potential of failing. Every element needs to be validated.

After you have collected data from potential customers, it’s time to decide if you’ve reached your goals and if your assumptions were right. More often than not, your first idea on how to solve the problem is not correct. Don’t let it get you down, though; after all, it took Thomas Edison hundreds of attempts before he invented the light bulb, and that turned out OK for everyone in the end.

Pivoting your idea is a common element on your way finding market fit. Get back to your interviewees, start asking more questions in detail, and try to figure out how to adapt the feedback to your idea.

If your idea got taken apart and you don’t see how to fix it - keep on going! The next big opportunity will come!

Starting your business by testing your idea first will not only show how valid it is. You’ll also get a solid ground for your further decisions: You now know your customers and what they really want. You are on a good path creating a product that people will love!

Privatsphäre einstellungen

Um die Webseite optimal gestalten und verbessern zu können, verwenden wir Cookies. Diese unterteilen wir in technisch notwendige Cookies und Statistik-Cookies. Genauere Informationen sind in unseren Datenschutzbestimmungen zu finden

Step 1 in the Design Thinking Process: Creating Business Hypothesis

  • Post author: Shashank Dobhal
  • Post category: Blog / Design Thinking / Design Thinking Methodology / Design Thinking Tools / Home

You are currently viewing Step 1 in the Design Thinking Process: Creating Business Hypothesis

Business Hypothesis is the first step of the Design Thinking process . In this step, we empathize with our users and conduct research to develop a better understanding of the stakeholders. The team focusses on the identification of the problem keeping all the assumptions aside. This includes defining the design vision and aligning them with business goals. Post this Stakeholder mapping is done followed by the user persona or archetype creation. This stage is accomplished more effectively with the help of empathy maps.

Why is Business Hypothesis Used?

Business Hypothesis helps us to get to the core of the problem before we move to the customer perspective. Here we gather the design team which includes the major stakeholders including the primary decision-maker(decider). With these stakeholders, we do a series of activities to identify what the real business problem is. Additionally, we try to find out why the activities causing business problems are there. Also, if they are relevant to business activities.

Breakdown of the process

The ultimate goal of a business hypothesis is to get a tangible picture of what the business challenge is. In the process, we need to drop all our existing assumptions and look at things from varied perspectives. For successful execution, we have various tools that elaborate on the Business Hypothesis step. The further break down of the Business Hypothesis Stage involves:

  • Formulating the design vision: We work on formulating a design vision for our product or feature.
  • Identification of the business goals
  • Stakeholder mapping
  • Archetype creation for the stakeholders
  • Business Hypothesis Mapping

Through each of the steps, we are able to get a clear picture of what our hypothesis should be. Designers follow a series of exercises that allow the flow of creativity and flexibility in order to identify all the challenges that the business faces. Evaluation of the business hypothesis by going through each of the aforementioned steps helps us get a clear view of the challenges.

Take away from Business Hypothesis

It is the crucial first stage of the design thinking process. We have been able to get to the core of the problem and want to further get our customer’s perspective on this. By now, we understand the long-term motivation of the business leaders and see how they align with our business goals.

Stakeholders can be external (the ones beyond our control like the customers we want) or internal (the ones that we can control like our employees). The fact that we were able to step in the shoes of our stakeholders and extract information helps us understand what is expected from our product.

External links:

  • Design Thinking process
  •  Design tools: http://www.designkit.org/methods
  • More Networks
  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

how to create a business hypothesis

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

It awesome. It has really positioned me in my research project

Rate this article Cancel Reply

Your email address will not be published.

how to create a business hypothesis

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

how to create a business hypothesis

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

how to create a business hypothesis

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

how to create a business hypothesis

What should universities' stance be on AI tools in research and academic writing?

how to create a business hypothesis

Hypotheses & Experiments

The Hypotheses & Experiments template is the heart of Business Design and helps you to plan your Validate Phase. Learn more about key elements, go through further instructions and download the template for your team.

