U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.


Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.


A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12


Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10


Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1


Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.


To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg


  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23


  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27


  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Is Quantitative Research? | Definition & Methods

What Is Quantitative Research? | Definition & Methods

Published on 4 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analysing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalised to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Prevent plagiarism, run a free check.

Once data is collected, you may need to process it before it can be analysed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualise your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalisations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardise data collection and generalise findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardised data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analysed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalised and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardised procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). What Is Quantitative Research? | Definition & Methods. Scribbr. Retrieved 21 May 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: May 13, 2024 12:01 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

what is quantitative research and examples

  • Leigh A. Wilson 2 , 3  

4407 Accesses

4 Citations

Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. High-quality quantitative research is characterized by the attention given to the methods and the reliability of the tools used to collect the data. The ability to critique research in a systematic way is an essential component of a health professional’s role in order to deliver high quality, evidence-based healthcare. This chapter is intended to provide a simple overview of the way new researchers and health practitioners can understand and employ quantitative methods. The chapter offers practical, realistic guidance in a learner-friendly way and uses a logical sequence to understand the process of hypothesis development, study design, data collection and handling, and finally data analysis and interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

what is quantitative research and examples

Writing Quantitative Research Studies

what is quantitative research and examples

Qualitative Research Methods

Babbie ER. The practice of social research. 14th ed. Belmont: Wadsworth Cengage; 2016.

Google Scholar  

Descartes. Cited in Halverston, W. (1976). In: A concise introduction to philosophy, 3rd ed. New York: Random House; 1637.

Doll R, Hill AB. The mortality of doctors in relation to their smoking habits. BMJ. 1954;328(7455):1529–33. https://doi.org/10.1136/bmj.328.7455.1529 .

Article   Google Scholar  

Liamputtong P. Research methods in health: foundations for evidence-based practice. 3rd ed. Melbourne: Oxford University Press; 2017.

McNabb DE. Research methods in public administration and nonprofit management: quantitative and qualitative approaches. 2nd ed. New York: Armonk; 2007.

Merriam-Webster. Dictionary. http://www.merriam-webster.com . Accessed 20th December 2017.

Olesen Larsen P, von Ins M. The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index. Scientometrics. 2010;84(3):575–603.

Pannucci CJ, Wilkins EG. Identifying and avoiding bias in research. Plast Reconstr Surg. 2010;126(2):619–25. https://doi.org/10.1097/PRS.0b013e3181de24bc .

Petrie A, Sabin C. Medical statistics at a glance. 2nd ed. London: Blackwell Publishing; 2005.

Portney LG, Watkins MP. Foundations of clinical research: applications to practice. 3rd ed. New Jersey: Pearson Publishing; 2009.

Sheehan J. Aspects of research methodology. Nurse Educ Today. 1986;6:193–203.

Wilson LA, Black DA. Health, science research and research methods. Sydney: McGraw Hill; 2013.

Download references

Author information

Authors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Leigh A. Wilson

Faculty of Health Science, Discipline of Behavioural and Social Sciences in Health, University of Sydney, Lidcombe, NSW, Australia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Leigh A. Wilson .

Editor information

Editors and affiliations.

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Wilson, L.A. (2019). Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_54

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_54

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Reviews / Why join our community?
  • For companies
  • Frequently asked questions

Quantitative Research

What is Quantitative Research?

Quantitative research is the methodology which researchers use to test theories about people’s attitudes and behaviors based on numerical and statistical evidence. Researchers sample a large number of users (e.g., through surveys) to indirectly obtain measurable, bias-free data about users in relevant situations.

“Quantification clarifies issues which qualitative analysis leaves fuzzy. It is more readily contestable and likely to be contested. It sharpens scholarly discussion, sparks off rival hypotheses, and contributes to the dynamics of the research process.” — Angus Maddison, Notable scholar of quantitative macro-economic history
  • Transcript loading…

See how quantitative research helps reveal cold, hard facts about users which you can interpret and use to improve your designs.

Use Quantitative Research to Find Mathematical Facts about Users

Quantitative research is a subset of user experience (UX) research . Unlike its softer, more individual-oriented “counterpart”, qualitative research , quantitative research means you collect statistical/numerical data to draw generalized conclusions about users’ attitudes and behaviors . Compare and contrast quantitative with qualitative research, below:

Qualitative Research

You Aim to Determine

The “what”, “where” & “when” of the users’ needs & problems – to help keep your project’s focus on track during development

The “why” – to get behind how users approach their problems in their world

Highly structured (e.g., surveys) – to gather data about what users do & find patterns in large user groups

Loosely structured (e.g., contextual inquiries) – to learn why users behave how they do & explore their opinions

Number of Representative Users

Ideally 30+

Often around 5

Level of Contact with Users

Less direct & more remote (e.g., analytics)

More direct & less remote (e.g., usability testing to examine users’ stress levels when they use your design)


Reliable – if you have enough test users

Less reliable, with need for great care with handling non-numerical data (e.g., opinions), as your own opinions might influence findings

Quantitative research is often best done from early on in projects since it helps teams to optimally direct product development and avoid costly design mistakes later. As you typically get user data from a distance—i.e., without close physical contact with users—also applying qualitative research will help you investigate why users think and feel the ways they do. Indeed, in an iterative design process quantitative research helps you test the assumptions you and your design team develop from your qualitative research. Regardless of the method you use, with proper care you can gather objective and unbiased data – information which you can complement with qualitative approaches to build a fuller understanding of your target users. From there, you can work towards firmer conclusions and drive your design process towards a more realistic picture of how target users will ultimately receive your product.

what is quantitative research and examples

Quantitative analysis helps you test your assumptions and establish clearer views of your users in their various contexts.

Quantitative Research Methods You Can Use to Guide Optimal Designs

There are many quantitative research methods, and they help uncover different types of information on users. Some methods, such as A/B testing, are typically done on finished products, while others such as surveys could be done throughout a project’s design process. Here are some of the most helpful methods:

A/B testing – You test two or more versions of your design on users to find the most effective. Each variation differs by just one feature and may or may not affect how users respond. A/B testing is especially valuable for testing assumptions you’ve drawn from qualitative research. The only potential concerns here are scale—in that you’ll typically need to conduct it on thousands of users—and arguably more complexity in terms of considering the statistical significance involved.

Analytics – With tools such as Google Analytics, you measure metrics (e.g., page views, click-through rates) to build a picture (e.g., “How many users take how long to complete a task?”).

Desirability Studies – You measure an aspect of your product (e.g., aesthetic appeal) by typically showing it to participants and asking them to select from a menu of descriptive words. Their responses can reveal powerful insights (e.g., 78% associate the product/brand with “fashionable”).

Surveys and Questionnaires – When you ask for many users’ opinions, you will gain massive amounts of information. Keep in mind that you’ll have data about what users say they do, as opposed to insights into what they do . You can get more reliable results if you incentivize your participants well and use the right format.

Tree Testing – You remove the user interface so users must navigate the site and complete tasks using links alone. This helps you see if an issue is related to the user interface or information architecture.

Another powerful benefit of conducting quantitative research is that you can keep your stakeholders’ support with hard facts and statistics about your design’s performance—which can show what works well and what needs improvement—and prove a good return on investment. You can also produce reports to check statistics against different versions of your product and your competitors’ products.

Most quantitative research methods are relatively cheap. Since no single research method can help you answer all your questions, it’s vital to judge which method suits your project at the time/stage. Remember, it’s best to spend appropriately on a combination of quantitative and qualitative research from early on in development. Design improvements can be costly, and so you can estimate the value of implementing changes when you get the statistics to suggest that these changes will improve usability. Overall, you want to gather measurements objectively, where your personality, presence and theories won’t create bias.

Learn More about Quantitative Research

Take our User Research course to see how to get the most from quantitative research.

See how quantitative research methods fit into your design research landscape .

This insightful piece shows the value of pairing quantitative with qualitative research .

Find helpful tips on combining quantitative research methods in mixed methods research .

Questions related to Quantitative Research

Qualitative and quantitative research differ primarily in the data they produce. Quantitative research yields numerical data to test hypotheses and quantify patterns. It's precise and generalizable. Qualitative research, on the other hand, generates non-numerical data and explores meanings, interpretations, and deeper insights. Watch our video featuring Professor Alan Dix on different types of research methods.

This video elucidates the nuances and applications of both research types in the design field.

In quantitative research, determining a good sample size is crucial for the reliability of the results. William Hudson, CEO of Syntagm, emphasizes the importance of statistical significance with an example in our video. 

He illustrates that even with varying results between design choices, we need to discern whether the differences are statistically significant or products of chance. This ensures the validity of the results, allowing for more accurate interpretations. Statistical tools like chi-square tests can aid in analyzing the results effectively. To delve deeper into these concepts, take William Hudson’s Data-Driven Design: Quantitative UX Research Course . 

Quantitative research is crucial as it provides precise, numerical data that allows for high levels of statistical inference. Our video from William Hudson, CEO of Syntagm, highlights the importance of analytics in examining existing solutions. 

Quantitative methods, like analytics and A/B testing, are pivotal for identifying areas for improvement, understanding user behaviors, and optimizing user experiences based on solid, empirical evidence. This empirical nature ensures that the insights derived are reliable, allowing for practical improvements and innovations. Perhaps most importantly, numerical data is useful to secure stakeholder buy-in and defend design decisions and proposals. Explore this approach in our Data-Driven Design: Quantitative Research for UX Research course and learn from William Hudson’s detailed explanations of when and why to use analytics in the research process.

After establishing initial requirements, statistical data is crucial for informed decisions through quantitative research. William Hudson, CEO of Syntagm, sheds light on the role of quantitative research throughout a typical project lifecycle in this video:

 During the analysis and design phases, quantitative research helps validate user requirements and understand user behaviors. Surveys and analytics are standard tools, offering insights into user preferences and design efficacy. Quantitative research can also be used in early design testing, allowing for optimal design modifications based on user interactions and feedback, and it’s fundamental for A/B and multivariate testing once live solutions are available.

To write a compelling quantitative research question:

Create clear, concise, and unambiguous questions that address one aspect at a time.

Use common, short terms and provide explanations for unusual words.

Avoid leading, compound, and overlapping queries and ensure that questions are not vague or broad.

According to our video by William Hudson, CEO of Syntagm, quality and respondent understanding are vital in forming good questions. 

He emphasizes the importance of addressing specific aspects and avoiding intimidating and confusing elements, such as extensive question grids or ranking questions, to ensure participant engagement and accurate responses. For more insights, see the article Writing Good Questions for Surveys .

Survey research is typically quantitative, collecting numerical data and statistical analysis to make generalizable conclusions. However, it can also have qualitative elements, mainly when it includes open-ended questions, allowing for expressive responses. Our video featuring the CEO of Syntagm, William Hudson, provides in-depth insights into when and how to effectively utilize surveys in the product or service lifecycle, focusing on user satisfaction and potential improvements.

He emphasizes the importance of surveys in triangulating data to back up qualitative research findings, ensuring we have a complete understanding of the user's requirements and preferences.

Descriptive research focuses on describing the subject being studied and getting answers to questions like what, where, when, and who of the research question. However, it doesn’t include the answers to the underlying reasons, or the “why” behind the answers obtained from the research. We can use both f qualitative and quantitative methods to conduct descriptive research. Descriptive research does not describe the methods, but rather the data gathered through the research (regardless of the methods used).

When we use quantitative research and gather numerical data, we can use statistical analysis to understand relationships between different variables. Here’s William Hudson, CEO of Syntagm with more on correlation and how we can apply tests such as Pearson’s r and Spearman Rank Coefficient to our data.

This helps interpret phenomena such as user experience by analyzing session lengths and conversion values, revealing whether variables like time spent on a page affect checkout values, for example.

Random Sampling: Each individual in the population has an equitable opportunity to be chosen, which minimizes biases and simplifies analysis.

Systematic Sampling: Selecting every k-th item from a list after a random start. It's simpler and faster than random sampling when dealing with large populations.

Stratified Sampling: Segregate the population into subgroups or strata according to comparable characteristics. Then, samples are taken randomly from each stratum.

Cluster Sampling: Divide the population into clusters and choose a random sample.

Multistage Sampling: Various sampling techniques are used at different stages to collect detailed information from diverse populations.

Convenience Sampling: The researcher selects the sample based on availability and willingness to participate, which may only represent part of the population.

Quota Sampling: Segment the population into subgroups, and samples are non-randomly selected to fulfill a predetermined quota from each subset.

These are just a few techniques, and choosing the right one depends on your research question, discipline, resource availability, and the level of accuracy required. In quantitative research, there isn't a one-size-fits-all sampling technique; choosing a method that aligns with your research goals and population is critical. However, a well-planned strategy is essential to avoid wasting resources and time, as highlighted in our video featuring William Hudson, CEO of Syntagm.

He emphasizes the importance of recruiting participants meticulously, ensuring their engagement and the quality of their responses. Accurate and thoughtful participant responses are crucial for obtaining reliable results. William also sheds light on dealing with failing participants and scrutinizing response quality to refine the outcomes.

The 4 types of quantitative research are Descriptive, Correlational, Causal-Comparative/Quasi-Experimental, and Experimental Research. Descriptive research aims to depict ‘what exists’ clearly and precisely. Correlational research examines relationships between variables. Causal-comparative research investigates the cause-effect relationship between variables. Experimental research explores causal relationships by manipulating independent variables. To gain deeper insights into quantitative research methods in UX, consider enrolling in our Data-Driven Design: Quantitative Research for UX course.

The strength of quantitative research is its ability to provide precise numerical data for analyzing target variables.This allows for generalized conclusions and predictions about future occurrences, proving invaluable in various fields, including user experience. William Hudson, CEO of Syntagm, discusses the role of surveys, analytics, and testing in providing objective insights in our video on quantitative research methods, highlighting the significance of structured methodologies in eliciting reliable results.

To master quantitative research methods, enroll in our comprehensive course, Data-Driven Design: Quantitative Research for UX . 

This course empowers you to leverage quantitative data to make informed design decisions, providing a deep dive into methods like surveys and analytics. Whether you’re a novice or a seasoned professional, this course at Interaction Design Foundation offers valuable insights and practical knowledge, ensuring you acquire the skills necessary to excel in user experience research. Explore our diverse topics to elevate your understanding of quantitative research methods.

Answer a Short Quiz to Earn a Gift

What is the primary goal of quantitative research in design?

  • To analyze numerical data and identify patterns
  • To explore abstract design concepts for implementation
  • To understand people's subjective experiences and opinions

Which of the following methods is an example of quantitative research?

  • Conduct a focus groups to collect detailed user feedback
  • Participate in open-ended interviews to explore user experiences
  • Run usability tests and measure task completion times

What is one key advantage of quantitative research?

  • It allows participants to express their opinions in a flexible manner.
  • It provides researchers with detailed narratives of user experiences and perspectives.
  • It produces standardized, comparable data that researchers can statistically analyze.

What is a significant challenge of quantitative research?

  • It lacks objectivity which makes its results difficult to reproduce.
  • It may oversimplify complex user behaviors into numbers and miss contextual insights.
  • It often results in biased or misleading conclusions.

How can designers effectively combine qualitative and quantitative research?

  • They can collect quantitative data first, followed by qualitative insights to explain the findings.
  • They can completely replace quantitative methods with qualitative approaches.
  • They can treat them as interchangeable methods to gather similar data.

Better luck next time!

Do you want to improve your UX / UI Design skills? Join us now

Congratulations! You did amazing

You earned your gift with a perfect score! Let us send it to you.

Check Your Inbox

We’ve emailed your gift to [email protected] .

Literature on Quantitative Research

Here’s the entire UX literature on Quantitative Research by the Interaction Design Foundation, collated in one place:

Learn more about Quantitative Research

Take a deep dive into Quantitative Research with our course User Research – Methods and Best Practices .

How do you plan to design a product or service that your users will love , if you don't know what they want in the first place? As a user experience designer, you shouldn't leave it to chance to design something outstanding; you should make the effort to understand your users and build on that knowledge from the outset. User research is the way to do this, and it can therefore be thought of as the largest part of user experience design .

In fact, user research is often the first step of a UX design process—after all, you cannot begin to design a product or service without first understanding what your users want! As you gain the skills required, and learn about the best practices in user research, you’ll get first-hand knowledge of your users and be able to design the optimal product—one that’s truly relevant for your users and, subsequently, outperforms your competitors’ .

This course will give you insights into the most essential qualitative research methods around and will teach you how to put them into practice in your design work. You’ll also have the opportunity to embark on three practical projects where you can apply what you’ve learned to carry out user research in the real world . You’ll learn details about how to plan user research projects and fit them into your own work processes in a way that maximizes the impact your research can have on your designs. On top of that, you’ll gain practice with different methods that will help you analyze the results of your research and communicate your findings to your clients and stakeholders—workshops, user journeys and personas, just to name a few!

By the end of the course, you’ll have not only a Course Certificate but also three case studies to add to your portfolio. And remember, a portfolio with engaging case studies is invaluable if you are looking to break into a career in UX design or user research!

We believe you should learn from the best, so we’ve gathered a team of experts to help teach this course alongside our own course instructors. That means you’ll meet a new instructor in each of the lessons on research methods who is an expert in their field—we hope you enjoy what they have in store for you!

All open-source articles on Quantitative Research

Best practices for qualitative user research.

what is quantitative research and examples

  • 3 years ago

Card Sorting

what is quantitative research and examples

Understand the User’s Perspective through Research for Mobile UX

what is quantitative research and examples

  • 11 mths ago

7 Simple Ways to Get Better Results From Ethnographic Research

what is quantitative research and examples

Question Everything

what is quantitative research and examples

Tree Testing

what is quantitative research and examples

Adding Quality to Your Design Research with an SSQS Checklist

what is quantitative research and examples

  • 8 years ago

How to Fit Quantitative Research into the Project Lifecycle

what is quantitative research and examples

Correlation in User Experience

what is quantitative research and examples

Why and When to Use Surveys

what is quantitative research and examples

Rating Scales in UX Research: The Ultimate Guide

what is quantitative research and examples

  • 3 weeks ago

First-Click Testing

what is quantitative research and examples

What to Test

what is quantitative research and examples

Open Access—Link to us!

We believe in Open Access and the  democratization of knowledge . Unfortunately, world-class educational materials such as this page are normally hidden behind paywalls or in expensive textbooks.

If you want this to change , cite this page , link to us, or join us to help us democratize design knowledge !

Privacy Settings

Our digital services use necessary tracking technologies, including third-party cookies, for security, functionality, and to uphold user rights. Optional cookies offer enhanced features, and analytics.

Experience the full potential of our site that remembers your preferences and supports secure sign-in.

Governs the storage of data necessary for maintaining website security, user authentication, and fraud prevention mechanisms.

Enhanced Functionality

Saves your settings and preferences, like your location, for a more personalized experience.

Referral Program

We use cookies to enable our referral program, giving you and your friends discounts.

Error Reporting

We share user ID with Bugsnag and NewRelic to help us track errors and fix issues.

Optimize your experience by allowing us to monitor site usage. You’ll enjoy a smoother, more personalized journey without compromising your privacy.

Analytics Storage

Collects anonymous data on how you navigate and interact, helping us make informed improvements.

Differentiates real visitors from automated bots, ensuring accurate usage data and improving your website experience.

Lets us tailor your digital ads to match your interests, making them more relevant and useful to you.

Advertising Storage

Stores information for better-targeted advertising, enhancing your online ad experience.

Personalization Storage

Permits storing data to personalize content and ads across Google services based on user behavior, enhancing overall user experience.

Advertising Personalization

Allows for content and ad personalization across Google services based on user behavior. This consent enhances user experiences.

Enables personalizing ads based on user data and interactions, allowing for more relevant advertising experiences across Google services.

Receive more relevant advertisements by sharing your interests and behavior with our trusted advertising partners.

Enables better ad targeting and measurement on Meta platforms, making ads you see more relevant.

Allows for improved ad effectiveness and measurement through Meta’s Conversions API, ensuring privacy-compliant data sharing.

LinkedIn Insights

Tracks conversions, retargeting, and web analytics for LinkedIn ad campaigns, enhancing ad relevance and performance.

LinkedIn CAPI

Enhances LinkedIn advertising through server-side event tracking, offering more accurate measurement and personalization.

Google Ads Tag

Tracks ad performance and user engagement, helping deliver ads that are most useful to you.

Share Knowledge, Get Respect!

or copy link

Cite according to academic standards

Simply copy and paste the text below into your bibliographic reference list, onto your blog, or anywhere else. You can also just hyperlink to this page.

New to UX Design? We’re Giving You a Free ebook!

The Basics of User Experience Design

Download our free ebook The Basics of User Experience Design to learn about core concepts of UX design.

In 9 chapters, we’ll cover: conducting user interviews, design thinking, interaction design, mobile UX design, usability, UX research, and many more!

  • (855) 776-7763

Training Maker

All Products

Qualaroo Insights


  • Sign Up Free

Do you want a free Survey Software?

We have the #1 Online Survey Maker Software to get actionable user insights.

A Comprehensive Guide to Quantitative Research: Types, Characteristics, Methods & Examples

what is quantitative research and examples

Step into the fascinating world of quantitative research, where numbers reveal extraordinary insights!

By gathering and studying data in a systematic way, quantitative research empowers us to understand our ever-changing world better. It helps understand a problem or an already-formed hypothesis by generating numerical data. The results don’t end here, as you can process these numbers to get actionable insights that aid decision-making.

You can use quantitative research to quantify opinions, behaviors, attitudes, and other definitive variables related to the market, customers, competitors, etc. The research is conducted on a larger sample population to draw predictive, average, and pattern-based insights.

Here, we delve into the intricacies of this research methodology, exploring various quantitative methods, their advantages, and real-life examples that showcase their impact and relevance.

Ready to embark on a journey of discovery and knowledge? Let’s go!

What Is Quantitative Research?

Quantitative research is a method that uses numbers and statistics to test theories about customer attitudes and behaviors. It helps researchers gather and analyze data systematically to gain valuable insights and draw evidence-based conclusions about customer preferences and trends.

Researchers use online surveys , questionnaires , polls , and quizzes to question a large number of people to obtain measurable and bias-free data.

In technical terms, quantitative research is mainly concerned with discovering facts about social phenomena while assuming a fixed and measurable reality.

Offering numbers and stats-based insights, this research methodology is a crucial part of primary research and helps understand how well an organizational decision is going to work out.

Let’s consider an example.

Suppose your qualitative analysis shows that your customers are looking for social media-based customer support . In that case, quantitative analysis will help you see how many of your customers are looking for this support.

If 10% of your customers are looking for such a service, you might or might not consider offering this feature. But, if 40% of your regular customers are seeking support via social media, then it is something you just cannot overlook.

Characteristics of Quantitative Research

Quantitative research clarifies the fuzziness of research data from qualitative research analysis. With numerical insights, you can formulate a better and more profitable business decision.

Hence, quantitative research is more readily contestable, sharpens intelligent discussion, helps you see the rival hypotheses, and dynamically contributes to the research process.

Let us have a quick look at some of its characteristics.

  • Measurable Variables

The data collection methods in quantitative research are structured and contain items requiring measurable variables, such as age, number of family members, salary range, highest education, etc.

These structured data collection methods comprise polls, surveys, questionnaires, etc., and may have questions like the ones shown in the following image:

what is quantitative research and examples

As you can see, all the variables are measurable. This ensures that the research is in-depth and provides less erroneous data for reliable, actionable insights.

  • Sample Size

No matter what data analysis methods for quantitative research are being used, the sample size is kept such that it represents the target market.

As the main aim of the research methodology is to get numerical insights, the sample size should be fairly large. Depending on the survey objective and scope, it might span hundreds of thousands of people.

  • Normal Population Distribution

To maintain the reliability of a quantitative research methodology, we assume that the population distribution curve is normal.

what is quantitative research and examples

This type of population distribution curve is preferred over a non-normal distribution as the sample size is large, and the characteristics of the sample vary with its size.

This requires adhering to the random sampling principle to avoid the researcher’s bias in result interpretation. Any bias can ruin the fairness of the entire process and defeats the purpose of research.

  • Well-Structured Data Representation

Data analysis in quantitative research produces highly structured results and can form well-defined graphical representations. Some common examples include tables, figures, graphs, etc., that combine large blocks of data.

what is quantitative research and examples

This way, you can discover hidden data trends, relationships, and differences among various measurable variables. This can help researchers understand the survey data and formulate actionable insights for decision-making.

  • Predictive Outcomes

Quantitative analysis of data can also be used for estimations and prediction outcomes. You can construct if-then scenarios and analyze the data for the identification of any upcoming trends or events.

However, this requires advanced analytics and involves complex mathematical computations. So, it is mostly done via quantitative research tools that come with advanced analytics capabilities.

8 Best Practices to Conduct Quantitative Research

Here are some best practices to keep in mind while conducting quantitative research:

1. Define Research Objectives

There can be many ways to collect data via quantitative research methods that are chosen as per the research objective and scope. These methods allow you to build your own observations regarding any hypotheses – unknown, entirely new, or unexplained. 

You can hypothesize a proof and build a prediction of outcomes supporting the same. You can also create a detailed stepwise plan for data collection, analysis, and testing. 

Below, we explore quantitative research methods and discuss some examples to enhance your understanding of them.

2. Keep Your Questions Simple

The surveys are meant to reach people en-masse, and that includes a wide demographic range with recipients from all walks of life. Asking simple questions will ensure that they grasp what’s being asked easily.

Read More: Proven Tips to Avoid Leading and Loaded Questions in Your Survey

3. Develop a Solid Research Design

Choose an appropriate research design that aligns with your objectives, whether it’s experimental, quasi-experimental, or correlational. You also need to pay attention to the sample size and sampling technique such that it represents the target population accurately.

4. Use Reliable & Valid Instruments

It’s crucial to select or develop measurement instruments such as questionnaires, scales, or tests that have been validated and are reliable. Before proceeding with the main study, pilot-test these instruments on a small sample to assess their effectiveness and make any necessary improvements.

5. Ensure Data Quality

Implement data collection protocols to minimize errors and bias during data gathering. Double-check data entries and cleaning procedures to eliminate any inconsistencies or missing values that may affect the accuracy of your results. For instance, you might regularly cross-verify data entries to identify and correct any discrepancies.

6. Employ Appropriate Data Analysis Techniques

Select statistical methods that match the nature of your data and research questions. Whether it’s regression analysis, t-tests, ANOVA, or other techniques, using the right approach is important for drawing meaningful conclusions. Utilize software tools like SPSS or R for data analysis to ensure the accuracy and reproducibility of your findings.

7. Interpret Results Objectively

Present your findings in a clear and unbiased manner. Avoid making unwarranted causal claims, especially in correlational studies. Instead, focus on describing the relationships and patterns observed in your data.

8. Address Ethical Considerations

Prioritize ethical considerations throughout your research process. Obtain informed consent from participants, ensuring their voluntary participation and confidentiality of data. Comply with ethical guidelines and gain approval from a governing body if necessary.

Read More: How to Find Survey Participants & Respondents

Types of Quantitative Research Methods

Quantitative research is usually conducted using two methods. They are-

  • Primary quantitative research methods
  • Secondary quantitative research methods

1. Primary Methods

Primary quantitative research is the most popular way of conducting market research. The differentiating factor of this method is that the researcher relies on collecting data firsthand instead of relying on data collected from previous research.

There are multiple types of primary quantitative research. They can be distinguished based on three distinctive aspects, which are:

A. Techniques & Types of Studies:

  • Survey Research

Surveys are the easiest, most common, and one of the most sought-after quantitative research techniques. The main aim of a survey is to widely gather and describe the characteristics of a target population or customers. Surveys are the foremost quantitative method preferred by both small and large organizations.

They help them understand their customers, products, and other brand offerings in a proper manner.

Surveys can be conducted using various methods, such as online polls, web-based surveys, paper questionnaires, phone calls, or face-to-face interviews. Survey research allows organizations to understand customer opinions, preferences, and behavior, making it crucial for market research and decision-making.

You can watch this quick video to learn more about creating surveys.

Surveys are of two types:

  • Cross-Sectional Surveys Cross-sectional surveys are used to collect data from a sample of the target population at a specific point in time. Researchers evaluate various variables simultaneously to understand the relationships and patterns within the data.
  • Cross-sectional surveys are popular in retail, small and medium-sized enterprises (SMEs), and healthcare industries, where they assess customer satisfaction, market trends, and product feedback.
  • Longitudinal Surveys Longitudinal surveys are conducted over an extended period, observing changes in respondent behavior and thought processes.
  • Researchers gather data from the same sample multiple times, enabling them to study trends and developments over time. These surveys are valuable in fields such as medicine, applied sciences, and market trend analysis.

Surveys can be distributed via various channels. Some of the most popular ones are listed below:

  • Email: Sending surveys via email is a popular and effective method. People recognize your brand, leading to a higher response rate. With ProProfs Survey Maker’s in-mail survey-filling feature, you can easily send out and collect survey responses.
  • Embed on a website: Boost your response rate by embedding the survey on your website. When visitors are already engaged with your brand, they are more likely to take the survey.
  • Social media: Take advantage of social media platforms to distribute your survey. People familiar with your brand are likely to respond, increasing your response numbers.
  • QR codes: QR codes store your survey’s URL, and you can print or publish these codes in magazines, signs, business cards, or any object to make it easy for people to access your survey.
  • SMS survey: Collect a high number of responses quickly with SMS surveys. It’s a time-effective way to reach your target audience.

Read More: 24 Different Types of Survey Methods With Examples

2. Correlational Research:

Correlational research aims to establish relationships between two or more variables.

Researchers use statistical analysis to identify patterns and trends in the data, but it does not determine causality between the variables. This method helps understand how changes in one variable may impact another.

Examples of correlational research questions include studying the relationship between stress and depression, fame and money, or classroom activities and student performance.

3. Causal-Comparative Research:

Causal-comparative research, also known as quasi-experimental research, seeks to determine cause-and-effect relationships between variables.

Researchers analyze how an independent variable influences a dependent variable, but they do not manipulate the independent variable. Instead, they observe and compare different groups to draw conclusions.

Causal-comparative research is useful in situations where it’s not ethical or feasible to conduct true experiments.

Examples of questions for this type of research include analyzing the effect of training programs on employee performance, studying the influence of customer support on client retention, investigating the impact of supply chain efficiency on cost reduction, etc.

4. Experimental Research:

Experimental research is based on testing theories to validate or disprove them. Researchers conduct experiments and manipulate variables to observe their impact on the outcomes.

This type of research is prevalent in natural and social sciences, and it is a powerful method to establish cause-and-effect relationships. By randomly assigning participants to experimental and control groups, researchers can draw more confident conclusions.

Examples of experimental research include studying the effectiveness of a new drug, the impact of teaching methods on student performance, or the outcomes of a marketing campaign.

B. Data collection methodologies

After defining research objectives, the next significant step in primary quantitative research is data collection. This involves using two main methods: sampling and conducting surveys or polls.

Sampling methods:

In quantitative research, there are two primary sampling methods: Probability and Non-probability sampling.

Probability Sampling

In probability sampling, researchers use the concept of probability to create samples from a population. This method ensures that every individual in the target audience has an equal chance of being selected for the sample.

There are four main types of probability sampling:

  • Simple random sampling: Here, the elements or participants of a sample are selected randomly, and this technique is used in studies that are conducted over considerably large audiences. It works well for large target populations.
  • Stratified random sampling: In this method, the entire population is divided into strata or groups, and the sample members get chosen randomly from these strata only. It is always ensured that different segregated strata do not overlap with each other.
  • Cluster sampling: Here, researchers divide the population into clusters, often based on geography or demographics. Then, random clusters are selected for the sample.
  • Systematic sampling: In this method, only the starting point of the sample is randomly chosen. All the other participants are chosen using a fixed interval. Researchers calculate this interval by dividing the size of the study population by the target sample size.

Non-probability Sampling

Non-probability sampling is a method where the researcher’s knowledge and experience guide the selection of samples. This approach doesn’t give all members of the target population an equal chance of being included in the sample.

There are five non-probability sampling models:

  • Convenience sampling: The elements or participants are chosen on the basis of their nearness to the researcher. The people in close proximity can be studied and analyzed easily and quickly, as there is no other selection criterion involved. Researchers simply choose samples based on what is most convenient for them.
  • Consecutive sampling: Similar to convenience sampling, researchers select samples one after another over a significant period. They can opt for a single participant or a group of samples to conduct quantitative research in a consecutive manner for a significant period of time. Once this is over, they can conduct the research from the start.
  • Quota sampling: With quota sampling, researchers use their understanding of target traits and personalities to form groups (strata). They then choose samples from each stratum based on their own judgment.
  • Snowball sampling: This method is used where the target audiences are difficult to contact and interviewed for data collection. Researchers start with a few participants and then ask them to refer others, creating a snowball effect.
  • Judgmental sampling: In judgmental sampling, researchers rely solely on their experience and research skills to handpick samples that they believe will be most relevant to the study.

Read More: Data Collection Methods: Definition, Types & Examples

C. Data analysis techniques

To analyze the quantitative data accurately, you’ll need to use specific statistical methods such as:

  • SWOT Analysis: This stands for Strengths, Weaknesses, Opportunities, and Threats analysis. Organizations use SWOT analysis to evaluate their performance internally and externally. It helps develop effective improvement strategies.
  • Conjoint Analysis: This market research method uncovers how individuals make complex purchasing decisions. It involves considering trade-offs in their daily activities when choosing from a list of product/service options.
  • Cross-tabulation: A preliminary statistical market analysis method that reveals relationships, patterns, and trends within various research study parameters.
  • TURF Analysis: Short for Totally Unduplicated Reach and Frequency Analysis, this method helps analyze the reach and frequency of favorable communication sources. It provides insights into the potential of a target market.
  • By using these statistical techniques and inferential statistics methods like confidence intervals and margin of error, you can draw meaningful insights from your primary quantitative research that you can use in making informed decisions.

II. Secondary Quantitative Research Methods

  • Secondary quantitative research, also known as desk research, is a valuable method that uses existing data, called secondary data.
  • Instead of collecting new data, researchers analyze and combine already available information to enhance their research. This approach involves gathering quantitative data from various sources such as the internet, government databases, libraries, and research reports.
  • Secondary quantitative research plays a crucial role in validating data collected through primary quantitative research. It helps reinforce or challenge existing findings.

Here are five commonly used secondary quantitative research methods:

A. Data Available on the Internet:

The Internet has become a vast repository of data, making it easier for researchers to access a wealth of information. Online databases, websites, and research repositories provide valuable quantitative data for researchers to analyze and validate their primary research findings.

B. Government and Non-Government Sources:

Government agencies and non-government organizations often conduct extensive research and publish reports. These reports cover a wide range of topics, providing researchers with reliable and comprehensive data for quantitative analysis.

C. Public Libraries:

While less commonly used in the digital age, public libraries still hold valuable research reports, historical data, and publications that can contribute to quantitative research.

D. Educational Institutions:

Educational institutions frequently conduct research on various subjects. Their research reports and publications can serve as valuable sources of information for researchers, validating and supporting primary quantitative research outcomes.

E. Commercial Information Sources:

Commercial sources such as local newspapers, journals, magazines, and media outlets often publish relevant data on economic trends, market research, and demographic analyses. Researchers can access this data to supplement their own findings and draw better conclusions.

Advantages of Quantitative Research Methods

Quantitative research data is often standardized and can be easily used to generalize findings for making crucial business decisions and uncover insights to supplement the qualitative research findings.

Here are some core benefits this research methodology offers.

