Help | Advanced Search

Computer Science (since January 1993)

For a specific paper , enter the identifier into the top right search box.

  • new (most recent mailing, with abstracts)
  • recent (last 5 mailings)
  • current month's cs listings
  • specific year/month: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 all months 01 (Jan) 02 (Feb) 03 (Mar) 04 (Apr) 05 (May) 06 (Jun) 07 (Jul) 08 (Aug) 09 (Sep) 10 (Oct) 11 (Nov) 12 (Dec)
  • Catch-up: Changes since: 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 01 (Jan) 02 (Feb) 03 (Mar) 04 (Apr) 05 (May) 06 (Jun) 07 (Jul) 08 (Aug) 09 (Sep) 10 (Oct) 11 (Nov) 12 (Dec) 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 , view results without with abstracts
  • Search within the cs archive
  • Article statistics by year: 2024 2023 2022 2021 2020 2019 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993

Categories within Computer Science

  • cs.AI - Artificial Intelligence ( new , recent , current month ) Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
  • cs.CL - Computation and Language ( new , recent , current month ) Covers natural language processing. Roughly includes material in ACM Subject Class I.2.7. Note that work on artificial languages (programming languages, logics, formal systems) that does not explicitly address natural-language issues broadly construed (natural-language processing, computational linguistics, speech, text retrieval, etc.) is not appropriate for this area.
  • cs.CC - Computational Complexity ( new , recent , current month ) Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
  • cs.CE - Computational Engineering, Finance, and Science ( new , recent , current month ) Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
  • cs.CG - Computational Geometry ( new , recent , current month ) Roughly includes material in ACM Subject Classes I.3.5 and F.2.2.
  • cs.GT - Computer Science and Game Theory ( new , recent , current month ) Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce.
  • cs.CV - Computer Vision and Pattern Recognition ( new , recent , current month ) Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
  • cs.CY - Computers and Society ( new , recent , current month ) Covers impact of computers on society, computer ethics, information technology and public policy, legal aspects of computing, computers and education. Roughly includes material in ACM Subject Classes K.0, K.2, K.3, K.4, K.5, and K.7.
  • cs.CR - Cryptography and Security ( new , recent , current month ) Covers all areas of cryptography and security including authentication, public key cryptosytems, proof-carrying code, etc. Roughly includes material in ACM Subject Classes D.4.6 and E.3.
  • cs.DS - Data Structures and Algorithms ( new , recent , current month ) Covers data structures and analysis of algorithms. Roughly includes material in ACM Subject Classes E.1, E.2, F.2.1, and F.2.2.
  • cs.DB - Databases ( new , recent , current month ) Covers database management, datamining, and data processing. Roughly includes material in ACM Subject Classes E.2, E.5, H.0, H.2, and J.1.
  • cs.DL - Digital Libraries ( new , recent , current month ) Covers all aspects of the digital library design and document and text creation. Note that there will be some overlap with Information Retrieval (which is a separate subject area). Roughly includes material in ACM Subject Classes H.3.5, H.3.6, H.3.7, I.7.
  • cs.DM - Discrete Mathematics ( new , recent , current month ) Covers combinatorics, graph theory, applications of probability. Roughly includes material in ACM Subject Classes G.2 and G.3.
  • cs.DC - Distributed, Parallel, and Cluster Computing ( new , recent , current month ) Covers fault-tolerance, distributed algorithms, stabilility, parallel computation, and cluster computing. Roughly includes material in ACM Subject Classes C.1.2, C.1.4, C.2.4, D.1.3, D.4.5, D.4.7, E.1.
  • cs.ET - Emerging Technologies ( new , recent , current month ) Covers approaches to information processing (computing, communication, sensing) and bio-chemical analysis based on alternatives to silicon CMOS-based technologies, such as nanoscale electronic, photonic, spin-based, superconducting, mechanical, bio-chemical and quantum technologies (this list is not exclusive). Topics of interest include (1) building blocks for emerging technologies, their scalability and adoption in larger systems, including integration with traditional technologies, (2) modeling, design and optimization of novel devices and systems, (3) models of computation, algorithm design and programming for emerging technologies.
  • cs.FL - Formal Languages and Automata Theory ( new , recent , current month ) Covers automata theory, formal language theory, grammars, and combinatorics on words. This roughly corresponds to ACM Subject Classes F.1.1, and F.4.3. Papers dealing with computational complexity should go to cs.CC; papers dealing with logic should go to cs.LO.
  • cs.GL - General Literature ( new , recent , current month ) Covers introductory material, survey material, predictions of future trends, biographies, and miscellaneous computer-science related material. Roughly includes all of ACM Subject Class A, except it does not include conference proceedings (which will be listed in the appropriate subject area).
  • cs.GR - Graphics ( new , recent , current month ) Covers all aspects of computer graphics. Roughly includes material in all of ACM Subject Class I.3, except that I.3.5 is is likely to have Computational Geometry as the primary subject area.
  • cs.AR - Hardware Architecture ( new , recent , current month ) Covers systems organization and hardware architecture. Roughly includes material in ACM Subject Classes C.0, C.1, and C.5.
  • cs.HC - Human-Computer Interaction ( new , recent , current month ) Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
  • cs.IR - Information Retrieval ( new , recent , current month ) Covers indexing, dictionaries, retrieval, content and analysis. Roughly includes material in ACM Subject Classes H.3.0, H.3.1, H.3.2, H.3.3, and H.3.4.
  • cs.IT - Information Theory ( new , recent , current month ) Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
  • cs.LO - Logic in Computer Science ( new , recent , current month ) Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
  • cs.LG - Machine Learning ( new , recent , current month ) Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
  • cs.MS - Mathematical Software ( new , recent , current month ) Roughly includes material in ACM Subject Class G.4.
  • cs.MA - Multiagent Systems ( new , recent , current month ) Covers multiagent systems, distributed artificial intelligence, intelligent agents, coordinated interactions. and practical applications. Roughly covers ACM Subject Class I.2.11.
  • cs.MM - Multimedia ( new , recent , current month ) Roughly includes material in ACM Subject Class H.5.1.
  • cs.NI - Networking and Internet Architecture ( new , recent , current month ) Covers all aspects of computer communication networks, including network architecture and design, network protocols, and internetwork standards (like TCP/IP). Also includes topics, such as web caching, that are directly relevant to Internet architecture and performance. Roughly includes all of ACM Subject Class C.2 except C.2.4, which is more likely to have Distributed, Parallel, and Cluster Computing as the primary subject area.
  • cs.NE - Neural and Evolutionary Computing ( new , recent , current month ) Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
  • cs.NA - Numerical Analysis ( new , recent , current month ) cs.NA is an alias for math.NA. Roughly includes material in ACM Subject Class G.1.
  • cs.OS - Operating Systems ( new , recent , current month ) Roughly includes material in ACM Subject Classes D.4.1, D.4.2., D.4.3, D.4.4, D.4.5, D.4.7, and D.4.9.
  • cs.OH - Other Computer Science ( new , recent , current month ) This is the classification to use for documents that do not fit anywhere else.
  • cs.PF - Performance ( new , recent , current month ) Covers performance measurement and evaluation, queueing, and simulation. Roughly includes material in ACM Subject Classes D.4.8 and K.6.2.
  • cs.PL - Programming Languages ( new , recent , current month ) Covers programming language semantics, language features, programming approaches (such as object-oriented programming, functional programming, logic programming). Also includes material on compilers oriented towards programming languages; other material on compilers may be more appropriate in Architecture (AR). Roughly includes material in ACM Subject Classes D.1 and D.3.
  • cs.RO - Robotics ( new , recent , current month ) Roughly includes material in ACM Subject Class I.2.9.
  • cs.SI - Social and Information Networks ( new , recent , current month ) Covers the design, analysis, and modeling of social and information networks, including their applications for on-line information access, communication, and interaction, and their roles as datasets in the exploration of questions in these and other domains, including connections to the social and biological sciences. Analysis and modeling of such networks includes topics in ACM Subject classes F.2, G.2, G.3, H.2, and I.2; applications in computing include topics in H.3, H.4, and H.5; and applications at the interface of computing and other disciplines include topics in J.1--J.7. Papers on computer communication systems and network protocols (e.g. TCP/IP) are generally a closer fit to the Networking and Internet Architecture (cs.NI) category.
  • cs.SE - Software Engineering ( new , recent , current month ) Covers design tools, software metrics, testing and debugging, programming environments, etc. Roughly includes material in all of ACM Subject Classes D.2, except that D.2.4 (program verification) should probably have Logics in Computer Science as the primary subject area.
  • cs.SD - Sound ( new , recent , current month ) Covers all aspects of computing with sound, and sound as an information channel. Includes models of sound, analysis and synthesis, audio user interfaces, sonification of data, computer music, and sound signal processing. Includes ACM Subject Class H.5.5, and intersects with H.1.2, H.5.1, H.5.2, I.2.7, I.5.4, I.6.3, J.5, K.4.2.
  • cs.SC - Symbolic Computation ( new , recent , current month ) Roughly includes material in ACM Subject Class I.1.
  • cs.SY - Systems and Control ( new , recent , current month ) cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.

latest research papers on computer network

Computer Networks

27th International Conference, CN 2020, Gdańsk, Poland, June 23–24, 2020, Proceedings

  • Conference proceedings
  • © 2020
  • Piotr Gaj   ORCID: https://orcid.org/0000-0002-2291-7341 0 ,
  • Wojciech Gumiński   ORCID: https://orcid.org/0000-0002-3113-3450 1 ,
  • Andrzej Kwiecień   ORCID: https://orcid.org/0000-0003-1447-3303 2

Silesian University of Technology, Gliwice, Poland

You can also search for this editor in PubMed   Google Scholar

Gdańsk University of Technology, Gdańsk, Poland

Part of the book series: Communications in Computer and Information Science (CCIS, volume 1231)

Included in the following conference series:

  • CN: International Conference on Computer Networks

Conference proceedings info: CN 2020.

4910 Accesses

20 Citations

This is a preview of subscription content, log in via an institution to check access.

Access this book

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (14 papers)

Front matter, a revised gomory-hu algorithm taking account of physical unavailability of network channels.

  • Winfried Auzinger, Kvitoslava Obelovska, Roksolyana Stolyarchuk

Analysis of the Block Segmentation Method of the Licklider Transmission Protocol

  • Ricardo Lent

Detection of NAT64/DNS64 by SRV Records: Detection Using Global DNS Tree in the World Beyond Plain-Text DNS

  • Martin Hunek, Zdenek Pliva

Quantum Router for Qutrit Networks

  • Marek Sawerwain, Joanna Wiśniewska

Development of High Performance Computing Systems

  • Stanisław Kozielski, Dariusz Mrozek

Peer-to-Peer Transfers for Crowd Monitoring - A Reality Check

  • Christin Groba, Alexander Schill

Reliability Enhancement of URLLC Traffic in 5G Cellular Networks

  • Jerzy Martyna

Cybersecurity and Quality of Service

Detection efficiency improvement in multi–component anti-spam systems.

  • Tomas Sochor

Reliability Analysis of a Multipath Transport System in Fog Computing

  • Udo R. Krieger, Natalia M. Markovich

Minimising the Churn Out of the Service by Using a Fairness Mechanism

  • Izabela Mazur, Jacek Rak, Krzysztof Nowicki

Queueing Theory and Queuing Networks

On comparison of multiserver systems with exponential-pareto mixture distribution.

  • Irina Peshkova, Evsey Morozov, Maria Maltseva

Unreliable Single-Server Queueing System with Customers of Random Capacity

  • Oleg Tikhonenko, Marcin Ziółkowski

Infinite-Server Queue Model \(MMAP_{k}(t)|G_{k}|\infty \) with Time Varying Marked Map Arrivals of Customers and Occurrence of Catastrophes

  • Ruben Kerobyan, Khanik Kerobyan, Carol Shubin, Phu Nguyen

Performance Evaluations of a Cloud Computing Physical Machine with Task Reneging and Task Resubmission (Feedback)

  • Godlove Suila Kuaban, Bhavneet Singh Soodan, Rakesh Kumar, Piotr Czekalski

Back Matter

Other volumes.

  • artificial intelligence
  • communication channels (information theory)
  • communication systems
  • computer hardware
  • computer networks
  • computer systems
  • data communication systems
  • distributed computer systems
  • network architecture
  • network protocols
  • probability
  • queueing systems
  • queuing network
  • signal processing
  • telecommunication networks
  • telecommunication systems
  • telecommunication traffic
  • wireless telecommunication systems

About this book

This book constitutes the thoroughly refereed proceedings of the 27th International Conference on Computer Networks, CN 2020, held in June 2020. Due to the COVID-19 pandemic the conference was held virtually. 

The 14 full papers presented were carefully reviewed and selected from 34 submissions. They are organized according to the topical sections on computer networks; cybersecurity and quality of service; queueing theory and queueing networks. 

Editors and Affiliations

Piotr Gaj, Andrzej Kwiecień

Wojciech Gumiński

Bibliographic Information

Book Title : Computer Networks

Book Subtitle : 27th International Conference, CN 2020, Gdańsk, Poland, June 23–24, 2020, Proceedings

Editors : Piotr Gaj, Wojciech Gumiński, Andrzej Kwiecień

Series Title : Communications in Computer and Information Science

DOI : https://doi.org/10.1007/978-3-030-50719-0

Publisher : Springer Cham

eBook Packages : Computer Science , Computer Science (R0)

Copyright Information : Springer Nature Switzerland AG 2020

Softcover ISBN : 978-3-030-50718-3 Published: 18 June 2020

eBook ISBN : 978-3-030-50719-0 Published: 18 June 2020

Series ISSN : 1865-0929

Series E-ISSN : 1865-0937

Edition Number : 1

Number of Pages : XX, 199

Number of Illustrations : 31 b/w illustrations, 37 illustrations in colour

Topics : Computer Communication Networks , Information Systems Applications (incl. Internet) , Software Engineering/Programming and Operating Systems , Probability and Statistics in Computer Science , Artificial Intelligence , Coding and Information Theory

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Communications and Networking Research Group

Search form.

  • Publications

PUBLICATIONS

Journal articles | other papers | conference papers | book chapters | technical reports, journal articles.

134. Vishrant Tripathi, Nick Jones, Eytan Modiano, Fresh-CSMA: A Distributed Protocol for Minimizing Age of Information, IEEE Journal on Communications and Networks, 2024.

133. Bai Liu, Quang Nguyen, Qingkai Liang, Eytan Modiano, Tracking Drift-Plus-Penalty: Utility Maximization for Partially Observable and Controllable Networks, IEEE/ACM Transactions on Networking, 2024.

132. Xinzhe Fu, Eytan Modiano, Optimal Routing to Parallel Servers with Unknown Utilities – Multi-armed Bandit With Queues, IEEE/ACM Transactions on Networking, January 2022.

131. Bai Liu, Qingkai Liang, Eytan Modiano, Tracking MaxWeight: Optimal Control for Partially Observable and Controllable Networks, IEEE/ACM Transactions on Networking, August 2023.

130. Xinzhe Fu, Eytan Modiano, Joint Learning and Control in Stochastic Queueing Networks with unknown Utilities, Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2023.

129. Vishrant Tripathi, Rajat Talak, Eytan Modiano, Information Freshness in Multi-Hop Wireless Networks, IEEE/ACM Transactions on Networking,” April 2023.

128.  Xinzhe Fu, Eytan Modiano, “ Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay ,”  IEEE/ACM Transactions on Networking,” 2022.

127.  Bai Liu, Qiaomin Xie, Eytan Modiano,  " RL-QN: A Reinforcement Learning Framework for Optimal Control of Queueing Systems ,"  ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), 2022.

126. Xinzhe Fu and E. Modiano,  “ Elastic Job Scheduling with Unknown Utility Functions ,” Performance Evaluation, 2021.

125. Bai Liu and E. Modiano, “ Optimal Control for Networks with Unobservable Malicious Nodes ,”  Performance Evaluation, 2021.

124. Vishrant Tripathi, Rajat Talak, Eytan Modiano, " Age Optimal Information Gathering and Dissemination on Graphs ,”  Transactions on Mobile Computing, April 2021.

123.  Xinyu Wu, Dan Wu, Eytan Modiano, “ Predicting Failure Cascades in Large Scale Power Systems via the Influence Model Framework, ”  IEEE Transactions on Power Systems, 2021.

122.   Roy D. Yates, Yin Sun, D. Richard Brown III, Sanjit K. Kaul, Eytan Modiano and Sennur Ulukus, “ Age of Information: An Introduction and Survey, ”  Journal on Selected Areas in Communications, February 2021.

121.   Jianan Zhang, Abhishek Sinha, Jaime Llorca, Anonia Tulino, Eytan Modiano, “ Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows ,”  IEEE/ACM Transactions on Networking, 2021.