1. Overview

The Hypotheses & Experiments template can help you reveal critical questions (= exploration ) and hypotheses (= validation ) inherent in your new business model, product, service or software, which are both uncertain and important for the success of the innovation endeavour. These questions and hypotheses often address “antilogs” around technical feasibility, economic viability or future customer behaviour. Moreover, this canvas provides space to plan how to explore or test the questions and hypotheses as efficiently as possible with experiments before or after launch. Do not test ideas! Test hypotheses that your ideas are based on!

Translate only the most important and uncertain antilogs (= test focus) into either a question or a testable hypothesis. This, however, is not an easy task, especially at the beginning of innovation projects. We usually start with explorative questions and high-level hypotheses that are hard to test. Over time, we are eventually able to nail them down to very specific but still relevant statements. Here is an example:

We believe that payment by credit cards will be accepted by the majority of our customers.

Every question or hypothesis needs an experiment in order to be explored or tested. An experiment defines a sequence of actions needed to collect data and measure the threshold: <action><measurement><timeframe>

We integrate credit card payments into our check-out process for X customers and count the usage within the next 3 weeks.

Many experiments require a Prototype (pre launch), whereas some experiments can only be conducted after launching Lean Offerings (post launch).

When validating a hypothesis, we define a threshold that determines when we are convinced that a hypothesis is "true" or "false".

We are convinced, if more than 50% of our customers who ordered products in the given timeframe used credit cards as payment method.

2. Layout & Download

Hypotheses & Experiments

3. Key Elements

This tool is the heart of Business Design !  Here is where the magic happens. Invest as much time in coming up with a good research design as you have invested in designing your actual product, software or business model. Think about your sponsor: The results of your experiments is THE source of wisdom for your sponsor to make decision on whether or not to further invest in the project. Don't fool yourself! Provide your sponsor the right support to make up his / her mind.

Levels of Hypotheses

4. Usage Scenarios

Gathering and prioritizing uncertainties

Defining questions, hypotheses and experiments based on uncertainties

5. Instructions for Coaches

The Hypotheses & Experiments template is a good way to gather all kinds of uncertainties related to the business model.

The key is to identify as many uncertainties as possible and to then sort them by analogs or antilogs. Mark the uncertainties in your business model first.

It cannot be said that antilogs are more important than analogs. Analogs make life easier because one can simply copy from others. However, if only analogs and no antilogs were identified the sprint would stop because no further validation would be needed.

Keep the order to first gather uncertainties, to then sort them by analogs or antilogs and to then sort the antilogs by uncertainty and importance. This is one of the reasons why we use Post-its because we can move them around on the template.

Be really precise how questions or hypotheses are phrased. Beginning every Post-it with "We believe that..." or "We don't know..." is an additional help to reflect whether validation or exploration are the right method.

6. Q & A

What is the difference between "Exploration" and "Validation"? Exploration is a scientific approach of empirical research to gain first insights in a field that is quite new and not understood quite well. Your level of knowledge in this field is low. Explorative research methods help you shed light into the unknown and try to increase your understanding on how things work. Observations of customers, structured interviews, case studies or experimental prototypes are well-proven methods in that space. Validation requires a testable hypothesis that you want to validate (better "falsify"). To phrase a hypothesis, however, you already need deep knowledge in a certain field. Otherwise you will not be able to phrase a hypothesis that eventually can be validated. Surveys or other ways of collecting a vast amount of data with software systems, for instance, are good methods here. 

I always formulate my hypotheses in a way that it is almost impossible to find an experiment to test them. What's wrong? Well, the chance is high that you either don't know enough about the subject and you better explore rather than validate the subject or you are not concrete enough in your thinking. Reduce your scope and boil down your hypotheses (H1) to something more focused (H2 or H3) and try to find a good experiment again. Have a look at the "Levels of Hypotheses"  picture above.

