Logo for Kwantlen Polytechnic University

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Non-Experimental Research

28 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research. It is simply used in cases where experimental research is not able to be carried out.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., how accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach is appropriate. But the two approaches can also be used to address the same research question in complementary ways. For example, in Milgram’s original (non-experimental) obedience study, he was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. However,  Milgram subsequently conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into two broad categories: correlational research and observational research. 

The most common type of non-experimental research conducted in psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable. More specifically, in correlational research , the researcher measures two variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related.

Observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories).

Cross-Sectional, Longitudinal, and Cross-Sequential Studies

When psychologists wish to study change over time (for example, when developmental psychologists wish to study aging) they usually take one of three non-experimental approaches: cross-sectional, longitudinal, or cross-sequential. Cross-sectional studies involve comparing two or more pre-existing groups of people (e.g., children at different stages of development). What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect ) rather than a direct effect of age. For this reason, longitudinal studies , in which one group of people is followed over time as they age, offer a superior means of studying the effects of aging. However, longitudinal studies are by definition more time consuming and so require a much greater investment on the part of the researcher and the participants. A third approach, known as cross-sequential studies , combines elements of both cross-sectional and longitudinal studies. Rather than measuring differences between people in different age groups or following the same people over a long period of time, researchers adopting this approach choose a smaller period of time during which they follow people in different age groups. For example, they might measure changes over a ten year period among participants who at the start of the study fall into the following age groups: 20 years old, 30 years old, 40 years old, 50 years old, and 60 years old. This design is advantageous because the researcher reaps the immediate benefits of being able to compare the age groups after the first assessment. Further, by following the different age groups over time they can subsequently determine whether the original differences they found across the age groups are due to true age effects or cohort effects.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in psychiatric wards was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.1 shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) falls in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the inability to randomly assign children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 6.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Notice also in  Figure 6.1 that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational (non-experimental) studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

A research that lacks the manipulation of an independent variable.

Research that is non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.

Research that is non-experimental because it focuses on recording systemic observations of behavior in a natural or laboratory setting without manipulating anything.

Studies that involve comparing two or more pre-existing groups of people (e.g., children at different stages of development).

Differences between the groups may reflect the generation that people come from rather than a direct effect of age.

Studies in which one group of people are followed over time as they age.

Studies in which researchers follow people in different age groups in a smaller period of time.

Research Methods in Psychology Copyright © 2019 by Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 7: Nonexperimental Research

Overview of Nonexperimental Research

Learning Objectives

  • Define nonexperimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct nonexperimental research as opposed to experimental research.

What Is Nonexperimental Research?

Nonexperimental research  is research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

In a sense, it is unfair to define this large and diverse set of approaches collectively by what they are  not . But doing so reflects the fact that most researchers in psychology consider the distinction between experimental and nonexperimental research to be an extremely important one. This distinction is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, nonexperimental research generally cannot. As we will see, however, this inability does not mean that nonexperimental research is less important than experimental research or inferior to it in any general sense.

When to Use Nonexperimental Research

As we saw in  Chapter 6 , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable and randomly assign participants to conditions or to orders of conditions. It stands to reason, therefore, that nonexperimental research is appropriate—even necessary—when these conditions are not met. There are many ways in which preferring nonexperimental research can be the case.

  • The research question or hypothesis can be about a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • The research question can be about a noncausal statistical relationship between variables (e.g., Is there a correlation between verbal intelligence and mathematical intelligence?).
  • The research question can be about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions (e.g., Does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • The research question can be broad and exploratory, or it can be about what it is like to have a particular experience (e.g., What is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and nonexperimental approaches is generally dictated by the nature of the research question. If it is about a causal relationship and involves an independent variable that can be manipulated, the experimental approach is typically preferred. Otherwise, the nonexperimental approach is preferred. But the two approaches can also be used to address the same research question in complementary ways. For example, nonexperimental studies establishing that there is a relationship between watching violent television and aggressive behaviour have been complemented by experimental studies confirming that the relationship is a causal one (Bushman & Huesmann, 2001) [1] . Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [2] .

Types of Nonexperimental Research

Nonexperimental research falls into three broad categories: single-variable research, correlational and quasi-experimental research, and qualitative research. First, research can be nonexperimental because it focuses on a single variable rather than a statistical relationship between two variables. Although there is no widely shared term for this kind of research, we will call it  single-variable research . Milgram’s original obedience study was nonexperimental in this way. He was primarily interested in one variable—the extent to which participants obeyed the researcher when he told them to shock the confederate—and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of single-variable research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the research asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.)

As these examples make clear, single-variable research can answer interesting and important questions. What it cannot do, however, is answer questions about statistical relationships between variables. This detail is a point that beginning researchers sometimes miss. Imagine, for example, a group of research methods students interested in the relationship between children’s being the victim of bullying and the children’s self-esteem. The first thing that is likely to occur to these researchers is to obtain a sample of middle-school students who have been bullied and then to measure their self-esteem. But this design would be a single-variable study with self-esteem as the only variable. Although it would tell the researchers something about the self-esteem of children who have been bullied, it would not tell them what they really want to know, which is how the self-esteem of children who have been bullied  compares  with the self-esteem of children who have not. Is it lower? Is it the same? Could it even be higher? To answer this question, their sample would also have to include middle-school students who have not been bullied thereby introducing another variable.

Research can also be nonexperimental because it focuses on a statistical relationship between two variables but does not include the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both. This kind of research takes two basic forms: correlational research and quasi-experimental research. In correlational research , the researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them. A research methods student who finds out whether each of several middle-school students has been bullied and then measures each student’s self-esteem is conducting correlational research. In  quasi-experimental research , the researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions. For example, a researcher might start an antibullying program (a kind of treatment) at one school and compare the incidence of bullying at that school with the incidence at a similar school that has no antibullying program.

The final way in which research can be nonexperimental is that it can be qualitative. The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semipublic room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256). [3] Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 7.1  shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends to be highest because it addresses the directionality and third-variable problems through manipulation and the control of extraneous variables through random assignment. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Correlational research is lowest because it fails to address either problem. If the average score on the dependent variable differs across levels of the independent variable, it  could  be that the independent variable is responsible, but there are other interpretations. In some situations, the direction of causality could be reversed. In others, there could be a third variable that is causing differences in both the independent and dependent variables. Quasi-experimental research is in the middle because the manipulation of the independent variable addresses some problems, but the lack of random assignment and experimental control fails to address others. Imagine, for example, that a researcher finds two similar schools, starts an antibullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” There is no directionality problem because clearly the number of bullying incidents did not determine which school got the program. However, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying.

""

Notice also in  Figure 7.1  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in  Chapter 5.

Key Takeaways

  • Nonexperimental research is research that lacks the manipulation of an independent variable, control of extraneous variables through random assignment, or both.
  • There are three broad types of nonexperimental research. Single-variable research focuses on a single variable rather than a relationship between variables. Correlational and quasi-experimental research focus on a statistical relationship but lack manipulation or random assignment. Qualitative research focuses on broader research questions, typically involves collecting large amounts of data from a small number of participants, and analyses the data nonstatistically.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.

Discussion: For each of the following studies, decide which type of research design it is and explain why.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage. ↵
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Research that lacks the manipulation of an independent variable, random assignment of participants to conditions or orders of conditions, or both.

Research that focuses on a single variable rather than a statistical relationship between two variables.

The researcher measures the two variables of interest with little or no attempt to control extraneous variables and then assesses the relationship between them.

The researcher manipulates an independent variable but does not randomly assign participants to conditions or orders of conditions.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

is a case study non experimental

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • v.11(2); 2019 Feb

Logo of cureus

Planning and Conducting Clinical Research: The Whole Process

Boon-how chew.

1 Family Medicine, Universiti Putra Malaysia, Serdang, MYS

The goal of this review was to present the essential steps in the entire process of clinical research. Research should begin with an educated idea arising from a clinical practice issue. A research topic rooted in a clinical problem provides the motivation for the completion of the research and relevancy for affecting medical practice changes and improvements. The research idea is further informed through a systematic literature review, clarified into a conceptual framework, and defined into an answerable research question. Engagement with clinical experts, experienced researchers, relevant stakeholders of the research topic, and even patients can enhance the research question’s relevance, feasibility, and efficiency. Clinical research can be completed in two major steps: study designing and study reporting. Three study designs should be planned in sequence and iterated until properly refined: theoretical design, data collection design, and statistical analysis design. The design of data collection could be further categorized into three facets: experimental or non-experimental, sampling or census, and time features of the variables to be studied. The ultimate aims of research reporting are to present findings succinctly and timely. Concise, explicit, and complete reporting are the guiding principles in clinical studies reporting.

Introduction and background

Medical and clinical research can be classified in many different ways. Probably, most people are familiar with basic (laboratory) research, clinical research, healthcare (services) research, health systems (policy) research, and educational research. Clinical research in this review refers to scientific research related to clinical practices. There are many ways a clinical research's findings can become invalid or less impactful including ignorance of previous similar studies, a paucity of similar studies, poor study design and implementation, low test agent efficacy, no predetermined statistical analysis, insufficient reporting, bias, and conflicts of interest [ 1 - 4 ]. Scientific, ethical, and moral decadence among researchers can be due to incognizant criteria in academic promotion and remuneration and too many forced studies by amateurs and students for the sake of research without adequate training or guidance [ 2 , 5 - 6 ]. This article will review the proper methods to conduct medical research from the planning stage to submission for publication (Table ​ (Table1 1 ).

a Feasibility and efficiency are considered during the refinement of the research question and adhered to during data collection.

Epidemiologic studies in clinical and medical fields focus on the effect of a determinant on an outcome [ 7 ]. Measurement errors that happen systematically give rise to biases leading to invalid study results, whereas random measurement errors will cause imprecise reporting of effects. Precision can usually be increased with an increased sample size provided biases are avoided or trivialized. Otherwise, the increased precision will aggravate the biases. Because epidemiologic, clinical research focuses on measurement, measurement errors are addressed throughout the research process. Obtaining the most accurate estimate of a treatment effect constitutes the whole business of epidemiologic research in clinical practice. This is greatly facilitated by clinical expertise and current scientific knowledge of the research topic. Current scientific knowledge is acquired through literature reviews or in collaboration with an expert clinician. Collaboration and consultation with an expert clinician should also include input from the target population to confirm the relevance of the research question. The novelty of a research topic is less important than the clinical applicability of the topic. Researchers need to acquire appropriate writing and reporting skills from the beginning of their careers, and these skills should improve with persistent use and regular reviewing of published journal articles. A published clinical research study stands on solid scientific ground to inform clinical practice given the article has passed through proper peer-reviews, revision, and content improvement.

Systematic literature reviews

Systematic literature reviews of published papers will inform authors of the existing clinical evidence on a research topic. This is an important step to reduce wasted efforts and evaluate the planned study [ 8 ]. Conducting a systematic literature review is a well-known important step before embarking on a new study [ 9 ]. A rigorously performed and cautiously interpreted systematic review that includes in-process trials can inform researchers of several factors [ 10 ]. Reviewing the literature will inform the choice of recruitment methods, outcome measures, questionnaires, intervention details, and statistical strategies – useful information to increase the study’s relevance, value, and power. A good review of previous studies will also provide evidence of the effects of an intervention that may or may not be worthwhile; this would suggest either no further studies are warranted or that further study of the intervention is needed. A review can also inform whether a larger and better study is preferable to an additional small study. Reviews of previously published work may yield few studies or low-quality evidence from small or poorly designed studies on certain intervention or observation; this may encourage or discourage further research or prompt consideration of a first clinical trial.

Conceptual framework

The result of a literature review should include identifying a working conceptual framework to clarify the nature of the research problem, questions, and designs, and even guide the latter discussion of the findings and development of possible solutions. Conceptual frameworks represent ways of thinking about a problem or how complex things work the way they do [ 11 ]. Different frameworks will emphasize different variables and outcomes, and their inter-relatedness. Each framework highlights or emphasizes different aspects of a problem or research question. Often, any single conceptual framework presents only a partial view of reality [ 11 ]. Furthermore, each framework magnifies certain elements of the problem. Therefore, a thorough literature search is warranted for authors to avoid repeating the same research endeavors or mistakes. It may also help them find relevant conceptual frameworks including those that are outside one’s specialty or system. 

Conceptual frameworks can come from theories with well-organized principles and propositions that have been confirmed by observations or experiments. Conceptual frameworks can also come from models derived from theories, observations or sets of concepts or even evidence-based best practices derived from past studies [ 11 ].

Researchers convey their assumptions of the associations of the variables explicitly in the conceptual framework to connect the research to the literature. After selecting a single conceptual framework or a combination of a few frameworks, a clinical study can be completed in two fundamental steps: study design and study report. Three study designs should be planned in sequence and iterated until satisfaction: the theoretical design, data collection design, and statistical analysis design [ 7 ]. 

Study designs

Theoretical Design

Theoretical design is the next important step in the research process after a literature review and conceptual framework identification. While the theoretical design is a crucial step in research planning, it is often dealt with lightly because of the more alluring second step (data collection design). In the theoretical design phase, a research question is designed to address a clinical problem, which involves an informed understanding based on the literature review and effective collaboration with the right experts and clinicians. A well-developed research question will have an initial hypothesis of the possible relationship between the explanatory variable/exposure and the outcome. This will inform the nature of the study design, be it qualitative or quantitative, primary or secondary, and non-causal or causal (Figure ​ (Figure1 1 ).

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i01.jpg

A study is qualitative if the research question aims to explore, understand, describe, discover or generate reasons underlying certain phenomena. Qualitative studies usually focus on a process to determine how and why things happen [ 12 ]. Quantitative studies use deductive reasoning, and numerical statistical quantification of the association between groups on data often gathered during experiments [ 13 ]. A primary clinical study is an original study gathering a new set of patient-level data. Secondary research draws on the existing available data and pooling them into a larger database to generate a wider perspective or a more powerful conclusion. Non-causal or descriptive research aims to identify the determinants or associated factors for the outcome or health condition, without regard for causal relationships. Causal research is an exploration of the determinants of an outcome while mitigating confounding variables. Table ​ Table2 2 shows examples of non-causal (e.g., diagnostic and prognostic) and causal (e.g., intervention and etiologic) clinical studies. Concordance between the research question, its aim, and the choice of theoretical design will provide a strong foundation and the right direction for the research process and path. 

A problem in clinical epidemiology is phrased in a mathematical relationship below, where the outcome is a function of the determinant (D) conditional on the extraneous determinants (ED) or more commonly known as the confounding factors [ 7 ]:

For non-causal research, Outcome = f (D1, D2…Dn) For causal research, Outcome = f (D | ED)

A fine research question is composed of at least three components: 1) an outcome or a health condition, 2) determinant/s or associated factors to the outcome, and 3) the domain. The outcome and the determinants have to be clearly conceptualized and operationalized as measurable variables (Table ​ (Table3; 3 ; PICOT [ 14 ] and FINER [ 15 ]). The study domain is the theoretical source population from which the study population will be sampled, similar to the wording on a drug package insert that reads, “use this medication (study results) in people with this disease” [ 7 ].

The interpretation of study results as they apply to wider populations is known as generalization, and generalization can either be statistical or made using scientific inferences [ 16 ]. Generalization supported by statistical inferences is seen in studies on disease prevalence where the sample population is representative of the source population. By contrast, generalizations made using scientific inferences are not bound by the representativeness of the sample in the study; rather, the generalization should be plausible from the underlying scientific mechanisms as long as the study design is valid and nonbiased. Scientific inferences and generalizations are usually the aims of causal studies. 

Confounding: Confounding is a situation where true effects are obscured or confused [ 7 , 16 ]. Confounding variables or confounders affect the validity of a study’s outcomes and should be prevented or mitigated in the planning stages and further managed in the analytical stages. Confounders are also known as extraneous determinants in epidemiology due to their inherent and simultaneous relationships to both the determinant and outcome (Figure ​ (Figure2), 2 ), which are usually one-determinant-to-one outcome in causal clinical studies. The known confounders are also called observed confounders. These can be minimized using randomization, restriction, or a matching strategy. Residual confounding has occurred in a causal relationship when identified confounders were not measured accurately. Unobserved confounding occurs when the confounding effect is present as a variable or factor not observed or yet defined and, thus, not measured in the study. Age and gender are almost universal confounders followed by ethnicity and socio-economic status.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i02.jpg

Confounders have three main characteristics. They are a potential risk factor for the disease, associated with the determinant of interest, and should not be an intermediate variable between the determinant and the outcome or a precursor to the determinant. For example, a sedentary lifestyle is a cause for acute coronary syndrome (ACS), and smoking could be a confounder but not cardiorespiratory unfitness (which is an intermediate factor between a sedentary lifestyle and ACS). For patients with ACS, not having a pair of sports shoes is not a confounder – it is a correlate for the sedentary lifestyle. Similarly, depression would be a precursor, not a confounder.

Sample size consideration: Sample size calculation provides the required number of participants to be recruited in a new study to detect true differences in the target population if they exist. Sample size calculation is based on three facets: an estimated difference in group sizes, the probability of α (Type I) and β (Type II) errors chosen based on the nature of the treatment or intervention, and the estimated variability (interval data) or proportion of the outcome (nominal data) [ 17 - 18 ]. The clinically important effect sizes are determined based on expert consensus or patients’ perception of benefit. Value and economic consideration have increasingly been included in sample size estimations. Sample size and the degree to which the sample represents the target population affect the accuracy and generalization of a study’s reported effects. 

Pilot study: Pilot studies assess the feasibility of the proposed research procedures on small sample size. Pilot studies test the efficiency of participant recruitment with minimal practice or service interruptions. Pilot studies should not be conducted to obtain a projected effect size for a larger study population because, in a typical pilot study, the sample size is small, leading to a large standard error of that effect size. This leads to bias when projected for a large population. In the case of underestimation, this could lead to inappropriately terminating the full-scale study. As the small pilot study is equally prone to bias of overestimation of the effect size, this would lead to an underpowered study and a failed full-scale study [ 19 ]. 

The Design of Data Collection

The “perfect” study design in the theoretical phase now faces the practical and realistic challenges of feasibility. This is the step where different methods for data collection are considered, with one selected as the most appropriate based on the theoretical design along with feasibility and efficiency. The goal of this stage is to achieve the highest possible validity with the lowest risk of biases given available resources and existing constraints. 

In causal research, data on the outcome and determinants are collected with utmost accuracy via a strict protocol to maximize validity and precision. The validity of an instrument is defined as the degree of fidelity of the instrument, measuring what it is intended to measure, that is, the results of the measurement correlate with the true state of an occurrence. Another widely used word for validity is accuracy. Internal validity refers to the degree of accuracy of a study’s results to its own study sample. Internal validity is influenced by the study designs, whereas the external validity refers to the applicability of a study’s result in other populations. External validity is also known as generalizability and expresses the validity of assuming the similarity and comparability between the study population and the other populations. Reliability of an instrument denotes the extent of agreeableness of the results of repeated measurements of an occurrence by that instrument at a different time, by different investigators or in a different setting. Other terms that are used for reliability include reproducibility and precision. Preventing confounders by identifying and including them in data collection will allow statistical adjustment in the later analyses. In descriptive research, outcomes must be confirmed with a referent standard, and the determinants should be as valid as those found in real clinical practice.

Common designs for data collection include cross-sectional, case-control, cohort, and randomized controlled trials (RCTs). Many other modern epidemiology study designs are based on these classical study designs such as nested case-control, case-crossover, case-control without control, and stepwise wedge clustered RCTs. A cross-sectional study is typically a snapshot of the study population, and an RCT is almost always a prospective study. Case-control and cohort studies can be retrospective or prospective in data collection. The nested case-control design differs from the traditional case-control design in that it is “nested” in a well-defined cohort from which information on the cohorts can be obtained. This design also satisfies the assumption that cases and controls represent random samples of the same study base. Table ​ Table4 4 provides examples of these data collection designs.

Additional aspects in data collection: No single design of data collection for any research question as stated in the theoretical design will be perfect in actual conduct. This is because of myriad issues facing the investigators such as the dynamic clinical practices, constraints of time and budget, the urgency for an answer to the research question, and the ethical integrity of the proposed experiment. Therefore, feasibility and efficiency without sacrificing validity and precision are important considerations in data collection design. Therefore, data collection design requires additional consideration in the following three aspects: experimental/non-experimental, sampling, and timing [ 7 ]:

Experimental or non-experimental: Non-experimental research (i.e., “observational”), in contrast to experimental, involves data collection of the study participants in their natural or real-world environments. Non-experimental researches are usually the diagnostic and prognostic studies with cross-sectional in data collection. The pinnacle of non-experimental research is the comparative effectiveness study, which is grouped with other non-experimental study designs such as cross-sectional, case-control, and cohort studies [ 20 ]. It is also known as the benchmarking-controlled trials because of the element of peer comparison (using comparable groups) in interpreting the outcome effects [ 20 ]. Experimental study designs are characterized by an intervention on a selected group of the study population in a controlled environment, and often in the presence of a similar group of the study population to act as a comparison group who receive no intervention (i.e., the control group). Thus, the widely known RCT is classified as an experimental design in data collection. An experimental study design without randomization is referred to as a quasi-experimental study. Experimental studies try to determine the efficacy of a new intervention on a specified population. Table ​ Table5 5 presents the advantages and disadvantages of experimental and non-experimental studies [ 21 ].

a May be an issue in cross-sectional studies that require a long recall to the past such as dietary patterns, antenatal events, and life experiences during childhood.

Once an intervention yields a proven effect in an experimental study, non-experimental and quasi-experimental studies can be used to determine the intervention’s effect in a wider population and within real-world settings and clinical practices. Pragmatic or comparative effectiveness are the usual designs used for data collection in these situations [ 22 ].

Sampling/census: Census is a data collection on the whole source population (i.e., the study population is the source population). This is possible when the defined population is restricted to a given geographical area. A cohort study uses the census method in data collection. An ecologic study is a cohort study that collects summary measures of the study population instead of individual patient data. However, many studies sample from the source population and infer the results of the study to the source population for feasibility and efficiency because adequate sampling provides similar results to the census of the whole population. Important aspects of sampling in research planning are sample size and representation of the population. Sample size calculation accounts for the number of participants needed to be in the study to discover the actual association between the determinant and outcome. Sample size calculation relies on the primary objective or outcome of interest and is informed by the estimated possible differences or effect size from previous similar studies. Therefore, the sample size is a scientific estimation for the design of the planned study.

A sampling of participants or cases in a study can represent the study population and the larger population of patients in that disease space, but only in prevalence, diagnostic, and prognostic studies. Etiologic and interventional studies do not share this same level of representation. A cross-sectional study design is common for determining disease prevalence in the population. Cross-sectional studies can also determine the referent ranges of variables in the population and measure change over time (e.g., repeated cross-sectional studies). Besides being cost- and time-efficient, cross-sectional studies have no loss to follow-up; recall bias; learning effect on the participant; or variability over time in equipment, measurement, and technician. A cross-sectional design for an etiologic study is possible when the determinants do not change with time (e.g., gender, ethnicity, genetic traits, and blood groups). 

In etiologic research, comparability between the exposed and the non-exposed groups is more important than sample representation. Comparability between these two groups will provide an accurate estimate of the effect of the exposure (risk factor) on the outcome (disease) and enable valid inference of the causal relation to the domain (the theoretical population). In a case-control study, a sampling of the control group should be taken from the same study population (study base), have similar profiles to the cases (matching) but do not have the outcome seen in the cases. Matching important factors minimizes the confounding of the factors and increases statistical efficiency by ensuring similar numbers of cases and controls in confounders’ strata [ 23 - 24 ]. Nonetheless, perfect matching is neither necessary nor achievable in a case-control study because a partial match could achieve most of the benefits of the perfect match regarding a more precise estimate of odds ratio than statistical control of confounding in unmatched designs [ 25 - 26 ]. Moreover, perfect or full matching can lead to an underestimation of the point estimates [ 27 - 28 ].

Time feature: The timing of data collection for the determinant and outcome characterizes the types of studies. A cross-sectional study has the axis of time zero (T = 0) for both the determinant and the outcome, which separates it from all other types of research that have time for the outcome T > 0. Retrospective or prospective studies refer to the direction of data collection. In retrospective studies, information on the determinant and outcome have been collected or recorded before. In prospective studies, this information will be collected in the future. These terms should not be used to describe the relationship between the determinant and the outcome in etiologic studies. Time of exposure to the determinant, the time of induction, and the time at risk for the outcome are important aspects to understand. Time at risk is the period of time exposed to the determinant risk factors. Time of induction is the time from the sufficient exposure to the risk or causal factors to the occurrence of a disease. The latent period is when the occurrence of a disease without manifestation of the disease such as in “silence” diseases for example cancers, hypertension and type 2 diabetes mellitus which is detected from screening practices. Figure ​ Figure3 3 illustrates the time features of a variable. Variable timing is important for accurate data capture. 

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i03.jpg

The Design of Statistical Analysis

Statistical analysis of epidemiologic data provides the estimate of effects after correcting for biases (e.g., confounding factors) measures the variability in the data from random errors or chance [ 7 , 16 , 29 ]. An effect estimate gives the size of an association between the studied variables or the level of effectiveness of an intervention. This quantitative result allows for comparison and assessment of the usefulness and significance of the association or the intervention between studies. This significance must be interpreted with a statistical model and an appropriate study design. Random errors could arise in the study resulting from unexplained personal choices by the participants. Random error is, therefore, when values or units of measurement between variables change in non-concerted or non-directional manner. Conversely, when these values or units of measurement between variables change in a concerted or directional manner, we note a significant relationship as shown by statistical significance. 

Variability: Researchers almost always collect the needed data through a sampling of subjects/participants from a population instead of a census. The process of sampling or multiple sampling in different geographical regions or over different periods contributes to varied information due to the random inclusion of different participants and chance occurrence. This sampling variation becomes the focus of statistics when communicating the degree and intensity of variation in the sampled data and the level of inference in the population. Sampling variation can be influenced profoundly by the total number of participants and the width of differences of the measured variable (standard deviation). Hence, the characteristics of the participants, measurements and sample size are all important factors in planning a study.

Statistical strategy: Statistical strategy is usually determined based on the theoretical and data collection designs. Use of a prespecified statistical strategy (including the decision to dichotomize any continuous data at certain cut-points, sub-group analysis or sensitive analyses) is recommended in the study proposal (i.e., protocol) to prevent data dredging and data-driven reports that predispose to bias. The nature of the study hypothesis also dictates whether directional (one-tailed) or non-directional (two-tailed) significance tests are conducted. In most studies, two-sided tests are used except in specific instances when unidirectional hypotheses may be appropriate (e.g., in superiority or non-inferiority trials). While data exploration is discouraged, epidemiological research is, by nature of its objectives, statistical research. Hence, it is acceptable to report the presence of persistent associations between any variables with plausible underlying mechanisms during the exploration of the data. The statistical methods used to produce the results should be explicitly explained. Many different statistical tests are used to handle various kinds of data appropriately (e.g., interval vs discrete), and/or the various distribution of the data (e.g., normally distributed or skewed). For additional details on statistical explanations and underlying concepts of statistical tests, readers are recommended the references as cited in this sentence [ 30 - 31 ]. 

