A Brief Introduction To Artificial Intelligence

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Perspective
  • Published: 06 March 2024

Artificial intelligence and illusions of understanding in scientific research

  • Lisa Messeri   ORCID: orcid.org/0000-0002-0964-123X 1   na1 &
  • M. J. Crockett   ORCID: orcid.org/0000-0001-8800-410X 2 , 3   na1  

Nature volume  627 ,  pages 49–58 ( 2024 ) Cite this article

8622 Accesses

566 Altmetric

Metrics details

  • Human behaviour
  • Interdisciplinary studies
  • Research management
  • Social anthropology

Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might improve research. Why are AI tools so attractive and what are the risks of implementing them across the research pipeline? Here we develop a taxonomy of scientists’ visions for AI, observing that their appeal comes from promises to improve productivity and objectivity by overcoming human shortcomings. But proposed AI solutions can also exploit our cognitive limitations, making us vulnerable to illusions of understanding in which we believe we understand more about the world than we actually do. Such illusions obscure the scientific community’s ability to see the formation of scientific monocultures, in which some types of methods, questions and viewpoints come to dominate alternative approaches, making science less innovative and more vulnerable to errors. The proliferation of AI tools in science risks introducing a phase of scientific enquiry in which we produce more but understand less. By analysing the appeal of these tools, we provide a framework for advancing discussions of responsible knowledge production in the age of AI.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 51 print issues and online access

185,98 € per year

only 3,65 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

introduction to artificial intelligence research paper

Crabtree, G. Self-driving laboratories coming of age. Joule 4 , 2538–2541 (2020).

Article   CAS   Google Scholar  

Wang, H. et al. Scientific discovery in the age of artificial intelligence. Nature 620 , 47–60 (2023). This review explores how AI can be incorporated across the research pipeline, drawing from a wide range of scientific disciplines .

Article   CAS   PubMed   ADS   Google Scholar  

Dillion, D., Tandon, N., Gu, Y. & Gray, K. Can AI language models replace human participants? Trends Cogn. Sci. 27 , 597–600 (2023).

Article   PubMed   Google Scholar  

Grossmann, I. et al. AI and the transformation of social science research. Science 380 , 1108–1109 (2023). This forward-looking article proposes a variety of ways to incorporate generative AI into social-sciences research .

Gil, Y. Will AI write scientific papers in the future? AI Mag. 42 , 3–15 (2022).

Google Scholar  

Kitano, H. Nobel Turing Challenge: creating the engine for scientific discovery. npj Syst. Biol. Appl. 7 , 29 (2021).

Article   PubMed   PubMed Central   Google Scholar  

Benjamin, R. Race After Technology: Abolitionist Tools for the New Jim Code (Oxford Univ. Press, 2020). This book examines how social norms about race become embedded in technologies, even those that are focused on providing good societal outcomes .

Broussard, M. More Than a Glitch: Confronting Race, Gender, and Ability Bias in Tech (MIT Press, 2023).

Noble, S. U. Algorithms of Oppression: How Search Engines Reinforce Racism (New York Univ. Press, 2018).

Bender, E. M., Gebru, T., McMillan-Major, A. & Shmitchell, S. On the dangers of stochastic parrots: can language models be too big? in Proc. 2021 ACM Conference on Fairness, Accountability, and Transparency 610–623 (Association for Computing Machinery, 2021). One of the first comprehensive critiques of large language models, this article draws attention to a host of issues that ought to be considered before taking up such tools .

Crawford, K. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence (Yale Univ. Press, 2021).

Johnson, D. G. & Verdicchio, M. Reframing AI discourse. Minds Mach. 27 , 575–590 (2017).

Article   Google Scholar  

Atanasoski, N. & Vora, K. Surrogate Humanity: Race, Robots, and the Politics of Technological Futures (Duke Univ. Press, 2019).

Mitchell, M. & Krakauer, D. C. The debate over understanding in AI’s large language models. Proc. Natl Acad. Sci. USA 120 , e2215907120 (2023).

Kidd, C. & Birhane, A. How AI can distort human beliefs. Science 380 , 1222–1223 (2023).

Birhane, A., Kasirzadeh, A., Leslie, D. & Wachter, S. Science in the age of large language models. Nat. Rev. Phys. 5 , 277–280 (2023).

Kapoor, S. & Narayanan, A. Leakage and the reproducibility crisis in machine-learning-based science. Patterns 4 , 100804 (2023).

Hullman, J., Kapoor, S., Nanayakkara, P., Gelman, A. & Narayanan, A. The worst of both worlds: a comparative analysis of errors in learning from data in psychology and machine learning. In Proc. 2022 AAAI/ACM Conference on AI, Ethics, and Society (eds Conitzer, V. et al.) 335–348 (Association for Computing Machinery, 2022).

Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1 , 206–215 (2019). This paper articulates the problems with attempting to explain AI systems that lack interpretability, and advocates for building interpretable models instead .

Crockett, M. J., Bai, X., Kapoor, S., Messeri, L. & Narayanan, A. The limitations of machine learning models for predicting scientific replicability. Proc. Natl Acad. Sci. USA 120 , e2307596120 (2023).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Lazar, S. & Nelson, A. AI safety on whose terms? Science 381 , 138 (2023).

Article   PubMed   ADS   Google Scholar  

Collingridge, D. The Social Control of Technology (St Martin’s Press, 1980).

Wagner, G., Lukyanenko, R. & Paré, G. Artificial intelligence and the conduct of literature reviews. J. Inf. Technol. 37 , 209–226 (2022).

Hutson, M. Artificial-intelligence tools aim to tame the coronavirus literature. Nature https://doi.org/10.1038/d41586-020-01733-7 (2020).

Haas, Q. et al. Utilizing artificial intelligence to manage COVID-19 scientific evidence torrent with Risklick AI: a critical tool for pharmacology and therapy development. Pharmacology 106 , 244–253 (2021).

Article   CAS   PubMed   Google Scholar  

Müller, H., Pachnanda, S., Pahl, F. & Rosenqvist, C. The application of artificial intelligence on different types of literature reviews – a comparative study. In 2022 International Conference on Applied Artificial Intelligence (ICAPAI) https://doi.org/10.1109/ICAPAI55158.2022.9801564 (Institute of Electrical and Electronics Engineers, 2022).

van Dinter, R., Tekinerdogan, B. & Catal, C. Automation of systematic literature reviews: a systematic literature review. Inf. Softw. Technol. 136 , 106589 (2021).

Aydın, Ö. & Karaarslan, E. OpenAI ChatGPT generated literature review: digital twin in healthcare. In Emerging Computer Technologies 2 (ed. Aydın, Ö.) 22–31 (İzmir Akademi Dernegi, 2022).

AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 35 , 4862–4865 (2019).

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 , 583–589 (2021).

Article   CAS   PubMed   PubMed Central   ADS   Google Scholar  

Lee, J. S., Kim, J. & Kim, P. M. Score-based generative modeling for de novo protein design. Nat. Computat. Sci. 3 , 382–392 (2023).

Gómez-Bombarelli, R. et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat. Mater. 15 , 1120–1127 (2016).

Krenn, M. et al. On scientific understanding with artificial intelligence. Nat. Rev. Phys. 4 , 761–769 (2022).

Extance, A. How AI technology can tame the scientific literature. Nature 561 , 273–274 (2018).

Hastings, J. AI for Scientific Discovery (CRC Press, 2023). This book reviews current and future incorporation of AI into the scientific research pipeline .

Ahmed, A. et al. The future of academic publishing. Nat. Hum. Behav. 7 , 1021–1026 (2023).

Gray, K., Yam, K. C., Zhen’An, A. E., Wilbanks, D. & Waytz, A. The psychology of robots and artificial intelligence. In The Handbook of Social Psychology (eds Gilbert, D. et al.) (in the press).

Argyle, L. P. et al. Out of one, many: using language models to simulate human samples. Polit. Anal. 31 , 337–351 (2023).

Aher, G., Arriaga, R. I. & Kalai, A. T. Using large language models to simulate multiple humans and replicate human subject studies. In Proc. 40th International Conference on Machine Learning (eds Krause, A. et al.) 337–371 (JMLR.org, 2023).

Binz, M. & Schulz, E. Using cognitive psychology to understand GPT-3. Proc. Natl Acad. Sci. USA 120 , e2218523120 (2023).

Ornstein, J. T., Blasingame, E. N. & Truscott, J. S. How to train your stochastic parrot: large language models for political texts. Github , https://joeornstein.github.io/publications/ornstein-blasingame-truscott.pdf (2023).

He, S. et al. Learning to predict the cosmological structure formation. Proc. Natl Acad. Sci. USA 116 , 13825–13832 (2019).

Article   MathSciNet   CAS   PubMed   PubMed Central   ADS   Google Scholar  

Mahmood, F. et al. Deep adversarial training for multi-organ nuclei segmentation in histopathology images. IEEE Trans. Med. Imaging 39 , 3257–3267 (2020).

Teixeira, B. et al. Generating synthetic X-ray images of a person from the surface geometry. In Proc. IEEE Conference on Computer Vision and Pattern Recognition 9059–9067 (Institute of Electrical and Electronics Engineers, 2018).

Marouf, M. et al. Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks. Nat. Commun. 11 , 166 (2020).

Watts, D. J. A twenty-first century science. Nature 445 , 489 (2007).

boyd, d. & Crawford, K. Critical questions for big data. Inf. Commun. Soc. 15 , 662–679 (2012). This article assesses the ethical and epistemic implications of scientific and societal moves towards big data and provides a parallel case study for thinking about the risks of artificial intelligence .