Direct Result Comparison

As the studies can be replicated for different cultural settings and different times, even with different groups of participants, they tend to be extremely useful. Researchers can compare the results of different studies in a statistical manner and arrive at comprehensive conclusions for a broader understanding.


Researchers can repeat the study by using standardized data collection protocols over well-structured data sets. They can also apply tangible definitions of abstract concepts to arrive at different conclusions for similar research objectives with minor variations.

Large Samples

As the research data comes from large samples, the researchers can process and analyze the data via highly reliable and consistent analysis procedures. They can arrive at well-defined conclusions that can be used to make the primary research more thorough and reliable.

Hypothesis Testing

This research methodology follows standardized and established hypothesis testing procedures. So, you have to be careful while reporting and analyzing your research data , and the overall quality of results gets improved.

Proven Examples of Quantitative Research Methods

Below, we discuss two excellent examples of quantitative research methods that were used by highly distinguished business and consulting organizations. Both examples show how different types of analysis can be performed with qualitative approaches and how the analysis is done once the data is collected.

1. STEP Project Global Consortium / KPMG 2019 Global Family Business survey

This research utilized quantitative methods to identify ways that kept the family businesses sustainably profitable with time.

The study also identified the ways in which the family business behavior changed with demographic changes and had “why” and “how” questions. Their qualitative research methods allowed the KPMG team to dig deeper into the mindsets and perspectives of the business owners and uncover unexpected research avenues as well.

It was a joint effort in which STEP Project Global Consortium collected 26 cases, and KPMG collected 11 cases.

The research reached the stage of data analysis in 2020, and the analysis process spanned over 4 stages.

The results, which were also the reasons why family businesses tend to lose their strength with time, were found to be:

  • Family governance
  • Family business legacy

2. EY Seren Teams Research 2020

This is yet another commendable example of qualitative research where the EY Seren Team digs into the unexplored depths of human behavior and how it affected their brand or service expectations.

The research was done across 200+ sources and involved in-depth virtual interviews with people in their homes, exploring their current needs and wishes. It also involved diary studies across the entire UK customer base to analyze human behavior changes and patterns.

The study also included interviews with professionals and design leaders from a wide range of industries to explore how COVID-19 transformed their industries. Finally, quantitative surveys were conducted to gain insights into the EY community after every 15 days.

The insights and results were:

  • A culture of fear, daily resilience, and hopes for a better world and a better life – these were the macro trends.
  • People felt massive digitization to be a resourceful yet demanding aspect as they have to adapt every day.
  • Some people wished to have a new world with lots of possibilities, and some were looking for a new purpose.

Enhance Your Quantitative Research With Cutting-Edge Software

While no single research methodology can produce 100% reliable results, you can always opt for a hybrid research method by opting for the methods that are most relevant to your objective.

This understanding comes gradually as you learn how to implement the correct combination of qualitative and quantitative research methods for your research projects. For the best results, we recommend investing in smart, efficient, and scalable research tools that come with delightful reporting and advanced analytics to make every research initiative a success.

These software tools, such as ProProfs Survey Maker, come with pre-built survey templates and question libraries and allow you to create a high-converting survey in just a few minutes.

So, choose the best research partner, create the right research plan, and gather insights that drive sustainable growth for your business.

Emma David

About the author

Emma David is a seasoned market research professional with 8+ years of experience. Having kick-started her journey in research, she has developed rich expertise in employee engagement, survey creation and administration, and data management. Emma believes in the power of data to shape business performance positively. She continues to help brands and businesses make strategic decisions and improve their market standing through her understanding of research methodologies.

Popular Posts in This Category

what is quantitative research and examples

What Is a Brand Awareness Survey & How to Write One: A Marketer’s Handbook

what is quantitative research and examples

360 Feedback Questions: The Roadmap to Enhanced Employee Performance

what is quantitative research and examples

Top 10 Delighted Alternatives & Competitors in 2024

what is quantitative research and examples

9 Best Employee Engagement Survey Software in 2024

what is quantitative research and examples

Omnichannel Customer Engagement 101: Every Business Owner Should Know

what is quantitative research and examples

Top 5 Online Survey Distribution Methods of All Time

Library Homepage

Research Methods and Design

  • Action Research
  • Case Study Design
  • Literature Review
  • Quantitative Research Methods
  • Qualitative Research Methods
  • Mixed Methods Study
  • Indigenous Research and Ethics This link opens in a new window
  • Identifying Empirical Research Articles This link opens in a new window
  • Research Ethics and Quality
  • Data Literacy
  • Get Help with Writing Assignments

Quantitative research methods

a method of research that relies on measuring variables using a numerical system, analyzing these measurements using any of a variety of statistical models, and reporting relationships and associations among the studied variables. For example, these variables may be test scores or measurements of reaction time. The goal of gathering this quantitative data is to understand, describe, and predict the nature of a phenomenon, particularly through the development of models and theories. Quantitative research techniques include experiments and surveys. 

SAGE Research Methods Videos

What are the strengths of quantitative research.

Professor Norma T. Mertz briefly discusses qualitative research and how it has changed since she entered the field. She emphasizes the importance of defining a research question before choosing a theoretical approach to research.

This is just one segment in a series about quantitative methods. You can find additional videos in our SAGE database, Research Methods: 


Videos covering research methods and statistics

Further Reading

Cover Art

  • << Previous: Literature Review
  • Next: Qualitative Research Methods >>
  • Last Updated: May 7, 2024 9:51 AM

CityU Home - CityU Catalog

Creative Commons License


  • Agile & Development
  • Prioritization
  • Product Management
  • Product Marketing & Growth
  • Product Metrics
  • Product Strategy

Home » Quantitative Research: Definition, Methods, and Examples

Quantitative Research: Definition, Methods, and Examples

June 13, 2023 max 8min read.

Quantitative Research

This article covers:

What Is Quantitative Research?

Quantitative research methods .

  • Data Collection and Analysis

Types of Quantitative Research

  • Advantages and Disadvantages of Quantitative Research

Examples of Quantitative Research

Picture this: you’re a product or project manager and must make a crucial decision. You need data-driven insights to guide your choices, understand customer preferences, and predict market trends. That’s where quantitative research comes into play. It’s like having a secret weapon that empowers you to make informed decisions confidently.

Quantitative research is all about numbers, statistics, and measurable data. It’s a systematic approach that allows you to gather and analyze numerical information to uncover patterns, trends, and correlations. 

Quantitative research provides concrete, objective data to drive your strategies, whether conducting surveys, analyzing large datasets, or crunching numbers.

In this article, we’ll dive and learn all about quantitative research; get ready to uncover the power of numbers.

Quantitative Research Definition:

Quantitative research is a systematic and objective approach to collecting, analyzing, and interpreting numerical data. It measures and quantifies variables, employing statistical methods to uncover patterns, relationships, and trends.

Quantitative research gets utilized across a wide range of fields, including market research, social sciences, psychology, economics, and healthcare. It follows a structured methodology that uses standardized instruments, such as surveys, experiments, or polls, to collect data. This data is then analyzed using statistical techniques to uncover patterns and relationships.

The purpose of quantitative research is to measure and quantify variables, assess the connections between variables, and draw objective and generalizable conclusions. Its benefits are numerous:

  • Rigorous and scientific approach : Quantitative research provides a comprehensive and scientific approach to studying phenomena. It enables researchers to gather empirical evidence and draw reliable conclusions based on solid data.
  • Evidence-based decision-making : By utilizing quantitative research, researchers can make evidence-based decisions. It helps in developing informed strategies and evaluating the effectiveness of interventions or policies by relying on data-driven insights.
  • Advancement of knowledge : Quantitative research contributes to the advancement of knowledge by building upon existing theories. It expands understanding in various fields and informs future research directions, allowing for continued growth and development.

Here are various quantitative research methods:

Survey research : This method involves collecting data from a sample of individuals through questionnaires, interviews, or online surveys. Surveys gather information about people’s attitudes, opinions, behaviors, and characteristics.

Experimentation: It is a research method that allows researchers to determine cause-and-effect relationships. In an experiment, participants randomly get assigned to different groups. While the other group does not receive treatment or intervention, one group does. The outcomes of the two groups then get measured to analyze the effects of the treatment or intervention.

Here are the steps involved in an experiment:

  • Define the research question. What do you want to learn about?
  • Develop a hypothesis. What do you think the answer to your research question is?
  • Design the experiment. How will you manipulate the variables and measure the outcomes?
  • Recruit participants. Who will you study?
  • Randomly assign participants to groups. This ensures that the groups are as similar as possible.
  • Apply the treatments or interventions. This is what the researcher is attempting to test the effects of.
  • Measure the outcomes. This is how the researcher will determine whether the treatments or interventions had any effect.
  • Analyze the data. This is how the researcher will determine whether the results support the hypothesis.
  • Draw conclusions. What do the results mean?
  • Content analysis : Content analysis is a systematic approach to analyzing written, verbal, or visual communication. Researchers identify and categorize specific content, themes, or patterns in various forms of media, such as books, articles, speeches, or social media posts.
  • Secondary data analysis : It is a research method that involves analyzing data already collected by someone else. This data can be from various sources, such as government reports, previous research studies, or large datasets like surveys or medical records. 

Researchers use secondary data analysis to answer new research questions or gain additional insights into a topic.

Data Collection and Analysis for Quantitative Research

Quantitative research is research that uses numbers and statistics to answer questions. It often measures things like attitudes, behaviors, and opinions.

There are three main methods for collecting quantitative data:

  • Surveys and questionnaires: These are structured instruments used to gather data from a sample of people.
  • Experiments and controlled observations: These are conducted in a controlled setting to measure variables and determine cause-and-effect relationships.
  • Existing data sources (secondary data): This data gets collected from databases, archives, or previous studies.

Data preprocessing and cleaning is the first step in data analysis. It involves identifying and correcting errors, removing outliers, and ensuring the data is consistent.

Descriptive statistics is a branch of statistics that deals with the description of the data. It summarizes and describes the data using central tendency, variability, and shape measures.

Inferential statistics again comes under statistics which deals with the inference of properties of a population from a sample. It tests hypotheses, estimates parameters, and makes predictions.

Here are some of the most common inferential statistical techniques:

  • Hypothesis testing : This assesses the significance of relationships or differences between variables.
  • Confidence intervals : This estimates the range within which population parameters likely fall.
  • Correlation and regression analysis : This examines relationships and predicts outcomes based on variables.
  • Analysis of variance (ANOVA) : This compare means across multiple groups or conditions.

Statistical software and tools for data analysis can perform complex statistical analyses efficiently. Some of the most popular statistical software packages include SPSS, SAS, and R.

Here are some of the main types of quantitative research methodology:

  • Descriptive research describes a particular population’s characteristics, trends, or behaviors. For example, a descriptive study might look at the average height of students in a school, the number of people who voted in an election, or the types of food people eat.
  • Correlational research checks the relationship between two or more variables. For example, a correlational study might examine the relationship between income and happiness or stress and weight gain. Correlational research can show that two variables are related but cannot show that one variable causes the other.
  • Experimental research is a type of research that investigates cause-and-effect relationships. In an experiment, researchers manipulate one variable (the independent variable) and measure the impact on another variable (the dependent variable). This allows researchers to make inferences about the relationship between the two variables.
  • Quasi-experimental research is similar to experimental research. However, it does not involve random assignment of participants to groups. This can be due to practical or ethical considerations, such as when assigning people to receive a new medication randomly is impossible. In quasi-experimental research, researchers try to control for other factors affecting the results, such as the participant’s age, gender, or health status.
  • Longitudinal research studies change patterns over an extended time. For example, a longitudinal study might examine how children’s reading skills develop over a few years or how people’s attitudes change as they age. But longitudinal research can be expensive and time-consuming. Still, it can offer valuable insights into how people and things change over time.

 Advantages and Disadvantages of Quantitative Research

Here are the advantages and downsides of quantitative research:

Advantages of Quantitative Research:

  • Objectivity: Quantitative research aims to be objective and unbiased. This is because it relies on numbers and statistical methods, which reduce the potential for researcher bias and subjective interpretation.
  • Generalizability: Quantitative research often involves large sample sizes, which increases the likelihood of obtaining representative data. The study findings are more likely to apply to a wider population.
  • Replicability: Using standardized procedures and measurement instruments in quantitative research enhances replicability. This means that other researchers can repeat the study using the same methods to test the reliability of the findings.
  • Statistical analysis: Quantitative research employs various statistical techniques for data analysis. This allows researchers to identify data patterns, relationships, and associations. Additionally, statistical analysis can provide precision and help draw objective conclusions.
  • Numerical precision: Quantitative research produces numerical data that can be analyzed using mathematical calculations. This numeric precision allows for clear comparisons and quantitative interpretations.

Disadvantages of Quantitative Research :

  • Lack of Contextual Understanding : Quantitative research often focuses on measurable variables, which may limit the exploration of complex phenomena. It may overlook the social, cultural, and contextual factors that could influence the research findings.
  • Limited Insight : While quantitative research can identify correlations and associations, it may not uncover underlying causes or explanations of these relationships. It may provide answers to “what” and “how much,” but not necessarily “why.”
  • Potential for Simplification : The quantification of data can lead to oversimplification, as it may reduce complex phenomena into numerical values. This simplification may overlook nuances and intricacies important to understanding the research topic fully.
  • Cost and Time-Intensive : Quantitative research requires significant resources. It includes time, funding, and specialized expertise. Researchers must collect and analyze large amounts of numerical data, which can be lengthy and expensive.
  • Limited Flexibility : A systematic and planned strategy typically gets employed in quantitative research. It signifies the researcher’s use of a predetermined data collection and analysis approach. As a result, you may be more confident that your study gets conducted consistently and equitably. But it may also make it more difficult for the researcher to change the research plan or pose additional inquiries while gathering data. This could lead to missing valuable insights.

Here are some real-life examples of quantitative research:

  • Market Research : Quantitative market research is a type of market research that uses numerical data to understand consumer preferences, buying behavior, and market trends. This data typically gets gathered through surveys and questionnaires, which are then analyzed to make informed business decisions.
  • Health Studies : Quantitative research, such as clinical trials and epidemiological research, is vital in health studies. Researchers collect numerical data on treatment effectiveness, disease prevalence, risk factors, and patient outcomes. This data is then analyzed statistically to draw conclusions and make evidence-based recommendations for healthcare practices.
  • Educational Research : Quantitative research is used extensively in educational studies to examine various aspects of learning, teaching methods, and academic achievement. Researchers collect data through standardized tests, surveys, or observations. The reason for this approach is to analyze factors influencing student performance, educational interventions, and educational policy effectiveness.
  • Social Science Surveys : Social science researchers often employ quantitative research methods. The aim here is to study social phenomena and gather data on individuals’ or groups’ attitudes, beliefs, and behaviors. Large-scale surveys collect numerical data, then statistically analyze to identify patterns, trends, and associations within the population.
  • Opinion Polls : Opinion polls and public opinion research rely heavily on quantitative research techniques. Polling organizations conduct surveys with representative samples of the population. The companies do this intending to gather numerical data on public opinions, political preferences, and social attitudes. The data then gets analyzed to gauge public sentiment and predict election outcomes or public opinion on specific issues.
  • Economic Research : Quantitative research is widely used in economic studies to analyze economic indicators, trends, and patterns. Economists collect numerical data on GDP, inflation, employment, and consumer spending. Statistical analysis of this data helps understand economic phenomena, forecast future trends, and inform economic policy decisions.

More To Read :-

  • Daily Active Users: Calculate + Tips to Increase DAU
  • Artificial Intelligence (AI): Definition and Examples
  • What Is Operations Management? Definition and Overview

Qualitative research is about understanding and exploring something in depth. It uses non-numerical data, like interviews, observations, and open-ended survey responses, to gather rich, descriptive insights. Quantitative research is about measuring and analyzing relationships between variables using numerical data.

Quantitative research gets characterized by the following:

  • The collection of numerical information
  • The use of statistical analysis
  • The goal of measuring and quantifying phenomena
  • The purpose of examining relationships between variables
  • The purpose of generalizing findings to a larger population
  • The use of large sample sizes
  • The use of structured surveys or experiments
  • The usage of statistical techniques to analyze data objectively

The primary goal of quantitative research is to gather numerical data and analyze it statistically to uncover patterns, relationships, and trends. It aims to provide objective and generalizable insights using systematic data collection methods, standardized instruments, and statistical analysis techniques. Quantitative research seeks to test hypotheses, make predictions, and inform decision-making in various fields.

Crafting great product requires great tools. Try Chisel today, it's free forever.

Quantitative research: Understanding the approaches and key elements

Quantitative Research Understanding The Approaches And Key Elements

Quantitative research has many benefits and challenges but understanding how to properly conduct it can lead to a successful marketing research project.

Choosing the right quantitative approach

Editor’s note: Allison Von Borstel is the associate director of creative analytics at The Sound. This is an edited version of an article that originally appeared under the title “ Understanding Quantitative Research Approaches .”

What is quantitative research?

The systematic approaches that ground quantitative research involve hundreds or thousands of data points for one research project. The wonder of quantitative research is that each data point, or row in a spreadsheet, is a person and has a human story to tell. 

Quantitative research aggregates voices and distills them into numbers that uncover trends, illuminates relationships and correlations that inform decision-making with solid evidence and clarity.

The benefits of quantitative approach es

Why choose a quantitative   approach? Because you want a very clear story grounded in statistical rigor as a guide to making smart, data-backed decisions. 

Quantitative approaches shine because they:

Involve a lot of people

Large sample sizes (think hundreds or thousands) enable researchers to generalize findings because the sample is representative of the total population.  

They are grounded in statistical rigor

Allowing for precise measurement and analysis of data, providing statistically significant results that bolster confidence in research.

Reduce bias

Structured data collection and analysis methods enhance the reliability of findings. 

Boost efficiency

Quantitative methods often follow a qualitative phase, allowing researchers to validate findings by reporting the perspective of hundreds of people in a fraction of the time. 