Steps in statistical analyses: Statistical analysis begins with checking for data entry errors. Duplicates are eliminated, and proper units should be confirmed. Extremely low, high or suspicious values are confirmed from the source data again. If this is not possible, this is better classified as a missing value. However, if the unverified suspicious data are not obviously wrong, they should be further examined as an outlier in the analysis. The data checking and cleaning enables the analyst to establish a connection with the raw data and to anticipate possible results from further analyses. This initial step involves descriptive statistics that analyze central tendency (i.e., mode, median, and mean) and dispersion (i.e., (minimum, maximum, range, quartiles, absolute deviation, variance, and standard deviation) of the data. Certain graphical plotting such as scatter plot, a box-whiskers plot, histogram or normal Q-Q plot are helpful at this stage to verify data normality in distribution. See Figure ​ Figure4 4 for the statistical tests available for analyses of different types of data.

An external file that holds a picture, illustration, etc.
Object name is cureus-0011-00000004112-i04.jpg

Once data characteristics are ascertained, further statistical tests are selected. The analytical strategy sometimes involves the transformation of the data distribution for the selected tests (e.g., log, natural log, exponential, quadratic) or for checking the robustness of the association between the determinants and their outcomes. This step is also referred to as inferential statistics whereby the results are about hypothesis testing and generalization to the wider population that the study’s sampled participants represent. The last statistical step is checking whether the statistical analyses fulfill the assumptions of that particular statistical test and model to avoid violation and misleading results. These assumptions include evaluating normality, variance homogeneity, and residuals included in the final statistical model. Other statistical values such as Akaike information criterion, variance inflation factor/tolerance, and R2 are also considered when choosing the best-fitted models. Transforming raw data could be done, or a higher level of statistical analyses can be used (e.g., generalized linear models and mixed-effect modeling). Successful statistical analysis allows conclusions of the study to fit the data. 

Bayesian and Frequentist statistical frameworks: Most of the current clinical research reporting is based on the frequentist approach and hypotheses testing p values and confidence intervals. The frequentist approach assumes the acquired data are random, attained by random sampling, through randomized experiments or influences, and with random errors. The distribution of the data (its point estimate and confident interval) infers a true parameter in the real population. The major conceptual difference between Bayesian statistics and frequentist statistics is that in Bayesian statistics, the parameter (i.e., the studied variable in the population) is random and the data acquired is real (true or fix). Therefore, the Bayesian approach provides a probability interval for the parameter. The studied parameter is random because it could vary and be affected by prior beliefs, experience or evidence of plausibility. In the Bayesian statistical approach, this prior belief or available knowledge is quantified into a probability distribution and incorporated into the acquired data to get the results (i.e., the posterior distribution). This uses mathematical theory of Bayes’ Theorem to “turn around” conditional probabilities.

The goal of research reporting is to present findings succinctly and timely via conference proceedings or journal publication. Concise and explicit language use, with all the necessary details to enable replication and judgment of the study applicability, are the guiding principles in clinical studies reporting.

Writing for Reporting

Medical writing is very much a technical chore that accommodates little artistic expression. Research reporting in medicine and health sciences emphasize clear and standardized reporting, eschewing adjectives and adverbs extensively used in popular literature. Regularly reviewing published journal articles can familiarize authors with proper reporting styles and help enhance writing skills. Authors should familiarize themselves with standard, concise, and appropriate rhetoric for the intended audience, which includes consideration for journal reviewers, editors, and referees. However, proper language can be somewhat subjective. While each publication may have varying requirements for submission, the technical requirements for formatting an article are usually available via author or submission guidelines provided by the target journal. 

Research reports for publication often contain a title, abstract, introduction, methods, results, discussion, and conclusions section, and authors may want to write each section in sequence. However, best practices indicate the abstract and title should be written last. Authors may find that when writing one section of the report, ideas come to mind that pertains to other sections, so careful note taking is encouraged. One effective approach is to organize and write the result section first, followed by the discussion and conclusions sections. Once these are drafted, write the introduction, abstract, and the title of the report. Regardless of the sequence of writing, the author should begin with a clear and relevant research question to guide the statistical analyses, result interpretation, and discussion. The study findings can be a motivator to propel the author through the writing process, and the conclusions can help the author draft a focused introduction.

Writing for Publication

Specific recommendations on effective medical writing and table generation are available [ 32 ]. One such resource is Effective Medical Writing: The Write Way to Get Published, which is an updated collection of medical writing articles previously published in the Singapore Medical Journal [ 33 ]. The British Medical Journal’s Statistics Notes series also elucidates common and important statistical concepts and usages in clinical studies. Writing guides are also available from individual professional societies, journals, or publishers such as Chest (American College of Physicians) medical writing tips, PLoS Reporting guidelines collection, Springer’s Journal Author Academy, and SAGE’s Research methods [ 34 - 37 ]. Standardized research reporting guidelines often come in the form of checklists and flow diagrams. Table ​ Table6 6 presents a list of reporting guidelines. A full compilation of these guidelines is available at the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) Network website [ 38 ] which aims to improve the reliability and value of medical literature by promoting transparent and accurate reporting of research studies. Publication of the trial protocol in a publicly available database is almost compulsory for publication of the full report in many potential journals.

Graphics and Tables

Graphics and tables should emphasize salient features of the underlying data and should coherently summarize large quantities of information. Although graphics provide a break from dense prose, authors must not forget that these illustrations should be scientifically informative, not decorative. The titles for graphics and tables should be clear, informative, provide the sample size, and use minimal font weight and formatting only to distinguish headings, data entry or to highlight certain results. Provide a consistent number of decimal points for the numerical results, and with no more than four for the P value. Most journals prefer cell-delineated tables created using the table function in word processing or spreadsheet programs. Some journals require specific table formatting such as the absence or presence of intermediate horizontal lines between cells.

Decisions of authorship are both sensitive and important and should be made at an early stage by the study’s stakeholders. Guidelines and journals’ instructions to authors abound with authorship qualifications. The guideline on authorship by the International Committee of Medical Journal Editors is widely known and provides a standard used by many medical and clinical journals [ 39 ]. Generally, authors are those who have made major contributions to the design, conduct, and analysis of the study, and who provided critical readings of the manuscript (if not involved directly in manuscript writing). 

Picking a target journal for submission

Once a report has been written and revised, the authors should select a relevant target journal for submission. Authors should avoid predatory journals—publications that do not aim to advance science and disseminate quality research. These journals focus on commercial gain in medical and clinical publishing. Two good resources for authors during journal selection are Think-Check-Submit and the defunct Beall's List of Predatory Publishers and Journals (now archived and maintained by an anonymous third-party) [ 40 , 41 ]. Alternatively, reputable journal indexes such as Thomson Reuters Journal Citation Reports, SCOPUS, MedLine, PubMed, EMBASE, EBSCO Publishing's Electronic Databases are available areas to start the search for an appropriate target journal. Authors should review the journals’ names, aims/scope, and recently published articles to determine the kind of research each journal accepts for publication. Open-access journals almost always charge article publication fees, while subscription-based journals tend to publish without author fees and instead rely on subscription or access fees for the full text of published articles.

Conclusions

Conducting a valid clinical research requires consideration of theoretical study design, data collection design, and statistical analysis design. Proper study design implementation and quality control during data collection ensures high-quality data analysis and can mitigate bias and confounders during statistical analysis and data interpretation. Clear, effective study reporting facilitates dissemination, appreciation, and adoption, and allows the researchers to affect real-world change in clinical practices and care models. Neutral or absence of findings in a clinical study are as important as positive or negative findings. Valid studies, even when they report an absence of expected results, still inform scientific communities of the nature of a certain treatment or intervention, and this contributes to future research, systematic reviews, and meta-analyses. Reporting a study adequately and comprehensively is important for accuracy, transparency, and reproducibility of the scientific work as well as informing readers.

Acknowledgments

The author would like to thank Universiti Putra Malaysia and the Ministry of Higher Education, Malaysia for their support in sponsoring the Ph.D. study and living allowances for Boon-How Chew.

The content published in Cureus is the result of clinical experience and/or research by independent individuals or organizations. Cureus is not responsible for the scientific accuracy or reliability of data or conclusions published herein. All content published within Cureus is intended only for educational, research and reference purposes. Additionally, articles published within Cureus should not be deemed a suitable substitute for the advice of a qualified health care professional. Do not disregard or avoid professional medical advice due to content published within Cureus.

The materials presented in this paper is being organized by the author into a book.

6.1 Overview of Non-Experimental Research

Learning objectives.

  • Define non-experimental research, distinguish it clearly from experimental research, and give several examples.
  • Explain when a researcher might choose to conduct non-experimental research as opposed to experimental research.

What Is Non-Experimental Research?

Non-experimental research  is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world).

Most researchers in psychology consider the distinction between experimental and non-experimental research to be an extremely important one. This is because although experimental research can provide strong evidence that changes in an independent variable cause differences in a dependent variable, non-experimental research generally cannot. As we will see, however, this inability to make causal conclusions does not mean that non-experimental research is less important than experimental research.

When to Use Non-Experimental Research

As we saw in the last chapter , experimental research is appropriate when the researcher has a specific research question or hypothesis about a causal relationship between two variables—and it is possible, feasible, and ethical to manipulate the independent variable. It stands to reason, therefore, that non-experimental research is appropriate—even necessary—when these conditions are not met. There are many times in which non-experimental research is preferred, including when:

  • the research question or hypothesis relates to a single variable rather than a statistical relationship between two variables (e.g., How accurate are people’s first impressions?).
  • the research question pertains to a non-causal statistical relationship between variables (e.g., is there a correlation between verbal intelligence and mathematical intelligence?).
  • the research question is about a causal relationship, but the independent variable cannot be manipulated or participants cannot be randomly assigned to conditions or orders of conditions for practical or ethical reasons (e.g., does damage to a person’s hippocampus impair the formation of long-term memory traces?).
  • the research question is broad and exploratory, or is about what it is like to have a particular experience (e.g., what is it like to be a working mother diagnosed with depression?).

Again, the choice between the experimental and non-experimental approaches is generally dictated by the nature of the research question. Recall the three goals of science are to describe, to predict, and to explain. If the goal is to explain and the research question pertains to causal relationships, then the experimental approach is typically preferred. If the goal is to describe or to predict, a non-experimental approach will suffice. But the two approaches can also be used to address the same research question in complementary ways. For example, Similarly, after his original study, Milgram conducted experiments to explore the factors that affect obedience. He manipulated several independent variables, such as the distance between the experimenter and the participant, the participant and the confederate, and the location of the study (Milgram, 1974) [1] .

Types of Non-Experimental Research

Non-experimental research falls into three broad categories: cross-sectional research, correlational research, and observational research. 

First, cross-sectional research  involves comparing two or more pre-existing groups of people. What makes this approach non-experimental is that there is no manipulation of an independent variable and no random assignment of participants to groups. Imagine, for example, that a researcher administers the Rosenberg Self-Esteem Scale to 50 American college students and 50 Japanese college students. Although this “feels” like a between-subjects experiment, it is a cross-sectional study because the researcher did not manipulate the students’ nationalities. As another example, if we wanted to compare the memory test performance of a group of cannabis users with a group of non-users, this would be considered a cross-sectional study because for ethical and practical reasons we would not be able to randomly assign participants to the cannabis user and non-user groups. Rather we would need to compare these pre-existing groups which could introduce a selection bias (the groups may differ in other ways that affect their responses on the dependent variable). For instance, cannabis users are more likely to use more alcohol and other drugs and these differences may account for differences in the dependent variable across groups, rather than cannabis use per se.

Cross-sectional designs are commonly used by developmental psychologists who study aging and by researchers interested in sex differences. Using this design, developmental psychologists compare groups of people of different ages (e.g., young adults spanning from 18-25 years of age versus older adults spanning 60-75 years of age) on various dependent variables (e.g., memory, depression, life satisfaction). Of course, the primary limitation of using this design to study the effects of aging is that differences between the groups other than age may account for differences in the dependent variable. For instance, differences between the groups may reflect the generation that people come from (a cohort effect) rather than a direct effect of age. For this reason, longitudinal studies in which one group of people is followed as they age offer a superior means of studying the effects of aging. Once again, cross-sectional designs are also commonly used to study sex differences. Since researchers cannot practically or ethically manipulate the sex of their participants they must rely on cross-sectional designs to compare groups of men and women on different outcomes (e.g., verbal ability, substance use, depression). Using these designs researchers have discovered that men are more likely than women to suffer from substance abuse problems while women are more likely than men to suffer from depression. But, using this design it is unclear what is causing these differences. So, using this design it is unclear whether these differences are due to environmental factors like socialization or biological factors like hormones?

When researchers use a participant characteristic to create groups (nationality, cannabis use, age, sex), the independent variable is usually referred to as an experimenter-selected independent variable (as opposed to the experimenter-manipulated independent variables used in experimental research). Figure 6.1 shows data from a hypothetical study on the relationship between whether people make a daily list of things to do (a “to-do list”) and stress. Notice that it is unclear whether this is an experiment or a cross-sectional study because it is unclear whether the independent variable was manipulated by the researcher or simply selected by the researcher. If the researcher randomly assigned some participants to make daily to-do lists and others not to, then the independent variable was experimenter-manipulated and it is a true experiment. If the researcher simply asked participants whether they made daily to-do lists or not, then the independent variable it is experimenter-selected and the study is cross-sectional. The distinction is important because if the study was an experiment, then it could be concluded that making the daily to-do lists reduced participants’ stress. But if it was a cross-sectional study, it could only be concluded that these variables are statistically related. Perhaps being stressed has a negative effect on people’s ability to plan ahead. Or perhaps people who are more conscientious are more likely to make to-do lists and less likely to be stressed. The crucial point is that what defines a study as experimental or cross-sectional l is not the variables being studied, nor whether the variables are quantitative or categorical, nor the type of graph or statistics used to analyze the data. It is how the study is conducted.

Figure 6.1  Results of a Hypothetical Study on Whether People Who Make Daily To-Do Lists Experience Less Stress Than People Who Do Not Make Such Lists

Second, the most common type of non-experimental research conducted in Psychology is correlational research. Correlational research is considered non-experimental because it focuses on the statistical relationship between two variables but does not include the manipulation of an independent variable.  More specifically, in correlational research , the researcher measures two continuous variables with little or no attempt to control extraneous variables and then assesses the relationship between them. As an example, a researcher interested in the relationship between self-esteem and school achievement could collect data on students’ self-esteem and their GPAs to see if the two variables are statistically related. Correlational research is very similar to cross-sectional research, and sometimes these terms are used interchangeably. The distinction that will be made in this book is that, rather than comparing two or more pre-existing groups of people as is done with cross-sectional research, correlational research involves correlating two continuous variables (groups are not formed and compared).

Third,   observational research  is non-experimental because it focuses on making observations of behavior in a natural or laboratory setting without manipulating anything. Milgram’s original obedience study was non-experimental in this way. He was primarily interested in the extent to which participants obeyed the researcher when he told them to shock the confederate and he observed all participants performing the same task under the same conditions. The study by Loftus and Pickrell described at the beginning of this chapter is also a good example of observational research. The variable was whether participants “remembered” having experienced mildly traumatic childhood events (e.g., getting lost in a shopping mall) that they had not actually experienced but that the researchers asked them about repeatedly. In this particular study, nearly a third of the participants “remembered” at least one event. (As with Milgram’s original study, this study inspired several later experiments on the factors that affect false memories.

The types of research we have discussed so far are all quantitative, referring to the fact that the data consist of numbers that are analyzed using statistical techniques. But as you will learn in this chapter, many observational research studies are more qualitative in nature. In  qualitative research , the data are usually nonnumerical and therefore cannot be analyzed using statistical techniques. Rosenhan’s observational study of the experience of people in a psychiatric ward was primarily qualitative. The data were the notes taken by the “pseudopatients”—the people pretending to have heard voices—along with their hospital records. Rosenhan’s analysis consists mainly of a written description of the experiences of the pseudopatients, supported by several concrete examples. To illustrate the hospital staff’s tendency to “depersonalize” their patients, he noted, “Upon being admitted, I and other pseudopatients took the initial physical examinations in a semi-public room, where staff members went about their own business as if we were not there” (Rosenhan, 1973, p. 256) [2] . Qualitative data has a separate set of analysis tools depending on the research question. For example, thematic analysis would focus on themes that emerge in the data or conversation analysis would focus on the way the words were said in an interview or focus group.

Internal Validity Revisited

Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable.  Figure 6.2  shows how experimental, quasi-experimental, and non-experimental (correlational) research vary in terms of internal validity. Experimental research tends to be highest in internal validity because the use of manipulation (of the independent variable) and control (of extraneous variables) help to rule out alternative explanations for the observed relationships. If the average score on the dependent variable in an experiment differs across conditions, it is quite likely that the independent variable is responsible for that difference. Non-experimental (correlational) research is lowest in internal validity because these designs fail to use manipulation or control. Quasi-experimental research (which will be described in more detail in a subsequent chapter) is in the middle because it contains some, but not all, of the features of a true experiment. For instance, it may fail to use random assignment to assign participants to groups or fail to use counterbalancing to control for potential order effects. Imagine, for example, that a researcher finds two similar schools, starts an anti-bullying program in one, and then finds fewer bullying incidents in that “treatment school” than in the “control school.” While a comparison is being made with a control condition, the lack of random assignment of children to schools could still mean that students in the treatment school differed from students in the control school in some other way that could explain the difference in bullying (e.g., there may be a selection effect).

Figure 7.1 Internal Validity of Correlational, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlational studies lower still.

Figure 6.2 Internal Validity of Correlation, Quasi-Experimental, and Experimental Studies. Experiments are generally high in internal validity, quasi-experiments lower, and correlation studies lower still.

Notice also in  Figure 6.2  that there is some overlap in the internal validity of experiments, quasi-experiments, and correlational studies. For example, a poorly designed experiment that includes many confounding variables can be lower in internal validity than a well-designed quasi-experiment with no obvious confounding variables. Internal validity is also only one of several validities that one might consider, as noted in Chapter 5.

Key Takeaways

  • Non-experimental research is research that lacks the manipulation of an independent variable.
  • There are two broad types of non-experimental research. Correlational research that focuses on statistical relationships between variables that are measured but not manipulated, and observational research in which participants are observed and their behavior is recorded without the researcher interfering or manipulating any variables.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.
  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A college instructor gives weekly quizzes to students in one section of his course but no weekly quizzes to students in another section to see whether this has an effect on their test performance.
  • Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row. ↵
  • Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258. ↵

Creative Commons License

Share This Book

  • Increase Font Size

Case Study vs. Experiment

What's the difference.

Case studies and experiments are both research methods used in various fields to gather data and draw conclusions. However, they differ in their approach and purpose. A case study involves in-depth analysis of a particular individual, group, or situation, aiming to provide a detailed understanding of a specific phenomenon. On the other hand, an experiment involves manipulating variables and observing the effects on a sample population, aiming to establish cause-and-effect relationships. While case studies provide rich qualitative data, experiments provide quantitative data that can be statistically analyzed. Ultimately, the choice between these methods depends on the research question and the desired outcomes.

Further Detail

Introduction.

When conducting research, there are various methods available to gather data and analyze phenomena. Two commonly used approaches are case study and experiment. While both methods aim to provide insights and answers to research questions, they differ in their design, implementation, and the type of data they generate. In this article, we will explore the attributes of case study and experiment, highlighting their strengths and limitations.

A case study is an in-depth investigation of a particular individual, group, or phenomenon. It involves collecting and analyzing detailed information from multiple sources, such as interviews, observations, documents, and archival records. Case studies are often used in social sciences, psychology, and business research to gain a deep understanding of complex and unique situations.

One of the key attributes of a case study is its ability to provide rich and detailed data. Researchers can gather a wide range of information, allowing for a comprehensive analysis of the case. This depth of data enables researchers to explore complex relationships, identify patterns, and generate new hypotheses.

Furthermore, case studies are particularly useful when studying rare or unique phenomena. Since they focus on specific cases, they can provide valuable insights into situations that are not easily replicated or observed in controlled experiments. This attribute makes case studies highly relevant in fields where generalizability is not the primary goal.

However, it is important to note that case studies have limitations. Due to their qualitative nature, the findings may lack generalizability to broader populations or contexts. The small sample size and the subjective interpretation of data can also introduce bias. Additionally, case studies are time-consuming and resource-intensive, requiring extensive data collection and analysis.

An experiment is a research method that involves manipulating variables and measuring their effects on outcomes. It aims to establish cause-and-effect relationships by controlling and manipulating independent variables while keeping other factors constant. Experiments are commonly used in natural sciences, psychology, and medicine to test hypotheses and determine the impact of specific interventions or treatments.

One of the key attributes of an experiment is its ability to establish causal relationships. By controlling variables and randomly assigning participants to different conditions, researchers can confidently attribute any observed effects to the manipulated variables. This attribute allows for strong internal validity, making experiments a powerful tool for drawing causal conclusions.

Moreover, experiments often provide quantitative data, allowing for statistical analysis and objective comparisons. This attribute enhances the precision and replicability of findings, enabling researchers to draw more robust conclusions. The ability to replicate experiments also contributes to the cumulative nature of scientific knowledge.

However, experiments also have limitations. They are often conducted in controlled laboratory settings, which may limit the generalizability of findings to real-world contexts. Ethical considerations may also restrict the manipulation of certain variables or the use of certain interventions. Additionally, experiments can be time-consuming and costly, especially when involving large sample sizes or long-term follow-ups.

While case studies and experiments have distinct attributes, they can complement each other in research. Case studies provide in-depth insights and a rich understanding of complex phenomena, while experiments offer controlled conditions and the ability to establish causal relationships. By combining these methods, researchers can gain a more comprehensive understanding of the research question at hand.

When deciding between case study and experiment, researchers should consider the nature of their research question, the available resources, and the desired level of control and generalizability. Case studies are particularly suitable when exploring unique or rare phenomena, aiming for depth rather than breadth, and when resources allow for extensive data collection and analysis. On the other hand, experiments are ideal for establishing causal relationships, testing specific hypotheses, and when control over variables is crucial.

In conclusion, case study and experiment are two valuable research methods with their own attributes and limitations. Both approaches contribute to the advancement of knowledge in various fields, and their selection depends on the research question, available resources, and desired outcomes. By understanding the strengths and weaknesses of each method, researchers can make informed decisions and conduct rigorous and impactful research.

Comparisons may contain inaccurate information about people, places, or facts. Please report any issues.

  • Experimental Vs Non-Experimental Research: 15 Key Differences

busayo.longe

There is a general misconception around research that once the research is non-experimental, then it is non-scientific, making it more important to understand what experimental and experimental research entails. Experimental research is the most common type of research, which a lot of people refer to as scientific research. 

Non experimental research, on the other hand, is easily used to classify research that is not experimental. It clearly differs from experimental research, and as such has different use cases. 

In this article, we will be explaining these differences in detail so as to ensure proper identification during the research process.

What is Experimental Research?  

Experimental research is the type of research that uses a scientific approach towards manipulating one or more control variables of the research subject(s) and measuring the effect of this manipulation on the subject. It is known for the fact that it allows the manipulation of control variables. 

This research method is widely used in various physical and social science fields, even though it may be quite difficult to execute. Within the information field, they are much more common in information systems research than in library and information management research.

Experimental research is usually undertaken when the goal of the research is to trace cause-and-effect relationships between defined variables. However, the type of experimental research chosen has a significant influence on the results of the experiment.

Therefore bringing us to the different types of experimental research. There are 3 main types of experimental research, namely; pre-experimental, quasi-experimental, and true experimental research.

Pre-experimental Research

Pre-experimental research is the simplest form of research, and is carried out by observing a group or groups of dependent variables after the treatment of an independent variable which is presumed to cause change on the group(s). It is further divided into three types.

  • One-shot case study research 
  • One-group pretest-posttest research 
  • Static-group comparison

Quasi-experimental Research

The Quasi type of experimental research is similar to true experimental research, but uses carefully selected rather than randomized subjects. The following are examples of quasi-experimental research:

  • Time series 
  • No equivalent control group design
  • Counterbalanced design.

True Experimental Research

True experimental research is the most accurate type,  and may simply be called experimental research. It manipulates a control group towards a group of randomly selected subjects and records the effect of this manipulation.

True experimental research can be further classified into the following groups:

  • The posttest-only control group 
  • The pretest-posttest control group 
  • Solomon four-group 

Pros of True Experimental Research

  • Researchers can have control over variables.
  • It can be combined with other research methods.
  • The research process is usually well structured.
  • It provides specific conclusions.
  • The results of experimental research can be easily duplicated.

Cons of True Experimental Research

  • It is highly prone to human error.
  • Exerting control over extraneous variables may lead to the personal bias of the researcher.
  • It is time-consuming.
  • It is expensive. 
  • Manipulating control variables may have ethical implications.
  • It produces artificial results.

What is Non-Experimental Research?  

Non-experimental research is the type of research that does not involve the manipulation of control or independent variable. In non-experimental research, researchers measure variables as they naturally occur without any further manipulation.

This type of research is used when the researcher has no specific research question about a causal relationship between 2 different variables, and manipulation of the independent variable is impossible. They are also used when:

  • subjects cannot be randomly assigned to conditions.
  • the research subject is about a causal relationship but the independent variable cannot be manipulated.
  • the research is broad and exploratory
  • the research pertains to a non-causal relationship between variables.
  • limited information can be accessed about the research subject.

There are 3 main types of non-experimental research , namely; cross-sectional research, correlation research, and observational research.

Cross-sectional Research

Cross-sectional research involves the comparison of two or more pre-existing groups of people under the same criteria. This approach is classified as non-experimental because the groups are not randomly selected and the independent variable is not manipulated.

For example, an academic institution may want to reward its first-class students with a scholarship for their academic excellence. Therefore, each faculty places students in the eligible and ineligible group according to their class of degree.

In this case, the student’s class of degree cannot be manipulated to qualify him or her for a scholarship because it is an unethical thing to do. Therefore, the placement is cross-sectional.

Correlational Research

Correlational type of research compares the statistical relationship between two variables .Correlational research is classified as non-experimental because it does not manipulate the independent variables.

For example, a researcher may wish to investigate the relationship between the class of family students come from and their grades in school. A questionnaire may be given to students to know the average income of their family, then compare it with CGPAs. 

The researcher will discover whether these two factors are positively correlated, negatively corrected, or have zero correlation at the end of the research.

Observational Research

Observational research focuses on observing the behavior of a research subject in a natural or laboratory setting. It is classified as non-experimental because it does not involve the manipulation of independent variables.

A good example of observational research is an investigation of the crowd effect or psychology in a particular group of people. Imagine a situation where there are 2 ATMs at a place, and only one of the ATMs is filled with a queue, while the other is abandoned.