7. Validate Cards

Validate Cards can be used to extract formulated hypotheses from the Hypotheses & Experiments template to plan corresponding experiments in detail and assign team members who are responsible for the execution. The experiment is defined by the method, how you apply it to collect relevant data and how you measure the output of the experiment. Furthermore, a threshold can be defined in terms of "We are convinced if...". This ensures to clarify in advance what result of the experiment is anticipated and how it will be rated. The assigned team member can take the card to do his / her "homework" until the defined due date. Don't forget to plan corresponding activities in the  Action Plan .

how to create a business hypothesis

How to write a research hypothesis

Last updated

19 January 2023

Reviewed by

Miroslav Damyanov

Start with a broad subject matter that excites you, so your curiosity will motivate your work. Conduct a literature search to determine the range of questions already addressed and spot any holes in the existing research.

Narrow the topics that interest you and determine your research question. Rather than focusing on a hole in the research, you might choose to challenge an existing assumption, a process called problematization. You may also find yourself with a short list of questions or related topics.

Use the FINER method to determine the single problem you'll address with your research. FINER stands for:

I nteresting

You need a feasible research question, meaning that there is a way to address the question. You should find it interesting, but so should a larger audience. Rather than repeating research that others have already conducted, your research hypothesis should test something novel or unique. 

The research must fall into accepted ethical parameters as defined by the government of your country and your university or college if you're an academic. You'll also need to come up with a relevant question since your research should provide a contribution to the existing research area.

This process typically narrows your shortlist down to a single problem you'd like to study and the variable you want to test. You're ready to write your hypothesis statements.

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • Types of research hypotheses

It is important to narrow your topic down to one idea before trying to write your research hypothesis. You'll only test one problem at a time. To do this, you'll write two hypotheses – a null hypothesis (H0) and an alternative hypothesis (Ha).

You'll come across many terms related to developing a research hypothesis or referring to a specific type of hypothesis. Let's take a quick look at these terms.

Null hypothesis

The term null hypothesis refers to a research hypothesis type that assumes no statistically significant relationship exists within a set of observations or data. It represents a claim that assumes that any observed relationship is due to chance. Represented as H0, the null represents the conjecture of the research.

Alternative hypothesis

The alternative hypothesis accompanies the null hypothesis. It states that the situation presented in the null hypothesis is false or untrue, and claims an observed effect in your test. This is typically denoted by Ha or H(n), where “n” stands for the number of alternative hypotheses. You can have more than one alternative hypothesis. 

Simple hypothesis

The term simple hypothesis refers to a hypothesis or theory that predicts the relationship between two variables - the independent (predictor) and the dependent (predicted). 

Complex hypothesis

The term complex hypothesis refers to a model – either quantitative (mathematical) or qualitative . A complex hypothesis states the surmised relationship between two or more potentially related variables.

Directional hypothesis

When creating a statistical hypothesis, the directional hypothesis (the null hypothesis) states an assumption regarding one parameter of a population. Some academics call this the “one-sided” hypothesis. The alternative hypothesis indicates whether the researcher tests for a positive or negative effect by including either the greater than (">") or less than ("<") sign.

Non-directional hypothesis

We refer to the alternative hypothesis in a statistical research question as a non-directional hypothesis. It includes the not equal ("≠") sign to show that the research tests whether or not an effect exists without specifying the effect's direction (positive or negative).

Associative hypothesis

The term associative hypothesis assumes a link between two variables but stops short of stating that one variable impacts the other. Academic statistical literature asserts in this sense that correlation does not imply causation. So, although the hypothesis notes the correlation between two variables – the independent and dependent - it does not predict how the two interact.

Logical hypothesis

Typically used in philosophy rather than science, researchers can't test a logical hypothesis because the technology or data set doesn't yet exist. A logical hypothesis uses logic as the basis of its assumptions. 

In some cases, a logical hypothesis can become an empirical hypothesis once technology provides an opportunity for testing. Until that time, the question remains too expensive or complex to address. Note that a logical hypothesis is not a statistical hypothesis.