120.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Learning Algorithms for Minimizing Queue Length Regret ,”  IEEE Transactions on Information Theory, 2021.

119.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Throughput Maximization in Uncooperative Spectrum Sharing Networks ,”  IEEE/ACM IEEE/ACM Transactions on Networking, Vol. 28, No. 6, December 2020.

118.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, “ Learning algorithms for scheduling in wireless networks with unknown channel statistics ,” Ad Hoc Networks, Vol. 85, pp. 131-144, 2019.

117.   Rajat Talak, Eytan Modiano, “ Age-Delay Tradeoffs in Queueing Systems ,”  IEEE Transactions on Information Theory, 2021.

116.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Improving Age of Information in Wireless Networks with Perfect Channel State Information ,”  IEEE/ACM Transactions on Networking, Vol. 28, No. 4, August 2020.

115.   Igor Kadota and Eytan Modiano, “ Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals ,” IEEE Transactions on Mobile Computing, 2020.

114.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Optimizing Information Freshness in Wireless Networks under General Interference Constraints ,”  IEEE/ACM transactions on Networking, Vol. 28, No. 1, February 2020.

113.   X. Fu and E. Modiano, " Fundamental Limits of Volume-based Network DoS Attacks ," Proceedings of the ACM on Measurement and Analysis of Computing Systems, Vol. 3, No. 3, December 2019. 

112.   Rajat Talak, Sertac Karaman, Eytan Modiano, “ Capacity and Delay Scaling for Broadcast Transmission in Highly Mobile Wireless Networks ,” IEEE Transactions on Mobile Computing, 2019.

111.   Abhishek Sinha and Eytan Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions , IEEE Transactions on Mobile Computing, Vol. 19, No. 9, September 2020.

110.   Yu-Pin Hsu, Eytan Modiano, Lingjie Duan, “ Scheduling Algorithms for Minimizing Age of Information in Wireless Broadcast Networks with Random Arrivals ,”  IEEE Transactions on Mobile Computing, Vol. 19, No. 12, December 2020.

109.   Xiaolin Jiang, Hossein S. Ghadikolaei, Gabor Fodor, Eytan Modiano, Zhibo Pang, Michele Zorzi, Carlo Fischione, " Low-latency Networking: Where Latency Lurks and How to Tame It ,”  Proceedings of the IEEE, 2019.

108.   Jianan Zhang, Edmund Yeh, Eytan Modiano, “ Robustness of Interdependent Random Geometric Networks ,” IEEE Transactions on Network Science and Engineering, Vol. 6, No. 3, July-September 2019.

107.   Qingkai Liang, Hyang-Won Lee, Eytan Modiano, “ Robust Design of Spectrum-Sharing Networks ,” IEEE Transactions on Mobile Computing, Vol. 18, No. 8, August 2019.

106.   A. Sinha, L. Tassiulas, E. Modiano, “ Throughput-Optimal Broadcast in Wireless Networks with Dynamic Topology ,”  IEEE Transactions on Mobile Computing, Vol. 18, No. 5, May 2019.

105. Igor Kadota, Abhishek Sinha, Eytan Modiano, “ Scheduling Algorithms for Optimizing Age of Information in Wireless Networks With Throughput Constraints ,”  IEEE/ACM Transactions on Networking, August 2019.

104.   Igor Kadota, Abhishek Sinha, Rahul Singh, Elif Uysal-Biyikoglu, Eytan Modjano, “ Scheduling Policies for Minimizing Age of Information in Broadcast Wireless Networks ,” IEEE/ACM Transactions on Networking, Vol. 26, No. 5, October 2018.

103.   Jianan Zhang and Eytan Modiano, “ Connectivity in Interdependent Networks ,”  IEEE/ACM Transactions on Networking, 2018.

102.   Qingkai Liang, Eytan Modiano, “ Minimizing Queue Length Regret Under Adversarial Network Models ,” Proceedings of the ACM on Measurement and Analysis of Computing Systems, Volume 2, Issue 1, April 2018, Article No.: 11, pp 1-32. (same as Sigmetrics 2018).

101.   A. Sinha and E. Modiano, “ Optimal Control for Generalized Network Flow Problems ,”  IEEE/ACM Transactions on Networking, 2018.

100.   Hossein Shokri-Ghadikolaei, Carlo Fischione, Eytan Modiano  “ Interference Model Similarity Index and Its Applications to mmWave Networks ,”  IEEE Transactions on Wireless Communications, 2018.

99.   Matt Johnston, Eytan Modiano, “ Wireless Scheduling with Delayed CSI: When Distributed Outperforms Centralized, ’ IEEE Transactions on Mobile Computing, 2018.

98.   A. Sinha, G. Paschos, E. Modiano, “ Throughput-Optimal Multi-hop Broadcast Algorithms ," IEEE/ACM Transactions on Networking, 2017.

97.   Nathan Jones, Georgios Paschos, Brooke Shrader, Eytan Modiano, " An Overlay Architecture for Throughput Optimal Multipath Routing ,” IEEE/ACM Transactions on Networking, 2017.

96.   Greg Kuperman, Eytan Modiano, “ Providing Guaranteed Protection in Multi-Hop Wireless Networks with Interference Constraints ,” IEEE Transactions on Mobile Computing, 2017.

95.   Matt Johnston, Eytan Modiano, Isaac Kesslassy, “ Channel Probing in Opportunistic Communications Systems ,”  IEEE Transactions on Information Theory, November, 2017.

94.   Anurag Rai, Georgios Paschos, Chih-Ping Lee, Eytan Modiano, " Loop-Free Backpressure Routing Using Link-Reversal Algorithms ", IEEE/ACM Transactions on Networking, October, 2017.

93.   Matt Johnston and Eytan Modiano, “" Controller Placement in Wireless Networks with Delayed CSI ,” IEEE/ACM Transactions on Networking, 2017.

92.   Jianan Zheng, E. Modiano, D. Hay, " Enhancing Network Robustness via Shielding ,”  IEEE Transactions on Networking, 2017.

91.   M. Markakis, E. Modiano, J.N. Tsitsiklis, “ Delay Analysis of the Max-Weight Policy under Heavy-Tailed Traffic via Fluid Approximations ,” Mathematics of Operations Research, October, 2017.

90.   Qingkai Liang and E. Modiano, “ Survivability in Time-Varying Graphs ,”  IEEE Transactions on Mobile Computing, 2017.

89.   A. Sinha, G. Paschos, C. P. Li, and E. Modiano, “ Throughput-Optimal Multihop Broadcast on Directed Acyclic Wireless Networks ," IEEE/ACM Transactions on Networking, Vol. 25, No. 1, Feb. 2017.

88.   G. Celik, S. Borst, , P. Whiting , E. Modiano, “ Dynamic Scheduling with Reconfiguration Delays ,”  Queueing Systems, 2016.

87.  G. Paschos, C. P. Li, E. Modiano, K. Choumas, T. Korakis, “ In-network Congestion Control for Multirate Multicast ,”   IEEE/ACM Transactions on Networking,  2016.

86.   H. Seferoglu and E. Modiano, “ TCP-Aware Backpressure Routing and Scheduling ,” IEEE Transactions on Mobile Computing, 2016.

85.   H. Seferoglu and E. Modiano, “ Separation of Routing and Scheduling in Backpressure-Based Wireless Networks ," IEEE/ACM Transactions on Networking, Vol. 24, No. 3, 2016.

84.   M. Markakis, E. Modiano, J.N. Tsitsiklis, “ Delay Stability of Back-Pressure Policies in the presence of Heavy-Tailed Traffic ,”  IEEE/ACM Transactions on Networking, 2015.

83.   S. Neumayer, E. Modiano,  “ Network Reliability Under Geographically Correlated Line and Disk Failure Models ,” Computer Networks, to appear, 2016.

82.   S. Neumayer, E. Modiano, A. Efrat, “ Geographic Max-Flow and Min-Cut Under a Circular Disk Failure Model ,” Computer Networks, 2015.

81.   Marzieh Parandehgheibi, Hyang-Won Lee, Eytan Modiano, Survivable Path Sets:  A new approach to survivability in multi-layer networks ,”  IEEE Journal on Lightwave Technology, 2015.

80.   G. Kuperman, E. Modiano, A. Narula-Tam, “ Network Protection with Multiple Availability Guarantees ,” Computer Networks, 2015.

79.   G. Kuperman, E. Modiano, A. Narula-Tam, “ Analysis and Algorithms for Partial Protection in Mesh Networks ,” IEEE/OSA Journal of Optical Communications and Networks, 2014.

78.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Throughput Optimal Scheduling over Time-Varying Channels in the presence of Heavy-Tailed Traffic ,” IEEE Transactions on Information Theory, 2014.

77.   Chih-Ping Li and Eytan Modiano, “ Receiver-Based Flow Control for Networks in Overload ," IEEE/ACM Transactions on Networking, Vol. 23, No. 2, 2015.

76.   Matthew Johnston, Hyang-Won Lee, Eytan Modiano, “ A Robust Optimization Approach to Backup Network Design with Random Failures ,” IEEE/ACM Transactions on Networking, Vol. 23, No. 4, 2015.

75.   Guner Celik and Eytan Modiano, “ Scheduling in Networks with Time-Varying Channels and Reconfiguration Delay ," IEEE/ACM Transactions on Networking, Vol. 23, No. 1, 2015.

74.   Matt Johnston, H.W. Lee, E. Modiano, “ Robust Network Design for Stochastic Traffic Demands ," IEEE Journal of Lightwave Technology, 2013.

73.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, “ Max-Weight Scheduling in Queueing Networks With Heavy-Tailed Traffic, ” IEEE/ACM Transactions on Networking, 2014.

72.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, " Maximizing Reliability in WDM Networks through Lightpath Routing ,”  IEEE ACM Transactions on Networking, 2014.

71.   Krishna Jaggannathan and Eytan Modiano, “ The Impact of Queue Length Information on Buffer Overflow in Parallel Queues ,”  IEEE transactions on Information Theory, 2013.

70.   Krishna Jagannathan, Ishai Menashe, Gil Zussman, Eytan Modiano, “ Non-cooperative Spectrum Access - The Dedicated vs. Free Spectrum Choice ,” IEEE JSAC, special issue on Economics of Communication Networks & Systems, to appear, 2012.

69.   Guner Celik and Eytan Modiano, “ Dynamic Server Allocation over Time Varying Channels with Switchover Delay ," IEEE Transactions on Information Theory, to appear, 2012.

68.   Anand Srinivas and Eytan Modiano, " Joint Node Placement and Assignment for Throughput Optimization in Mobile Backbone Networks ,” IEEE JSAC, special issue on Communications Challenges and Dynamics for Unmanned Autonomous Vehicles, June, 2012.

67.   Guner Celik and Eytan Modiano, “ Controlled Mobility in Stochastic and Dynamic Wireless Networks ," Queueing Systems, 2012.

66.   Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytan Modiano, “ A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels ,” Internet Mathematics, Vol. 9, Nos. 2–3: 136–160.

65.   Long Le, E. Modiano, N. Shroff, “Optimal Control of Wireless Networks with Finite Buffers ,” IEEE/ACM Transactions on Networking, to appear, 2012.

64.   K. Jagannathan, M. Markakis, E. Modiano, J. Tsitsiklis, “Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic,” IEEE/ACM Transactions on Networking, Vol. 20, No. 4, August 2012.

63.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, “ Reliability in Layered Networks with Random Link Failures, ” IEEE/ACM Transactions on Networking, December 2011.

62.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, “ On the Role of Queue Length Information in Network Control ,” IEEE Transactions on Information Theory, September 2011.

61.   Hyang-Won Lee, Long Le, Eytan Modiano, “ Distributed Throughput Maximization in Wireless Networks via Random Power Allocation, ” IEEE Transactions on Mobile Computing, 2011.

60.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, " Assessing the Vulnerability of the Fiber Infrastructure to Disasters, " IEEE/ACM Transactions on Networking, December 2011.

59.   Kayi Lee, Eytan Modiano, Hyang-Won Lee, “ Cross Layer Survivability in WDM-based Networks ,” IEEE/ACM Transactions on Networking, August 2011.

58.   Emily Craparo, Jon How, and Eytan Modiano, “Throughput Optimization in Mobile Backbone Networks,” IEEE Transactions on Mobile Computing, April, 2011.

57.   Hyang-Won Lee, Kayi Lee, and Eytan Modiano, “Diverse Routing in Networks with Probabilistic Failures,” IEEE/ACM Transactions on Networking, December, 2010.

56.   Guner Celik, Gil Zussman, Wajahat Khan and Eytan Modiano, “MAC Protocols For Wireless Networks With Multi-packet Reception Cabaility ,” IEEE Transactions on Mobile Computing, February, 2010.

55.   Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, and Eytan Modiano, “Distributed Cross-Layer Algorithms for the Optimal Control of Multi-hop Wireless Networks,” IEEE/ACM Transactions on Networking, April 2010.

54.   Murtaza Zafer and Eytan Modiano, “Minimum Energy Transmission over a Wireless Channel With Deadline and Power Constraints ,” IEEE Transactions on Automatic Control, pp. 2841-2852, December, 2009.

53.   Murtaza Zafer and Eytan Modiano, “A Calculus Approach to Energy-Efficient Data Transmission with Quality of Service Constraints,” IEEE/ACM Transactions on Networking, 2009.

52.   Anand Srinivas, Gil Zussman, and Eytan Modiano, “Construction and Maintenance of Wireless Mobile Backbone Networks,” IEEE/ACM Transactions on Networking, 2009.

51.   Andrew Brzezinski, Gil Zussman, and Eytan Modiano, “Distributed Throughput Maximization in Wireless Mesh Networks Via Pre-Partitioning,” IEEE/ACM Transactions on Networking, December, 2008.

50.   Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, “Reliability and Route Diversity in Wireless Networks,” IEEE Transactions on Wireless Communications, December, 2008.

49.   Alessandro Tarello, Jun Sun, Murtaza Zafer and Eytan Modiano, “Minimum Energy Transmission Scheduling Subject to Deadline Constraints,” ACM Wireless Networks, October, 2008.

48.   Murtaza Zafer, Eytan Modiano, “Optimal Rate Control for Delay-Constrained Data Transmission over a Wireless Channel,” IEEE Transactions on Information Theory, September, 2008.

47.   Andrew Brzezinski and Eytan Modiano, “Achieving 100% Throughput In Reconfigurable IP/WDM Networks,” IEEE/ACM Transactions on Networking, August, 2008.

46.   Michael Neely, Eytan Modiano and C. Li, “Fairness and Optimal Stochastic Control for Heterogeneous Networks,” IEEE/ACM Transactions on Networking, September, 2008.

45.   Amir Khandani, Jinane Abounadi, Eytan Modiano, Lizhong Zheng, “Cooperative Routing in Static Wireless Networks,” IEEE Transactions on Communications, November 2007.

44.   Murtaza Zafer, Eytan Modiano, “Joint Scheduling of Rate-guaranteed and Best-effort Users over a Wireless Fading Channel,” IEEE Transactions on Wireless Communications, October, 2007.

43.   Krishna Jagannathan, Sem Borst, Phil Whiting and Eytan Modiano, “Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users,” IEEE Journal of Selected Areas in Communications, September, 2007.Amir Khandani, Jinane

42.   Anand Ganti, Eytan Modiano, and John Tsitsiklis, “Optimal Transmission Scheduling in Symmetric Communication Models with Intermittent Connectivity, ” IEEE Transactions on Information Theory, March, 2007.

41.   Michael Neely and Eytan Modiano, “Logarithmic Delay for NxN Packet Switches Under Crossbar Constraints,” IEEE/ACM Transactions on Networking, November, 2007.

40.   Jun Sun, Jay Gao, Shervin Shambayati and Eytan Modiano, “Ka-Band Link Optimization with Rate Adaptation for Mars and Lunar Communications,”   International Journal of Satellite Communications and Networks, March, 2007.

39.   Jun Sun and Eytan Modiano, "Fair Allocation of A Wireless Fading Channel: An Auction Approach" Institute for Mathematics and its Applications, Volume 143: Wireless Communications, 2006.

38.   Jun Sun, Eytan Modiano and Lizhong Zhang, “Wireless Channel Allocation Using An Auction Algorithm,” IEEE Journal on Selected Areas in Communications, May, 2006.

37.   Murtaza Zafer and Eytan Modiano, "Blocking Probability and Channel Assignment for Connection Oriented Traffic in Wireless Networks," IEEE Transactions on Wireless Communications, April, 2006.

36.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, "Optimal Transmission Scheduling over a fading channel with Energy and Deadline Constraints" IEEE Transactions on Wireless Communications, March,2006.