The crowd effect infers that the majority of newcomers will also abandon the other ATM.

You will notice that each of these non-experimental research is descriptive in nature. It then suffices to say that descriptive research is an example of non-experimental research.

Pros of Observational Research

  • The research process is very close to a real-life situation.
  • It does not allow for the manipulation of variables due to ethical reasons.
  • Human characteristics are not subject to experimental manipulation.

Cons of Observational Research

  • The groups may be dissimilar and nonhomogeneous because they are not randomly selected, affecting the authenticity and generalizability of the study results.
  • The results obtained cannot be absolutely clear and error-free.

What Are The Differences Between Experimental and Non-Experimental Research?    

  • Definitions

Experimental research is the type of research that uses a scientific approach towards manipulating one or more control variables and measuring their defect on the dependent variables, while non-experimental research is the type of research that does not involve the manipulation of control variables.

The main distinction in these 2 types of research is their attitude towards the manipulation of control variables. Experimental allows for the manipulation of control variables while non-experimental research doesn’t.

 Examples of experimental research are laboratory experiments that involve mixing different chemical elements together to see the effect of one element on the other while non-experimental research examples are investigations into the characteristics of different chemical elements.

Consider a researcher carrying out a laboratory test to determine the effect of adding Nitrogen gas to Hydrogen gas. It may be discovered that using the Haber process, one can create Nitrogen gas.

Non-experimental research may further be carried out on Ammonia, to determine its characteristics, behaviour, and nature.

There are 3 types of experimental research, namely; experimental research, quasi-experimental research, and true experimental research. Although also 3 in number, non-experimental research can be classified into cross-sectional research, correlational research, and observational research.

The different types of experimental research are further divided into different parts, while non-experimental research types are not further divided. Clearly, these divisions are not the same in experimental and non-experimental research.

  • Characteristics

Experimental research is usually quantitative, controlled, and multivariable. Non-experimental research can be both quantitative and qualitative , has an uncontrolled variable, and also a cross-sectional research problem.

The characteristics of experimental research are the direct opposite of that of non-experimental research. The most distinct characteristic element is the ability to control or manipulate independent variables in experimental research and not in non-experimental research. 

In experimental research, a level of control is usually exerted on extraneous variables, therefore tampering with the natural research setting. Experimental research settings are usually more natural with no tampering with the extraneous variables.

  • Data Collection/Tools

  The data used during experimental research is collected through observational study, simulations, and surveys while non-experimental data is collected through observations, surveys, and case studies. The main distinction between these data collection tools is case studies and simulations.

Even at that, similar tools are used differently. For example, an observational study may be used during a laboratory experiment that tests how the effect of a control variable manifests over a period of time in experimental research. 

However, when used in non-experimental research, data is collected based on the researcher’s discretion and not through a clear scientific reaction. In this case, we see a difference in the level of objectivity. 

The goal of experimental research is to measure the causes and effects of variables present in research, while non-experimental research provides very little to no information about causal agents.

Experimental research answers the question of why something is happening. This is quite different in non-experimental research, as they are more descriptive in nature with the end goal being to describe what .

 Experimental research is mostly used to make scientific innovations and find major solutions to problems while non-experimental research is used to define subject characteristics, measure data trends, compare situations and validate existing conditions.

For example, if experimental research results in an innovative discovery or solution, non-experimental research will be conducted to validate this discovery. This research is done for a period of time in order to properly study the subject of research.

Experimental research process is usually well structured and as such produces results with very little to no errors, while non-experimental research helps to create real-life related experiments. There are a lot more advantages of experimental and non-experimental research , with the absence of each of these advantages in the other leaving it at a disadvantage.

For example, the lack of a random selection process in non-experimental research leads to the inability to arrive at a generalizable result. Similarly, the ability to manipulate control variables in experimental research may lead to the personal bias of the researcher.

  • Disadvantage

 Experimental research is highly prone to human error while the major disadvantage of non-experimental research is that the results obtained cannot be absolutely clear and error-free. In the long run, the error obtained due to human error may affect the results of the experimental research.

Some other disadvantages of experimental research include the following; extraneous variables cannot always be controlled, human responses can be difficult to measure, and participants may also cause bias.

  In experimental research, researchers can control and manipulate control variables, while in non-experimental research, researchers cannot manipulate these variables. This cannot be done due to ethical reasons. 

For example, when promoting employees due to how well they did in their annual performance review, it will be unethical to manipulate the results of the performance review (independent variable). That way, we can get impartial results of those who deserve a promotion and those who don’t.

Experimental researchers may also decide to eliminate extraneous variables so as to have enough control over the research process. Once again, this is something that cannot be done in non-experimental research because it relates more to real-life situations.

Experimental research is carried out in an unnatural setting because most of the factors that influence the setting are controlled while the non-experimental research setting remains natural and uncontrolled. One of the things usually tampered with during research is extraneous variables.

In a bid to get a perfect and well-structured research process and results, researchers sometimes eliminate extraneous variables. Although sometimes seen as insignificant, the elimination of these variables may affect the research results.

Consider the optimization problem whose aim is to minimize the cost of production of a car, with the constraints being the number of workers and the number of hours they spend working per day. 

In this problem, extraneous variables like machine failure rates or accidents are eliminated. In the long run, these things may occur and may invalidate the result.

  • Cause-Effect Relationship

The relationship between cause and effect is established in experimental research while it cannot be established in non-experimental research. Rather than establish a cause-effect relationship, non-experimental research focuses on providing descriptive results.

Although it acknowledges the causal variable and its effect on the dependent variables, it does not measure how or the extent to which these dependent variables change. It, however, observes these changes, compares the changes in 2 variables, and describes them.

Experimental research does not compare variables while non-experimental research does. It compares 2 variables and describes the relationship between them.

The relationship between these variables can be positively correlated, negatively correlated or not correlated at all. For example, consider a case whereby the subject of research is a drum, and the control or independent variable is the drumstick.

Experimental research will measure the effect of hitting the drumstick on the drum, where the result of this research will be sound. That is, when you hit a drumstick on a drum, it makes a sound.

Non-experimental research, on the other hand, will investigate the correlation between how hard the drum is hit and the loudness of the sound that comes out. That is, if the sound will be higher with a harder bang, lower with a harder bang, or will remain the same no matter how hard we hit the drum.

  • Quantitativeness

Experimental research is a quantitative research method while non-experimental research can be both quantitative and qualitative depending on the time and the situation where it is been used. An example of a non-experimental quantitative research method is correlational research .

Researchers use it to correlate two or more variables using mathematical analysis methods. The original patterns, relationships, and trends between variables are observed, then the impact of one of these variables on the other is recorded along with how it changes the relationship between the two variables.

Observational research is an example of non-experimental research, which is classified as a qualitative research method.

  • Cross-section

Experimental research is usually single-sectional while non-experimental research is cross-sectional. That is, when evaluating the research subjects in experimental research, each group is evaluated as an entity.

For example, let us consider a medical research process investigating the prevalence of breast cancer in a certain community. In this community, we will find people of different ages, ethnicities, and social backgrounds. 

If a significant amount of women from a particular age are found to be more prone to have the disease, the researcher can conduct further studies to understand the reason behind it. A further study into this will be experimental and the subject won’t be a cross-sectional group. 

A lot of researchers consider the distinction between experimental and non-experimental research to be an extremely important one. This is partly due to the fact that experimental research can accommodate the manipulation of independent variables, which is something non-experimental research can not.

Therefore, as a researcher who is interested in using any one of experimental and non-experimental research, it is important to understand the distinction between these two. This helps in deciding which method is better for carrying out particular research. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • examples of experimental research
  • non experimental research
  • busayo.longe

Formplus

You may also like:

Simpson’s Paradox & How to Avoid it in Experimental Research

In this article, we are going to look at Simpson’s Paradox from its historical point and later, we’ll consider its effect in...

is a case study non experimental

What is Experimenter Bias? Definition, Types & Mitigation

In this article, we will look into the concept of experimental bias and how it can be identified in your research

Response vs Explanatory Variables: Definition & Examples

In this article, we’ll be comparing the two types of variables, what they both mean and see some of their real-life applications in research

Experimental Research Designs: Types, Examples & Methods

Ultimate guide to experimental research. It’s definition, types, characteristics, uses, examples and methodolgy

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

is a case study non experimental

Home Investigación de mercado

Non-experimental research: What it is, overview & advantages

non-experimental-research

Non-experimental research is the type of research that lacks an independent variable. Instead, the researcher observes the context in which the phenomenon occurs and analyzes it to obtain information.

Unlike experimental research , where the variables are held constant, non-experimental research happens during the study when the researcher cannot control, manipulate or alter the subjects but relies on interpretation or observations to conclude.

This means that the method must not rely on correlations, surveys , or case studies and cannot demonstrate an actual cause and effect relationship.

Characteristics of non-experimental research

Some of the essential characteristics of non-experimental research are necessary for the final results. Let’s talk about them to identify the most critical parts of them.

characteristics of non-experimental research

  • Most studies are based on events that occurred previously and are analyzed later.
  • In this method, controlled experiments are not performed for reasons such as ethics or morality.
  • No study samples are created; on the contrary, the samples or participants already exist and develop in their environment.
  • The researcher does not intervene directly in the environment of the sample.
  • This method studies the phenomena exactly as they occurred.

Types of non-experimental research

Non-experimental research can take the following forms:

Cross-sectional research : Cross-sectional research is used to observe and analyze the exact time of the research to cover various study groups or samples. This type of research is divided into:

  • Descriptive: When values are observed where one or more variables are presented.
  • Causal: It is responsible for explaining the reasons and relationship that exists between variables in a given time.

Longitudinal research: In a longitudinal study , researchers aim to analyze the changes and development of the relationships between variables over time. Longitudinal research can be divided into:

  • Trend: When they study the changes faced by the study group in general.
  • Group evolution: When the study group is a smaller sample.
  • Panel: It is in charge of analyzing individual and group changes to discover the factor that produces them.

LEARN ABOUT: Quasi-experimental Research

When to use non-experimental research

Non-experimental research can be applied in the following ways:

  • When the research question may be about one variable rather than a statistical relationship about two variables.
  • There is a non-causal statistical relationship between variables in the research question.
  • The research question has a causal research relationship, but the independent variable cannot be manipulated.
  • In exploratory or broad research where a particular experience is confronted.

Advantages and disadvantages

Some advantages of non-experimental research are:

  • It is very flexible during the research process
  • The cause of the phenomenon is known, and the effect it has is investigated.
  • The researcher can define the characteristics of the study group.

Among the disadvantages of non-experimental research are:

  • The groups are not representative of the entire population.
  • Errors in the methodology may occur, leading to research biases .

Non-experimental research is based on the observation of phenomena in their natural environment. In this way, they can be studied later to reach a conclusion.

Difference between experimental and non-experimental research

Experimental research involves changing variables and randomly assigning conditions to participants. As it can determine the cause, experimental research designs are used for research in medicine, biology, and social science. 

Experimental research designs have strict standards for control and establishing validity. Although they may need many resources, they can lead to very interesting results.

Non-experimental research, on the other hand, is usually descriptive or correlational without any explicit changes done by the researcher. You simply describe the situation as it is, or describe a relationship between variables. Without any control, it is difficult to determine causal effects. The validity remains a concern in this type of research. However, it’s’ more regarding the measurements instead of the effects.

LEARN MORE: Descriptive Research vs Correlational Research

Whether you should choose experimental research or non-experimental research design depends on your goals and resources. If you need any help with how to conduct research and collect relevant data, or have queries regarding the best approach for your research goals, contact us today! You can create an account with our survey software and avail of 88+ features including dashboard and reporting for free.

Create a free account

MORE LIKE THIS

employee development software

Top 10 Employee Development Software for Talent Growth

Apr 3, 2024

insight community platforms

Top 5 Insight Community Platforms to Elevate Your Research

concept testing platform

Choose The Right Concept Testing Platform to Boost Your Ideas

Apr 2, 2024

nps software

Top 15 NPS Software for Customer Feedback in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Case Study Research Method in Psychology

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews).

The case study research method originated in clinical medicine (the case history, i.e., the patient’s personal history). In psychology, case studies are often confined to the study of a particular individual.

The information is mainly biographical and relates to events in the individual’s past (i.e., retrospective), as well as to significant events that are currently occurring in his or her everyday life.

The case study is not a research method, but researchers select methods of data collection and analysis that will generate material suitable for case studies.

Freud (1909a, 1909b) conducted very detailed investigations into the private lives of his patients in an attempt to both understand and help them overcome their illnesses.

This makes it clear that the case study is a method that should only be used by a psychologist, therapist, or psychiatrist, i.e., someone with a professional qualification.

There is an ethical issue of competence. Only someone qualified to diagnose and treat a person can conduct a formal case study relating to atypical (i.e., abnormal) behavior or atypical development.

case study

 Famous Case Studies

  • Anna O – One of the most famous case studies, documenting psychoanalyst Josef Breuer’s treatment of “Anna O” (real name Bertha Pappenheim) for hysteria in the late 1800s using early psychoanalytic theory.
  • Little Hans – A child psychoanalysis case study published by Sigmund Freud in 1909 analyzing his five-year-old patient Herbert Graf’s house phobia as related to the Oedipus complex.
  • Bruce/Brenda – Gender identity case of the boy (Bruce) whose botched circumcision led psychologist John Money to advise gender reassignment and raise him as a girl (Brenda) in the 1960s.
  • Genie Wiley – Linguistics/psychological development case of the victim of extreme isolation abuse who was studied in 1970s California for effects of early language deprivation on acquiring speech later in life.
  • Phineas Gage – One of the most famous neuropsychology case studies analyzes personality changes in railroad worker Phineas Gage after an 1848 brain injury involving a tamping iron piercing his skull.

Clinical Case Studies

  • Studying the effectiveness of psychotherapy approaches with an individual patient
  • Assessing and treating mental illnesses like depression, anxiety disorders, PTSD
  • Neuropsychological cases investigating brain injuries or disorders

Child Psychology Case Studies

  • Studying psychological development from birth through adolescence
  • Cases of learning disabilities, autism spectrum disorders, ADHD
  • Effects of trauma, abuse, deprivation on development

Types of Case Studies

  • Explanatory case studies : Used to explore causation in order to find underlying principles. Helpful for doing qualitative analysis to explain presumed causal links.
  • Exploratory case studies : Used to explore situations where an intervention being evaluated has no clear set of outcomes. It helps define questions and hypotheses for future research.
  • Descriptive case studies : Describe an intervention or phenomenon and the real-life context in which it occurred. It is helpful for illustrating certain topics within an evaluation.
  • Multiple-case studies : Used to explore differences between cases and replicate findings across cases. Helpful for comparing and contrasting specific cases.
  • Intrinsic : Used to gain a better understanding of a particular case. Helpful for capturing the complexity of a single case.
  • Collective : Used to explore a general phenomenon using multiple case studies. Helpful for jointly studying a group of cases in order to inquire into the phenomenon.

Where Do You Find Data for a Case Study?

There are several places to find data for a case study. The key is to gather data from multiple sources to get a complete picture of the case and corroborate facts or findings through triangulation of evidence. Most of this information is likely qualitative (i.e., verbal description rather than measurement), but the psychologist might also collect numerical data.

1. Primary sources

  • Interviews – Interviewing key people related to the case to get their perspectives and insights. The interview is an extremely effective procedure for obtaining information about an individual, and it may be used to collect comments from the person’s friends, parents, employer, workmates, and others who have a good knowledge of the person, as well as to obtain facts from the person him or herself.
  • Observations – Observing behaviors, interactions, processes, etc., related to the case as they unfold in real-time.
  • Documents & Records – Reviewing private documents, diaries, public records, correspondence, meeting minutes, etc., relevant to the case.

2. Secondary sources

  • News/Media – News coverage of events related to the case study.
  • Academic articles – Journal articles, dissertations etc. that discuss the case.
  • Government reports – Official data and records related to the case context.
  • Books/films – Books, documentaries or films discussing the case.

3. Archival records

Searching historical archives, museum collections and databases to find relevant documents, visual/audio records related to the case history and context.

Public archives like newspapers, organizational records, photographic collections could all include potentially relevant pieces of information to shed light on attitudes, cultural perspectives, common practices and historical contexts related to psychology.

4. Organizational records

Organizational records offer the advantage of often having large datasets collected over time that can reveal or confirm psychological insights.

Of course, privacy and ethical concerns regarding confidential data must be navigated carefully.

However, with proper protocols, organizational records can provide invaluable context and empirical depth to qualitative case studies exploring the intersection of psychology and organizations.

  • Organizational/industrial psychology research : Organizational records like employee surveys, turnover/retention data, policies, incident reports etc. may provide insight into topics like job satisfaction, workplace culture and dynamics, leadership issues, employee behaviors etc.
  • Clinical psychology : Therapists/hospitals may grant access to anonymized medical records to study aspects like assessments, diagnoses, treatment plans etc. This could shed light on clinical practices.
  • School psychology : Studies could utilize anonymized student records like test scores, grades, disciplinary issues, and counseling referrals to study child development, learning barriers, effectiveness of support programs, and more.

How do I Write a Case Study in Psychology?

Follow specified case study guidelines provided by a journal or your psychology tutor. General components of clinical case studies include: background, symptoms, assessments, diagnosis, treatment, and outcomes. Interpreting the information means the researcher decides what to include or leave out. A good case study should always clarify which information is the factual description and which is an inference or the researcher’s opinion.

1. Introduction

  • Provide background on the case context and why it is of interest, presenting background information like demographics, relevant history, and presenting problem.
  • Compare briefly to similar published cases if applicable. Clearly state the focus/importance of the case.

2. Case Presentation

  • Describe the presenting problem in detail, including symptoms, duration,and impact on daily life.
  • Include client demographics like age and gender, information about social relationships, and mental health history.
  • Describe all physical, emotional, and/or sensory symptoms reported by the client.
  • Use patient quotes to describe the initial complaint verbatim. Follow with full-sentence summaries of relevant history details gathered, including key components that led to a working diagnosis.
  • Summarize clinical exam results, namely orthopedic/neurological tests, imaging, lab tests, etc. Note actual results rather than subjective conclusions. Provide images if clearly reproducible/anonymized.
  • Clearly state the working diagnosis or clinical impression before transitioning to management.

3. Management and Outcome

  • Indicate the total duration of care and number of treatments given over what timeframe. Use specific names/descriptions for any therapies/interventions applied.
  • Present the results of the intervention,including any quantitative or qualitative data collected.
  • For outcomes, utilize visual analog scales for pain, medication usage logs, etc., if possible. Include patient self-reports of improvement/worsening of symptoms. Note the reason for discharge/end of care.

4. Discussion

  • Analyze the case, exploring contributing factors, limitations of the study, and connections to existing research.
  • Analyze the effectiveness of the intervention,considering factors like participant adherence, limitations of the study, and potential alternative explanations for the results.
  • Identify any questions raised in the case analysis and relate insights to established theories and current research if applicable. Avoid definitive claims about physiological explanations.
  • Offer clinical implications, and suggest future research directions.

5. Additional Items

  • Thank specific assistants for writing support only. No patient acknowledgments.
  • References should directly support any key claims or quotes included.
  • Use tables/figures/images only if substantially informative. Include permissions and legends/explanatory notes.
  • Provides detailed (rich qualitative) information.
  • Provides insight for further research.
  • Permitting investigation of otherwise impractical (or unethical) situations.

Case studies allow a researcher to investigate a topic in far more detail than might be possible if they were trying to deal with a large number of research participants (nomothetic approach) with the aim of ‘averaging’.

Because of their in-depth, multi-sided approach, case studies often shed light on aspects of human thinking and behavior that would be unethical or impractical to study in other ways.

Research that only looks into the measurable aspects of human behavior is not likely to give us insights into the subjective dimension of experience, which is important to psychoanalytic and humanistic psychologists.

Case studies are often used in exploratory research. They can help us generate new ideas (that might be tested by other methods). They are an important way of illustrating theories and can help show how different aspects of a person’s life are related to each other.

The method is, therefore, important for psychologists who adopt a holistic point of view (i.e., humanistic psychologists ).

Limitations

  • Lacking scientific rigor and providing little basis for generalization of results to the wider population.
  • Researchers’ own subjective feelings may influence the case study (researcher bias).
  • Difficult to replicate.
  • Time-consuming and expensive.
  • The volume of data, together with the time restrictions in place, impacted the depth of analysis that was possible within the available resources.

Because a case study deals with only one person/event/group, we can never be sure if the case study investigated is representative of the wider body of “similar” instances. This means the conclusions drawn from a particular case may not be transferable to other settings.

Because case studies are based on the analysis of qualitative (i.e., descriptive) data , a lot depends on the psychologist’s interpretation of the information she has acquired.

This means that there is a lot of scope for Anna O , and it could be that the subjective opinions of the psychologist intrude in the assessment of what the data means.

For example, Freud has been criticized for producing case studies in which the information was sometimes distorted to fit particular behavioral theories (e.g., Little Hans ).

This is also true of Money’s interpretation of the Bruce/Brenda case study (Diamond, 1997) when he ignored evidence that went against his theory.

Breuer, J., & Freud, S. (1895).  Studies on hysteria . Standard Edition 2: London.

Curtiss, S. (1981). Genie: The case of a modern wild child .

Diamond, M., & Sigmundson, K. (1997). Sex Reassignment at Birth: Long-term Review and Clinical Implications. Archives of Pediatrics & Adolescent Medicine , 151(3), 298-304

Freud, S. (1909a). Analysis of a phobia of a five year old boy. In The Pelican Freud Library (1977), Vol 8, Case Histories 1, pages 169-306

Freud, S. (1909b). Bemerkungen über einen Fall von Zwangsneurose (Der “Rattenmann”). Jb. psychoanal. psychopathol. Forsch ., I, p. 357-421; GW, VII, p. 379-463; Notes upon a case of obsessional neurosis, SE , 10: 151-318.

Harlow J. M. (1848). Passage of an iron rod through the head.  Boston Medical and Surgical Journal, 39 , 389–393.

Harlow, J. M. (1868).  Recovery from the Passage of an Iron Bar through the Head .  Publications of the Massachusetts Medical Society. 2  (3), 327-347.

Money, J., & Ehrhardt, A. A. (1972).  Man & Woman, Boy & Girl : The Differentiation and Dimorphism of Gender Identity from Conception to Maturity. Baltimore, Maryland: Johns Hopkins University Press.

Money, J., & Tucker, P. (1975). Sexual signatures: On being a man or a woman.

Further Information

  • Case Study Approach
  • Case Study Method
  • Enhancing the Quality of Case Studies in Health Services Research
  • “We do things together” A case study of “couplehood” in dementia
  • Using mixed methods for evaluating an integrative approach to cancer care: a case study

Print Friendly, PDF & Email

(Mostly Clinical) Epidemiology with R

Chapter 6 non-experimental designs, 6.0.1 r packages required for this chapter, 6.1 introduction.

This chapter will provide only the briefest review of non-experimental study designs so as to try and assure that the reader has a common baseline knowledge of the advantages and limitations of each design. The excellent introductory ( Gordis 2014 ) ( Rothman 2012 ) , intermediate ( Szklo and Nieto 2019 ) and advanced ( Rothman, Greenland, and Lash 2008 ) epidemiology textbooks referred to in Chapter 1.2 provide more complete information. The common hierarchy of evidence based medicine (EBM) research designs is presented in this ubiquituous pyramid schema.

EBM pyramid of research designs

Figure 6.1: EBM pyramid of research designs

However, Figure 6.1 is another example of a simple heuristic which enables quick but often erroneous conclusions concerning study design. Unfortunately as shown in this and susequent chapters, there are no shortcuts to the evaluation of study designs which need individual considerations. In that respect the following pyramid is both more realistic and helpful.

Better EBM pyramid of research designs

Figure 3.3: Better EBM pyramid of research designs

Although one may debate that the magnitude of the blue area is an overestimate of the scale of good designs, it does underline the importance in clinical epidemiology of assessing individual study quality for both experimental and non-experimental studies. As this book is orientated toward clinical epidemiology, experimental designs (randomized clinical trials (RCTs)) will be emphasized and discussed separately in a later chapter. RCTs have a special emphasis since they are often considered the pinnacle of research designs and greatly influence medical guidelines and consequently clinical practice.

The following is a taxonomy of the different types of study designs.

Overview of different research designs

Figure 6.2: Overview of different research designs

Ecological study designs involve populations or groups of individuals as the unit of analysis as opposed to the other observation designs where the unit of analysis is the individual. Ecological studies are especially useful for descriptive reports, the analysis of birth cohorts, when exposure is only available at the group level, or to investigate differences between populations when the between population difference is much greater than within population differences. For example, ecological studies would be appropriate for aggregate exposure involving air pollution, health care systems, or gun control laws. One must be careful to avoid the ecological bias that can occur because an association observed between variables on the aggregate level does not necessarily represent the association that exists at the individual level. The ecological bias can be shown graphically in Figure 6.3 where the discordance of the exposure association between groups and individuals is especially strong.

Ecological bias

Figure 6.3: Ecological bias

The real problem is cross-level reference . For an ecological study the level of measurement, level of analysis, and level of inference must all remain at the group level. Ecological studies will not be considered further in this book.

Among non-experimental designs involving individuals, there are essentially 3 different ways at arriving at conclusions by 1) reference to population follow-up (cohort) 2) joint assessment of exposure among cases and non-cases (case-control) 3) reference to one particular time (cross-sectional)

Since all study designs, including the non-experimental (cohort, case-control, cross-sectional) either secretly or not, aim to estimate similar causal quantities, it could be argued that emphasizing their distinctions is somewhat artificial. In other words, do not mistake the journey (particular study type) for the destination (causal effect of an exposure).

This lack of randomization with observational studies, is why we are continually reminded that non-experimental studies can’t provide evidence for causality. Instead we are told to talk of associations. A list of the top 2019 JAMA Internal Medicine articles as determined by Altmetric scores can be found here and is reproduced in Figure 6.4 .

JAMA Internal Medicine Top 2019 Altmetric Articles

Figure 6.4: JAMA Internal Medicine Top 2019 Altmetric Articles

Most interestingly, 11 of the top 14 articles have “association” in their title. But are we really interested in mere associations of the type that matches in your pocket or yellow fingers are associated with lung cancer? I don’t believe so and suspect most people are more interested for obvious reasons in causality and whether they care to admit it or not are subconsciously interpreting association studies in this light ( Hernan 2018 ) . Otherwise there appears little justification to waste one’s time on reading these articles.

Although this is not a book on causality and although I most definitely lack the expertise to delve deeply into this issue, I do think we should acknowledge that the heuristic that observational studies can never inform on causality is flawed and should think more deeply about how we can reach this elusive goal of establishing causality. Please see the following excellent references on causal inference, ( Westreich 2019 ) , ( Pearl, Glymour, and Jewell 2016 ) , ( Hernán and JM 2020 ) and ( Pearl 2008 ) , ordered in increasing detail and complexity.