Empirical hypothesis

When we consider the opposite of a logical hypothesis, we call this an empirical or working hypothesis. This type of hypothesis considers a scientifically measurable question. A researcher can consider and test an empirical hypothesis through replicable tests, observations, and measurements.

Statistical hypothesis

The term statistical hypothesis refers to a test of a theory that uses representative statistical models to test relationships between variables to draw conclusions regarding a large population. This requires an existing large data set, commonly referred to as big data, or implementing a survey to obtain original statistical information to form a data set for the study. 

Testing this type of hypothesis requires the use of random samples. Note that the null and alternative hypotheses are used in statistical hypothesis testing.

Causal hypothesis

The term causal hypothesis refers to a research hypothesis that tests a cause-and-effect relationship. A causal hypothesis is utilized when conducting experimental or quasi-experimental research.

Descriptive hypothesis

The term descriptive hypothesis refers to a research hypothesis used in non-experimental research, specifying an influence in the relationship between two variables.

  • What makes an effective research hypothesis?

An effective research hypothesis offers a clearly defined, specific statement, using simple wording that contains no assumptions or generalizations, and that you can test. A well-written hypothesis should predict the tested relationship and its outcome. It contains zero ambiguity and offers results you can observe and test. 

The research hypothesis should address a question relevant to a research area. Overall, your research hypothesis needs the following essentials:

Hypothesis Essential #1: Specificity & Clarity

Hypothesis Essential #2: Testability (Provability)

  • How to develop a good research hypothesis

In developing your hypothesis statements, you must pre-plan some of your statistical analysis. Once you decide on your problem to examine, determine three aspects:

the parameter you'll test

the test's direction (left-tailed, right-tailed, or non-directional)

the hypothesized parameter value

Any quantitative research includes a hypothesized parameter value of a mean, a proportion, or the difference between two proportions. Here's how to note each parameter:

Single mean (μ)

Paired means (μd)

Single proportion (p)

Difference between two independent means (μ1−μ2)

Difference between two proportions (p1−p2)

Simple linear regression slope (β)

Correlation (ρ)

Defining these parameters and determining whether you want to test the mean, proportion, or differences helps you determine the statistical tests you'll conduct to analyze your data. When writing your hypothesis, you only need to decide which parameter to test and in what overarching way.

The null research hypothesis must include everyday language, in a single sentence, stating the problem you want to solve. Write it as an if-then statement with defined variables. Write an alternative research hypothesis that states the opposite.

  • What is the correct format for writing a hypothesis?

The following example shows the proper format and textual content of a hypothesis. It follows commonly accepted academic standards.

Null hypothesis (H0): High school students who participate in varsity sports as opposed to those who do not, fail to score higher on leadership tests than students who do not participate.

Alternative hypothesis (H1): High school students who play a varsity sport as opposed to those who do not participate in team athletics will score higher on leadership tests than students who do not participate in athletics.

The research question tests the correlation between varsity sports participation and leadership qualities expressed as a score on leadership tests. It compares the population of athletes to non-athletes.

  • What are the five steps of a hypothesis?

Once you decide on the specific problem or question you want to address, you can write your research hypothesis. Use this five-step system to hone your null hypothesis and generate your alternative hypothesis.

Step 1 : Create your research question. This topic should interest and excite you; answering it provides relevant information to an industry or academic area.

Step 2 : Conduct a literature review to gather essential existing research.

Step 3 : Write a clear, strong, simply worded sentence that explains your test parameter, test direction, and hypothesized parameter.

Step 4 : Read it a few times. Have others read it and ask them what they think it means. Refine your statement accordingly until it becomes understandable to everyone. While not everyone can or will comprehend every research study conducted, any person from the general population should be able to read your hypothesis and alternative hypothesis and understand the essential question you want to answer.

Step 5 : Re-write your null hypothesis until it reads simply and understandably. Write your alternative hypothesis.

What is the Red Queen hypothesis?

Some hypotheses are well-known, such as the Red Queen hypothesis. Choose your wording carefully, since you could become like the famed scientist Dr. Leigh Van Valen. In 1973, Dr. Van Valen proposed the Red Queen hypothesis to describe coevolutionary activity, specifically reciprocal evolutionary effects between species to explain extinction rates in the fossil record. 

Essentially, Van Valen theorized that to survive, each species remains in a constant state of adaptation, evolution, and proliferation, and constantly competes for survival alongside other species doing the same. Only by doing this can a species avoid extinction. Van Valen took the hypothesis title from the Lewis Carroll book, "Through the Looking Glass," which contains a key character named the Red Queen who explains to Alice that for all of her running, she's merely running in place.

  • Getting started with your research

In conclusion, once you write your null hypothesis (H0) and an alternative hypothesis (Ha), you’ve essentially authored the elevator pitch of your research. These two one-sentence statements describe your topic in simple, understandable terms that both professionals and laymen can understand. They provide the starting point of your research project.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 5 March 2024

Last updated: 25 November 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

Learn new skills to build your brand or business

  • How-To Video Tutorials: Facebook
  • All Activities

how to create a business hypothesis

Determine the measurement approach

  • By Meta Blueprint
  • Duration 10m
  • Difficulty Intermediate
  • Credential For Completion
  • Rating 1 star 2 stars 3 stars 4 stars 5 stars Average rating: 4.9 10 10 reviews

In this course, we will explore how to formulate a hypothesis and how to select a measurement approach that suits your business needs.

Test variables

Choose a measurement approach, warning: closing this page may affect activity tracking.

This page is used by your activity to communicate with the learning platform. Please be sure to close all activity windows before closing or navigating away from this page.

Return to activity

Did you arrive on this page without seeing a new activity window launch? You may have a pop-up blocker. Check out pop-up blocker tips here.

COMMENTS

  1. A Beginner's Guide to Hypothesis Testing in Business

    3. One-Sided vs. Two-Sided Testing. When it's time to test your hypothesis, it's important to leverage the correct testing method. The two most common hypothesis testing methods are one-sided and two-sided tests, or one-tailed and two-tailed tests, respectively. Typically, you'd leverage a one-sided test when you have a strong conviction ...

  2. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  3. How McKinsey uses Hypotheses in Business & Strategy by McKinsey Alum

    And, being hypothesis-driven was required to have any success at McKinsey. A hypothesis is an idea or theory, often based on limited data, which is typically the beginning of a thread of further investigation to prove, disprove or improve the hypothesis through facts and empirical data. The first step in being hypothesis-driven is to focus on ...

  4. How to write an effective hypothesis

    To make sure one click check-out is valuable to the business then, you would have a hypothesis such as this: We believe that if we implement a one-click checkout on our ecommerce, we can grow our sales conversion by 30 percent. This hypothesis can be played with in all sorts of ways.

  5. Chapter 4

    Even beyond the content of a business hypothesis as depicted in Figure 4.1, it's essential to remember what a business hypothesis is, and how we use it. By definition, a business hypothesis is a ...

  6. A Beginner's Guide to Hypothesis Testing in Business Analytics

    Hypothesis testing evaluates two mutually exclusive statements (H0 and H1) to determine which statement is best supported by the sample data. Why Hypothesis Testing is Important in Business. Hypothesis testing allows business analysts to make statistical inferences about a business problem. It is an objective data-driven approach to:

  7. How to Write a Strong Hypothesis

    Step 5: Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  8. Tips to Create and Test a Value Hypothesis: A Step-by-Step Guide

    When you create a value hypothesis, you're essentially forming the backbone of your business model. It goes beyond a mere assumption and relies on customer feedback data to inform its development. You also safeguard it with objective measures, such as a minimum viable product, to test the hypothesis in real life.

