Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations to improve understanding and boost retention rate.

Data presentations require us to cull data in a format that allows the presenter to highlight trends, patterns, and insights so that the audience can act upon the shared information. In a few words, the goal of data presentations is to enable viewers to grasp complicated concepts or trends quickly, facilitating informed decision-making or deeper analysis.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of data storytelling , so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

For more information, check our collection of bar chart templates for PowerPoint .

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

For more information, check our collection of line chart templates for PowerPoint and our article about how to make a presentation graph .

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

For more information, check our article on how to design a dashboard presentation , and discover our collection of dashboard PowerPoint templates .

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here. Also discover our collection of heatmap PowerPoint templates .

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

For more information, check our collection of pie chart templates for PowerPoint .

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

presentation of data slideshare

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

presentation of data slideshare

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

presentation of data slideshare

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

presentation of data slideshare

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

presentation of data slideshare

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

presentation of data slideshare

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

presentation of data slideshare

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

presentation of data slideshare

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

presentation of data slideshare

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

presentation of data slideshare

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

presentation of data slideshare

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

How to Make a Presentation Graph

Filed under Design • March 27th, 2024

How to Make a Presentation Graph

Detailed step-by-step instructions to master the art of how to make a presentation graph in PowerPoint and Google Slides. Check it out!

All About Using Harvey Balls

Filed under Presentation Ideas • January 6th, 2024

All About Using Harvey Balls

Among the many tools in the arsenal of the modern presenter, Harvey Balls have a special place. In this article we will tell you all about using Harvey Balls.

How to Design a Dashboard Presentation: A Step-by-Step Guide

Filed under Business • December 8th, 2023

How to Design a Dashboard Presentation: A Step-by-Step Guide

Take a step further in your professional presentation skills by learning what a dashboard presentation is and how to properly design one in PowerPoint. A detailed step-by-step guide is here!

Leave a Reply

presentation of data slideshare

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

1.3: Presentation of Data

  • Last updated
  • Save as PDF
  • Page ID 577

Learning Objectives

  • To learn two ways that data will be presented in the text.

In this book we will use two formats for presenting data sets. The first is a data list, which is an explicit listing of all the individual measurements, either as a display with space between the individual measurements, or in set notation with individual measurements separated by commas.

Example \(\PageIndex{1}\)

The data obtained by measuring the age of \(21\) randomly selected students enrolled in freshman courses at a university could be presented as the data list:

\[\begin{array}{cccccccccc}18 & 18 & 19 & 19 & 19 & 18 & 22 & 20 & 18 & 18 & 17 \\ 19 & 18 & 24 & 18 & 20 & 18 & 21 & 20 & 17 & 19 &\end{array} \nonumber \]

or in set notation as:

\[ \{18,18,19,19,19,18,22,20,18,18,17,19,18,24,18,20,18,21,20,17,19\} \nonumber \]

A data set can also be presented by means of a data frequency table, a table in which each distinct value \(x\) is listed in the first row and its frequency \(f\), which is the number of times the value \(x\) appears in the data set, is listed below it in the second row.

Example \(\PageIndex{2}\)

The data set of the previous example is represented by the data frequency table

\[\begin{array}{c|cccccc}x & 17 & 18 & 19 & 20 & 21 & 22 & 24 \\ \hline f & 2 & 8 & 5 & 3 & 1 & 1 & 1\end{array} \nonumber \]

The data frequency table is especially convenient when data sets are large and the number of distinct values is not too large.

Key Takeaway

  • Data sets can be presented either by listing all the elements or by giving a table of values and frequencies.

AIM logo Black

  • Conferences

presentation of data slideshare

Happiest Minds Technologies Acquires Macmillan Learning India, Expands Edutech Reach

Llama 3

Meta Releases Llama 3, Beats Claude 3 Sonnet and Gemini Pro 1.5

presentation of data slideshare

Nothing Becomes the First Smartphone Company to Integrate OpenAI’s ChatGPT

  • Last updated December 8, 2020
  • In AI Origins & Evolution

7 Popular Data Science Presentations On SlideShare

  • Published on February 14, 2020
  • by Rohit Yadav

Data Science Presentation

Presentations are a go-to approach to introduce new ideas or explaining new techniques in technology with text and infographics to engage an audience and retain attention. Over the years, presentations have catered to the needs of people who want to learn new things or get an overview of something new.

Notably, in data science, explaining approaches with speech becomes difficult. Thus, presentation through slides is an effective way to learn or revise technology. Analytics India Magazine brings to you exciting data science presentation that will give a new perspective as well as introduce you to new developments in the landscape.

Moving Machine Learning Models To Production With Tensorflow Extended

In Moving Machine Learning To Production With Tensorflow Extended , one can learn how to move their ML models to production with TensorFlow Extended (TFX) — an end-to-end platform for deploying production ML pipelines. While the 58 slides data science presentation covers every aspect of the TFX, the most important ones are data validation, TensorFlow Model Analysis, and the What-If Tool. You can also read more about TFX on the official page .

Lessons Learned From Building Practical Deep Learning Systems

Lessons Learned From Building Practical Deep Learning Systems is uploaded by Xavier Amatrianin, the co-founder at Curai, an AI-based healthcare solution provider. Amatrianin in the presentation has communicated what he has learned over the years building deep learning models. In the data science presentation, he has answered some of the questions that bewilder data scientists. Amatrianin has compared different aspects a developer goes through while building models: more data or better data, better models or more data, among others.

Amatrianin has also differentiated between deep learning, feature engineering, feature architecture engineering, and more. With over 10,000 views, this is one of the most popular slides on SlideShare related to AI.

Generating Natural-Language Text With Neural Networks

Generating NL text with NN is another helpful slide. In the future, most of the data available will be unstructured due to the colossal amount of text that is being generated every day. However, working with text data is strenuous, thereby failing to bring value out of it. But researchers have invented a way to train neural networks with text and empower it to generate synthetic text. More recently, Microsoft, OpenAI, Google, and others, released language models that can automatically complete the sentence. 

In this presentation, the publisher Jonathan Mugan describes how one can execute this while also mentioning the current challenges in the neural text generation. The 63 slides data presentation makes an excellent read to learn about this new technology.

Blockchain + AI + Crypto Economics Are We Creating A Code Tsunami?

Published by Dinis Guarda, CEO of Intelligent HQ, the presentation has got more than 6000 views. The presentation demonstrates how AI and blockchain will be similar to what electricity was in the nineteenth century. However, the publisher believes that these technologies will change things faster than ever. The slides contain numerous charts that compare the evolution and explains about blockchain. Guarda has compiled data from various sources and has described how blockchain and can be used in tandem with AI to revolutionise the finance and other sectors.

Neural Networks With Google TensorFlow

Neural networks have taken the world by storm as they are the driving force behind the rise of Artificial Intelligence. And TensorFlow is one of the widely used neural networks that has made the lives of data scientists easy. In this slide, the publisher has explained the type of neural networks along with its potential to streamline the business operations. 

Predictive Analytics In Healthcare

Uploaded in February 2020, Predictive Analytics In Healthcare is very resourceful as it mentions the importance of having an effective data pipeline for harnessing the power of data that is being generated from the electronic health record (EHR) systems. Hospitals including other businesses have been slow in utilising the data to obtain insights. Besides, it also explains the techniques to mould the healthcare data for performing predictive analytics.

Demystifying Artificial Intelligence

Demystifying Artificial Intelligence is a comprehensive presentation that includes the information right from the beginning of the AI to what the future holds. The slides walk you through the evolution of AI over the years. Since it starts from the basics to advance, even a non-expert can assimilate about the domain. It also demonstrated various building blocks of AI like deep learning, machine learning, and their use cases.

Access all our open Survey & Awards Nomination forms in one place >>

Picture of Rohit Yadav

Rohit Yadav

Download our mobile app.

presentation of data slideshare


Generative ai skilling for enterprises, our customized corporate training program on generative ai provides a unique opportunity to empower, retain, and advance your talent., 3 ways to join our community, telegram group.

Discover special offers, top stories, upcoming events, and more.

Discord Server

Stay Connected with a larger ecosystem of data science and ML Professionals

Subscribe to our Daily newsletter

Get our daily awesome stories & videos in your inbox, recent stories.

presentation of data slideshare

Generative AI Jobs in India can Fetch You up to Rs 1 Crore 

presentation of data slideshare

Meta Llama 3 Now Available on Microsoft Azure

Meta is offering the Llama-3-8B inference APIs alongside hosted fine-tuning capabilities through Azure AI Studio.

presentation of data slideshare

Dell Technologies Unveils High-performance APEX File Storage for Microsoft Azure Customers


Infosys Acquires German R&D Services Provider, in-tech

Based in Germany, in-tech specialises in digitisation in automotive, rail transport, and smart industry sectors.

Infosys Feels Good About Its Work with Generative AI

Infosys Feels Good About Its Work with Generative AI

Shows overconfidence in generative AI without revealing the numbers, unlike its competitors.

presentation of data slideshare

Ola Krutrim to Launch AI Cloud Next Week

Offers Free Credits 

Open Source AI Platforms

‘AI Platforms will Control What Everybody Sees,’ Says Meta’s AI Chief Yann LeCun

Advocates it to be open like the internet.

presentation of data slideshare

Automation Anywhere Wants to Augment Humans with AI, Not Replace Them

presentation of data slideshare

KaleidEO Achieves Milestone in Earth Observation Payload Development

World's biggest media & analyst firm specializing in ai, advertise with us, aim publishes every day, and we believe in quality over quantity, honesty over spin. we offer a wide variety of branding and targeting options to make it easy for you to propagate your brand., branded content, aim brand solutions, a marketing division within aim, specializes in creating diverse content such as documentaries, public artworks, podcasts, videos, articles, and more to effectively tell compelling stories., corporate upskilling, adasci corporate training program on generative ai provides a unique opportunity to empower, retain and advance your talent, with machinehack you can not only find qualified developers with hiring challenges but can also engage the developer community and your internal workforce by hosting hackathons., talent assessment, conduct customized online assessments on our powerful cloud-based platform, secured with best-in-class proctoring, research & advisory, aim research produces a series of annual reports on ai & data science covering every aspect of the industry. request customised reports & aim surveys for a study on topics of your interest., conferences & events, immerse yourself in ai and business conferences tailored to your role, designed to elevate your performance and empower you to accomplish your organization’s vital objectives., aim launches the 3rd edition of data engineering summit. may 30-31, bengaluru.

Join the forefront of data innovation at the Data Engineering Summit 2024, where industry leaders redefine technology’s future.

© Analytics India Magazine Pvt Ltd & AIM Media House LLC 2024

  • Terms of use
  • Privacy Policy

presentation of data slideshare

Presentation of Data

Statistics deals with the collection, presentation and analysis of the data, as well as drawing meaningful conclusions from the given data. Generally, the data can be classified into two different types, namely primary data and secondary data. If the information is collected by the investigator with a definite objective in their mind, then the data obtained is called the primary data. If the information is gathered from a source, which already had the information stored, then the data obtained is called secondary data. Once the data is collected, the presentation of data plays a major role in concluding the result. Here, we will discuss how to present the data with many solved examples.

What is Meant by Presentation of Data?

As soon as the data collection is over, the investigator needs to find a way of presenting the data in a meaningful, efficient and easily understood way to identify the main features of the data at a glance using a suitable presentation method. Generally, the data in the statistics can be presented in three different forms, such as textual method, tabular method and graphical method.

Presentation of Data Examples

Now, let us discuss how to present the data in a meaningful way with the help of examples.

Consider the marks given below, which are obtained by 10 students in Mathematics:

36, 55, 73, 95, 42, 60, 78, 25, 62, 75.

Find the range for the given data.

Given Data: 36, 55, 73, 95, 42, 60, 78, 25, 62, 75.

The data given is called the raw data.

First, arrange the data in the ascending order : 25, 36, 42, 55, 60, 62, 73, 75, 78, 95.

Therefore, the lowest mark is 25 and the highest mark is 95.

We know that the range of the data is the difference between the highest and the lowest value in the dataset.

Therefore, Range = 95-25 = 70.

Note: Presentation of data in ascending or descending order can be time-consuming if we have a larger number of observations in an experiment.

Now, let us discuss how to present the data if we have a comparatively more number of observations in an experiment.

Consider the marks obtained by 30 students in Mathematics subject (out of 100 marks)

10, 20, 36, 92, 95, 40, 50, 56, 60, 70, 92, 88, 80, 70, 72, 70, 36, 40, 36, 40, 92, 40, 50, 50, 56, 60, 70, 60, 60, 88.

In this example, the number of observations is larger compared to example 1. So, the presentation of data in ascending or descending order is a bit time-consuming. Hence, we can go for the method called ungrouped frequency distribution table or simply frequency distribution table . In this method, we can arrange the data in tabular form in terms of frequency.

For example, 3 students scored 50 marks. Hence, the frequency of 50 marks is 3. Now, let us construct the frequency distribution table for the given data.

Therefore, the presentation of data is given as below:

The following example shows the presentation of data for the larger number of observations in an experiment.

Consider the marks obtained by 100 students in a Mathematics subject (out of 100 marks)

95, 67, 28, 32, 65, 65, 69, 33, 98, 96,76, 42, 32, 38, 42, 40, 40, 69, 95, 92, 75, 83, 76, 83, 85, 62, 37, 65, 63, 42, 89, 65, 73, 81, 49, 52, 64, 76, 83, 92, 93, 68, 52, 79, 81, 83, 59, 82, 75, 82, 86, 90, 44, 62, 31, 36, 38, 42, 39, 83, 87, 56, 58, 23, 35, 76, 83, 85, 30, 68, 69, 83, 86, 43, 45, 39, 83, 75, 66, 83, 92, 75, 89, 66, 91, 27, 88, 89, 93, 42, 53, 69, 90, 55, 66, 49, 52, 83, 34, 36.

Now, we have 100 observations to present the data. In this case, we have more data when compared to example 1 and example 2. So, these data can be arranged in the tabular form called the grouped frequency table. Hence, we group the given data like 20-29, 30-39, 40-49, ….,90-99 (As our data is from 23 to 98). The grouping of data is called the “class interval” or “classes”, and the size of the class is called “class-size” or “class-width”.

In this case, the class size is 10. In each class, we have a lower-class limit and an upper-class limit. For example, if the class interval is 30-39, the lower-class limit is 30, and the upper-class limit is 39. Therefore, the least number in the class interval is called the lower-class limit and the greatest limit in the class interval is called upper-class limit.

Hence, the presentation of data in the grouped frequency table is given below:

Hence, the presentation of data in this form simplifies the data and it helps to enable the observer to understand the main feature of data at a glance.

Practice Problems

  • The heights of 50 students (in cms) are given below. Present the data using the grouped frequency table by taking the class intervals as 160 -165, 165 -170, and so on.  Data: 161, 150, 154, 165, 168, 161, 154, 162, 150, 151, 162, 164, 171, 165, 158, 154, 156, 172, 160, 170, 153, 159, 161, 170, 162, 165, 166, 168, 165, 164, 154, 152, 153, 156, 158, 162, 160, 161, 173, 166, 161, 159, 162, 167, 168, 159, 158, 153, 154, 159.
  • Three coins are tossed simultaneously and each time the number of heads occurring is noted and it is given below. Present the data using the frequency distribution table. Data: 0, 1, 2, 2, 1, 2, 3, 1, 3, 0, 1, 3, 1, 1, 2, 2, 0, 1, 2, 1, 3, 0, 0, 1, 1, 2, 3, 2, 2, 0.

To learn more Maths-related concepts, stay tuned with BYJU’S – The Learning App and download the app today!

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

presentation of data slideshare

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.


U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Korean J Anesthesiol
  • v.70(3); 2017 Jun

Statistical data presentation

1 Department of Anesthesiology and Pain Medicine, Dongguk University Ilsan Hospital, Goyang, Korea.

Sangseok Lee

2 Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, Korea.

Data are usually collected in a raw format and thus the inherent information is difficult to understand. Therefore, raw data need to be summarized, processed, and analyzed. However, no matter how well manipulated, the information derived from the raw data should be presented in an effective format, otherwise, it would be a great loss for both authors and readers. In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and qualitative information. A graph is a very effective visual tool as it displays data at a glance, facilitates comparison, and can reveal trends and relationships within the data such as changes over time, frequency distribution, and correlation or relative share of a whole. Text, tables, and graphs for data and information presentation are very powerful communication tools. They can make an article easy to understand, attract and sustain the interest of readers, and efficiently present large amounts of complex information. Moreover, as journal editors and reviewers glance at these presentations before reading the whole article, their importance cannot be ignored.


Data are a set of facts, and provide a partial picture of reality. Whether data are being collected with a certain purpose or collected data are being utilized, questions regarding what information the data are conveying, how the data can be used, and what must be done to include more useful information must constantly be kept in mind.

Since most data are available to researchers in a raw format, they must be summarized, organized, and analyzed to usefully derive information from them. Furthermore, each data set needs to be presented in a certain way depending on what it is used for. Planning how the data will be presented is essential before appropriately processing raw data.

First, a question for which an answer is desired must be clearly defined. The more detailed the question is, the more detailed and clearer the results are. A broad question results in vague answers and results that are hard to interpret. In other words, a well-defined question is crucial for the data to be well-understood later. Once a detailed question is ready, the raw data must be prepared before processing. These days, data are often summarized, organized, and analyzed with statistical packages or graphics software. Data must be prepared in such a way they are properly recognized by the program being used. The present study does not discuss this data preparation process, which involves creating a data frame, creating/changing rows and columns, changing the level of a factor, categorical variable, coding, dummy variables, variable transformation, data transformation, missing value, outlier treatment, and noise removal.

We describe the roles and appropriate use of text, tables, and graphs (graphs, plots, or charts), all of which are commonly used in reports, articles, posters, and presentations. Furthermore, we discuss the issues that must be addressed when presenting various kinds of information, and effective methods of presenting data, which are the end products of research, and of emphasizing specific information.

Data Presentation

Data can be presented in one of the three ways:

–as text;

–in tabular form; or

–in graphical form.

Methods of presentation must be determined according to the data format, the method of analysis to be used, and the information to be emphasized. Inappropriately presented data fail to clearly convey information to readers and reviewers. Even when the same information is being conveyed, different methods of presentation must be employed depending on what specific information is going to be emphasized. A method of presentation must be chosen after carefully weighing the advantages and disadvantages of different methods of presentation. For easy comparison of different methods of presentation, let us look at a table ( Table 1 ) and a line graph ( Fig. 1 ) that present the same information [ 1 ]. If one wishes to compare or introduce two values at a certain time point, it is appropriate to use text or the written language. However, a table is the most appropriate when all information requires equal attention, and it allows readers to selectively look at information of their own interest. Graphs allow readers to understand the overall trend in data, and intuitively understand the comparison results between two groups. One thing to always bear in mind regardless of what method is used, however, is the simplicity of presentation.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g001.jpg

Values are expressed as mean ± SD. Group C: normal saline, Group D: dexmedetomidine. SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate. * P < 0.05 indicates a significant increase in each group, compared with the baseline values. † P < 0.05 indicates a significant decrease noted in Group D, compared with the baseline values. ‡ P < 0.05 indicates a significant difference between the groups.

Text presentation

Text is the main method of conveying information as it is used to explain results and trends, and provide contextual information. Data are fundamentally presented in paragraphs or sentences. Text can be used to provide interpretation or emphasize certain data. If quantitative information to be conveyed consists of one or two numbers, it is more appropriate to use written language than tables or graphs. For instance, information about the incidence rates of delirium following anesthesia in 2016–2017 can be presented with the use of a few numbers: “The incidence rate of delirium following anesthesia was 11% in 2016 and 15% in 2017; no significant difference of incidence rates was found between the two years.” If this information were to be presented in a graph or a table, it would occupy an unnecessarily large space on the page, without enhancing the readers' understanding of the data. If more data are to be presented, or other information such as that regarding data trends are to be conveyed, a table or a graph would be more appropriate. By nature, data take longer to read when presented as texts and when the main text includes a long list of information, readers and reviewers may have difficulties in understanding the information.

Table presentation

Tables, which convey information that has been converted into words or numbers in rows and columns, have been used for nearly 2,000 years. Anyone with a sufficient level of literacy can easily understand the information presented in a table. Tables are the most appropriate for presenting individual information, and can present both quantitative and qualitative information. Examples of qualitative information are the level of sedation [ 2 ], statistical methods/functions [ 3 , 4 ], and intubation conditions [ 5 ].

The strength of tables is that they can accurately present information that cannot be presented with a graph. A number such as “132.145852” can be accurately expressed in a table. Another strength is that information with different units can be presented together. For instance, blood pressure, heart rate, number of drugs administered, and anesthesia time can be presented together in one table. Finally, tables are useful for summarizing and comparing quantitative information of different variables. However, the interpretation of information takes longer in tables than in graphs, and tables are not appropriate for studying data trends. Furthermore, since all data are of equal importance in a table, it is not easy to identify and selectively choose the information required.

For a general guideline for creating tables, refer to the journal submission requirements 1) .

Heat maps for better visualization of information than tables

Heat maps help to further visualize the information presented in a table by applying colors to the background of cells. By adjusting the colors or color saturation, information is conveyed in a more visible manner, and readers can quickly identify the information of interest ( Table 2 ). Software such as Excel (in Microsoft Office, Microsoft, WA, USA) have features that enable easy creation of heat maps through the options available on the “conditional formatting” menu.

All numbers were created by the author. SBP: systolic blood pressure, DBP: diastolic blood pressure, MBP: mean blood pressure, HR: heart rate.

Graph presentation

Whereas tables can be used for presenting all the information, graphs simplify complex information by using images and emphasizing data patterns or trends, and are useful for summarizing, explaining, or exploring quantitative data. While graphs are effective for presenting large amounts of data, they can be used in place of tables to present small sets of data. A graph format that best presents information must be chosen so that readers and reviewers can easily understand the information. In the following, we describe frequently used graph formats and the types of data that are appropriately presented with each format with examples.

Scatter plot

Scatter plots present data on the x - and y -axes and are used to investigate an association between two variables. A point represents each individual or object, and an association between two variables can be studied by analyzing patterns across multiple points. A regression line is added to a graph to determine whether the association between two variables can be explained or not. Fig. 2 illustrates correlations between pain scoring systems that are currently used (PSQ, Pain Sensitivity Questionnaire; PASS, Pain Anxiety Symptoms Scale; PCS, Pain Catastrophizing Scale) and Geop-Pain Questionnaire (GPQ) with the correlation coefficient, R, and regression line indicated on the scatter plot [ 6 ]. If multiple points exist at an identical location as in this example ( Fig. 2 ), the correlation level may not be clear. In this case, a correlation coefficient or regression line can be added to further elucidate the correlation.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g002.jpg

Bar graph and histogram

A bar graph is used to indicate and compare values in a discrete category or group, and the frequency or other measurement parameters (i.e. mean). Depending on the number of categories, and the size or complexity of each category, bars may be created vertically or horizontally. The height (or length) of a bar represents the amount of information in a category. Bar graphs are flexible, and can be used in a grouped or subdivided bar format in cases of two or more data sets in each category. Fig. 3 is a representative example of a vertical bar graph, with the x -axis representing the length of recovery room stay and drug-treated group, and the y -axis representing the visual analog scale (VAS) score. The mean and standard deviation of the VAS scores are expressed as whiskers on the bars ( Fig. 3 ) [ 7 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g003.jpg

By comparing the endpoints of bars, one can identify the largest and the smallest categories, and understand gradual differences between each category. It is advised to start the x - and y -axes from 0. Illustration of comparison results in the x - and y -axes that do not start from 0 can deceive readers' eyes and lead to overrepresentation of the results.

One form of vertical bar graph is the stacked vertical bar graph. A stack vertical bar graph is used to compare the sum of each category, and analyze parts of a category. While stacked vertical bar graphs are excellent from the aspect of visualization, they do not have a reference line, making comparison of parts of various categories challenging ( Fig. 4 ) [ 8 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g004.jpg

A pie chart, which is used to represent nominal data (in other words, data classified in different categories), visually represents a distribution of categories. It is generally the most appropriate format for representing information grouped into a small number of categories. It is also used for data that have no other way of being represented aside from a table (i.e. frequency table). Fig. 5 illustrates the distribution of regular waste from operation rooms by their weight [ 8 ]. A pie chart is also commonly used to illustrate the number of votes each candidate won in an election.

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g005.jpg

Line plot with whiskers

A line plot is useful for representing time-series data such as monthly precipitation and yearly unemployment rates; in other words, it is used to study variables that are observed over time. Line graphs are especially useful for studying patterns and trends across data that include climatic influence, large changes or turning points, and are also appropriate for representing not only time-series data, but also data measured over the progression of a continuous variable such as distance. As can be seen in Fig. 1 , mean and standard deviation of systolic blood pressure are indicated for each time point, which enables readers to easily understand changes of systolic pressure over time [ 1 ]. If data are collected at a regular interval, values in between the measurements can be estimated. In a line graph, the x-axis represents the continuous variable, while the y-axis represents the scale and measurement values. It is also useful to represent multiple data sets on a single line graph to compare and analyze patterns across different data sets.

Box and whisker chart

A box and whisker chart does not make any assumptions about the underlying statistical distribution, and represents variations in samples of a population; therefore, it is appropriate for representing nonparametric data. AA box and whisker chart consists of boxes that represent interquartile range (one to three), the median and the mean of the data, and whiskers presented as lines outside of the boxes. Whiskers can be used to present the largest and smallest values in a set of data or only a part of the data (i.e. 95% of all the data). Data that are excluded from the data set are presented as individual points and are called outliers. The spacing at both ends of the box indicates dispersion in the data. The relative location of the median demonstrated within the box indicates skewness ( Fig. 6 ). The box and whisker chart provided as an example represents calculated volumes of an anesthetic, desflurane, consumed over the course of the observation period ( Fig. 7 ) [ 9 ].

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g006.jpg

Three-dimensional effects

Most of the recently introduced statistical packages and graphics software have the three-dimensional (3D) effect feature. The 3D effects can add depth and perspective to a graph. However, since they may make reading and interpreting data more difficult, they must only be used after careful consideration. The application of 3D effects on a pie chart makes distinguishing the size of each slice difficult. Even if slices are of similar sizes, slices farther from the front of the pie chart may appear smaller than the slices closer to the front ( Fig. 8 ).

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g008.jpg

Drawing a graph: example

Finally, we explain how to create a graph by using a line graph as an example ( Fig. 9 ). In Fig. 9 , the mean values of arterial pressure were randomly produced and assumed to have been measured on an hourly basis. In many graphs, the x- and y-axes meet at the zero point ( Fig. 9A ). In this case, information regarding the mean and standard deviation of mean arterial pressure measurements corresponding to t = 0 cannot be conveyed as the values overlap with the y-axis. The data can be clearly exposed by separating the zero point ( Fig. 9B ). In Fig. 9B , the mean and standard deviation of different groups overlap and cannot be clearly distinguished from each other. Separating the data sets and presenting standard deviations in a single direction prevents overlapping and, therefore, reduces the visual inconvenience. Doing so also reduces the excessive number of ticks on the y-axis, increasing the legibility of the graph ( Fig. 9C ). In the last graph, different shapes were used for the lines connecting different time points to further allow the data to be distinguished, and the y-axis was shortened to get rid of the unnecessary empty space present in the previous graphs ( Fig. 9D ). A graph can be made easier to interpret by assigning each group to a different color, changing the shape of a point, or including graphs of different formats [ 10 ]. The use of random settings for the scale in a graph may lead to inappropriate presentation or presentation of data that can deceive readers' eyes ( Fig. 10 ).

An external file that holds a picture, illustration, etc.
Object name is kjae-70-267-g009.jpg

Owing to the lack of space, we could not discuss all types of graphs, but have focused on describing graphs that are frequently used in scholarly articles. We have summarized the commonly used types of graphs according to the method of data analysis in Table 3 . For general guidelines on graph designs, please refer to the journal submission requirements 2) .


Text, tables, and graphs are effective communication media that present and convey data and information. They aid readers in understanding the content of research, sustain their interest, and effectively present large quantities of complex information. As journal editors and reviewers will scan through these presentations before reading the entire text, their importance cannot be disregarded. For this reason, authors must pay as close attention to selecting appropriate methods of data presentation as when they were collecting data of good quality and analyzing them. In addition, having a well-established understanding of different methods of data presentation and their appropriate use will enable one to develop the ability to recognize and interpret inappropriately presented data or data presented in such a way that it deceives readers' eyes [ 11 ].


Output for presentation.

Discovery and communication are the two objectives of data visualization. In the discovery phase, various types of graphs must be tried to understand the rough and overall information the data are conveying. The communication phase is focused on presenting the discovered information in a summarized form. During this phase, it is necessary to polish images including graphs, pictures, and videos, and consider the fact that the images may look different when printed than how appear on a computer screen. In this appendix, we discuss important concepts that one must be familiar with to print graphs appropriately.

The KJA asks that pictures and images meet the following requirement before submission 3)

“Figures and photographs should be submitted as ‘TIFF’ files. Submit files of figures and photographs separately from the text of the paper. Width of figure should be 84 mm (one column). Contrast of photos or graphs should be at least 600 dpi. Contrast of line drawings should be at least 1,200 dpi. The Powerpoint file (ppt, pptx) is also acceptable.”

Unfortunately, without sufficient knowledge of computer graphics, it is not easy to understand the submission requirement above. Therefore, it is necessary to develop an understanding of image resolution, image format (bitmap and vector images), and the corresponding file specifications.

Resolution is often mentioned to describe the quality of images containing graphs or CT/MRI scans, and video files. The higher the resolution, the clearer and closer to reality the image is, while the opposite is true for low resolutions. The most representative unit used to describe a resolution is “dpi” (dots per inch): this literally translates to the number of dots required to constitute 1 inch. The greater the number of dots, the higher the resolution. The KJA submission requirements recommend 600 dpi for images, and 1,200 dpi 4) for graphs. In other words, resolutions in which 600 or 1,200 dots constitute one inch are required for submission.

There are requirements for the horizontal length of an image in addition to the resolution requirements. While there are no requirements for the vertical length of an image, it must not exceed the vertical length of a page. The width of a column on one side of a printed page is 84 mm, or 3.3 inches (84/25.4 mm ≒ 3.3 inches). Therefore, a graph must have a resolution in which 1,200 dots constitute 1 inch, and have a width of 3.3 inches.

Bitmap and Vector

Methods of image construction are important. Bitmap images can be considered as images drawn on section paper. Enlarging the image will enlarge the picture along with the grid, resulting in a lower resolution; in other words, aliasing occurs. On the other hand, reducing the size of the image will reduce the size of the picture, while increasing the resolution. In other words, resolution and the size of an image are inversely proportionate to one another in bitmap images, and it is a drawback of bitmap images that resolution must be considered when adjusting the size of an image. To enlarge an image while maintaining the same resolution, the size and resolution of the image must be determined before saving the image. An image that has already been created cannot avoid changes to its resolution according to changes in size. Enlarging an image while maintaining the same resolution will increase the number of horizontal and vertical dots, ultimately increasing the number of pixels 5) of the image, and the file size. In other words, the file size of a bitmap image is affected by the size and resolution of the image (file extensions include JPG [JPEG] 6) , PNG 7) , GIF 8) , and TIF [TIFF] 9) . To avoid this complexity, the width of an image can be set to 4 inches and its resolution to 900 dpi to satisfy the submission requirements of most journals [ 12 ].

Vector images overcome the shortcomings of bitmap images. Vector images are created based on mathematical operations of line segments and areas between different points, and are not affected by aliasing or pixelation. Furthermore, they result in a smaller file size that is not affected by the size of the image. They are commonly used for drawings and illustrations (file extensions include EPS 10) , CGM 11) , and SVG 12) ).

Finally, the PDF 13) is a file format developed by Adobe Systems (Adobe Systems, CA, USA) for electronic documents, and can contain general documents, text, drawings, images, and fonts. They can also contain bitmap and vector images. While vector images are used by researchers when working in Powerpoint, they are saved as 960 × 720 dots when saved in TIFF format in Powerpoint. This results in a resolution that is inappropriate for printing on a paper medium. To save high-resolution bitmap images, the image must be saved as a PDF file instead of a TIFF, and the saved PDF file must be imported into an imaging processing program such as Photoshop™(Adobe Systems, CA, USA) to be saved in TIFF format [ 12 ].

1) Instructions to authors in KJA; section 5-(9) Table; https://ekja.org/index.php?body=instruction

2) Instructions to Authors in KJA; section 6-1)-(10) Figures and illustrations in Manuscript preparation; https://ekja.org/index.php?body=instruction

3) Instructions to Authors in KJA; section 6-1)-(10) Figures and illustrations in Manuscript preparation; https://ekja.org/index.php?body=instruction

4) Resolution; in KJA, it is represented by “contrast.”

5) Pixel is a minimum unit of an image and contains information of a dot and color. It is derived by multiplying the number of vertical and horizontal dots regardless of image size. For example, Full High Definition (FHD) monitor has 1920 × 1080 dots ≒ 2.07 million pixel.

6) Joint Photographic Experts Group.

7) Portable Network Graphics.

8) Graphics Interchange Format

9) Tagged Image File Format; TIFF

10) Encapsulated PostScript.

11) Computer Graphics Metafile.

12) Scalable Vector Graphics.

13) Portable Document Format.

concepts of data and information

Concepts of data and information

Jul 26, 2014

460 likes | 1.21k Views

Concepts of data and information. Topics Covered: Data Data Processing Information Examples of data and information Difference between data and information Characteristics of information Levels of information Classification of information Types of information. Data

Share Presentation

  • industry sales
  • data processing
  • middle level management
  • long term planning


Presentation Transcript

Topics Covered: Data Data Processing Information Examples of data and information Difference between data and information Characteristics of information Levels of information Classification of information Types of information

Data • Data is collection of facts, numbers, or text that can be processed by a computer. • Data is in raw form that is unorganized and not directly useful. • Data can be about an item, person, organization or place.

Today, organizations are accumulating vast and growing amounts of data in different formats and different databases. This includes: • operational or transactional data such as, sales, cost, inventory, payroll, and accounting • non-operational data such as industry sales, forecast data, and macro economic data • meta data - data about the data itself, such as logical database design or data dictionary definitions

Data Processing: It is the process of converting the data into directly useful form by applying some manipulations and calculations. Data processing can be performed manually or electronically. As an example in business numerous data is collected concerning an aspect of its operations and that this multitude of data must be presented in meaningful, easy-to-access presentations for the managers who must then use that information to increase revenue or to decrease cost. That conversion and presentation of data as information is typically performed by a data processing application.

Information: After processing data may be converted into directly useful form or it may require further processing to get the final result. It is an organized collection of numbers, alphabets, symbols, figures or combination of these. Data Data Processing Information Instruction

Examples of Data and Information: • In case finding sum of two numbers say 10 and 20, 10 & 20 are data, + is operation/processing, 30 is information. • Records of employee containing name, basic pay, leaves taken etc. act as data. After processing this data, salary slip is generated which act as information. • An invoice has customer’s name, address, order number, quantity ordered, unit price of each item and the total amount of items sold this is data and the invoice becomes information.

Difference between Data and Information:

Information: It is the processed data on which decisions and actions are based. • Characteristics of Information: • Accuracy:Information should be accurate. Accuracy is the ratio of correct information to the total amount of information produced over a time period. • Form: Information is of value if it is provided to the user in the form it is useful and best understood. • Relevance:It refers to the current utility of information in decision making or problem solving. The information is of value if it is relevant.

Timeliness: It means that information should be made available when it is needed for a particular purpose and not before and in any case not after. • Completeness: Information is considered as complete if it tells its users all what he wishes to know about a particular problem. • Purpose: Information must have purpose at the time it is transmitted to a person or machine otherwise it is simply data. • Reliability: The information should be reliable and the external source should be relied upon. • Validity: It measures the closeness of the information to the purpose.

Levels of information: Five levels of information: • International level: • Maintained at world level. • e.g. Information of the population maintained at world level, stock market rates at world level . • National level: • Maintained at national level. • Mainly related to country policies. • e.g. Population trend of the country, Energy resources available at national level.

Corporate level: • Maintained at organization level. • e.g. Information of sale analysis of the company, list of employees in the company. • Departmental level: • Information which represents working of department. • Mainly related to country policies. • e.g. Population trend of the country. • Individual information: • Information related to an individual. • e.g. name of employee, basic pay and facilities given to employee

Classification of information: • Action/Non-action information: Action information: • Action is performed on information received. Non-Action information: • No action is performed. Maintained as data only. • Recurring/Non-recurring information: Recurring information: • Generated at regular intervals. e.g. Periodic reports. Non-recurring information: • Not obtained regularly. This is used only for special purposes.

Documentary/Non-documentary information: Documentary information: • Maintained in written form. • Can be obtained on the storage devices. Non-documentary information: • Transmitted in oral form or received by observation. • Internal/External information: Internal information: • Generated and used within the organization. External information: • Obtained from outside the organization.

Historical/Future information: Historical information: • Information based on some past events. Future information: • Information based on prediction.

Types of information: Three types: • Operational information: • Required for implementing and regulating operational plans within the organization. • Available within the organization. • e.g. Daily schedules, assignments of jobs etc. • Tactical information: • Required for planning the working of the organization. • Required by middle level management. • e.g. information related to sales analysis

Strategic information: • Required for long term planning and deciding the working of the organization. • e.g. Planning to change the area of working.

  • More by User

Overview of Information Technology Concepts

Overview of Information Technology Concepts

Overview of Information Technology Concepts. Instructor: Prof. Ilyoo B. Hong. Contents. Business environment and IT Data Vs. information Roles of IT in business corporations What is MIS?. Business environment &amp; IT. Technological. Innovations Obscelence EC Info. overload. Market.

307 views • 8 slides

Basic Concepts of Information Assurance

Basic Concepts of Information Assurance

Basic Concepts of Information Assurance. Objective. To provide background on the basic concepts of information assurance that create a framework of how to protect information systems. Basic Security Concepts.

391 views • 8 slides

Information Technology Concepts

Information Technology Concepts

Information Technology Concepts. Database. ทัศนวรรณ ศูนย์กลาง ภาควิชาคอมพิวเตอร์ คณะวิทยาศาสตร์. เนื้อหาบรรยาย. Overview of Information Systems (IS) Information Technology Concepts Business and Specialized IS System Development IS in Business and Society. Components of an IS.

700 views • 51 slides

Foundational concepts of data services

Foundational concepts of data services

Foundational concepts of data services. Collections Services Preservation Access. Collections. Collections are a selection of data reflecting the interests and needs of a specific user community. Collections enable preservation. Collections enable service. Collections are an asset.

312 views • 13 slides

Information Modeling Concepts

Information Modeling Concepts

Federal Health Information Modeling &amp; Standards (FHIMS) Work Group (WG) - Laboratory, Orders &amp; Observations (Lab-OO) : Information Exchanges and Electronic Health Records (EHR). Business cases and actors for Lab-EHR: patient-consumer and products.

100 views • 1 slides

Data and Information

Data and Information

Data and Information. How and why do we organize data? Differences between data and information? What about knowledge?. Daily Plan: What will we do today?. Pithy aphorisms to remember as we think and code Sometimes from “famous people” Discussion of Java maps, with code examples

321 views • 20 slides

Concepts of information literacy

Concepts of information literacy

Concepts of information literacy. What does information literacy mean to you?. Discuss in pairs 15 minutes One person from each pair will report back. Terms used in libraries. Library skills Library instruction Bibliographic instruction Information skills. Information literacy.

478 views • 25 slides



CONCEPTS OF INFORMATION COMMUNICATION TECHNOLOGY. सूचना एवं संचार तकनीकी की अवधारणाऐं. Skelton of Discussion.

1.06k views • 44 slides

Information and Data

Information and Data

Information and Data. Grade 6 Athra Sultan (IT Teacher). Information and Data. What is your Favorite thing to do? Read a book Play a sport Watch TV Use the internet By group: Collect the answers from your classmates. Draw the suitable table to collect data. Information and Data.

194 views • 4 slides

Data and information

Data and information

Data and information. Grade 8 Mrs Asfia Rahman. Manual information Syste m. A system which does not use any computer devices. All data would be kept in other ways, mainly paper.

284 views • 13 slides

Analysis of Data – 	Basic Concepts

Analysis of Data – Basic Concepts

14. Analysis of Data – Basic Concepts. 中央大學 . 資訊管理系 范錚強 mailto: [email protected] 2014.05 updated. Descriptive Statistics 描述性統計. 描述樣本的特性 主要要呈現的是: 你的研究樣本,和母體究竟有什麼差異?. Exploratory Data Analysis. Exploratory. Confirmatory. 一些探索性的資料呈現 (Ch.16). Scatter-plot Bar Chart, Pie chart

680 views • 54 slides

Concepts of Information Warfare

Concepts of Information Warfare

Concepts of Information Warfare. Professor Philip M. Taylor, Institute of Communications Studies, University of Leeds, UK. Oslo, November 2006. INFO-PROPAGANDA.

779 views • 43 slides



DATA, VARIABLES, AND CONCEPTS. READINGS. Pollock, Essentials , preface, introduction, and ch. 1 Course Reader, Selection 1 (Smith, Cycles of Electoral Democracy). OUTLINE: THE PROCESS OF MEASUREMENT. The Analytical Challenge: Uncovering Relationships between Concepts

232 views • 13 slides

Data and Information

Data and Information. Difference between Data and Information. What is Data? Age, Height, Weight, Score, … What is Information? The average mark of ICT in F.4 The average height of students in 4A… Can you guess what is the difference between data and information? (P.9). Types of Data.

288 views • 18 slides

Information Technology Concepts

Information Technology Concepts. Hardware: Input, Processing and Output. Hardware Components. Central Processing Unit Primary Storage (main memory; memory) Secondary Storage Input Devices Output Devices. Hardware Components. Hardware Components. Control Unit

854 views • 67 slides

Vital Concepts of Data Mining

Vital Concepts of Data Mining

Data mining can be understood as extraction of data. It is subject-oriented and integrated from various sources, as of flat files, relational databases and online records. Certain conventions are to be followed while integrating scattered data into useful data. Data mining services are vital for business research services also. Both walk hand and hand; therefore, these would be concluded as inter-related. Data warehouse’ enterprise, data mart and virtual warehouse of data are its three models.

247 views • 8 slides

Data and Information

238 views • 20 slides

Data and Information

Data and Information. Data and Information . Differences between data and information Data collection and data preparation Sources of error, data validity and data control Processing data, including search, sorting, merging

358 views • 32 slides

Concepts Data, Information And Business Intelligence

Concepts Data, Information And Business Intelligence

Know the relationship between data, information, business intelligence (BI), and knowledge? If you want to hire an expert for your academics then do hire with the Online Assignment Expert who will assist you in completing the assignments. For more info - https://www.onlineassignmentexpert.com/it-management-assignment-help.htm

78 views • 7 slides


  1. Presentation of data ppt

    presentation of data slideshare

  2. Big Data Analytics PowerPoint Template Designs

    presentation of data slideshare

  3. Presentation of data ppt

    presentation of data slideshare

  4. Slideshare Presentation of Qualitative Data

    presentation of data slideshare

  5. 3 Beginner-Friendly Data Visualization Tricks

    presentation of data slideshare

  6. Types of Data PowerPoint Presentation Slides

    presentation of data slideshare


  1. Presentation of Data |Chapter 2 |Statistics

  2. Шаблоны разработки. ООП и основы UML

  3. What is big data.Big Data Analytics Powerpoint Presentation Slide

  4. Semantic Annotation of ACM research papers

  5. Data presentation methods (lecture 7)

  6. Presentation of data ch 2 lec 1


  1. Presentation of data

    Illustration TABLE HEADING BOX HEAD BODY STUBS FOOTNOTES SOURCE. Table 1: Total. GRAPHICAL PRESENTATION KINDS OF. FIGURE 1: SELECTED. 62% 24% 14% FIGURE 2.THREE LEADING. 0 20 40 60 80 100 120 1998 2000 2002. SYSTEMATIC RANDOM SAMPLING FIGURE. Presentation of data - Download as a PDF or view online for free.

  2. presentation of data

    8. Methods of presentation of data The first step in statistical analysis is to present data in an easy way to be understood. The two basic ways for data presentation are Tabulation Charts and diagram. 9. Rules and guidelines for tabular presentation 1. Table must be numbered 2.

  3. Understanding Data Presentations (Guide + Examples)

    A data presentation is a slide deck that aims to disclose quantitative information to an audience through the use of visual formats and narrative techniques derived from data analysis, making complex data understandable and actionable. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on ...

  4. 1.3: Presentation of Data

    This page titled 1.3: Presentation of Data is shared under a CC BY-NC-SA 3.0 license and was authored, remixed, and/or curated by Anonymous via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request. In this book we will use two formats for presenting data sets.

  5. Golden rules for Creating a Data Visualization PowerPoint

    Find inspiration for data visualization on SlideShare. If you are looking for inspiration when creating a PowerPoint presentation, SlideShare is a vast repository with a host of useful ideas and designs, especially in the field of data visualization. SlideShare allows users to upload slide files including ppt, pdf and keynote format - these files can be viewed on any device and shared with ...

  6. Most Popular Slideshare Presentations on Data Science

    Top SlideShare data science presentations provide a unique view on topics like data science management, using Python and NumPy in your data science project, and leveraging data science for enterprise big data. By Grant Marshall, Nov 2014. Slideshare is a platform for uploading, annotating, sharing, and commenting on slide-based presentations.

  7. How to Take Your Presentation of Data Storytelling to the Next Level

    Borders, gridlines, background colors, and other extra decorations should take a backseat to the points, bars, or lines that actually represent the data. Here's a few hacks to help you out: Lighten or remove gridlines. Avoid borders and outlines, remove backgrounds. Get rid of 3D, shades and other 'special' effects.

  8. 20 Free Data Presentation PPT and Google Slides Templates

    The best templates for data presentations will make your data come to life. This is where this 6-slide template pack comes in. It's not only designed to make your data more understandable. But the good thing is, you can use this template for many different kinds of presentations. Whether you're doing a presentation for a job interview, or a ...

  9. Analysis, Presentation, and Interpretation of Data

    Exercises. Analysis • Analysis is the process of breaking up the whole study into its constituent parts of categories according to the specific questions under the statement of the problem. • Each constituent part may be subdivided into its essential categories. • Analysis usually precedes presentation.

  10. 7 Popular Data Science Presentations On SlideShare

    7 Popular Data Science Presentations On SlideShare. Published on February 14, 2020. by Rohit Yadav. Presentations are a go-to approach to introduce new ideas or explaining new techniques in technology with text and infographics to engage an audience and retain attention. Over the years, presentations have catered to the needs of people who want ...

  11. My recommendation of Slideshare Presentations in Data Science

    data science Data science competitions machine learning presentation slideshare. Kunal Jain 11 Dec 2015. Kunal is a post graduate from IIT Bombay in Aerospace Engineering. He has spent more than 10 years in field of Data Science. His work experience ranges from mature markets like UK to a developing market like India.

  12. Presentation of Data (Methods and Examples)

    Hence, the presentation of data in this form simplifies the data and it helps to enable the observer to understand the main feature of data at a glance. Practice Problems. The heights of 50 students (in cms) are given below. Present the data using the grouped frequency table by taking the class intervals as 160 -165, 165 -170, and so on.

  13. PDF Chapter 2 Data Collection and Presentation

    2.3 Data Presentation: Tables All data tables have four elements: a caption, column labels, row labels, and cells. The caption describes the information that is contained in the table. The column labels identify the information in the columns, such as the gross national product, the inflation rate, or the Dow Jones Industrial Average.

  14. Statistical data presentation

    In this article, the techniques of data and information presentation in textual, tabular, and graphical forms are introduced. Text is the principal method for explaining findings, outlining trends, and providing contextual information. A table is best suited for representing individual information and represents both quantitative and ...

  15. Most Popular Slideshare Presentations on Data Mining

    SlideShare data mining presentations cover many topics, offering a unique way of consuming data mining content and exploring a variety of slideshows, both narrow and broad in scope. By Grant Marshall, Nov 2014 Slideshare is a platform for uploading, annotating, sharing, and commenting on slide-based presentations. The platform has been around ...

  16. How to Download (PPT) Files From SlideShare Online For Free

    Once the download is finished, you'll have a hard copy of the SlideShare presentation! Now, you can view it offline and more. And even if the slides vanish from SlideShare, you'll have a copy of them forever. 3. How to Clip a SlideShare Slide. Instead of downloading an entire SlideShare presentation, you can save a single slide.

  17. PDF Chapter 2

    Keep adding until there are k classes Step 5: Find the upper class limit Step 7: Find the class boundaries by subtracting 0.5 from each lower class limit and adding 0.5 to the UCL as shown. step 8:Tally the data step 9: Write the numeric values for the frequency column Step 10: Find cumulative frequency.

  18. PPT

    Presentation Transcript. Data • Data is collection of facts, numbers, or text that can be processed by a computer. • Data is in raw form that is unorganized and not directly useful. • Data can be about an item, person, organization or place. Today, organizations are accumulating vast and growing amounts of data in different formats and ...