Again more details may be found in the above mentioned references.

6.2 Cohort studies

A cohort is a designated/defined group of individuals followed through time often to study incidence of disease in the study group. Examples of sample cohorts may include occupational cohorts, specific groups at risk of a disease or convenience samples (e.g. Nurses or Framingham cohorts). Be careful to distinguish between study, source and target populations.

Cohort studies offer multiple potential advantages: * Can study exposures that are difficult or unthinkable to randomize * Study population often more representative of target pop’l * Allows calculation of incidence rates * Time sequence is generally clear (exposure before outcome) * Efficient as multiple outcomes / exposures can be assessed as new hypothesis are developed over time

Cohort studies can be of 2 formats; 1. Concurrent (prospective) cohort studies: assembled at present time. Advantages: measurement of exposure, outcome, covariates is decided at baseline and can see temporal ordering of exposure and disease. Disadvantages: expensive and time consuming. 2. Historical/non-concurrent/mixed (retrospective) cohort studies: incorporates historical time exposed (at least partially). Advantages: less expensive; linking data registries (e.g. exposure and outcome information). Disadvantages: can only use available information; possibly lower quality measurements; data may not have been collected for research purposes.

In cohort studies, exposed/unexposed groups exist in the source population and are selected by the investigator while in an RCT, a form of closed cohort, treatment/exposure is assigned by the investigator.

Observational research design

Figure 6.5: Observational research design

Experimental research design

Figure 6.6: Experimental research design

Practically, the best general approach to achieve valid causal non-experimental designs is to try to emulate the RCT ( Hernan and Robins 2016 ) you would like to do with special attention to the following: * Selection of population * Exposure definition (induction, duration, intensity, cumulative exposures) * Outcome ascertainment with minimization of lost to follow-up

6.3 Case control

Sometimes it useful to start with the cases! Although important for all research designs, it is obviously essential for case control designs to have an unambiguous, valid case definition preferably using objective and established criteria that avoids any misclassification or other biases. Careful distinction between incident and prevalent cases is also of prime importance. Where the cases are found is a function of the particular research question and setting. Potential sources include hospital registers, vital records (births/deaths), national registries (e.g., for cancer, diabetes) and community clinics.

After case identification, the most important and difficult next step is the selection of the controls. Consideration of a counterfactual model can help operationalize the choice of controls. Controls are drawn from a sample of individuals without the disease, selected from the same reference population that originated the cases and who go through the same selection processes as the cases. Moreover, controls must be individuals who, if they had developed the case disease, would have been included in the case group.

Case control studies may be conducted with an open or closed study population. In a dynamic (open) population, there are two options for selecting controls; i) if the population is in a steady-state, sample randomly from the person-time distribution ii) if not, controls may be selected at the same time as cases occur (i.e., “matched on time”). In a closed study population, there are three options for selecting controls; i) at the end of follow-up ii) at the beginning of follow-up iii) throughout follow-up as cases occur (“matched on time”). Analytically, these distinctions lead to different effect measures, each of which (under various assumptions) parallels an equivalent measure from a full-cohort study.

Case control sampling times

Figure 6.7: Case control sampling times

  • Sample point 1 - This is the classic “ case based ” sampling (AKA “exclusive,” “cumulative”) that occurs at the end of follow-up. In this case, the incident odds ratio (OR) ≈ risk ratio (RR) (under the rare disease assumption)
  • Sample point 2 - This is “ case-cohort ” sampling (AKA “inclusive”) that occurs at the beginning of follow-up. In this case, the incident odds ratio (OR) ≈ risk ratio (RR) (rare disease assumption not required)
  • Sample point 3 - “ Nested ” sampling (AKA “incidence density”) from the distribution of exposed person-time matched during follow-up. In this case, the incident odds ratio (OR) ≈ rate ratio (RR)

The efficiency of the case control design comes from taking a sample, and not all, of the controls. Under that logic, it may be reasonably asked why not take only a sample of the cases? Consider the following example.

The OR is 2.11 with 95% CI 1.65 - 2.71. The OR is fairly close to incident risk ratio for the full cohort (RR = 2) since the rare assumption is approximately true, about 10% incidence. If we select only 1/10 of the controls the OR is 2.11 with 95% CI 1.54 - 2.89, a trivial difference. On the other hand, suppose we take a 1/10 sample of the cases, the OR remains unbiased at 2.11 but the 95% CI 0.96 - 4.63 is much larger. It is this lack of precision that mandates the inclusion of all cases in a case / control design. This is easily understood when it is recalled that the standard error of the estimated OR is \[se(\hat{OR}) = \sqrt{\dfrac{1}{a} + \dfrac{1}{b} + \dfrac{1}{c} + \dfrac{1}{d}}\] so the largest component comes from the smallest cell entries and se will be minimized by taking all the cases.

The following figure from ( Knol et al. 2008 ) is a useful summary of the effect measures available from case control studies depending on the nature of the cases (prevalent or incident; level 1), the type of source population (fixed cohort or dynamic population; level 2), the sampling design used to select controls (level 3), and the underlying assumptions (level 4).

Effect measures from case control designs

Figure 6.8: Effect measures from case control designs

In summary, case control studies have the advantages of being faster to perform and less expensive to conduct than cohort studies but care must be exercised that they, like all study designs, are carefully performed. Proper control selection is essential and must come from the same target population as cases (easiest when performed within an established cohort). Controls must be sampled independently of exposure and there is improved precision with more controls (1,2,3,4) but diminishing returns (SE 0.167, 0.145, 0.138, 0.134). Effect measure precision is improved precision by taking all the cases. Although case control studies are susceptible to recognized biases (Berkson, recall, incidence/prevalence) these can be avoided with necessary care. The routine placement of case-control studies under cohort studies on hierarchies of study designs is not well-founded.

An interesting variant is the case crossover design where each case serves as its own control thereby minimizes confounding for time invariant factors whether observed or unobserved. Exposures must vary over time but have a short induction time, a transient effect (e.g., triggers for heart attacks, asthma episodes) and no cumulative effects. This design is the observational analogue of the crossover randomized trial.

A final variant are case series without any controls. While the early identification of cases may prove sentinel for a new disease (see cases series that lead to first identification of the AIDS epidemic ), the inferential strength of this design is limited due to the lack of any suitable comparator. Moreover arbitrary selection of cases and an embellished narrative can lead to an undervaluing of scientific evidence and great public health danger (see cases series ( Wakefield et al. 1998 ) , later retracted, at the genesis of the vaccine autism falsehood).

6.4 Cross sectional

Cross sectional studies are most useful for descriptive epidemiology with a primary goal of estimating disease prevalence. As no follow-up is required, cross sectional studies are fast, efficient and can enroll large numbers of participants. However they have little value for causal inference as they provide no information on timing of outcome relative to exposure (temporality) and include only those individuals alive at the time of the study, thereby introducing a prevalence-incidence bias. Due to these limitations, this study design has little value in clinical epidemiology and will not be discussed further.

6.5 Miscellaneous designs

There are, of course, many variants and other miscellaneous non-experimental designs including difference-in-difference (DID) , regression discontinuity , and quasi-experimental to name but a few.

Conceptually, DID design can be best thought of as a combination of a before & after comparison and a comparison between treated & untreated individuals and are therefore also known as ontrolled before and after studies. These studies minimize bias due to pretreatment differences in outcomes,allow for a flexible control of time invariant confounders and are preferable to an uncontrolled before and after comparison of only treated individuals.

Quasi-experimental designs refer to approaches to effect estimation in which investigators identify (or create) a source of variation in the exposure which is unrelated to the rest of the causal system under study—including the outcome (except through the exposure itself) and the confounders. A classic historical example is John Snow’s cholera work where which household received “dirtier” water from the Southwark and Vauxhall company or “cleaner” water from the Lambeth company was a quasi-random event. The company can thus be seen as an instrumental variable, similar to randomization. Regression discontinuity designs are a special subset of quasi-experimental designs where subjects just above and below a given threshold are essentially identical on all observed and unobserved characteristics yet are arbitrarily assigned different therapies.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Case-Control Study? | Definition & Examples

What Is a Case-Control Study? | Definition & Examples

Published on February 4, 2023 by Tegan George . Revised on June 22, 2023.

A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar group lacking that condition. Here, the participants possessing the attribute of study, such as a disease, are called the “case,” and those without it are the “control.”

It’s important to remember that the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

Table of contents

When to use a case-control study, examples of case-control studies, advantages and disadvantages of case-control studies, other interesting articles, frequently asked questions.

Case-control studies are a type of observational study often used in fields like medical research, environmental health, or epidemiology. While most observational studies are qualitative in nature, case-control studies can also be quantitative , and they often are in healthcare settings. Case-control studies can be used for both exploratory and explanatory research , and they are a good choice for studying research topics like disease exposure and health outcomes.

A case-control study may be a good fit for your research if it meets the following criteria.

  • Data on exposure (e.g., to a chemical or a pesticide) are difficult to obtain or expensive.
  • The disease associated with the exposure you’re studying has a long incubation period or is rare or under-studied (e.g., AIDS in the early 1980s).
  • The population you are studying is difficult to contact for follow-up questions (e.g., asylum seekers).

Retrospective cohort studies use existing secondary research data, such as medical records or databases, to identify a group of people with a common exposure or risk factor and to observe their outcomes over time. Case-control studies conduct primary research , comparing a group of participants possessing a condition of interest to a very similar group lacking that condition in real time.

Prevent plagiarism. Run a free check.

Case-control studies are common in fields like epidemiology, healthcare, and psychology.

You would then collect data on your participants’ exposure to contaminated drinking water, focusing on variables such as the source of said water and the duration of exposure, for both groups. You could then compare the two to determine if there is a relationship between drinking water contamination and the risk of developing a gastrointestinal illness. Example: Healthcare case-control study You are interested in the relationship between the dietary intake of a particular vitamin (e.g., vitamin D) and the risk of developing osteoporosis later in life. Here, the case group would be individuals who have been diagnosed with osteoporosis, while the control group would be individuals without osteoporosis.

You would then collect information on dietary intake of vitamin D for both the cases and controls and compare the two groups to determine if there is a relationship between vitamin D intake and the risk of developing osteoporosis. Example: Psychology case-control study You are studying the relationship between early-childhood stress and the likelihood of later developing post-traumatic stress disorder (PTSD). Here, the case group would be individuals who have been diagnosed with PTSD, while the control group would be individuals without PTSD.

Case-control studies are a solid research method choice, but they come with distinct advantages and disadvantages.

Advantages of case-control studies

  • Case-control studies are a great choice if you have any ethical considerations about your participants that could preclude you from using a traditional experimental design .
  • Case-control studies are time efficient and fairly inexpensive to conduct because they require fewer subjects than other research methods .
  • If there were multiple exposures leading to a single outcome, case-control studies can incorporate that. As such, they truly shine when used to study rare outcomes or outbreaks of a particular disease .

Disadvantages of case-control studies

  • Case-control studies, similarly to observational studies, run a high risk of research biases . They are particularly susceptible to observer bias , recall bias , and interviewer bias.
  • In the case of very rare exposures of the outcome studied, attempting to conduct a case-control study can be very time consuming and inefficient .
  • Case-control studies in general have low internal validity  and are not always credible.

Case-control studies by design focus on one singular outcome. This makes them very rigid and not generalizable , as no extrapolation can be made about other outcomes like risk recurrence or future exposure threat. This leads to less satisfying results than other methodological choices.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

is a case study non experimental

A case-control study differs from a cohort study because cohort studies are more longitudinal in nature and do not necessarily require a control group .

While one may be added if the investigator so chooses, members of the cohort are primarily selected because of a shared characteristic among them. In particular, retrospective cohort studies are designed to follow a group of people with a common exposure or risk factor over time and observe their outcomes.

Case-control studies, in contrast, require both a case group and a control group, as suggested by their name, and usually are used to identify risk factors for a disease by comparing cases and controls.

A case-control study differs from a cross-sectional study because case-control studies are naturally retrospective in nature, looking backward in time to identify exposures that may have occurred before the development of the disease.

On the other hand, cross-sectional studies collect data on a population at a single point in time. The goal here is to describe the characteristics of the population, such as their age, gender identity, or health status, and understand the distribution and relationships of these characteristics.

Cases and controls are selected for a case-control study based on their inherent characteristics. Participants already possessing the condition of interest form the “case,” while those without form the “control.”

Keep in mind that by definition the case group is chosen because they already possess the attribute of interest. The point of the control group is to facilitate investigation, e.g., studying whether the case group systematically exhibits that attribute more than the control group does.

The strength of the association between an exposure and a disease in a case-control study can be measured using a few different statistical measures , such as odds ratios (ORs) and relative risk (RR).

No, case-control studies cannot establish causality as a standalone measure.

As observational studies , they can suggest associations between an exposure and a disease, but they cannot prove without a doubt that the exposure causes the disease. In particular, issues arising from timing, research biases like recall bias , and the selection of variables lead to low internal validity and the inability to determine causality.

Sources in this article

We strongly encourage students to use sources in their work. You can cite our article (APA Style) or take a deep dive into the articles below.

George, T. (2023, June 22). What Is a Case-Control Study? | Definition & Examples. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/methodology/case-control-study/
Schlesselman, J. J. (1982). Case-Control Studies: Design, Conduct, Analysis (Monographs in Epidemiology and Biostatistics, 2) (Illustrated). Oxford University Press.

Is this article helpful?

Tegan George

Tegan George

Other students also liked, what is an observational study | guide & examples, control groups and treatment groups | uses & examples, cross-sectional study | definition, uses & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

is a case study non experimental

Yearly paid plans are up to 65% off for the spring sale. Limited time only! 🌸

  • Form Builder
  • Survey Maker
  • AI Form Generator
  • AI Survey Tool
  • AI Quiz Maker
  • Store Builder
  • WordPress Plugin

is a case study non experimental

HubSpot CRM

is a case study non experimental

Google Sheets

is a case study non experimental

Google Analytics

is a case study non experimental

Microsoft Excel

is a case study non experimental

  • Popular Forms
  • Job Application Form Template
  • Rental Application Form Template
  • Hotel Accommodation Form Template
  • Online Registration Form Template
  • Employment Application Form Template
  • Application Forms
  • Booking Forms
  • Consent Forms
  • Contact Forms
  • Donation Forms
  • Customer Satisfaction Surveys
  • Employee Satisfaction Surveys
  • Evaluation Surveys
  • Feedback Surveys
  • Market Research Surveys
  • Personality Quiz Template
  • Geography Quiz Template
  • Math Quiz Template
  • Science Quiz Template
  • Vocabulary Quiz Template

Try without registration Quick Start

Read engaging stories, how-to guides, learn about forms.app features.

Inspirational ready-to-use templates for getting started fast and powerful.

Spot-on guides on how to use forms.app and make the most out of it.

is a case study non experimental

See the technical measures we take and learn how we keep your data safe and secure.

  • Integrations
  • Help Center
  • Sign In Sign Up Free
  • What is non-experimental research: Definition, types & examples

What is non-experimental research: Definition, types & examples

Defne Çobanoğlu

The experimentation method is very useful for getting information on a specific subject. However, when experimenting is not possible or practical, there is another way of collecting data for those interested. It's a non-experimental way, to say the least.

In this article, we have gathered information on non-experimental research, clearly defined what it is and when one should use it, and listed the types of non-experimental research. We also gave some useful examples to paint a better picture. Let us get started. 

  • What is non-experimental research?

Non-experimental research is a type of research design that is based on observation and measuring instead of experimentation with randomly assigned participants.

What characterizes this research design is the fact that it lacks the manipulation of independent variables . Because of this fact, the non-experimental research is based on naturally occurring conditions, and there is no involvement of external interventions. Therefore, the researchers doing this method must not rely heavily on interviews, surveys , or case studies.

  • When to use non-experimental research?

An experiment is done when a researcher is investigating the relationship between one or two phenomena and has a theory or hypothesis on the relationship between two variables that are involved. The researcher can carry out an experiment when it is ethical, possible, and feasible to do one.

However, when an experiment can not be done because of a limitation, then they decide to opt for a non-experimental research design . Non-experimental research is considered preferable in some conditions, including:

  • When the manipulation of the independent variable is not possible because of ethical or practical concerns
  • When the subjects of an experimental design can not be randomly assigned to treatments.
  • When the research question is too extensive or it relates to a general experience.
  • When researchers want to do a starter research before investing in more extensive research.
  • When the research question is about the statistical relationship between variables , but in a noncausal context.
  • Characteristics of non-experimental research

Non-experimental research has some characteristics that clearly define the framework of this research method. They provide a clear distinction between experimental design and non-experimental design. Let us see some of them:

  • Non-experimental research does not involve the manipulation of variables .
  • The aim of this research type is to explore the factors as they naturally occur .
  • This method is used when experimentation is not possible because of ethical or practical reasons .
  • Instead of creating a sample or participant group, the existing groups or natural thresholds are used during the research.
  • This research method is not about finding causality between two variables.
  • Most studies are done on past events or historical occurrences to make sense of specific research questions.
  • Types of non-experimental research

Non-experimental research types

Non-experimental research types

What makes research non-experimental research is the fact that the researcher does not manipulate the factors, does not randomly assign the participants, and observes the existing groups. But this research method can also be divided into different types. These types are:

Correlational research:

In correlation studies, the researcher does not manipulate the variables and is not interested in controlling the extraneous variables. They only observe and assess the relationship between them. For example, a researcher examines students’ study hours every day and their overall academic performance. The positive correlation this between study hours and academic performance suggests a statistical association. 

Quasi-experimental research:

In quasi-experimental research, the researcher does not randomly assign the participants into two groups. Because you can not deliberately deprive someone of treatment, the researcher uses natural thresholds or dividing points . For example, examining students from two different high schools with different education methods.

Cross-sectional research:

In cross-sectional research, the researcher studies and compares a portion of a population at the same time . It does not involve random assignment or any outside manipulation. For example, a study on smokers and non-smokers in a specific area.

Observational research:

In observational research, the researcher once again does not manipulate any aspect of the study, and their main focus is observation of the participants . For example, a researcher examining a group of children playing in a playground would be a good example.

  • Non-experimental research examples

Non-experimental research is a good way of collecting information and exploring relationships between variables. It can be used in numerous fields, from social sciences, economics, psychology, education, and market research. When gathering information using secondary research is not enough and an experiment can not be done, this method can bring out new information.

Non-experimental research example #1

Imagine a researcher who wants to see the connection between mobile phone usage before bedtime and the amount of sleep adults get in a night . They can gather a group of individuals to observe and present them with some questions asking about the details of their day, frequency and duration of phone usage, quality of sleep, etc . And observe them by analyzing the findings.

Non-experimental research example #2

Imagine a researcher who wants to explore the correlation between job satisfaction levels among employees and what are the factors that affect this . The researcher can gather all the information they get about the employees’ ages, sexes, positions in the company, working patterns, demographic information, etc . 

The research provides the researcher with all the information to make an analysis to identify correlations and patterns. Then, it is possible for researchers and administrators to make informed predictions.

  • Frequently asked questions about non-experimental research

When not to use non-experimental research?

There are some situations where non-experimental research is not suitable or the best choice. For example, the aim of non-experimental research is not about finding causality therefore, if the researcher wants to explore the relationship between two variables, then this method is not for them. Also, if the control over the variables is extremely important to the test of a theory, then experimentation is a more appropriate option.

What is the difference between experimental and non-experimental research?

Experimental research is an example of primary research where the researcher takes control of all the variables, randomly assigns the participants into different groups, and studies them in a pre-determined environment to test a hypothesis. 

On the contrary, non-experimental research does not intervene in any way and only observes and studies the participants in their natural environments to make sense of a phenomenon

What makes a quasi-experiment a non-experiment?

The same as true experimentation, quasi-experiment research also aims to explore a cause-and-effect relationship between independent and dependent variables. However, in quasi-experimental research, the participants are not randomly selected. They are assigned to groups based on non-random criteria .

Is a survey a non-experimental study?

Yes, as the main purpose of a survey or questionnaire is to collect information from participants without outside interference, it makes the survey a non-experimental study. Surveys are used by researchers when experimentation is not possible because of ethical reasons, but first-hand data is needed

What is non-experimental data?

Non-experimental data is data collected by researchers via using non-experimental methods such as observations, interpretation, and interactions. Non-experimental data could both be qualitative or quantitative, depending on the situation.

Advantages of non-experimental research

Non-experimental research has its positive sides that a researcher should have in mind when going through a study. They can start their research by going through the advantages. These advantages are:

  • It is used to observe and analyze past events .
  • This method is more affordable than a true experiment .
  • As the researcher can adapt the methods during the study, this research type is more flexible than an experimental study.
  • This method allows the researchers to answer specific questions .

Disadvantages of non-experimental research

Even though non-experimental research has its advantages, it also has some disadvantages a researcher should be mindful of. Here are some of them:

  • The findings of non-experimental research can not be generalized to the whole population. Therefore, it has low external validity .
  • This research is used to explore only a single variable .
  • Non-experimental research designs are prone to researcher bias and may not produce neutral results.
  • Final words

A non-experimental study differs from an experimental study in that there is no intervention or change of internal or extraneous elements. It is a smart way to collect information without the limitations of experimentation. These limitations could be about ethical or practical problems. When you can not do proper experimentation, your other option is to study existing conditions and groups to draw conclusions. This is a non-experimental design .

In this article, we have gathered information on non-experimental research to shed light on the details of this research method. If you are thinking of doing a study, make sure to have this information in mind. And lastly, do not forget to visit our articles on other research methods and so much more!

Defne is a content writer at forms.app. She is also a translator specializing in literary translation. Defne loves reading, writing, and translating professionally and as a hobby. Her expertise lies in survey research, research methodologies, content writing, and translation.

  • Form Features
  • Data Collection

Table of Contents

Related posts.

Descriptive analysis: Definition, types & examples

Descriptive analysis: Definition, types & examples

35+ Hilarious agency memes that are so true it kind of hurts

35+ Hilarious agency memes that are so true it kind of hurts

Şeyma Beyazçiçek

7 reasons why you need forms automation software in your company

7 reasons why you need forms automation software in your company

  • Open access
  • Published: 09 September 2023

Using public clinical trial reports to probe non-experimental causal inference methods

  • Ethan Steinberg 1 ,
  • Nikolaos Ignatiadis 2 ,
  • Steve Yadlowsky 3 ,
  • Yizhe Xu 1 &
  • Nigam Shah 1  

BMC Medical Research Methodology volume  23 , Article number:  204 ( 2023 ) Cite this article

1270 Accesses

1 Citations

Metrics details

Non-experimental studies (also known as observational studies) are valuable for estimating the effects of various medical interventions, but are notoriously difficult to evaluate because the methods used in non-experimental studies require untestable assumptions. This lack of intrinsic verifiability makes it difficult both to compare different non-experimental study methods and to trust the results of any particular non-experimental study.

We introduce TrialProbe , a data resource and statistical framework for the evaluation of non-experimental methods. We first collect a dataset of pseudo “ground truths” about the relative effects of drugs by using empirical Bayesian techniques to analyze adverse events recorded in public clinical trial reports. We then develop a framework for evaluating non-experimental methods against that ground truth by measuring concordance between the non-experimental effect estimates and the estimates derived from clinical trials. As a demonstration of our approach, we also perform an example methods evaluation between propensity score matching, inverse propensity score weighting, and an unadjusted approach on a large national insurance claims dataset.

From the 33,701 clinical trial records in our version of the ClinicalTrials.gov dataset, we are able to extract 12,967 unique drug/drug adverse event comparisons to form a ground truth set. During our corresponding methods evaluation, we are able to use that reference set to demonstrate that both propensity score matching and inverse propensity score weighting can produce estimates that have high concordance with clinical trial results and substantially outperform an unadjusted baseline.

Conclusions

We find that TrialProbe is an effective approach for probing non-experimental study methods, being able to generate large ground truth sets that are able to distinguish how well non-experimental methods perform in real world observational data.

Peer Review reports

Non-experimental studies (which are also known as observational studies) are valuable for estimating causal relationships in medical settings where randomized trials are not feasible due to either ethical or logistical concerns [ 1 ]. In addition, effects from randomized trials might not generalize to real-world use due to limited and non-representative study populations and differing clinical practice environments [ 2 ]. Accurately estimating these causal relationships is important, as learning which treatments are the most effective is a key component of improving health care. However, non-experimental studies are difficult to use in practice due to the absence of randomization, which forces them to rely on difficult-to-verify assumptions, such as the absence of unmeasured confounding and non-informative censoring [ 3 ]. These assumptions make it difficult to evaluate the performance of non-experimental methods, which is an important step for verifying the reliability of these techniques as well as determining the relative merits of different methods. Despite significant recent progress in non-experimental study evaluation (detailed in Section “Related work”), this difficulty with evaluation hampers research, by making it more difficult to develop more effective methods, and hinders practice, as clinicians are hesitant to use evidence generated from non-experimental studies even in situations where clinical trial derived evidence is not available [ 4 , 5 , 6 ].

In this work, we introduce TrialProbe , a new principled approach for the systematic appraisal of non-experimental causal inference methods. Our basic premise is that we can evaluate non-experimental causal inference methods by comparing adverse event effect estimates from non-experimental methods with published experimentally derived estimates from public ClinicalTrials.gov clinical trial reports. Compared to previous approaches for the evaluation of non-experimental methods (more of which below in Section “Related work”), TrialProbe  differs in three regards. First, we explicitly focus on active comparator study designs where one drug is directly compared to another drug as those are easier to connect to potential non-experimental study designs [ 7 ]. Second, we estimate the magnitude of the effects extracted from the public clinical trial reports through an empirical Bayes approach that explicitly accounts for the heterogeneity of odds ratios across the clinical trials, the statistical information content (e.g., sample size) used to estimate each odds ratio, and the fact that most effects are very small. Third, we use those estimated effects to split our reference set into several subsets that contain drug effects of varying strengths, so that users can simultaneously understand the concordance between non-experimental and experimental methods for both stronger and weaker effects.

We then use TrialProbe  to evaluate common non-experimental study methods in terms of their ability to identify causal relationships from a large national administrative claims dataset - Optum’s de-identified Clinformatics Data Mart Database. We find that available methods can reproduce a significant fraction of the reported effect and that adjusting for a low-dimensional representation of patient history outperforms a naive analysis that does not adjust for any covariates.

Related work

The importance of evaluating non-experimental methods is well-understood and ubiquitous. The most common approach for evaluation is based on simulation experiments, or more recently, based on semi-synthetic simulations that seek to mimic real observational datasets [ 8 , 9 , 10 , 11 , 12 ]. The upshot of simulation studies is that the ground truth is precisely known, and so non-experimental methods can be compared with respect to any metric of interest. Nevertheless, it is difficult to determine whether or not those simulations provide a realistic confounding structure that is similar to observational data in practice.