Widen the analysis’ scope

The copious data collected in just a 20-minute (max) survey positions researchers to evaluate a broad spectrum of variables within the data. This thorough comprehension is instrumental when dealing with complex questions that require in-depth analysis. 

Quantitative approaches have hurdles, which include:

Limited flexibility

Once a survey is fielded, or data is gathered, there’s no opportunity to ask a live follow-up question. While it is possible to follow-up with the same people for two surveys, the likelihood of sufficient responses is small. 

Battling bots

One of the biggest concerns in data quality is making sure data represents people and not bots. 

Missing body language cues

Numbers, words and even images lack the cues that a researcher could pick up on during an interview. Unlike in a qualitative focus group, where one might deduce that a person is uncertain of an answer, in quantitative research, a static response is what the researcher works with.

Understanding quantitative research methods 

Quantitative approaches approach research from the same starting point as qualitative approaches – grounded in business objectives with a specific group of people to study. 

Once research has kicked off, the business objective thoroughly explored and the approach selected, research follows a general outline:  

Consider what data is needed

Think about what type of information needs to be gathered, with an approach in mind. While most quantitative research involves numbers, words and images also count.

  • Numbers: Yes, the stereotypical rows of numbers in spreadsheets. Rows that capture people’s opinions and attitudes and are coded to numbers for comparative analytics. Numerical analysis is used for everything from descriptive statistics to regression/predictive analysis. 
  • Words:  Text analysis employs a machine learning model to identify sentiment, emotion and meaning of text. Often used for sentiment analysis or content classification, it can be applied to single-word responses, elaborate open-ends, reviews or even social media posts.
  • Images: Image analysis extracts meaningful information from images. A computer vision model that takes images as inputs and outputs numerical information (e.g., having a sample upload their favorite bag of chips and yielding the top three brands).

Design a survey

Create a survey to capture the data needed to address the objective. During this process, different pathways could be written to get a dynamic data set (capturing opinions that derive from various lived experiences). Survey logic is also written to provide a smooth UX experience for respondents.    

Prepare the data

The quality of quantitative research rests heavily on the quality of data. After data is collected (typically by fielding a survey or collecting already-existing data, more on that in a bit), it’s time to clean the data. 

Begin the analysis process

Now that you have a robust database (including numbers, words or images), it’s time to listen to the story that the data tells. Depending on the research approach used, advanced analytics come into play to tease out insights and nuances for the business objective. 

Tell the story

Strip the quantitative jargon and convey the insights from the research. Just because it’s quantitative research does not mean the results have to be told in a monotone drone with a monochrome chart. Answer business objectives dynamically, knowing that research is grounded in statistically sound information. 

The two options: Primary vs. secondary research

The two methods that encompass quantitative approaches are primary (collecting data oneself) and secondary (relying on already existing data).

Primary  research  is primarily used  

Most research involves primary data collection – where the researcher collects data directly. The main approach in primary research is survey data collection.  

The types of survey questions

Span various measurement scales (nominal, ordinal, interval and ratio) using a mix of question types (single and multi-choice, scales, matrix or open-ends).  

Analysis methods

Custom surveys yield great data for a variety of methods in market analysis. Here are a couple favorites: 

  • Crosstabulation : Used to uncover insights that might not be obvious at first glance. This analysis organizes data into categories, revealing trends or patterns between variables. 
  • Sentiment analysis: Used to sift through text to gauge emotions, opinions and attitudes. This method helps understand perception, fine-tune strategies and effectively respond to feedback.
  • Market sizing: Used to map out the dimensions of a market. By calculating the total potential demand for a product or service in a specific market, this method reveals the scope of opportunities needed to make informed decisions about investment and growth strategies. 
  • Conjoint analysis : Used to uncover what people value most in products or services. It breaks down features into bits and pieces and asks people to choose their ideal combo. By analyzing these preferences, this analysis reveals the hidden recipe for customer satisfaction.
  • Job-To-Be-Done : Used to understand the underlying human motivations that drive people to act. People are multifaceted and experience a myriad of situations each day – meaning that a brand’s competition isn’t limited to in-category. 
  • Segmentation: Used to identify specific cohorts within a greater population. It groups people with similar characteristics, behaviors or needs together. This method helps tailor products or services to specific groups, boosting satisfaction and sales.

Statistical rigor

Regardless of method, a quantitative approach then enables researchers to draw inferences and make predictions based upon the confidence in the data (looking at confidence intervals, margin of error, etc.)

Let’s not forget secondary research

By accessing a wide range of existing information, this research can be a cost-effective way to gain insights or can supplement primary research findings. 

Here are popular options: 

Government sources

Government sources can be extremely in-depth, can range across multiple industries and markets and reflect millions of people. This type of data is often instrumental for longitudinal or cultural trends analysis. 

Educational institutions

Research universities conduct in-depth studies on a variety of topics, often aggregating government data, nonprofit data and primary data.  

Client data

This includes any research that was conducted for or by companies before the   present research project. Whether it’s data gathered from customer reviews or prior quantitative work, these secondary resources can help extend findings and detect trends by connecting past data to future data.

Quantitative research enhances research projects

Quantitative research approaches are so much more than “how much” or “how many,” they reveal the   why   behind people’s actions, emotions and behaviors. By using standardized collection methods, like surveys, quant instills confidence and rigor in findings.

Canvs AI: Unlock critical insights from unstructured feedback Related Categories: Research Industry, Data Analysis, Quantitative Research Research Industry, Data Analysis, Quantitative Research, Artificial Intelligence / AI, Text Analytics

Segmentation in the pharma industry: How to create resilient strategies Related Categories: Research Industry, Sampling, Survey Research Research Industry, Sampling, Survey Research, Market Segmentation Studies, Segmentation Studies, Health Care (Healthcare), Health Care (Healthcare) Research, Patients , Questionnaire Analysis, Social Media Research

Leveraging AI to unlock qualitative research at scale Related Categories: Research Industry, Quantitative Research, Sampling, Hybrid Research (Qual/Quant) Research Industry, Quantitative Research, Sampling, Hybrid Research (Qual/Quant), Artificial Intelligence / AI, Qualitative Research, Attitude/Usage Studies, Consumer Research, Consumers, Data Visualization/Infographics

Situational choice experiments for marketing research Related Categories: Research Industry, Data Analysis, Survey Research Research Industry, Data Analysis, Survey Research, Conjoint Analysis/Trade-Off Analysis, Discrete Choice Modeling, Physicians, Software-Conjoint Analysis, Questionnaire Analysis

Qualitative vs Quantitative Research Methods & Data Analysis

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

What is the difference between quantitative and qualitative?

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed in numerical terms. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.

Qualitative research , on the other hand, collects non-numerical data such as words, images, and sounds. The focus is on exploring subjective experiences, opinions, and attitudes, often through observation and interviews.

Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography.

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis.

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .


Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

Related Articles

Qualitative Data Coding

Research Methodology

Qualitative Data Coding

What Is a Focus Group?

What Is a Focus Group?

Cross-Cultural Research Methodology In Psychology

Cross-Cultural Research Methodology In Psychology

What Is Internal Validity In Research?

What Is Internal Validity In Research?

What Is Face Validity In Research? Importance & How To Measure

Research Methodology , Statistics

What Is Face Validity In Research? Importance & How To Measure

Criterion Validity: Definition & Examples

Criterion Validity: Definition & Examples

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

what is quantitative research and examples

Home Market Research

Quantitative Data: What It Is, Types & Examples

Quantitative Data

When we’re asking questions like “ How many? “, “ How often? ” or “ How much? ” we’re talking about the kind of hard-hitting, verifiable data that can be analyzed with mathematical techniques. It’s the kind of stuff that would make a statistician’s heart skip a beat. Let’s discuss quantitative data.

Thankfully, online surveys are the go-to tool for collecting this kind of data in the internet age. With the ability to reach more people in less time and gather honest responses for later analysis, online surveys are the ultimate quantitative data-gathering machine. Plus, let’s be real: who doesn’t love taking a good survey?

What is Quantitative Data?

Quantitative data is the value of data in the form of counts or numbers where each data set has a unique numerical value. This data is any quantifiable information that researchers can use for mathematical calculations and statistical analysis to make real-life decisions based on these mathematical derivations.

For example, there are quantities corresponding to various parameters. For instance, “How much did that laptop cost?” is a question that will collect quantitative data. Values are associated with most measuring parameters, such as pounds or kilograms for weight, dollars for cost, etc.

It makes measuring various parameters controllable due to the ease of mathematical derivations they come with. It is usually collected for statistical analysis plans using surveys , polls, or questionnaires sent across to a specific section of a population. Researches can establish the retrieved results across a population.

Types of Quantitative Data with Examples

Quantitative data is integral to the research process, providing valuable insights into various phenomena. Let’s explore the most common types of quantitative data and their applications in various fields. The most common types are listed below:

Types of wuantitative data

  • Counter: Count equated with entities—for example, the number of people downloading a particular application from the App Store.
  • Measurement of physical objects: Calculating measurement of any physical thing. For example, the HR executive carefully measures the size of each cubicle assigned to the newly joined employees.
  • Sensory calculation: Mechanism to naturally “sense” the measured parameters to create a constant source of information. For example, a digital camera converts electromagnetic information to a string of numerical data.
  • Projection of data: Future data projections can be made using algorithms and other mathematical analysis tools. For example, a marketer will predict an increase in sales after launching a new product with a thorough analysis.
  • Quantification of qualitative entities: Identify numbers to qualitative information. For example, asking respondents of an online survey to share the likelihood of recommendation on a scale of 0-10.

Quantitative Data: Collection Methods

As quantitative data is in the form of numbers, mathematical and statistical analysis of these numbers can lead to establishing some conclusive results.

There are two main Quantitative Data Collection Methods :

01. Surveys

Traditionally, surveys were conducted using paper-based methods and have gradually evolved into online mediums. Closed-ended questions form a major part of these surveys as they are more effective in collecting data.

The survey includes answer options they think are the most appropriate for a particular question. Surveys are integral in collecting feedback from an audience larger than the conventional size. A critical factor about surveys is that the responses collected should be such that they can be generalized to the entire population without significant discrepancies.

Based on the time involved in completing surveys, they are classified into the following:

  • Longitudinal Studies: A type of observational research in which the market researcher conducts surveys from one time period to another, i.e., over a considerable course of time, is called a longitudinal survey . This survey is often implemented for trend analysis or studies where the primary objective is to collect and analyze a pattern in data.
  • Cross-sectional Studies: A type of observational research in which market research conducts surveys at a particular time period across the target sample is known as a cross-sectional survey . This survey type implements a questionnaire to understand a specific subject from the sample at a definite time period.

To administer a survey to collect quantitative data, the following principles are to be followed.

  • Fundamental Levels of Measurement – Nominal, Ordinal, Interval, and Ratio Scales: Four measurement scales are fundamental to creating a multiple-choice question in a survey in collecting quantitative data. They are  nominal, ordinal, interval, and ratio  measurement scales without the fundamentals of which no multiple-choice questions can be created.
  • Use of Different Question Types:  To collect quantitative data,  close-ended questions have to be used in a survey. They can be a mix of multiple  question types , including  multiple-choice questions  like  semantic differential scale questions ,  rating scale questions , etc., that can help collect data that can be analyzed and made sense of.
  • Email:  Sending a survey via email is the most commonly used and most effective survey distribution method. You can use the QuestionPro email management feature to send out and collect survey responses.
  • Buy respondents:  Another effective way to distribute a survey and collect quantitative data is to use a sample. Since the respondents are knowledgeable and also are open to participating in research studies, the responses are much higher.
  • Embed survey in a website:  Embedding a survey in a website increases the number of responses as the respondent is already near the brand when the survey pops up.
  • Social distribution:  Using  social media to distribute the survey  aids in collecting a higher number of responses from the people who are aware of the brand.
  • QR code: QuestionPro QR codes store the URL for the survey. You can  print/publish this code  in magazines, signs, business cards, or on just about any object/medium.
  • SMS survey:  A quick and time-effective way of conducting a survey to collect a high number of responses is the  SMS survey .
  • QuestionPro app:  The  QuestionPro App  allows the quick creation of surveys, and the responses can be collected both online and  offline .
  • API integration:  You can use the  API integration  of the QuestionPro platform for potential respondents to take your survey.

02. One-on-one Interviews

This quantitative data collection method was also traditionally conducted face-to-face but has shifted to telephonic and online platforms. Interviews offer a marketer the opportunity to gather extensive data from the participants. Quantitative interviews are immensely structured and play a key role in collecting information. There are three major sections of these online interviews:

  • Face-to-Face Interviews: An interviewer can prepare a list of important interview questions in addition to the already asked survey questions . This way, interviewees provide exhaustive details about the topic under discussion. An interviewer can manage to bond with the interviewee on a personal level which will help him/her to collect more details about the topic due to which the responses also improve. Interviewers can also ask for an explanation from the interviewees about unclear answers.
  • Online/Telephonic Interviews: Telephone-based interviews are no more a novelty but these quantitative interviews have also moved to online mediums such as Skype or Zoom. Irrespective of the distance between the interviewer and the interviewee and their corresponding time zones, communication becomes one-click away with online interviews. In case of telephone interviews, the interview is merely a phone call away.
  • Computer Assisted Personal Interview: This is a one-on-one interview technique where the interviewer enters all the collected data directly into a laptop or any other similar device. The processing time is reduced and also the interviewers don’t have to carry physical questionnaires and merely enter the answers in the laptop.

All of the above quantitative data collection methods can be achieved by using surveys , questionnaires and online polls .

Quantitative Data: Analysis Methods

Data collection forms a major part of the research process. This data, however, has to be analyzed to make sense of. There are multiple methods of analyzing quantitative data collected in surveys . They are:

Quantitative Data Analysis Methods

  • Cross-tabulation: Cross-tabulation is the most widely used quantitative data analysis methods. It is a preferred method since it uses a basic tabular form to draw inferences between different data-sets in the research study. It contains data that is mutually exclusive or have some connection with each other.
  • Trend analysis: Trend analysis is a statistical analysis method that provides the ability to look at quantitative data that has been collected over a long period of time. This data analysis method helps collect feedback about data changes over time and if aims to understand the change in variables considering one variable remains unchanged.
  • MaxDiff analysis: The MaxDiff analysis is a quantitative data analysis method that is used to gauge customer preferences for a purchase and what parameters rank higher than the others in this process. In a simplistic form, this method is also called the “best-worst” method. This method is very similar to conjoint analysis but is much easier to implement and can be interchangeably used.  
  • Conjoint analysis: Like in the above method, conjoint analysis is a similar quantitative data analysis method that analyzes parameters behind a purchasing decision. This method possesses the ability to collect and analyze advanced metrics which provide an in-depth insight into purchasing decisions as well as the parameters that rank the most important.
  • TURF analysis: TURF analysis or Total Unduplicated Reach and Basic Frequency Analysis, is a quantitative data analysis methodology that assesses the total market reach of a product or service or a mix of both. This method is used by organizations to understand the frequency and the avenues at which their messaging reaches customers and prospective customers which helps them tweak their go-to-market strategies.
  • Gap analysis: Gap analysis uses a side-by-side matrix to depict data that helps measure the difference between expected performance and actual performance. This data gap analysis helps measure gaps in performance and the things that are required to be done to bridge this gap.
  • SWOT analysis: SWOT analysis , is a quantitative data analysis methods that assigns numerical values to indicate strength, weaknesses, opportunities and threats of an organization or product or service which in turn provides a holistic picture about competition. This method helps to create effective business strategies.
  • Text analysis: Text analysis is an advanced statistical method where intelligent tools make sense of and quantify or fashion qualitative observation and open-ended data into easily understandable data. This method is used when the raw survey data is unstructured but has to be brought into a structure that makes sense.

Steps to conduct Quantitative Data Analysis

For Quantitative Data, raw information has to presented in a meaningful manner using data analysis methods. This data should be analyzed to find evidential data that would help in the research process. Data analytics and data analysis are closely related processes that involve extracting insights from data to make informed decisions.

  • Relate measurement scales with variables:  Associate measurement scales such as Nominal, Ordinal, Interval and Ratio with the variables. This step is important to arrange the data in proper order. Data can be entered into an excel sheet to organize it in a specific format.
  • Mean- An average of values for a specific variable
  • Median- A midpoint of the value scale for a variable
  • Mode- For a variable, the most common value
  • Frequency- Number of times a particular value is observed in the scale
  • Minimum and Maximum Values- Lowest and highest values for a scale
  • Percentages- Format to express scores and set of values for variables
  • Decide a measurement scale:  It is important to decide the measurement scale to conclude descriptive statistics for the variable. For instance, a nominal data variable score will never have a mean or median, so the descriptive statistics will correspondingly vary. Descriptive statistics suffice in situations where the results are not to be generalized to the population.
  • Select appropriate tables to represent data and analyze collected data: After deciding on a suitable measurement scale, researchers can use a tabular format to represent data. This data can be analyzed using various techniques such as Cross-tabulation or TURF .  

Quantitative Data Examples

Listed below are some examples of quantitative data that can help understand exactly what this pertains:

  • I updated my phone 6 times in a quarter.
  • My teenager grew by 3 inches last year.
  • 83 people downloaded the latest mobile application.
  • My aunt lost 18 pounds last year.
  • 150 respondents were of the opinion that the new product feature will fail to be successful.
  • There will be 30% increase in revenue with the inclusion of a new product.
  • 500 people attended the seminar.
  • 54% people prefer shopping online instead of going to the mall.
  • She has 10 holidays in this year.
  • Product X costs $1000 .

As you can see in the above 10 examples, there is a numerical value assigned to each parameter and this is known as, quantitative data.

Advantages of Quantitative Data

Some of the advantages of quantitative data are:

  • Conduct in-depth research: Since quantitative data can be statistically analyzed, it is highly likely that the research will be detailed.
  • Minimum bias: There are instances in research, where personal bias is involved which leads to incorrect results. Due to the numerical nature of quantitative data, personal bias is reduced to a great extent.
  • Accurate results: As the results obtained are objective in nature, they are extremely accurate.

Disadvantages of Quantitative Data

Some of disadvantages of quantitative data, are:

  • Restricted information: Because quantitative data is not descriptive, it becomes difficult for researchers to make decisions based solely on the collected information.
  • Depends on question types: Bias in results is dependent on the question types included to collect quantitative data. The researcher’s knowledge of questions and the objective of research are exceedingly important while collecting quantitative data.

Differences between Quantitative and Qualitative Data

There are some stark differences between quantitative data and qualitative data . While quantitative data deals with numbers and measures and quantifies a specific phenomenon, qualitative data focuses on non-numerical information, such as opinions and observations.

The two types of data have different purposes, strengths, and limitations, which are important in understanding a given subject completely. Understanding the differences between these two forms of data is crucial in choosing the right research methods, analyzing the results, and making informed decisions. Let’s explore the differences:

Using quantitative data in an investigation is one of the best strategies to guarantee reliable results that allow better decisions. In summary, quantitative data is the basis of statistical analysis.

Data that can be measured and verified gives us information about quantities; that is, information that can be measured and written with numbers. Quantitative data defines a number, while qualitative data collection is descriptive. You can also get quantitative data from qualitative by using semantic analysis .

QuestionPro is a software created to collect quantitative data using a powerful platform with preloaded questionnaires. In addition, you will be able to analyze your data with advanced analysis tools such as cross tables, Likert scales, infographics, and much more.

Start using our platform now!



When I think of “disconnected”, it is important that this is not just in relation to people analytics, Employee Experience or Customer Experience - it is also relevant to looking across them.

I Am Disconnected – Tuesday CX Thoughts

May 21, 2024

Customer success tools

20 Best Customer Success Tools of 2024

May 20, 2024

AI-Based Services in Market Research

AI-Based Services Buying Guide for Market Research (based on ESOMAR’s 20 Questions) 

data information vs insight

Data Information vs Insight: Essential differences

May 14, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

What is Quantitative Data?

Data professionals work with two types of data: quantitative and qualitative. What is quantitative data? What is qualitative data? In simple terms, quantitative data is measurable while qualitative data is descriptive—think numbers versus words.

If you plan on working as a data analyst or a data scientist (or in any field that involves conducting research, like psychology), you’ll need to get to grips with both. In this post, we’ll focus on quantitative data. We’ll explain exactly what quantitative data is, including plenty of useful examples. We’ll also show you what methods you can use to collect and analyze quantitative data.

By the end of this post, you’ll have a clear understanding of quantitative data and how it’s used.

We’ll cover:

  • What is quantitative data? (Definition)
  • What are some examples of quantitative data?
  • What’s the difference between quantitative and qualitative data?
  • What are the different types of quantitative data?
  • How is quantitative data collected?
  • What methods are used to analyze quantitative data?
  • What are the advantages and disadvantages of quantitative data?
  • Should I use quantitative or qualitative data in my research?
  • What are some common quantitative data analysis tools?
  • What is quantitative data? FAQs
  • Key takeaways

So: what is quantitative data? Let’s find out.

1. What is quantitative data? (Definition)

Quantitative data is, quite simply, information that can be quantified. It can be counted or measured, and given a numerical value—such as length in centimeters or revenue in dollars. Quantitative data tends to be structured in nature and is suitable for statistical analysis. If you have questions such as “How many?”, “How often?” or “How much?”, you’ll find the answers in quantitative data.

2. What are some examples of quantitative data?

Some examples of quantitative data include:

  • Revenue in dollars
  • Weight in kilograms
  • Age in months or years
  • Length in centimeters
  • Distance in kilometers
  • Height in feet or inches
  • Number of weeks in a year

3. What is the difference between quantitative and qualitative data?

It’s hard to define quantitative data without comparing it to qualitative data—so what’s the difference between the two?

While quantitative data can be counted and measured, qualitative data is descriptive and, typically, unstructured. It usually takes the form of words and text—for example, a status posted on Facebook or an interview transcript are both forms of qualitative data. You can also think of qualitative data in terms of the “descriptors” you would use to describe certain attributes. For example, if you were to describe someone’s hair color as auburn, or an ice cream flavor as vanilla, these labels count as qualitative data.

Qualitative data cannot be used for statistical analysis; to make sense of such data, researchers and analysts will instead try to identify meaningful groups and themes.

You’ll find a detailed exploration of the differences between qualitative and quantitative data in this post . But, to summarize:

  • Quantitative data is countable or measurable, relating to numbers; qualitative data is descriptive, relating to words.
  • Quantitative data lends itself to statistical analysis; qualitative data is grouped and categorized according to themes.
  • Examples of quantitative data include numerical values such as measurements, cost, and weight; examples of qualitative data include descriptions (or labels) of certain attributes, such as “brown eyes” or “vanilla flavored ice cream”.

Now we know the difference between the two, let’s get back to quantitative data.

4. What are the different types of quantitative data?

There are two main types of quantitative data: discrete and continuous .

Discrete data

Discrete data is quantitative data that can only take on certain numerical values. These values are fixed and cannot be broken down. When you count something, you get discrete data. For example, if a person has three children, this is an example of discrete data. The number of children is fixed—it’s not possible for them to have, say, 3.2 children.

Another example of discrete quantitative data could be the number of visits to your website; you could have 150 visits in one day, but not 150.6 visits. Discrete data is usually visualized using tally charts, bar charts, and pie charts.

Continuous data

Continuous data, on the other hand, can be infinitely broken down into smaller parts. This type of quantitative data can be placed on a measurement scale; for example, the length of a piece of string in centimeters, or the temperature in degrees Celsius. Essentially, continuous data can take any value; it’s not limited to fixed values. What’s more, continuous data can also fluctuate over time—the room temperature will vary throughout the day, for example. Continuous data is usually represented using a line graph.

Continuous data can be further classified depending on whether it’s interval data or ratio data . Let’s take a look at those now.

Interval vs. ratio data

Interval data can be measured along a continuum, where there is an equal distance between each point on the scale. For example: The difference between 30 and 31 degrees C is equal to the difference between 99 and 100 degrees. Another thing to bear in mind is that interval data has no true or meaningful zero value . Temperature is a good example; a temperature of zero degrees does not mean that there is “no temperature”—it just means that it’s extremely cold!

Ratio data is the same as interval data in terms of equally spaced points on a scale, but unlike interval data, ratio data does have a true zero . Weight in grams would be classified as ratio data; the difference between 20 grams and 21 grams is equal to the difference between 8 and 9 grams, and if something weighs zero grams, it truly weighs nothing.

Beyond the distinction between discrete and continuous data, quantitative data can also be broken down into several different types:

  • Measurements: This type of data refers to the measurement of physical objects. For example, you might measure the length and width of your living room before ordering new sofas.
  • Sensors: A sensor is a device or system which detects changes in the surrounding environment and sends this information to another electronic device, usually a computer. This information is then converted into numbers—that’s your quantitative data. For example, a smart temperature sensor will provide you with a stream of data about the temperature of the room throughout the day.
  • Counts: As the name suggests, this is the quantitative data you get when you count things. You might count the number of people who attended an event, or the number of visits to your website in one week.
  • Quantification of qualitative data: This is when qualitative data is converted into numbers. Take the example of customer satisfaction. If a customer said “I’m really happy with this product”, that would count as qualitative data. You could turn this into quantitative data by asking them to rate their satisfaction on a scale of 1-10.
  • Calculations: This is any quantitative data that results from mathematical calculations, such as calculating your final profit at the end of the month.
  • Projections: Analysts may estimate or predict quantities using algorithms, artificial intelligence, or “manual” analysis. For example, you might predict how many sales you expect to make in the next quarter. The figure you come up with is a projection of quantitative data.

Knowing what type of quantitative data you’re working with helps you to apply the correct type of statistical analysis. We’ll look at how quantitative data is analyzed in section five.

5. How is quantitative data collected?

Now we know what quantitative data is, we can start to think about how analysts actually work with it in the real world. Before the data can be analyzed, it first needs to be generated or collected. So how is this done?

Researchers (for example, psychologists or scientists) will often conduct experiments and studies in order to gather quantitative data and test certain hypotheses. A psychologist investigating the relationship between social media usage and self-esteem might devise a questionnaire with various scales—for example, asking participants to rate, on a scale of one to five, the extent to which they agree with certain statements.

If the survey reaches enough people, the psychologist ends up with a large sample of quantitative data (for example, an overall self-esteem score for each participant) which they can then analyze.

Data analysts and data scientists are less likely to conduct experiments, but they may send out questionnaires and surveys—it all depends on the sector they’re working in. Usually, data professionals will work with “naturally occurring” quantitative data, such as the number of sales per quarter, or how often a customer uses a particular service.

Some common methods of data collection include:

  • Analytics tools, such as Google Analytics
  • Probability sampling

Questionnaires and surveys

  • Open-source datasets on the web

Analytics tools

Data analysts and data scientists rely on specialist tools to gather quantitative data from various sources. Google Analytics, for example, will gather data pertaining to your website; at a glance, you can see metrics such as how much traffic you got in one week, how many page views per minute, and average session length—all useful insights if you want to optimize the performance of your site.

Aside from Google Analytics, which tends to be used within the marketing sector, there are loads of tools out there which can be connected to multiple data sources at once. Tools like RapidMiner, Knime, Qlik, and Splunk can be integrated with internal databases, data lakes, cloud storage, business apps, social media, and IoT devices, allowing you to access data from multiple sources all in one place.

You can learn more about the top tools used by data analysts in this guide

Sampling is when, instead of analyzing an entire dataset, you select a sample or “section” of the data. Sampling may be used to save time and money, and in cases where it’s simply not possible to study an entire population. For example, if you wanted to analyze data pertaining to the residents of New York, it’s unlikely that you’d be able to get hold of data for every single person in the state. Instead, you’d analyze a representative sample.

There are two types of sampling: Random probability sampling, where each unit within the overall dataset has the same chance of being selected (i.e. included in the sample), and non-probability sampling, where the sample is actively selected by the researcher or analyst—not at random. Data analysts and scientists may use Python (the popular programming language) and various algorithms to extract samples from large datasets.

Another way to collect quantitative data is through questionnaires and surveys. Nowadays, it’s easy to create a survey and distribute it online—with tools like Typeform , SurveyMonkey , and Qualtrics , practically anyone can collect quantitative data. Surveys are a useful tool for gathering customer or user feedback, and generally finding out how people feel about certain products or services.

To make sure you gather quantitative data from your surveys, it’s important that you ask respondents to quantify their feelings—for example, asking them to rate their satisfaction on a scale of one to ten.

Open-source datasets online

In addition to analyzing data from internal databases, data analysts might also collect quantitative data from external sources. Again, it all depends on the field you’re working in and what kind of data you need. The internet is full of free and open datasets spanning a range of sectors, from government, business and finance, to science, transport, film, and entertainment—pretty much anything you can think of! We’ve put together a list of places where you can find free datasets here .

6. How is quantitative data analyzed?

A defining characteristic of quantitative data is that it’s suitable for statistical analysis. There are many different methods and techniques used for quantitative data analysis, and how you analyze your data depends on what you hope to find out.

Before we go into some specific methods of analysis, it’s important to distinguish between descriptive and inferential analysis .

What’s the difference between descriptive and inferential analysis of quantitative data?

Descriptive analysis does exactly what it says on the tin; it describes the data. This is useful as it allows you to see, at a glance, what the basic qualities of your data are and what you’re working with. Some commonly used descriptive statistics include the range (the difference between the highest and lowest scores), the minimum and maximum (the lowest and highest scores in a dataset), and frequency (how often a certain value appears in the dataset).

You might also calculate various measures of central tendency in order to gauge the general trend of your data. Measures of central tendency include the mean (the sum of all values divided by the number of values, otherwise known as the average), the median (the middle score when all scores are ordered numerically), and the mode (the most frequently occurring score). Another useful calculation is standard deviation . This tells you how representative of the entire dataset the mean value actually is.

While descriptive statistics give you an initial read on your quantitative data, they don’t allow you to draw definitive conclusions. That’s where inferential analysis comes in. With inferential statistics, you can make inferences and predictions. This allows you to test various hypotheses and to predict future outcomes based on probability theory.

Quantitative data analysis methods

When it comes to deriving insights from your quantitative data, there’s a whole host of techniques at your disposal. Some of the most common (and useful) methods of quantitative data analysis include:

  • Regression analysis: This is used to estimate the relationship between a set of variables, and to see if there’s any kind of correlation between the two. Regression is especially useful for making predictions and forecasting future trends.
  • Monte Carlo simulation : The Monte Carlo method is a computerized technique used to generate models of possible outcomes and their probability distributions based on your dataset. It essentially considers a range of possible outcomes and then calculates how likely it is that each particular outcome will occur. It’s used by data analysts to conduct advanced risk analysis, allowing them to accurately predict what might happen in the future.
  • Cohort analysis: A cohort is a group of people who share a common attribute or behavior during a given time period—for example, a cohort of students who all started university in 2020, or a cohort of customers who purchased via your app in the month of February. Cohort analysis essentially divides your dataset into cohorts and analyzes how these cohorts behave over time. This is especially useful for identifying patterns in customer behavior and tailoring your products and services accordingly.
  • Cluster analysis : This is an exploratory technique used to identify structures within a dataset. The aim of cluster analysis is to sort different data points into groups that are internally homogenous and externally heterogeneous—in other words, data points within a cluster are similar to each other, but dissimilar to data points in other clusters. Clustering is used to see how data is distributed in a given dataset, or as a preprocessing step for other algorithms.
  • Time series analysis : This is used to identify trends and cycles over time. Time series data is a sequence of data points which measure the same variable at different points in time, such as weekly sales figures or monthly email sign-ups. By looking at time-related trends, analysts can forecast how the variable of interest may fluctuate in the future. Extremely handy when it comes to making business decisions!

Above is just a very brief introduction to how you might analyze your quantitative data. For a more in-depth look, check out this comprehensive guide to some of the most useful data analysis techniques .

7. What are the advantages and disadvantages of quantitative data?

As with anything, there are both advantages and disadvantages of using quantitative data. So what are they? Let’s take a look.

Advantages of quantitative data

The main advantages of working with quantitative data are as follows:

  • Quantitative data is relatively quick and easy to collect , allowing you to gather a large sample size. And, the larger your sample size, the more accurate your conclusions are likely to be.
  • Quantitative data is less susceptible to bias. The use of random sampling helps to ensure that a given dataset is as representative as possible, and protects the sample from bias. This is crucial for drawing reliable conclusions.
  • Quantitative data is analyzed objectively. Because quantitative data is suitable for statistical analysis, it can be analyzed according to mathematical rules and principles. This greatly reduces the impact of analyst or researcher bias on how the results are interpreted.

Disadvantages of quantitative data

There are two main drawbacks to be aware of when working with quantitative data, especially within a research context:

  • Quantitative data can lack context. In some cases, context is key; for example, if you’re conducting a questionnaire to find out how customers feel about a new product. The quantitative data may tell you that 60% of customers are unhappy with the product, but that figure alone will not tell you why. Sometimes, you’ll need to delve deeper to gain valuable insights beyond the numbers.
  • There is a risk of bias when using surveys and questionnaires. Again, this point relates more to a research context, but it’s important to bear in mind when creating surveys and questionnaires. The way in which questions are worded can allow researcher bias to seep in, so it’s important to make sure that surveys are devised carefully. You can learn all about how to reduce survey bias in this post .

8. Should I use quantitative or qualitative data in my research?

Okay—so now we know what the difference between quantitative and qualitative data is, as well as other aspects of quantitative data. But when should you make use of quantitative or qualitative research? This answer to this question will depend on the type of project you’re working on—or client you’re working for—specifically. But use these simple criteria as a guide:

  • When to use quantitative research: when you want to confirm or test something, like a theory or hypothesis. When the data can be shown clearly in numbers. Think of a city census that shows the whole number of people living there, as well as their ages, incomes, and other useful information that makes up a city’s demographic.
  • When to use qualitative research: when you want to understand something—for example, a concept, experience, or opinions. Maybe you’re testing out a run of experiences for your company, and need to gather reviews for a specific time period. This would be an example of qualitative research.
  • When to use both quantitative and qualitative research: when you’re taking on a research project that demands both numerical and non-numerical data.

9. What are some common quantitative analysis tools?

The tools used for quantitative data collection and analysis should come as no surprise to the budding data analyst. You may end up using one tool per project, or a combination of tools:

  • Microsoft Power BI

10. What is quantitative data? FAQs

Who uses quantitative data.

Quantitative data is used in many fields—not just data analytics (though, you could argue that all of these fields are at least data-analytics-adjacent)! Those working in the fields of economics, epidemiology, psychology, sociology, and health—to name a few—would make great use of quantitative data in their work. You would be less likely to see quantitative data being used in fields such as anthropology and history.

Is quantitative data better than qualitative data?

It would be hard to make a solid argument of which form of data collection is “better”, as it really depends on the type of project you’re working on. However, quantitative research provides more “hard and fast” information that can be used to make informed, objective decisions.

Where is quantitative data used?

Quantitative data is used when a problem needs to be quantified. That is, to answer the questions that start with “how many…” or “how often…”, for example.

What is quantitative data in statistics?

As statistics is an umbrella term of a discipline concerning the collection, organization and analysis of data, it’s only natural that quantitative data falls under that umbrella—the practice of counting and measuring data sets according to a research question or set of research needs.

Can quantitative data be ordinal?

Ordinal data is a type of statistical data where the variables are sorted into ranges, and the distance between the ranges are not known. Think of the pain scale they sometimes use in the hospital, where you judge the level of pain you have on a scale of 1-10, with 1 being low and 10 being the highest. However, you can’t really quantify the difference between 1-10—it’s a matter of how you feel!