35.   Poompat Saengudomlert, Eytan Modiano and Rober Gallager, “On-line Routing and Wavelength Assignment for Dynamic Traffic in WDM Ring and Torus Networks,” IEEE Transactions on Networking, April, 2006.

34.   Li-Wei Chen, Eytan Modiano and Poompat Saengudomlert, "Uniform vs. Non-Uniform band Switching in WDM Networks," Computer Networks (special issue on optical networks), January, 2006.

33.   Andrew Brzezinski and Eytan Modiano, "Dynamic Reconfiguration and Routing Algorithms for IP-over-WDM networks with Stochastic Traffic," IEEE Journal of Lightwave Technology, November, 2005

32.   Randall Berry and Eytan Modiano, "Optimal Transceiver Scheduling in WDM/TDM Networks," IEEE Journal on Selected Areas in Communications, August, 2005.

31.   Poompat Saengudomlert, Eytan Modiano, and Robert G. Gallager, “Dynamic Wavelength Assignment for WDM All-Optical Tree Networks,” IEEE Transactions on Networking, August, 2005.

30.   Ashwinder Ahluwalia and Eytan Modiano, "On the Complexity and Distributed Construction of Energy Efficient Broadcast Trees in Wireless Ad Hoc Networks," IEEE Transactions on Wireless Communications, October, 2005.

29.   Michael Neely, Charlie Rohrs and Eytan Modiano, "Equivalent Models for Analysis of Deterministic Service Time Tree Networks," IEEE Transactions on Information Theory, October, 2005.

28.   Michael Neely and Eytan Modiano, "Capacity and Delay Tradeoffs for Ad Hoc Mobile Networks," IEEE Transactions on Information Theory, May, 2005.

27.   Li-Wei Chen and Eytan Modiano, "Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks with Wavelength Converters," IEEE/ACM Transactions on Networking, February, 2005. Selected as one of the best papers from Infocom 2003 for fast-track publication in IEEE/ACM Transactions on Networking.

26.   Michael Neely and Eytan Modiano, "Convexity in Queues with General Inputs," IEEE Transactions on Information Theory, May, 2005.

25.   Anand Srinivas and Eytan Modiano, "Finding Minimum Energy Disjoint Paths in Wireless Ad Hoc Networks," ACM Wireless Networks, November, 2005. Selected to appear in a special issue dedicated to best papers from Mobicom 2003.

24.   Michael Neely, Eytan Modiano and Charlie Rohrs, "Dynamic Power Allocation and Routing for Time-Varying Wireless Networks," IEEE Journal of Selected Areas in Communication, January, 2005.

23.   Chunmei Liu and Eytan Modiano, "On the performance of additive increase multiplicative decrease (AIMD) protocols in hybrid space-terrestrial networks," Computer Networks, September, 2004.

22.   Li-Wei Chen and Eytan Modiano, "Dynamic Routing and Wavelength Assignment with Optical Bypass using Ring Embeddings," Optical Switching and Networking (Elsevier), December, 2004.

21.   Aradhana Narula-Tam, Eytan Modiano and Andrew Brzezinski, "Physical Topology Design for Survivable Routing of Logical Rings in WDM-Based Networks," IEEE Journal of Selected Areas in Communication, October, 2004.

20.   Randall Berry and Eytan Modiano, "'The Role of Switching in Reducing the Number of Electronic Ports in WDM Networks," IEEE Journal of Selected Areas in Communication, October, 2004.

19.   Jun Sun and Eytan Modiano, "Routing Strategies for Maximizing Throughput in LEO Satellite Networks,," IEEE JSAC, February, 2004.

18.   Jun Sun and Eytan Modiano, "Capacity Provisioning and Failure Recovery for Low Earth Orbit Satellite Networks," International Journal on Satellite Communications, June, 2003.

17.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, "Optimal Energy Allocation and Admission Control for Communications Satellites," IEEE Transactions on Networking, June, 2003.

16.   Michael Neely, Eytan Modiano and Charles Rohrs, "Power Allocation and Routing in Multi-Beam Satellites with Time Varying Channels," IEEE Transactions on Networking, February, 2003.

15.   Eytan Modiano and Aradhana Narula-Tam, "Survivable lightpath routing: a new approach to the design of WDM-based networks," IEEE Journal of Selected Areas in Communication, May 2002.

14.   Aradhana Narula-Tam, Phil Lin and Eytan Modiano, "Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks," IEEE Journal of Selected Areas in Communication, January, 2002.

13.   Brett Schein and Eytan Modiano, "Quantifying the benefits of configurability in circuit-switched WDM ring networks with limited ports per node," IEEE Journal on Lightwave Technology, June, 2001.

12.   Aradhana Narula-Tam and Eytan Modiano, "Dynamic Load Balancing in WDM Packet Networks with and without Wavelength Constraints," IEEE Journal of Selected Areas in Communications, October 2000.

11.   Randy Berry and Eytan Modiano, "Reducing Electronic Multiplexing Costs in SONET/WDM Rings with Dynamically Changing Traffic," IEEE Journal of Selected Areas in Communications, October 2000.

10.   Eytan Modiano and Richard Barry, "A Novel Medium Access Control Protocol for WDM-Based LANs and Access Networks Using a Master-Slave Scheduler," IEEE Journal on Lightwave Technology, April 2000.

9.   Eytan Modiano and Anthony Ephremides, "Communication Protocols for Secure Distributed Computation of Binary Functions," Information and Computation, April 2000.

8.   Angela Chiu and Eytan Modiano, "Traffic Grooming Algorithms for Reducing Electronic Multiplexing Costs in WDM Ring Networks," IEEE Journal on Lightwave Technology, January 2000.

7.   Eytan Modiano, "An Adaptive Algorithm for Optimizing the Packet Size Used in Wireless ARQ Protocols," Wireless Networks, August 1999.

6.   Eytan Modiano, "Random Algorithms for Scheduling Multicast Traffic in WDM Broadcast-and-Select Networks," IEEE Transactions on Networking, July, 1999.

5.   Eytan Modiano and Richard Barry, "Architectural Considerations in the Design of WDM-based Optical Access Networks," Computer Networks, February 1999.

4.   V.W.S. Chan, K. Hall, E. Modiano and K. Rauschenbach, "Architectures and Technologies for High-Speed Optical Data Networks," IEEE Journal of Lightwave Technology, December 1998.

3.   Eytan Modiano and Anthony Ephremides, "Efficient Algorithms for Performing Packet Broadcasts in a Mesh Network," IEEE Transactions on Networking, May 1996.

2.   Eytan Modiano, Jeffrey Wieselthier and Anthony Ephremides, "A Simple Analysis of Queueing Delay in a Tree Network of Discrete-Time Queues with Constant Service Times," IEEE Transactions on Information Theory, February 1996.

1.   Eytan Modiano and Anthony Ephremides, "Communication Complexity of Secure Distributed Computation in the Presence of Noise," IEEE Transactions on Information Theory, July 1992.

Other Papers

5.  Eytan Modiano, "Satellite Data Networks," AIAA Journal on Aerospace Computing, Information and Communication, September, 2004.

4.  Eytan Modiano and Phil Lin, "Traffic Grooming in WDM networks," IEEE Communications Magazine, July, 2001.

3.  Eytan Modiano and Aradhana Narula, "Mechanisms for Providing Optical Bypass in WDM-based Networks," SPIE Optical Networks, January 2000.

2.  K. Kuznetsov, N. M. Froberg, Eytan Modiano, et. al., "A Next Generation Optical Regional Access Networks," IEEE Communications Magazine, January, 2000.

1.  Eytan Modiano, "WDM-based Packet Networks," (Invited Paper) IEEE Communications Magazine, March 1999.

Conference Papers

246. Xinyu Wu, Dan Wu, Eytan Modiano, “ Overload Balancing in Single-Hop Networks With Bounded Buffers ,” IFIP Networking, 2022.

245.  Xinzhe Fu, Eytan Modiano, “ Optimal Routing for Stream Learning Systems ,”  IEEE Infocom, April 2022.

244.  Vishrant Tripathi, Luca Ballotta, Luca Carlone, E. Modiano, “ Computation and Communication Co-Design for Real-Time Monitoring and Control in Multi-Agent Systems ,”  IEEE Wiopt, 2021.

243. Eray Atay, Igor Kadota, E. Modiano, “ Aging Wireless Bandits: Regret Analysis and Order-Optimal Learning Algorithm ,”  IEEE Wiopt 2021.

242. Xinzhe Fu and E. Modiano,  “ Elastic Job Scheduling with Unknown Utility Functions ,” IFIP Performance, Milan, 2021.

241. Bai Liu and E. Modiano, “ Optimal Control for Networks with Unobservable Malicious Nodes ,”  IFIP Performance, Milan, 2021.

240. Bai Liu, Qiaomin Xie,  Eytan Modiano, “ RL-QN:  A Reinforcement Learning Framework for Optimal Control of Queueing Systems ,”  ACM Sigmetrics Workshop on Reinforcement Learning in Networks and Queues (RLNQ), 2021.

239. Xinzhe Fu and E. Modiano,  “ Learning-NUM: Network Utility Maximization with Unknown Utility Functions and Queueing Delay ,  ACM MobiHoc 2021.  

238. Vishrant Tripathi and Eytan Modiano,  “ An Online Learning Approach to Optimizing Time-Varying Costs of AoI ,”  ACM MobiHoc 2021. 

237.   Igor Kadota, Muhammad Shahir Rahman, and Eytan Modiano, " WiFresh: Age-of-Information from Theory to Implementation ,”  International Conference on Computer Communications and Networks (ICCCN), 2021.

236. Vishrant Tripathi and Eytan Modiano, “ Age Debt: A General Framework For Minimizing Age of Information ,”  IEEE Infocom Workshop on Age-of-Information, 2021.

235. Igor Kadota, Eytan Modiano, “ Age of Information in Random Access Networks with Stochastic Arrivals ,” IEEE Infocom, 2020.

234. Igor Kadota, M. Shahir Rahman, Eytan Modiano, Poster: Age of Information in Wireless Networks: from Theory to Implementation , ACM Mobicom, 2020.

233. Xinyu Wu, Dan Wu, Eytan Modiano, “ An Influence Model Approach to Failure Cascade Prediction in Large Scale Power Systems ,” IEEE American Control Conference, July, 2020.

232. X. Fu and E. Modiano, " Fundamental Limits of Volume-based Network DoS Attacks ," Proc. ACM Sigmetrics, Boston, MA, June 2020.

231. Vishrant Tripathi, Eytan Modiano, “ A Whittle Index Approach to Minimizing Functions of Age of Information ,” Allerton Conference on Communication, Control, and Computing, September 2019.

230. Bai Liu, Xiaomin Xie, Eytan Modiano, “ Reinforcement Learning for Optimal Control of Queueing Systems ,” Allerton Conference on Communication, Control, and Computing, September 2019.

229. Rajat Talak, Sertac Karaman, Eytan Modiano, “ A Theory of Uncertainty Variables for State Estimation and Inference ,” Allerton Conference on Communication, Control, and Computing, September 2019.

228. Rajat Talak, Eytan Modiano, “ Age-Delay Tradeoffs in Single Server Systems ,” IEEE International Symposium on Information Theory, Paris, France, July, 2019.

227. Rajat Talak, Sertac Karaman, Eytan Modiano, “ When a Heavy Tailed Service Minimizes Age of Information ,” IEEE International Symposium on Information Theory, Paris, France, July, 2019.

226. Qingkai Liang, Eytan Modiano, “ Optimal Network Control with Adversarial Uncontrollable Nodes ,” ACM MobiHoc, Catania, Italy, June 2019.

225. Igor Kadota, Eytan Modiano, “ Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals ,” ACM MobiHoc, June 2019.

224. Maotong Xu, Jelena Diakonikolas, Suresh Subramaniam, Eytan Modiano, “ A Hierarchical WDM-based Scalable Data Center Network Architecture ,” IEEE International Conference on Communications (ICC), Shanghai, China, June 2019.

223. Maotong Xu, Min Tian, Eytan Modiano, Suresh Subramaniam, " RHODA Topology Configuration Using Bayesian Optimization

222.   Anurag Rai, Rahul Singh and Eytan Modiano, " A Distributed Algorithm for Throughput Optimal Routing in Overlay Networks ,”  IFIP Networking 2019, Warsaw, Poland, May 2019.

221.   Qingkai Liang and Eytan Modiano, " Optimal Network Control in Partially-Controllable Networks ,”  IEEE Infocom, Paris, April 2019.

220.   Xinzhe Fu and Eytan Modiano, " Network Interdiction Using Adversarial Traffic Flows ,”  IEEE Infocom, Paris, April 2019.

219.   Vishrant Tripathi, Rajat Talak, Eytan Modiano, " Age Optimal Information Gathering and Dissemination on Graphs ,”  IEEE Infocom, Paris, April 2019.

218.   Jianan Zhang, Hyang-Won Lee, Eytan Modiano, " On the Robustness of Distributed Computing Networks ,”  DRCN 2019, Coimbra, Portugal, March, 2019.

217.   Hyang-Won Lee, Jianan Zhang and Eytan Modiano, " Data-driven Localization and Estimation of Disturbance in the Interconnected Power System ,”  IEEE Smartgridcomm, October, 2018.

216.   Jianan Zhang and Eytan Modiano, " Joint Frequency Regulation and Economic Dispatch Using Limited Communication ,”  IEEE Smartgridcomm, October, 2018.

215.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Scheduling Policies for Age Minimization in Wireless Networks with Unknown Channel State ,”  IEEE International Symposium on Information Theory, July 2018.

214.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Online Learning Algorithms for Minimizing Queue Length Regret ,”  IEEE International Symposium on Information Theory, July 2018.

213.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Distributed Scheduling Algorithms for Optimizing Information Freshness in Wireless Networks ,”  IEEE SPAWC, Kalamata, Greece, June, 2018.

212.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Optimizing Information Freshness in Wireless Networks under General Interference Constraints ,”  ACM MobiHoc 2018, Los Angeles, CA, June 2018.

211.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Learning Algorithms for Scheduling in Wireless Networks with Unknown Channel Statistics ,”  ACM MobiHoc, June 2018.

210.   Khashayar Kamran, Jianan Zhang, Edmund Yeh, Eytan Modiano, " Robustness of Interdependent Geometric Networks Under Inhomogeneous Failures ,”  Workshop on Spatial Stochastic Models for Wireless Networks (SpaSWiN), Shanghai, China, May 2018.

209.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Optimizing Age of Information in Wireless Networks with Perfect Channel State Information ,”  Wiopt 2018, Shanghai, China, May 2018.

208.   Abhishek Sinha, Eytan Modiano, " Network Utility Maximization with Heterogeneous Traffic Flows ,”  Wiopt 2018, Shanghai, China, May 2018.

207.   Qingkai Liang, Eytan Modiano, " Minimizing Queue Length Regret Under Adversarial Network Models ,”  ACM Sigmetrics, 2018.

206.   Jianan Zhang, Abhishek Sinha, Jaime Llorca, Anonia Tulino, Eytan Modiano, " Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows ,”  IEEE Infocom, Honolulu, HI, April 2018.

205.   Qingkai Liang, Eytan Modiano, " Network Utility Maximization in Adversarial Environments ,”  IEEE Infocom, Honolulu, HI, April 2018.

204.   Igor Kadota, Abhishek Sinha, Eytan Modiano, " Optimizing Age of Information in Wireless Networks with Throughput Constraints ,”  IEEE Infocom, Honolulu, HI, April 2018.

203.   QIngkai Liang, Verina (Fanyu) Que, Eytan Modiano, " Accelerated Primal-Dual Policy Optimization for Safe Reinforcement Learning ,”  NIPS workshop on “Transparent and interpretable machine learning in safety critical environments,"December 2017.

202.   Rahul Singh, Xueying Guo,Eytan Modiano, " Risk-Sensitive Optimal Control of Queues ,”  IEEE Conference on Decision and Control (CDC), December 2017.

201.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Minimizing Age of Information in Multi-Hop Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, September 2017.

200.   Abhishek Sinha, Eytan Modiano, " Throughput-Optimal Broadcast in Wireless Networks with Point-to-Multipoint Transmissions ,”  ACM MobiHoc, Madras, India, July 2017.

199.   Rajat Talak, Sertac Karaman, Eytan Modiano, " Capacity and delay scaling for broadcast transmission in highly mobile wireless networks ,”  ACM MobiHoc, Madras, India, July 2017.

198.5 . Y.-P. Hsu, E. Modiano, and L. Duan, " Age of Information: Design and Analysis of Optimal Scheduling Algorithms ,”  IEEE International Symposium on Information Theory (ISIT), 2017.