Non-experimental methods have also been evaluated in terms of reproducibility by evaluating whether it is possible to independently reproduce previously published non-experimental studies [ 13 ]. Reproducibility is an important and useful feature for non-experimental studies, but measuring reproducibility alone does not necessarily address the issue of whether non-experimental studies provide correct effect estimates.

Closer to our work, several authors have evaluated non-experimental methods by comparing them to results from RCTs. Some authors have used data from RCTs to estimate a causal effect, and then applied a non-experimental method only to the treatment arm of the same RCT [ 14 , 15 ] Footnote 1 or to the treated subjects from the RCT along with control subjects drawn from survey datasets [ 16 ]. Furthermore, such approaches require access to patient-level data for each RCT.

Other authors have constructed pairs of published non-experimental studies and RCTs that assess the same intervention in similar populations [ 17 , 18 ]. Such an approach is appealing, as it directly compares non-experimental designs that researchers have pursued (and published). On the other hand, such an approach does not allow the large-scale and systematic exploration of variations in causal inference methods and is typically restricted to the study of dozens of effects. This approach is also subject to publication bias issues, which results in an under-reporting of non-significant effects in both experimental and non-experimental designs.

Another common approach—that most closely aligns with our work—for evaluating non-experimental causal inference methods is through reference sets [ 19 , 20 ]. A reference set is a collection of relationships about the effects of treatments that are independently verified, and treated as ground truth against which the ability of a non-experimental method to identify those effects from available data can be quantified. There have been several proposed approaches to create reference sets, the most prominent of which rely on either FDA labels or expert knowledge to declare known relationships between drugs and outcomes [ 20 ]. However, the actual construction of existing reference sets can be opaque. Instead, in TrialProbe  we generate a sequence of nested reference sets that correspond to increasing levels of evidence for the strength of the causal effect. The construction of the TrialProbe  reference sets is fully data-driven and reproducible. Furthermore, we are not aware of previous reference sets that focus on active comparator study designs.

RCT-Duplicate [ 21 ] is another closely related effort that attempts to quantify the performance of non-experimental methods by carefully reproducing the results of 32 clinical trials using insurance claims databases. This manual emulation of the trial design (to the extent feasible) allows RCT-Duplicate to very closely match the exact clinical trial setup, including details such as inclusion/exclusion criteria that are not possible with fully automated approaches such as ours. In addition, the increased effort per trial limits the number of RCTs that can be feasibly reproduced to just 32. Our work is similar in spirit, but expands on the idea by vastly increasing the number of estimated effects by several orders of magnitude to 12,967 by being fully automated and by taking advantage of the entire ClinicalTrials.gov database.

All the approaches we outlined above for the evaluation of non-experimental methods based on results from RCTs face the following difficulty: Even in an optimal situation, it is not expected that any non-experimental method will reproduce the entire ground truth in the reference set because the observational data usually comes from a different population than the population used to collect the ground truth [ 22 ]. Identification of a known relationship might fail for example because the academic medical center population used in an RCT might differ drastically from the general population available in the non-experimental data resource. Many other study design factors (e.g., whether the estimand is a hazard ratio in the non-experimental study and an odds ratio in the RCT) can further lead to deviations between the non-experimental study and the RCT. A related issue is that experimental studies also have a certain error rate, in that incorrect blinding, randomization, unrealistic usage, or other errors can cause an RCT to return incorrect effect estimates [ 2 ]. Nevertheless, a common assumption is that while the exact effect might differ, the effect identified in the observational data and the original “ground truth” should be correlated and good non-experimental methods should on average have greater correspondence with the provided ground truth [ 23 ]. Here we take this idea to an extreme and only check for concordance between the direction of effects in RCTs and the non-experimental methods [ 12 , 20 ]. A related evaluation approach, where one only seeks to recover the direction of an effect, has appeared in the causal discovery literature [ 24 ].

In this section we describe the TrialProbe  approach. We describe the data source of the clinical trial reports (ClinicalTrials.gov), the processing of the raw data to a curated dataset of \(M={12,967}\) unique drug/drug adverse event comparisons, as well as the statistical approach that we propose for comparing non-experimental causal inference methods.

The primary data source: ClinicalTrials.gov

ClinicalTrials.gov serves as a public repository for clinical trials carried out in the United States and abroad. The database contains pre-registration information, trial status, and results as provided by researchers conducting the trials. Many clinical trials are legally required to report results to ClinicalTrials.gov within 1 year of study completion, with a compliance rate of over 40%  [ 25 ]. In this work we use the June 4, 2020 version of the database, which includes 33,701 clinical trials. Note that we are not using patient level data collected in the trial, but the public report posted at ClinicalTrials.gov.

Extracting trials with an active comparator design

We focus on drug versus drug active comparator clinical trials, which evaluate one drug directly against another. The reason is that such comparisons are easier to conduct in the context of a non-experimental study design. In contrast, placebo or standard of care based trials are more difficult to work with because there is no clear corresponding case-control non-experimental study that can be used to estimate effects. We additionally restrict our analysis to higher quality clinical trials using the study design reported on ClinicalTrials.gov. We implement a quality filter by inspecting the reported randomization and blinding information and explicitly removing trials that are either not randomized or do not use participant blinding.

The results section of each active comparator clinical trial record consists of a set of intervention arms as well as the primary outcomes and adverse events associated with each arm. The primary outcomes and side effects are all specified in natural language and must be mapped to standardized terminologies. We discard the primary outcomes because it is difficult to consistently map them to electronic healthcare data sources due to a wide diversity of measurements and a lack of standardized terminology. We instead focus on the adverse events because they are specified using MedDRA terminology and because mappings to corresponding condition codes are available for healthcare data sources. We obtain a standardized version of these adverse outcomes by mapping them to ICD10 using the dictionary mappings contained within UMLS 2019AB.

The drug mentions in the ClinicalTrials.gov records are specified in an ad-hoc manner in terms of brand names, ingredients, dosages and/or more specialized names. As a preliminary step, we filter out all treatment arms with fewer than 100 patients as trials of that size frequently do not have enough power to obtain statistical significance. We then use the RxNorm API to transform the text descriptions of drugs into RxNorm ingredient sets. We require at least 50% of the tokens to match in order to avoid false positives. Treatment arms with more than one ingredient (due to either containing multiple drugs or drugs with multiple active ingredients) are also filtered out. As an additional quality control step, we remove intervention arms that contain plus (“ \(+\) ”) signs in their names that usually indicate combination treatments that RxNorm is not always able to detect and map to ingredients correctly. Finally, we map those RxNorm ingredient sets to Anatomical Therapeutic Chemical (ATC) codes so that we can find the corresponding drugs more easily in our ATC code annotated observational data. We manually very that this automated drug name extraction and mapping step did not introduce significant errors by manually inspecting a set of 100 random mapped trials and double-checking that all drugs in those trials were resolved to correct the RxNorms.

One important feature of ClinicalTrials.gov data is that it often contains records where the same drug-drug comparisons have been tested in multiple trials. We aggregate side effect event counts and participant counts for trials with identical drug combinations and outcome measurements. Similarly, we also aggregate counts across arms where the same drug was evaluated with different dosages. This aggregation procedure has the dual purpose of strengthening the reliability of consistent true effects while helping to down-weigh trials with conflicting effects.

We also note that in an active comparator design, there is typically no concrete choice for the baseline arm (in contrast to e.g., placebo or standard of care trials)—the role of the two arms is symmetric . To express this symmetry, we reorder all pairs of drugs under comparison (for each adverse event) in such a way that the sample odds ratio is \(\ge 1\) .

At the end of this process, we have compiled \(M={12,967}\) unique drug versus drug treatment adverse event comparisons. The summarized data for the i -th entry comprises of the ICD10 code of the adverse event, the ATC code of the two drugs being compared, as well as the contingency table \(Z_i\) :

Below we describe our concrete statistical proposal for leveraging the above dataset to compare non-experimental causal inference methods.

Empirical Bayes effect size estimation

In this section, we develop an approach for estimating the effect sizes of all the drug versus drug treatment adverse event comparisons that adjusts for the following issues: First, most of the drug vs drug effect sizes are very small, close to 1, if not non-existent. Adjusting for this prior is necessary in order to reject spurious, but statistically significant effects. Second, each drug vs drug comparison contains vastly different amounts of information, with differing event rates, patient counts, etc for each comparison. Taking into account the differences in information content is important for identifying effects that are weak, but strongly supported due to the quantity of clinical trial evidence.

Our estimation approach follows a tradition of methodological developments based on hierarchical modeling combined with an empirical Bayes analysis [ 26 , 27 , 28 , 29 ]. This approach explicitly learns a prior to take into account how most effects are small and takes advantage of the differing amounts of information in each comparison. We model the likelihood for the log odds ratio \(\omega _i\) of the i -th comparison (with contingency table ( 1 )) through the non-central hypergeometric distribution, that is,

The likelihood \(L_i(\omega _i)\) for the analysis of \(2 \times 2\) contingency tables has been proposed by, e.g., [ 30 , 31 , 32 , 33 ], and is derived by conditioning on the margins of the table \(Z_i\) —in entirely the same way as in the derivation of Fisher’s exact test.

In our hierarchical approach, we further model the \(\omega _i\) as exchangeable random effects, independent of the margins of \(Z_i\) , with:

In contrast to a fully Bayesian approach, we do not posit knowledge of G , but instead follow the empirical Bayes paradigm and estimate G based on the data \(Z_1,\dotsc ,Z_M\) as follows:

Equation ( 4 ) is an optimization problem over all symmetric distributions G and the objective is the marginal log-likelihood—each component likelihood \(L_i(\cdot )\)  ( 2 ) is integrated with respect to the unknown G . The estimator \(\widehat{G}\) is the nonparametric maximum likelihood estimator (NPMLE) of Kiefer and Wolfowitz  [ 34 ], and has been used for contingency tables [ 30 ]. We note that in contrast to previous works  [ 30 ], we also enforce symmetry of G around 0 in ( 3 ), ( 4 ). The reason is that, as explained in Section “Extracting trials with an active comparator design”, our active comparator design setting is symmetric with respect to the drugs under comparison.

Figure  1 a shows the estimated distribution function \(\widehat{G}\)  ( 4 ) based on the TrialProbe  dataset (in terms of odds ratios \(\textrm{exp}(\omega _i)\) , but with a logarithmic x -axis scale), as well as the empirical distribution of sample odds ratios. Footnote 2 We observe that even though the sample odds ratios are quite spread out, the NPMLE \(\widehat{G}\) is substantially more concentrated around odds ratios near 0. This is consistent with the intuition that for an active comparator design study, side effects will often be similar for the two drugs under comparison (but not always).

figure 1

a Distribution function of drug versus drug adverse event odds ratios in TrialProbe . \(\widehat{G}\) is estimated via nonparametric maximum likelihood as in ( 4 ), while the dashed curve is the empirical distribution of sample odds ratios. b Denoised vs. raw odds ratios. Denoising ( 5 ) is done by computing the posterior mean of the log odds ratio given the data for the i -th comparison and the estimated \(\widehat{G}\)

Finally, to create an effect estimate for the the drug versus drug treatment adverse event comparisons, we use the plug-in principle: We use the estimated \(\widehat{G}\) to compute denoised point estimates of the log odds ratios via the empirical Bayes rule :

Figure  1 b plots \(\textrm{exp}(\widehat{\omega }_i^{\text {EB}})\) against the sample odds ratios. We observe that the rule \(\widehat{\omega }_i^{\text {EB}}\) automatically shrinks most sample log odds ratios toward 0 (equivalently: \(\textrm{exp}(\widehat{\omega }_i^{\text {EB}})\) shrinks most sample odds ratios toward 1), while rigorously accounting for varying effective sample size of each comparison (so that shrinkage toward 1 is heterogeneous). Table 1 gives the first ten entries of TrialProbe , with the largest denoised odds ratio \(\textrm{exp}(\widehat{\omega }_i^{\text {EB}})\) .

Effect size ranking and subsetting

Given our effect size estimates computed through empirical Bayes, we rank drug vs drug adverse event comparisons by effect size magnitude [ 35 ] and construct subsets of our reference set that only contain effects greater than a chosen magnitude.

There is a challenging trade-off when choosing the effect size threshold required to be included in the reference set. Stronger effects should be more resilient to errors in either the clinical trial or non-experimental study design, but might exclude moderate effects that clinicians and researchers are interested in estimating with non-experimental methods.

Due to that complicated trade-off, we do not choose a static effect size threshold and instead perform all analyses with all possible effect size thresholds. This strategy also allows us to provide some insight into how metrics degrade as weaker effects are allowed in the reference set.

We thus define a family of reference sets \(S_t\) , where t is the minimum required denoised odds ratio to be included in the set. Each set \(S_t\) is a subset of TrialProbe , defined as follows:

Evaluation: concordant sign rate

As explained previously, there are many possible reasons why the exact effect size from a non-experimental assessment of a causal effect may not match the results of a clinical trial. We propose to handle this by only looking at the estimated effect direction for those effects which are known to be large. We additionally only compare concordance for cases where the non-experimental method returns a statistically significant result, as this both removes cases where we wouldn’t expect the non-experimental assessment to match and better aligns with how non-experimental assessments are used in practice. The basic premise of our approach is the following.

Consider the comparison of two drugs with respect to an adverse event. Suppose that:

In the clinical trial report, there is strong evidence that \(\omega _A \gg \omega _B\) , that is, there is strong evidence that the adverse event rate under drug A is substantially larger compared to drug B.

The non-experimental causal inference method yields a significant p -value, indicating that the null hypothesis (that both drugs have the same adverse event rate) is probably false.

According to the non-experimental method, drug B leads to a higher adverse event rate compared to drug A, that is, the direction of the effect is the opposite compared to the clinical trial evidence.

Then, we are confident that the non-experimental method yields misleading evidence in this case as it provides statistically significant effects in the wrong direction compared to the ground truth.

We instantiate the above framework as follows. We seek to systematically evaluate a non-experimental causal inference method \(\mathcal {O}\) , which we define as follows (see Section “Case study on Optum’s Clinformatics” for a concrete instantiation): \(\mathcal {O}\) is a mapping from two drugs (drug A and drug B) and an adverse event to a p -value and a predicted causal effect direction (i.e., whether drug A or drug B causes the adverse event more frequently). Specifying the mapping \(\mathcal {O}\) requires specification of the healthcare data resource, the protocol for extracting subjects treated with drug A, resp. drug B, and a statistical method (e.g., an observational method that adjusts for observed covariates) that returns a p -value and the predicted effect direction.

We define \(\mathcal {R}(\mathcal {O}) \subset \textit{TrialProbe}\) as the set of comparisons such that the non-experimental study returns a p -value \(\le 0.05\) . In order to ensure that we only evaluate larger effects, we use the \(S_t\) subsets of TrialProbe defined in the previous section which require each entry in the set to have an empirical Bayes denoised odds ratio greater than t .

We then define the Concordant Sign Rate, as:

Large values of \(\text {CSR}(\mathcal {S}_t, \mathcal {O})\) are preferable. We may define \(1-\text {CSR}(\mathcal {S}_t, \mathcal {O})\) as the discordant sign rate, which is analogous to the notion of false sign rate in multiple testing [ 36 , 37 ] and the type-S (“sign”) error [ 38 ]. In the present setting, however, there is no precise notion of “true” and “false” sign, and instead we evaluate only based on concordance/discordance with the effect derived from the public clinical trial reports.

For every \(\mathcal {S}_t\) and every non-experimental causal inference method \(\mathcal {O}\) , we compute two metrics: the fraction of statistically significant results that have a concordant sign (as in ( 7 )) and the fraction of entries of \(\mathcal {S}_t\) recovered (as in being marked statistically significant with concordant sign). The concordant sign rate gives an indication of how reliable a non-experimental method is and the fraction recovered gives an indication of its power.

Case study on Optum’s Clinformatics

To illustrate how TrialProbe  may be applied, we consider a hypothetical investigator who is interested in comparing two drugs with respect to a specific adverse event and seeks to generate evidence for the comparison. The investigator has access to Optum’s de-identified Clinformatics Data Mart 8.0 medical claims dataset [ 39 ], a large US commercial claims dataset containing over 88 million patients that is frequently used for non-experimental studies.

The investigator proceeds as follows:

Cohorts are constructed systematically using the first drug reimbursement claim for either of the two drugs as the index time. Patients with a prior event or an event at the index time are excluded. At most 100,000 patients are sampled for each drug. Outcomes are measured until each record is censored (as indicated by the end of their healthcare enrollment in the Clinformatics dataset).

For the cohort generated as above, the investigator fits a Cox proportional hazards model with response equal to the first time the adverse event occurs and covariate equal to the indicator of treatment assignment to drug A. Footnote 3

The investigator reports a significant causal effect if the p -value from the Cox fit is \(\le 0.05\) and in that case, declares the direction of the effect according to the estimated hazard ratio.

Steps 1—3 comprise a non-experimental strategy \(\mathcal {O}\) . We also consider two additional non-experimental strategies that replace step 2. by 2.’ or 2.”:

The investigator fits a propensity score matched (PSM) Cox model. The propensity score is estimated using logistic regression on a low-dimensional representation of the patient’s history obtained via a procedure by Steinberg et al. [ 40 ]. When performing matching, the investigator uses a 1:1 greedy matching algorithm on the logit scale with a caliper of 0.1. Once a matched cohort is chosen, the hazard ratio is estimated using a Cox regression by modeling the survival outcome as a function of the treatment status in the cohort. The calculation of the p -value corresponding to the hazard ratio ignores the estimation of the propensity scores.

The investigator fits an inverse propensity score weighted (IPSW) Cox model. As in 2.’, the propensity score is estimated using logistic regression on a low-dimensional representation of the patient’s history obtained via a procedure by Steinberg et al. [ 40 ]. The calculation of the p -value corresponding to the hazard ratio ignores the estimation of the propensity scores.

In what follows, we refer to these two non-experimental methods as “Unadjusted Cox”, “Cox PSM” and “Cox IPSW”. We note that there are many possible criticisms to all three approaches. For example, the first approach is naïve, in that it does not even attempt to adjust for confounding. The second approach adjusts for confounding, but also has caveats, e.g., the computed standard error may be overly conservative [ 41 ]. Finally, the third approach, IPSW, has relatively high variance and can be unstable, especially when there is minimal overlap. Nevertheless, it is plausible that an investigator would proceed using one of these non-experimental approaches (especially Cox PSM and Cox IPSW). With TrialProbe , we can probe some of the properties of these three non-experimental methods.

For a given comparison of interest, it could be the case that any of the methods provides more reliable evidence than the others, or perhaps all methods provide unreliable evidence. There are many reasons why the methods could fail to provide reliable evidence, and these reasons may vary from comparison to comparison (as explained before). Through TrialProbe  we probe operating characteristics of methods in aggregate over many possible comparisons. At the same time, we also encourage researchers to delve in more depth at specific comparisons to identify failure modes of non-experimental strategies.

is a case study non experimental

As an example, the effect in the third row is so strong, so that all three non-experimental methods declare the effect as significant and determine a concordant direction. On the other hand, we do not see good concordance or recovery for the Nicotine vs Bupropion examples (rows one, two, and six), with the covariate-adjusted methods returning three statistically insignificant results and the unadjusted method returning one statistically significant concordant result, one statistically significant discordant result, and one statistically insignificant result. This illustrates some of the tradeoffs when adjusting for confounders in that adjusted methods have an increased Type 1 error rate, but also an increased Type 2 error rate. A likely explanation for the poor performance with nicotine in particular is that nicotine usage is frequently not recorded well in claims data. In this case the potential mismatch between trial results and non-experimental results may be more due to the data source, and not due to the adjustment strategies. This example thus illustrates how TrialProbe  can help identify failure modes of non-experimental studies.

figure 2

a Fraction of significant results with concordant sign as a function of the odds ratio threshold in ( 6 ). b Fraction of recovered entries as a function of the odds ratio threshold

We continue with a more holistic picture of the comparison of the two non-experimental strategies (instead of looking at results for individual comparisons) and proceed as suggested in Section “Evaluation: Concordant sign rate”. One important aspect of our results is that many of the non-experimental effect estimates are not statistically significant, and thus not evaluated by our pipeline. The fraction of non-significant results are in Table 3 . The high frequency of non-significant results, even with the use of a large observational dataset probably reflects the fact that many of these adverse events are rare, especially given the underreporting common in claims data. We compute the fraction of significant results that have concordant signs and the fraction of reference set entries correctly recovered by each method for each subset \(S_t\) of TrialProbe  that only contains effects that have an odds ratio threshold greater than t . Figure 2 provides the performance of each of our three methods on these two metrics. It is reassuring that for the relatively strong effects, all methods perform better than a “coin-flip” based guess of directionality. On the other hand, also as anticipated, the methods that adjust for confounders have better concordance compared to unadjusted Cox-PH and the concordant sign rate is \(\ge 80\%\) for comparisons with strong evidence in ClinicalTrials.gov, say, with (denoised) odds ratio \(\ge 2\) .

We make the following remarks: As the x -axis varies in the plots, we are scanning over less stringent choices of “reference sets”. However, in the spirit of probing methods in an exploratory way, we do not need to make a choice of a specific reference set / cutoff on the x -axis. We also note that as the denoised odds ratios approaches zero, the “reference set” \(\mathcal {S}_t\) becomes increasingly uninformative, and so we would anticipate that any method would have \(\text {CSR} \approx 0.5\) .

Comparison to prior work

In order to better understand how TrialProbe compares to prior work, we perform three other non-experimental method evaluation strategies. First, we perform a direct concordance and recovery rate evaluation using the positive controls (that are presumed to have an effect) from the OMOP and EU-ADR reference sets. We also create an ablated form of TrialProbe that does not use the empirical Bayesian effect estimation and odds ratio magnitude filtering, and instead only identifies significant effects using an exact Fisher test with a 0.05 p -value threshold. Table 4 contains the results of this comparison.

We find that all three of these sets, OMOP, EU-ADR, and the corresponding TrialProbe  subset that only required Fisher statistical significance, were difficult to reproduce, with many non-concordant signs and lost effects. The low concordance and recovery of Fisher exact test based TrialProbe subset in particular helps indicate the importance of our empirical Bayesian estimation and effect size filtering.

Importance of clinical trial filtering

One of the key decisions for constructing TrialProbe is which clinical trials to include for analysis. Our analysis uses an assignment and blinding filter, requiring all candidate clinical trials to use randomized assignment and participant blinding. This filter excludes 6,855 of the 19,822 candidate effects that we could have otherwise studied. In order to understand the effect of this filter, and whether it is worth the lost entries, we perform an ablation experiment where we rerun our analysis without this filter. The resulting concordance and recovery plots are in Fig. 3 .

figure 3

Concordance and recovery rates for an ablated form of TrialProbe that does not use clinical trial quality filters. a Fraction of significant results with concordant sign as a function of the odds ratio threshold in ( 6 ). b Fraction of recovered entries as a function of the odds ratio threshold

The concordance rate and recovery rate without the clinical trial quality filter are distinctly lower, especially at larger odds ratio thresholds. This probably reflects how low-quality clinical trials are less likely to be reproducible due to the inherent increased error rate caused by a lack of participant blinding and incomplete randomization.

In this work, we use clinical trial records from ClinicalTrials.gov to build a source of ground truth to probe the performance non-experimental study methods. We show how such a dataset can be constructed in a systematic statistically sound manner in a way that also allows us to filter by the estimated strength of the effects. We also demonstrate the value of our approach by quantifying the performance of three commonly used non-experimental study methods.

Our approach has three advantages. First, it characterizes the performance of methods on real observational data. Second, our approach provides high quality ground truth based on clinical trials that have varying effect sizes, allowing a read out of the performance of a method for a given effect size (Fig. 2 ). Prior reference sets rely on ground truth sources that might be less reliable or have weaker relationships. Finally, our approach scales better than prior work, because we can create thousands of “known relationships” from published trial reports. This is a significant advantage compared to prior approaches that rely on evaluating methods using patient-level randomized trial datasets that can be difficult to acquire [ 42 ].

The empirical Bayes estimation and odds ratio magnitude subsetting in particular seems to be a key component of how TrialProbe can achieve relatively high measured concordance between the clinical trials and non-experimental methods. As shown in our results section, a TrialProbe subset that only relies on statistical significance achieves very low concordance. Likewise, the OMOP and EU-ADR reference sets (which indirectly rely only on statistical significance through FDA reports) also report similarly poor performance. We believe the most likely hypothesis for explaining this is that there is likely to be significant type 1 error due to the implicit vast multiple hypothesis testing problem when searching for a small number of significant adverse event effects in a sea of thousands of reported minor effects. Empirical Bayes automatically adjusts for this multiple hypothesis testing issue by learning a prior that incorporates the knowledge that most adverse event effects are null (Fig. 1 ), and can thus more effectively discard these invalid effects.

However, our approach has several limitations. The primary limitation of our approach is that we rely on an assumption that the average treatment effect seen in the clinical trials generalizes to the observational data. One way this could be violated is if there is a significant mismatch in the patient population and there is a heterogeneous treatment effect. In that case, it is possible to see different effect directions in the observational data than the randomized trial even if the non-experimental methods are functioning correctly [ 43 , 44 ]. Another probable mismatch between the observational data and the clinical trials is that there is frequent underreporting of outcomes in our observational datasets because they rely on billing records for adverse events. This is especially the case for non-serious outcomes such as nausea or rashes. Such underreporting would cause the estimated rate of adverse events to be lower in our observational data than in clinical trials A third potential cause is that the clinical trial might not provide a correct effect estimate due to poor internal clinical trial quality (such as improper blinding, poor randomization, and publication bias). For all of these potential causes of different effect estimates, our primary mitigation strategy is to focus on the effect directions of hazard ratios. The benefit of effect directions is that they intrinsically require greater error to change, especially when the effect magnitude is large. Hazard ratios additionally increase resilience by making analysis more resilient to changes in the base rate of the event, whether due to population differences or outcome reporting changes. One piece of evidence that this mitigation strategy is somewhat successful is that we observe much greater concordance between non-experimental methods and clinical trials than what could be achieved by random chance. However, we do expect this mitigation strategy to be imperfect, and differences in the underlying effects should cause us to underestimate the performance of non-experimental methods.

Our work also has several secondary limitations. First, our approach is only able to evaluate methods for detecting average treatment effects because our ground truth is in the form of average treatment effects. We are simply unable to evaluate how effective methods can detect heterogeneous treatment effects. A second additional limitation is that our evaluation strategy simultaneously probes both the statistical method and the observational healthcare data resource used, in that we would only expect high concordance when both are of high quality. This is frequently a disadvantage, in that it can be hard to understand the particular cause of poor concordance. However, in some circumstances, this can be an advantage: TrialProbe can help identify potential issues associated with the observational dataset itself (e.g., the underreporting of side effects such as nausea). TrialProbe could also be used to probe and contrast different observational datasets, e.g., one could seek to contrast one statistical method applied to a cohort extracted from Optum’s de-identified Clinformatics Data Mart Database compared to the same statistical method applied to a cohort extracted from an alternative observational data resource. Third, our reference set is a biased sample of true drug effects due to selection bias, caused by a combination of publication bias (in the form of trials not reporting results to clinicaltrials.gov) and our requirement for drug prescriptions in our observational data. In particular, it is probably the case that studies that result in significant quantities of adverse events are halted and those drugs are then infrequently (or not at all) used in clinical practice, resulting in our work underestimating the “true” adverse event rates of various drugs. This would in turn mean that the empirical Bayes based subsets that try to identify effects of a particular strength will incorrectly contain stronger effects than expected. However, this should not affect our estimated concordance between non-experimental methods and clinical trials within a particular subset, as we only compare effect directions and not effect magnitudes. Finally, one other disadvantage of our current approach is that the same prior is learned for all log-odds ratios; this presupposes that the selection of effects we consider are relevant to each other. This may not necessarily be the case; for example, chemotherapy drugs will typically have much stronger side effects than other drugs. Not accounting for these differences might cause us to underestimate the effect sizes for high risk drugs like chemotherapy drugs and underestimate the effect sizes for less risky medications. A refinement of the approach would be to stratify effects into groups [ 45 ] and learn a separate prior for each group, or to apply methods for empirical Bayes estimation in the presence of covariate information [ 46 ].

We propose an approach for evaluating non-experimental methods using clinical trial derived reference sets, and evaluate three commonly used non-experimental study methods in terms of their ability to identify the known relationships in a commonly used claims dataset. We find that adjustment significantly improves the ability to correctly recover known relationships, with propensity score matching performing particularly well for detecting large effects.

We make TrialProbe , i.e., the reference set as well as the procedure to create it, freely available at https://github.com/som-shahlab/TrialProbe . TrialProbe  is useful for benchmarking observational study methods performance by developers of the methods as well as for practitioners interested in knowing the expected performance of a specific method on the dataset available to them.

Availability of data and materials

Our code is available at https://github.com/som-shahlab/TrialProbe . The source clinical trial records can be found at clinicaltrials.gov. The data we used in our case study, Optum’s Clinformatics Data Mart Database, is not publicly available as it is a commercially licensed product. In order to get access to Optum’s Clinformatics Data Mart Database, it is generally necessary to reach out to Optum directly to obtain both a license and the data itself. Contact information and other details about how to get access can be found on the product sheet [ 39 ]. Optum is the primary long term repository for their datasets and we are not allowed to maintain archive copies past our contract dates.

Such comparisons make sense when there is imperfect compliance to treatment and one is not interested in intention-to-treat effects.

Computed with a pseudocount adjustment to deal with zero cell counts, that is, \(\textrm{exp}(\widehat{\omega }^{\text {sample}}_i)= \left( {(X_{A,i}+0.5)/(Y_{A,i}+1)}\right) \big /\left( {(X_{B,i}+0.5)/(Y_{B,i}+1)}\right) .\)

In other words, the investigator does not adjust for any possible confounders.

Grootendorst DC, Jager KJ, Zoccali C, Dekker FW. Observational studies are complementary to randomized controlled trials. Nephron Clin Pract. 2010;114(3):173–7.

Article   Google Scholar  

Gershon AS, Lindenauer PK, Wilson KC, Rose L, Walkey AJ, Sadatsafavi M, et al. Informing Healthcare Decisions with Observational Research Assessing Causal Effect. An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med. 2021;203(1):14–23.

Berger ML, Sox H, Willke RJ, Brixner DL, Eichler HG, Goettsch W, et al. Good practices for real-world data studies of treatment and/or comparative effectiveness: Recommendations from the joint ISPOR-ISPE Special Task Force on real-world evidence in health care decision making. Pharmacoepidemiol Drug Saf. 2017;26(9):1033–9.

Article   PubMed   PubMed Central   Google Scholar  

Darst JR, Newburger JW, Resch S, Rathod RH, Lock JE. Deciding without data. Congenit Heart Dis. 2010;5(4):339–42.

Hampson G, Towse A, Dreitlein WB, Henshall C, Pearson SD. Real-world evidence for coverage decisions: opportunities and challenges. J Comp Eff Res. 2018;7(12):1133–43.

Article   PubMed   Google Scholar  

Klonoff DC. The Expanding Role of Real-World Evidence Trials in Health Care Decision Making. J Diabetes Sci Technol. 2020;14(1):174–9.

Hernán MA, Robins JM. Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. Am J Epidemiol. 2016;183(8):758–64.

Schuler A, Jung K, Tibshirani R, Hastie T, Shah N. Synth-validation: Selecting the best causal inference method for a given dataset. arXiv preprint arXiv:1711.00083 . 2017.

Dorie V, Hill J, Shalit U, Scott M, Cervone D. Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition. arXiv:1707.02641 . 2017.

Dorie V, Hill J, Shalit U, Scott M, Cervone D. Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition. Stat Sci. 2019;34(1):43–68.

Athey S, Imbens GW, Metzger J, Munro E. Using wasserstein generative adversarial networks for the design of monte carlo simulations. J Econom. 2021:105076. https://doi.org/10.1016/j.jeconom.2020.09.013 .

Schuemie MJ, Cepeda MS, Suchard MA, Yang J, Tian Y, Schuler A, et al. How confident are we about observational findings in health care: a benchmark study. Harvard Data Science Review. 2020;2(1). https://doi.org/10.1162/99608f92.147cc28e .

Wang SV, Sreedhara SK, Schneeweiss S, Franklin JM, Gagne JJ, Huybrechts KF, et al. Reproducibility of real-world evidence studies using clinical practice data to inform regulatory and coverage decisions. Nat Commun. 2022;13(1). https://doi.org/10.1038/s41467-022-32310-3 .

Gordon BR, Zettelmeyer F, Bhargava N, Chapsky D. A comparison of approaches to advertising measurement: Evidence from big field experiments at Facebook. Mark Sci. 2019;38(2):193–225.

Gordon BR, Moakler R, Zettelmeyer F. Close enough? a large-scale exploration of non-experimental approaches to advertising measurement. arXiv:2201.07055 . 2022.

LaLonde RJ. Evaluating the econometric evaluations of training programs with experimental data. Am Econ Rev. 1986;76(4):604–20. http://www.jstor.org/stable/1806062 . Accessed 5 Sept 2023.

Ioannidis JP, Haidich AB, Pappa M, Pantazis N, Kokori SI, Tektonidou MG, et al. Comparison of evidence of treatment effects in randomized and nonrandomized studies. JAMA. 2001;286(7):821–30.

Article   CAS   PubMed   Google Scholar  

Dahabreh IJ, Kent DM. Can the learning health care system be educated with observational data? JAMA. 2014;312(2):129–30.

Schuemie MJ, Gini R, Coloma PM, Straatman H, Herings RMC, Pedersen L, et al. Replication of the OMOP experiment in Europe: evaluating methods for risk identification in electronic health record databases. Drug Saf. 2013;36(Suppl 1):159–69.

Ryan PB, Schuemie MJ, Welebob E, Duke J, Valentine S, Hartzema AG. Defining a reference set to support methodological research in drug safety. Drug Saf. 2013;36(Suppl 1):33–47.

Wang SV, Schneeweiss S, Initiative RD. Emulation of Randomized Clinical Trials With Nonrandomized Database Analyses: Results of 32 Clinical Trials. JAMA. 2023;329(16):1376–85. https://doi.org/10.1001/jama.2023.4221 .

Thompson D. Replication of Randomized, Controlled Trials Using Real-World Data: What Could Go Wrong? Value Health. 2021;24(1):112–5.

Camerer CF, Dreber A, Holzmeister F, Ho TH, Huber J, Johannesson M, et al. Evaluating the replicability of social science experiments in Nature and Science between 2010 and 2015. Nat Hum Behav. 2018;2(9):637–44.

Mooij JM, Peters J, Janzing D, Zscheischler J, Schölkopf B. Distinguishing cause from effect using observational data: methods and benchmarks. J Mach Learn Res. 2016;17(1):1103–204.

Google Scholar  

DeVito NJ, Bacon S, Goldacre B. Compliance with legal requirement to report clinical trial results on ClinicalTrials.gov: a cohort study. Lancet. 2020;395(10221):361–9.

Robbins H. An Empirical Bayes Approach to Statistics. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics. Berkeley: The Regents of the University of California; 1956. p. 157–163.

Efron B, Morris C. Data Analysis Using Stein’s Estimator and Its Generalizations. J Am Stat Assoc. 1975;70(350):311–9.

Efron B. Bayes, oracle Bayes and empirical Bayes. Statist Sci. 2019;34(2):177–201. https://doi.org/10.1214/18-STS674 .

Gu J, Koenker R. Invidious comparisons: Ranking and selection as compound decisions. Econometrica (forthcoming). 2022.

Van Houwelingen HC, Zwinderman KH, Stijnen T. A bivariate approach to meta-analysis. Stat Med. 1993;12(24):2273–84.

Efron B. Empirical Bayes methods for combining likelihoods. J Am Stat Assoc. 1996;91(434):538–50.

Sidik K, Jonkman JN. Estimation using non-central hypergeometric distributions in combining 2 \(\times\) 2 tables. J Stat Plan Infer. 2008;138(12):3993–4005.

Stijnen T, Hamza TH, Özdemir P. Random effects meta-analysis of event outcome in the framework of the generalized linear mixed model with applications in sparse data. Stat Med. 2010;29(29):3046–67.

Kiefer J, Wolfowitz J. Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Ann Math Statist. 1956;27(4):887–906. https://doi.org/10.1214/aoms/1177728066 .

Aitkin M, Longford N. Statistical modelling issues in school effectiveness studies. J R Stat Soc Ser A Gen. 1986;149(1):1–26.

Stephens M. False discovery rates: a new deal. Biostatistics. 2017;18(2):275–94.

PubMed   Google Scholar  

Ignatiadis N, Wager S. Confidence Intervals for Nonparametric Empirical Bayes Analysis. J Am Stat Assoc. 2022;117(539):1149–66.

Article   CAS   Google Scholar  

Gelman A, Tuerlinckx F. Type S error rates for classical and Bayesian single and multiple comparison procedures. Comput Stat. 2000;15(3):373–90.

Optum. Optum’s de-identified Clinformatics Data Mart Database. 2017. https://www.optum.com/content/dam/optum/resources/productSheets/Clinformatics_for_Data_Mart.pdf . Accessed 5 Sept 2023.

Steinberg E, Jung K, Fries JA, Corbin CK, Pfohl SR, Shah NH. Language models are an effective representation learning technique for electronic health record data. J Biomed Inform. 2021;113:103637.

Austin PC, Small DS. The use of bootstrapping when using propensity-score matching without replacement: a simulation study. Stat Med. 2014;33(24):4306–19.

Powers S, Qian J, Jung K, Schuler A, Shah NH, Hastie T, et al. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat Med. 2018;37(11):1767–87.

Rogers JR, Hripcsak G, Cheung YK, Weng C. Clinical comparison between trial participants and potentially eligible patients using electronic health record data: a generalizability assessment method. J Biomed Inform. 2021;119:103822.

Dahabreh IJ, Robins JM, Hernán MA. Benchmarking Observational Methods by Comparing Randomized Trials and Their Emulations. Epidemiology. 2020;31(5):614–9.

Efron B, Morris C. Combining Possibly Related Estimation Problems. J R Stat Soc Ser B Methodol. 1973;35(3):379–402.

Ignatiadis N, Wager S. Covariate-powered empirical Bayes estimation. Adv Neural Inf Process Syst. 2019;32.

Download references

Acknowledgements

We would like to thank Agata Foryciarz, Stephen R. Pfohl, and Jason A. Fries for providing useful comments on the paper. We would also like to thank the anonymous reviewers who have contributed feedback that has helped us improve this work.

This work was funded under NLM R01-LM011369-05.

Author information

Authors and affiliations.

Center for Biomedical Informatics Research, Stanford University, Stanford, US

Ethan Steinberg, Yizhe Xu & Nigam Shah

Department of Statistics, University of Chicago, Chicago, US

Nikolaos Ignatiadis

Google Research, Google, Cambridge, US

Steve Yadlowsky

You can also search for this author in PubMed   Google Scholar

Contributions

Ethan Steinberg: Conceptualization, Methodology, Software, Writing—original draft. Nikolaos Ignatiadis: Methodology, Software, Writing. Steve Yadlowsky: Methodology, Software, Writing. Yizhe Xu: Software, Writing. Nigam H. Shah: Writing—review & editing, Supervision, Funding acquisition.

Corresponding author

Correspondence to Ethan Steinberg .

Ethics declarations

Ethics approval and consent to participate.

Optum’s Clinformatics Data Mart Database is a de-identified dataset [ 39 ] per HIPAA (Health Insurance Portability and Accountability Act) standards so neither IRB approval nor patient consent is required. As such, we can confirm that all experiments were performed in accordance with relevant guidelines and regulations.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Steinberg, E., Ignatiadis, N., Yadlowsky, S. et al. Using public clinical trial reports to probe non-experimental causal inference methods. BMC Med Res Methodol 23 , 204 (2023). https://doi.org/10.1186/s12874-023-02025-0

Download citation

Received : 27 October 2022

Accepted : 24 August 2023

Published : 09 September 2023

DOI : https://doi.org/10.1186/s12874-023-02025-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Causal inference
  • Meta-analysis
  • Clinical trials
  • Method evaluation

BMC Medical Research Methodology

ISSN: 1471-2288

is a case study non experimental

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Creating a Corporate Social Responsibility Program with Real Impact

  • Emilio Marti,
  • David Risi,
  • Eva Schlindwein,
  • Andromachi Athanasopoulou

is a case study non experimental

Lessons from multinational companies that adapted their CSR practices based on local feedback and knowledge.

Exploring the critical role of experimentation in Corporate Social Responsibility (CSR), research on four multinational companies reveals a stark difference in CSR effectiveness. Successful companies integrate an experimental approach, constantly adapting their CSR practices based on local feedback and knowledge. This strategy fosters genuine community engagement and responsive initiatives, as seen in a mining company’s impactful HIV/AIDS program. Conversely, companies that rely on standardized, inflexible CSR methods often fail to achieve their goals, demonstrated by a failed partnership due to local corruption in another mining company. The study recommends encouraging broad employee participation in CSR and fostering a culture that values CSR’s long-term business benefits. It also suggests that sustainable investors and ESG rating agencies should focus on assessing companies’ experimental approaches to CSR, going beyond current practices to examine the involvement of diverse employees in both developing and adapting CSR initiatives. Overall, embracing a dynamic, data-driven approach to CSR is essential for meaningful social and environmental impact.

By now, almost all large companies are engaged in corporate social responsibility (CSR): they have CSR policies, employ CSR staff, engage in activities that aim to have a positive impact on the environment and society, and write CSR reports. However, the evolution of CSR has brought forth new challenges. A stark contrast to two decades ago, when the primary concern was the sheer neglect of CSR, the current issue lies in the ineffective execution of these practices. Why do some companies implement CSR in ways that create a positive impact on the environment and society, while others fail to do so? Our research reveals that experimentation is critical for impactful CSR, which has implications for both companies that implement CSR and companies that externally monitor these CSR activities, such as sustainable investors and ESG rating agencies.

  • EM Emilio Marti is an associate professor at the Rotterdam School of Management, Erasmus University. His research focuses on corporate sustainability with a specific focus on sustainable investing.
  • DR David Risi is a professor at the Bern University of Applied Sciences and a habilitated lecturer at the University of St. Gallen. His research focuses on how companies organize CSR and sustainability.
  • ES Eva Schlindwein is a professor at the Bern University of Applied Sciences and a postdoctoral fellow at the University of Oxford. Her research focuses on how organizations navigate tensions between business and society.
  • AA Andromachi Athanasopoulou is an associate professor at Queen Mary University of London and an associate fellow at the University of Oxford. Her research focuses on how individuals manage their leadership careers and make ethically charged decisions.

Partner Center

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 01 April 2024

Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson’s disease behavioral analysis

  • Imran Raza 1 ,
  • Muhammad Hasan Jamal 1 ,
  • Rizwan Qureshi 1 ,
  • Abdul Karim Shahid 1 ,
  • Angel Olider Rojas Vistorte 2 , 3 , 4 ,
  • Md Abdus Samad 5 &
  • Imran Ashraf 5  

Scientific Reports volume  14 , Article number:  7635 ( 2024 ) Cite this article

95 Accesses

Metrics details

  • Computational biology and bioinformatics
  • Machine learning

Extracting knowledge from hybrid data, comprising both categorical and numerical data, poses significant challenges due to the inherent difficulty in preserving information and practical meanings during the conversion process. To address this challenge, hybrid data processing methods, combining complementary rough sets, have emerged as a promising approach for handling uncertainty. However, selecting an appropriate model and effectively utilizing it in data mining requires a thorough qualitative and quantitative comparison of existing hybrid data processing models. This research aims to contribute to the analysis of hybrid data processing models based on neighborhood rough sets by investigating the inherent relationships among these models. We propose a generic neighborhood rough set-based hybrid model specifically designed for processing hybrid data, thereby enhancing the efficacy of the data mining process without resorting to discretization and avoiding information loss or practical meaning degradation in datasets. The proposed scheme dynamically adapts the threshold value for the neighborhood approximation space according to the characteristics of the given datasets, ensuring optimal performance without sacrificing accuracy. To evaluate the effectiveness of the proposed scheme, we develop a testbed tailored for Parkinson’s patients, a domain where hybrid data processing is particularly relevant. The experimental results demonstrate that the proposed scheme consistently outperforms existing schemes in adaptively handling both numerical and categorical data, achieving an impressive accuracy of 95% on the Parkinson’s dataset. Overall, this research contributes to advancing hybrid data processing techniques by providing a robust and adaptive solution that addresses the challenges associated with handling hybrid data, particularly in the context of Parkinson’s disease analysis.

Similar content being viewed by others

is a case study non experimental

Soft ordered double quantitative approximations based three-way decisions and their applications

Gustavo Santos-García, Abbas Ali & Noor Rehman

is a case study non experimental

Hybrid similarity relation based mutual information for feature selection in intuitionistic fuzzy rough framework and its applications

Anoop Kumar Tiwari, Rajat Saini, … Mohd Asif Shah

is a case study non experimental

A dynamic fuzzy rule-based inference system using fuzzy inference with semantic reasoning

Nora Shoaip, Shaker El-Sappagh, … Mohammed Elmogy

Introduction

The advancement of technology has facilitated the accumulation of vast amounts of data from various sources such as databases, web repositories, and files, necessitating robust tools for analysis and decision-making 1 , 2 . Data mining, employing techniques such as support vector machine (SVM), decision trees, neural networks, clustering, fuzzy logic, and genetic algorithms, plays a pivotal role in extracting information and uncovering hidden patterns within the data 3 , 4 . However, the complexity of the data landscape, characterized by high dimensionality, heterogeneity, and non-traditional structures, renders the data mining process inherently challenging 5 , 6 . To tackle these challenges effectively, a combination of complementary and cooperative intelligent techniques, including SVM, fuzzy logic, probabilistic reasoning, genetic algorithms, and neural networks, has been advocated 7 , 8 .

Hybrid intelligent systems, amalgamating various intelligent techniques, have emerged as a promising approach to enhance the efficacy of data mining. Adaptive neuro-fuzzy inference systems (ANFIS) have laid the groundwork for intelligent systems in data mining techniques, providing a foundation for exploring complex data relationships 7 , 8 . Moreover, the theory of rough sets has found practical application in tasks such as attribute selection, data reduction, decision rule generation, and pattern extraction, contributing to the development of intelligent systems for knowledge discovery 7 , 8 . Extracting meaningful knowledge from hybrid data, which encompasses both categorical and numerical data, presents a significant challenge. Two predominant strategies have emerged to address this challenge 9 , 10 . The first strategy involves employing numerical data processing techniques such as Principal Component Analysis (PCA) 11 , 12 , Neural Networks 13 , 14 , 15 , 16 , and SVM 17 . However, this approach necessitates converting categorical data into numerical equivalents, leading to a loss of contextual meaning 18 , 19 . The second strategy leverages rough set theory alongside methods tailored for categorical data. Nonetheless, applying rough set theory to numerical data requires a discretization process, resulting in information loss 20 , 21 . Numerous hybrid data processing methods have been proposed, combining rough sets and fuzzy sets to handle uncertainty 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 . However, selecting an appropriate rough set model for a given dataset necessitates exploring the inherent relationships among existing models, presenting a challenge for users. The selection and utilization of an appropriate model in data mining thus demand qualitative and quantitative comparisons of existing hybrid data processing models.

This research endeavors to present a comprehensive analysis of hybrid data processing models, with a specific focus on those rooted in neighborhood rough sets (NRS). By investigating the inherent interconnections among these models, this study aims to elucidate their complex dynamics. To address the challenges posed by hybrid data, a novel hybrid model founded on NRS is introduced. This model enhances the efficiency of the data mining process without discretization mitigating information loss and ambiguity in data interpretation. Notably, the adaptability of the proposed model, particularly in adjusting the threshold value governing the neighborhood approximation space, ensures optimal performance aligned with dataset characteristics while maintaining high accuracy. A dedicated testbed tailored for Parkinson’s patients is developed to evaluate the real-world effectiveness of the proposed approach. Furthermore, a rigorous evaluation of the proposed model is conducted, encompassing both accuracy and overall effectiveness. Encouragingly, the results demonstrate that the proposed scheme surpasses alternative approaches, adeptly managing both numerical and categorical data through an adaptive framework.

The major contributions, listed below, collectively emphasize the innovative hybrid data processing model, the adaptive nature of its thresholding mechanism, and the empirical validation using a Parkinson’s patient testbed, underscoring the relevance and significance of the study’s findings.

Novel Hybrid Data Processing Model: This research introduces a novel hybrid data processing model based on NRS, preserving the practical meaning of both numerical and categorical data types. Unlike conventional methods, it minimizes information loss while optimizing interpretability. The proposed distance function combines Euclidean and Levenshtein distances with weighted calculations and dynamic selection mechanisms to enhance accuracy and realism in neighborhood approximation spaces.

Adaptive Thresholding Mechanism: Another key contribution is the integration of an adaptive thresholding mechanism within the hybrid model. This feature dynamically adjusts the threshold value based on dataset characteristics, ensuring optimal performance and yielding more accurate and contextually relevant results.

Empirical Validation through Parkinson’s Testbed: This research provides a dedicated testbed for analyzing behavioral data from Parkinson’s patients, allowing rigorous evaluation of the proposed hybrid data processing model. Utilizing real-world datasets enhances the model’s practical applicability and advances knowledge in medical data analysis and diagnosis.

The subsequent structure of the paper unfolds as follows: section “ Related work ” delves into the related work. The proposed model is introduced in section “ Adaptive neighborhood rough set model ”, Section “ Instrumentation ” underscores the instrumentation aspect, section “ Result and discussion ” unfolds the presentation of results and ensuing discussions, while section “ Conclusion and future work ” provides the concluding remarks for the paper. A list of notations used in this study is provided in Table  1 .

Related work

Rough set-based approaches have been utilized in various applications like bankruptcy prediction 42 , attribute/feature subset selection 43 , 44 , cancer prediction 45 , 46 , etc. In addition, recently, several innovative hybrid models have emerged, blending the realms of fuzzy logic and non-randomized systems (NRSs). One such development is presented by Yin et al. 47 , who introduce a parameterized hybrid fuzzy similarity relation. They apply this relation to the task of granulating multilabel data, subsequently extending it to the domain of multilabel learning. To construct a noise-tolerant multilabel fuzzy NRS model (NT-MLFNRS), they leverage the inclusion relationship between fuzzy neighborhood granules and fuzzy decisions. Building upon NT-MLFNRS, Yin et al. also devise a noise-resistant heuristic multilabel feature selection (NRFSFN) algorithm. To further enhance the efficiency of feature selection and address the complexities associated with handling large-scale multilabel datasets, they culminate their efforts by introducing an efficient extended version of NRFSFN known as ENFSFN.

Sang et al. 48 explore incremental feature selection methodologies, introducing a novel conditional entropy metric tailored for dynamic ordered data robustness. Their approach introduces the concept of a fuzzy dominance neighborhood rough set (FDNRS) and defines a conditional entropy metric with robustness, leveraging the FDNRS model. This metric serves as an evaluation criterion for features, and it is integrated into a heuristic feature selection algorithm. The resulting incremental feature selection algorithm is built upon this innovative model

Wang et al. 19 introduced the Fuzzy Rough Iterative Computational (FRIC) model, addressing challenges in hybrid information systems (HIS). Their framework includes a specialized distance function for object sets, enhancing object differentiation precision within HIS. Utilizing this function, they establish fuzzy symmetric relations among objects to formulate fuzzy rough approximations. Additionally, they introduce evaluation functions like fuzzy positive regions, dependency functions, and attribute importance functions to assess classification capabilities of attribute sets. They developed an attribute reduction algorithm tailored for hybrid data based on FRIC principles. This work contributes significantly to HIS analysis, providing a robust framework for data classification and feature selection in complex hybrid information systems.

Xu et al. 49 introduced a novel Fitting Fuzzy Rough Set (FRS) model enriched with relative dependency complement mutual information. This model addresses challenges related to data distribution and precision enhancement of fuzzy information granules. They utilized relative distance to mitigate the influence of data distribution on fuzzy similarity relationships and introduced a fitting fuzzy neighborhood radius optimized for enhancing the precision of fuzzy information granules. Within this model, the authors conducted a comprehensive analysis of information uncertainty, introducing definitions of relative complement information entropy and formulating a multiview uncertainty measure based on relative dependency complement mutual information. This work significantly advances our understanding of managing information uncertainty within FRS models, making a valuable contribution to computational modeling and data analysis.

Jiang et al. 50 presented an innovative approach for multiattribute decision-making (MADM) rooted in PROMETHEE II methodologies. Building upon the NRS model, they introduce two additional variants of covering-based variable precision fuzzy rough sets (CVPFRSs) by applying fuzzy logical operators, specifically type-I CVPFRSs and type-II CVPFRSs. In the context of MADM, their method entails the selection of medicines using an algorithm that leverages the identified features.

Qu et al. 51 introduced the concept of Adaptive Neighborhood Rough Sets (ANRSs), aiming for effective integration of feature separation and linkage with classification. They utilize the mRMR-based Feature Selection Algorithm (FSRMI), demonstrating outstanding performance across various selected datasets. However, it’s worth noting that FSRMI may not consistently outperform other algorithms on all datasets.

Xu et al. 52 introduced the Fuzzy Neighborhood Joint Entropy Model (FNSIJE) for feature selection, leveraging fuzzy neighborhood self-information measures and joint entropy to capture combined feature information. FNSIJE comprehensively analyzes the neighborhood decision system, considering noise, uncertainty, and ambiguity. To improve classification performance, the authors devised a new forward search method. Experimental results demonstrated the effectiveness of FNSIJE-KS, efficiently selecting fewer features for both low-dimensional UCI datasets and high-dimensional gene datasets while maintaining optimal classification performance. This approach advances feature selection techniques in machine learning and data analysis.