By that logic, ordinal data falls under qualitative data, not quantitative. You can learn more about the data levels of measurement in this post .

Is quantitative data objective?

Due to the nature of how quantitative data is produced—that is, using methods that are verifiable and replicable—it is objective.

11. Key takeaways and further reading

In this post, we answered the question: what is quantitative data? We looked at how it differs from qualitative data, and how it’s collected and analyzed. To recap what we’ve learned:

  • Quantitative data is data that can be quantified. It can be counted or measured, and given a numerical value.
  • Quantitative data lends itself to statistical analysis, while qualitative data is grouped according to themes.
  • Quantitative data can be discrete or continuous. Discrete data takes on fixed values (e.g. a person has three children), while continuous data can be infinitely broken down into smaller parts.
  • Quantitative data has several advantages: It is relatively quick and easy to collect, and it is analyzed subjectively.

Collecting and analyzing quantitative data is just one aspect of the data analyst’s work. To learn more about what it’s like to work as a data analyst, check out the following guides. And, if you’d like to dabble in some analytics yourself, why not try our free five-day introductory short course ?

  • What is data analytics? A beginner’s guide
  • A step-by-step guide to the data analysis process
  • Where could a career in data analytics take you?
  • Privacy Policy

Research Method

Home » Quantitative Data – Types, Methods and Examples

Quantitative Data – Types, Methods and Examples

Table of Contents

 Quantitative Data

Quantitative Data


Quantitative data refers to numerical data that can be measured or counted. This type of data is often used in scientific research and is typically collected through methods such as surveys, experiments, and statistical analysis.

Quantitative Data Types

There are two main types of quantitative data: discrete and continuous.

  • Discrete data: Discrete data refers to numerical values that can only take on specific, distinct values. This type of data is typically represented as whole numbers and cannot be broken down into smaller units. Examples of discrete data include the number of students in a class, the number of cars in a parking lot, and the number of children in a family.
  • Continuous data: Continuous data refers to numerical values that can take on any value within a certain range or interval. This type of data is typically represented as decimal or fractional values and can be broken down into smaller units. Examples of continuous data include measurements of height, weight, temperature, and time.

Quantitative Data Collection Methods

There are several common methods for collecting quantitative data. Some of these methods include:

  • Surveys : Surveys involve asking a set of standardized questions to a large number of people. Surveys can be conducted in person, over the phone, via email or online, and can be used to collect data on a wide range of topics.
  • Experiments : Experiments involve manipulating one or more variables and observing the effects on a specific outcome. Experiments can be conducted in a controlled laboratory setting or in the real world.
  • Observational studies : Observational studies involve observing and collecting data on a specific phenomenon without intervening or manipulating any variables. Observational studies can be conducted in a natural setting or in a laboratory.
  • Secondary data analysis : Secondary data analysis involves using existing data that was collected for a different purpose to answer a new research question. This method can be cost-effective and efficient, but it is important to ensure that the data is appropriate for the research question being studied.
  • Physiological measures: Physiological measures involve collecting data on biological or physiological processes, such as heart rate, blood pressure, or brain activity.
  • Computerized tracking: Computerized tracking involves collecting data automatically from electronic sources, such as social media, online purchases, or website analytics.

Quantitative Data Analysis Methods

There are several methods for analyzing quantitative data, including:

  • Descriptive statistics: Descriptive statistics are used to summarize and describe the basic features of the data, such as the mean, median, mode, standard deviation, and range.
  • Inferential statistics : Inferential statistics are used to make generalizations about a population based on a sample of data. These methods include hypothesis testing, confidence intervals, and regression analysis.
  • Data visualization: Data visualization involves creating charts, graphs, and other visual representations of the data to help identify patterns and trends. Common types of data visualization include histograms, scatterplots, and bar charts.
  • Time series analysis: Time series analysis involves analyzing data that is collected over time to identify patterns and trends in the data.
  • Multivariate analysis : Multivariate analysis involves analyzing data with multiple variables to identify relationships between the variables.
  • Factor analysis : Factor analysis involves identifying underlying factors or dimensions that explain the variation in the data.
  • Cluster analysis: Cluster analysis involves identifying groups or clusters of observations that are similar to each other based on multiple variables.

Quantitative Data Formats

Quantitative data can be represented in different formats, depending on the nature of the data and the purpose of the analysis. Here are some common formats:

  • Tables : Tables are a common way to present quantitative data, particularly when the data involves multiple variables. Tables can be used to show the frequency or percentage of data in different categories or to display summary statistics.
  • Charts and graphs: Charts and graphs are useful for visualizing quantitative data and can be used to highlight patterns and trends in the data. Some common types of charts and graphs include line charts, bar charts, scatterplots, and pie charts.
  • Databases : Quantitative data can be stored in databases, which allow for easy sorting, filtering, and analysis of large amounts of data.
  • Spreadsheets : Spreadsheets can be used to organize and analyze quantitative data, particularly when the data is relatively small in size. Spreadsheets allow for calculations and data manipulation, as well as the creation of charts and graphs.
  • Statistical software : Statistical software, such as SPSS, R, and SAS, can be used to analyze quantitative data. These programs allow for more advanced statistical analyses and data modeling, as well as the creation of charts and graphs.

Quantitative Data Gathering Guide

Here is a basic guide for gathering quantitative data:

  • Define the research question: The first step in gathering quantitative data is to clearly define the research question. This will help determine the type of data to be collected, the sample size, and the methods of data analysis.
  • Choose the data collection method: Select the appropriate method for collecting data based on the research question and available resources. This could include surveys, experiments, observational studies, or other methods.
  • Determine the sample size: Determine the appropriate sample size for the research question. This will depend on the level of precision needed and the variability of the population being studied.
  • Develop the data collection instrument: Develop a questionnaire or survey instrument that will be used to collect the data. The instrument should be designed to gather the specific information needed to answer the research question.
  • Pilot test the data collection instrument : Before collecting data from the entire sample, pilot test the instrument on a small group to identify any potential problems or issues.
  • Collect the data: Collect the data from the selected sample using the chosen data collection method.
  • Clean and organize the data : Organize the data into a format that can be easily analyzed. This may involve checking for missing data, outliers, or errors.
  • Analyze the data: Analyze the data using appropriate statistical methods. This may involve descriptive statistics, inferential statistics, or other types of analysis.
  • Interpret the results: Interpret the results of the analysis in the context of the research question. Identify any patterns, trends, or relationships in the data and draw conclusions based on the findings.
  • Communicate the findings: Communicate the findings of the analysis in a clear and concise manner, using appropriate tables, graphs, and other visual aids as necessary. The results should be presented in a way that is accessible to the intended audience.

Examples of Quantitative Data

Here are some examples of quantitative data:

  • Height of a person (measured in inches or centimeters)
  • Weight of a person (measured in pounds or kilograms)
  • Temperature (measured in Fahrenheit or Celsius)
  • Age of a person (measured in years)
  • Number of cars sold in a month
  • Amount of rainfall in a specific area (measured in inches or millimeters)
  • Number of hours worked in a week
  • GPA (grade point average) of a student
  • Sales figures for a product
  • Time taken to complete a task.
  • Distance traveled (measured in miles or kilometers)
  • Speed of an object (measured in miles per hour or kilometers per hour)
  • Number of people attending an event
  • Price of a product (measured in dollars or other currency)
  • Blood pressure (measured in millimeters of mercury)
  • Amount of sugar in a food item (measured in grams)
  • Test scores (measured on a numerical scale)
  • Number of website visitors per day
  • Stock prices (measured in dollars)
  • Crime rates (measured by the number of crimes per 100,000 people)

Applications of Quantitative Data

Quantitative data has a wide range of applications across various fields, including:

  • Scientific research: Quantitative data is used extensively in scientific research to test hypotheses and draw conclusions. For example, in biology, researchers might use quantitative data to measure the growth rate of cells or the effectiveness of a drug treatment.
  • Business and economics: Quantitative data is used to analyze business and economic trends, forecast future performance, and make data-driven decisions. For example, a company might use quantitative data to analyze sales figures and customer demographics to determine which products are most popular among which segments of their customer base.
  • Education: Quantitative data is used in education to measure student performance, evaluate teaching methods, and identify areas where improvement is needed. For example, a teacher might use quantitative data to track the progress of their students over the course of a semester and adjust their teaching methods accordingly.
  • Public policy: Quantitative data is used in public policy to evaluate the effectiveness of policies and programs, identify areas where improvement is needed, and develop evidence-based solutions. For example, a government agency might use quantitative data to evaluate the impact of a social welfare program on poverty rates.
  • Healthcare : Quantitative data is used in healthcare to evaluate the effectiveness of medical treatments, track the spread of diseases, and identify risk factors for various health conditions. For example, a doctor might use quantitative data to monitor the blood pressure levels of their patients over time and adjust their treatment plan accordingly.

Purpose of Quantitative Data

The purpose of quantitative data is to provide a numerical representation of a phenomenon or observation. Quantitative data is used to measure and describe the characteristics of a population or sample, and to test hypotheses and draw conclusions based on statistical analysis. Some of the key purposes of quantitative data include:

  • Measuring and describing : Quantitative data is used to measure and describe the characteristics of a population or sample, such as age, income, or education level. This allows researchers to better understand the population they are studying.
  • Testing hypotheses: Quantitative data is often used to test hypotheses and theories by collecting numerical data and analyzing it using statistical methods. This can help researchers determine whether there is a statistically significant relationship between variables or whether there is support for a particular theory.
  • Making predictions : Quantitative data can be used to make predictions about future events or trends based on past data. This is often done through statistical modeling or time series analysis.
  • Evaluating programs and policies: Quantitative data is often used to evaluate the effectiveness of programs and policies. This can help policymakers and program managers identify areas where improvements can be made and make evidence-based decisions about future programs and policies.

When to use Quantitative Data

Quantitative data is appropriate to use when you want to collect and analyze numerical data that can be measured and analyzed using statistical methods. Here are some situations where quantitative data is typically used:

  • When you want to measure a characteristic or behavior : If you want to measure something like the height or weight of a population or the number of people who smoke, you would use quantitative data to collect this information.
  • When you want to compare groups: If you want to compare two or more groups, such as comparing the effectiveness of two different medical treatments, you would use quantitative data to collect and analyze the data.
  • When you want to test a hypothesis : If you have a hypothesis or theory that you want to test, you would use quantitative data to collect data that can be analyzed statistically to determine whether your hypothesis is supported by the data.
  • When you want to make predictions: If you want to make predictions about future trends or events, such as predicting sales for a new product, you would use quantitative data to collect and analyze data from past trends to make your prediction.
  • When you want to evaluate a program or policy : If you want to evaluate the effectiveness of a program or policy, you would use quantitative data to collect data about the program or policy and analyze it statistically to determine whether it has had the intended effect.

Characteristics of Quantitative Data

Quantitative data is characterized by several key features, including:

  • Numerical values : Quantitative data consists of numerical values that can be measured and counted. These values are often expressed in terms of units, such as dollars, centimeters, or kilograms.
  • Continuous or discrete : Quantitative data can be either continuous or discrete. Continuous data can take on any value within a certain range, while discrete data can only take on certain values.
  • Objective: Quantitative data is objective, meaning that it is not influenced by personal biases or opinions. It is based on empirical evidence that can be measured and analyzed using statistical methods.
  • Large sample size: Quantitative data is often collected from a large sample size in order to ensure that the results are statistically significant and representative of the population being studied.
  • Statistical analysis: Quantitative data is typically analyzed using statistical methods to determine patterns, relationships, and other characteristics of the data. This allows researchers to make more objective conclusions based on empirical evidence.
  • Precision : Quantitative data is often very precise, with measurements taken to multiple decimal points or significant figures. This precision allows for more accurate analysis and interpretation of the data.

Advantages of Quantitative Data

Some advantages of quantitative data are:

  • Objectivity : Quantitative data is usually objective because it is based on measurable and observable variables. This means that different people who collect the same data will generally get the same results.
  • Precision : Quantitative data provides precise measurements of variables. This means that it is easier to make comparisons and draw conclusions from quantitative data.
  • Replicability : Since quantitative data is based on objective measurements, it is often easier to replicate research studies using the same or similar data.
  • Generalizability : Quantitative data allows researchers to generalize findings to a larger population. This is because quantitative data is often collected using random sampling methods, which help to ensure that the data is representative of the population being studied.
  • Statistical analysis : Quantitative data can be analyzed using statistical methods, which allows researchers to test hypotheses and draw conclusions about the relationships between variables.
  • Efficiency : Quantitative data can often be collected quickly and efficiently using surveys or other standardized instruments, which makes it a cost-effective way to gather large amounts of data.

Limitations of Quantitative Data

Some Limitations of Quantitative Data are as follows:

  • Limited context: Quantitative data does not provide information about the context in which the data was collected. This can make it difficult to understand the meaning behind the numbers.
  • Limited depth: Quantitative data is often limited to predetermined variables and questions, which may not capture the complexity of the phenomenon being studied.
  • Difficulty in capturing qualitative aspects: Quantitative data is unable to capture the subjective experiences and qualitative aspects of human behavior, such as emotions, attitudes, and motivations.
  • Possibility of bias: The collection and interpretation of quantitative data can be influenced by biases, such as sampling bias, measurement bias, or researcher bias.
  • Simplification of complex phenomena: Quantitative data may oversimplify complex phenomena by reducing them to numerical measurements and statistical analyses.
  • Lack of flexibility: Quantitative data collection methods may not allow for changes or adaptations in the research process, which can limit the ability to respond to unexpected findings or new insights.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Primary Data

Primary Data – Types, Methods and Examples

Qualitative Data

Qualitative Data – Types, Methods and Examples

Research Data

Research Data – Types Methods and Examples

Secondary Data

Secondary Data – Types, Methods and Examples

Research Information

Information in Research – Types and Examples

  • Skip to primary navigation
  • Skip to content


  • Home – AI for Research


The Difference Between Qualitative and Quantitative Research: Explained

Understanding the difference between qualitative and quantitative research is essential for anyone involved in academic or professional research. Qualitative research focuses on exploring and understanding the ‘why’ and ‘how’ of a particular phenomenon, often using methods like interviews, observations, and open-ended surveys. On the other hand, quantitative research emphasizes measurement and quantification, seeking to answer ‘what,’ ‘where,’ and ‘how many’ through statistical analysis and numerical data. Both approaches offer unique insights and play crucial roles in various fields, from social sciences to business and healthcare. By delving into the nuances of qualitative and quantitative research, researchers can choose the most suitable methodology to address their research questions effectively. This distinction forms the backbone of research design and methodology, shaping the way data is collected, analyzed, and interpreted. In this guide, we will explore the key characteristics of qualitative and quantitative research, highlighting their strengths, limitations, and applications in different research contexts.

Qualitative Research

Qualitative Research is a versatile method of inquiry that delves deep into understanding human behavior, experiences, and motivations. It goes beyond surface-level data to explore the intricacies of how individuals or groups perceive and interpret social or human problems. This type of research is invaluable in providing nuanced insights that can shape further quantitative research or inform decision-making processes. Qualitative research stands out for its subjective approach, allowing researchers to capture the complexities of human interactions and societal dynamics. The flexibility inherent in qualitative research methodologies enables researchers to adapt their approaches based on emerging insights or changing research needs.

Common Methods

Common methods employed in qualitative research include: – Interviews – Focus groups – Observations – Content analysis Each offering unique perspectives and data sources.

Key Strengths

One of the key strengths of qualitative research is its ability to uncover hidden patterns, motivations, and behaviors that quantitative methods may overlook. By immersing researchers in the context of the study, qualitative research facilitates a comprehensive understanding of complex phenomena that quantitative data alone cannot provide. Moreover, qualitative research allows for the exploration of diverse viewpoints and experiences, contributing to a more holistic understanding of the subject under investigation.

Insights and Impact

The rich, detailed insights generated through qualitative research play a pivotal role in informing policies, shaping interventions, and advancing knowledge in various fields. In essence, qualitative research serves as a cornerstone in unraveling the intricacies of human behavior and social phenomena, offering a profound understanding that quantitative research alone cannot achieve.

Dynamic Process

Qualitative research involves a dynamic and iterative process. Researchers engage in open-ended discussions, allowing for a deeper exploration of the subject matter. This method encourages flexibility and adaptability, crucial in capturing the evolving nature of human experiences and behaviors. Additionally, qualitative research often involves the researcher immersing themselves in the research environment, gaining firsthand experiences and insights that quantitative data may not capture.

Emphasis on Context

Another key aspect of qualitative research is its emphasis on context. Understanding the context in which behaviors, beliefs, and interactions occur is essential for interpreting the data accurately. By considering the broader social, cultural, and historical context, qualitative researchers can provide rich descriptions and interpretations that offer valuable insights into the complexities of human phenomena.

Interpretive Nature

Furthermore, qualitative research is characterized by its interpretive nature. Researchers analyze data through a subjective lens, acknowledging their own perspectives and biases in the process. This reflexivity enhances the transparency and credibility of the research findings, encouraging a more nuanced understanding of the subject matter. Overall, qualitative research plays a vital role in complementing quantitative approaches, offering depth, context, and rich insights that contribute to a comprehensive understanding of human behavior and social dynamics.

Quantitative Research

Quantitative research involves the collection and analysis of numerical data to understand phenomena. It focuses on quantifying the data and generalizing results from a sample to a population. This type of research is characterized by its structured methodology, statistical analysis, and objectivity. Some key characteristics of quantitative research include:.

Structured Approach : Quantitative research follows a structured and predetermined research design to ensure reliability and validity of results. Researchers use standardized data collection tools and statistical techniques to analyze the data.

Numerical Data : Quantitative research deals with numerical data that can be quantified and analyzed using statistical methods. This data is often collected through surveys, experiments, or existing datasets.

Generalizability : One of the main goals of quantitative research is to generalize the findings from a sample to a larger population. By using random sampling techniques, researchers aim to make inferences about the population based on the sample data.

Objectivity : Quantitative research strives to maintain objectivity and minimize bias in the research process. Researchers use statistical tools to analyze the data objectively and draw conclusions based on evidence.

Advantages of Quantitative Research

Reliability : Quantitative research is known for its reliability due to its structured methodology and statistical analysis. The results are replicable and consistent, providing a solid foundation for making decisions.

Generalizability : The ability to generalize findings to a larger population is a significant advantage of quantitative research. This allows researchers to make broader conclusions and apply the results to real-world scenarios.

Objectivity : Quantitative research promotes objectivity by relying on numerical data and statistical analysis. This helps in reducing bias and subjectivity in the research process.

Data-driven Decisions : The numerical data collected in quantitative research enables data-driven decision-making. Organizations and policymakers can use the research findings to inform strategies and policies based on empirical evidence.

Statistical Analysis : Quantitative research allows for sophisticated statistical analysis, providing deeper insights into relationships between variables. Researchers can identify patterns, trends, and correlations in the data to draw meaningful conclusions.

Quantitative research offers a systematic and objective approach to studying phenomena through numerical data analysis. Its emphasis on reliability, generalizability, and objectivity makes it a valuable research method in various fields.

When it comes to research methodologies, one of the key differentiators is the distinction between qualitative and quantitative research. Qualitative research focuses on understanding human behavior, emotions, and experiences through methods such as interviews, observations, and case studies. On the other hand, quantitative research involves the collection and analysis of numerical data to identify patterns and relationships.

In terms of data collection, qualitative research relies on non-numerical data, such as words, images, and observations, to gain insights into the research topic. This approach allows researchers to explore complex phenomena in depth and understand the context in which they occur. In contrast, quantitative research involves the collection of numerical data through surveys, experiments, or statistical analysis. This data is then analyzed using statistical methods to draw conclusions and make predictions.

The main differences between qualitative and quantitative research lie in their approaches to data collection and analysis. While qualitative research focuses on exploring and understanding phenomena in their natural settings, quantitative research aims to measure and quantify relationships between variables. Both methodologies have their strengths and limitations, and the choice between them depends on the research questions, objectives, and context of the study.

Qualitative research often involves smaller sample sizes compared to quantitative research. This is because qualitative studies delve deep into individual experiences and behaviors, requiring intensive data collection and analysis. On the other hand, quantitative research typically involves larger sample sizes to ensure statistical significance and generalizability of findings.

Another key aspect to consider is the nature of data analysis. Qualitative research employs techniques such as thematic analysis, content analysis, and grounded theory to interpret textual or visual data. Researchers immerse themselves in the data to identify patterns and themes that emerge. In contrast, quantitative research utilizes statistical tools like regression analysis, correlation, and hypothesis testing to analyze numerical data and test hypotheses.

Furthermore, qualitative research is often exploratory and iterative, allowing researchers to adapt their methods and theories based on emerging findings. This flexibility enables a deeper understanding of complex phenomena and can lead to new insights and theories. In comparison, quantitative research follows a more structured and rigid approach, with predefined hypotheses and data collection methods.

While qualitative and quantitative research differ in their fundamental approaches, both play crucial roles in advancing knowledge and understanding in various fields. Researchers often combine these methodologies to gain a comprehensive understanding of a research problem, leveraging the strengths of each approach to produce robust and insightful results.


When it comes to research methodologies, both qualitative and quantitative research play crucial roles in gathering data and insights. Understanding when to use each approach is essential for conducting effective research.

When to Use Qualitative Research:

Qualitative research is typically used to explore and understand phenomena in-depth. It is best suited for situations where you want to uncover underlying motivations, attitudes, or behaviors. Qualitative research methods include interviews, focus groups, observations, and case studies. Use qualitative research when: – You want to gain a deeper understanding of a particular topic. – You need to explore complex issues or phenomena. – You want to generate hypotheses for further research.

When to Use Quantitative Research:

Quantitative research involves the collection and analysis of numerical data. It is used to quantify relationships, test hypotheses, and generalize results to a larger population. Quantitative research methods include surveys, experiments, and statistical analysis. Use quantitative research when: – You need to measure the prevalence of a particular phenomenon. – You want to test specific hypotheses and relationships. – You aim to make statistically significant conclusions.

The choice between qualitative and quantitative research depends on the research objectives, the nature of the research questions, and the type of data needed to answer those questions. Both methodologies have their strengths and limitations, and often a combination of both approaches can provide a more comprehensive understanding of a research problem.

Expanding on the applications of qualitative research, it is important to note that this method is highly effective in exploratory studies. Qualitative research allows researchers to delve deep into the subject matter, uncovering nuances that quantitative methods may overlook. It is particularly useful in fields such as sociology, anthropology, and psychology where understanding human behavior and motivations is paramount.

On the other hand, quantitative research excels in providing numerical data that can be analyzed statistically. This method is valuable in studies that require precise measurements and the ability to draw generalizable conclusions. Fields like economics, marketing, and public health often rely on quantitative research to make data-driven decisions.

Moreover, a mixed-methods approach, combining both qualitative and quantitative techniques, can offer a more holistic view of a research problem. By triangulating data from different sources, researchers can validate findings and enhance the overall credibility of their research outcomes.

In practice, researchers should carefully consider the research questions, available resources, and desired outcomes when selecting the appropriate research methodology. By aligning the chosen method with the research objectives, researchers can ensure the validity and reliability of their study results.

Understanding the difference between qualitative and quantitative research is essential for conducting thorough and effective studies. While qualitative research focuses on exploring ideas and experiences in-depth, quantitative research emphasizes numerical data and statistical analysis. Both approaches offer valuable insights and play distinct roles in the research process. To excel in academia and research, mastering the art of writing scientific abstracts is equally crucial. Crafting a concise and engaging abstract can significantly impact the reception of your work. For detailed guidance on writing effective scientific abstracts, check out this helpful website Avidnote . Mastering this skill will not only enhance your academic writing but also improve the visibility and impact of your research.

Privacy Overview

Adding {{itemName}} to cart

Added {{itemName}} to cart

Types of market research: Methods and examples


  • Share on Facebook
  • Share on Twitter
  • Share on LinkedIn

Fancy a look round our platform? Show me

Here at GWI we publish a steady stream of blogs, reports, and other resources that dig deep into specific market research topics.

But what about the folks who’d appreciate a more general overview of market research that explains the big picture? Don’t they deserve some love too?

Of course they do. That’s why we’ve created this overview guide focusing on types of market research and examples. With so many market research companies to choose from, having a solid general understanding of how this sector works is essential for any brand or business that wants to pick the right market research partner.

So with that in mind, let’s start at the very beginning and get clear on…

Market research definition

At the risk of stating the slightly obvious, market research is the gathering and analyzing of data on consumers, competitors, distributors, and markets. As such it’s not quite the same as consumer research , but there’s significant overlap.

Market research matters because it can help you take the guesswork out of getting through to audiences. By studying consumers and gathering information on their likes, dislikes, and so on, brands can make evidence-based decisions instead of relying on instinct or experience. 

what is quantitative research and examples

What is market research?

Market research is the organized gathering of information about target markets and consumers’ needs and preferences. It’s an important component of business strategy and a major factor in maintaining competitiveness.

If a business wants to know – really know – what sort of products or services consumers want to buy, along with where, when, and how those products and services should be marketed, it just makes sense to ask the prospective audience. 

Without the certainty that market research brings, a business is basically hoping for the best. And while we salute their optimism, that’s not exactly a reliable strategy for success.

What are the types of market research?

Primary research .

Primary research is a type of market research you either conduct yourself or hire someone to do on your behalf.

A classic example of primary research involves going directly to a source – typically customers or prospective customers in your target market – to ask questions and gather information about a product or service. Interviewing methods include in-person, online surveys, phone calls, and focus groups.

The big advantage of primary research is that it’s directly focused on your objectives, so the outcome will be conclusive, detailed insights – particularly into customer views – making it the gold standard.

The disadvantages are it can be time-consuming and potentially costly, plus there’s a risk of survey bias creeping in, in the sense that research samples may not be representative of the wider group.

Secondary research 

Primary market research means you collect the data your business needs, whereas the types of market research known as secondary market research use information that’s already been gathered for other purposes but can still be valuable. Examples include published market studies, white papers, analyst reports, customer emails, and customer surveys/feedback.

For many small businesses with limited budgets, secondary market research is their first choice because it’s easier to acquire and far more affordable than primary research.

Secondary research can still answer specific business questions, but with limitations. The data collected from that audience may not match your targeted audience exactly, resulting in skewed outcomes. 

A big benefit of secondary market research is helping lay the groundwork and get you ready to carry out primary market research by making sure you’re focused on what matters most.

what is quantitative research and examples

Qualitative research

Qualitative research is one of the two fundamental types of market research. Qualitative research is about people and their opinions. Typically conducted by asking questions either one-on-one or in groups, qualitative research can help you define problems and learn about customers’ opinions, values, and beliefs.

Classic examples of qualitative research are long-answer questions like “Why do you think this product is better than competitive products? Why do you think it’s not?”, or “How would you improve this new service to make it more appealing?”

Because qualitative research generally involves smaller sample sizes than its close cousin quantitative research, it gives you an anecdotal overview of your subject, rather than highly detailed information that can help predict future performance.

Qualitative research is particularly useful if you’re developing a new product, service, website or ad campaign and want to get some feedback before you commit a large budget to it.

Quantitative research

If qualitative research is all about opinions, quantitative research is all about numbers, using math to uncover insights about your audience. 

Typical quantitative research questions are things like, “What’s the market size for this product?” or “How long are visitors staying on this website?”. Clearly the answers to both will be numerical.

Quantitative research usually involves questionnaires. Respondents are asked to complete the survey, which marketers use to understand consumer needs, and create strategies and marketing plans.

Importantly, because quantitative research is math-based, it’s statistically valid, which means you’re in a good position to use it to predict the future direction of your business.

Consumer research 

As its name implies, consumer research gathers information about consumers’ lifestyles, behaviors, needs and preferences, usually in relation to a particular product or service. It can include both quantitative and qualitative studies.

Examples of consumer research in action include finding ways to improve consumer perception of a product, or creating buyer personas and market segments, which help you successfully market your product to different types of customers.

Understanding consumer trends , driven by consumer research, helps businesses understand customer psychology and create detailed purchasing behavior profiles. The result helps brands improve their products and services by making them more customer-centric, increasing customer satisfaction, and boosting bottom line in the process.

Product research 

Product research gives a new product (or indeed service, we don’t judge) its best chance of success, or helps an existing product improve or increase market share.

It’s common sense: by finding out what consumers want and adjusting your offering accordingly, you gain a competitive edge. It can be the difference between a product being a roaring success or an abject failure.

Examples of product research include finding ways to develop goods with a higher value, or identifying exactly where innovation effort should be focused. 

Product research goes hand-in-hand with other strands of market research, helping you make informed decisions about what consumers want, and what you can offer them.

Brand research  

Brand research is the process of gathering feedback from your current, prospective, and even past customers to understand how your brand is perceived by the market.

It covers things like brand awareness, brand perceptions, customer advocacy, advertising effectiveness, purchase channels, audience profiling, and whether or not the brand is a top consideration for consumers.

The result helps take the guesswork out of your messaging and brand strategy. Like all types of market research, it gives marketing leaders the data they need to make better choices based on fact rather than opinion or intuition.

Market research methods 

So far we’ve reviewed various different types of market research, now let’s look at market research methods, in other words the practical ways you can uncover those all-important insights.

Consumer research platform 

A consumer research platform like GWI is a smart way to find on-demand market research insights in seconds.

In a world of fluid markets and changing attitudes, a detailed understanding of your consumers, developed using the right research platform, enables you to stop guessing and start knowing.

As well as providing certainty, consumer research platforms massively accelerate speed to insight. Got a question? Just jump on your consumer research platform and find the answer – job done.

The ability to mine data for answers like this is empowering – suddenly you’re in the driving seat with a world of possibilities ahead of you. Compared to the most obvious alternative – commissioning third party research that could take weeks to arrive – the right consumer research platform is basically a magic wand.

Admittedly we’re biased, but GWI delivers all this and more. Take our platform for a quick spin and see for yourself.

And the downside of using a consumer research platform? Well, no data set, however fresh or thorough, can answer every question. If you need really niche insights then your best bet is custom market research , where you can ask any question you like, tailored to your exact needs.

Face-to-face interviews 

Despite the rise in popularity of online surveys , face-to-face survey interviewing – using mobile devices or even the classic paper survey – is still a popular data collection method.

In terms of advantages, face-to-face interviews help with accurate screening, in the sense the interviewee can’t easily give misleading answers about, say, their age. The interviewer can also make a note of emotions and non-verbal cues. 

On the other hand, face-to-face interviews can be costly, while the quality of data you get back often depends on the ability of the interviewer. Also, the size of the sample is limited to the size of your interviewing staff, the area in which the interviews are conducted, and the number of qualified respondents within that area.

Social listening 

Social listening is a powerful solution for brands who want to keep an ear to the ground, gathering unfiltered thoughts and opinions from consumers who are posting on social media. 

Many social listening tools store data for up to a couple of years, great for trend analysis that needs to compare current and past conversations.

Social listening isn’t limited to text. Images, videos, and emojis often help us better understand what consumers are thinking, saying, and doing better than more traditional research methods. 

Perhaps the biggest downside is there are no guarantees with social listening, and you never know what you will (or won’t) find. It can also be tricky to gauge sentiment accurately if the language used is open to misinterpretation, for example if a social media user describes something as “sick”.

There’s also a potential problem around what people say vs. what they actually do. Tweeting about the gym is a good deal easier than actually going. The wider problem – and this may shock you – is that not every single thing people write on social media is necessarily true, which means social listening can easily deliver unreliable results.

Public domain data 

Public domain data comes from think tanks and government statistics or research centers like the UK’s National Office for Statistics or the United States Census Bureau and the National Institute of Statistical Sciences. Other sources are things like research journals, news media, and academic material.

Its advantages for market research are it’s cheap (or even free), quick to access, and easily available. Public domain datasets can be huge, so potentially very rich.

On the flip side, the data can be out of date, it certainly isn’t exclusive to you, and the collection methodology can leave much to be desired. But used carefully, public domain data can be a useful source of secondary market research.

Telephone interviews 

You know the drill – you get a call from a researcher who asks you questions about a particular topic and wants to hear your opinions. Some even pay or offer other rewards for your time.

Telephone surveys are great for reaching niche groups of consumers within a specific geographic area or connected to a particular brand, or who aren’t very active in online channels. They’re not well-suited for gathering data from broad population groups, simply because of the time and labor involved.

How to use market research 

Data isn’t an end in itself; instead it’s a springboard to make other stuff happen. So once you’ve drawn conclusions from your research, it’s time to think of what you’ll actually do based on your findings.

While it’s impossible for us to give a definitive list (every use case is different), here are some suggestions to get you started.

Leverage it . Think about ways to expand the use – and value – of research data and insights, for example by using research to support business goals and functions, like sales, market share or product design.

Integrate it . Expand the value of your research data by integrating it with other data sources, internal and external. Integrating data like this can broaden your perspective and help you draw deeper insights for more confident decision-making.

Justify it . Enlist colleagues from areas that’ll benefit from the insights that research provides – that could be product management, product development, customer service, marketing, sales or many others – and build a business case for using research.

How to choose the right type of market research 

Broadly speaking, choosing the right research method depends on knowing the type of data you need to collect. To dig into ideas and opinions, choose qualitative; to do some testing, it’s quantitative you want.

There are also a bunch of practical considerations, not least cost. If a particular approach sounds great but costs the earth then clearly it’s not ideal for any brand on a budget.

Then there’s how you intend to use the actual research, your level of expertise with research data, whether you need access to historical data or just a snapshot of today, and so on.

The point is, different methods suit different situations. When choosing, you’ll want to consider what you want to achieve, what data you’ll need, the pros and cons of each method, the costs of conducting the research, and the cost of analyzing the results. 

Market research examples

Independent agency Bright/Shift used GWI consumer insights to shape a high-impact go-to-market strategy for their sustainable furniture client, generating £41K in revenue in the first month. Here’s how they made the magic happen .

Fancy a look around? Book your demo

Never miss a post

By subscribing you confirm you’re happy for us to send you our latest articles.

You’ve read our blog, now see our platform

Every business has questions about its audiences, GWI has answers. Powered by consistent, global research, our platform is an on-demand window into their world.


  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Quantitative Methods
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques . Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel. Doing Quantitative Research in Education with SPSS . 2nd edition. London: SAGE Publications, 2010.

Need Help Locating Statistics?

Resources for locating data and statistics can be found here:

Statistics & Data Research Guide

Characteristics of Quantitative Research

Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment]. A descriptive study establishes only associations between variables; an experimental study establishes causality.

Quantitative research deals in numbers, logic, and an objective stance. Quantitative research focuses on numeric and unchanging data and detailed, convergent reasoning rather than divergent reasoning [i.e., the generation of a variety of ideas about a research problem in a spontaneous, free-flowing manner].

Its main characteristics are :

  • The data is usually gathered using structured research instruments.
  • The results are based on larger sample sizes that are representative of the population.
  • The research study can usually be replicated or repeated, given its high reliability.
  • Researcher has a clearly defined research question to which objective answers are sought.
  • All aspects of the study are carefully designed before data is collected.
  • Data are in the form of numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms.
  • Project can be used to generalize concepts more widely, predict future results, or investigate causal relationships.
  • Researcher uses tools, such as questionnaires or computer software, to collect numerical data.

The overarching aim of a quantitative research study is to classify features, count them, and construct statistical models in an attempt to explain what is observed.

  Things to keep in mind when reporting the results of a study using quantitative methods :

  • Explain the data collected and their statistical treatment as well as all relevant results in relation to the research problem you are investigating. Interpretation of results is not appropriate in this section.
  • Report unanticipated events that occurred during your data collection. Explain how the actual analysis differs from the planned analysis. Explain your handling of missing data and why any missing data does not undermine the validity of your analysis.
  • Explain the techniques you used to "clean" your data set.
  • Choose a minimally sufficient statistical procedure ; provide a rationale for its use and a reference for it. Specify any computer programs used.
  • Describe the assumptions for each procedure and the steps you took to ensure that they were not violated.
  • When using inferential statistics , provide the descriptive statistics, confidence intervals, and sample sizes for each variable as well as the value of the test statistic, its direction, the degrees of freedom, and the significance level [report the actual p value].
  • Avoid inferring causality , particularly in nonrandomized designs or without further experimentation.
  • Use tables to provide exact values ; use figures to convey global effects. Keep figures small in size; include graphic representations of confidence intervals whenever possible.
  • Always tell the reader what to look for in tables and figures .

NOTE:   When using pre-existing statistical data gathered and made available by anyone other than yourself [e.g., government agency], you still must report on the methods that were used to gather the data and describe any missing data that exists and, if there is any, provide a clear explanation why the missing data does not undermine the validity of your final analysis.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Quantitative Research Methods. Writing@CSU. Colorado State University; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Basic Research Design for Quantitative Studies

Before designing a quantitative research study, you must decide whether it will be descriptive or experimental because this will dictate how you gather, analyze, and interpret the results. A descriptive study is governed by the following rules: subjects are generally measured once; the intention is to only establish associations between variables; and, the study may include a sample population of hundreds or thousands of subjects to ensure that a valid estimate of a generalized relationship between variables has been obtained. An experimental design includes subjects measured before and after a particular treatment, the sample population may be very small and purposefully chosen, and it is intended to establish causality between variables. Introduction The introduction to a quantitative study is usually written in the present tense and from the third person point of view. It covers the following information:

  • Identifies the research problem -- as with any academic study, you must state clearly and concisely the research problem being investigated.
  • Reviews the literature -- review scholarship on the topic, synthesizing key themes and, if necessary, noting studies that have used similar methods of inquiry and analysis. Note where key gaps exist and how your study helps to fill these gaps or clarifies existing knowledge.
  • Describes the theoretical framework -- provide an outline of the theory or hypothesis underpinning your study. If necessary, define unfamiliar or complex terms, concepts, or ideas and provide the appropriate background information to place the research problem in proper context [e.g., historical, cultural, economic, etc.].

Methodology The methods section of a quantitative study should describe how each objective of your study will be achieved. Be sure to provide enough detail to enable the reader can make an informed assessment of the methods being used to obtain results associated with the research problem. The methods section should be presented in the past tense.

  • Study population and sampling -- where did the data come from; how robust is it; note where gaps exist or what was excluded. Note the procedures used for their selection;
  • Data collection – describe the tools and methods used to collect information and identify the variables being measured; describe the methods used to obtain the data; and, note if the data was pre-existing [i.e., government data] or you gathered it yourself. If you gathered it yourself, describe what type of instrument you used and why. Note that no data set is perfect--describe any limitations in methods of gathering data.
  • Data analysis -- describe the procedures for processing and analyzing the data. If appropriate, describe the specific instruments of analysis used to study each research objective, including mathematical techniques and the type of computer software used to manipulate the data.

Results The finding of your study should be written objectively and in a succinct and precise format. In quantitative studies, it is common to use graphs, tables, charts, and other non-textual elements to help the reader understand the data. Make sure that non-textual elements do not stand in isolation from the text but are being used to supplement the overall description of the results and to help clarify key points being made. Further information about how to effectively present data using charts and graphs can be found here .

  • Statistical analysis -- how did you analyze the data? What were the key findings from the data? The findings should be present in a logical, sequential order. Describe but do not interpret these trends or negative results; save that for the discussion section. The results should be presented in the past tense.

Discussion Discussions should be analytic, logical, and comprehensive. The discussion should meld together your findings in relation to those identified in the literature review, and placed within the context of the theoretical framework underpinning the study. The discussion should be presented in the present tense.

  • Interpretation of results -- reiterate the research problem being investigated and compare and contrast the findings with the research questions underlying the study. Did they affirm predicted outcomes or did the data refute it?
  • Description of trends, comparison of groups, or relationships among variables -- describe any trends that emerged from your analysis and explain all unanticipated and statistical insignificant findings.
  • Discussion of implications – what is the meaning of your results? Highlight key findings based on the overall results and note findings that you believe are important. How have the results helped fill gaps in understanding the research problem?
  • Limitations -- describe any limitations or unavoidable bias in your study and, if necessary, note why these limitations did not inhibit effective interpretation of the results.

Conclusion End your study by to summarizing the topic and provide a final comment and assessment of the study.

  • Summary of findings – synthesize the answers to your research questions. Do not report any statistical data here; just provide a narrative summary of the key findings and describe what was learned that you did not know before conducting the study.
  • Recommendations – if appropriate to the aim of the assignment, tie key findings with policy recommendations or actions to be taken in practice.
  • Future research – note the need for future research linked to your study’s limitations or to any remaining gaps in the literature that were not addressed in your study.

Black, Thomas R. Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics . London: Sage, 1999; Gay,L. R. and Peter Airasain. Educational Research: Competencies for Analysis and Applications . 7th edition. Upper Saddle River, NJ: Merril Prentice Hall, 2003; Hector, Anestine. An Overview of Quantitative Research in Composition and TESOL . Department of English, Indiana University of Pennsylvania; Hopkins, Will G. “Quantitative Research Design.” Sportscience 4, 1 (2000); "A Strategy for Writing Up Research Results. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper." Department of Biology. Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic Inquiry of Quantitative Research . Kennesaw State University.

Strengths of Using Quantitative Methods

Quantitative researchers try to recognize and isolate specific variables contained within the study framework, seek correlation, relationships and causality, and attempt to control the environment in which the data is collected to avoid the risk of variables, other than the one being studied, accounting for the relationships identified.

Among the specific strengths of using quantitative methods to study social science research problems:

  • Allows for a broader study, involving a greater number of subjects, and enhancing the generalization of the results;
  • Allows for greater objectivity and accuracy of results. Generally, quantitative methods are designed to provide summaries of data that support generalizations about the phenomenon under study. In order to accomplish this, quantitative research usually involves few variables and many cases, and employs prescribed procedures to ensure validity and reliability;
  • Applying well established standards means that the research can be replicated, and then analyzed and compared with similar studies;
  • You can summarize vast sources of information and make comparisons across categories and over time; and,
  • Personal bias can be avoided by keeping a 'distance' from participating subjects and using accepted computational techniques .

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Limitations of Using Quantitative Methods

Quantitative methods presume to have an objective approach to studying research problems, where data is controlled and measured, to address the accumulation of facts, and to determine the causes of behavior. As a consequence, the results of quantitative research may be statistically significant but are often humanly insignificant.

Some specific limitations associated with using quantitative methods to study research problems in the social sciences include:

  • Quantitative data is more efficient and able to test hypotheses, but may miss contextual detail;
  • Uses a static and rigid approach and so employs an inflexible process of discovery;
  • The development of standard questions by researchers can lead to "structural bias" and false representation, where the data actually reflects the view of the researcher instead of the participating subject;
  • Results provide less detail on behavior, attitudes, and motivation;
  • Researcher may collect a much narrower and sometimes superficial dataset;
  • Results are limited as they provide numerical descriptions rather than detailed narrative and generally provide less elaborate accounts of human perception;
  • The research is often carried out in an unnatural, artificial environment so that a level of control can be applied to the exercise. This level of control might not normally be in place in the real world thus yielding "laboratory results" as opposed to "real world results"; and,
  • Preset answers will not necessarily reflect how people really feel about a subject and, in some cases, might just be the closest match to the preconceived hypothesis.

Research Tip

Finding Examples of How to Apply Different Types of Research Methods

SAGE publications is a major publisher of studies about how to design and conduct research in the social and behavioral sciences. Their SAGE Research Methods Online and Cases database includes contents from books, articles, encyclopedias, handbooks, and videos covering social science research design and methods including the complete Little Green Book Series of Quantitative Applications in the Social Sciences and the Little Blue Book Series of Qualitative Research techniques. The database also includes case studies outlining the research methods used in real research projects. This is an excellent source for finding definitions of key terms and descriptions of research design and practice, techniques of data gathering, analysis, and reporting, and information about theories of research [e.g., grounded theory]. The database covers both qualitative and quantitative research methods as well as mixed methods approaches to conducting research.

SAGE Research Methods Online and Cases

  • << Previous: Qualitative Methods
  • Next: Insiderness >>
  • Last Updated: May 22, 2024 12:03 PM
  • URL: https://libguides.usc.edu/writingguide


Significance of the Study: Quantitative Research

Ai generator.

Significance of the Study: Quantitative Research on the Impact of Remote Work on Employee Productivity in the Tech Industry

1. Introduction: The rapid shift to remote work due to the COVID-19 pandemic has significantly altered workplace dynamics, particularly in the tech industry. This quantitative research paper explores the impact of remote work on employee productivity through statistical analysis.

2. Purpose of the Study: The primary objective is to quantify the productivity levels of tech employees working remotely compared to those working in office environments. The study uses metrics such as task completion rates, quality of work, and employee satisfaction, gathered through structured surveys and performance data.

3. Importance to the Field : This research contributes significantly to the academic field by providing empirical data on the productivity impacts of remote work. It enhances existing theoretical models of workplace productivity with quantitative data, offering new insights into the effectiveness of remote work in the tech sector.

4. Practical Implications: The findings from this study have crucial practical implications for tech companies looking to optimize their remote work policies. Managers and HR departments can use the data to develop strategies that improve employee performance and well-being in remote settings. These insights can help in designing targeted interventions and support mechanisms for remote workers.

5. Advancement of Future Research : By providing robust quantitative data on remote work productivity, this study sets a foundation for future research. It addresses current gaps in the literature and encourages further studies to explore remote work impacts across different industries and contexts. Future research can build on these findings to examine the long-term effects of remote work and its sustainability.

6. Societal Impact: The study highlights broader societal benefits of remote work, such as promoting work-life balance, reducing urban congestion, and lowering environmental pollution. These findings can influence public policy and corporate strategies towards adopting more flexible and sustainable working conditions, contributing to overall societal well-being.

7. Conclusion : Understanding the quantitative impact of remote work on productivity is essential for developing effective work policies and creating healthier work environments. This research provides valuable insights that can guide tech companies in refining their remote work strategies. Future research should continue to explore the long-term effects of remote work across various sectors to gain a comprehensive understanding of its benefits and challenges.


Text prompt

  • Instructive
  • Professional

10 Examples of Public speaking

20 Examples of Gas lighting


  1. Types of Quantitative Research

    what is quantitative research and examples

  2. Quantitative Research: Definition, Methods, Types and Examples

    what is quantitative research and examples

  3. Quantitative Research

    what is quantitative research and examples

  4. Qualitative V/S Quantitative Research Method: Which One Is Better?

    what is quantitative research and examples

  5. Quantitative Research

    what is quantitative research and examples

  6. Qualitative vs Quantitative Research: Differences and Examples

    what is quantitative research and examples


  1. Understanding Quantitative and Qualitative Research Method

  2. Quantitative Research

  3. Variables in quantitative research: Types and examples

  4. How to Develop Quantitative Research Titles: Means and Ends

  5. Exploring Qualitative and Quantitative Research Methods and why you should use them

  6. What is Quantitative Research


  1. What Is Quantitative Research?

    Quantitative research is the opposite of qualitative research, which involves collecting and analyzing non-numerical data (e.g., text, video, or audio). Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc. Quantitative research question examples

  2. What is Quantitative Research? Definition, Methods, Types, and Examples

    Quantitative research is the process of collecting and analyzing numerical data to describe, predict, or control variables of interest. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations. The purpose of quantitative research is to test a predefined ...

  3. What is Quantitative Research? Definition, Examples, Key Advantages

    Quantitative research is a type of research that focuses on collecting and analyzing numerical data to answer research questions. There are two main methods used to conduct quantitative research: 1. Primary Method. There are several methods of primary quantitative research, each with its own strengths and limitations.

  4. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  5. What Is Quantitative Research?

    Quantitative research is the opposite of qualitative research, which involves collecting and analysing non-numerical data (e.g. text, video, or audio). Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc. Quantitative research question examples

  6. Quantitative and Qualitative Research

    What is Quantitative Research? Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns.Quantitative research gathers a range of numeric data.

  7. Quantitative research

    Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, ... For example, Kuhn argued that within quantitative research, the results that are shown can prove to be strange. ...

  8. Quantitative Research

    Quantitative research has many applications across a wide range of fields. Here are some common examples: Market Research: Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform ...

  9. Quantitative Research

    Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...

  10. PDF Introduction to quantitative research

    Quantitative research is 'Explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particu-lar statistics)'. Let's go through this definition step by step. The first element is explaining phenomena. This is a key element of all research, be it quantitative or quali-tative.

  11. What is Quantitative Research?

    Quantitative research is the methodology which researchers use to test theories about people's attitudes and behaviors based on numerical and statistical evidence. Researchers sample a large number of users (e.g., through surveys) to indirectly obtain measurable, bias-free data about users in relevant situations.

  12. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  13. PDF Introduction to Quantitative Research

    Quantitative research Quantitative methods allow us to learn about the world by quantifying some variation(s) in it. Example: how do suicide rates vary across demographic categories (Durkheim)? In order to learn about the world, we use inference: General definition: "Using facts you know to learn about facts you don't know" (Gary King)

  14. Quantitative Research: Types, Characteristics, Methods & Examples

    After defining research objectives, the next significant step in primary quantitative research is data collection. This involves using two main methods: sampling and conducting surveys or polls. Sampling methods: In quantitative research, there are two primary sampling methods: Probability and Non-probability sampling.

  15. Quantitative research methods

    Quantitative research methods. a method of research that relies on measuring variables using a numerical system, analyzing these measurements using any of a variety of statistical models, and reporting relationships and associations among the studied variables. For example, these variables may be test scores or measurements of reaction time.

  16. Quantitative Research: Definition, Methods, and Examples

    Examples of Quantitative Research. Here are some real-life examples of quantitative research: Market Research: Quantitative market research is a type of market research that uses numerical data to understand consumer preferences, buying behavior, and market trends. This data typically gets gathered through surveys and questionnaires, which are ...

  17. Quantitative Research: What It Is, Practices & Methods

    Quantitative Research Examples. Some examples of quantitative research are: A customer satisfaction template can be used if any organization would like to conduct a customer satisfaction (CSAT) survey. Through this kind of survey, an organization can collect quantitative data and metrics on the goodwill of the brand or organization in the ...

  18. Quantitative research: Understanding the approaches and key elements

    Quantitative research enhances research projects. Quantitative research approaches are so much more than "how much" or "how many," they reveal the why behind people's actions, emotions and behaviors. By using standardized collection methods, like surveys, quant instills confidence and rigor in findings. Quantitative research has many ...

  19. Qualitative vs Quantitative Research: What's the Difference?

    Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

  20. Types of Research Designs Compared

    Types of Research Designs Compared | Guide & Examples. Published on June 20, 2019 by Shona McCombes.Revised on June 22, 2023. When you start planning a research project, developing research questions and creating a research design, you will have to make various decisions about the type of research you want to do.. There are many ways to categorize different types of research.

  21. Quantitative Data: What It Is, Types & Examples

    In summary, quantitative data is the basis of statistical analysis. Data that can be measured and verified gives us information about quantities; that is, information that can be measured and written with numbers. Quantitative data defines a number, while qualitative data collection is descriptive.

  22. What is Quantitative Data? [Definition, Examples & FAQ]

    Quantitative data is data that can be quantified. It can be counted or measured, and given a numerical value. Quantitative data lends itself to statistical analysis, while qualitative data is grouped according to themes. Quantitative data can be discrete or continuous.

  23. Quantitative Research: Methods and Examples

    What is quantitative research? How does it work? Learn more in our in-depth guide to quantitative analysis.

  24. Quantitative Data

    Quantitative data has a wide range of applications across various fields, including: Scientific research: Quantitative data is used extensively in scientific research to test hypotheses and draw conclusions. For example, in biology, researchers might use quantitative data to measure the growth rate of cells or the effectiveness of a drug treatment.

  25. Qualitative vs Quantitative Research

    Qualitative v s Quantitative Research . Quantitative research deals with quantity, hence, this research type is concerned with numbers and statistics to prove or disapprove theories or hypothesis. In contrast, qualitative research is all about quality - characteristics, unquantifiable features, and meanings to seek deeper understanding of behavior and phenomenon.

  26. The Difference Between Qualitative and Quantitative Research: Explained

    Qualitative research focuses on exploring and understanding the 'why' and 'how' of a particular phenomenon, often using methods like interviews, observations, and open-ended surveys. On the other hand, quantitative research emphasizes measurement and quantification, seeking to answer 'what,' 'where,' and 'how many' through ...

  27. Types of Market Research: Methods & Examples

    Examples include published market studies, white papers, analyst reports, customer emails, and customer surveys/feedback. For many small businesses with limited budgets, secondary market research is their first choice because it's easier to acquire and far more affordable than primary research. Secondary research can still answer specific ...

  28. Quantitative Methods

    Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques.Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

  29. Quantitative vs. Qualitative User Research

    Quantitative research is centered around numbers, focusing on 'what' and 'how many.'. This method helps us understand how well a website is doing in turning visitors into customers. By utilizing methods like surveys, polls, and experiments, quantitative research helps you gather data and analyze it to identify patterns and trends.

  30. Significance of the Study: Quantitative Research

    Significance of the Study: Quantitative Research on the Impact of Remote Work on Employee Productivity in the Tech Industry. 1. Introduction: The rapid shift to remote work due to the COVID-19 pandemic has significantly altered workplace dynamics, particularly in the tech industry. This quantitative research paper explores the impact of remote work on employee productivity through statistical ...