198.   Qingkai Liang and Eytan Modiano, " Coflow Scheduling in Input-Queued Switches: Optimal Delay Scaling and Algorithms ,”  IEEE Infocom, Atlanta, GA, May 2017.

197.   Jianan Zhang and Eytan Modiano, " Robust Routing in Interdependent Networks ,”  IEEE Infocom, Atlanta, GA, May 2017.

196.   Abhishek Sinha, Eytan Modiano, " Optimal Control for Generalized Network Flow Problems ,”  IEEE Infocom, Atlanta, GA, May 2017.

195.   Rajat Talak*, Sertac Karaman, Eytan Modiano, " Speed Limits in Autonomous Vehicular Networks due to Communication Constraints ,”  IEEE Conference on Decision and Control (CDC), Las Vegas, NV, December 2016.

194.   Marzieh Parandehgheibi*, Konstantin Turitsyn, Eytan Modiano, " Distributed Frequency Control in Power Grids Under Limited Communication ,”  IEEE Conference on Decision and Control (CDC), Las Vegas, NV, December 2016.

193.   Igor Kadota, Elif Uysal-Biyikoglu, Rahul Singh, Eytan Modiano, " Minimizing Age of Information in Broadcast Wireless Networks ,”  Allerton Allerton Conference on Communication, Control, and Computing, September 2016.

192.   Jianan Zhang, Edmund Yeh, Eytan Modiano, " Robustness of Interdependent Random Geometric Networks ,”  Allerton Conference on Communication, Control, and Computing, September 2016.

191.   Abhishek Sinha, Leandros Tassiulas, Eytan Modiano, " Throughput-Optimal Broadcast in Wireless Networks with Dynamic Topology ,”  ACM MobiHoc'16, Paderborn, Germany, July, 2016. (winner of best paper award)

190.   Abishek Sinha, Georgios Paschos, Eytan Modiano, " Throughput-Optimal Multi-hop Broadcast Algorithms ,”  ACM MobiHoc'16, Paderborn, Germany, July, 2016.

189.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Throughput Maximization in Uncooperative Spectrum Sharing Networks ,”  IEEE International Symposium on Information Theory, Barcelona, Spain, July 2016.

188.   Thomas Stahlbuhk, Brooke Shrader, Eytan Modiano, " Topology Control for Wireless Networks with Highly-Directional Antennas ,”  IEEE Wiopt, Tempe, Arizona, May, 2016.

187.   Qingkai Liang, H.W. Lee, Eytan Modiano, " Robust Design of Spectrum-Sharing Networks ,”  IEEE Wiopt, Tempe, Arizona, May, 2016.

186.   Hossein Shokri-Ghadikolae, Carlo Fischione and Eytan Modiano, " On the Accuracy of Interference Models in Wireless Communications ,”  IEEE International Conference on Communications (ICC), 2016.

185.   Qingkai Liang and Eytan Modiano, " Survivability in Time-varying Networks ,”  IEEE Infocom, San Francisco, CA, April 2016.

184.   Kyu S. Kim, Chih-Ping Li, Igor Kadota, Eytan Modiano, " Optimal Scheduling of Real-Time Traffic in Wireless Networks with Delayed Feedback ,”  Allerton conference on Communication, Control, and Computing, September 2015.

183.   Marzieh Parandehgheibi, Eytan Modiano, " Modeling the Impact of Communication Loss on the Power Grid Under Emergency Control ,”  IEEE SmartGridComm, Miami, FL, Nov. 2015.

182.   Anurag Rai, Chih-ping Li, Georgios Paschos, Eytan Modiano, " Loop-Free Backpressure Routing Using Link-Reversal Algorithms ,”  Proceedings of the ACM MobiHoc, July 2015.

181.   Longbo Huang, Eytan Modiano, " Optimizing Age of Information in a Multiclass Queueing System ,”  Proceedings of IEEE ISIT 2015, Hong Kong, Jun 2015.

180.   M. Johnston, E. Modiano, " A New Look at Wireless Scheduling with Delayed Information ,”  Proceedings of IEEE ISIT 2015, Hong Kong, June 2015.

179.   M. Johnston, E. Modiano, " Scheduling over Time Varying Channels with Hidden State Information ,”  Proceedings of IEEE ISIT 2015, Hong Kong, June 2015.

178.   M. Johnston and E. Modiano, " Controller Placement for Maximum Throughput Under Delayed CSI ,”  IEEE Wiopt, Mombai, India, May 2015.

177.   A. Sinha, G. Paschos, C. P. Li, and E. Modiano, " Throughput Optimal Broadcast on Directed Acyclic Graphs ,”  IEEE Infocom, Hong Kong, April 2015.

176.   J. Zheng and E. Modiano, " Enhancing Network Robustness via Shielding ,”  IEEE Design of Reliable Communication Networks, Kansas City, March 2015.

175.   H. W. Lee and E. Modiano, " Robust Design of Cognitive Radio Networks ,”  Information and Communication Technology Convergence (ICTC), 2014.

174.   Greg Kuperman and Eytan Modiano, " Disjoint Path Protection in Multi-Hop Wireless Networks with Interference Constraints ,”  IEEE Globecom, Austin, TX, December 2014.

173.   Marzieh Parandehgheibi, Eytan Modiano, David Hay, " Mitigating Cascading Failures in Interdependent Power Grids and Communication Networks ,”  IEEE Smartgridcomm, Venice, Italy, November 2014.

172.   Georgios Paschos and Eytan Modiano, " Throughput optimal routing in overlay networks ,”  Allerton conference on Communication, Control, and Computing, September 2014.

171.   Nathan Jones, George Paschos, Brooke Shrader, Eytan Modiano, " An overlay architecture for Throughput Optimal Multipath Routing ,”  ACM MobiHoc, August 2014.

170.   Matt Johnston, Eytan Modiano, Yuri Polyanskiy, " Opportunistic Scheduling with Limited Channel State Information: A Rate Distortion Approach ,”  IEEE International Symposium on Information Theory, Honolulu, HI, July 2014.

169.   Chih-Ping Li, Georgios Paschos, Eytan Modiano, Leandros Tassiulas, " Dynamic Overload Balancing in Server Farms ,”  Networking 2014, Trondheim, Norway, June, 2014.

168.   Hulya Seferonglu and Eytan Modiano, " TCP-Aware Backpressure Routing and Scheduling ,”  Information Theory and Applications, San Diego, CA, February 2014.

167.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Delay Stability of Back-Pressure Policies in the presence of Heavy-Tailed Traffic ,”  Information Theory and Applications, San Diego, CA, February 2014.

166.   Kyu Soeb Kim, Chih-ping Li, Eytan Modiano, " Scheduling Multicast Traffic with Deadlines in Wireless Networks ,”  IEEE Infocom, Toronto, CA, April 2014.

165.   Georgios Paschos, Chih-ping Li, Eytan Modiano, Kostas Choumas, Thanasis Korakis, " A Demonstration of Multirate Multicast Over an 802.11 Mesh Network ,”  IEEE Infocom, Toronto, CA, April 2014.

164.   Sebastian Neumayer, Eytan Modiano, " Assessing the Effect of Geographically Correlated Failures on Interconnected Power-Communication Networks ,”  IEEE SmartGridComm, 2013.

163.   Marzieh Parandehgheibi, Eytan Modiano, " Robustness of Interdependent Networks: The case of communication networks and the power grid ,”  IEEE Globecom, December 2013.

162.   Matt Johnston, Eytan Modiano, " Optimal Channel Probing in Communication Systems: The Two-Channel Case ,”  IEEE Globecom, December 2013.

161.   Mihalis Markakis, Eytan Modiano, John N. Tsitsiklis, " Delay Analysis of the Max-Weight Policy under Heavy-Tailed Traffic via Fluid Approximations ,”  Allerton Conference, October 2013.

160.   Matthew Johnston, Isaac Keslassy, Eytan Modiano, " Channel Probing in Communication Systems: Myopic Policies Are Not Always Optimal ,”  IEEE International Symposium on Information Theory, July 2013.

159.   Krishna P Jagannathan, Libin Jiang, Palthya Lakshma Naik, Eytan Modiano, " Scheduling Strategies to Mitigate the Impact of Bursty Traffic in Wireless Networks ,”  11th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks Wiopt 2013, Japan, May 2013. (Winner – Best Paper Award).

158.   Hulya Seferoglu and Eytan Modiano, " Diff-Max: Separation of Routing and Scheduling in Backpressure-Based Wireless Networks ,”  IEEE Infocom, Turin, Italy, April 2013.

157.   Chih-Ping Li, Eytan Modiano, " Receiver-Based Flow Control for Networks in Overload ,”  IEEE Infocom, Turin, Italy, April 2013.

156.   Nathan Jones, Brooke Shrader, Eytan Modiano, " Distributed CSMA with Pairwise Coding ,”  IEEE Infocom, Turin, Italy, April 2013.

155.   Greg Kuperman and Eytan Modiano, " Network Protection with Guaranteed Recovery Times using Recovery Domains ,”  IEEE Infocom, Turin, Italy, April 2013.

154.   Greg Kuperman and Eytan Modiano, " Providing Protection in Multi-Hop Wireless Networks ,”  IEEE Infocom, Turin, Italy, April 2013.

153.   Greg Kuperman, Eytan Modiano, Aradhana Narula-Tam, " Network Protection with Multiple Availability Guarantees ,”  IEEE ICC workshop on New Trends in Optical Networks Survivability, June 2012.

152.   Nathaniel Jones, Brooke Shrader, Eytan Modiano, " Optimal Routing and Scheduling for a Simple Network Coding Scheme ,”  IEEE Infocom, Orlando, Fl, March, 2012.

151.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Max-Weight Scheduling in Networks with Heavy-Tailed Traffic ,”  IEEE Infocom, Orlando, Fl, March, 2012.

150.   Guner Celik and Eytan Modiano, " Scheduling in Networks with Time-Varying Channels and Reconfiguration Delay ,”  IEEE Infocom, Orlando, Fl, March, 2012.

149.   Sebastian Neumayer, Alon Efrat, Eytan Modiano, " Geographic Max-Flow and Min-cut Under a Circular Disk Failure Model ,”  IEEE Infocom (MC), Orlando, Fl, March, 2012.

148.   Marzieh Parandehgheibi, Hyang-Won Lee, and Eytan Modiano, " Survivable Paths in Multi-Layer Networks ,”  Conference on Information Science and Systems, March, 2012.

147.   Greg Kuperman, Eytan Modiano, and Aradhana Narula-Tam, " Partial Protection in Networks with Backup Capacity Sharing ,”  Optical Fiber Communications Conference (OFC), Anaheim, CA, March, 2012.

146.   Krishna Jagannathan, Libin Jiang, Eytan Modiano, " On Scheduling Algorithms Robust to Heavy-Tailed Traffic ,”  Information Theory and Applications (ITA), San Diego, CA, February 2012.

145.   M. Johnston, H.W. Lee, E. Modiano, " Robust Network Design for Stochastic Traffic Demands ,”  IEEE Globecom, Next Generation Networking Symposium, Houston, TX, December 2011.

144.   S. Neumayer, E. Modiano, " Network Reliability Under Random Circular Cuts ,”  IEEE Globecom, Optical Networks and Systems Symposium, Houston, TX, December 2011.

143.   H.W. Lee, K. Lee, E. Modiano, " Maximizing Reliability in WDM Networks through Lightpath Routing ,”  IEEE Globecom, Optical Networks and Systems Symposium, Houston, TX, December 2011.

142.   Guner Celik, Sem Borst, Eytan Modiano, Phil Whiting, " Variable Frame Based Max-Weight Algorithms for Networks with Switchover Delay ,”  IEEE International Symposium on Information Theory, St. Petersburgh, Russia, August 2011.

141.   Krishna Jaganathan, Ishai Menache, Eytan Modiano, and Gil Zussman, " Non-cooperative Spectrum Access - The Dedicated vs. Free Spectrum Choice ,”  ACM MOBIHOC'11, May 2011.

140.   Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytan Modiano, " A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

139.   Guner Celik, Long B. Le, Eytan Modiano, " Scheduling in Parallel Queues with Randomly Varying Connectivity and Switchover Delay ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

138.   Gregory Kuperman, Eytan Modiano, Aradhana Narula-Tam, " Analysis and Algorithms for Partial Protection in Mesh Networks ,”  IEEE Infocom (Mini-conference), Shanghai, China, April 2011.

137.   Matthew Johnston, Hyang-Won Lee, Eytan Modiano, " A Robust Optimization Approach to Backup Network Design with Random Failures ,”  IEEE Infocom, Shanghai, China, April 2011.

136.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Queue Length Asymptotics for Generalized Max-Weight Scheduling in the presence of Heavy-Tailed Traffic ,”  IEEE Infocom, Shanghai, China, April 2011.

135.   Guner Celik and Eytan Modiano, " Dynamic Vehicle Routing for Data Gathering in Wireless Networks ,”  In Proc. IEEE CDC'10, Dec. 2010..***

134.   Long B. Le, Eytan Modiano, Changhee Joo, and Ness B. Shroff, " Longest-queue-first scheduling under the SINR interference model ,”  ACM MobiHoc, September 2010..***

133.   Krishna Jagannathan, Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Throughput Optimal Scheduling in the Presence of Heavy-Tailed Traffic ,”  Allerton Conference on Communication, Control, and Computing, September 2010..**

132.   Delia Ciullo, Guner Celik, Eytan Modiano, " Minimizing Transmission Energy in Sensor Networks via Trajectory Control ,”  IEEE Wiopt 2010, Avignon, France, June 2010, (10 pages; CD proceedings – page numbers not available).

131.   Sebastian Neumayer and Eytan Modiano, " Network Reliability with Geographically Correlated Failures ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).**

130.   Long Le, Eytan Modiano, Ness Shroff, " Optimal Control of Wireless Networks with Finite Buffers ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).

129.   Kayi Lee, Hyang-Won Lee, Eytan Modiano, " Reliability in Layered Network with Random Link Failures ,”  IEEE Infocom 2010, San Diego, CA, March 2010, (9 pages; CD proceedings – page numbers not available).**

128.   Krishna Jagannathan, Eytan Modiano, " The Impact of Queue length Information on Buffer Overflow in Parallel Queues ,”  Allerton Conference on Communication, Control, and Computing, September 2009, pgs. 1103 -1110 **

127.   Mihalis Markakis, Eytan Modiano, John Tsitsiklis, " Scheduling Policies for Single-Hop with Heavy-Tailed Traffic ,”  Allerton Conference on Communication, Control, and Computing, September 2009, pgs. 112 – 120..**

126.   Dan Kan, Aradhana Narula-Tam, Eytan Modiano, " Lightpath Routing and Capacity Assignment for Survivable IP-over-WDM Networks ,”  DRCN 2009, Alexandria, VA October 2009, pgs. 37 -44..**

125.   Mehdi Ansari, Alireza Bayesteh, Eytan Modiano, " Opportunistic Scheduling in Large Scale Wireless Networks ,”  IEEE International Symposium on Information Theory, Seoul, Korea, June 2009, pgs. 1624 – 1628.

124.   Hyang-Won Lee, Eytan Modiano and Long Bao Le, " Distributed Throughput Maximization in Wireless Networks via Random Power Allocation ,”  IEEE Wiopt, Seoul, Korea, June 2009. (9 pages; CD proceedings – page numbers not available).

123.   Wajahat Khan, Eytan Modiano, Long Le, " Autonomous Routing Algorithms for Networks with Wide-Spread Failures ,”  IEEE MILCOM, Boston, MA, October 2009. (6 pages; CD proceedings – page numbers not available).**

122.   Guner Celik and Eytan Modiano, " Random Access Wireless Networks with Controlled Mobility ,”  IEEE Med-Hoc-Nets, Haifa, Israel, June 2009, pgs. 8 – 14.**

121.   Hyang-Won Lee and Eytan Modiano, " Diverse Routing in Networks with Probabilistic Failures ,”  IEEE Infocom, April 2009, pgs. 1035 – 1043.

120.   Kayi Lee and Eytan Modiano, " Cross-layer Survivability in WDM-based Networks ,”  IEEE Infocom, April 2009, pgs. 1017 -1025..**

119.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, " On the Trade-off between Control Rate and Congestion in Single Server Systems ,”  IEEE Infocom, April 2009, pgs. 271 – 279.**

118.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, " Assessing the Vulnerability of the Fiber Infrastructure to Disasters ,”  IEEE Infocom, April 2009, pgs. 1566 – 1574.**

117.   Long Le, Krishna Jagannathan and Eytan Modiano, " Delay analysis of max-weight scheduling in wireless ad hoc networks ,”  Conference on Information Science and Systems, Baltimore, MD, March, 2009, pgs. 389 – 394.**

116.   Krishna Jagannathan, Eytan Modiano, Lizhong Zheng, " Effective Resource Allocation in a Queue: How Much Control is Necessary? ,”  Allerton Conference on Communication, Control, and Computing, September 2008, pgs. 508 – 515.**

115.   Sebastian Neumayer, Gil Zussman, Rueven Cohen, Eytan Modiano, " Assessing the Impact of Geographically Correlated Network Failures ,”  IEEE MILCOM, November 2008. (6 pages; CD proceedings – page numbers not available).**

114.   Emily Craparo, Jonathan P. How, and Eytan Modiano, " Simultaneous Placement and Assignment for Exploration in Mobile Backbone Networks ,”  IEEE conference on Decision and Control (CDC), November 2008, pgs. 1696 – 1701 **

113.   Anand Srinivas and Eytan Modiano, " Joint node placement and assignment for throughput optimization in mobile backbone networks ,”  IEEE INFOCOM'08, pp. 1130 – 1138, Phoenix, AZ, Apr. 2008, pgs. 1130 – 1138.**

112.   Guner Celik, Gil Zussman, Wajahat Khan and Eytan Modiano, " MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes ,”  IEEE INFOCOM'08, Phoenix, AZ, Apr. 2008, pgs. 1436 – 1444.**

111.   Gil Zussman, Andrew Brzezinski, and Eytan Modiano, " Multihop Local Pooling for Distributed Throughput Maximization in Wireless Networks ,”  IEEE INFOCOM'08, Phoenix, AZ, Apr. 2008, pgs 1139 – 1147.**

110.   Emily Craparo, Jonathan How and Eytan Modiano, " Optimization of Mobile Backbone Networks: Improved Algorithms and Approximation ,”  IEEE American Control Conference, Seattle, WA, June 2008, pgs. 2016 – 2021.**

109.   Atilla Eryilmaz, Asuman Ozdaglar, Devavrat Shah, Eytan Modiano, " Imperfect Randomized Algorithms for the Optimal Control of Wireless Networks ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2008, pgs. 932 – 937.

108.   Anand Srinivas and Eytan Modiano, " Optimal Path Planning for Mobile Backbone Networks ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2008, pgs. 913 – 918.

107.   Kayi Lee and Eytan Modiano, " Cross-layer Survivability in WDM Networks with Multiple Failures ,”  IEEE Optical Fiber Communications Conference, San Diego, CA February, 2008 (3 pages; CD proceedings – page numbers not available).

106.   Andrew Brzezinski, Gil Zussman and Eytan Modiano, " Local Pooling Conditions for Joint Routing and Scheduling ,”  Workshop on Information Theory and Applications, pp. 499 – 506, La Jolla, CA, January, 2008, pgs. 499 – 506.

105.   Murtaza Zafer and Eytan Modiano, " Minimum Energy Transmission over a Wireless Fading Channel with Packet Deadlines ,”  Proceedings of IEEE Conference on Decision and Control (CDC), New Orleans, LA, December, 2007, pgs. 1148 – 1155.**

104.   Atilla Eryilmaz, Asuman Ozdaglar, Eytan Modiano, " Polynomial Complexity Algorithms for Full Utilization of Multi-hop Wireless Networks ,”  IEEE Infocom, Anchorage, AK, April, 2007, pgs. 499 – 507.

103.   Murtaza Zafer and Eytan Modiano, " Delay Constrained Energy Efficient Data Transmission over a Wireless Fading Channel ,”  Workshop on Information Theory and Application, University of California, San Diego, CA, February, 2007, pgs. 289 – 298.**

102.   Atilla Eryilmaz, Eytan Modiano, Asuman Ozdaglar, " Randomized Algorithms for Throughput-Optimality and Fairness in Wireless Networks ,”  Proceedings of IEEE Conference on Decision and Control (CDC), San Diego, CA, December, 2006, pgs. 1936 – 1941.

101.   Anand Srinivas, Gil Zussman, and Eytan Modiano, " Distributed Mobile Disk Cover - A Building Block for Mobile Backbone Networks ,”  Proc. Allerton Conf. on Communication, Control, and Computing, Allerton, IL, September 2006, (9 pages; CD proceedings – page numbers not available).**

100.   Krishna Jagannathan, Sem Borst, Phil Whiting, Eytan Modiano, " Scheduling of Multi-Antenna Broadcast Systems with Heterogeneous Users ,”  Allerton Conference on Communication, Control and Computing, Allerton, IL, September 2006, (10 pages; CD proceedings – page numbers not available).**

99.   Andrew Brzezinski, Gil Zussman, and Eytan Modiano, " Enabling Distributed Throughput Maximization in Wireless Mesh Networks - A Partitioning Approach ,”  Proceedings of ACM MOBICOM'06, Los Angeles, CA, Sep. 2006, (12 pages; CD proceedings – page numbers not available).**

98.   Eytan Modiano, Devavrat Shah, and Gil Zussman, " Maximizing Throughput in Wireless Networks via Gossiping ,”  Proc. ACM SIGMETRICS / IFIP Performance'06, Saint-Malo, France, June 2006, (12 pages; CD proceedings – page numbers not available). (best paper award)

97.   Anand Srinivas, Gil Zussman, and Eytan Modiano, " Mobile Backbone Networks – Construction and Maintenance ,”  Proc. ACM MOBIHOC'06, Florence, Italy, May 2006, (12 pages; CD proceedings – page numbers not available).**

96.   Andrew Brzezinski and Eytan Modiano, " Achieving 100% throughput in reconfigurable optical networks ,”  IEEE INFOCOM 2006 High-Speed Networking Workshop, Barcelona, Spain, April 2006, (5 pages; CD proceedings – page numbers not available).**

95.   Krishna P. Jagannathan, Sem Borst, Phil Whiting, Eytan Modiano, " Efficient scheduling of multi-user multi-antenna systems ,”  Proceedings of WiOpt 2006, Boston, MA, April 2006, (8 pages; CD proceedings – page numbers not available).**

94.   Andrew Brzezinski and Eytan Modiano, " Greedy weighted matching for scheduling the input-queued switch ,”  Conference on Information Sciences and Systems (CISS), Princeton, NJ, March 2006, pgs. 1738 – 1743.**

93.   Murtaza Zafer and Eytan Modiano, " Optimal Adaptive Data Transmission over a Fading Channel with Deadline and Power Constraints ,”  Conference on Information Sciences and Systems (CISS), Princeton, New Jersey, March 2006, pgs. 931 – 937.**

92.   Li-Wei Chen and E. Modiano, " A Geometric Approach to Capacity Provisioning in WDM Networks with Dynamic Traffic ,”  Conference on Information Science and Systems (CISS), Princeton, NJ, March, 2006, pgs. 1676 – 1683, **

91.   Jun Sun and Eytan Modiano, " Channel Allocation Using Pricing in Satellite Networks ,”  Conference on Information Science and Systems (CISS), Princeton, NJ, March, 2006, pgs. 182 – 187.**

90.   Jun Sun, Jay Gao, Shervin Shambayatti and Eytan Modiano, " Ka-Band Link Optimization with Rate Adaptation ,”  IEEE Aerospace Conference, Big Sky, MN, March, 2006. (7 pages; CD proceedings – page numbers not available).

89.   Alessandro Tarello, Eytan Modiano and Jay Gao, " Energy efficient transmission scheduling over Mars proximity links ,”  IEEE Aerospace Conference, Big Sky, MN, March, 2006. (10 pages; CD proceedings – page numbers not available).

88.   A. Brzezinski and E. Modiano, " RWA decompositions for optimal throughput in reconfigurable optical networks ,”  INFORMS Telecommunications Conference, Dallas, TX, March 2006 (3 pages; CD proceedings – page numbers not available).**

87.   Li Wei Chen and E. Modiano, " Geometric Capacity Provisioning for Wavelength Switched WDM Networks ,”  Workshop on Information Theory and Application, University of California, San Diego, CA, February, 2006. (8 pages; CD proceedings – page numbers not available).**

86.   Murtaza Zafer and Eytan Modiano, " Joint Scheduling of Rate-guaranteed and Best-effort Services over a Wireless Channel ,”  IEEE Conference on Decision and Control, Seville, Spain, December, 2005, pgs. 6022–6027.**

85.   Jun Sun and Eytan Modiano, " Opportunistic Power Allocation for Fading Channels with Non-cooperative Users and Random Access ,”  IEEE BroadNets – Wireless Networking Symposium, Boston, MA, October, 2005, pgs. 397–405.**

84.   Li Wei Chen and Eytan Modiano, " Uniform vs. Non-uniform Band Switching in WDM Networks ,”  IEEE BroadNets-Optical Networking Symposium, Boston, MA, October, 2005, pgs. 219– 228.**

83.   Sonia Jain and Eytan Modiano, " Buffer Management Schemes for Enhanced TCP Performance over Satellite Links ,”  IEEE MILCOM, Atlantic City, NJ, October 2005 (8 pages; CD proceedings – page numbers not available).**

82.   Murtaza Zafer and Eytan Modiano, " Continuous-time Optimal Rate Control for Delay Constrained Data Transmission ,”  Allerton Conference on Communications, Control and Computing, Allerton, IL, September, 2005 (10 pages; CD proceedings – page numbers not available).**

81.   Alessandro Tarello, Eytan Modiano, Jun Sun, Murtaza Zafer, " Minimum Energy Transmission Scheduling subject to Deadline Constraints ,”  IEEE Wiopt, Trentino, Italy, April, 2005, pgs. 67–76. (Winner of best student paper award).**

80.   Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, " Reliability and Route Diversity in Wireless Networks ,”  Conference on Information Science and System, Baltimore, MD, March, 2005, (8 pages; CD proceedings – page numbers not available).**

79.   Andrew Brzezinski, Iraj Saniee, Indra Widjaja, Eytan Modiano, " Flow Control and Congestion Management for Distributed Scheduling of Burst Transmissions in Time-Domain Wavelength Interleaved Networks ,”  IEEE/OSA Optical Fiber Conference (OFC), Anaheim, CA, March, 2005, pgs. WC4-1–WC4-3.

78.   Andrew Brzezinski and Eytan Modiano, " Dynamic Reconfiguration and Routing Algorithms for IP-over-WDM Networks with Stochastic Traffic ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 6–11.**

77.   Murtaza Zafer and Eytan Modiano, " A Calculus Approach to Minimum Energy Transmission Policies with Quality of Service Guarantees ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 548–559.**

76.   Michael Neely and Eytan Modiano, " Fairness and optimal stochastic control for heterogeneous networks ,”  IEEE Infocom 2005, Miami, FL, March, 2005, pgs. 1723 – 1734.**

75.   Aradhana Narula-Tam, Thomas G. Macdonald, Eytan Modiano, and Leslie Servi, " A Dynamic Resource Allocation Strategy for Satellite Communications ,”  IEEE MILCOM, Monterey, CA, October, 2004, pgs. 1415 – 1421.

74.   Li-Wei Chen, Poompat Saengudomlert and Eytan Modiano, " Optimal Waveband Switching in WDM Networks ,”  IEEE International Conference on Communication (ICC), Paris, France, June, 2004, pgs. 1604 – 1608.**

73.   Michael Neely and Eytan Modiano, " Logarithmic Delay for NxN Packet Switches ,”  IEEE Workshop on High performance Switching and Routing (HPSR 2004), Phoenix, AZ, April, 2004, pgs. 3–9.**

72.   Li-Wei Chen and Eytan Modiano, " Dynamic Routing and Wavelength Assignment with Optical Bypass using Ring Embeddings ,”  IEEE Workshop on High performance Switching and Routing (HPSR 2004), Phoenix, Az, April, 2004, pgs. 119–125.**

71.   Randall Berry and Eytan Modiano, " On the Benefits of Tunability in Reducing Electronic Port Counts in WDM/TDM Networks ,”  IEEE Infocom, Hong Kong, March 2004, pgs. 1340–1351.

70.   Andrew Brzezinski and Eytan Modiano, " A new look at dynamic traffic scheduling in WDM networks with transceiver tuning latency ,”  Informs Telecommunications Conference, Boca Raton, FL, March 2004, pgs. 25–26.**

69.   Chunmei Liu and Eytan Modiano, " Packet Scheduling with Window Service Constraints ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 178–184.**

68.   Jun Sun, Eytan Modiano, and Lizhong Zheng, " A Novel Auction Algorithm for Fair Allocation of a Wireless Fading Channel ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 1377–1383.**

67.   Murtaza Zafer and Eytan Modiano, " Impact of Interference and Channel Assignment on Blocking Probability in Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2004, pgs. 430–436.**

66.   Chunmei Liu and Eytan Modiano, " An Analysis of TCP over Random Access Satellite Links ,”  IEEE Wireless Communications and Networking Conference (WCNC), Atlanta, GA, February, 2004, pgs. 2033–2040..**

65.   Randall Berry and Eytan Modiano, " Using tunable optical transceivers for reducing the number of ports in WDM/TDM Networks ,”  IEEE/OSA Optical Fiber Conference (OFC), Los Angeles, CA, February, 2004, pgs. 23–27.

64.   Aradhana Narula-Tam, Eytan Modiano and Andrew Brzezinski, " Physical Topology Design for Survivable Routiing of Logical Rings in WDM-based Networks ,”  IEEE Globecom, San francisco, CA, December, 2003, pgs. 2552–2557.

63.   Jun Sun, Lizhong Zheng and Eytan Modiano, " Wireless Channel Allocation Using an Auction Algorithm ,”  Allerton Conference on Communications, Control and Computing, October, 2003, pgs. 1114–1123..**

62.   Amir Khandani, Jinane Abounadi, Eytan Modiano, Lizhong Zhang, " Cooperative Routing in Wireless Networks ,”  Allerton Conference on Communications, Control and Computing, October, 2003, pgs. 1270–1279.**

61.   Poompat Saengudomlert, Eytan Modiano and Robert Gallager, " Dynamic Wavelength Assignment for WDM all optical Tree Networks ,”  Allerton Conference on Communications, Control and Computing, October, 2003, 915–924.**

60.   Aradhana Narula-Tam and Eytan Modiano, " Designing Physical Topologies that Enable Survivable Routing of Logical Rings ,”  IEEE Workshop on Design of Reliable Communication Networks (DRCN), October, 2003, pgs. 379–386.

59.   Anand Srinivas and Eytan Modiano, " Minimum Energy Disjoint Path Routing in Wireless Ad Hoc Networks ,”  ACM Mobicom, San Diego, Ca, September, 2003, pgs. 122–133.**

58.   Michael Neely and Eytan Modiano, " Improving Delay in Ad-Hoc Mobile Networks Via Redundant Packet Transfers ,”  Conference on Information Science and System, Baltimore, MD, March, 2003 (6 pages; CD proceedings – page numbers not available).**

57.   Michael Neely, Eytan Modiano and Charles Rohrs, " Dynamic Power Allocation and Routing for Time Varying Wireless Networks ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 745–755.**

56.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, " Optimal Energy Allocation for Delay-Constrained Data Transmission over a Time-Varying Channel ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1095–1105.**

55.   Poompat Saengudomlert, Eytan Modiano and Rober Gallager, " On-line Routing and Wavelength Assignment for Dynamic Traffic in WDM Ring and Torus Networks ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1805–1815.**

54.   Li-Wei Chen and Eytan Modiano, " Efficient Routing and Wavelength Assignment for Reconfigurable WDM Networks with Wavelength Converters ,”  IEEE Infocom 2003, San Francisco, CA, April, 2003, pgs. 1785–1794. Selected as one of the best papers of Infocom 2003 for fast track publication in IEEE/ACM Transactions on Networking.**

53.   Mike Neely, Jun Sun and Eytan Modiano, " Delay and Complexity Tradeoffs for Dynamic Routing and Power Allocation in a Wireless Network ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 157 –159.**

52.   Anand Ganti, Eytan Modiano and John Tsitsiklis, " Transmission Scheduling for Multi-Channel Satellite and Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 1318–1327.**

51.   Poompat Saengudomlert, Eytan Modiano, and Robert G. Gallager, " Optimal Wavelength Assignment for Uniform All-to-All Traffic in WDM Tree Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, October, 2002, pgs. 528–537.**

50.   Hungjen Wang, Eytan Modiano and Muriel Medard, " Partial Path Protection for WDM Networks: End-to-End Recovery Using Local Failure Information ,”  IEEE International Symposium on Computer Communications (ISCC), Taormina, Italy, July 2002, pgs. 719–725.**

49.   Jun Sun and Eytan Modiano, " Capacity Provisioning and Failure Recovery in Mesh-Torus Networks with Application to Satellite Constellations ,”  IEEE International Symposium on Computer Communications (ISCC), Taormina, Italy, July 2002, pgs. 77–84.**

48.   Alvin Fu, Eytan Modiano, and John Tsitsiklis, " Optimal Energy Allocation and Admission Control for Communications Satellites ,”  IEEE INFOCOM 2002, New York, June, 2002, pgs. 648–656.**

47.   Michael Neely, Eytan Modiano and Charles Rohrs, " Power and Server Allocation in a Multi-Beam Satellite with Time Varying Channels ,”  IEEE INFOCOM 2002, New York, June, 2002, pgs. 1451–1460..**

46.   Mike Neely, Eytan Modiano and Charles Rohrs, " Tradeoffs in Delay Guarantees and Computation Complexity for N x N Packet Switches ,”  Conference on Information Science and Systems, Princeton, NJ, March, 2002, pgs. 136–148.**

45.   Alvin Fu, Eytan Modiano and John Tsitsiklis, " Transmission Scheduling Over a Fading Channel with Energy and Deadline Constraints ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 1018–1023.**

44.   Chunmei Liu and Eytan Modiano, " On the Interaction of Layered Protocols: The Case of Window Flow Control and ARQ ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 118–124.**

43.   Mike Neely, Eytan Modiano and Charles Rohrs, " Packet Routing over Parallel Time-varying Queues with Application to Satellite and Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 360–366.**

42.   Ahluwalia Ashwinder, Eytan Modiano and Li Shu, " On the Complexity and Distributed Construction of Energy Efficient Broadcast Trees in Static Ad Hoc Wireless Networks ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 807–813.**

41.   Jun Sun and Eytan Modiano, " Capacity Provisioning and Failure Recovery for Satellite Constellations ,”  Conference on Information Science and System, Princeton, NJ, March, 2002, pgs. 1039–1045.**

40.   Eytan Modiano, Hungjen Wang, and Muriel Medard, " Partial Path Protection for WDM networks ,”  Informs Telecommunications Conference, Boca Raton, FL, March 2002, pgs. 78–79.**

39.   Poompat Saengudomlert, Eytan H. Modiano, and Robert G. Gallager, " An On-Line Routing and Wavelength Assignment Algorithm for Dynamic Traffic in a WDM Bidirectional Ring ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1331–1334.**

38.   Randy Berry and Eytan Modiano, " Switching and Traffic Grooming in WDM Networks ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1340–1343.