In 53 , the authors introduced a novel multi-label feature selection method utilizing fuzzy NRS to optimize classification performance in multi-label fuzzy neighborhood decision systems. By combining the NRS and FRS models a Multi-Label Fuzzy NRS model is introduced. They devised a fuzzy neighborhood approximation accuracy metric and crafted a hybrid metric integrating fuzzy neighborhood approximate accuracy with fuzzy neighborhood conditional entropy for attribute importance evaluation. Rigorous evaluation of their methods across ten diverse multi-label datasets showcased significant progress in multi-label feature selection techniques, promising enhanced classification performance in complex multi-label scenarios.

Sanget et al. 54 introduced the Fuzzy Dominance Neighborhood Rough Set (NRS) model for Interval-Valued Ordered Decision Systems (IvODS), along with a robust conditional entropy measure to assess monotonic consistency within IvODS. They also presented two incremental feature selection algorithms. Experimental results on nine publicly available datasets showcased the robustness of their proposed metric and the effectiveness and efficiency of the incremental algorithms, particularly in dynamic IvODS updates. This research significantly advances the application of fuzzy dominance NRS models in IvODS scenarios, providing valuable insights for data analysis and decision-making processes.

Zheng et al. 55 generalized the FRSs using axiomatic and constructive approaches. A pair of dual generalized fuzzy approximation operators is defined using arbitrary fuzzy relation in the constructive approach. Different classes of FRSs are characterized using different sets of axioms. The postulates governing fuzzy approximation operators ensure the presence of specific categories of fuzzy relations yielding identical operators. Using a generalized FRS model, Hu et al. 18 introduced an efficient algorithm for hybrid attribute reduction based on fuzzy relations constructing a forward greedy algorithm for hybrid attribute reduction resulting in optimal classification performance with lesser selected features and higher accuracy. Considering the similarity between two objects, Wang et al. 36 redefine fuzzy upper and lower approximations. The existing concepts of knowledge reduction are extending fuzzy environment resulting in a heuristic algorithm to learn fuzzy rules.

Gogoi et al. 56 use rough set theory for generating decision rules from inconsistent data. The proposed scheme uses indiscernibility relation to find inconsistencies in the data generating minimized and non-redundant rules using lower and upper approximations. The proposed scheme is based on the LEM2 algorithm 57 which performs the local covering option for generating minimum and non-redundant sets of classification rules and does not consider the global covering. The scheme is evaluated on a variety of data sets from the UCI Machine Learning Repository. All these data sets are either categorical or numerical having variable feature spaces. The proposed scheme performs consistently better for categorical data sets, as it is designed to handle inconsistencies in the data having at least one inconsistency. Results show that the proposed scheme generates minimized rule without reducing the feature space unlike other schemes, which compromise the feature space.

In 58 , the authors introduced a novel NRS model to address attribute reduction in noisy systems with heterogeneous attributes. This model extends traditional NRS by incorporating tolerance neighborhood relation and probabilistic theory, resulting in more comprehensive information granules. It evaluates the significance of heterogeneous attributes by considering neighborhood dependency and aims to maximize classification consistency within selected feature spaces. The feature space reduction algorithm employs an incremental approach, adding features while preserving maximal dependency in each round and halting when a new feature no longer increases dependency. This approach selects fewer features than other methods while achieving significantly improved classification performance, demonstrating its effectiveness in attribute reduction for noisy systems.

Zhu et al. 59 propose a fault tolerance scheme combining kernel method, NRS, and statistical features to adaptively select sensitive features. They employ a Gaussian kernel function with NRS to map fault data to a high-dimensional space. Their feature selection algorithm utilizes the hyper-sphere radius in high-dimensional feature space as the neighborhood value, selecting features based on significance measure regardless of the classification algorithm. A wrapper deploys a classification algorithm to evaluate selected features, choosing a subset for optimal classification. Experimental results demonstrate precise determination of the neighborhood value by mapping data into a high-dimensional space using the kernel function and hyper-sphere radius. This methodology proficiently selects sensitive fault features, diagnoses fault types, and identifies fault degrees in rolling bearing datasets.

A neighborhood covering a rough set model for the fuzziness of decision systems is proposed that solves the problem of hybrid decision systems having both fuzzy and numerical attributes 60 . The fuzzy neighborhood relation measures the indiscernibility relation and approximates the universe space using information granules, which deal with fuzzy attributes directly. The experimental results evaluate the influence of neighborhood operator size on the accuracy and attribute reduction of fuzzy neighborhood rough sets. The attribute reduction increases with the increase in the threshold size. A feature will not distinguish any samples and cannot reduce attributes if the neighborhood operator exceeds a certain value.

Hou et al. 61 applied NRS reduction techniques to cancer molecular classification, focusing on gene expression profiles. Their method introduced a novel perspective by using gene occurrence probability in selected gene subsets to indicate tumor classification efficacy. Unlike traditional methods, it integrated both Filters and Wrappers, enhancing classification performance while being computationally efficient. Additionally, they developed an ensemble classifier to improve accuracy and stability without overfitting. Experimental results showed the method achieved high prediction accuracy, identified potential cancer biomarkers, and demonstrated stability in performance.

Table  2 gives a comparison of existing rough set-based schemes for quantitative and qualitative analysis. The comparative parameters include handling hybrid data, generalized NRS, attribute reduction, classification, and accuracy rate. Most of the existing schemes do not handle hybrid data sets without discretization resulting in information loss and a lack of practical meanings. Another parameter to evaluate the effectiveness of the existing scheme is the ability to adapt the threshold value according to the given data sets. Most of the schemes do not adapt threshold values for neighborhood approximation space resulting in variable accuracy rates for different datasets. The end-user has to adjust the value of the threshold for different datasets without understanding its impact in terms of overfitting. Selecting a large threshold value will result in more global rules resulting in poor accuracy. There needs to be a mechanism to adaptively choose the value of the threshold considering both the global and local information without compromising on the accuracy rate. The schemes are also evaluated for their ability to attribute reduction using NRS. This can greatly improve processing time and accuracy by not considering insignificant attributes. The comparative analysis shows that most of the NRS-based existing schemes perform better than many other well-known schemes in terms of accuracy. Most of these schemes have a higher accuracy rate than CART, C4.5, and k NN. This makes the NRS-based schemes a choice for attribute reduction and classification.

Adaptive neighborhood rough set model

The detailed analysis of existing techniques highlights the need for a generalized NRS-based classification technique to handle both categorical and numerical data. The proposed NRS-based techniques not only handle the hybrid information granules but also dynamically select the threshold \(\delta \) producing optimal results with a high accuracy rate. The proposed scheme considers a hybrid tuple \(HIS=\langle U_h,\ Q_h,\ V,\ f \rangle \) , where \(U_h\) is nonempty set of hybrid records \(\{x_{h1},\ x_{h2},\ x_{h3},\ \ldots ,\ x_{hn}\}\) , \(Q_h=\left\{ q_{h1},\ q_{h2},\ \ q_{h3},\ \ldots \,\ q_{hn}\right\} \) is the non-empty set of hybrid features. \( V_{q_h}\) is the domain of attribute \(q_h\) and \(V=\ \cup _{q_h\in Q_h}V_{q_h}\) , and \(f=U_h\ x\ Q_h\rightarrow V\) is a total function such \(f\left( x_h,q_h\right) \in V_{q_h}\) for each \(q_h\in Q_h, x_h\in U_h\) , called information function. \(\langle U_h,\ Q_h,\ V,\ f\rangle \) is also known as a decision table if \(Q_h=C_h\cup D\) , where \(C_h\) is the set of hybrid condition attributes and D is the decision attribute.

A neighborhood relation N is calculated using this set of hybrid samples \(U_h\) creating the neighborhood approximation space \(\langle U_h,\ N\rangle \) which contains information granules \( \left\{ \delta ({x_h}_i)\big |{x_h}_i\in U_h\right\} \) based on some distance function \(\Delta \) . For an arbitrary sample \({x_h}_i\in U_h\) and \(B \subseteq C_h\) , the neighborhood \(\delta _B({x_h}_i)\) of \({x_h}_i\) in the subspace B is defined as \(\delta _B\left( {x_h}_i\right) =\{{x_h}_j\left| {x_h}_j\right. \in U_h,\ \Delta B(x_i,x_j) \le \delta \}\) . The scheme proposes a new hybrid distance function to handle both the categorical and numerical features in an approximation space.

The proposed distance function uses Euclidean distance for numerical features and Levenshtein distance for categorical features. The distance function also takes care of the significant features calculating weighted distance for both the categorical and numerical features. The proposed algorithm dynamically selects the distance function at the run time. The use of Levenshtein distance for categorical features provides precise distance for optimal neighborhood approximation space providing better results. Existing techniques add 1 to distance if two strings do not match in calculating the distance for categorical data and add 0 otherwise. This may not result in a realistic neighborhood approximation space.

The neighborhood size depends on the threshold \(\delta \) . The neighborhood will contain more samples if \(\delta \) is greater and results in more rules not considering the local information data. The accuracy rate of the NRS greatly depends on the selection of threshold values. The proposed scheme dynamically calculates the threshold value for any given dataset considering both local and global information. The threshold calculation formula is given below where \({min}_D\) is the minimum distance between the set of training samples and the test sample containing local information and \(R_D\) is the range of distance between the set of training samples and the test sample containing the global information.

The proposed scheme then calculates the lower and upper approximations given a neighborhood space \(\langle U_h, N\rangle \) for \(X \subseteq U_h\) , the lower and upper approximations of X are defined as:

Given a hybrid neighborhood decision table \(HNDT=\langle U_h,\ C_h\cup \ D, V, f\rangle \) , \(\{ X_{h1},X_{h2},\ \ldots ,\ X_{hN} \}\) are the sample hybrid subjects with decision 1 to N , \(\delta _B\left( x_{hi}\right) \) is the information granules generated by attributes \(B \subseteq C_h\) , then the lower and upper approximation is defined as:

and the boundary region of D is defined as:

The lower and upper approximation spaces are the set of rules, which are used to classify a test sample. A test sample forms its neighborhood using a lower approximation having all the rules with a distance less than a dynamically calculated threshold value. The majority voting is used in the neighborhood of a test sample to decide the class of a test sample. K-fold cross-validation is used to measure the accuracy of the proposed scheme where the value k is 10. The algorithm 1 of the proposed scheme has a time complexity of \(O(nm^{2})\) where n is the number of clients and m is the size of the categorial data.

figure a

Instrumentation

The proposed generalized rough set model has been rigorously assessed through the development of a testbed designed for the classification of Parkinson’s patients. It has also been subjected to testing using various standard datasets sourced from the University of California at Irvine machine learning data repository 63 . This research underscores the increasing significance of biomedical engineering in healthcare, particularly in light of the growing prevalence of Parkinson’s disease, which ranks as the second most common neurodegenerative condition, impacting over 1% of the population aged 65 and above 64 . The disease manifests through distinct motor symptoms like resting tremors, bradykinesia (slowness of movement), rigidity, and poor balance, with medication-related side effects such as wearing off and dyskinesias 65 .

In this study, to address the need for a reliable quantitative method for assessing motor complications in Parkinson’s patients, the data collection process involves utilizing a home-monitoring system equipped with wireless wearable sensors. These sensors were specifically deployed to closely monitor Parkinson’s patients with severe tremors in real time. It’s important to note that all patients involved in the study were clinically diagnosed with Parkinson’s disease. Additionally, before data collection, proper consent was obtained from each participant, and the study protocol was approved by the ethical committee of our university. The data collected from these sensors is then analyzed, yielding reliable quantitative information that can significantly aid clinical decision-making within both routine patient care and clinical trials of innovative treatments.

figure 1

Testbed for Parkinson’s patients.

Figure  1 illustrates a real-time Testbed designed for monitoring Parkinson’s patients. This system utilizes a tri-axial accelerometer to capture three signals, one for each axis \((x,\ y,\ and\ z)\) , resulting in a total of 18 channels of data. The sensors employed in this setup employ ZigBee (IEEE 802.15.4 infrastructure) protocol to transmit data to a computer at a sampling rate of 62.5 Hz. To ensure synchronization of the transmitted signals, a transition protocol is applied. These data packets are received through the Serial Forwarder using the TinyOS platform ( http://www.tinyos.net ). The recorded acceleration data is represented as digital signals and can be visualized on an oscilloscope. The frequency domain data is obtained by applying the Fast Fourier Transform (FFT) to the signal, resulting in an ARFF file format that is then employed for classification purposes. The experimental flowchart is shown in Fig.  2 .

figure 2

Experimental flowchart.

The real-time testbed includes various components to capture data using the Unified Parkinson’s Disease Rating Scale (UPDRS). TelosB MTM-CM5000-MSP and MTM-CM3000-MSP sensors are used to send and receive radio signals from the sensor to the PC. These sensors are based on an open-source TelosB/Tmote Sky platform, designed and developed by the University of California, Berkeley.

TelosB sensor uses the IEEE 802.15.4 wireless structure and the embedded sensors can measure temperature, relative humidity, and light. In CM3000, the USB connector is replaced with an ERNI connector that is compatible with interface modules. Also, the Hirose 51-pin connector makes this more versatile as it can be attachable to any sensor board family, and the coverage area is increased using SMA design by a 5dBi external antenna 66 . These components can be used for a variety of applications such as low-power Wireless Sensor Networks (WSN) platforms, network monitoring, and environment monitoring systems.

MTS-EX1000 sensor board is used for the amplification of the voltage/current value from the accelerometer. The EX1000 is an attachable board that supports the CMXXXX series of wireless sensors network Motes (Hirose 51-pin connector). The basic functionality of EX1000 is to connect the external sensors with CMXX00 communication modules to enhance the mote’s I/O capability and support different kinds of sensors based on the sensor type and its output signal. ADXL-345 Tri-accelerometer sensor is used to calculate body motion along x, y, and z-axis relative to gravity. It is a small, thin, low-power, 3-axis accelerometer that calculates high resolution (13-bit) measurements at up to ±16g. Its digital output, in 16-bit twos complement format, is accessible through either an SPI (3- or 4-wire) or I2C digital interface. A customized main circuit board is used having a programmed IC, registers, and transistors. Its basic functionality is to convert the digital data, accessed through the ADXL-345 sensor, into analog form and send it to MTS1000.

Result and discussion

The proposed generalized and ANRS is evaluated against different data sets taken from the machine learning data repository, at the University of California at Irvine. In addition to these common data sets, a real-time Testbed for Parkinson’s patients is also used to evaluate the proposed scheme. The hybrid data of 500 people was collected using the Testbed for Parkinson’s patients including 10 Parkinson’s patients, 20 people have abnormal and uncontrolled hand movements, and the rest of the samples were taken approximating the hand movements of Parkinson’s patients. The objective of this evaluation is to compare the accuracy rate of the proposed scheme with CART, k NN, and SVM having both simple and complex datasets containing numerical and hybrid features respectively. The results also demonstrate the selection of radius r for dynamically calculating the threshold value.

Table  3 provides the details of the datasets used for the evaluation of the proposed scheme including the training and test ratio used for evaluation in addition to data type, total number of instances, total feature, a feature considered for evaluation, and number of classes. The hybrid datasets are also selected to evaluate to performance of the proposed scheme against the hybrid feature space without discretization preventing information loss.

The accuracy of the NRS is greatly dependent on the threshold value. Most of the existing techniques do not dynamically adapt the threshold \(\delta \) value for different hybrid datasets. This results in the variant of NRS suitable for specific datasets with different threshold values. A specific threshold value may produce better results for one dataset and poor results for others requiring a more generic threshold value catering to different datasets with optimal results. The proposed scheme introduces an adaptable threshold calculation mechanism to achieve optimal results regardless of the datasets under evaluation. The radius value plays a pivotal role in forming a neighborhood, as the threshold values consider both the local and global information of the NRS to calculate neighborhood approximation space. Table  4 shows the accuracy rate having different values of the radius of the NRS. The proposed threshold mechanism provides better results for all datasets if the value of the radius is 0.002. Results also show that assigning no weight to the radius produces poor results, as it will then only consider the local information for the approximation space. Selecting other weights for radius may produce better results for one dataset but not for all datasets.

Table  5 presents the comparative analysis of the proposed scheme with k NN, Naive Bayes, and C45. The results show that the proposed scheme performs well against other well-known techniques for both the categorical and numerical features space. Naive Bayes and C45 also result in information loss, as these techniques cannot process the hybrid data. So the proposed scheme handles the hybrid data without compromising on the information completeness producing acceptable results. K-fold cross-validation is used to measure the accuracy of the proposed scheme. Each dataset is divided into 10 subsets to use one of the K subsets as the test set and the other K-1 subsets as training sets. Then the average accuracy of all K trials is computed with the advantage of having results regardless of the dataset division.

Conclusion and future work

This work evaluates the existing NRS-based scheme for handling hybrid data sets i.e. numerical and categorical features. The comparative analysis of existing NRS-based schemes shows that there is a need for a generic NRS-based approach to adapt the threshold selection forming neighborhood approximation space. A generalized and ANRS-based scheme is proposed to handle both the categorical and numerical features avoiding information loss and lack of practical meanings. The proposed scheme uses a Euclidean and Levenshtein distance to calculate the upper and lower approximation of NRS for numerical and categorical features respectively. Euclidean and Levenshtein distances have been modified to handle the impact of outliers in calculating the approximation spaces. The proposed scheme defines an adaptive threshold mechanism for calculating neighborhood approximation space regardless of the data set under consideration. A Testbed is developed for real-time behavioral analysis of Parkinson’s patients evaluating the effectiveness of the proposed scheme. The evaluation results show that the proposed scheme provides better accuracy than k NN, C4.5, and Naive Bayes for both the categorical and numerical feature space achieving 95% accuracy on the Parkinson’s dataset. The proposed scheme will be evaluated against the hybrid data set having more than two classes in future work. Additionally, in future work, we aim to explore the following areas; (i) conduct longitudinal studies to track the progression of Parkinson’s disease over time, allowing for a deeper understanding of how behavioral patterns evolve and how interventions may impact disease trajectory, (ii) explore the integration of additional data sources, such as genetic data, imaging studies, and environmental factors, to provide a more comprehensive understanding of Parkinson’s disease etiology and progression, (iii) validate our findings in larger and more diverse patient populations and investigate the feasibility of implementing our proposed approach in clinical settings to support healthcare providers in decision-making processes, (iv) investigate novel biomarkers or physiological signals that may provide additional insights into Parkinson’s disease progression and motor complications, potentially leading to the development of new diagnostic and monitoring tools, and (v) conduct patient-centered outcomes research to better understand the impact of Parkinson’s disease on patients’ quality of life, functional abilities, and overall well-being, with a focus on developing personalized treatment approaches.

Data availability

The datasets used in this study are publicly available at the following links:

Bupa 67 : https://doi.org/10.24432/C54G67 , Sonar 68 : https://doi.org/10.24432/C5T01Q , Mammographic Mass 69 : https://doi.org/10.24432/C53K6Z , Haberman’s Survival 70 : https://doi.org/10.24432/C5XK51 , Credit-g 71 : https://doi.org/10.24432/C5NC77 , Lymmography 73 : https://doi.org/10.24432/C54598 , Splice 74 : https://doi.org/10.24432/C5M888 , Optdigits 75 : https://doi.org/10.24432/C50P49 , Pendigits 76 : https://doi.org/10.1137/1.9781611972825.9 , Pageblocks 77 : https://doi.org/10.24432/C5J590 , Statlog 78 : https://doi.org/10.24432/C55887 , Magic04 79 : https://doi.org/10.1609/aaai.v29i1.9277 .

Gaber, M. M. Scientific Data Mining and Knowledge Discovery Vol. 1 (Springer, 2009).

Google Scholar  

Hajirahimi, Z. & Khashei, M. Weighting approaches in data mining and knowledge discovery: A review. Neural Process. Lett. 55 , 10393–10438 (2023).

Article   Google Scholar  

Kantardzic, M. Data Mining: Concepts, Models, Methods, and Algorithms (Wiley, 2011).

Book   Google Scholar  

Shu, X. & Ye, Y. Knowledge discovery: Methods from data mining and machine learning. Soc. Sci. Res. 110 , 102817 (2023).

Article   PubMed   Google Scholar  

Tan, P.-N., Steinbach, M. & Kumar, V. Introduction to Data Mining (Pearson Education India, 2016).

Khan, S. & Shaheen, M. From data mining to wisdom mining. J. Inf. Sci. 49 , 952–975 (2023).

Engelbrecht, A. P. Computational Intelligence: An Introduction (Wiley, 2007).

Bhateja, V., Yang, X.-S., Lin, J.C.-W. & Das, R. Evolution in computational intelligence. In Evolution (Springer, 2023).

Wei, W., Liang, J. & Qian, Y. A comparative study of rough sets for hybrid data. Inf. Sci. 190 , 1–16 (2012).

Article   ADS   MathSciNet   Google Scholar  

Kumari, N. & Acharjya, D. Data classification using rough set and bioinspired computing in healthcare applications—An extensive review. Multimedia Tools Appl. 82 , 13479–13505 (2023).

Martinez, A. M. & Kak, A. C. PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23 , 228–233 (2001).

Brereton, R. G. Principal components analysis with several objects and variables. J. Chemom. 37 (4), e3408 (2023).

Article   CAS   Google Scholar  

De, R. K., Basak, J. & Pal, S. K. Neuro-fuzzy feature evaluation with theoretical analysis. Neural Netw. 12 , 1429–1455 (1999).

Talpur, N. et al. Deep neuro-fuzzy system application trends, challenges, and future perspectives: A systematic survey. Artif. Intell. Rev. 56 , 865–913 (2023).

Jang, J.-S.R., Sun, C.-T. & Mizutani, E. Neuro-fuzzy and soft computing—A computational approach to learning and machine intelligence [book review]. IEEE Trans. Autom. Control 42 , 1482–1484 (1997).

Ouifak, H. & Idri, A. Application of neuro-fuzzy ensembles across domains: A systematic review of the two last decades (2000–2022). Eng. Appl. Artif. Intell. 124 , 106582 (2023).

Jung, T. & Kim, J. A new support vector machine for categorical features. Expert Syst. Appl. 229 , 120449 (2023).

Hu, Q., Xie, Z. & Yu, D. Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognit. 40 , 3509–3521 (2007).

Article   ADS   Google Scholar  

Wang, P., He, J. & Li, Z. Attribute reduction for hybrid data based on fuzzy rough iterative computation model. Inf. Sci. 632 , 555–575 (2023).

Yeung, D. S., Chen, D., Tsang, E. C., Lee, J. W. & Xizhao, W. On the generalization of fuzzy rough sets. IEEE Trans. Fuzzy Syst. 13 , 343–361 (2005).

Gao, L., Yao, B.-X. & Li, L.-Q. L-fuzzy generalized neighborhood system-based pessimistic l-fuzzy rough sets and its applications. Soft Comput. 27 , 7773–7788 (2023).

Bhatt, R. B. & Gopal, M. On fuzzy-rough sets approach to feature selection. Pattern Recognit. Lett. 26 , 965–975 (2005).

Dubois, D. & Prade, H. Putting fuzzy sets and rough sets together. Intell. Decis. Support 23 , 203–232 (1992).

Jensen, R. & Shen, Q. Fuzzy-rough sets for descriptive dimensionality reduction. In 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE’02. Proceedings (Cat. No. 02CH37291) , vol. 1, 29–34 (IEEE, 2002).

Pedrycz, W. & Vukovich, G. Feature analysis through information granulation and fuzzy sets. Pattern Recognit. 35 , 825–834 (2002).

Jensen, R. & Shen, Q. Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15 , 73–89 (2007).

Shen, Q. & Jensen, R. Selecting informative features with fuzzy-rough sets and its application for complex systems monitoring. Pattern Recognit. 37 , 1351–1363 (2004).

Wang, X., Tsang, E. C., Zhao, S., Chen, D. & Yeung, D. S. Learning fuzzy rules from fuzzy samples based on rough set technique. Inf. Sci. 177 , 4493–4514 (2007).

Article   MathSciNet   Google Scholar  

Wei, W., Liang, J., Qian, Y. & Wang, F. An attribute reduction approach and its accelerated version for hybrid data. In 2009 8th IEEE International Conference on Cognitive Informatics , 167–173 (IEEE, 2009).

Yin, T., Chen, H., Li, T., Yuan, Z. & Luo, C. Robust feature selection using label enhancement and \(\beta \) -precision fuzzy rough sets for multilabel fuzzy decision system. Fuzzy Sets Syst. 461 , 108462 (2023).

Yin, T. et al. Exploiting feature multi-correlations for multilabel feature selection in robust multi-neighborhood fuzzy \(\beta \) covering space. Inf. Fusion 104 , 102150 (2024).

Yin, T. et al. A robust multilabel feature selection approach based on graph structure considering fuzzy dependency and feature interaction. IEEE Trans. Fuzzy Syst. 31 , 4516–4528. https://doi.org/10.1109/TFUZZ.2023.3287193 (2023).

Huang, W., She, Y., He, X. & Ding, W. Fuzzy rough sets-based incremental feature selection for hierarchical classification. IEEE Trans. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2023.3300913 (2023).

Dong, L., Wang, R. & Chen, D. Incremental feature selection with fuzzy rough sets for dynamic data sets. Fuzzy Sets Syst. 467 , 108503 (2023).

Chakraborty, M. K. & Samanta, P. Fuzzy sets and rough sets: A mathematical narrative. In Fuzzy, Rough and Intuitionistic Fuzzy Set Approaches for Data Handling: Theory and Applications , 1–21 (Springer, 2023).

Wang, Z., Chen, H., Yuan, Z. & Li, T. Fuzzy-rough hybrid dimensionality reduction. Fuzzy Sets Syst. 459 , 95–117 (2023).

Xue, Z.-A., Jing, M.-M., Li, Y.-X. & Zheng, Y. Variable precision multi-granulation covering rough intuitionistic fuzzy sets. Granul. Comput. 8 , 577–596 (2023).

Akram, M., Nawaz, H. S. & Deveci, M. Attribute reduction and information granulation in pythagorean fuzzy formal contexts. Expert Systems Appl. 222 , 119794 (2023).

Hu, M., Guo, Y., Chen, D., Tsang, E. C. & Zhang, Q. Attribute reduction based on neighborhood constrained fuzzy rough sets. Knowl. Based Syst. 274 , 110632 (2023).

Zhang, C., Ding, J., Zhan, J., Sangaiah, A. K. & Li, D. Fuzzy intelligence learning based on bounded rationality in IOMT systems: A case study in Parkinson’s disease. IEEE Trans. Comput. Soc. Syst. 10 , 1607–1621. https://doi.org/10.1109/TCSS.2022.3221933 (2023).

Zhang, C. & Zhang, J. Three-way group decisions with incomplete spherical fuzzy information for treating Parkinson’s disease using IOMT devices. Wireless Communications and Mobile Computing , vol. 2022 (2022).

Jain, P., Tiwari, A. K. & Som, T. Improving financial bankruptcy prediction using oversampling followed by fuzzy rough feature selection via evolutionary search. In Computational Management: Applications of Computational Intelligence in Business Management , 455–471 (Springer, 2021).

Shreevastava, S., Singh, S., Tiwari, A. & Som, T. Different classes ratio and Laplace summation operator based intuitionistic fuzzy rough attribute selection. Iran. J. Fuzzy Syst. 18 , 67–82 (2021).

MathSciNet   Google Scholar  

Shreevastava, S., Tiwari, A. & Som, T. Feature subset selection of semi-supervised data: an intuitionistic fuzzy-rough set-based concept. In Proceedings of International Ethical Hacking Conference 2018: eHaCON 2018, Kolkata, India , 303–315 (Springer, 2019).

Tiwari, A. K., Nath, A., Subbiah, K. & Shukla, K. K. Enhanced prediction for observed peptide count in protein mass spectrometry data by optimally balancing the training dataset. Int. J. Pattern Recognit. Artif. Intell. 31 , 1750040 (2017).

Jain, P., Tiwari, A. K. & Som, T. An intuitionistic fuzzy bireduct model and its application to cancer treatment. Comput. Ind. Eng. 168 , 108124 (2022).

Yin, T., Chen, H., Yuan, Z., Li, T. & Liu, K. Noise-resistant multilabel fuzzy neighborhood rough sets for feature subset selection. Inf. Sci. 621 , 200–226 (2023).

Sang, B., Chen, H., Yang, L., Li, T. & Xu, W. Incremental feature selection using a conditional entropy based on fuzzy dominance neighborhood rough sets. IEEE Trans. Fuzzy Syst. 30 , 1683–1697 (2021).

Xu, J., Meng, X., Qu, K., Sun, Y. & Hou, Q. Feature selection using relative dependency complement mutual information in fitting fuzzy rough set model. Appl. Intell. 53 , 18239–18262 (2023).

Jiang, H., Zhan, J. & Chen, D. Promethee ii method based on variable precision fuzzy rough sets with fuzzy neighborhoods. Artif. Intell. Rev. 54 , 1281–1319 (2021).

Qu, K., Xu, J., Han, Z. & Xu, S. Maximum relevance minimum redundancy-based feature selection using rough mutual information in adaptive neighborhood rough sets. Appl. Intell. 53 , 17727–17746 (2023).

Xu, J., Yuan, M. & Ma, Y. Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood rough set. Complex Intell. Syst. 8 , 287–305 (2022).

Xu, J., Shen, K. & Sun, L. Multi-label feature selection based on fuzzy neighborhood rough sets. Complex Intell. Syst. 8 , 2105–2129 (2022).

Sang, B. et al. Feature selection for dynamic interval-valued ordered data based on fuzzy dominance neighborhood rough set. Knowl. Based Syst. 227 , 107223 (2021).

Wu, W.-Z., Mi, J.-S. & Zhang, W.-X. Generalized fuzzy rough sets. Inf. Sci. 151 , 263–282 (2003).

Gogoi, P., Bhattacharyya, D. K. & Kalita, J. K. A rough set-based effective rule generation method for classification with an application in intrusion detection. Int. J. Secur. Netw. 8 , 61–71 (2013).

Grzymala-Busse, J. W. Knowledge acquisition under uncertainty—A rough set approach. J. Intell. Robot. Syst. 1 , 3–16 (1988).

Jing, S. & She, K. Heterogeneous attribute reduction in noisy system based on a generalized neighborhood rough sets model. World Acad. Sci. Eng. Technol. 75 , 1067–1072 (2011).

Zhu, X., Zhang, Y. & Zhu, Y. Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features. J. Mech. Sci. Technol. 26 , 2649–2657 (2012).

Zhao, B.-T. & Jia, X.-F. Neighborhood covering rough set model of fuzzy decision system. Int. J. Comput. Sci. Issues 10 , 51 (2013).

Hou, M.-L. et al. Neighborhood rough set reduction-based gene selection and prioritization for gene expression profile analysis and molecular cancer classification. J Biomed Biotechnol. 2010 , 726413 (2010).

Article   PubMed   PubMed Central   Google Scholar  

He, M.-X. & Qiu, D.-D. A intrusion detection method based on neighborhood rough set. TELKOMNIKA Indones. J. Electr. Eng. 11 , 3736–3741 (2013).

ADS   Google Scholar  

Newman, D. J., Hettich, S., Blake, C. L. & Merz, C. UCI repository of machine learning databases (1998).

Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Primers 7 , 47 (2021).

Lang, A. E. & Lozano, A. M. Parkinson’s disease. N. Engl. J. Med. 339 , 1130–1143 (1998).

Article   CAS   PubMed   Google Scholar  

Engin, M. et al. The classification of human tremor signals using artificial neural network. Expert Syst. Appl. 33 , 754–761 (2007).

Liver Disorders. UCI Machine Learning Repository. https://doi.org/10.24432/C54G67 (1990).

Sejnowski, T. & Gorman, R. Connectionist bench (sonar, mines vs. rocks). UCI Machine Learning Repository. https://doi.org/10.24432/C5T01Q

Elter, M. Mammographic Mass. UCI Machine Learning Repository. https://doi.org/10.24432/C53K6Z (2007).

Haberman, S. Haberman’s Survival. UCI Machine Learning Repository. https://doi.org/10.24432/C5XK51 (1999).

Hofmann, H. Statlog (German Credit Data). UCI Machine Learning Repository. https://doi.org/10.24432/C5NC77 (1994).

Kubat, M., Holte, R. C. & Matwin, S. Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 30 , 195–215 (1998).

Zwitter, M. & Soklic, M. Lymphography. UCI Machine Learning Repository. https://doi.org/10.24432/C54598 (1988).

Molecular Biology (Splice-junction Gene Sequences). UCI Machine Learning Repository. https://doi.org/10.24432/C5M888 (1992).

Alpaydin, E. & Kaynak, C. Optical Recognition of Handwritten Digits. UCI Machine Learning Repository. https://doi.org/10.24432/C50P49 (1998).

Schubert, E., Wojdanowski, R., Zimek, A. & Kriegel, H.-P. On evaluation of outlier rankings and outlier scores. In Proceedings of the 2012 SIAM International Conference on Data Mining , 1047–1058 (SIAM, 2012).

Malerba, D. Page Blocks Classification. UCI Machine Learning Repository. https://doi.org/10.24432/C5J590 (1995).

Srinivasan, A. Statlog (Landsat Satellite). UCI Machine Learning Repository. https://doi.org/10.24432/C55887 (1993).

Rossi, R. A. & Ahmed, N. K. The network data repository with interactive graph analytics and visualization. In AAAI (2015).

Download references

Acknowledgements

This research was funded by the European University of Atlantic.

Author information

Authors and affiliations.

Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan

Imran Raza, Muhammad Hasan Jamal, Rizwan Qureshi & Abdul Karim Shahid

Universidad Europea del Atlántico, Isabel Torres 21, 39011, Santander, Spain

Angel Olider Rojas Vistorte

Universidad Internacional Iberoamericana Campeche, 24560, Campeche, Mexico

Universidade Internacional do Cuanza, Cuito, Bié, Angola

Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, South Korea

Md Abdus Samad & Imran Ashraf

You can also search for this author in PubMed   Google Scholar

Contributions

Imran Raza: Conceptualization, Formal analysis, Writing—original draft; Muhammad Hasan Jamal: Conceptualization, Data curation, Writing—original draft; Rizwan Qureshi: Data curation, Formal analysis, Methodology; Abdul Karim Shahid: Project administration, Software, Visualization; Angel Olider Rojas Vistorte: Funding acquisition, Investigation, Project administration; Md Abdus Samad: Investigation, Software, Resources; Imran Ashraf: Supervision, Validation, Writing —review and editing. All authors reviewed the manuscript and approved it.

Corresponding authors

Correspondence to Md Abdus Samad or Imran Ashraf .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Raza, I., Jamal, M.H., Qureshi, R. et al. Adaptive neighborhood rough set model for hybrid data processing: a case study on Parkinson’s disease behavioral analysis. Sci Rep 14 , 7635 (2024). https://doi.org/10.1038/s41598-024-57547-4

Download citation

Received : 01 October 2023

Accepted : 19 March 2024

Published : 01 April 2024

DOI : https://doi.org/10.1038/s41598-024-57547-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

is a case study non experimental

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

6.7: Non-Experimental Research (Summary)

  • Last updated
  • Save as PDF
  • Page ID 19656

  • Rajiv S. Jhangiani, I-Chant A. Chiang, Carrie Cuttler, & Dana C. Leighton
  • Kwantlen Polytechnic U., Washington State U., & Texas A&M U.—Texarkana

Key Takeaways

  • Non-experimental research is research that lacks the manipulation of an independent variable.
  • There are two broad types of non-experimental research. Correlational research that focuses on statistical relationships between variables that are measured but not manipulated; and observational research in which participants are observed and their behavior is recorded without the researcher interfering or manipulating any variables.
  • In general, experimental research is high in internal validity, correlational research is low in internal validity, and quasi-experimental research is in between.
  • Correlational research involves measuring two variables and assessing the relationship between them, with no manipulation of an independent variable.
  • Correlation does not imply causation. A statistical relationship between two variables, X and Y , does not necessarily mean that X causes Y . It is also possible that Y causes X , or that a third variable, Z , causes both X and Y .
  • While correlational research cannot be used to establish causal relationships between variables, correlational research does allow researchers to achieve many other important objectives (establishing reliability and validity, providing converging evidence, describing relationships, and making predictions)
  • Correlation coefficients can range from -1 to +1. The sign indicates the direction of the relationship between the variables and the numerical value indicates the strength of the relationship.
  • Researchers often use complex correlational research to explore relationships among several variables in the same study.
  • Complex correlational research can be used to explore possible causal relationships among variables using techniques such as partial correlation and multiple regression. Such designs can show patterns of relationships that are consistent with some causal interpretations and inconsistent with others, but they cannot unambiguously establish that one variable causes another.
  • Qualitative research is an important alternative to quantitative research in psychology. It generally involves asking broader research questions, collecting more detailed data (e.g., interviews), and using non-statistical analyses.
  • Many researchers conceptualize quantitative and qualitative research as complementary and advocate combining them. For example, qualitative research can be used to generate hypotheses and quantitative research to test them.
  • There are several different approaches to observational research including naturalistic observation, participant observation, structured observation, case studies, and archival research.
  • Naturalistic observation is used to observe people in their natural setting; participant observation involves becoming an active member of the group being observed; structured observation involves coding a small number of behaviors in a quantitative manner; case studies are typically used to collect in-depth information on a single individual; and archival research involves analyzing existing data.

Abrams, L. S., & Curran, L. (2009). “And you’re telling me not to stress?” A grounded theory study of postpartum depression symptoms among low-income mothers. Psychology of Women Quarterly, 33 , 351–362.

Bryman, A. (2012). Social Research Methods (4th ed.). Oxford: Oxford University Press.

Bushman, B. J., & Huesmann, L. R. (2001). Effects of televised violence on aggression. In D. Singer & J. Singer (Eds.), Handbook of children and the media (pp. 223–254). Thousand Oaks, CA: Sage.

Cacioppo, J. T., & Petty, R. E. (1982). The need for cognition. Journal of Personality and Social Psychology, 42 , 116–131.

Cohen, D., Nisbett, R. E., Bowdle, B. F., & Schwarz, N. (1996). Insult, aggression, and the southern culture of honor: An “experimental ethnography.” Journal of Personality and Social Psychology, 70 (5), 945-960.

Diener, E. (2000). Subjective well-being: The science of happiness, and a proposal for a national index. American Psychologist, 55 , 34–43.

Festinger, L., Riecken, H., & Schachter, S. (1956). When prophecy fails: A social and psychological study of a modern group that predicted the destruction of the world . University of Minnesota Press.

Freud, S. (1961). Five lectures on psycho-analysis . New York, NY: Norton.

Geertz, C. (1973). The interpretation of cultures . New York, NY: Basic Books.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory: Strategies for qualitative research . Chicago, IL: Aldine.

Jouriles, E. N., Garrido, E., Rosenfield, D., & McDonald, R. (2009). Experiences of psychological and physical aggression in adolescent romantic relationships: Links to psychological distress. Child Abuse & Neglect, 33 (7), 451–460.

Kraut, R. E., & Johnston, R. E. (1979). Social and emotional messages of smiling: An ethological approach. Journal of Personality and Social Psychology, 37 , 1539–1553.

Levine, R. V., & Norenzayan, A. (1999). The pace of life in 31 countries. Journal of Cross-Cultural Psychology, 30 , 178–205.

Lindqvist, P., Johansson, L., & Karlsson, U. (2008). In the aftermath of teenage suicide: A qualitative study of the psychosocial consequences for the surviving family members. BMC Psychiatry, 8 :26. Retrieved from http://www.biomedcentral.com/1471-244X/8/26

Loftus, E. F., & Pickrell, J. E. (1995). The formation of false memories. Psychiatric Annals, 25 , 720–725.

Messerli, F. H. (2012). Chocolate consumption, cognitive function, and Nobel laureates. New England Journal of Medicine, 367 , 1562-1564.

Milgram, S. (1963). Behavioral study of obedience. Journal of Abnormal and Social Psychology, 67 , 371–378.

Milgram, S. (1974). Obedience to authority: An experimental view . New York, NY: Harper & Row.

Pelham, B. W., Carvallo, M., & Jones, J. T. (2005). Implicit egotism. Current Directions in Psychological Science, 14 , 106–110.

Peterson, C., Seligman, M. E. P., & Vaillant, G. E. (1988). Pessimistic explanatory style is a risk factor for physical illness: A thirty-five year longitudinal study. Journal of Personality and Social Psychology, 55 , 23–27.

Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioral genetics (5th ed.). New York, NY: Worth.

Radcliffe, N. M., & Klein, W. M. P. (2002). Dispositional, unrealistic, and comparative optimism: Differential relations with knowledge and processing of risk information and beliefs about personal risk. Personality and Social Psychology Bulletin, 28 , 836–846.

Rentfrow, P. J., & Gosling, S. D. (2008). The do re mi’s of everyday life: The structure and personality correlates of music preferences. Journal of Personality and Social Psychology, 84 , 1236–1256.

Rosenhan, D. L. (1973). On being sane in insane places. Science, 179 , 250–258.

Todd, Z., Nerlich, B., McKeown, S., & Clarke, D. D. (2004) Mixing methods in psychology: The integration of qualitative and quantitative methods in theory and practice . London, UK: Psychology Press.

Trenor, J.M., Yu, S.L., Waight, C.L., Zerda. K.S & Sha T.-L. (2008). The relations of ethnicity to female engineering students’ educational experiences and college and career plans in an ethnically diverse learning environment. Journal of Engineering Education, 97 (4), 449-465.

Watson, J. B., & Rayner, R. (1920). Conditioned emotional reactions. Journal of Experimental Psychology, 3 , 1–14.

Wilkins, A. (2008). “Happier than Non-Christians”: Collective emotions and symbolic boundaries among evangelical Christians. Social Psychology Quarterly, 71 , 281–301.

  • A researcher conducts detailed interviews with unmarried teenage fathers to learn about how they feel and what they think about their role as fathers and summarizes their feelings in a written narrative.
  • A researcher measures the impulsivity of a large sample of drivers and looks at the statistical relationship between this variable and the number of traffic tickets the drivers have received.
  • A researcher randomly assigns patients with low back pain either to a treatment involving hypnosis or to a treatment involving exercise. She then measures their level of low back pain after 3 months.
  • A cognitive psychologist compares the ability of people to recall words that they were instructed to “read” with their ability to recall words that they were instructed to “imagine.”
  • A manager studies the correlation between new employees’ college grade point averages and their first-year performance reports.
  • An automotive engineer installs different stick shifts in a new car prototype, each time asking several people to rate how comfortable the stick shift feels.
  • A food scientist studies the relationship between the temperature inside people’s refrigerators and the amount of bacteria on their food.
  • A social psychologist tells some research participants that they need to hurry over to the next building to complete a study. She tells others that they can take their time. Then she observes whether they stop to help a research assistant who is pretending to be hurt.
  • People who eat more lobster tend to live longer.
  • People who exercise more tend to weigh less.
  • College students who drink more alcohol tend to have poorer grades.
  • Practice: Construct a correlation matrix for a hypothetical study including the variables of depression, anxiety, self-esteem, and happiness. Include the Pearson’s r values that you would expect.
  • Discussion: Imagine a correlational study that looks at intelligence, the need for cognition, and high school students’ performance in a critical thinking course. A multiple regression analysis shows that intelligence is not related to performance in the class but that the need for cognition is. Explain what this study has shown in terms of what is related to good performance in the critical thinking course.
  • Discussion: What are some ways in which a qualitative study of girls who play youth baseball would likely differ from a quantitative study on the same topic? How would the data differ by interviewing girls one-on-one rather than conducting focus groups or surveys?
  • Describe one problem related to internal validity.
  • Describe one problem related to external validity.
  • Generate one hypothesis suggested by the case study that might be interesting to test in a subsequent study.

Help | Advanced Search

Computer Science > Machine Learning

Title: beacon: bayesian experimental design acceleration with conditional normalizing flows $-$ a case study in optimal monitor well placement for co$_2$ sequestration.

Abstract: CO$_2$ sequestration is a crucial engineering solution for mitigating climate change. However, the uncertain nature of reservoir properties, necessitates rigorous monitoring of CO$_2$ plumes to prevent risks such as leakage, induced seismicity, or breaching licensed boundaries. To address this, project managers use borehole wells for direct CO$_2$ and pressure monitoring at specific locations. Given the high costs associated with drilling, it is crucial to strategically place a limited number of wells to ensure maximally effective monitoring within budgetary constraints. Our approach for selecting well locations integrates fluid-flow solvers for forecasting plume trajectories with generative neural networks for plume inference uncertainty. Our methodology is extensible to three-dimensional domains and is developed within a Bayesian framework for optimal experimental design, ensuring scalability and mathematical optimality. We use a realistic case study to verify these claims by demonstrating our method's application in a large scale domain and optimal performance as compared to baseline well placement.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. Non-experimental research: What it is, Types & Tips

    is a case study non experimental

  2. descriptive study vs case study

    is a case study non experimental

  3. The Difference Between Experimental and Non-Experimental Research

    is a case study non experimental

  4. Non-experimental research: What it is, Types & Tips

    is a case study non experimental

  5. 🏆 Difference between experimental and non experimental research

    is a case study non experimental

  6. PPT

    is a case study non experimental

VIDEO

  1. Case study Non stiffness Mode1

  2. Case study Non stiffness Mode2

  3. Clinical Study Design Part 1

  4. Outcome research: Propensity score III 傾向分數

  5. How does a Ph.D Scholar's Non-Experimental Day Look like 🧪🥼 #college #life #phd #dayinthelife #song

  6. Difference between observational studies and randomized experiments?

COMMENTS

  1. Quantitative Research with Nonexperimental Designs

    There are two main types of nonexperimental research designs: comparative design and correlational design. In comparative research, the researcher examines the differences between two or more groups on the phenomenon that is being studied. For example, studying gender difference in learning mathematics is a comparative research.

  2. Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  3. 6.1: Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  4. Overview of Nonexperimental Research

    Recall that internal validity is the extent to which the design of a study supports the conclusion that changes in the independent variable caused any observed differences in the dependent variable. Figure 7.1 shows how experimental, quasi-experimental, and correlational research vary in terms of internal validity. Experimental research tends ...

  5. Planning and Conducting Clinical Research: The Whole Process

    Non-experimental researches are usually the diagnostic and prognostic studies with cross-sectional in data collection. The pinnacle of non-experimental research is the comparative effectiveness study, which is grouped with other non-experimental study designs such as cross-sectional, case-control, and cohort studies .

  6. What Is a Case Study?

    A case study is a detailed study of a specific subject, such as a person, group, place, event, organization, or phenomenon. Case studies are commonly used in social, educational, clinical, and business research. A case study research design usually involves qualitative methods, but quantitative methods are sometimes also used.

  7. 2.5: Experimental and Non-experimental Research

    Non-experimental research is a broad term that covers "any study in which the researcher doesn't have quite as much control as they do in an experiment". ... case studies can complement the more statistically-oriented approaches that you see in experimental and quasi-experimental designs. We won't talk much about case studies in these ...

  8. 6.1 Overview of Non-Experimental Research

    Non-experimental research is research that lacks the manipulation of an independent variable. Rather than manipulating an independent variable, researchers conducting non-experimental research simply measure variables as they naturally occur (in the lab or real world). Most researchers in psychology consider the distinction between experimental ...

  9. 5.7: Non-Experimental Research (Summary)

    Practice: Find and read a published case study in psychology. (Use case study as a key term in a PsycINFO search.) Then do the following: Describe one problem related to internal validity. Describe one problem related to external validity. Generate one hypothesis suggested by the case study that might be interesting to test in a subsequent study.

  10. Case Study vs. Experiment

    A case study involves in-depth analysis of a particular individual, group, or situation, aiming to provide a detailed understanding of a specific phenomenon. On the other hand, an experiment involves manipulating variables and observing the effects on a sample population, aiming to establish cause-and-effect relationships.

  11. Experimental Vs Non-Experimental Research: 15 Key Differences

    There is a general misconception around research that once the research is non-experimental, then it is non-scientific, making it more important to understand what experimental and experimental research entails. ... The main distinction between these data collection tools is case studies and simulations. Even at that, similar tools are used ...

  12. Understanding Research Designs and External Scientific Evidence

    Case study - A case study is an uncontrolled, observational study of events and outcomes in a single case. Case series - A description of uncontrolled, non-experimental events and outcomes for a series of similar cases who receive the same intervention or have the same outcome.

  13. 1.11: Experimental and non-experimental research

    Non-experimental research. Non-experimental research is a broad term that covers "any study in which the researcher doesn't have quite as much control as they do in an experiment". Obviously, control is something that scientists like to have, but as the previous example illustrates, there are lots of situations in which you can't or shouldn't try to obtain that control.

  14. Non-experimental research: What it is, Types & Tips

    Non-experimental research is the type of research that lacks an independent variable. Instead, the researcher observes the context in which the phenomenon occurs and analyzes it to obtain information. Unlike experimental research, where the variables are held constant, non-experimental research happens during the study when the researcher ...

  15. Case Study Research Method in Psychology

    Case studies are in-depth investigations of a person, group, event, or community. Typically, data is gathered from various sources using several methods (e.g., observations & interviews). The case study research method originated in clinical medicine (the case history, i.e., the patient's personal history). In psychology, case studies are ...

  16. Chapter 6 Non-experimental designs

    Among non-experimental designs involving individuals, there are essentially 3 different ways at arriving at conclusions by. 1) reference to population follow-up (cohort) 2) joint assessment of exposure among cases and non-cases (case-control) 3) reference to one particular time (cross-sectional) Since all study designs, including the non ...

  17. What Is a Case-Control Study?

    Revised on June 22, 2023. A case-control study is an experimental design that compares a group of participants possessing a condition of interest to a very similar group lacking that condition. Here, the participants possessing the attribute of study, such as a disease, are called the "case," and those without it are the "control.".

  18. What is non-experimental research: Definition, types & examples

    Non-experimental research is a type of research design that is based on observation and measuring instead of experimentation with randomly assigned participants. What characterizes this research design is the fact that it lacks the manipulation of independent variables. Because of this fact, the non-experimental research is based on naturally ...

  19. Research Study Designs: Non-experimental

    The studies are sometimes referred to as "case-referent," "case-comparison," or "trohoc" studies. The latter term is simply cohort spelled backwards, which is a good description of the main difference between the two study designs. A case-control design selects two similar popu-lations of patients based on their outcome.

  20. Using public clinical trial reports to probe non-experimental causal

    Non-experimental studies (also known as observational studies) are valuable for estimating the effects of various medical interventions, but are notoriously difficult to evaluate because the methods used in non-experimental studies require untestable assumptions. This lack of intrinsic verifiability makes it difficult both to compare different non-experimental study methods and to trust the ...

  21. 6: Non-Experimental Research

    6.3: Correlational Research. Correlational research is a type of non-experimental research in which the researcher measures two variables and assesses the statistical relationship (i.e., the correlation) between them with little or no effort to control extraneous variables. There are many reasons that researchers interested in statistical ...

  22. Creating a Corporate Social Responsibility Program with Real Impact

    Summary. Exploring the critical role of experimentation in Corporate Social Responsibility (CSR), research on four multinational companies reveals a stark difference in CSR effectiveness ...

  23. [2404.01236] Cosmic topology. Part IVa. Classification of manifolds

    Classification of manifolds using machine learning: a case study with small toroidal universes. Authors: Andrius Tamosiunas, ... View PDF HTML (experimental) Abstract: Non-trivial spatial topology of the Universe may give rise to potentially measurable signatures in the cosmic microwave background. We explore different machine learning ...

  24. Adaptive neighborhood rough set model for hybrid data ...

    The experimental results demonstrate that the proposed scheme consistently outperforms existing schemes in adaptively handling both numerical and categorical data, achieving an impressive accuracy ...

  25. Regional biases in image geolocation estimation: a case study with the

    View PDF HTML (experimental) Abstract: Advances in Artificial Intelligence are challenged by the biases rooted in the datasets used to train the models. In image geolocation estimation, models are mostly trained using data from specific geographic regions, notably the Western world, and as a result, they may struggle to comprehend the complexities of underrepresented regions.

  26. [2404.02687] Karma: An Experimental Study

    Karma: An Experimental Study. A system of non-tradable credits that flow between individuals like karma, hence proposed under that name, is a mechanism for repeated resource allocation that comes with attractive efficiency and fairness properties, in theory. In this study, we test karma in an online experiment in which human subjects repeatedly ...

  27. 6.7: Non-Experimental Research (Summary)

    Practice: Find and read a published case study in psychology. (Use case study as a key term in a PsycINFO search.) Then do the following: Describe one problem related to internal validity. Describe one problem related to external validity. Generate one hypothesis suggested by the case study that might be interesting to test in a subsequent study.

  28. Buildings

    In case of any seismic event, the non-uniform distribution patterns along the X- and Y-axis for both floors may result in a heterogeneous distribution of external force that may further damage the degrading structural integrity. ... Casarin, F.; Ademović, N. Experimental Investigations and Seismic Assessment of a Historical Stone Minaret in ...

  29. Research study designs: Non-experimental

    Even though case-control studies are retrospective in nature and are within the non-experimental design category, sometimes their results can be so compelling as to demonstrate causality. As an example, the association between the use of thalidomide and birth defects was established through a relatively small case-control study.

  30. BEACON: Bayesian Experimental design Acceleration with Conditional

    Title: BEACON: Bayesian Experimental design Acceleration with Conditional Normalizing flows $-$ a case study in optimal monitor well placement for CO$_2 ... We use a realistic case study to verify these claims by demonstrating our method's application in a large scale domain and optimal performance as compared to baseline well placement. ...