Jolly, E. & Chang, L. J. The Flatland fallacy: moving beyond low–dimensional thinking. Top. Cogn. Sci. 11 , 433–454 (2019).

Yarkoni, T. & Westfall, J. Choosing prediction over explanation in psychology: lessons from machine learning. Perspect. Psychol. Sci. 12 , 1100–1122 (2017).

Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10 , 221–227 (2013).

Bileschi, M. L. et al. Using deep learning to annotate the protein universe. Nat. Biotechnol. 40 , 932–937 (2022).

Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16 , 695–698 (2019).

Demszky, D. et al. Using large language models in psychology. Nat. Rev. Psychol. 2 , 688–701 (2023).

Karjus, A. Machine-assisted mixed methods: augmenting humanities and social sciences with artificial intelligence. Preprint at https://arxiv.org/abs/2309.14379 (2023).

Davies, A. et al. Advancing mathematics by guiding human intuition with AI. Nature 600 , 70–74 (2021).

Peterson, J. C., Bourgin, D. D., Agrawal, M., Reichman, D. & Griffiths, T. L. Using large-scale experiments and machine learning to discover theories of human decision-making. Science 372 , 1209–1214 (2021).

Ilyas, A. et al. Adversarial examples are not bugs, they are features. Preprint at https://doi.org/10.48550/arXiv.1905.02175 (2019)

Semel, B. M. Listening like a computer: attentional tensions and mechanized care in psychiatric digital phenotyping. Sci. Technol. Hum. Values 47 , 266–290 (2022).

Gil, Y. Thoughtful artificial intelligence: forging a new partnership for data science and scientific discovery. Data Sci. 1 , 119–129 (2017).

Checco, A., Bracciale, L., Loreti, P., Pinfield, S. & Bianchi, G. AI-assisted peer review. Humanit. Soc. Sci. Commun. 8 , 25 (2021).

Thelwall, M. Can the quality of published academic journal articles be assessed with machine learning? Quant. Sci. Stud. 3 , 208–226 (2022).

Dhar, P. Peer review of scholarly research gets an AI boost. IEEE Spectrum spectrum.ieee.org/peer-review-of-scholarly-research-gets-an-ai-boost (2020).

Heaven, D. AI peer reviewers unleashed to ease publishing grind. Nature 563 , 609–610 (2018).

Conroy, G. How ChatGPT and other AI tools could disrupt scientific publishing. Nature 622 , 234–236 (2023).

Nosek, B. A. et al. Replicability, robustness, and reproducibility in psychological science. Annu. Rev. Psychol. 73 , 719–748 (2022).

Altmejd, A. et al. Predicting the replicability of social science lab experiments. PLoS ONE 14 , e0225826 (2019).

Yang, Y., Youyou, W. & Uzzi, B. Estimating the deep replicability of scientific findings using human and artificial intelligence. Proc. Natl Acad. Sci. USA 117 , 10762–10768 (2020).

Youyou, W., Yang, Y. & Uzzi, B. A discipline-wide investigation of the replicability of psychology papers over the past two decades. Proc. Natl Acad. Sci. USA 120 , e2208863120 (2023).

Rabb, N., Fernbach, P. M. & Sloman, S. A. Individual representation in a community of knowledge. Trends Cogn. Sci. 23 , 891–902 (2019). This comprehensive review paper documents the empirical evidence for distributed cognition in communities of knowledge and the resultant vulnerabilities to illusions of understanding .

Rozenblit, L. & Keil, F. The misunderstood limits of folk science: an illusion of explanatory depth. Cogn. Sci. 26 , 521–562 (2002). This paper provided an empirical demonstration of the illusion of explanatory depth, and inspired a programme of research in cognitive science on communities of knowledge .

Hutchins, E. Cognition in the Wild (MIT Press, 1995).

Lave, J. & Wenger, E. Situated Learning: Legitimate Peripheral Participation (Cambridge Univ. Press, 1991).

Kitcher, P. The division of cognitive labor. J. Philos. 87 , 5–22 (1990).

Hardwig, J. Epistemic dependence. J. Philos. 82 , 335–349 (1985).

Keil, F. in Oxford Studies In Epistemology (eds Gendler, T. S. & Hawthorne, J.) 143–166 (Oxford Academic, 2005).

Weisberg, M. & Muldoon, R. Epistemic landscapes and the division of cognitive labor. Philos. Sci. 76 , 225–252 (2009).

Sloman, S. A. & Rabb, N. Your understanding is my understanding: evidence for a community of knowledge. Psychol. Sci. 27 , 1451–1460 (2016).

Wilson, R. A. & Keil, F. The shadows and shallows of explanation. Minds Mach. 8 , 137–159 (1998).

Keil, F. C., Stein, C., Webb, L., