Elsevier QRcode Wechat

  • Manuscript Preparation

What is the Background of a Study and How Should it be Written?

  • 3 minute read
  • 838.3K views

Table of Contents

The background of a study is one of the most important components of a research paper. The quality of the background determines whether the reader will be interested in the rest of the study. Thus, to ensure that the audience is invested in reading the entire research paper, it is important to write an appealing and effective background. So, what constitutes the background of a study, and how must it be written?

What is the background of a study?

The background of a study is the first section of the paper and establishes the context underlying the research. It contains the rationale, the key problem statement, and a brief overview of research questions that are addressed in the rest of the paper. The background forms the crux of the study because it introduces an unaware audience to the research and its importance in a clear and logical manner. At times, the background may even explore whether the study builds on or refutes findings from previous studies. Any relevant information that the readers need to know before delving into the paper should be made available to them in the background.

How is a background different from the introduction?

The introduction of your research paper is presented before the background. Let’s find out what factors differentiate the background from the introduction.

  • The introduction only contains preliminary data about the research topic and does not state the purpose of the study. On the contrary, the background clarifies the importance of the study in detail.
  • The introduction provides an overview of the research topic from a broader perspective, while the background provides a detailed understanding of the topic.
  • The introduction should end with the mention of the research questions, aims, and objectives of the study. In contrast, the background follows no such format and only provides essential context to the study.

How should one write the background of a research paper?

The length and detail presented in the background varies for different research papers, depending on the complexity and novelty of the research topic. At times, a simple background suffices, even if the study is complex. Before writing and adding details in the background, take a note of these additional points:

  • Start with a strong beginning: Begin the background by defining the research topic and then identify the target audience.
  • Cover key components: Explain all theories, concepts, terms, and ideas that may feel unfamiliar to the target audience thoroughly.
  • Take note of important prerequisites: Go through the relevant literature in detail. Take notes while reading and cite the sources.
  • Maintain a balance: Make sure that the background is focused on important details, but also appeals to a broader audience.
  • Include historical data: Current issues largely originate from historical events or findings. If the research borrows information from a historical context, add relevant data in the background.
  • Explain novelty: If the research study or methodology is unique or novel, provide an explanation that helps to understand the research better.
  • Increase engagement: To make the background engaging, build a story around the central theme of the research

Avoid these mistakes while writing the background:

  • Ambiguity: Don’t be ambiguous. While writing, assume that the reader does not understand any intricate detail about your research.
  • Unrelated themes: Steer clear from topics that are not related to the key aspects of your research topic.
  • Poor organization: Do not place information without a structure. Make sure that the background reads in a chronological manner and organize the sub-sections so that it flows well.

Writing the background for a research paper should not be a daunting task. But directions to go about it can always help. At Elsevier Author Services we provide essential insights on how to write a high quality, appealing, and logically structured paper for publication, beginning with a robust background. For further queries, contact our experts now!

How to Use Tables and Figures effectively in Research Papers

How to Use Tables and Figures effectively in Research Papers

Qualities of Every Good Researcher

  • Research Process

The Top 5 Qualities of Every Good Researcher

You may also like.

impactful introduction section

Make Hook, Line, and Sinker: The Art of Crafting Engaging Introductions

Limitations of a Research

Can Describing Study Limitations Improve the Quality of Your Paper?

Guide to Crafting Impactful Sentences

A Guide to Crafting Shorter, Impactful Sentences in Academic Writing

Write an Excellent Discussion in Your Manuscript

6 Steps to Write an Excellent Discussion in Your Manuscript

How to Write Clear Civil Engineering Papers

How to Write Clear and Crisp Civil Engineering Papers? Here are 5 Key Tips to Consider

how to write background of the study in research pdf

The Clear Path to An Impactful Paper: ②

Essentials of Writing to Communicate Research in Medicine

The Essentials of Writing to Communicate Research in Medicine

There are some recognizable elements and patterns often used for framing engaging sentences in English. Find here the sentence patterns in Academic Writing

Changing Lines: Sentence Patterns in Academic Writing

Input your search keywords and press Enter.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

How to Write an Effective Background of the Study: A Comprehensive Guide

Madalsa

Table of Contents

The background of the study in a research paper offers a clear context, highlighting why the research is essential and the problem it aims to address.

As a researcher, this foundational section is essential for you to chart the course of your study, Moreover, it allows readers to understand the importance and path of your research.

Whether in academic communities or to the general public, a well-articulated background aids in communicating the essence of the research effectively.

While it may seem straightforward, crafting an effective background requires a blend of clarity, precision, and relevance. Therefore, this article aims to be your guide, offering insights into:

  • Understanding the concept of the background of the study.
  • Learning how to craft a compelling background effectively.
  • Identifying and sidestepping common pitfalls in writing the background.
  • Exploring practical examples that bring the theory to life.
  • Enhancing both your writing and reading of academic papers.

Keeping these compelling insights in mind, let's delve deeper into the details of the empirical background of the study, exploring its definition, distinctions, and the art of writing it effectively.

What is the background of the study?

The background of the study is placed at the beginning of a research paper. It provides the context, circumstances, and history that led to the research problem or topic being explored.

It offers readers a snapshot of the existing knowledge on the topic and the reasons that spurred your current research.

When crafting the background of your study, consider the following questions.

  • What's the context of your research?
  • Which previous research will you refer to?
  • Are there any knowledge gaps in the existing relevant literature?
  • How will you justify the need for your current research?
  • Have you concisely presented the research question or problem?

In a typical research paper structure, after presenting the background, the introduction section follows. The introduction delves deeper into the specific objectives of the research and often outlines the structure or main points that the paper will cover.

Together, they create a cohesive starting point, ensuring readers are well-equipped to understand the subsequent sections of the research paper.

While the background of the study and the introduction section of the research manuscript may seem similar and sometimes even overlap, each serves a unique purpose in the research narrative.

Difference between background and introduction

A well-written background of the study and introduction are preliminary sections of a research paper and serve distinct purposes.

Here’s a detailed tabular comparison between the two of them.

What is the relevance of the background of the study?

It is necessary for you to provide your readers with the background of your research. Without this, readers may grapple with questions such as: Why was this specific research topic chosen? What led to this decision? Why is this study relevant? Is it worth their time?

Such uncertainties can deter them from fully engaging with your study, leading to the rejection of your research paper. Additionally, this can diminish its impact in the academic community, and reduce its potential for real-world application or policy influence .

To address these concerns and offer clarity, the background section plays a pivotal role in research papers.

The background of the study in research is important as it:

  • Provides context: It offers readers a clear picture of the existing knowledge, helping them understand where the current research fits in.
  • Highlights relevance: By detailing the reasons for the research, it underscores the study's significance and its potential impact.
  • Guides the narrative: The background shapes the narrative flow of the paper, ensuring a logical progression from what's known to what the research aims to uncover.
  • Enhances engagement: A well-crafted background piques the reader's interest, encouraging them to delve deeper into the research paper.
  • Aids in comprehension: By setting the scenario, it aids readers in better grasping the research objectives, methodologies, and findings.

How to write the background of the study in a research paper?

The journey of presenting a compelling argument begins with the background study. This section holds the power to either captivate or lose the reader's interest.

An effectively written background not only provides context but also sets the tone for the entire research paper. It's the bridge that connects a broad topic to a specific research question, guiding readers through the logic behind the study.

But how does one craft a background of the study that resonates, informs, and engages?

Here, we’ll discuss how to write an impactful background study, ensuring your research stands out and captures the attention it deserves.

Identify the research problem

The first step is to start pinpointing the specific issue or gap you're addressing. This should be a significant and relevant problem in your field.

A well-defined problem is specific, relevant, and significant to your field. It should resonate with both experts and readers.

Here’s more on how to write an effective research problem .

Provide context

Here, you need to provide a broader perspective, illustrating how your research aligns with or contributes to the overarching context or the wider field of study. A comprehensive context is grounded in facts, offers multiple perspectives, and is relatable.

In addition to stating facts, you should weave a story that connects key concepts from the past, present, and potential future research. For instance, consider the following approach.

  • Offer a brief history of the topic, highlighting major milestones or turning points that have shaped the current landscape.
  • Discuss contemporary developments or current trends that provide relevant information to your research problem. This could include technological advancements, policy changes, or shifts in societal attitudes.
  • Highlight the views of different stakeholders. For a topic like sustainable agriculture, this could mean discussing the perspectives of farmers, environmentalists, policymakers, and consumers.
  • If relevant, compare and contrast global trends with local conditions and circumstances. This can offer readers a more holistic understanding of the topic.

Literature review

For this step, you’ll deep dive into the existing literature on the same topic. It's where you explore what scholars, researchers, and experts have already discovered or discussed about your topic.

Conducting a thorough literature review isn't just a recap of past works. To elevate its efficacy, it's essential to analyze the methods, outcomes, and intricacies of prior research work, demonstrating a thorough engagement with the existing body of knowledge.

  • Instead of merely listing past research study, delve into their methodologies, findings, and limitations. Highlight groundbreaking studies and those that had contrasting results.
  • Try to identify patterns. Look for recurring themes or trends in the literature. Are there common conclusions or contentious points?
  • The next step would be to connect the dots. Show how different pieces of research relate to each other. This can help in understanding the evolution of thought on the topic.

By showcasing what's already known, you can better highlight the background of the study in research.

Highlight the research gap

This step involves identifying the unexplored areas or unanswered questions in the existing literature. Your research seeks to address these gaps, providing new insights or answers.

A clear research gap shows you've thoroughly engaged with existing literature and found an area that needs further exploration.

How can you efficiently highlight the research gap?

  • Find the overlooked areas. Point out topics or angles that haven't been adequately addressed.
  • Highlight questions that have emerged due to recent developments or changing circumstances.
  • Identify areas where insights from other fields might be beneficial but haven't been explored yet.

State your objectives

Here, it’s all about laying out your game plan — What do you hope to achieve with your research? You need to mention a clear objective that’s specific, actionable, and directly tied to the research gap.

How to state your objectives?

  • List the primary questions guiding your research.
  • If applicable, state any hypotheses or predictions you aim to test.
  • Specify what you hope to achieve, whether it's new insights, solutions, or methodologies.

Discuss the significance

This step describes your 'why'. Why is your research important? What broader implications does it have?

The significance of “why” should be both theoretical (adding to the existing literature) and practical (having real-world implications).

How do we effectively discuss the significance?

  • Discuss how your research adds to the existing body of knowledge.
  • Highlight how your findings could be applied in real-world scenarios, from policy changes to on-ground practices.
  • Point out how your research could pave the way for further studies or open up new areas of exploration.

Summarize your points

A concise summary acts as a bridge, smoothly transitioning readers from the background to the main body of the paper. This step is a brief recap, ensuring that readers have grasped the foundational concepts.

How to summarize your study?

  • Revisit the key points discussed, from the research problem to its significance.
  • Prepare the reader for the subsequent sections, ensuring they understand the research's direction.

Include examples for better understanding

Research and come up with real-world or hypothetical examples to clarify complex concepts or to illustrate the practical applications of your research. Relevant examples make abstract ideas tangible, aiding comprehension.

How to include an effective example of the background of the study?

  • Use past events or scenarios to explain concepts.
  • Craft potential scenarios to demonstrate the implications of your findings.
  • Use comparisons to simplify complex ideas, making them more relatable.

Crafting a compelling background of the study in research is about striking the right balance between providing essential context, showcasing your comprehensive understanding of the existing literature, and highlighting the unique value of your research .

While writing the background of the study, keep your readers at the forefront of your mind. Every piece of information, every example, and every objective should be geared toward helping them understand and appreciate your research.

How to avoid mistakes in the background of the study in research?

To write a well-crafted background of the study, you should be aware of the following potential research pitfalls .

  • Stay away from ambiguity. Always assume that your reader might not be familiar with intricate details about your topic.
  • Avoid discussing unrelated themes. Stick to what's directly relevant to your research problem.
  • Ensure your background is well-organized. Information should flow logically, making it easy for readers to follow.
  • While it's vital to provide context, avoid overwhelming the reader with excessive details that might not be directly relevant to your research problem.
  • Ensure you've covered the most significant and relevant studies i` n your field. Overlooking key pieces of literature can make your background seem incomplete.
  • Aim for a balanced presentation of facts, and avoid showing overt bias or presenting only one side of an argument.
  • While academic paper often involves specialized terms, ensure they're adequately explained or use simpler alternatives when possible.
  • Every claim or piece of information taken from existing literature should be appropriately cited. Failing to do so can lead to issues of plagiarism.
  • Avoid making the background too lengthy. While thoroughness is appreciated, it should not come at the expense of losing the reader's interest. Maybe prefer to keep it to one-two paragraphs long.
  • Especially in rapidly evolving fields, it's crucial to ensure that your literature review section is up-to-date and includes the latest research.

Example of an effective background of the study

Let's consider a topic: "The Impact of Online Learning on Student Performance." The ideal background of the study section for this topic would be as follows.

In the last decade, the rise of the internet has revolutionized many sectors, including education. Online learning platforms, once a supplementary educational tool, have now become a primary mode of instruction for many institutions worldwide. With the recent global events, such as the COVID-19 pandemic, there has been a rapid shift from traditional classroom learning to online modes, making it imperative to understand its effects on student performance.

Previous studies have explored various facets of online learning, from its accessibility to its flexibility. However, there is a growing need to assess its direct impact on student outcomes. While some educators advocate for its benefits, citing the convenience and vast resources available, others express concerns about potential drawbacks, such as reduced student engagement and the challenges of self-discipline.

This research aims to delve deeper into this debate, evaluating the true impact of online learning on student performance.

Why is this example considered as an effective background section of a research paper?

This background section example effectively sets the context by highlighting the rise of online learning and its increased relevance due to recent global events. It references prior research on the topic, indicating a foundation built on existing knowledge.

By presenting both the potential advantages and concerns of online learning, it establishes a balanced view, leading to the clear purpose of the study: to evaluate the true impact of online learning on student performance.

As we've explored, writing an effective background of the study in research requires clarity, precision, and a keen understanding of both the broader landscape and the specific details of your topic.

From identifying the research problem, providing context, reviewing existing literature to highlighting research gaps and stating objectives, each step is pivotal in shaping the narrative of your research. And while there are best practices to follow, it's equally crucial to be aware of the pitfalls to avoid.

Remember, writing or refining the background of your study is essential to engage your readers, familiarize them with the research context, and set the ground for the insights your research project will unveil.

Drawing from all the important details, insights and guidance shared, you're now in a strong position to craft a background of the study that not only informs but also engages and resonates with your readers.

Now that you've a clear understanding of what the background of the study aims to achieve, the natural progression is to delve into the next crucial component — write an effective introduction section of a research paper. Read here .

Frequently Asked Questions

The background of the study should include a clear context for the research, references to relevant previous studies, identification of knowledge gaps, justification for the current research, a concise overview of the research problem or question, and an indication of the study's significance or potential impact.

The background of the study is written to provide readers with a clear understanding of the context, significance, and rationale behind the research. It offers a snapshot of existing knowledge on the topic, highlights the relevance of the study, and sets the stage for the research questions and objectives. It ensures that readers can grasp the importance of the research and its place within the broader field of study.

The background of the study is a section in a research paper that provides context, circumstances, and history leading to the research problem or topic being explored. It presents existing knowledge on the topic and outlines the reasons that spurred the current research, helping readers understand the research's foundation and its significance in the broader academic landscape.

The number of paragraphs in the background of the study can vary based on the complexity of the topic and the depth of the context required. Typically, it might range from 3 to 5 paragraphs, but in more detailed or complex research papers, it could be longer. The key is to ensure that all relevant information is presented clearly and concisely, without unnecessary repetition.

how to write background of the study in research pdf

You might also like

Cybersecurity in Higher Education: Safeguarding Students and Faculty Data

Cybersecurity in Higher Education: Safeguarding Students and Faculty Data

Leena Jaiswal

How To Write An Argumentative Essay

Monali Ghosh

Beyond Google Scholar: Why SciSpace is the best alternative

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

PROCEDURE FOR WRITING A BACKGROUND STUDY FOR A RESEARCH PAPER - WITH A PRACTICAL EXAMPLE BY DR BENARD LANGO

Profile image of Dr. Benard Lango

2020, DR BENARD LANGO RESEARCH SCHOOL

Many research documents when reviewed wholesomely in most instances fails the background study test as the authors either presume it is a section notes on the research or just a section to ensure is fully written with materials related to the research area. It is important to note that research background study will define the relevance of the study topic and whether its intention to contribute to the area of knowledge is relevant. In order to be able to write background study the study area commonly described by the study topic will be of at most importance. From the topic one should be able to derive the both the independent and dependent variables to be able to follow this structure of writing a background for the study.

Related Papers

Journal of Universal College of Medical Sciences

bishal joshi

INTRODUCTION A research paper is a part of academic writing where there is a gathering of information from different sources. It is multistep process. Selection of title is the most important part of research writing. The title which is interesting should be chosen for the research purpose. All the related information is gathered and the title for research is synthesized. After thorough understanding and developing the title, the preliminary outline is made which maintains the logical path for its exploration. After preliminary research, proper research work is started with collection of previous resources which is then organized and important points are noted. Then research paper is written by referring to outlines, notes, articles, journals and books. The research paper should be well structured containing core parts like introduction, material and methods, results and disscussion and important additional parts like title, abstract, references.

how to write background of the study in research pdf

Sher Singh Bhakar

Organisation of Book: The book is organized into two parts. Part one starts with thinking critically about research, explains what is (and isn’t) research, explains how to properly use research in your writing to make your points, introduces a series of writing exercises designed to help students to think about and write effective research papers. Instead of explaining how to write a single “research paper,” The Process of Research Writing part of the book breaks down the research process into many smaller and easier-to manage parts like what is a research paper, starting steps for writing research papers, writing conceptual understanding and review of literature, referencing including various styles of referencing, writing research methodology and results including interpretations, writing implications and limitations of research and what goes into conclusions. Part two contains sample research articles to demonstrate the application of techniques and methods of writing good resear...

Kevin O'Donnell

Maluk Them John

hakimi baharudin

Jeff Immanuel

evi Mustafidah

Ana Stefanelli

RELATED PAPERS

Ondas Kelvin

Dome Campos

wendi kufrabawa

International Journal of Modern Physics B

yuri yuyali figueroa

2017 IEEE 47th International Symposium on Multiple-Valued Logic (ISMVL)

Miguel Couceiro

Macromolecules

Shiao-Wei Kuo

JOURNAL OF THE ILLUMINATING ENGINEERING INSTITUTE OF JAPAN

Katsunori Okajima

Journal of the American Society for Mass Spectrometry

Ngoc Nhu Tran

Comptes Rendus Biologies

Sadegh Ashkani

DESAFIOS - Revista Interdisciplinar da Universidade Federal do Tocantins

Rodrigo Cavalcanti

Educational Psychology Review

Stephen Pape

Historia y Comunicación Social

Magdalena Mut Camacho

Araceli Pillco

Scripta Metallurgica et Materialia

Indranil Chattoraj

Mario Souza Y Machorro

Ecological Engineering

sanjeev kumar

Contabilidade Vista Revista

José Antonio Gouvêa Galhardo

Cynthia Antonio

Journal of International Development

vivienne forsythe

Journal of Neurochemistry

Consuelo Aguilera

International Journal of Sports Medicine

Olga MOLINERO GONZÁLEZ , José Antonio de Paz

Results in physics

Fatima Zohra Dahou

Seibutsu Butsuri

Atsushi Ikai

Indian journal of neurosurgery

Saurav Sarkar

Edmund Hardy (1852-1904): Eine kommentierte Bibliographie. In: AЯGOS 2 (2), S. 55-73

Krüger, Oliver

See More Documents Like This

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

We Apologise ..... This page cannot be displayed!

  • Check the web address/URL and try again
  • Return to HKU Home Page
  • Visit the University Sitemap
  • E-mail to [email protected] with the attached Event ID 7337960975869145033 of the webpage for further assistance
  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

What is the Background of the Study and How to Write It

how to write background of the study in research pdf

What is the Background of the Study in Research? 

The background of the study is the first section of a research paper and gives context surrounding the research topic. The background explains to the reader where your research journey started, why you got interested in the topic, and how you developed the research question that you will later specify. That means that you first establish the context of the research you did with a general overview of the field or topic and then present the key issues that drove your decision to study the specific problem you chose.

Once the reader understands where you are coming from and why there was indeed a need for the research you are going to present in the following—because there was a gap in the current research, or because there is an obvious problem with a currently used process or technology—you can proceed with the formulation of your research question and summarize how you are going to address it in the rest of your manuscript.

Why is the Background of the Study Important?

No matter how surprising and important the findings of your study are, if you do not provide the reader with the necessary background information and context, they will not be able to understand your reasons for studying the specific problem you chose and why you think your study is relevant. And more importantly, an editor who does not share your enthusiasm for your work (because you did not fill them in on all the important details) will very probably not even consider your manuscript worthy of their and the reviewers’ time and will immediately send it back to you.

To avoid such desk rejections , you need to make sure you pique the reader’s interest and help them understand the contribution of your work to the specific field you study, the more general research community, or the public. Introducing the study background is crucial to setting the scene for your readers.

Table of Contents:

  • What is “Background Information” in a Research Paper?
  • What Should the Background of a Research Paper Include?
  • Where Does the Background Section Go in Your Paper?

background of the study, brick wall

Background of the Study Structure

Before writing your study background, it is essential to understand what to include. The following elements should all be included in the background and are presented in greater detail in the next section:

  • A general overview of the topic and why it is important (overlaps with establishing the “importance of the topic” in the Introduction)
  • The current state of the research on the topic or on related topics in the field
  • Controversies about current knowledge or specific past studies that undergird your research methodology
  • Any claims or assumptions that have been made by researchers, institutions, or politicians that might need to be clarified
  • Methods and techniques used in the study or from which your study deviated in some way

Presenting the Study Background

As you begin introducing your background, you first need to provide a general overview and include the main issues concerning the topic. Depending on whether you do “basic” (with the aim of providing further knowledge) or “applied” research (to establish new techniques, processes, or products), this is either a literature review that summarizes all relevant earlier studies in the field or a description of the process (e.g., vote counting) or practice (e.g., diagnosis of a specific disease) that you think is problematic or lacking and needs a solution.

Example s of a general overview

If you study the function of a Drosophila gene, for example, you can explain to the reader why and for whom the study of fly genetics is relevant, what is already known and established, and where you see gaps in the existing literature. If you investigated how the way universities have transitioned into online teaching since the beginning of the Covid-19 pandemic has affected students’ learning progress, then you need to present a summary of what changes have happened around the world, what the effects of those changes have been so far, and where you see problems that need to be addressed. Note that you need to provide sources for every statement and every claim you make here, to establish a solid foundation of knowledge for your own study. 

Describing the current state of knowledge

When the reader understands the main issue(s), you need to fill them in more specifically on the current state of the field (in basic research) or the process/practice/product use you describe (in practical/applied research). Cite all relevant studies that have already reported on the Drosophila gene you are interested in, have failed to reveal certain functions of it, or have suggested that it might be involved in more processes than we know so far. Or list the reports from the education ministries of the countries you are interested in and highlight the data that shows the need for research into the effects of the Corona-19 pandemic on teaching and learning.

Discussing controversies, claims, and assumptions

Are there controversies regarding your topic of interest that need to be mentioned and/or addressed? For example, if your research topic involves an issue that is politically hot, you can acknowledge this here. Have any earlier claims or assumptions been made, by other researchers, institutions, or politicians, that you think need to be clarified?

Mentioning methodologies and approaches

While putting together these details, you also need to mention methodologies : What methods/techniques have been used so far to study what you studied and why are you going to either use the same or a different approach? Are any of the methods included in the literature review flawed in such a way that your study takes specific measures to correct or update? While you shouldn’t spend too much time here justifying your methods (this can be summarized briefly in the rationale of the study at the end of the Introduction and later in the Discussion section), you can engage with the crucial methods applied in previous studies here first.

When you have established the background of the study of your research paper in such a logical way, then the reader should have had no problem following you from the more general information you introduced first to the specific details you added later. You can now easily lead over to the relevance of your research, explain how your work fits into the bigger picture, and specify the aims and objectives of your study. This latter part is usually considered the “ statement of the problem ” of your study. Without a solid research paper background, this statement will come out of nowhere for the reader and very probably raise more questions than you were planning to answer.   

Where does the study background section go in a paper?

Unless you write a research proposal or some kind of report that has a specific “Background” chapter, the background of your study is the first part of your introduction section . This is where you put your work in context and provide all the relevant information the reader needs to follow your rationale. Make sure your background has a logical structure and naturally leads into the statement of the problem at the very end of the introduction so that you bring everything together for the reader to judge the relevance of your work and the validity of your approach before they dig deeper into the details of your study in the methods section .

Consider Receiving Professional Editing Services

Now that you know how to write a background section for a research paper, you might be interested in our AI text editor at Wordvice AI. And be sure to receive professional editing services , including academic editing and proofreading , before submitting your manuscript to journals. On the Wordvice academic resources website, you can also find many more articles and other resources that can help you with writing the other parts of your research paper , with making a research paper outline before you put everything together, or with writing an effective cover letter once you are ready to submit.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

Writing a Research Paper Introduction | Step-by-Step Guide

Published on September 24, 2022 by Jack Caulfield . Revised on March 27, 2023.

Writing a Research Paper Introduction

The introduction to a research paper is where you set up your topic and approach for the reader. It has several key goals:

  • Present your topic and get the reader interested
  • Provide background or summarize existing research
  • Position your own approach
  • Detail your specific research problem and problem statement
  • Give an overview of the paper’s structure

The introduction looks slightly different depending on whether your paper presents the results of original empirical research or constructs an argument by engaging with a variety of sources.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Step 1: introduce your topic, step 2: describe the background, step 3: establish your research problem, step 4: specify your objective(s), step 5: map out your paper, research paper introduction examples, frequently asked questions about the research paper introduction.

The first job of the introduction is to tell the reader what your topic is and why it’s interesting or important. This is generally accomplished with a strong opening hook.

The hook is a striking opening sentence that clearly conveys the relevance of your topic. Think of an interesting fact or statistic, a strong statement, a question, or a brief anecdote that will get the reader wondering about your topic.

For example, the following could be an effective hook for an argumentative paper about the environmental impact of cattle farming:

A more empirical paper investigating the relationship of Instagram use with body image issues in adolescent girls might use the following hook:

Don’t feel that your hook necessarily has to be deeply impressive or creative. Clarity and relevance are still more important than catchiness. The key thing is to guide the reader into your topic and situate your ideas.

Prevent plagiarism. Run a free check.

This part of the introduction differs depending on what approach your paper is taking.

In a more argumentative paper, you’ll explore some general background here. In a more empirical paper, this is the place to review previous research and establish how yours fits in.

Argumentative paper: Background information

After you’ve caught your reader’s attention, specify a bit more, providing context and narrowing down your topic.

Provide only the most relevant background information. The introduction isn’t the place to get too in-depth; if more background is essential to your paper, it can appear in the body .

Empirical paper: Describing previous research

For a paper describing original research, you’ll instead provide an overview of the most relevant research that has already been conducted. This is a sort of miniature literature review —a sketch of the current state of research into your topic, boiled down to a few sentences.

This should be informed by genuine engagement with the literature. Your search can be less extensive than in a full literature review, but a clear sense of the relevant research is crucial to inform your own work.

Begin by establishing the kinds of research that have been done, and end with limitations or gaps in the research that you intend to respond to.

The next step is to clarify how your own research fits in and what problem it addresses.

Argumentative paper: Emphasize importance

In an argumentative research paper, you can simply state the problem you intend to discuss, and what is original or important about your argument.

Empirical paper: Relate to the literature

In an empirical research paper, try to lead into the problem on the basis of your discussion of the literature. Think in terms of these questions:

  • What research gap is your work intended to fill?
  • What limitations in previous work does it address?
  • What contribution to knowledge does it make?

You can make the connection between your problem and the existing research using phrases like the following.

Now you’ll get into the specifics of what you intend to find out or express in your research paper.

The way you frame your research objectives varies. An argumentative paper presents a thesis statement, while an empirical paper generally poses a research question (sometimes with a hypothesis as to the answer).

Argumentative paper: Thesis statement

The thesis statement expresses the position that the rest of the paper will present evidence and arguments for. It can be presented in one or two sentences, and should state your position clearly and directly, without providing specific arguments for it at this point.

Empirical paper: Research question and hypothesis

The research question is the question you want to answer in an empirical research paper.

Present your research question clearly and directly, with a minimum of discussion at this point. The rest of the paper will be taken up with discussing and investigating this question; here you just need to express it.

A research question can be framed either directly or indirectly.

  • This study set out to answer the following question: What effects does daily use of Instagram have on the prevalence of body image issues among adolescent girls?
  • We investigated the effects of daily Instagram use on the prevalence of body image issues among adolescent girls.

If your research involved testing hypotheses , these should be stated along with your research question. They are usually presented in the past tense, since the hypothesis will already have been tested by the time you are writing up your paper.

For example, the following hypothesis might respond to the research question above:

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

how to write background of the study in research pdf

The final part of the introduction is often dedicated to a brief overview of the rest of the paper.

In a paper structured using the standard scientific “introduction, methods, results, discussion” format, this isn’t always necessary. But if your paper is structured in a less predictable way, it’s important to describe the shape of it for the reader.

If included, the overview should be concise, direct, and written in the present tense.

  • This paper will first discuss several examples of survey-based research into adolescent social media use, then will go on to …
  • This paper first discusses several examples of survey-based research into adolescent social media use, then goes on to …

Full examples of research paper introductions are shown in the tabs below: one for an argumentative paper, the other for an empirical paper.

  • Argumentative paper
  • Empirical paper

Are cows responsible for climate change? A recent study (RIVM, 2019) shows that cattle farmers account for two thirds of agricultural nitrogen emissions in the Netherlands. These emissions result from nitrogen in manure, which can degrade into ammonia and enter the atmosphere. The study’s calculations show that agriculture is the main source of nitrogen pollution, accounting for 46% of the country’s total emissions. By comparison, road traffic and households are responsible for 6.1% each, the industrial sector for 1%. While efforts are being made to mitigate these emissions, policymakers are reluctant to reckon with the scale of the problem. The approach presented here is a radical one, but commensurate with the issue. This paper argues that the Dutch government must stimulate and subsidize livestock farmers, especially cattle farmers, to transition to sustainable vegetable farming. It first establishes the inadequacy of current mitigation measures, then discusses the various advantages of the results proposed, and finally addresses potential objections to the plan on economic grounds.

The rise of social media has been accompanied by a sharp increase in the prevalence of body image issues among women and girls. This correlation has received significant academic attention: Various empirical studies have been conducted into Facebook usage among adolescent girls (Tiggermann & Slater, 2013; Meier & Gray, 2014). These studies have consistently found that the visual and interactive aspects of the platform have the greatest influence on body image issues. Despite this, highly visual social media (HVSM) such as Instagram have yet to be robustly researched. This paper sets out to address this research gap. We investigated the effects of daily Instagram use on the prevalence of body image issues among adolescent girls. It was hypothesized that daily Instagram use would be associated with an increase in body image concerns and a decrease in self-esteem ratings.

The introduction of a research paper includes several key elements:

  • A hook to catch the reader’s interest
  • Relevant background on the topic
  • Details of your research problem

and your problem statement

  • A thesis statement or research question
  • Sometimes an overview of the paper

Don’t feel that you have to write the introduction first. The introduction is often one of the last parts of the research paper you’ll write, along with the conclusion.

This is because it can be easier to introduce your paper once you’ve already written the body ; you may not have the clearest idea of your arguments until you’ve written them, and things can change during the writing process .

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis —a prediction that will be confirmed or disproved by your research.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Caulfield, J. (2023, March 27). Writing a Research Paper Introduction | Step-by-Step Guide. Scribbr. Retrieved March 28, 2024, from https://www.scribbr.com/research-paper/research-paper-introduction/

Is this article helpful?

Jack Caulfield

Jack Caulfield

Other students also liked, writing strong research questions | criteria & examples, writing a research paper conclusion | step-by-step guide, research paper format | apa, mla, & chicago templates, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

PHILO-notes

Free Online Learning Materials

How to Write the Background of the Study in Research (Part 1)

Background of the Study in Research: Definition and the Core Elements it Contains

Before we embark on a detailed discussion on how to write the background of the study of your proposed research or thesis, it is important to first discuss its meaning and the core elements that it should contain. This is obviously because understanding the nature of the background of the study in research and knowing exactly what to include in it allow us to have both greater control and clear direction of the writing process.

So, what really is the background of the study and what are the core elements that it should contain?

The background of the study, which usually forms the first section of the introduction to a research paper or thesis, provides the overview of the study. In other words, it is that section of the research paper or thesis that establishes the context of the study. Its main function is to explain why the proposed research is important and essential to understanding the main aspects of the study.

The background of the study, therefore, is the section of the research paper or thesis that identifies the problem or gap of the study that needs to addressed and justifies the need for conducting the study. It also articulates the main goal of the study and the thesis statement, that is, the main claim or argument of the paper.

Given this brief understanding of the background of the study, we can anticipate what readers or thesis committee members expect from it. As we can see, the background of the study should contain the following major points:

1) brief discussion on what is known about the topic under investigation; 2) An articulation of the research gap or problem that needs to be addressed; 3) What the researcher would like to do or aim to achieve in the study ( research goal); 4) The thesis statement, that is, the main argument or contention of the paper (which also serves as the reason why the researcher would want to pursue the study); 5) The major significance or contribution of the study to a particular discipline; and 6) Depending on the nature of the study, an articulation of the hypothesis of the study.

Thus, when writing the background of the study, you should plan and structure it based on the major points just mentioned. With this, you will have a clear picture of the flow of the tasks that need to be completed in writing this section of your research or thesis proposal.

Now, how do you go about writing the background of the study in your proposed research or thesis?

The next lessons will address this question.

How to Write the Opening Paragraphs of the Background of the Study?

To begin with, let us assume that you already have conducted a preliminary research on your chosen topic, that is, you already have read a lot of literature and gathered relevant information for writing the background of your study. Let us also assume that you already have identified the gap of your proposed research and have already developed the research questions and thesis statement. If you have not yet identified the gap in your proposed research, you might as well go back to our lesson on how to identify a research gap.

So, we will just put together everything that you have researched into a background of the study (assuming, again, that you already have the necessary information). But in this lesson, let’s just focus on writing the opening paragraphs.

It is important to note at this point that there are different styles of writing the background of the study. Hence, what I will be sharing with you here is not just “the” only way of writing the background of the study. As a matter of fact, there is no “one-size-fits-all” style of writing this part of the research or thesis. At the end of the day, you are free to develop your own. However, whatever style it would be, it always starts with a plan which structures the writing process into stages or steps. The steps that I will share with below are just some of the most effective ways of writing the background of the study in research.

So, let’s begin.

It is always a good idea to begin the background of your study by giving an overview of your research topic. This may include providing a definition of the key concepts of your research or highlighting the main developments of the research topic.

Let us suppose that the topic of your study is the “lived experiences of students with mathematical anxiety”.

Here, you may start the background of your study with a discussion on the meaning, nature, and dynamics of the term “mathematical anxiety”. The reason for this is too obvious: “mathematical anxiety” is a highly technical term that is specific to mathematics. Hence, this term is not readily understandable to non-specialists in this field.

So, you may write the opening paragraph of your background of the study with this:

“Mathematical anxiety refers to the individual’s unpleasant emotional mood responses when confronted with a mathematical situation.”

Since you do not invent the definition of the term “mathematical anxiety”, then you need to provide a citation to the source of the material from which you are quoting. For example, you may now say:

“Mathematical anxiety refers to the individual’s unpleasant emotional mood responses when confronted with a mathematical situation (Eliot, 2020).”

And then you may proceed with the discussion on the nature and dynamics of the term “mathematical anxiety”. You may say:

“Lou (2019) specifically identifies some of the manifestations of this type of anxiety, which include, but not limited to, depression, helplessness, nervousness and fearfulness in doing mathematical and numerical tasks.”

After explaining to your readers the meaning, nature, and dynamics (as well as some historical development if you wish to) of the term “mathematical anxiety”, you may now proceed to showing the problem or gap of the study. As you may already know, the research gap is the problem that needs to be addressed in the study. This is important because no research activity is possible without the research gap.

Let us suppose that your research problem or gap is: “Mathematical anxiety can negatively affect not just the academic achievement of the students but also their future career plans and total well-being. Also, there are no known studies that deal with the mathematical anxiety of junior high school students in New Zealand.” With this, you may say:

“If left unchecked, as Shapiro (2019) claims, this problem will expand and create a total avoidance pattern on the part of the students, which can be expressed most visibly in the form of cutting classes and habitual absenteeism. As we can see, this will negatively affect the performance of students in mathematics. In fact, the study conducted by Luttenberger and Wimmer (2018) revealed that the outcomes of mathematical anxiety do not only negatively affect the students’ performance in math-related situations but also their future career as professionals. Without a doubt, therefore, mathematical anxiety is a recurring problem for many individuals which will negatively affect the academic success and future career of the student.”

Now that you already have both explained the meaning, nature, and dynamics of the term “mathematical anxiety” and articulated the gap of your proposed research, you may now state the main goal of your study. You may say:

“Hence, it is precisely in this context that the researcher aims to determine the lived experiences of those students with mathematical anxiety. In particular, this proposed thesis aims to determine the lived experiences of the junior high school students in New Zealand and identify the factors that caused them to become disinterested in mathematics.”

Please note that you should not end the first paragraph of your background of the study with the articulation of the research goal. You also need to articulate the “thesis statement”, which usually comes after the research goal. As is well known, the thesis statement is the statement of your argument or contention in the study. It is more of a personal argument or claim of the researcher, which specifically highlights the possible contribution of the study. For example, you may say:

“The researcher argues that there is a need to determine the lived experiences of these students with mathematical anxiety because knowing and understanding the difficulties and challenges that they have encountered will put the researcher in the best position to offer some alternatives to the problem. Indeed, it is only when we have performed some kind of a ‘diagnosis’ that we can offer practicable solutions to the problem. And in the case of the junior high school students in New Zealand who are having mathematical anxiety, determining their lived experiences as well as identifying the factors that caused them to become disinterested in mathematics are the very first steps in addressing the problem.”

If we combine the bits and pieces that we have written above, we can now come up with the opening paragraphs of your background of the study, which reads:

how to write background of the study in research pdf

As we can see, we can find in the first paragraph 5 essential elements that must be articulated in the background of the study, namely:

1) A brief discussion on what is known about the topic under investigation; 2) An articulation of the research gap or problem that needs to be addressed; 3) What the researcher would like to do or aim to achieve in the study (research goal); 4) The thesis statement , that is, the main argument or claim of the paper; and 5) The major significance or contribution of the study to a particular discipline. So, that’s how you write the opening paragraphs of your background of the study. The next lesson will talk about writing the body of the background of the study.

How to Write the Body of the Background of the Study?

If we liken the background of the study to a sitting cat, then the opening paragraphs that we have completed in the previous lesson would just represent the head of the cat.

how to write background of the study in research pdf

This means we still have to write the body (body of the cat) and the conclusion (tail). But how do we write the body of the background of the study? What should be its content?

Truly, this is one of the most difficult challenges that fledgling scholars faced. Because they are inexperienced researchers and didn’t know what to do next, they just wrote whatever they wished to write. Fortunately, this is relatively easy if they know the technique.

One of the best ways to write the body of the background of the study is to attack it from the vantage point of the research gap. If you recall, when we articulated the research gap in the opening paragraphs, we made a bold claim there, that is, there are junior high school students in New Zealand who are experiencing mathematical anxiety. Now, you have to remember that a “statement” remains an assumption until you can provide concrete proofs to it. This is what we call the “epistemological” aspect of research. As we may already know, epistemology is a specific branch of philosophy that deals with the validity of knowledge. And to validate knowledge is to provide concrete proofs to our statements. Hence, the reason why we need to provide proofs to our claim that there are indeed junior high school students in New Zealand who are experiencing mathematical anxiety is the obvious fact that if there are none, then we cannot proceed with our study. We have no one to interview with in the first. In short, we don’t have respondents.

The body of the background of the study, therefore, should be a presentation and articulation of the proofs to our claim that indeed there are junior high school students in New Zealand who are experiencing mathematical anxiety. Please note, however, that this idea is true only if you follow the style of writing the background of the study that I introduced in this course.

So, how do we do this?

One of the best ways to do this is to look for literature on mathematical anxiety among junior high school students in New Zealand and cite them here. However, if there are not enough literature on this topic in New Zealand, then we need to conduct initial interviews with these students or make actual classroom observations and record instances of mathematical anxiety among these students. But it is always a good idea if we combine literature review with interviews and actual observations.

Assuming you already have the data, then you may now proceed with the writing of the body of your background of the study. For example, you may say:

“According to records and based on the researcher’s firsthand experience with students in some junior high schools in New Zealand, indeed, there are students who lost interest in mathematics. For one, while checking the daily attendance and monitoring of the students, it was observed that some of them are not always attending classes in mathematics but are regularly attending the rest of the required subjects.”

After this sentence, you may insert some literature that will support this position. For example, you may say:

“As a matter of fact, this phenomenon is also observed in the work of Estonanto. In his study titled ‘Impact of Math Anxiety on Academic Performance in Pre-Calculus of Senior High School’, Estonanto (2019) found out that, inter alia, students with mathematical anxiety have the tendency to intentionally prioritize other subjects and commit habitual tardiness and absences.”

Then you may proceed saying:

“With this initial knowledge in mind, the researcher conducted initial interviews with some of these students. The researcher learned that one student did not regularly attend his math subject because he believed that he is not good in math and no matter how he listens to the topic he will not learn.”

Then you may say:

“Another student also mentioned that she was influenced by her friends’ perception that mathematics is hard; hence, she avoids the subject. Indeed, these are concrete proofs that there are some junior high school students in New Zealand who have mathematical anxiety. As already hinted, “disinterest” or the loss of interest in mathematics is one of the manifestations of a mathematical anxiety.”

If we combine what we have just written above, then we can have the first two paragraphs of the body of our background of the study. It reads:

“According to records and based on the researcher’s firsthand experience with students in some junior high schools in New Zealand, indeed there are students who lost interest in mathematics. For one, while checking the daily attendance and monitoring of the students, it was observed that some of them are not always attending classes in mathematics but are regularly attending the rest of the required subjects. As a matter of fact, this phenomenon is also observed in the work of Estonanto. In his study titled ‘Impact of Math Anxiety on Academic Performance in Pre-Calculus of Senior High School’, Estonanto (2019) found out that, inter alia, students with mathematical anxiety have the tendency to intentionally prioritize other subjects and commit habitual tardiness and absences.

With this initial knowledge in mind, the researcher conducted initial interviews with some of these students. The researcher learned that one student did not regularly attend his math subject because he believed that he is not good in math and no matter how he listens to the topic he will not learn. Another student also mentioned that she was influenced by her friends’ perception that mathematics is hard; hence, she avoids the subject. Indeed, these are concrete proofs that there are some junior high school students in New Zealand who have mathematical anxiety. As already hinted, “disinterest” or the loss of interest in mathematics is one of the manifestations of a mathematical anxiety.”

And then you need validate this observation by conducting another round of interview and observation in other schools. So, you may continue writing the body of the background of the study with this:

“To validate the information gathered from the initial interviews and observations, the researcher conducted another round of interview and observation with other junior high school students in New Zealand.”

“On the one hand, the researcher found out that during mathematics time some students felt uneasy; in fact, they showed a feeling of being tensed or anxious while working with numbers and mathematical problems. Some were even afraid to seat in front, while some students at the back were secretly playing with their mobile phones. These students also show remarkable apprehension during board works like trembling hands, nervous laughter, and the like.”

Then provide some literature that will support your position. You may say:

“As Finlayson (2017) corroborates, emotional symptoms of mathematical anxiety involve feeling of helplessness, lack of confidence, and being nervous for being put on the spot. It must be noted that these occasionally extreme emotional reactions are not triggered by provocative procedures. As a matter of fact, there are no personally sensitive questions or intentional manipulations of stress. The teacher simply asked a very simple question, like identifying the parts of a circle. Certainly, this observation also conforms with the study of Ashcraft (2016) when he mentions that students with mathematical anxiety show a negative attitude towards math and hold self-perceptions about their mathematical abilities.”

And then you proceed:

“On the other hand, when the class had their other subjects, the students show a feeling of excitement. They even hurried to seat in front and attentively participating in the class discussion without hesitation and without the feeling of being tensed or anxious. For sure, this is another concrete proof that there are junior high school students in New Zealand who have mathematical anxiety.”

To further prove the point that there indeed junior high school students in New Zealand who have mathematical anxiety, you may solicit observations from other math teachers. For instance, you may say:

“The researcher further verified if the problem is also happening in other sections and whether other mathematics teachers experienced the same observation that the researcher had. This validation or verification is important in establishing credibility of the claim (Buchbinder, 2016) and ensuring reliability and validity of the assertion (Morse et al., 2002). In this regard, the researcher attempted to open up the issue of math anxiety during the Departmentalized Learning Action Cell (LAC), a group discussion of educators per quarter, with the objective of ‘Teaching Strategies to Develop Critical Thinking of the Students’. During the session, one teacher corroborates the researcher’s observation that there are indeed junior high school students in New Zealand who have mathematical anxiety. The teacher pointed out that truly there were students who showed no extra effort in mathematics class in addition to the fact that some students really avoided the subject. In addition, another math teacher expressed her frustrations about these students who have mathematical anxiety. She quipped: “How can a teacher develop the critical thinking skills or ability of the students if in the first place these students show avoidance and disinterest in the subject?’.”

Again, if we combine what we have just written above, then we can now have the remaining parts of the body of the background of the study. It reads:

how to write background of the study in research pdf

So, that’s how we write the body of the background of the study in research . Of course, you may add any relevant points which you think might amplify your content. What is important at this point is that you now have a clear idea of how to write the body of the background of the study.

How to Write the Concluding Part of the Background of the Study?

Since we have already completed the body of our background of the study in the previous lesson, we may now write the concluding paragraph (the tail of the cat). This is important because one of the rules of thumb in writing is that we always put a close to what we have started.

It is important to note that the conclusion of the background of the study is just a rehashing of the research gap and main goal of the study stated in the introductory paragraph, but framed differently. The purpose of this is just to emphasize, after presenting the justifications, what the study aims to attain and why it wants to do it. The conclusion, therefore, will look just like this:

“Given the above discussion, it is evident that there are indeed junior high school students in New Zealand who are experiencing mathematical anxiety. And as we can see, mathematical anxiety can negatively affect not just the academic achievement of the students but also their future career plans and total well-being. Again, it is for this reason that the researcher attempts to determine the lived experiences of those junior high school students in New Zealand who are experiencing a mathematical anxiety.”

If we combine all that we have written from the very beginning, the entire background of the study would now read:

how to write background of the study in research pdf

If we analyze the background of the study that we have just completed, we can observe that in addition to the important elements that it should contain, it has also addressed other important elements that readers or thesis committee members expect from it.

On the one hand, it provides the researcher with a clear direction in the conduct of the study. As we can see, the background of the study that we have just completed enables us to move in the right direction with a strong focus as it has set clear goals and the reasons why we want to do it. Indeed, we now exactly know what to do next and how to write the rest of the research paper or thesis.

On the other hand, most researchers start their research with scattered ideas and usually get stuck with how to proceed further. But with a well-written background of the study, just as the one above, we have decluttered and organized our thoughts. We have also become aware of what have and have not been done in our area of study, as well as what we can significantly contribute in the already existing body of knowledge in this area of study.

Please note, however, as I already mentioned previously, that the model that I have just presented is only one of the many models available in textbooks and other sources. You are, of course, free to choose your own style of writing the background of the study. You may also consult your thesis supervisor for some guidance on how to attack the writing of your background of the study.

Lastly, and as you may already know, universities around the world have their own thesis formats. Hence, you should follow your university’s rules on the format and style in writing your research or thesis. What is important is that with the lessons that you learned in this course, you can now easily write the introductory part of your thesis, such as the background of the study.

How to Write the Background of the Study in Research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 26 March 2024

Predicting and improving complex beer flavor through machine learning

  • Michiel Schreurs   ORCID: orcid.org/0000-0002-9449-5619 1 , 2 , 3   na1 ,
  • Supinya Piampongsant 1 , 2 , 3   na1 ,
  • Miguel Roncoroni   ORCID: orcid.org/0000-0001-7461-1427 1 , 2 , 3   na1 ,
  • Lloyd Cool   ORCID: orcid.org/0000-0001-9936-3124 1 , 2 , 3 , 4 ,
  • Beatriz Herrera-Malaver   ORCID: orcid.org/0000-0002-5096-9974 1 , 2 , 3 ,
  • Christophe Vanderaa   ORCID: orcid.org/0000-0001-7443-5427 4 ,
  • Florian A. Theßeling 1 , 2 , 3 ,
  • Łukasz Kreft   ORCID: orcid.org/0000-0001-7620-4657 5 ,
  • Alexander Botzki   ORCID: orcid.org/0000-0001-6691-4233 5 ,
  • Philippe Malcorps 6 ,
  • Luk Daenen 6 ,
  • Tom Wenseleers   ORCID: orcid.org/0000-0002-1434-861X 4 &
  • Kevin J. Verstrepen   ORCID: orcid.org/0000-0002-3077-6219 1 , 2 , 3  

Nature Communications volume  15 , Article number:  2368 ( 2024 ) Cite this article

36k Accesses

741 Altmetric

Metrics details

  • Chemical engineering
  • Gas chromatography
  • Machine learning
  • Metabolomics
  • Taste receptors

The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.

Similar content being viewed by others

how to write background of the study in research pdf

BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules

Rudraksh Tuwani, Somin Wadhwa & Ganesh Bagler

how to write background of the study in research pdf

Sensory lexicon and aroma volatiles analysis of brewing malt

Xiaoxia Su, Miao Yu, … Tianyi Du

how to write background of the study in research pdf

Predicting odor from molecular structure: a multi-label classification approach

Kushagra Saini & Venkatnarayan Ramanathan

Introduction

Predicting and understanding food perception and appreciation is one of the major challenges in food science. Accurate modeling of food flavor and appreciation could yield important opportunities for both producers and consumers, including quality control, product fingerprinting, counterfeit detection, spoilage detection, and the development of new products and product combinations (food pairing) 1 , 2 , 3 , 4 , 5 , 6 . Accurate models for flavor and consumer appreciation would contribute greatly to our scientific understanding of how humans perceive and appreciate flavor. Moreover, accurate predictive models would also facilitate and standardize existing food assessment methods and could supplement or replace assessments by trained and consumer tasting panels, which are variable, expensive and time-consuming 7 , 8 , 9 . Lastly, apart from providing objective, quantitative, accurate and contextual information that can help producers, models can also guide consumers in understanding their personal preferences 10 .

Despite the myriad of applications, predicting food flavor and appreciation from its chemical properties remains a largely elusive goal in sensory science, especially for complex food and beverages 11 , 12 . A key obstacle is the immense number of flavor-active chemicals underlying food flavor. Flavor compounds can vary widely in chemical structure and concentration, making them technically challenging and labor-intensive to quantify, even in the face of innovations in metabolomics, such as non-targeted metabolic fingerprinting 13 , 14 . Moreover, sensory analysis is perhaps even more complicated. Flavor perception is highly complex, resulting from hundreds of different molecules interacting at the physiochemical and sensorial level. Sensory perception is often non-linear, characterized by complex and concentration-dependent synergistic and antagonistic effects 15 , 16 , 17 , 18 , 19 , 20 , 21 that are further convoluted by the genetics, environment, culture and psychology of consumers 22 , 23 , 24 . Perceived flavor is therefore difficult to measure, with problems of sensitivity, accuracy, and reproducibility that can only be resolved by gathering sufficiently large datasets 25 . Trained tasting panels are considered the prime source of quality sensory data, but require meticulous training, are low throughput and high cost. Public databases containing consumer reviews of food products could provide a valuable alternative, especially for studying appreciation scores, which do not require formal training 25 . Public databases offer the advantage of amassing large amounts of data, increasing the statistical power to identify potential drivers of appreciation. However, public datasets suffer from biases, including a bias in the volunteers that contribute to the database, as well as confounding factors such as price, cult status and psychological conformity towards previous ratings of the product.

Classical multivariate statistics and machine learning methods have been used to predict flavor of specific compounds by, for example, linking structural properties of a compound to its potential biological activities or linking concentrations of specific compounds to sensory profiles 1 , 26 . Importantly, most previous studies focused on predicting organoleptic properties of single compounds (often based on their chemical structure) 27 , 28 , 29 , 30 , 31 , 32 , 33 , thus ignoring the fact that these compounds are present in a complex matrix in food or beverages and excluding complex interactions between compounds. Moreover, the classical statistics commonly used in sensory science 34 , 35 , 36 , 37 , 38 , 39 require a large sample size and sufficient variance amongst predictors to create accurate models. They are not fit for studying an extensive set of hundreds of interacting flavor compounds, since they are sensitive to outliers, have a high tendency to overfit and are less suited for non-linear and discontinuous relationships 40 .

In this study, we combine extensive chemical analyses and sensory data of a set of different commercial beers with machine learning approaches to develop models that predict taste, smell, mouthfeel and appreciation from compound concentrations. Beer is particularly suited to model the relationship between chemistry, flavor and appreciation. First, beer is a complex product, consisting of thousands of flavor compounds that partake in complex sensory interactions 41 , 42 , 43 . This chemical diversity arises from the raw materials (malt, yeast, hops, water and spices) and biochemical conversions during the brewing process (kilning, mashing, boiling, fermentation, maturation and aging) 44 , 45 . Second, the advent of the internet saw beer consumers embrace online review platforms, such as RateBeer (ZX Ventures, Anheuser-Busch InBev SA/NV) and BeerAdvocate (Next Glass, inc.). In this way, the beer community provides massive data sets of beer flavor and appreciation scores, creating extraordinarily large sensory databases to complement the analyses of our professional sensory panel. Specifically, we characterize over 200 chemical properties of 250 commercial beers, spread across 22 beer styles, and link these to the descriptive sensory profiling data of a 16-person in-house trained tasting panel and data acquired from over 180,000 public consumer reviews. These unique and extensive datasets enable us to train a suite of machine learning models to predict flavor and appreciation from a beer’s chemical profile. Dissection of the best-performing models allows us to pinpoint specific compounds as potential drivers of beer flavor and appreciation. Follow-up experiments confirm the importance of these compounds and ultimately allow us to significantly improve the flavor and appreciation of selected commercial beers. Together, our study represents a significant step towards understanding complex flavors and reinforces the value of machine learning to develop and refine complex foods. In this way, it represents a stepping stone for further computer-aided food engineering applications 46 .

To generate a comprehensive dataset on beer flavor, we selected 250 commercial Belgian beers across 22 different beer styles (Supplementary Fig.  S1 ). Beers with ≤ 4.2% alcohol by volume (ABV) were classified as non-alcoholic and low-alcoholic. Blonds and Tripels constitute a significant portion of the dataset (12.4% and 11.2%, respectively) reflecting their presence on the Belgian beer market and the heterogeneity of beers within these styles. By contrast, lager beers are less diverse and dominated by a handful of brands. Rare styles such as Brut or Faro make up only a small fraction of the dataset (2% and 1%, respectively) because fewer of these beers are produced and because they are dominated by distinct characteristics in terms of flavor and chemical composition.

Extensive analysis identifies relationships between chemical compounds in beer

For each beer, we measured 226 different chemical properties, including common brewing parameters such as alcohol content, iso-alpha acids, pH, sugar concentration 47 , and over 200 flavor compounds (Methods, Supplementary Table  S1 ). A large portion (37.2%) are terpenoids arising from hopping, responsible for herbal and fruity flavors 16 , 48 . A second major category are yeast metabolites, such as esters and alcohols, that result in fruity and solvent notes 48 , 49 , 50 . Other measured compounds are primarily derived from malt, or other microbes such as non- Saccharomyces yeasts and bacteria (‘wild flora’). Compounds that arise from spices or staling are labeled under ‘Others’. Five attributes (caloric value, total acids and total ester, hop aroma and sulfur compounds) are calculated from multiple individually measured compounds.

As a first step in identifying relationships between chemical properties, we determined correlations between the concentrations of the compounds (Fig.  1 , upper panel, Supplementary Data  1 and 2 , and Supplementary Fig.  S2 . For the sake of clarity, only a subset of the measured compounds is shown in Fig.  1 ). Compounds of the same origin typically show a positive correlation, while absence of correlation hints at parameters varying independently. For example, the hop aroma compounds citronellol, and alpha-terpineol show moderate correlations with each other (Spearman’s rho=0.39 and 0.57), but not with the bittering hop component iso-alpha acids (Spearman’s rho=0.16 and −0.07). This illustrates how brewers can independently modify hop aroma and bitterness by selecting hop varieties and dosage time. If hops are added early in the boiling phase, chemical conversions increase bitterness while aromas evaporate, conversely, late addition of hops preserves aroma but limits bitterness 51 . Similarly, hop-derived iso-alpha acids show a strong anti-correlation with lactic acid and acetic acid, likely reflecting growth inhibition of lactic acid and acetic acid bacteria, or the consequent use of fewer hops in sour beer styles, such as West Flanders ales and Fruit beers, that rely on these bacteria for their distinct flavors 52 . Finally, yeast-derived esters (ethyl acetate, ethyl decanoate, ethyl hexanoate, ethyl octanoate) and alcohols (ethanol, isoamyl alcohol, isobutanol, and glycerol), correlate with Spearman coefficients above 0.5, suggesting that these secondary metabolites are correlated with the yeast genetic background and/or fermentation parameters and may be difficult to influence individually, although the choice of yeast strain may offer some control 53 .

figure 1

Spearman rank correlations are shown. Descriptors are grouped according to their origin (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)), and sensory aspect (aroma, taste, palate, and overall appreciation). Please note that for the chemical compounds, for the sake of clarity, only a subset of the total number of measured compounds is shown, with an emphasis on the key compounds for each source. For more details, see the main text and Methods section. Chemical data can be found in Supplementary Data  1 , correlations between all chemical compounds are depicted in Supplementary Fig.  S2 and correlation values can be found in Supplementary Data  2 . See Supplementary Data  4 for sensory panel assessments and Supplementary Data  5 for correlation values between all sensory descriptors.

Interestingly, different beer styles show distinct patterns for some flavor compounds (Supplementary Fig.  S3 ). These observations agree with expectations for key beer styles, and serve as a control for our measurements. For instance, Stouts generally show high values for color (darker), while hoppy beers contain elevated levels of iso-alpha acids, compounds associated with bitter hop taste. Acetic and lactic acid are not prevalent in most beers, with notable exceptions such as Kriek, Lambic, Faro, West Flanders ales and Flanders Old Brown, which use acid-producing bacteria ( Lactobacillus and Pediococcus ) or unconventional yeast ( Brettanomyces ) 54 , 55 . Glycerol, ethanol and esters show similar distributions across all beer styles, reflecting their common origin as products of yeast metabolism during fermentation 45 , 53 . Finally, low/no-alcohol beers contain low concentrations of glycerol and esters. This is in line with the production process for most of the low/no-alcohol beers in our dataset, which are produced through limiting fermentation or by stripping away alcohol via evaporation or dialysis, with both methods having the unintended side-effect of reducing the amount of flavor compounds in the final beer 56 , 57 .

Besides expected associations, our data also reveals less trivial associations between beer styles and specific parameters. For example, geraniol and citronellol, two monoterpenoids responsible for citrus, floral and rose flavors and characteristic of Citra hops, are found in relatively high amounts in Christmas, Saison, and Brett/co-fermented beers, where they may originate from terpenoid-rich spices such as coriander seeds instead of hops 58 .

Tasting panel assessments reveal sensorial relationships in beer

To assess the sensory profile of each beer, a trained tasting panel evaluated each of the 250 beers for 50 sensory attributes, including different hop, malt and yeast flavors, off-flavors and spices. Panelists used a tasting sheet (Supplementary Data  3 ) to score the different attributes. Panel consistency was evaluated by repeating 12 samples across different sessions and performing ANOVA. In 95% of cases no significant difference was found across sessions ( p  > 0.05), indicating good panel consistency (Supplementary Table  S2 ).

Aroma and taste perception reported by the trained panel are often linked (Fig.  1 , bottom left panel and Supplementary Data  4 and 5 ), with high correlations between hops aroma and taste (Spearman’s rho=0.83). Bitter taste was found to correlate with hop aroma and taste in general (Spearman’s rho=0.80 and 0.69), and particularly with “grassy” noble hops (Spearman’s rho=0.75). Barnyard flavor, most often associated with sour beers, is identified together with stale hops (Spearman’s rho=0.97) that are used in these beers. Lactic and acetic acid, which often co-occur, are correlated (Spearman’s rho=0.66). Interestingly, sweetness and bitterness are anti-correlated (Spearman’s rho = −0.48), confirming the hypothesis that they mask each other 59 , 60 . Beer body is highly correlated with alcohol (Spearman’s rho = 0.79), and overall appreciation is found to correlate with multiple aspects that describe beer mouthfeel (alcohol, carbonation; Spearman’s rho= 0.32, 0.39), as well as with hop and ester aroma intensity (Spearman’s rho=0.39 and 0.35).

Similar to the chemical analyses, sensorial analyses confirmed typical features of specific beer styles (Supplementary Fig.  S4 ). For example, sour beers (Faro, Flanders Old Brown, Fruit beer, Kriek, Lambic, West Flanders ale) were rated acidic, with flavors of both acetic and lactic acid. Hoppy beers were found to be bitter and showed hop-associated aromas like citrus and tropical fruit. Malt taste is most detected among scotch, stout/porters, and strong ales, while low/no-alcohol beers, which often have a reputation for being ‘worty’ (reminiscent of unfermented, sweet malt extract) appear in the middle. Unsurprisingly, hop aromas are most strongly detected among hoppy beers. Like its chemical counterpart (Supplementary Fig.  S3 ), acidity shows a right-skewed distribution, with the most acidic beers being Krieks, Lambics, and West Flanders ales.

Tasting panel assessments of specific flavors correlate with chemical composition

We find that the concentrations of several chemical compounds strongly correlate with specific aroma or taste, as evaluated by the tasting panel (Fig.  2 , Supplementary Fig.  S5 , Supplementary Data  6 ). In some cases, these correlations confirm expectations and serve as a useful control for data quality. For example, iso-alpha acids, the bittering compounds in hops, strongly correlate with bitterness (Spearman’s rho=0.68), while ethanol and glycerol correlate with tasters’ perceptions of alcohol and body, the mouthfeel sensation of fullness (Spearman’s rho=0.82/0.62 and 0.72/0.57 respectively) and darker color from roasted malts is a good indication of malt perception (Spearman’s rho=0.54).

figure 2

Heatmap colors indicate Spearman’s Rho. Axes are organized according to sensory categories (aroma, taste, mouthfeel, overall), chemical categories and chemical sources in beer (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)). See Supplementary Data  6 for all correlation values.

Interestingly, for some relationships between chemical compounds and perceived flavor, correlations are weaker than expected. For example, the rose-smelling phenethyl acetate only weakly correlates with floral aroma. This hints at more complex relationships and interactions between compounds and suggests a need for a more complex model than simple correlations. Lastly, we uncovered unexpected correlations. For instance, the esters ethyl decanoate and ethyl octanoate appear to correlate slightly with hop perception and bitterness, possibly due to their fruity flavor. Iron is anti-correlated with hop aromas and bitterness, most likely because it is also anti-correlated with iso-alpha acids. This could be a sign of metal chelation of hop acids 61 , given that our analyses measure unbound hop acids and total iron content, or could result from the higher iron content in dark and Fruit beers, which typically have less hoppy and bitter flavors 62 .

Public consumer reviews complement expert panel data

To complement and expand the sensory data of our trained tasting panel, we collected 180,000 reviews of our 250 beers from the online consumer review platform RateBeer. This provided numerical scores for beer appearance, aroma, taste, palate, overall quality as well as the average overall score.

Public datasets are known to suffer from biases, such as price, cult status and psychological conformity towards previous ratings of a product. For example, prices correlate with appreciation scores for these online consumer reviews (rho=0.49, Supplementary Fig.  S6 ), but not for our trained tasting panel (rho=0.19). This suggests that prices affect consumer appreciation, which has been reported in wine 63 , while blind tastings are unaffected. Moreover, we observe that some beer styles, like lagers and non-alcoholic beers, generally receive lower scores, reflecting that online reviewers are mostly beer aficionados with a preference for specialty beers over lager beers. In general, we find a modest correlation between our trained panel’s overall appreciation score and the online consumer appreciation scores (Fig.  3 , rho=0.29). Apart from the aforementioned biases in the online datasets, serving temperature, sample freshness and surroundings, which are all tightly controlled during the tasting panel sessions, can vary tremendously across online consumers and can further contribute to (among others, appreciation) differences between the two categories of tasters. Importantly, in contrast to the overall appreciation scores, for many sensory aspects the results from the professional panel correlated well with results obtained from RateBeer reviews. Correlations were highest for features that are relatively easy to recognize even for untrained tasters, like bitterness, sweetness, alcohol and malt aroma (Fig.  3 and below).

figure 3

RateBeer text mining results can be found in Supplementary Data  7 . Rho values shown are Spearman correlation values, with asterisks indicating significant correlations ( p  < 0.05, two-sided). All p values were smaller than 0.001, except for Esters aroma (0.0553), Esters taste (0.3275), Esters aroma—banana (0.0019), Coriander (0.0508) and Diacetyl (0.0134).

Besides collecting consumer appreciation from these online reviews, we developed automated text analysis tools to gather additional data from review texts (Supplementary Data  7 ). Processing review texts on the RateBeer database yielded comparable results to the scores given by the trained panel for many common sensory aspects, including acidity, bitterness, sweetness, alcohol, malt, and hop tastes (Fig.  3 ). This is in line with what would be expected, since these attributes require less training for accurate assessment and are less influenced by environmental factors such as temperature, serving glass and odors in the environment. Consumer reviews also correlate well with our trained panel for 4-vinyl guaiacol, a compound associated with a very characteristic aroma. By contrast, correlations for more specific aromas like ester, coriander or diacetyl are underrepresented in the online reviews, underscoring the importance of using a trained tasting panel and standardized tasting sheets with explicit factors to be scored for evaluating specific aspects of a beer. Taken together, our results suggest that public reviews are trustworthy for some, but not all, flavor features and can complement or substitute taste panel data for these sensory aspects.

Models can predict beer sensory profiles from chemical data

The rich datasets of chemical analyses, tasting panel assessments and public reviews gathered in the first part of this study provided us with a unique opportunity to develop predictive models that link chemical data to sensorial features. Given the complexity of beer flavor, basic statistical tools such as correlations or linear regression may not always be the most suitable for making accurate predictions. Instead, we applied different machine learning models that can model both simple linear and complex interactive relationships. Specifically, we constructed a set of regression models to predict (a) trained panel scores for beer flavor and quality and (b) public reviews’ appreciation scores from beer chemical profiles. We trained and tested 10 different models (Methods), 3 linear regression-based models (simple linear regression with first-order interactions (LR), lasso regression with first-order interactions (Lasso), partial least squares regressor (PLSR)), 5 decision tree models (AdaBoost regressor (ABR), extra trees (ET), gradient boosting regressor (GBR), random forest (RF) and XGBoost regressor (XGBR)), 1 support vector regression (SVR), and 1 artificial neural network (ANN) model.

To compare the performance of our machine learning models, the dataset was randomly split into a training and test set, stratified by beer style. After a model was trained on data in the training set, its performance was evaluated on its ability to predict the test dataset obtained from multi-output models (based on the coefficient of determination, see Methods). Additionally, individual-attribute models were ranked per descriptor and the average rank was calculated, as proposed by Korneva et al. 64 . Importantly, both ways of evaluating the models’ performance agreed in general. Performance of the different models varied (Table  1 ). It should be noted that all models perform better at predicting RateBeer results than results from our trained tasting panel. One reason could be that sensory data is inherently variable, and this variability is averaged out with the large number of public reviews from RateBeer. Additionally, all tree-based models perform better at predicting taste than aroma. Linear models (LR) performed particularly poorly, with negative R 2 values, due to severe overfitting (training set R 2  = 1). Overfitting is a common issue in linear models with many parameters and limited samples, especially with interaction terms further amplifying the number of parameters. L1 regularization (Lasso) successfully overcomes this overfitting, out-competing multiple tree-based models on the RateBeer dataset. Similarly, the dimensionality reduction of PLSR avoids overfitting and improves performance, to some extent. Still, tree-based models (ABR, ET, GBR, RF and XGBR) show the best performance, out-competing the linear models (LR, Lasso, PLSR) commonly used in sensory science 65 .

GBR models showed the best overall performance in predicting sensory responses from chemical information, with R 2 values up to 0.75 depending on the predicted sensory feature (Supplementary Table  S4 ). The GBR models predict consumer appreciation (RateBeer) better than our trained panel’s appreciation (R 2 value of 0.67 compared to R 2 value of 0.09) (Supplementary Table  S3 and Supplementary Table  S4 ). ANN models showed intermediate performance, likely because neural networks typically perform best with larger datasets 66 . The SVR shows intermediate performance, mostly due to the weak predictions of specific attributes that lower the overall performance (Supplementary Table  S4 ).

Model dissection identifies specific, unexpected compounds as drivers of consumer appreciation

Next, we leveraged our models to infer important contributors to sensory perception and consumer appreciation. Consumer preference is a crucial sensory aspects, because a product that shows low consumer appreciation scores often does not succeed commercially 25 . Additionally, the requirement for a large number of representative evaluators makes consumer trials one of the more costly and time-consuming aspects of product development. Hence, a model for predicting chemical drivers of overall appreciation would be a welcome addition to the available toolbox for food development and optimization.

Since GBR models on our RateBeer dataset showed the best overall performance, we focused on these models. Specifically, we used two approaches to identify important contributors. First, rankings of the most important predictors for each sensorial trait in the GBR models were obtained based on impurity-based feature importance (mean decrease in impurity). High-ranked parameters were hypothesized to be either the true causal chemical properties underlying the trait, to correlate with the actual causal properties, or to take part in sensory interactions affecting the trait 67 (Fig.  4A ). In a second approach, we used SHAP 68 to determine which parameters contributed most to the model for making predictions of consumer appreciation (Fig.  4B ). SHAP calculates parameter contributions to model predictions on a per-sample basis, which can be aggregated into an importance score.

figure 4

A The impurity-based feature importance (mean deviance in impurity, MDI) calculated from the Gradient Boosting Regression (GBR) model predicting RateBeer appreciation scores. The top 15 highest ranked chemical properties are shown. B SHAP summary plot for the top 15 parameters contributing to our GBR model. Each point on the graph represents a sample from our dataset. The color represents the concentration of that parameter, with bluer colors representing low values and redder colors representing higher values. Greater absolute values on the horizontal axis indicate a higher impact of the parameter on the prediction of the model. C Spearman correlations between the 15 most important chemical properties and consumer overall appreciation. Numbers indicate the Spearman Rho correlation coefficient, and the rank of this correlation compared to all other correlations. The top 15 important compounds were determined using SHAP (panel B).

Both approaches identified ethyl acetate as the most predictive parameter for beer appreciation (Fig.  4 ). Ethyl acetate is the most abundant ester in beer with a typical ‘fruity’, ‘solvent’ and ‘alcoholic’ flavor, but is often considered less important than other esters like isoamyl acetate. The second most important parameter identified by SHAP is ethanol, the most abundant beer compound after water. Apart from directly contributing to beer flavor and mouthfeel, ethanol drastically influences the physical properties of beer, dictating how easily volatile compounds escape the beer matrix to contribute to beer aroma 69 . Importantly, it should also be noted that the importance of ethanol for appreciation is likely inflated by the very low appreciation scores of non-alcoholic beers (Supplementary Fig.  S4 ). Despite not often being considered a driver of beer appreciation, protein level also ranks highly in both approaches, possibly due to its effect on mouthfeel and body 70 . Lactic acid, which contributes to the tart taste of sour beers, is the fourth most important parameter identified by SHAP, possibly due to the generally high appreciation of sour beers in our dataset.

Interestingly, some of the most important predictive parameters for our model are not well-established as beer flavors or are even commonly regarded as being negative for beer quality. For example, our models identify methanethiol and ethyl phenyl acetate, an ester commonly linked to beer staling 71 , as a key factor contributing to beer appreciation. Although there is no doubt that high concentrations of these compounds are considered unpleasant, the positive effects of modest concentrations are not yet known 72 , 73 .

To compare our approach to conventional statistics, we evaluated how well the 15 most important SHAP-derived parameters correlate with consumer appreciation (Fig.  4C ). Interestingly, only 6 of the properties derived by SHAP rank amongst the top 15 most correlated parameters. For some chemical compounds, the correlations are so low that they would have likely been considered unimportant. For example, lactic acid, the fourth most important parameter, shows a bimodal distribution for appreciation, with sour beers forming a separate cluster, that is missed entirely by the Spearman correlation. Additionally, the correlation plots reveal outliers, emphasizing the need for robust analysis tools. Together, this highlights the need for alternative models, like the Gradient Boosting model, that better grasp the complexity of (beer) flavor.

Finally, to observe the relationships between these chemical properties and their predicted targets, partial dependence plots were constructed for the six most important predictors of consumer appreciation 74 , 75 , 76 (Supplementary Fig.  S7 ). One-way partial dependence plots show how a change in concentration affects the predicted appreciation. These plots reveal an important limitation of our models: appreciation predictions remain constant at ever-increasing concentrations. This implies that once a threshold concentration is reached, further increasing the concentration does not affect appreciation. This is false, as it is well-documented that certain compounds become unpleasant at high concentrations, including ethyl acetate (‘nail polish’) 77 and methanethiol (‘sulfury’ and ‘rotten cabbage’) 78 . The inability of our models to grasp that flavor compounds have optimal levels, above which they become negative, is a consequence of working with commercial beer brands where (off-)flavors are rarely too high to negatively impact the product. The two-way partial dependence plots show how changing the concentration of two compounds influences predicted appreciation, visualizing their interactions (Supplementary Fig.  S7 ). In our case, the top 5 parameters are dominated by additive or synergistic interactions, with high concentrations for both compounds resulting in the highest predicted appreciation.

To assess the robustness of our best-performing models and model predictions, we performed 100 iterations of the GBR, RF and ET models. In general, all iterations of the models yielded similar performance (Supplementary Fig.  S8 ). Moreover, the main predictors (including the top predictors ethanol and ethyl acetate) remained virtually the same, especially for GBR and RF. For the iterations of the ET model, we did observe more variation in the top predictors, which is likely a consequence of the model’s inherent random architecture in combination with co-correlations between certain predictors. However, even in this case, several of the top predictors (ethanol and ethyl acetate) remain unchanged, although their rank in importance changes (Supplementary Fig.  S8 ).

Next, we investigated if a combination of RateBeer and trained panel data into one consolidated dataset would lead to stronger models, under the hypothesis that such a model would suffer less from bias in the datasets. A GBR model was trained to predict appreciation on the combined dataset. This model underperformed compared to the RateBeer model, both in the native case and when including a dataset identifier (R 2  = 0.67, 0.26 and 0.42 respectively). For the latter, the dataset identifier is the most important feature (Supplementary Fig.  S9 ), while most of the feature importance remains unchanged, with ethyl acetate and ethanol ranking highest, like in the original model trained only on RateBeer data. It seems that the large variation in the panel dataset introduces noise, weakening the models’ performances and reliability. In addition, it seems reasonable to assume that both datasets are fundamentally different, with the panel dataset obtained by blind tastings by a trained professional panel.

Lastly, we evaluated whether beer style identifiers would further enhance the model’s performance. A GBR model was trained with parameters that explicitly encoded the styles of the samples. This did not improve model performance (R2 = 0.66 with style information vs R2 = 0.67). The most important chemical features are consistent with the model trained without style information (eg. ethanol and ethyl acetate), and with the exception of the most preferred (strong ale) and least preferred (low/no-alcohol) styles, none of the styles were among the most important features (Supplementary Fig.  S9 , Supplementary Table  S5 and S6 ). This is likely due to a combination of style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original models, as well as the low number of samples belonging to some styles, making it difficult for the model to learn style-specific patterns. Moreover, beer styles are not rigorously defined, with some styles overlapping in features and some beers being misattributed to a specific style, all of which leads to more noise in models that use style parameters.

Model validation

To test if our predictive models give insight into beer appreciation, we set up experiments aimed at improving existing commercial beers. We specifically selected overall appreciation as the trait to be examined because of its complexity and commercial relevance. Beer flavor comprises a complex bouquet rather than single aromas and tastes 53 . Hence, adding a single compound to the extent that a difference is noticeable may lead to an unbalanced, artificial flavor. Therefore, we evaluated the effect of combinations of compounds. Because Blond beers represent the most extensive style in our dataset, we selected a beer from this style as the starting material for these experiments (Beer 64 in Supplementary Data  1 ).

In the first set of experiments, we adjusted the concentrations of compounds that made up the most important predictors of overall appreciation (ethyl acetate, ethanol, lactic acid, ethyl phenyl acetate) together with correlated compounds (ethyl hexanoate, isoamyl acetate, glycerol), bringing them up to 95 th percentile ethanol-normalized concentrations (Methods) within the Blond group (‘Spiked’ concentration in Fig.  5A ). Compared to controls, the spiked beers were found to have significantly improved overall appreciation among trained panelists, with panelist noting increased intensity of ester flavors, sweetness, alcohol, and body fullness (Fig.  5B ). To disentangle the contribution of ethanol to these results, a second experiment was performed without the addition of ethanol. This resulted in a similar outcome, including increased perception of alcohol and overall appreciation.

figure 5

Adding the top chemical compounds, identified as best predictors of appreciation by our model, into poorly appreciated beers results in increased appreciation from our trained panel. Results of sensory tests between base beers and those spiked with compounds identified as the best predictors by the model. A Blond and Non/Low-alcohol (0.0% ABV) base beers were brought up to 95th-percentile ethanol-normalized concentrations within each style. B For each sensory attribute, tasters indicated the more intense sample and selected the sample they preferred. The numbers above the bars correspond to the p values that indicate significant changes in perceived flavor (two-sided binomial test: alpha 0.05, n  = 20 or 13).

In a last experiment, we tested whether using the model’s predictions can boost the appreciation of a non-alcoholic beer (beer 223 in Supplementary Data  1 ). Again, the addition of a mixture of predicted compounds (omitting ethanol, in this case) resulted in a significant increase in appreciation, body, ester flavor and sweetness.

Predicting flavor and consumer appreciation from chemical composition is one of the ultimate goals of sensory science. A reliable, systematic and unbiased way to link chemical profiles to flavor and food appreciation would be a significant asset to the food and beverage industry. Such tools would substantially aid in quality control and recipe development, offer an efficient and cost-effective alternative to pilot studies and consumer trials and would ultimately allow food manufacturers to produce superior, tailor-made products that better meet the demands of specific consumer groups more efficiently.

A limited set of studies have previously tried, to varying degrees of success, to predict beer flavor and beer popularity based on (a limited set of) chemical compounds and flavors 79 , 80 . Current sensitive, high-throughput technologies allow measuring an unprecedented number of chemical compounds and properties in a large set of samples, yielding a dataset that can train models that help close the gaps between chemistry and flavor, even for a complex natural product like beer. To our knowledge, no previous research gathered data at this scale (250 samples, 226 chemical parameters, 50 sensory attributes and 5 consumer scores) to disentangle and validate the chemical aspects driving beer preference using various machine-learning techniques. We find that modern machine learning models outperform conventional statistical tools, such as correlations and linear models, and can successfully predict flavor appreciation from chemical composition. This could be attributed to the natural incorporation of interactions and non-linear or discontinuous effects in machine learning models, which are not easily grasped by the linear model architecture. While linear models and partial least squares regression represent the most widespread statistical approaches in sensory science, in part because they allow interpretation 65 , 81 , 82 , modern machine learning methods allow for building better predictive models while preserving the possibility to dissect and exploit the underlying patterns. Of the 10 different models we trained, tree-based models, such as our best performing GBR, showed the best overall performance in predicting sensory responses from chemical information, outcompeting artificial neural networks. This agrees with previous reports for models trained on tabular data 83 . Our results are in line with the findings of Colantonio et al. who also identified the gradient boosting architecture as performing best at predicting appreciation and flavor (of tomatoes and blueberries, in their specific study) 26 . Importantly, besides our larger experimental scale, we were able to directly confirm our models’ predictions in vivo.

Our study confirms that flavor compound concentration does not always correlate with perception, suggesting complex interactions that are often missed by more conventional statistics and simple models. Specifically, we find that tree-based algorithms may perform best in developing models that link complex food chemistry with aroma. Furthermore, we show that massive datasets of untrained consumer reviews provide a valuable source of data, that can complement or even replace trained tasting panels, especially for appreciation and basic flavors, such as sweetness and bitterness. This holds despite biases that are known to occur in such datasets, such as price or conformity bias. Moreover, GBR models predict taste better than aroma. This is likely because taste (e.g. bitterness) often directly relates to the corresponding chemical measurements (e.g., iso-alpha acids), whereas such a link is less clear for aromas, which often result from the interplay between multiple volatile compounds. We also find that our models are best at predicting acidity and alcohol, likely because there is a direct relation between the measured chemical compounds (acids and ethanol) and the corresponding perceived sensorial attribute (acidity and alcohol), and because even untrained consumers are generally able to recognize these flavors and aromas.

The predictions of our final models, trained on review data, hold even for blind tastings with small groups of trained tasters, as demonstrated by our ability to validate specific compounds as drivers of beer flavor and appreciation. Since adding a single compound to the extent of a noticeable difference may result in an unbalanced flavor profile, we specifically tested our identified key drivers as a combination of compounds. While this approach does not allow us to validate if a particular single compound would affect flavor and/or appreciation, our experiments do show that this combination of compounds increases consumer appreciation.

It is important to stress that, while it represents an important step forward, our approach still has several major limitations. A key weakness of the GBR model architecture is that amongst co-correlating variables, the largest main effect is consistently preferred for model building. As a result, co-correlating variables often have artificially low importance scores, both for impurity and SHAP-based methods, like we observed in the comparison to the more randomized Extra Trees models. This implies that chemicals identified as key drivers of a specific sensory feature by GBR might not be the true causative compounds, but rather co-correlate with the actual causative chemical. For example, the high importance of ethyl acetate could be (partially) attributed to the total ester content, ethanol or ethyl hexanoate (rho=0.77, rho=0.72 and rho=0.68), while ethyl phenylacetate could hide the importance of prenyl isobutyrate and ethyl benzoate (rho=0.77 and rho=0.76). Expanding our GBR model to include beer style as a parameter did not yield additional power or insight. This is likely due to style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original model, as well as the smaller sample size per style, limiting the power to uncover style-specific patterns. This can be partly attributed to the curse of dimensionality, where the high number of parameters results in the models mainly incorporating single parameter effects, rather than complex interactions such as style-dependent effects 67 . A larger number of samples may overcome some of these limitations and offer more insight into style-specific effects. On the other hand, beer style is not a rigid scientific classification, and beers within one style often differ a lot, which further complicates the analysis of style as a model factor.

Our study is limited to beers from Belgian breweries. Although these beers cover a large portion of the beer styles available globally, some beer styles and consumer patterns may be missing, while other features might be overrepresented. For example, many Belgian ales exhibit yeast-driven flavor profiles, which is reflected in the chemical drivers of appreciation discovered by this study. In future work, expanding the scope to include diverse markets and beer styles could lead to the identification of even more drivers of appreciation and better models for special niche products that were not present in our beer set.

In addition to inherent limitations of GBR models, there are also some limitations associated with studying food aroma. Even if our chemical analyses measured most of the known aroma compounds, the total number of flavor compounds in complex foods like beer is still larger than the subset we were able to measure in this study. For example, hop-derived thiols, that influence flavor at very low concentrations, are notoriously difficult to measure in a high-throughput experiment. Moreover, consumer perception remains subjective and prone to biases that are difficult to avoid. It is also important to stress that the models are still immature and that more extensive datasets will be crucial for developing more complete models in the future. Besides more samples and parameters, our dataset does not include any demographic information about the tasters. Including such data could lead to better models that grasp external factors like age and culture. Another limitation is that our set of beers consists of high-quality end-products and lacks beers that are unfit for sale, which limits the current model in accurately predicting products that are appreciated very badly. Finally, while models could be readily applied in quality control, their use in sensory science and product development is restrained by their inability to discern causal relationships. Given that the models cannot distinguish compounds that genuinely drive consumer perception from those that merely correlate, validation experiments are essential to identify true causative compounds.

Despite the inherent limitations, dissection of our models enabled us to pinpoint specific molecules as potential drivers of beer aroma and consumer appreciation, including compounds that were unexpected and would not have been identified using standard approaches. Important drivers of beer appreciation uncovered by our models include protein levels, ethyl acetate, ethyl phenyl acetate and lactic acid. Currently, many brewers already use lactic acid to acidify their brewing water and ensure optimal pH for enzymatic activity during the mashing process. Our results suggest that adding lactic acid can also improve beer appreciation, although its individual effect remains to be tested. Interestingly, ethanol appears to be unnecessary to improve beer appreciation, both for blond beer and alcohol-free beer. Given the growing consumer interest in alcohol-free beer, with a predicted annual market growth of >7% 84 , it is relevant for brewers to know what compounds can further increase consumer appreciation of these beers. Hence, our model may readily provide avenues to further improve the flavor and consumer appreciation of both alcoholic and non-alcoholic beers, which is generally considered one of the key challenges for future beer production.

Whereas we see a direct implementation of our results for the development of superior alcohol-free beverages and other food products, our study can also serve as a stepping stone for the development of novel alcohol-containing beverages. We want to echo the growing body of scientific evidence for the negative effects of alcohol consumption, both on the individual level by the mutagenic, teratogenic and carcinogenic effects of ethanol 85 , 86 , as well as the burden on society caused by alcohol abuse and addiction. We encourage the use of our results for the production of healthier, tastier products, including novel and improved beverages with lower alcohol contents. Furthermore, we strongly discourage the use of these technologies to improve the appreciation or addictive properties of harmful substances.

The present work demonstrates that despite some important remaining hurdles, combining the latest developments in chemical analyses, sensory analysis and modern machine learning methods offers exciting avenues for food chemistry and engineering. Soon, these tools may provide solutions in quality control and recipe development, as well as new approaches to sensory science and flavor research.

Beer selection

250 commercial Belgian beers were selected to cover the broad diversity of beer styles and corresponding diversity in chemical composition and aroma. See Supplementary Fig.  S1 .

Chemical dataset

Sample preparation.

Beers within their expiration date were purchased from commercial retailers. Samples were prepared in biological duplicates at room temperature, unless explicitly stated otherwise. Bottle pressure was measured with a manual pressure device (Steinfurth Mess-Systeme GmbH) and used to calculate CO 2 concentration. The beer was poured through two filter papers (Macherey-Nagel, 500713032 MN 713 ¼) to remove carbon dioxide and prevent spontaneous foaming. Samples were then prepared for measurements by targeted Headspace-Gas Chromatography-Flame Ionization Detector/Flame Photometric Detector (HS-GC-FID/FPD), Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), colorimetric analysis, enzymatic analysis, Near-Infrared (NIR) analysis, as described in the sections below. The mean values of biological duplicates are reported for each compound.

HS-GC-FID/FPD

HS-GC-FID/FPD (Shimadzu GC 2010 Plus) was used to measure higher alcohols, acetaldehyde, esters, 4-vinyl guaicol, and sulfur compounds. Each measurement comprised 5 ml of sample pipetted into a 20 ml glass vial containing 1.75 g NaCl (VWR, 27810.295). 100 µl of 2-heptanol (Sigma-Aldrich, H3003) (internal standard) solution in ethanol (Fisher Chemical, E/0650DF/C17) was added for a final concentration of 2.44 mg/L. Samples were flushed with nitrogen for 10 s, sealed with a silicone septum, stored at −80 °C and analyzed in batches of 20.

The GC was equipped with a DB-WAXetr column (length, 30 m; internal diameter, 0.32 mm; layer thickness, 0.50 µm; Agilent Technologies, Santa Clara, CA, USA) to the FID and an HP-5 column (length, 30 m; internal diameter, 0.25 mm; layer thickness, 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) to the FPD. N 2 was used as the carrier gas. Samples were incubated for 20 min at 70 °C in the headspace autosampler (Flow rate, 35 cm/s; Injection volume, 1000 µL; Injection mode, split; Combi PAL autosampler, CTC analytics, Switzerland). The injector, FID and FPD temperatures were kept at 250 °C. The GC oven temperature was first held at 50 °C for 5 min and then allowed to rise to 80 °C at a rate of 5 °C/min, followed by a second ramp of 4 °C/min until 200 °C kept for 3 min and a final ramp of (4 °C/min) until 230 °C for 1 min. Results were analyzed with the GCSolution software version 2.4 (Shimadzu, Kyoto, Japan). The GC was calibrated with a 5% EtOH solution (VWR International) containing the volatiles under study (Supplementary Table  S7 ).

HS-SPME-GC-MS

HS-SPME-GC-MS (Shimadzu GCMS-QP-2010 Ultra) was used to measure additional volatile compounds, mainly comprising terpenoids and esters. Samples were analyzed by HS-SPME using a triphase DVB/Carboxen/PDMS 50/30 μm SPME fiber (Supelco Co., Bellefonte, PA, USA) followed by gas chromatography (Thermo Fisher Scientific Trace 1300 series, USA) coupled to a mass spectrometer (Thermo Fisher Scientific ISQ series MS) equipped with a TriPlus RSH autosampler. 5 ml of degassed beer sample was placed in 20 ml vials containing 1.75 g NaCl (VWR, 27810.295). 5 µl internal standard mix was added, containing 2-heptanol (1 g/L) (Sigma-Aldrich, H3003), 4-fluorobenzaldehyde (1 g/L) (Sigma-Aldrich, 128376), 2,3-hexanedione (1 g/L) (Sigma-Aldrich, 144169) and guaiacol (1 g/L) (Sigma-Aldrich, W253200) in ethanol (Fisher Chemical, E/0650DF/C17). Each sample was incubated at 60 °C in the autosampler oven with constant agitation. After 5 min equilibration, the SPME fiber was exposed to the sample headspace for 30 min. The compounds trapped on the fiber were thermally desorbed in the injection port of the chromatograph by heating the fiber for 15 min at 270 °C.

The GC-MS was equipped with a low polarity RXi-5Sil MS column (length, 20 m; internal diameter, 0.18 mm; layer thickness, 0.18 µm; Restek, Bellefonte, PA, USA). Injection was performed in splitless mode at 320 °C, a split flow of 9 ml/min, a purge flow of 5 ml/min and an open valve time of 3 min. To obtain a pulsed injection, a programmed gas flow was used whereby the helium gas flow was set at 2.7 mL/min for 0.1 min, followed by a decrease in flow of 20 ml/min to the normal 0.9 mL/min. The temperature was first held at 30 °C for 3 min and then allowed to rise to 80 °C at a rate of 7 °C/min, followed by a second ramp of 2 °C/min till 125 °C and a final ramp of 8 °C/min with a final temperature of 270 °C.

Mass acquisition range was 33 to 550 amu at a scan rate of 5 scans/s. Electron impact ionization energy was 70 eV. The interface and ion source were kept at 275 °C and 250 °C, respectively. A mix of linear n-alkanes (from C7 to C40, Supelco Co.) was injected into the GC-MS under identical conditions to serve as external retention index markers. Identification and quantification of the compounds were performed using an in-house developed R script as described in Goelen et al. and Reher et al. 87 , 88 (for package information, see Supplementary Table  S8 ). Briefly, chromatograms were analyzed using AMDIS (v2.71) 89 to separate overlapping peaks and obtain pure compound spectra. The NIST MS Search software (v2.0 g) in combination with the NIST2017, FFNSC3 and Adams4 libraries were used to manually identify the empirical spectra, taking into account the expected retention time. After background subtraction and correcting for retention time shifts between samples run on different days based on alkane ladders, compound elution profiles were extracted and integrated using a file with 284 target compounds of interest, which were either recovered in our identified AMDIS list of spectra or were known to occur in beer. Compound elution profiles were estimated for every peak in every chromatogram over a time-restricted window using weighted non-negative least square analysis after which peak areas were integrated 87 , 88 . Batch effect correction was performed by normalizing against the most stable internal standard compound, 4-fluorobenzaldehyde. Out of all 284 target compounds that were analyzed, 167 were visually judged to have reliable elution profiles and were used for final analysis.

Discrete photometric and enzymatic analysis

Discrete photometric and enzymatic analysis (Thermo Scientific TM Gallery TM Plus Beermaster Discrete Analyzer) was used to measure acetic acid, ammonia, beta-glucan, iso-alpha acids, color, sugars, glycerol, iron, pH, protein, and sulfite. 2 ml of sample volume was used for the analyses. Information regarding the reagents and standard solutions used for analyses and calibrations is included in Supplementary Table  S7 and Supplementary Table  S9 .

NIR analyses

NIR analysis (Anton Paar Alcolyzer Beer ME System) was used to measure ethanol. Measurements comprised 50 ml of sample, and a 10% EtOH solution was used for calibration.

Correlation calculations

Pairwise Spearman Rank correlations were calculated between all chemical properties.

Sensory dataset

Trained panel.

Our trained tasting panel consisted of volunteers who gave prior verbal informed consent. All compounds used for the validation experiment were of food-grade quality. The tasting sessions were approved by the Social and Societal Ethics Committee of the KU Leuven (G-2022-5677-R2(MAR)). All online reviewers agreed to the Terms and Conditions of the RateBeer website.

Sensory analysis was performed according to the American Society of Brewing Chemists (ASBC) Sensory Analysis Methods 90 . 30 volunteers were screened through a series of triangle tests. The sixteen most sensitive and consistent tasters were retained as taste panel members. The resulting panel was diverse in age [22–42, mean: 29], sex [56% male] and nationality [7 different countries]. The panel developed a consensus vocabulary to describe beer aroma, taste and mouthfeel. Panelists were trained to identify and score 50 different attributes, using a 7-point scale to rate attributes’ intensity. The scoring sheet is included as Supplementary Data  3 . Sensory assessments took place between 10–12 a.m. The beers were served in black-colored glasses. Per session, between 5 and 12 beers of the same style were tasted at 12 °C to 16 °C. Two reference beers were added to each set and indicated as ‘Reference 1 & 2’, allowing panel members to calibrate their ratings. Not all panelists were present at every tasting. Scores were scaled by standard deviation and mean-centered per taster. Values are represented as z-scores and clustered by Euclidean distance. Pairwise Spearman correlations were calculated between taste and aroma sensory attributes. Panel consistency was evaluated by repeating samples on different sessions and performing ANOVA to identify differences, using the ‘stats’ package (v4.2.2) in R (for package information, see Supplementary Table  S8 ).

Online reviews from a public database

The ‘scrapy’ package in Python (v3.6) (for package information, see Supplementary Table  S8 ). was used to collect 232,288 online reviews (mean=922, min=6, max=5343) from RateBeer, an online beer review database. Each review entry comprised 5 numerical scores (appearance, aroma, taste, palate and overall quality) and an optional review text. The total number of reviews per reviewer was collected separately. Numerical scores were scaled and centered per rater, and mean scores were calculated per beer.

For the review texts, the language was estimated using the packages ‘langdetect’ and ‘langid’ in Python. Reviews that were classified as English by both packages were kept. Reviewers with fewer than 100 entries overall were discarded. 181,025 reviews from >6000 reviewers from >40 countries remained. Text processing was done using the ‘nltk’ package in Python. Texts were corrected for slang and misspellings; proper nouns and rare words that are relevant to the beer context were specified and kept as-is (‘Chimay’,’Lambic’, etc.). A dictionary of semantically similar sensorial terms, for example ‘floral’ and ‘flower’, was created and collapsed together into one term. Words were stemmed and lemmatized to avoid identifying words such as ‘acid’ and ‘acidity’ as separate terms. Numbers and punctuation were removed.

Sentences from up to 50 randomly chosen reviews per beer were manually categorized according to the aspect of beer they describe (appearance, aroma, taste, palate, overall quality—not to be confused with the 5 numerical scores described above) or flagged as irrelevant if they contained no useful information. If a beer contained fewer than 50 reviews, all reviews were manually classified. This labeled data set was used to train a model that classified the rest of the sentences for all beers 91 . Sentences describing taste and aroma were extracted, and term frequency–inverse document frequency (TFIDF) was implemented to calculate enrichment scores for sensorial words per beer.

The sex of the tasting subject was not considered when building our sensory database. Instead, results from different panelists were averaged, both for our trained panel (56% male, 44% female) and the RateBeer reviews (70% male, 30% female for RateBeer as a whole).

Beer price collection and processing

Beer prices were collected from the following stores: Colruyt, Delhaize, Total Wine, BeerHawk, The Belgian Beer Shop, The Belgian Shop, and Beer of Belgium. Where applicable, prices were converted to Euros and normalized per liter. Spearman correlations were calculated between these prices and mean overall appreciation scores from RateBeer and the taste panel, respectively.

Pairwise Spearman Rank correlations were calculated between all sensory properties.

Machine learning models

Predictive modeling of sensory profiles from chemical data.

Regression models were constructed to predict (a) trained panel scores for beer flavors and quality from beer chemical profiles and (b) public reviews’ appreciation scores from beer chemical profiles. Z-scores were used to represent sensory attributes in both data sets. Chemical properties with log-normal distributions (Shapiro-Wilk test, p  <  0.05 ) were log-transformed. Missing chemical measurements (0.1% of all data) were replaced with mean values per attribute. Observations from 250 beers were randomly separated into a training set (70%, 175 beers) and a test set (30%, 75 beers), stratified per beer style. Chemical measurements (p = 231) were normalized based on the training set average and standard deviation. In total, three linear regression-based models: linear regression with first-order interaction terms (LR), lasso regression with first-order interaction terms (Lasso) and partial least squares regression (PLSR); five decision tree models, Adaboost regressor (ABR), Extra Trees (ET), Gradient Boosting regressor (GBR), Random Forest (RF) and XGBoost regressor (XGBR); one support vector machine model (SVR) and one artificial neural network model (ANN) were trained. The models were implemented using the ‘scikit-learn’ package (v1.2.2) and ‘xgboost’ package (v1.7.3) in Python (v3.9.16). Models were trained, and hyperparameters optimized, using five-fold cross-validated grid search with the coefficient of determination (R 2 ) as the evaluation metric. The ANN (scikit-learn’s MLPRegressor) was optimized using Bayesian Tree-Structured Parzen Estimator optimization with the ‘Optuna’ Python package (v3.2.0). Individual models were trained per attribute, and a multi-output model was trained on all attributes simultaneously.

Model dissection

GBR was found to outperform other methods, resulting in models with the highest average R 2 values in both trained panel and public review data sets. Impurity-based rankings of the most important predictors for each predicted sensorial trait were obtained using the ‘scikit-learn’ package. To observe the relationships between these chemical properties and their predicted targets, partial dependence plots (PDP) were constructed for the six most important predictors of consumer appreciation 74 , 75 .

The ‘SHAP’ package in Python (v0.41.0) was implemented to provide an alternative ranking of predictor importance and to visualize the predictors’ effects as a function of their concentration 68 .

Validation of causal chemical properties

To validate the effects of the most important model features on predicted sensory attributes, beers were spiked with the chemical compounds identified by the models and descriptive sensory analyses were carried out according to the American Society of Brewing Chemists (ASBC) protocol 90 .

Compound spiking was done 30 min before tasting. Compounds were spiked into fresh beer bottles, that were immediately resealed and inverted three times. Fresh bottles of beer were opened for the same duration, resealed, and inverted thrice, to serve as controls. Pairs of spiked samples and controls were served simultaneously, chilled and in dark glasses as outlined in the Trained panel section above. Tasters were instructed to select the glass with the higher flavor intensity for each attribute (directional difference test 92 ) and to select the glass they prefer.

The final concentration after spiking was equal to the within-style average, after normalizing by ethanol concentration. This was done to ensure balanced flavor profiles in the final spiked beer. The same methods were applied to improve a non-alcoholic beer. Compounds were the following: ethyl acetate (Merck KGaA, W241415), ethyl hexanoate (Merck KGaA, W243906), isoamyl acetate (Merck KGaA, W205508), phenethyl acetate (Merck KGaA, W285706), ethanol (96%, Colruyt), glycerol (Merck KGaA, W252506), lactic acid (Merck KGaA, 261106).

Significant differences in preference or perceived intensity were determined by performing the two-sided binomial test on each attribute.

Reporting summary

Further information on research design is available in the  Nature Portfolio Reporting Summary linked to this article.

Data availability

The data that support the findings of this work are available in the Supplementary Data files and have been deposited to Zenodo under accession code 10653704 93 . The RateBeer scores data are under restricted access, they are not publicly available as they are property of RateBeer (ZX Ventures, USA). Access can be obtained from the authors upon reasonable request and with permission of RateBeer (ZX Ventures, USA).  Source data are provided with this paper.

Code availability

The code for training the machine learning models, analyzing the models, and generating the figures has been deposited to Zenodo under accession code 10653704 93 .

Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355 , 391–394 (2017).

Article   ADS   CAS   PubMed   Google Scholar  

Plutowska, B. & Wardencki, W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – A review. Food Chem. 107 , 449–463 (2008).

Article   CAS   Google Scholar  

Legin, A., Rudnitskaya, A., Seleznev, B. & Vlasov, Y. Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie. Anal. Chim. Acta 534 , 129–135 (2005).

Loutfi, A., Coradeschi, S., Mani, G. K., Shankar, P. & Rayappan, J. B. B. Electronic noses for food quality: A review. J. Food Eng. 144 , 103–111 (2015).

Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. & Barabási, A.-L. Flavor network and the principles of food pairing. Sci. Rep. 1 , 196 (2011).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bartoshuk, L. M. & Klee, H. J. Better fruits and vegetables through sensory analysis. Curr. Biol. 23 , R374–R378 (2013).

Article   CAS   PubMed   Google Scholar  

Piggott, J. R. Design questions in sensory and consumer science. Food Qual. Prefer. 3293 , 217–220 (1995).

Article   Google Scholar  

Kermit, M. & Lengard, V. Assessing the performance of a sensory panel-panellist monitoring and tracking. J. Chemom. 19 , 154–161 (2005).

Cook, D. J., Hollowood, T. A., Linforth, R. S. T. & Taylor, A. J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 40 , 631–641 (2005).

Chinchanachokchai, S., Thontirawong, P. & Chinchanachokchai, P. A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence based product recommendations. J. Retail. Consum. Serv. 61 , 1–12 (2021).

Ross, C. F. Sensory science at the human-machine interface. Trends Food Sci. Technol. 20 , 63–72 (2009).

Chambers, E. IV & Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 18 , 4887–4905 (2013).

Pinu, F. R. Metabolomics—The new frontier in food safety and quality research. Food Res. Int. 72 , 80–81 (2015).

Danezis, G. P., Tsagkaris, A. S., Brusic, V. & Georgiou, C. A. Food authentication: state of the art and prospects. Curr. Opin. Food Sci. 10 , 22–31 (2016).

Shepherd, G. M. Smell images and the flavour system in the human brain. Nature 444 , 316–321 (2006).

Meilgaard, M. C. Prediction of flavor differences between beers from their chemical composition. J. Agric. Food Chem. 30 , 1009–1017 (1982).

Xu, L. et al. Widespread receptor-driven modulation in peripheral olfactory coding. Science 368 , eaaz5390 (2020).

Kupferschmidt, K. Following the flavor. Science 340 , 808–809 (2013).

Billesbølle, C. B. et al. Structural basis of odorant recognition by a human odorant receptor. Nature 615 , 742–749 (2023).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Smith, B. Perspective: Complexities of flavour. Nature 486 , S6–S6 (2012).

Pfister, P. et al. Odorant receptor inhibition is fundamental to odor encoding. Curr. Biol. 30 , 2574–2587 (2020).

Moskowitz, H. W., Kumaraiah, V., Sharma, K. N., Jacobs, H. L. & Sharma, S. D. Cross-cultural differences in simple taste preferences. Science 190 , 1217–1218 (1975).

Eriksson, N. et al. A genetic variant near olfactory receptor genes influences cilantro preference. Flavour 1 , 22 (2012).

Ferdenzi, C. et al. Variability of affective responses to odors: Culture, gender, and olfactory knowledge. Chem. Senses 38 , 175–186 (2013).

Article   PubMed   Google Scholar  

Lawless, H. T. & Heymann, H. Sensory evaluation of food: Principles and practices. (Springer, New York, NY). https://doi.org/10.1007/978-1-4419-6488-5 (2010).

Colantonio, V. et al. Metabolomic selection for enhanced fruit flavor. Proc. Natl. Acad. Sci. 119 , e2115865119 (2022).

Fritz, F., Preissner, R. & Banerjee, P. VirtualTaste: a web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res 49 , W679–W684 (2021).

Tuwani, R., Wadhwa, S. & Bagler, G. BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules. Sci. Rep. 9 , 1–13 (2019).

Dagan-Wiener, A. et al. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci. Rep. 7 , 1–13 (2017).

Pallante, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci. Rep. 12 , 1–11 (2022).

Malavolta, M. et al. A survey on computational taste predictors. Eur. Food Res. Technol. 248 , 2215–2235 (2022).

Lee, B. K. et al. A principal odor map unifies diverse tasks in olfactory perception. Science 381 , 999–1006 (2023).

Mayhew, E. J. et al. Transport features predict if a molecule is odorous. Proc. Natl. Acad. Sci. 119 , e2116576119 (2022).

Niu, Y. et al. Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose. Food Res. Int. 113 , 102–114 (2018).

Yu, P., Low, M. Y. & Zhou, W. Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 71 , 202–215 (2018).

Oladokun, O. et al. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 205 , 212–220 (2016).

Linforth, R., Cabannes, M., Hewson, L., Yang, N. & Taylor, A. Effect of fat content on flavor delivery during consumption: An in vivo model. J. Agric. Food Chem. 58 , 6905–6911 (2010).

Guo, S., Na Jom, K. & Ge, Y. Influence of roasting condition on flavor profile of sunflower seeds: A flavoromics approach. Sci. Rep. 9 , 11295 (2019).

Ren, Q. et al. The changes of microbial community and flavor compound in the fermentation process of Chinese rice wine using Fagopyrum tataricum grain as feedstock. Sci. Rep. 9 , 3365 (2019).

Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. (Springer, New York, NY). https://doi.org/10.1007/978-0-387-21606-5 (2001).

Dietz, C., Cook, D., Huismann, M., Wilson, C. & Ford, R. The multisensory perception of hop essential oil: a review. J. Inst. Brew. 126 , 320–342 (2020).

CAS   Google Scholar  

Roncoroni, Miguel & Verstrepen, Kevin Joan. Belgian Beer: Tested and Tasted. (Lannoo, 2018).

Meilgaard, M. Flavor chemistry of beer: Part II: Flavor and threshold of 239 aroma volatiles. in (1975).

Bokulich, N. A. & Bamforth, C. W. The microbiology of malting and brewing. Microbiol. Mol. Biol. Rev. MMBR 77 , 157–172 (2013).

Dzialo, M. C., Park, R., Steensels, J., Lievens, B. & Verstrepen, K. J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 41 , S95–S128 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Datta, A. et al. Computer-aided food engineering. Nat. Food 3 , 894–904 (2022).

American Society of Brewing Chemists. Beer Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A.).

Olaniran, A. O., Hiralal, L., Mokoena, M. P. & Pillay, B. Flavour-active volatile compounds in beer: production, regulation and control. J. Inst. Brew. 123 , 13–23 (2017).

Verstrepen, K. J. et al. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Meilgaard, M. C. Flavour chemistry of beer. part I: flavour interaction between principal volatiles. Master Brew. Assoc. Am. Tech. Q 12 , 107–117 (1975).

Briggs, D. E., Boulton, C. A., Brookes, P. A. & Stevens, R. Brewing 227–254. (Woodhead Publishing). https://doi.org/10.1533/9781855739062.227 (2004).

Bossaert, S., Crauwels, S., De Rouck, G. & Lievens, B. The power of sour - A review: Old traditions, new opportunities. BrewingScience 72 , 78–88 (2019).

Google Scholar  

Verstrepen, K. J. et al. Flavor active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Snauwaert, I. et al. Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int. J. Food Microbiol. 221 , 1–11 (2016).

Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 9 , e95384 (2014).

Blanco, C. A., Andrés-Iglesias, C. & Montero, O. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 56 , 1379–1388 (2016).

Jackowski, M. & Trusek, A. Non-Alcohol. beer Prod. – Overv. 20 , 32–38 (2018).

Takoi, K. et al. The contribution of geraniol metabolism to the citrus flavour of beer: Synergy of geraniol and β-citronellol under coexistence with excess linalool. J. Inst. Brew. 116 , 251–260 (2010).

Kroeze, J. H. & Bartoshuk, L. M. Bitterness suppression as revealed by split-tongue taste stimulation in humans. Physiol. Behav. 35 , 779–783 (1985).

Mennella, J. A. et al. A spoonful of sugar helps the medicine go down”: Bitter masking bysucrose among children and adults. Chem. Senses 40 , 17–25 (2015).

Wietstock, P., Kunz, T., Perreira, F. & Methner, F.-J. Metal chelation behavior of hop acids in buffered model systems. BrewingScience 69 , 56–63 (2016).

Sancho, D., Blanco, C. A., Caballero, I. & Pascual, A. Free iron in pale, dark and alcohol-free commercial lager beers. J. Sci. Food Agric. 91 , 1142–1147 (2011).

Rodrigues, H. & Parr, W. V. Contribution of cross-cultural studies to understanding wine appreciation: A review. Food Res. Int. 115 , 251–258 (2019).

Korneva, E. & Blockeel, H. Towards better evaluation of multi-target regression models. in ECML PKDD 2020 Workshops (eds. Koprinska, I. et al.) 353–362 (Springer International Publishing, Cham, 2020). https://doi.org/10.1007/978-3-030-65965-3_23 .

Gastón Ares. Mathematical and Statistical Methods in Food Science and Technology. (Wiley, 2013).

Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep learning on tabular data? Preprint at http://arxiv.org/abs/2207.08815 (2022).

Gries, S. T. Statistics for Linguistics with R: A Practical Introduction. in Statistics for Linguistics with R (De Gruyter Mouton, 2021). https://doi.org/10.1515/9783110718256 .

Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2 , 56–67 (2020).

Ickes, C. M. & Cadwallader, K. R. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens. Percept. 10 , 119–134 (2017).

Kato, M. et al. Influence of high molecular weight polypeptides on the mouthfeel of commercial beer. J. Inst. Brew. 127 , 27–40 (2021).

Wauters, R. et al. Novel Saccharomyces cerevisiae variants slow down the accumulation of staling aldehydes and improve beer shelf-life. Food Chem. 398 , 1–11 (2023).

Li, H., Jia, S. & Zhang, W. Rapid determination of low-level sulfur compounds in beer by headspace gas chromatography with a pulsed flame photometric detector. J. Am. Soc. Brew. Chem. 66 , 188–191 (2008).

Dercksen, A., Laurens, J., Torline, P., Axcell, B. C. & Rohwer, E. Quantitative analysis of volatile sulfur compounds in beer using a membrane extraction interface. J. Am. Soc. Brew. Chem. 54 , 228–233 (1996).

Molnar, C. Interpretable Machine Learning: A Guide for Making Black-Box Models Interpretable. (2020).

Zhao, Q. & Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. Publ. Am. Stat. Assoc. 39 , 272–281 (2019).

Article   MathSciNet   Google Scholar  

Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. (Springer, 2019).

Labrado, D. et al. Identification by NMR of key compounds present in beer distillates and residual phases after dealcoholization by vacuum distillation. J. Sci. Food Agric. 100 , 3971–3978 (2020).

Lusk, L. T., Kay, S. B., Porubcan, A. & Ryder, D. S. Key olfactory cues for beer oxidation. J. Am. Soc. Brew. Chem. 70 , 257–261 (2012).

Gonzalez Viejo, C., Torrico, D. D., Dunshea, F. R. & Fuentes, S. Development of artificial neural network models to assess beer acceptability based on sensory properties using a robotic pourer: A comparative model approach to achieve an artificial intelligence system. Beverages 5 , 33 (2019).

Gonzalez Viejo, C., Fuentes, S., Torrico, D. D., Godbole, A. & Dunshea, F. R. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 293 , 479–485 (2019).

Gilbert, J. L. et al. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. PLOS ONE 10 , 1–21 (2015).

Goulet, C. et al. Role of an esterase in flavor volatile variation within the tomato clade. Proc. Natl. Acad. Sci. 109 , 19009–19014 (2012).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Borisov, V. et al. Deep Neural Networks and Tabular Data: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 1–21 https://doi.org/10.1109/TNNLS.2022.3229161 (2022).

Statista. Statista Consumer Market Outlook: Beer - Worldwide.

Seitz, H. K. & Stickel, F. Molecular mechanisms of alcoholmediated carcinogenesis. Nat. Rev. Cancer 7 , 599–612 (2007).

Voordeckers, K. et al. Ethanol exposure increases mutation rate through error-prone polymerases. Nat. Commun. 11 , 3664 (2020).

Goelen, T. et al. Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid. Oikos 129 , 1415–1428 (2020).

Article   ADS   Google Scholar  

Reher, T. et al. Evaluation of hop (Humulus lupulus) as a repellent for the management of Drosophila suzukii. Crop Prot. 124 , 104839 (2019).

Stein, S. E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10 , 770–781 (1999).

American Society of Brewing Chemists. Sensory Analysis Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A., 1992).

McAuley, J., Leskovec, J. & Jurafsky, D. Learning Attitudes and Attributes from Multi-Aspect Reviews. Preprint at https://doi.org/10.48550/arXiv.1210.3926 (2012).

Meilgaard, M. C., Carr, B. T. & Carr, B. T. Sensory Evaluation Techniques. (CRC Press, Boca Raton). https://doi.org/10.1201/b16452 (2014).

Schreurs, M. et al. Data from: Predicting and improving complex beer flavor through machine learning. Zenodo https://doi.org/10.5281/zenodo.10653704 (2024).

Download references

Acknowledgements

We thank all lab members for their discussions and thank all tasting panel members for their contributions. Special thanks go out to Dr. Karin Voordeckers for her tremendous help in proofreading and improving the manuscript. M.S. was supported by a Baillet-Latour fellowship, L.C. acknowledges financial support from KU Leuven (C16/17/006), F.A.T. was supported by a PhD fellowship from FWO (1S08821N). Research in the lab of K.J.V. is supported by KU Leuven, FWO, VIB, VLAIO and the Brewing Science Serves Health Fund. Research in the lab of T.W. is supported by FWO (G.0A51.15) and KU Leuven (C16/17/006).

Author information

These authors contributed equally: Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni.

Authors and Affiliations

VIB—KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni, Lloyd Cool, Beatriz Herrera-Malaver, Florian A. Theßeling & Kevin J. Verstrepen

CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium

Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium

Lloyd Cool, Christophe Vanderaa & Tom Wenseleers

VIB Bioinformatics Core, VIB, Rijvisschestraat 120, B-9052, Ghent, Belgium

Łukasz Kreft & Alexander Botzki

AB InBev SA/NV, Brouwerijplein 1, B-3000, Leuven, Belgium

Philippe Malcorps & Luk Daenen

You can also search for this author in PubMed   Google Scholar

Contributions

S.P., M.S. and K.J.V. conceived the experiments. S.P., M.S. and K.J.V. designed the experiments. S.P., M.S., M.R., B.H. and F.A.T. performed the experiments. S.P., M.S., L.C., C.V., L.K., A.B., P.M., L.D., T.W. and K.J.V. contributed analysis ideas. S.P., M.S., L.C., C.V., T.W. and K.J.V. analyzed the data. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Kevin J. Verstrepen .

Ethics declarations

Competing interests.

K.J.V. is affiliated with bar.on. The other authors declare no competing interests.

Peer review

Peer review information.

Nature Communications thanks Florian Bauer, Andrew John Macintosh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, description of additional supplementary files, supplementary data 1, supplementary data 2, supplementary data 3, supplementary data 4, supplementary data 5, supplementary data 6, supplementary data 7, reporting summary, source data, source data, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Schreurs, M., Piampongsant, S., Roncoroni, M. et al. Predicting and improving complex beer flavor through machine learning. Nat Commun 15 , 2368 (2024). https://doi.org/10.1038/s41467-024-46346-0

Download citation

Received : 30 October 2023

Accepted : 21 February 2024

Published : 26 March 2024

DOI : https://doi.org/10.1038/s41467-024-46346-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

how to write background of the study in research pdf

  • Study Guides
  • Homework Questions

W08 Quiz Preparing to Evaluate Scholarly Research WritingReasoning Foundation

  • Communications

medRxiv

Through the patients' eyes - Psychometric evaluation of the 64-item version of the Experienced Patient-Centeredness Questionnaire (EPAT-64)

  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eva Christalle
  • ORCID record for Stefan Zeh
  • ORCID record for Hannah Fuehres
  • ORCID record for Pola Hahlweg
  • ORCID record for Joerdis Maria Zill
  • ORCID record for Martin Haerter
  • ORCID record for Carsten Bokemeyer
  • ORCID record for Juergen Gallinat
  • ORCID record for Christoffer Gebhardt
  • ORCID record for Christina Magnussen
  • ORCID record for Katharina Schmalstieg-Bahr
  • ORCID record for Andre Strahl
  • ORCID record for Levente Kriston
  • ORCID record for Isabelle Scholl
  • For correspondence: [email protected]
  • Info/History
  • Supplementary material
  • Preview PDF

Background Patient-reported experience measures (PREMs) are valuable tools for evaluating patient-centeredness (PC) from the patients' perspective. Despite their utility, a comprehensive PREM addressing PC has been lacking. To bridge this gap, we developed the preliminary version of the Experienced Patient-Centeredness Questionnaire (EPAT), a disease-generic tool based on the integrative model of PC comprising 16 dimensions. It demonstrated content validity. The aim of this study was to test its psychometric properties and to develop a final 64-items version (EPAT-64). Methods In this cross-sectional study, we included adult patients treated for cardiovascular diseases, cancer, musculoskeletal diseases, and mental disorders in inpatient or outpatient settings in Germany. For each dimension of PC, we selected four items based on item characteristics such as item difficulty and corrected item-total correlation. We tested structural validity using confirmatory factor analysis, examined reliability by McDondald's Omega, and tested construct validity by examining correlations with general health status and satisfaction with care. Results Analysis of data from 2.024 patients showed excellent acceptance and acceptable item-total-correlations for all EPAT-64 items, with few items demonstrating ceiling effects. The confirmatory factor analysis indicated the best fit of a bifactor model, where each item loaded on both a general factor and a dimension-specific factor. Omega showed high reliability for the general factor while varying for specific dimensions. Construct validity was confirmed by absence of strong correlations with general health status and a strong correlation of the general factor with satisfaction with care. Conclusions The EPAT-64 demonstrated commendable psychometric properties. This tool allows comprehensive assessment of PC, offering flexibility to users who can measure each dimension with a 4-item module or choose modules based on their needs. The EPAT-64 serves multiple purposes, including quality improvement initiatives and evaluation of interventions aiming to enhance PC. Its versatility empowers users in diverse healthcare settings. What is already known on this topic: Patient-reported experience measures (PREMs) can be used to assess patient-centeredness (PC) from the patients' perspective. The "Experienced Patient-Centeredness Questionnaire" (EPAT) is the first PREM to comprehensively assess 16 dimensions of PC. What this study adds: In this study, we tested the psychometric properties of all items developed for the EPAT and developed the 64-item version of the EPAT (EPAT-64), which demonstrated good psychometric properties. How this study might affect research, practice or policy: The EPAT-64 can be used in research and routine care, e.g. to evaluate interventions, provide feedback to healthcare professionals, support quality improvement, set benchmarks, and, consequently improve PC.

Competing Interest Statement

PH declares to have no financial conflicts of interest. PH is a board member of the International Shared Decision Making Society, a charitable scientific society. PH received research funding from German Research Foundation, University of Hamburg and Robert-Bosch-Foundation. IS received honoraria for presentations and speeches on patient-centered care from the following commercial entities: onkowissen.de GmbH, ClinSol GmbH & Co. KG. All other authors declare that they have no competing interests.

Clinical Protocols

https://bmjopen.bmj.com/content/bmjopen/8/10/e025896.full.pdf

Funding Statement

This study was funded by the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung - BMBF) with the grant number 01GY1614.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study had been approved by the Ethics Committee of the Medical Association Hamburg (study ID: PV5724).

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Data Availability

All data produced in the present study are available upon reasonable request to the authors.

https://www.uke.de/epat

View the discussion thread.

Supplementary Material

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Reddit logo

Citation Manager Formats

  • EndNote (tagged)
  • EndNote 8 (xml)
  • RefWorks Tagged
  • Ref Manager
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Systems and Quality Improvement
  • Addiction Medicine (313)
  • Allergy and Immunology (617)
  • Anesthesia (158)
  • Cardiovascular Medicine (2258)
  • Dentistry and Oral Medicine (279)
  • Dermatology (201)
  • Emergency Medicine (368)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (795)
  • Epidemiology (11553)
  • Forensic Medicine (10)
  • Gastroenterology (676)
  • Genetic and Genomic Medicine (3547)
  • Geriatric Medicine (336)
  • Health Economics (612)
  • Health Informatics (2288)
  • Health Policy (910)
  • Health Systems and Quality Improvement (859)
  • Hematology (333)
  • HIV/AIDS (744)
  • Infectious Diseases (except HIV/AIDS) (13129)
  • Intensive Care and Critical Care Medicine (754)
  • Medical Education (357)
  • Medical Ethics (100)
  • Nephrology (387)
  • Neurology (3332)
  • Nursing (190)
  • Nutrition (505)
  • Obstetrics and Gynecology (648)
  • Occupational and Environmental Health (643)
  • Oncology (1749)
  • Ophthalmology (524)
  • Orthopedics (208)
  • Otolaryngology (284)
  • Pain Medicine (223)
  • Palliative Medicine (66)
  • Pathology (437)
  • Pediatrics (998)
  • Pharmacology and Therapeutics (418)
  • Primary Care Research (399)
  • Psychiatry and Clinical Psychology (3046)
  • Public and Global Health (5977)
  • Radiology and Imaging (1216)
  • Rehabilitation Medicine and Physical Therapy (711)
  • Respiratory Medicine (808)
  • Rheumatology (367)
  • Sexual and Reproductive Health (345)
  • Sports Medicine (312)
  • Surgery (383)
  • Toxicology (50)
  • Transplantation (170)
  • Urology (142)
  • Share full article

Advertisement

Supported by

What the Data Says About Pandemic School Closures, Four Years Later

The more time students spent in remote instruction, the further they fell behind. And, experts say, extended closures did little to stop the spread of Covid.

Sarah Mervosh

By Sarah Mervosh ,  Claire Cain Miller and Francesca Paris

Four years ago this month, schools nationwide began to shut down, igniting one of the most polarizing and partisan debates of the pandemic.

Some schools, often in Republican-led states and rural areas, reopened by fall 2020. Others, typically in large cities and states led by Democrats, would not fully reopen for another year.

A variety of data — about children’s academic outcomes and about the spread of Covid-19 — has accumulated in the time since. Today, there is broad acknowledgment among many public health and education experts that extended school closures did not significantly stop the spread of Covid, while the academic harms for children have been large and long-lasting.

While poverty and other factors also played a role, remote learning was a key driver of academic declines during the pandemic, research shows — a finding that held true across income levels.

Source: Fahle, Kane, Patterson, Reardon, Staiger and Stuart, “ School District and Community Factors Associated With Learning Loss During the COVID-19 Pandemic .” Score changes are measured from 2019 to 2022. In-person means a district offered traditional in-person learning, even if not all students were in-person.

“There’s fairly good consensus that, in general, as a society, we probably kept kids out of school longer than we should have,” said Dr. Sean O’Leary, a pediatric infectious disease specialist who helped write guidance for the American Academy of Pediatrics, which recommended in June 2020 that schools reopen with safety measures in place.

There were no easy decisions at the time. Officials had to weigh the risks of an emerging virus against the academic and mental health consequences of closing schools. And even schools that reopened quickly, by the fall of 2020, have seen lasting effects.

But as experts plan for the next public health emergency, whatever it may be, a growing body of research shows that pandemic school closures came at a steep cost to students.

The longer schools were closed, the more students fell behind.

At the state level, more time spent in remote or hybrid instruction in the 2020-21 school year was associated with larger drops in test scores, according to a New York Times analysis of school closure data and results from the National Assessment of Educational Progress , an authoritative exam administered to a national sample of fourth- and eighth-grade students.

At the school district level, that finding also holds, according to an analysis of test scores from third through eighth grade in thousands of U.S. districts, led by researchers at Stanford and Harvard. In districts where students spent most of the 2020-21 school year learning remotely, they fell more than half a grade behind in math on average, while in districts that spent most of the year in person they lost just over a third of a grade.

( A separate study of nearly 10,000 schools found similar results.)

Such losses can be hard to overcome, without significant interventions. The most recent test scores, from spring 2023, show that students, overall, are not caught up from their pandemic losses , with larger gaps remaining among students that lost the most ground to begin with. Students in districts that were remote or hybrid the longest — at least 90 percent of the 2020-21 school year — still had almost double the ground to make up compared with students in districts that allowed students back for most of the year.

Some time in person was better than no time.

As districts shifted toward in-person learning as the year went on, students that were offered a hybrid schedule (a few hours or days a week in person, with the rest online) did better, on average, than those in places where school was fully remote, but worse than those in places that had school fully in person.

Students in hybrid or remote learning, 2020-21

80% of students

Some schools return online, as Covid-19 cases surge. Vaccinations start for high-priority groups.

Teachers are eligible for the Covid vaccine in more than half of states.

Most districts end the year in-person or hybrid.

Source: Burbio audit of more than 1,200 school districts representing 47 percent of U.S. K-12 enrollment. Note: Learning mode was defined based on the most in-person option available to students.

Income and family background also made a big difference.

A second factor associated with academic declines during the pandemic was a community’s poverty level. Comparing districts with similar remote learning policies, poorer districts had steeper losses.

But in-person learning still mattered: Looking at districts with similar poverty levels, remote learning was associated with greater declines.

A community’s poverty rate and the length of school closures had a “roughly equal” effect on student outcomes, said Sean F. Reardon, a professor of poverty and inequality in education at Stanford, who led a district-level analysis with Thomas J. Kane, an economist at Harvard.

Score changes are measured from 2019 to 2022. Poorest and richest are the top and bottom 20% of districts by percent of students on free/reduced lunch. Mostly in-person and mostly remote are districts that offered traditional in-person learning for more than 90 percent or less than 10 percent of the 2020-21 year.

But the combination — poverty and remote learning — was particularly harmful. For each week spent remote, students in poor districts experienced steeper losses in math than peers in richer districts.

That is notable, because poor districts were also more likely to stay remote for longer .

Some of the country’s largest poor districts are in Democratic-leaning cities that took a more cautious approach to the virus. Poor areas, and Black and Hispanic communities , also suffered higher Covid death rates, making many families and teachers in those districts hesitant to return.

“We wanted to survive,” said Sarah Carpenter, the executive director of Memphis Lift, a parent advocacy group in Memphis, where schools were closed until spring 2021 .

“But I also think, man, looking back, I wish our kids could have gone back to school much quicker,” she added, citing the academic effects.

Other things were also associated with worse student outcomes, including increased anxiety and depression among adults in children’s lives, and the overall restriction of social activity in a community, according to the Stanford and Harvard research .

Even short closures had long-term consequences for children.

While being in school was on average better for academic outcomes, it wasn’t a guarantee. Some districts that opened early, like those in Cherokee County, Ga., a suburb of Atlanta, and Hanover County, Va., lost significant learning and remain behind.

At the same time, many schools are seeing more anxiety and behavioral outbursts among students. And chronic absenteeism from school has surged across demographic groups .

These are signs, experts say, that even short-term closures, and the pandemic more broadly, had lasting effects on the culture of education.

“There was almost, in the Covid era, a sense of, ‘We give up, we’re just trying to keep body and soul together,’ and I think that was corrosive to the higher expectations of schools,” said Margaret Spellings, an education secretary under President George W. Bush who is now chief executive of the Bipartisan Policy Center.

Closing schools did not appear to significantly slow Covid’s spread.

Perhaps the biggest question that hung over school reopenings: Was it safe?

That was largely unknown in the spring of 2020, when schools first shut down. But several experts said that had changed by the fall of 2020, when there were initial signs that children were less likely to become seriously ill, and growing evidence from Europe and parts of the United States that opening schools, with safety measures, did not lead to significantly more transmission.

“Infectious disease leaders have generally agreed that school closures were not an important strategy in stemming the spread of Covid,” said Dr. Jeanne Noble, who directed the Covid response at the U.C.S.F. Parnassus emergency department.

Politically, though, there remains some disagreement about when, exactly, it was safe to reopen school.

Republican governors who pushed to open schools sooner have claimed credit for their approach, while Democrats and teachers’ unions have emphasized their commitment to safety and their investment in helping students recover.

“I do believe it was the right decision,” said Jerry T. Jordan, president of the Philadelphia Federation of Teachers, which resisted returning to school in person over concerns about the availability of vaccines and poor ventilation in school buildings. Philadelphia schools waited to partially reopen until the spring of 2021 , a decision Mr. Jordan believes saved lives.

“It doesn’t matter what is going on in the building and how much people are learning if people are getting the virus and running the potential of dying,” he said.

Pandemic school closures offer lessons for the future.

Though the next health crisis may have different particulars, with different risk calculations, the consequences of closing schools are now well established, experts say.

In the future, infectious disease experts said, they hoped decisions would be guided more by epidemiological data as it emerged, taking into account the trade-offs.

“Could we have used data to better guide our decision making? Yes,” said Dr. Uzma N. Hasan, division chief of pediatric infectious diseases at RWJBarnabas Health in Livingston, N.J. “Fear should not guide our decision making.”

Source: Fahle, Kane, Patterson, Reardon, Staiger and Stuart, “ School District and Community Factors Associated With Learning Loss During the Covid-19 Pandemic. ”

The study used estimates of learning loss from the Stanford Education Data Archive . For closure lengths, the study averaged district-level estimates of time spent in remote and hybrid learning compiled by the Covid-19 School Data Hub (C.S.D.H.) and American Enterprise Institute (A.E.I.) . The A.E.I. data defines remote status by whether there was an in-person or hybrid option, even if some students chose to remain virtual. In the C.S.D.H. data set, districts are defined as remote if “all or most” students were virtual.

An earlier version of this article misstated a job description of Dr. Jeanne Noble. She directed the Covid response at the U.C.S.F. Parnassus emergency department. She did not direct the Covid response for the University of California, San Francisco health system.

How we handle corrections

Sarah Mervosh covers education for The Times, focusing on K-12 schools. More about Sarah Mervosh

Claire Cain Miller writes about gender, families and the future of work for The Upshot. She joined The Times in 2008 and was part of a team that won a Pulitzer Prize in 2018 for public service for reporting on workplace sexual harassment issues. More about Claire Cain Miller

Francesca Paris is a Times reporter working with data and graphics for The Upshot. More about Francesca Paris

IMAGES

  1. Writing the background of the study in research

    how to write background of the study in research pdf

  2. Background of The Study

    how to write background of the study in research pdf

  3. How to Write the Background of the Study in Research?

    how to write background of the study in research pdf

  4. how to write background of the study in research paper l y step by step

    how to write background of the study in research pdf

  5. Background of the study in research: guide on how to write one

    how to write background of the study in research pdf

  6. How To Write Background of The Study in Research

    how to write background of the study in research pdf

VIDEO

  1. Tips on Writing the Background of the Study

  2. How to Write Chapter II Theoretical Background/Review of Related Literature and Studies

  3. The Research Introduction and Background of the Study

  4. How to access and download paid research papers for free (all steps)?

  5. How To Write Research Proposal

  6. 02_How to Set the Background of Your Article, Write Rationale and Objective(s)?

COMMENTS

  1. Procedure for Writing a Background Study for A Research Paper -with a Practical Example by Dr Benard Lango

    How to write a background study for a research paper that meets the academic standards and expectations? This PDF document provides a clear and comprehensive procedure with a practical example by ...

  2. Background of The Study

    Here are the steps to write the background of the study in a research paper: Identify the research problem: Start by identifying the research problem that your study aims to address. This can be a particular issue, a gap in the literature, or a need for further investigation. Conduct a literature review: Conduct a thorough literature review to ...

  3. PDF How to approach writing a background section

    A good background section. Describes current state of knowledge. Explains rationale for question (how & why) Sets up design choices. Backs these up with current references.

  4. What is the Background of a Study and How Should it be Written?

    The background of a study is the first section of the paper and establishes the context underlying the research. It contains the rationale, the key problem statement, and a brief overview of research questions that are addressed in the rest of the paper. The background forms the crux of the study because it introduces an unaware audience to the ...

  5. How to Write an Effective Background of the Study

    How to write the background of the study in a research paper? The journey of presenting a compelling argument begins with the background study. This section holds the power to either captivate or lose the reader's interest. An effectively written background not only provides context but also sets the tone for the entire research paper.

  6. (Pdf) Procedure for Writing a Background Study for A Research Paper

    It is important to note that research background study will define the relevance of the study topic and whether its intention to contribute to the area of knowledge is relevant. In order to be able to write background study, the study area commonly described by the study topic will be of at most importance.

  7. How to write the background of your study

    Focus on including all the important details but write concisely. Don't be ambiguous. Writing in a way that does not convey the message to the readers defeats the purpose of the background, so express yourself keeping in mind that the reader does not know your research intimately. Don't discuss unrelated themes.

  8. Writing a Research Article: The Introduction and Background Sections

    The introduction and background sections to a research article are often overlooked and fitted in around the study design. Everyone is understandably keen to write up their method and publish their results. But not only do these sections set the tone and structure for both the article and the study to be described, they also have the potential ...

  9. PDF Thesis and dissertation writing: Writing the background chapters

    Writing the Background Chapters of Your Thesis Brian Paltridge The University of Sydney. Areas to cover in a research thesis (Phillips and Pugh, 2005) Background to the study. Focus of the study Data used in the study Contribution of the study A state of art review of the field of study, including current developments, controversies and ...

  10. What is the Background of the Study and How to Write It

    The background of the study is the first section of a research paper and gives context surrounding the research topic. The background explains to the reader where your research journey started, why you got interested in the topic, and how you developed the research question that you will later specify. That means that you first establish the ...

  11. What is the Background of a Study and How to Write It

    The background of a study in a research paper helps to establish the research problem or gap in knowledge that the study aims to address, sets the stage for the research question and objectives, and highlights the significance of the research. The background of a study also includes a review of relevant literature, which helps researchers ...

  12. PDF Guidelines for Writing Research Proposals and Dissertations

    Chapter 1, which introduces the study and states the focus of the study, begins with background information regarding the problem under investigation. The Introduction should provide readers with a brief summary of literature and research related to the problem being investigated, and should lead up to the statement of the problem.

  13. How to write a background of the study in quantitative research?

    Answer: The background forms the first part of the Introduction section. It provides context for your study and helps the readers understand why your research topic is important. It gives a brief overview of the research done on the topic so far and mentions the gaps that have remained unaddressed as well as the need to address them.

  14. How to write the Introduction and the background for a research paper

    The background forms the first part of the Introduction section. It provides context for your study and helps the readers understand why your research topic is important. It gives a brief overview of the research done on the topic so far and mentions the gaps that have remained unaddressed as well as the need to address them.

  15. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  16. How to Write the Background of the Study in Research (Part 1)

    The background of the study, which usually forms the first section of the introduction to a research paper or thesis, provides the overview of the study. In other words, it is that section of the research paper or thesis that establishes the context of the study. Its main function is to explain why the proposed research is important and ...

  17. How To Write Background of The Study in Research

    How to Write Background of the Study in Research - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free. yoy

  18. Q: How to write the background to the study in a research paper?

    Answer: The background of the study provides context to the information that you are discussing in your paper. Thus, the background of the study generates the reader's interest in your research question and helps them understand why your study is important. For instance, in case of your study, the background can include a discussion on how ...

  19. Predicting and improving complex beer flavor through machine ...

    Abstract. The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we ...

  20. W08 Quiz Preparing to Evaluate Scholarly Research ...

    Complete the quiz by the due date. This quiz is open-book. You may take this quiz as many times as necessary. Canvas will keep the average of all your scores. Take the Quiz Again If a source is published in a scholarly journal, you don't have to evaluate it. You can just assume it's credible.

  21. How To Write Background of The Study in Research

    How-to-write-background-of-the-study-in-research - Free download as Word Doc (.doc / .docx), PDF File (.pdf), Text File (.txt) or read online for free.

  22. Through the patients' eyes

    Background Patient-reported experience measures (PREMs) are valuable tools for evaluating patient-centeredness (PC) from the patients' perspective. Despite their utility, a comprehensive PREM addressing PC has been lacking. To bridge this gap, we developed the preliminary version of the Experienced Patient-Centeredness Questionnaire (EPAT), a disease-generic tool based on the integrative model ...

  23. What the Data Says About Pandemic School Closures, Four Years Later

    For closure lengths, the study averaged district-level estimates of time spent in remote and hybrid learning compiled by the Covid-19 School Data Hub (C.S.D.H.) and American Enterprise Institute ...