37.   Eytan Modiano, Hungjen Wang, and Muriel Medard, " Using Local Information for WDM Network Protection ,”  Joint Conference on Information Sciences (JCIS), Durham, North Carolina, March, 2002, pgs. 1398–1401.**

36.   Aradhana Narula-Tam and Eytan Modiano, " Network architectures for supporting survivable WDM rings ,”  IEEE/OSA Optical Fiber Conference (OFC) 2002, Anaheim, CA, March, 2002, pgs. 105–107.

35.   Michael Neely, Eytan Modiano, Charles Rohrs, " Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, September, 2001, pgs. 1110-1111.**

34.   Eytan Modiano and Randy Berry, " The Role of Switching in Reducing Network Port Counts ,”  Allerton Conference on Communication, Control, and Computing, Allerton, Illinois, September, 2001, pgs. 376-385.

33.   Eytan Modiano, " Resource allocation and congestion control in next generation satellite networks ,”  IEEE Gigabit Networking Workshop (GBN 2001), Anchorage, AK, April 2001, (2 page summary-online proceedings).

32.   Eytan Modiano and Aradhana Narula-Tam, " Survivable Routing of Logical Topologies in WDM Networks ,”  IEEE Infocom 2001, Anchorage, AK, April 2001, pgs. 348–357.

31.   Michael Neely and Eytan Modiano, " Convexity and Optimal Load Distribution in Work Conserving */*/1 Queues ,”  IEEE Infocom 2001, Anchorage, AK, April 2001, pgs. 1055–1064.

30.   Eytan Modiano and Randy Berry, " Using Grooming Cross- Connects to Reduce ADM Costs in Sonet/WDM Ring Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) 2001, Anaheim, CA March 2001, pgs. WL1- WL3.

29.   Eytan Modiano and Aradhana Narula-Tam, " Designing Survivable Networks Using Effective Rounting and Wavelenght Assignment (RWA) ,”  IEEE/OSA Optical Fiber Conference (OFC) 2001, Anaheim, CA March 2001, pgs. TUG5-1 – TUG5– 3.

28.   Roop Ganguly and Eytan Modiano, " Distributed Algorithms and Architectures for Optical Flow Switching in WDM networks ,”  IEEE International Symposium on Computer Communications (ISCC 2000), Antibes, France, July 2000, pgs. 134–139.

27.   Aradhana Narula-Tam, Philip J. Lin and Eytan Modiano, " Wavelength Requirements for Virtual topology Reconfiguration in WDM Ring Networks ,”  IEEE International Conference on Communications (ICC 2000), New Orleans, LA, June 2000, pgs. 1650–1654.

26.   Eytan Modiano, "Optical Flow Switching for the Next Generation Internet,”  IEEE Gigabit Networking Workshop (GBN 2000), Tel-aviv, March 2000 (2 page summary-online proceedings).

25.   Aradhana Narula and Eytan Modiano, " Dynamic Reconfiguration in WDM Packet Networks with Wavelength Limitations ,”  IEEE/OSA Optical Fiber Conference (OFC) 2000, Baltimore, MD, March, 2000, pgs. 1210–1212.

24.   Brett Schein and Eytan Modiano, " Quantifying the benefits of configurability in circuit-switched WDM ring networks ,”  IEEE Infocom 2000, Tel Aviv, Israel, April, 2000, pgs.1752–1760..***

23.   Aradhana Narula-Tam and Eytan Modiano, " Load Balancing Algorithms for WDM-based IP networks ,”  IEEE Infocom 2000, Tel Aviv, Israel, April, 2000, pgs. 1010–1019.

22.   Nan Froberg, M. Kuznetsov, E. Modiano, et. al., " The NGI ONRAMP test bed: Regional Access WDM technology for the Next Generation Internet ,”  IEEE LEOS ’99, October, 1999, pgs. 230–231.

21.   Randy Berry and Eytan Modiano, " Minimizing Electronic Multiplexing Costs for Dynamic Traffic in Unidirectional SONET Ring Networks ,”  IEEE International Conference on Communications (ICC ’99), Vancouver, CA, June 1999, pgs. 1724–1730..***

20.   Brett Schein and Eytan Modiano, "Increasing Traffic Capacity in WDM Ring Networks via Topology Reconfiguration,”  Conference on Information Science and Systems, Baltimore, MD, March 1999, pgs. 201 – 206.

19.   Eytan Modiano and Richard Barry, " Design and Analysis of an Asynchronous WDM Local Area Network Using a Master/Slave Scheduler ,”  IEEE Infocom ’99, New York, NY, March 1999, pgs. 900–907.

18.   Randy Berry and Eytan Modiano, " Grooming Dynamic Traffic in Unidirectional SONET Ring Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) ’99, San Diego, CA, February 1999, pgs. 71–73.

17.   Angela Chiu and Eytan Modiano, " Reducing Electronic Multiplexing Costs in Unidirectional SONET/WDM Ring Networks Via Efficient Traffic Grooming ,”  IEEE Globecom '98, Sydney, Australia, November 1998, pgs. 322–327.

16.   Eytan Modiano, " Throughput Analysis of Unscheduled Multicast Transmissions in WDM Broadcast-and-Select Networks ,”  IEEE International Symposium on Information Theory, Boston, MA, September 1998, pg. 167.

15.   Eytan Modiano and Angela Chiu, "Traffic Grooming Algorithms for Minimizing Electronic Multiplexing Costs in Unidirectional SONET/WDM Ring Networks,”  Conference on Information Science and Systems, Princeton, NJ, March 1998, 653–658.

14.   Eytan Modiano and Eric Swanson, " An Architecture for Broadband Internet Services over a WDM-based Optical Access Network ,”  IEEE Gigabit Networking Workshop (GBN '98), San Francisco, CA, March 1998 (2 page summary-online proceedings).

13.   Eytan Modiano, " Unscheduled Multicasts in WDM Broadcast-and-Select Networks ,”  IEEE Infocom '98, San Francisco, CA, March 1998, pgs. 86–93.

12.   Eytan Modiano, Richard Barry and Eric Swanson, " A Novel Architecture and Medium Access Control (MAC) protocol for WDM Networks ,”  IEEE/OSA Optical Fiber Conference (OFC) '98, San Jose, CA, February 1998, pgs. 90–91.

11.   Eytan Modiano, " Scheduling Algorithms for Message Transmission Over a Satellite Broadcast System ,”  IEEE MILCOM 97, Monterey, CA, November 1997, pgs. 628–634.

10.   Eytan Modiano, " Scheduling Packet Transmissions in A Multi-hop Packet Switched Network Based on Message Length ,”  IEEE International Conference on Computer Communications and Networks (IC3N) Las Vegas, Nevada, September 1997, pgs. 350–357.

9.   Eytan Modiano, "A Simple Algorithm for Optimizing the Packet Size Used in ARQ Protocols Based on Retransmission History,”  Conference on Information Science and Systems, Baltimore, MD, March 1997, pgs. 672–677.

8.   Eytan Modiano, " A Multi-Channel Random Access Protocol for the CDMA Channel ,”  IEEE PIMRC '95, Toronto, Canada, September 1995, pgs. 799–803.

7.   Eytan Modiano Jeffrey Wieselthier and Anthony Ephremides, " A Simple Derivation of Queueing Delay in a Tree Network of Discrete-Time Queues with Deterministic Service Times ,”  IEEE International Symposium on Information Theory, Trondheim, Norway, June 1994, pg. 372.

6.   Eytan Modiano, Jeffrey Wieselthier and Anthony Ephremides, "An Approach for the Analysis of Packet Delay in an Integrated Mobile Radio Network,”  Conference on Information Sciences and Systems, Baltimore, MD, March 1993, pgs. 138-139.

5.   Eytan Modiano and Anthony Ephremides, " A Method for Delay Analysis of Interacting Queues in Multiple Access Systems ,”  IEEE INFOCOM 1993, San Francisco, CA, March 1993, pgs. 447 – 454.

4.   Eytan Modiano and Anthony Ephremides, " A Model for the Approximation of Interacting Queues that Arise in Multiple Access Schemes ,”  IEEE International Symposium on Information Theory, San Antonio, TX, January 1993, pg. 324.

3.   Eytan Modiano and Anthony Ephremides, " Efficient Routing Schemes for Multiple Broadcasts in a Mesh ,”  Conference on Information Sciences and Systems, Princeton, NJ, March 1992, pgs. 929 – 934.

2.   Eytan Modiano and Anthony Ephremides, " On the Secrecy Complexity of Computing a Binary Function of Non-uniformly Distributed Random Variables ,”  IEEE International Symposium on Information Theory, Budapest, Hungary, June 1991, pg. 213.

1.   Eytan Modiano and Anthony Ephremides, "Communication Complexity of Secure Distributed Computation in the Presence of Noise,”  IEEE International Symposium on Information Theory, San Diego, CA, January 1990, pg. 142.

Book Chapters

  • Hyang-Won Lee, Kayi Lee, Eytan Modiano, " Cross-Layer Survivability " in Cross-Layer Design in Optical Networks, Springer, 2013.
  • Li-Wei Chen and Eytan Modiano, " Geometric Capacity Provisioning for Wavelength-Switched WDM Networks ," Chapter in Computer Communications and Networks Series: Algorithms for Next Generation Networks, Springer, 2010.
  • Amir Khandani, Eytan Modiano, Lizhong Zhang, Jinane Aboundi, " Cooperative Routing in Wireless Networks ," Chapter in Advances in Pervasive Computing and Networking, Kluwer Academic Publishers, 2005.
  • Jian-Qiang Hu and Eytan Modiano, " Traffic Grooming in WDM Networks ," Chapter in Emerging Optical Network Technologies, Kluwer Academic Publishers, to appear, 2004.
  • Eytan Modiano, " WDM Optical Networks ," Wiley Encyclopedia of Telecommunications (John Proakis, Editor), 2003.
  • Eytan Modiano, " Optical Access Networks for the Next Generation Internet ," in Optical WDM Networks: Principles and Practice, Kluwer Academic Prublishers, 2002.
  • Eytan Modiano, Richard Barry and Eric Swanson, " A Novel Architecture and Medium Access Control protocol for WDM Networks ," Trends in Optics and Photonics Series (TOPS) volume on Optical Networks and Their Applications, 1998.
  • Eytan Modiano and Kai-Yeung Siu, "Network Flow and Congestion Control," Wiley Encyclopedia of Electrical and Electronics Engineering, 1999.

Technical Reports

  • Amir Khandani, Eytan Modiano, Jinane Abounadi, Lizhong Zheng, "Reliability and Route Diversity in Wireless Networks, " MIT LIDS Technical Report number 2634, November, 2004.
  • Anand Srinivas and Eytan Modiano, "Minimum Energy Disjoint Path Routing in Wireless Ad Hoc Networks, " MIT LIDS Technical Report, P-2559, March, 2003.
  • Eytan Modiano and Aradhana Narula-Tam, "Survivable lightpath routing: a new approach to the design of WDM-based networks, " LIDS report 2552, October, 2002.
  • Michael Neely, Eytan Modiano and Charles Rohrs, "Packet Routing over Parallel Time-Varying Queues with Application to Satellite and Wireless Networks," LIDS report 2520, September, 2001.
  • Jun Sun and Eytan Modiano, "Capacity Provisioning and Failure Recovery in Mesh-Torus Networks with Application to Satellite Constellations," LIDS report 2518, September, 2001.
  • Hungjen Wang, Eytan Modiano and Muriel Medard, "Partial Path Protection for WDM Networks: End-to-End Recovery Using Local Failure Information, " LIDS report 2517, Sept. 2001.
  • Alvin Fu, Eytan Modiano, and John Tsitsiklis, "Optimal Energy Allocation and Admission Control for Communications Satellites, " LIDS report 2516, September, 2001.
  • Michael Neely, Eytan Modiano and Charles Rohrs, "Power and Server Allocation in a Multi-Beam Satellite with Time Varying Channels, " LIDS report 2515, September, 2001.
  • Eytan Modiano, "Scheduling Algorithms for Message Transmission Over the GBS Satellite Broadcast System, " Lincoln Laboratory Technical Report Number TR-1035, June 1997.
  • Eytan Modiano, "Scheduling Packet Transmissions in A Multi-hop Packet Switched Network Based on Message Length, " Lincoln Laboratory Technical Report number TR-1036, June, 1997.

Present and Future of Network Security Monitoring

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

network security Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

A Survey on Ransomware Malware and Ransomware Detection Techniques

Abstract: is a kind of malignant programming (malware) that takes steps to distribute or hinders admittance to information or a PC framework, for the most part by scrambling it, until the casualty pays a payoff expense to the assailant. As a rule, the payoff request accompanies a cutoff time. Assuming that the casualty doesn't pay on schedule, the information is gone perpetually or the payoff increments. Presently days and assailants executed new strategies for effective working of assault. In this paper, we center around ransomware network assaults and study of discovery procedures for deliver product assault. There are different recognition methods or approaches are accessible for identification of payment product assault. Keywords: Network Security, Malware, Ransomware, Ransomware Detection Techniques

Analysis and Evaluation of Wireless Network Security with the Penetration Testing Execution Standard (PTES)

The use of computer networks in an agency aims to facilitate communication and data transfer between devices. The network that can be applied can be using wireless media or LAN cable. At SMP XYZ, most of the computers still use wireless networks. Based on the findings in the field, it was found that there was no user management problem. Therefore, an analysis and audit of the network security system is needed to ensure that the network security system at SMP XYZ is safe and running well. In conducting this analysis, a tool is needed which will be used as a benchmark to determine the security of the wireless network. The tools used are Penetration Testing Execution Standard (PTES) which is one of the tools to become a standard in analyzing or auditing network security systems in a company in this case, namely analyzing and auditing wireless network security systems. After conducting an analysis based on these tools, there are still many security holes in the XYZ wireless SMP that allow outsiders to illegally access and obtain vulnerabilities in terms of WPA2 cracking, DoS, wireless router password cracking, and access point isolation so that it can be said that network security at SMP XYZ is still not safe

A Sensing Method of Network Security Situation Based on Markov Game Model

The sensing of network security situation (NSS) has become a hot issue. This paper first describes the basic principle of Markov model and then the necessary and sufficient conditions for the application of Markov game model. And finally, taking fuzzy comprehensive evaluation model as the theoretical basis, this paper analyzes the application fields of the sensing method of NSS with Markov game model from the aspects of network randomness, non-cooperative and dynamic evolution. Evaluation results show that the sensing method of NSS with Markov game model is best for financial field, followed by educational field. In addition, the model can also be used in the applicability evaluation of the sensing methods of different industries’ network security situation. Certainly, in different categories, and under the premise of different sensing methods of network security situation, the proportions of various influencing factors are different, and once the proportion is unreasonable, it will cause false calculation process and thus affect the results.

The Compound Prediction Analysis of Information Network Security Situation based on Support Vector Combined with BP Neural Network Learning Algorithm

In order to solve the problem of low security of data in network transmission and inaccurate prediction of future security situation, an improved neural network learning algorithm is proposed in this paper. The algorithm makes up for the shortcomings of the standard neural network learning algorithm, eliminates the redundant data by vector support, and realizes the effective clustering of information data. In addition, the improved neural network learning algorithm uses the order of data to optimize the "end" data in the standard neural network learning algorithm, so as to improve the accuracy and computational efficiency of network security situation prediction.MATLAB simulation results show that the data processing capacity of support vector combined BP neural network is consistent with the actual security situation data requirements, the consistency can reach 98%. the consistency of the security situation results can reach 99%, the composite prediction time of the whole security situation is less than 25s, the line segment slope change can reach 2.3% ,and the slope change range can reach 1.2%,, which is better than BP neural network algorithm.

Network intrusion detection using oversampling technique and machine learning algorithms

The expeditious growth of the World Wide Web and the rampant flow of network traffic have resulted in a continuous increase of network security threats. Cyber attackers seek to exploit vulnerabilities in network architecture to steal valuable information or disrupt computer resources. Network Intrusion Detection System (NIDS) is used to effectively detect various attacks, thus providing timely protection to network resources from these attacks. To implement NIDS, a stream of supervised and unsupervised machine learning approaches is applied to detect irregularities in network traffic and to address network security issues. Such NIDSs are trained using various datasets that include attack traces. However, due to the advancement in modern-day attacks, these systems are unable to detect the emerging threats. Therefore, NIDS needs to be trained and developed with a modern comprehensive dataset which contains contemporary common and attack activities. This paper presents a framework in which different machine learning classification schemes are employed to detect various types of network attack categories. Five machine learning algorithms: Random Forest, Decision Tree, Logistic Regression, K-Nearest Neighbors and Artificial Neural Networks, are used for attack detection. This study uses a dataset published by the University of New South Wales (UNSW-NB15), a relatively new dataset that contains a large amount of network traffic data with nine categories of network attacks. The results show that the classification models achieved the highest accuracy of 89.29% by applying the Random Forest algorithm. Further improvement in the accuracy of classification models is observed when Synthetic Minority Oversampling Technique (SMOTE) is applied to address the class imbalance problem. After applying the SMOTE, the Random Forest classifier showed an accuracy of 95.1% with 24 selected features from the Principal Component Analysis method.

Cyber Attacks Visualization and Prediction in Complex Multi-Stage Network

In network security, various protocols exist, but these cannot be said to be secure. Moreover, is not easy to train the end-users, and this process is time-consuming as well. It can be said this way, that it takes much time for an individual to become a good cybersecurity professional. Many hackers and illegal agents try to take advantage of the vulnerabilities through various incremental penetrations that can compromise the critical systems. The conventional tools available for this purpose are not enough to handle things as desired. Risks are always present, and with dynamically evolving networks, they are very likely to lead to serious incidents. This research work has proposed a model to visualize and predict cyber-attacks in complex, multilayered networks. The calculation will correspond to the cyber software vulnerabilities in the networks within the specific domain. All the available network security conditions and the possible places where an attacker can exploit the system are summarized.

Network Security Policy Automation

Network security policy automation enables enterprise security teams to keep pace with increasingly dynamic changes in on-premises and public/hybrid cloud environments. This chapter discusses the most common use cases for policy automation in the enterprise, and new automation methodologies to address them by taking the reader step-by-step through sample use cases. It also looks into how emerging automation solutions are using big data, artificial intelligence, and machine learning technologies to further accelerate network security policy automation and improve application and network security in the process.

Rule-Based Anomaly Detection Model with Stateful Correlation Enhancing Mobile Network Security

Research on network security technology of industrial control system.

The relationship between industrial control system and Internet is becoming closer and closer, and its network security has attracted much attention. Penetration testing is an active network intrusion detection technology, which plays an indispensable role in protecting the security of the system. This paper mainly introduces the principle of penetration testing, summarizes the current cutting-edge penetration testing technology, and looks forward to its development.

Detection and Prevention of Malicious Activities in Vulnerable Network Security Using Deep Learning

Export citation format, share document.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts

Latest science news, discoveries and analysis

latest research papers on computer network

Bird flu in US cows: is the milk supply safe?

latest research papers on computer network

Future of Humanity Institute shuts: what's next for ‘deep future’ research?

latest research papers on computer network

Judge dismisses superconductivity physicist’s lawsuit against university

latest research papers on computer network

NIH pay raise for postdocs and PhD students could have US ripple effect

Hello puffins, goodbye belugas: changing arctic fjord hints at our climate future, china's moon atlas is the most detailed ever made, ‘shut up and calculate’: how einstein lost the battle to explain quantum reality, rat neurons repair mouse brains — and restore sense of smell, ecologists: don’t lose touch with the joy of fieldwork chris mantegna.

latest research papers on computer network

Should the Maldives be creating new land?

latest research papers on computer network

Lethal AI weapons are here: how can we control them?

latest research papers on computer network

Algorithm ranks peer reviewers by reputation — but critics warn of bias

latest research papers on computer network

How gliding marsupials got their ‘wings’

Audio long read: why loneliness is bad for your health, could a rare mutation that causes dwarfism also slow ageing, nato is boosting ai and climate research as scientific diplomacy remains on ice, plastic pollution: three numbers that support a crackdown.

latest research papers on computer network

Retractions are part of science, but misconduct isn’t — lessons from a superconductivity lab

latest research papers on computer network

Any plan to make smoking obsolete is the right step

latest research papers on computer network

Citizenship privilege harms science

European ruling linking climate change to human rights could be a game changer — here’s how charlotte e. blattner, will ai accelerate or delay the race to net-zero emissions, current issue.

Issue Cover

The Maldives is racing to create new land. Why are so many people concerned?

Surprise hybrid origins of a butterfly species, stripped-envelope supernova light curves argue for central engine activity, optical clocks at sea, research analysis.

latest research papers on computer network

Ancient DNA traces family lines and political shifts in the Avar empire

latest research papers on computer network

A chemical method for selective labelling of the key amino acid tryptophan

latest research papers on computer network

Robust optical clocks promise stable timing in a portable package

latest research papers on computer network

Targeting RNA opens therapeutic avenues for Timothy syndrome

Bioengineered ‘mini-colons’ shed light on cancer progression, galaxy found napping in the primordial universe, tumours form without genetic mutations, marsupial genomes reveal how a skin membrane for gliding evolved.

latest research papers on computer network

Scientists urged to collect royalties from the ‘magic money tree’

latest research papers on computer network

Breaking ice, and helicopter drops: winning photos of working scientists

latest research papers on computer network

Shrouded in secrecy: how science is harmed by the bullying and harassment rumour mill

How ground glass might save crops from drought on a caribbean island, londoners see what a scientist looks like up close in 50 photographs, books & culture.

latest research papers on computer network

How volcanoes shaped our planet — and why we need to be ready for the next big eruption

latest research papers on computer network

Dogwhistles, drilling and the roots of Western civilization: Books in brief

latest research papers on computer network

Cosmic rentals

Las borinqueñas remembers the forgotten puerto rican women who tested the first pill, dad always mows on summer saturday mornings, nature podcast.

Nature Podcast

Latest videos

Nature briefing.

An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

latest research papers on computer network

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Cybersecurity researchers spotlight a new ransomware threat – be careful where you upload files

latest research papers on computer network

Professor of Computing and Information Science, Florida International University

Disclosure statement

This research was completed in 2023 and received partial funding from US National Science Foundation, Cyber Florida, and Google ASPIRE. The views expressed are those of the author only, not of the funding agencies. The author also thanks the developers of the FSA API at Google for their support and cooperation for the original USENIX Security paper in 2023.

Florida International University provides funding as a member of The Conversation US.

View all partners

A red exclamation mark within a red triangle inside a stylized representation a software window

You probably know better than to click on links that download unknown files onto your computer. It turns out that uploading files can get you into trouble, too.

Today’s web browsers are much more powerful than earlier generations of browsers. They’re able to manipulate data within both the browser and the computer’s local file system. Users can send and receive email, listen to music or watch a movie within a browser with the click of a button.

Unfortunately, these capabilities also mean that hackers can find clever ways to abuse the browsers to trick you into letting ransomware lock up your files when you think that you’re simply doing your usual tasks online.

I’m a computer scientist who studies cybersecurity . My colleagues and I have shown how hackers can gain access to your computer’s files via the File System Access Application Programming Interface (API), which enables web applications in modern browsers to interact with the users’ local file systems.

The threat applies to Google’s Chrome and Microsoft’s Edge browsers but not Apple’s Safari or Mozilla’s Firefox. Chrome accounts for 65% of browsers used , and Edge accounts for 5%. To the best of my knowledge, there have been no reports of hackers using this method so far.

My colleagues, who include a Google security researcher, and I have communicated with the developers responsible for the File System Access API, and they have expressed support for our work and interest in our approaches to defending against this kind of attack. We also filed a security report to Microsoft but have not heard from them.

Double-edged sword

Today’s browsers are almost operating systems unto themselves. They can run software programs and encrypt files. These capabilities, combined with the browser’s access to the host computer’s files – including ones in the cloud, shared folders and external drives – via the File System Access API creates a new opportunity for ransomware.

Imagine you want to edit photos on a benign-looking free online photo editing tool. When you upload the photos for editing, any hackers who control the malicious editing tool can access the files on your computer via your browser. The hackers would gain access to the folder you are uploading from and all subfolders. Then the hackers could encrypt the files in your file system and demand a ransom payment to decrypt them.

Ransomware is a growing problem. Attacks have hit individuals as well as organizations, including Fortune 500 companies, banks, cloud service providers, cruise operators, threat-monitoring services, chip manufacturers, governments, medical centers and hospitals, insurance companies, schools, universities and even police departments. In 2023, organizations paid more than US$1.1 billion in ransomware payments to attackers, and 19 ransomware attacks targeted organizations every second .

It is no wonder ransomware is the No. 1 arms race today between hackers and security specialists. Traditional ransomware runs on your computer after hackers have tricked you into downloading it.

New defenses for a new threat

A team of researchers I lead at the Cyber-Physical Systems Security Lab at Florida International University , including postdoctoral researcher Abbas Acar and Ph.D. candidate Harun Oz , in collaboration with Google Senior Research Scientist Güliz Seray Tuncay , have been investigating this new type of potential ransomware for the past two years. Specifically, we have been exploring how powerful modern web browsers have become and how they can be weaponized by hackers to create novel forms of ransomware.

In our paper, RøB: Ransomware over Modern Web Browsers , which was presented at the USENIX Security Symposium in August 2023, we showed how this emerging ransomware strain is easy to design and how damaging it can be. In particular, we designed and implemented the first browser-based ransomware called RøB and analyzed its use with browsers running on three different major operating systems – Windows, Linux and MacOS – five cloud providers and five antivirus products.

Our evaluations showed that RøB is capable of encrypting numerous types of files. Because RøB runs within the browser, there are no malicious payloads for a traditional antivirus program to catch. This means existing ransomware detection systems face several issues against this powerful browser-based ransomware.

We proposed three different defense approaches to mitigate this new ransomware type. These approaches operate at different levels – browser, file system and user – and complement one another.

The first approach temporarily halts a web application – a program that runs in the browser – in order to detect encrypted user files. The second approach monitors the activity of the web application on the user’s computer to identify ransomware-like patterns. The third approach introduces a new permission dialog box to inform users about the risks and implications associated with allowing web applications to access their computer’s file system.

When it comes to protecting your computer, be careful about where you upload as well as download files. Your uploads could be giving hackers an “in” to your computer.

  • Web browsers
  • Computer security
  • Cybersecurity

latest research papers on computer network

Program Manager, Teaching & Learning Initiatives

latest research papers on computer network

Lecturer/Senior Lecturer, Earth System Science (School of Science)

latest research papers on computer network

Sydney Horizon Educators (Identified)

latest research papers on computer network

Deputy Social Media Producer

latest research papers on computer network

Associate Professor, Occupational Therapy

Our approach

  • Responsibility
  • Infrastructure
  • Try Meta AI

RECOMMENDED READS

  • 5 Steps to Getting Started with Llama 2
  • The Llama Ecosystem: Past, Present, and Future
  • Introducing Code Llama, a state-of-the-art large language model for coding
  • Meta and Microsoft Introduce the Next Generation of Llama
  • Today, we’re introducing Meta Llama 3, the next generation of our state-of-the-art open source large language model.
  • Llama 3 models will soon be available on AWS, Databricks, Google Cloud, Hugging Face, Kaggle, IBM WatsonX, Microsoft Azure, NVIDIA NIM, and Snowflake, and with support from hardware platforms offered by AMD, AWS, Dell, Intel, NVIDIA, and Qualcomm.
  • We’re dedicated to developing Llama 3 in a responsible way, and we’re offering various resources to help others use it responsibly as well. This includes introducing new trust and safety tools with Llama Guard 2, Code Shield, and CyberSec Eval 2.
  • In the coming months, we expect to introduce new capabilities, longer context windows, additional model sizes, and enhanced performance, and we’ll share the Llama 3 research paper.
  • Meta AI, built with Llama 3 technology, is now one of the world’s leading AI assistants that can boost your intelligence and lighten your load—helping you learn, get things done, create content, and connect to make the most out of every moment. You can try Meta AI here .

Today, we’re excited to share the first two models of the next generation of Llama, Meta Llama 3, available for broad use. This release features pretrained and instruction-fine-tuned language models with 8B and 70B parameters that can support a broad range of use cases. This next generation of Llama demonstrates state-of-the-art performance on a wide range of industry benchmarks and offers new capabilities, including improved reasoning. We believe these are the best open source models of their class, period. In support of our longstanding open approach, we’re putting Llama 3 in the hands of the community. We want to kickstart the next wave of innovation in AI across the stack—from applications to developer tools to evals to inference optimizations and more. We can’t wait to see what you build and look forward to your feedback.

Our goals for Llama 3

With Llama 3, we set out to build the best open models that are on par with the best proprietary models available today. We wanted to address developer feedback to increase the overall helpfulness of Llama 3 and are doing so while continuing to play a leading role on responsible use and deployment of LLMs. We are embracing the open source ethos of releasing early and often to enable the community to get access to these models while they are still in development. The text-based models we are releasing today are the first in the Llama 3 collection of models. Our goal in the near future is to make Llama 3 multilingual and multimodal, have longer context, and continue to improve overall performance across core LLM capabilities such as reasoning and coding.

State-of-the-art performance

Our new 8B and 70B parameter Llama 3 models are a major leap over Llama 2 and establish a new state-of-the-art for LLM models at those scales. Thanks to improvements in pretraining and post-training, our pretrained and instruction-fine-tuned models are the best models existing today at the 8B and 70B parameter scale. Improvements in our post-training procedures substantially reduced false refusal rates, improved alignment, and increased diversity in model responses. We also saw greatly improved capabilities like reasoning, code generation, and instruction following making Llama 3 more steerable.

latest research papers on computer network

*Please see evaluation details for setting and parameters with which these evaluations are calculated.

In the development of Llama 3, we looked at model performance on standard benchmarks and also sought to optimize for performance for real-world scenarios. To this end, we developed a new high-quality human evaluation set. This evaluation set contains 1,800 prompts that cover 12 key use cases: asking for advice, brainstorming, classification, closed question answering, coding, creative writing, extraction, inhabiting a character/persona, open question answering, reasoning, rewriting, and summarization. To prevent accidental overfitting of our models on this evaluation set, even our own modeling teams do not have access to it. The chart below shows aggregated results of our human evaluations across of these categories and prompts against Claude Sonnet, Mistral Medium, and GPT-3.5.

latest research papers on computer network

Preference rankings by human annotators based on this evaluation set highlight the strong performance of our 70B instruction-following model compared to competing models of comparable size in real-world scenarios.

Our pretrained model also establishes a new state-of-the-art for LLM models at those scales.

latest research papers on computer network

To develop a great language model, we believe it’s important to innovate, scale, and optimize for simplicity. We adopted this design philosophy throughout the Llama 3 project with a focus on four key ingredients: the model architecture, the pretraining data, scaling up pretraining, and instruction fine-tuning.

Model architecture

In line with our design philosophy, we opted for a relatively standard decoder-only transformer architecture in Llama 3. Compared to Llama 2, we made several key improvements. Llama 3 uses a tokenizer with a vocabulary of 128K tokens that encodes language much more efficiently, which leads to substantially improved model performance. To improve the inference efficiency of Llama 3 models, we’ve adopted grouped query attention (GQA) across both the 8B and 70B sizes. We trained the models on sequences of 8,192 tokens, using a mask to ensure self-attention does not cross document boundaries.

Training data

To train the best language model, the curation of a large, high-quality training dataset is paramount. In line with our design principles, we invested heavily in pretraining data. Llama 3 is pretrained on over 15T tokens that were all collected from publicly available sources. Our training dataset is seven times larger than that used for Llama 2, and it includes four times more code. To prepare for upcoming multilingual use cases, over 5% of the Llama 3 pretraining dataset consists of high-quality non-English data that covers over 30 languages. However, we do not expect the same level of performance in these languages as in English.

To ensure Llama 3 is trained on data of the highest quality, we developed a series of data-filtering pipelines. These pipelines include using heuristic filters, NSFW filters, semantic deduplication approaches, and text classifiers to predict data quality. We found that previous generations of Llama are surprisingly good at identifying high-quality data, hence we used Llama 2 to generate the training data for the text-quality classifiers that are powering Llama 3.

We also performed extensive experiments to evaluate the best ways of mixing data from different sources in our final pretraining dataset. These experiments enabled us to select a data mix that ensures that Llama 3 performs well across use cases including trivia questions, STEM, coding, historical knowledge, etc.

Scaling up pretraining

To effectively leverage our pretraining data in Llama 3 models, we put substantial effort into scaling up pretraining. Specifically, we have developed a series of detailed scaling laws for downstream benchmark evaluations. These scaling laws enable us to select an optimal data mix and to make informed decisions on how to best use our training compute. Importantly, scaling laws allow us to predict the performance of our largest models on key tasks (for example, code generation as evaluated on the HumanEval benchmark—see above) before we actually train the models. This helps us ensure strong performance of our final models across a variety of use cases and capabilities.

We made several new observations on scaling behavior during the development of Llama 3. For example, while the Chinchilla-optimal amount of training compute for an 8B parameter model corresponds to ~200B tokens, we found that model performance continues to improve even after the model is trained on two orders of magnitude more data. Both our 8B and 70B parameter models continued to improve log-linearly after we trained them on up to 15T tokens. Larger models can match the performance of these smaller models with less training compute, but smaller models are generally preferred because they are much more efficient during inference.

To train our largest Llama 3 models, we combined three types of parallelization: data parallelization, model parallelization, and pipeline parallelization. Our most efficient implementation achieves a compute utilization of over 400 TFLOPS per GPU when trained on 16K GPUs simultaneously. We performed training runs on two custom-built 24K GPU clusters . To maximize GPU uptime, we developed an advanced new training stack that automates error detection, handling, and maintenance. We also greatly improved our hardware reliability and detection mechanisms for silent data corruption, and we developed new scalable storage systems that reduce overheads of checkpointing and rollback. Those improvements resulted in an overall effective training time of more than 95%. Combined, these improvements increased the efficiency of Llama 3 training by ~three times compared to Llama 2.

Instruction fine-tuning

To fully unlock the potential of our pretrained models in chat use cases, we innovated on our approach to instruction-tuning as well. Our approach to post-training is a combination of supervised fine-tuning (SFT), rejection sampling, proximal policy optimization (PPO), and direct preference optimization (DPO). The quality of the prompts that are used in SFT and the preference rankings that are used in PPO and DPO has an outsized influence on the performance of aligned models. Some of our biggest improvements in model quality came from carefully curating this data and performing multiple rounds of quality assurance on annotations provided by human annotators.

Learning from preference rankings via PPO and DPO also greatly improved the performance of Llama 3 on reasoning and coding tasks. We found that if you ask a model a reasoning question that it struggles to answer, the model will sometimes produce the right reasoning trace: The model knows how to produce the right answer, but it does not know how to select it. Training on preference rankings enables the model to learn how to select it.

Building with Llama 3

Our vision is to enable developers to customize Llama 3 to support relevant use cases and to make it easier to adopt best practices and improve the open ecosystem. With this release, we’re providing new trust and safety tools including updated components with both Llama Guard 2 and Cybersec Eval 2, and the introduction of Code Shield—an inference time guardrail for filtering insecure code produced by LLMs.

We’ve also co-developed Llama 3 with torchtune , the new PyTorch-native library for easily authoring, fine-tuning, and experimenting with LLMs. torchtune provides memory efficient and hackable training recipes written entirely in PyTorch. The library is integrated with popular platforms such as Hugging Face, Weights & Biases, and EleutherAI and even supports Executorch for enabling efficient inference to be run on a wide variety of mobile and edge devices. For everything from prompt engineering to using Llama 3 with LangChain we have a comprehensive getting started guide and takes you from downloading Llama 3 all the way to deployment at scale within your generative AI application.

A system-level approach to responsibility

We have designed Llama 3 models to be maximally helpful while ensuring an industry leading approach to responsibly deploying them. To achieve this, we have adopted a new, system-level approach to the responsible development and deployment of Llama. We envision Llama models as part of a broader system that puts the developer in the driver’s seat. Llama models will serve as a foundational piece of a system that developers design with their unique end goals in mind.

latest research papers on computer network

Instruction fine-tuning also plays a major role in ensuring the safety of our models. Our instruction-fine-tuned models have been red-teamed (tested) for safety through internal and external efforts. ​​Our red teaming approach leverages human experts and automation methods to generate adversarial prompts that try to elicit problematic responses. For instance, we apply comprehensive testing to assess risks of misuse related to Chemical, Biological, Cyber Security, and other risk areas. All of these efforts are iterative and used to inform safety fine-tuning of the models being released. You can read more about our efforts in the model card .

Llama Guard models are meant to be a foundation for prompt and response safety and can easily be fine-tuned to create a new taxonomy depending on application needs. As a starting point, the new Llama Guard 2 uses the recently announced MLCommons taxonomy, in an effort to support the emergence of industry standards in this important area. Additionally, CyberSecEval 2 expands on its predecessor by adding measures of an LLM’s propensity to allow for abuse of its code interpreter, offensive cybersecurity capabilities, and susceptibility to prompt injection attacks (learn more in our technical paper ). Finally, we’re introducing Code Shield which adds support for inference-time filtering of insecure code produced by LLMs. This offers mitigation of risks around insecure code suggestions, code interpreter abuse prevention, and secure command execution.

With the speed at which the generative AI space is moving, we believe an open approach is an important way to bring the ecosystem together and mitigate these potential harms. As part of that, we’re updating our Responsible Use Guide (RUG) that provides a comprehensive guide to responsible development with LLMs. As we outlined in the RUG, we recommend that all inputs and outputs be checked and filtered in accordance with content guidelines appropriate to the application. Additionally, many cloud service providers offer content moderation APIs and other tools for responsible deployment, and we encourage developers to also consider using these options.

Deploying Llama 3 at scale

Llama 3 will soon be available on all major platforms including cloud providers, model API providers, and much more. Llama 3 will be everywhere .

Our benchmarks show the tokenizer offers improved token efficiency, yielding up to 15% fewer tokens compared to Llama 2. Also, Group Query Attention (GQA) now has been added to Llama 3 8B as well. As a result, we observed that despite the model having 1B more parameters compared to Llama 2 7B, the improved tokenizer efficiency and GQA contribute to maintaining the inference efficiency on par with Llama 2 7B.

For examples of how to leverage all of these capabilities, check out Llama Recipes which contains all of our open source code that can be leveraged for everything from fine-tuning to deployment to model evaluation.

What’s next for Llama 3?

The Llama 3 8B and 70B models mark the beginning of what we plan to release for Llama 3. And there’s a lot more to come.

Our largest models are over 400B parameters and, while these models are still training, our team is excited about how they’re trending. Over the coming months, we’ll release multiple models with new capabilities including multimodality, the ability to converse in multiple languages, a much longer context window, and stronger overall capabilities. We will also publish a detailed research paper once we are done training Llama 3.

To give you a sneak preview for where these models are today as they continue training, we thought we could share some snapshots of how our largest LLM model is trending. Please note that this data is based on an early checkpoint of Llama 3 that is still training and these capabilities are not supported as part of the models released today.

latest research papers on computer network

We’re committed to the continued growth and development of an open AI ecosystem for releasing our models responsibly. We have long believed that openness leads to better, safer products, faster innovation, and a healthier overall market. This is good for Meta, and it is good for society. We’re taking a community-first approach with Llama 3, and starting today, these models are available on the leading cloud, hosting, and hardware platforms with many more to come.

Try Meta Llama 3 today

We’ve integrated our latest models into Meta AI, which we believe is the world’s leading AI assistant. It’s now built with Llama 3 technology and it’s available in more countries across our apps.

You can use Meta AI on Facebook, Instagram, WhatsApp, Messenger, and the web to get things done, learn, create, and connect with the things that matter to you. You can read more about the Meta AI experience here .

Visit the Llama 3 website to download the models and reference the Getting Started Guide for the latest list of all available platforms.

You’ll also soon be able to test multimodal Meta AI on our Ray-Ban Meta smart glasses.

As always, we look forward to seeing all the amazing products and experiences you will build with Meta Llama 3.

Our latest updates delivered to your inbox

Subscribe to our newsletter to keep up with Meta AI news, events, research breakthroughs, and more.

Join us in the pursuit of what’s possible with AI.

latest research papers on computer network

Product experiences

Foundational models

Latest news

Meta © 2024

IMAGES

  1. (PDF) Computer Networking: A Survey

    latest research papers on computer network

  2. Click here to view my essay on computer networks

    latest research papers on computer network

  3. 😀 Web security research papers. Web Services Research Papers. 2019-01-21

    latest research papers on computer network

  4. artificial intelligence research paper 2019 pdf

    latest research papers on computer network

  5. The Research of Distributed Computer Network Technology Based on Web

    latest research papers on computer network

  6. Research paper on computer network security pdf in 2021

    latest research papers on computer network

VIDEO

  1. Different Network layer design issues in Computer Networks By Jayamma Rodda

  2. Progressive Learning from Complex traces of GPT 4

  3. 2nd PUC Computer Science Preparatory Exam Question Paper 2024

  4. ENCS3320 Computer Networks: Chapter1 1

  5. Panel: Blurring the gap between software and hardware in networks

  6. Navigating the Latest IT Networking Trends and News

COMMENTS

  1. Computer Networks

    Read the latest articles of Computer Networks at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature ... Research article Full text access. ... 2021 Best Paper Award - Computer Networks. 1 December 2021. Timeless Impact Paper Award. View all news. Calls for papers. Non-Terrestrial Networks for Ubiquitous ...

  2. computer network Latest Research Papers

    Characteristic Measure. This paper aims to study the Countermeasures of big data security management in the prevention and control of computer network crime in the absence of relevant legislation and judicial practice. Starting from the concepts and definitions of computer crime and network crime, this paper puts forward the comparison matrix ...

  3. Computer Networks

    Proof of Learning (PoLe): Empowering neural network training with consensus building on blockchains. Yuan Liu, Yixiao Lan, Boyang Li, Chunyan Miao, Zhihong Tian. Article 108594. View PDF. Article preview. Read the latest articles of Computer Networks at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature.

  4. 290334 PDFs

    Deals with the various aspects and domain of Computer Networks and Communication, Cloud, and Grid Computing | Explore the latest full-text research PDFs, articles, conference papers, preprints and ...

  5. Full article: The past, present, and future of network monitoring: A

    Research in network monitoring, and more generally network science, spans multiple disciplines, including mathematics, statistics, physics, and computer science, to name a few. Describe what you recognize as advantages and disadvantages associated with the interdisciplinary nature of this area, particularly as they pertain to research in, and ...

  6. 376104 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on COMPUTER NETWORKING. Find methods information, sources, references or conduct a literature review on ...

  7. Table of Contents 2021

    Threats from the Dark: A Review over Dark Web Investigation Research for Cyber Threat Intelligence. Randa Basheer | Bassel Alkhatib. 20 Dec 2021. PDF. Citation. Journal of Computer Networks and Communications -. Volume 2021. - Article ID 4124230. - Research Article.

  8. Machine Learning for Computer Systems and Networking: A Survey

    Abstract. Machine learning (ML) has become the de-facto approach for various scientific domains such as computer vision and natural language processing. Despite recent breakthroughs, machine learning has only made its way into the fundamental challenges in computer systems and networking recently. This article attempts to shed light on recent ...

  9. [2206.03259] Future Computer Systems and Networking Research in the

    Download PDF Abstract: Our modern society and competitive economy depend on a strong digital foundation and, in turn, on sustained research and innovation in computer systems and networks (CompSys). With this manifesto, we draw attention to CompSys as a vital part of ICT. Among ICT technologies, CompSys covers all the hardware and all the operational software layers that enable applications ...

  10. Software-Defined Networking (SDN): A Review

    The Internet of Everything (IoE) connects millions of machines, vehicles, nodes, smoke detectors, watches, glasses, webcams, and other devices to the internet. These entities need the proper guidance and control for expected performance. There is always a need to manage their networks for better performance properly. However, managing all these entities is not easy; it is always a big concern ...

  11. Computer Science

    Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. ... Covers all aspects of computer communication networks ...

  12. Computer Networks: 27th International Conference, CN 2020, Gdańsk

    The CN 2020 proceedings focus on computer networks. They include the research work of scientists from numerous notable research centers. The selected papers are organized in topical sections on computer networks, cybersecurity and quality of service, queueing theory and queuing networks.

  13. PUBLICATIONS

    6. Eytan Modiano, "Random Algorithms for Scheduling Multicast Traffic in WDM Broadcast-and-Select Networks," IEEE Transactions on Networking, July, 1999. 5. Eytan Modiano and Richard Barry, "Architectural Considerations in the Design of WDM-based Optical Access Networks," Computer Networks, February 1999.

  14. Information technology

    Information technology is the design and implementation of computer networks for data processing and communication. ... Latest Research and Reviews ... Millions of research papers at risk of ...

  15. Computer Communication Networks

    Nov 2023. Explore the latest full-text research PDFs, articles, conference papers, preprints and more on COMPUTER COMMUNICATION NETWORKS. Find methods information, sources, references or conduct a ...

  16. Present and Future of Network Security Monitoring

    Abstract: Network Security Monitoring (NSM) is a popular term to refer to the detection of security incidents by monitoring the network events. An NSM system is central for the security of current networks, given the escalation in sophistication of cyberwarfare. In this paper, we review the state-of-the-art in NSM, and derive a new taxonomy of the functionalities and modules in an NSM system.

  17. network security Latest Research Papers

    Wireless Network Security . Wireless Router . Network Security System. The use of computer networks in an agency aims to facilitate communication and data transfer between devices. The network that can be applied can be using wireless media or LAN cable. At SMP XYZ, most of the computers still use wireless networks.

  18. (PDF) ADVANCES IN NETWORK SECURITY: A COMPREHENSIVE ...

    The report proposes new research directions to advance research. ... Research in Computer Science, ... The methodology adopted in this paper is a review of papers with keywords network security ...

  19. Latest science news, discoveries and analysis

    Latest science news and analysis from the world's leading research journal. ... researchers can ensure they are paid when copyrighted book content and papers are reproduced.

  20. Research paper A comprehensive review study of cyber-attacks and cyber

    Title Definition; Cyber space: Interconnected networks, from IT infrastructures, communication networks, computer systems, embedded processors, vital industry controllers, information virtual environment and the interaction between this environment and human beings for the purpose of production, processing, storage, exchange, retrieval and exploitation of information.

  21. Cybersecurity researchers spotlight a new ransomware threat

    Today's web browsers are more powerful - and in some ways more vulnerable - than their predecessors. Ransomware is a growing problem. Attacks have hit individuals as well as organizations ...

  22. (PDF) Computer Networking: A Survey

    Computer networks are a. system of i nterconnected computers for the purpose of. sharing digital information. The computer network. enables to analyze, organize and disseminate the. information ...

  23. Introducing Meta Llama 3: The most capable openly available LLM to date

    This includes introducing new trust and safety tools with Llama Guard 2, Code Shield, and CyberSec Eval 2. In the coming months, we expect to introduce new capabilities, longer context windows, additional model sizes, and enhanced performance, and we'll share the Llama 3 research paper.

  24. Call for papers

    Selected and extended papers from the 16th International Conference on Underwater Networks & Systems (WUWNet 2022) and advances of the state-of-the-art in underwater communications and networking. This special issue aims at gathering the latest advances of the state-of-the-art on underwater communication, networks, and systems.