  9. Hypothesis Testing in Business Analytics

    There are four main steps in hypothesis testing in business analytics: Step 1: State the Null and Alternate Hypothesis. After the initial research hypothesis, it is essential to restate it as a null (Ho) hypothesis and an alternate (Ha) hypothesis so that it can be tested mathematically. Step 2: Collate Data.

  10. Hypothesis Testing

    Table of contents. Step 1: State your null and alternate hypothesis. Step 2: Collect data. Step 3: Perform a statistical test. Step 4: Decide whether to reject or fail to reject your null hypothesis. Step 5: Present your findings. Other interesting articles. Frequently asked questions about hypothesis testing.

  11. 3 Statistical Analysis Methods You Can Use to Make Business Decisions

    Statistical Analysis Methods for Business. 1. Hypothesis Testing. Hypothesis testing is a statistical method used to substantiate a claim about a population. This is done by formulating and testing two hypotheses: the null hypothesis and the alternative hypothesis. Related: A Beginner's Guide to Hypothesis Testing in Business.

  12. How to Write a Hypothesis 101: A Step-by-Step Guide

    Step 3: Build the Hypothetical Relationship. In understanding how to compose a hypothesis, constructing the relationship between the variables is key. Based on your research question and variables, predict the expected outcome or connection.

  13. How To Validate Your Business Idea By Testing A Hypothesis!

    Step 3: Set a Goal. Before you can start testing your hypothesis, you have to set goals on whether your idea succeeded or not. KISS - which stands for, Keep it Simple, Stupid - should be your guideline here. Let's say you created a list of 10 people; at least seven of them should prove your hypothesis to be right.

  14. Step 1 in the Design Thinking Process: Creating Business Hypothesis

    The further break down of the Business Hypothesis Stage involves: Formulating the design vision: We work on formulating a design vision for our product or feature. Identification of the business goals. Stakeholder mapping. Archetype creation for the stakeholders. Business Hypothesis Mapping. Through each of the steps, we are able to get a clear ...

  15. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Create a 3-dimensional hypothesis. Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the 'if-then' form. If you use this form, make sure that you state the predefined ...

  16. How to Test Your Business Model Canvas Hypotheses

    This video walks through each section of a business model canvas to describe how to test your hypotheses: - Overview (1:11) -Customer Segment (1:41) - V...

  17. What Is Your Business Model Hypothesis?

    It's time to translate your business idea into a business model hypothesis, which will help you better: Visualize the idea: it will consolidate the problem and the solution under the "Value Proposition", which—with the other 8 components—will bring you a clearer picture of what you're aiming to build. Communicate the idea: once it ...

  18. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem. 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  19. How to create product design hypotheses: a step-by-step guide

    Which brings us to the next step, writing hypotheses. Take all your ideas and turn them into testable hypotheses. Do this by rewriting each idea as a prediction that claims the causes proposed in Step 2 will be overcome, and furthermore that a change will occur to the metrics you outlined in Step 1 (your outcome).

  20. Hypotheses & Experiments

    1. Overview. The Hypotheses & Experiments template can help you reveal critical questions (= exploration) and hypotheses (= validation) inherent in your new business model, product, service or software, which are both uncertain and important for the success of the innovation endeavour.These questions and hypotheses often address "antilogs" around technical feasibility, economic viability ...

  21. How to Write a Research Hypothesis

    A complex hypothesis states the surmised relationship between two or more potentially related variables. Directional hypothesis. When creating a statistical hypothesis, the directional hypothesis (the null hypothesis) states an assumption regarding one parameter of a population. Some academics call this the "one-sided" hypothesis.

  22. How to Create, Analyze and Test Your Business Hypothesis

    Favorites. In this course, we will explore how to formulate a hypothesis and how to select a measurement approach that suits your business needs. Get Started. Lessons. Test variables. 5 m. Choose a measurement approach. 5 m. All Topics.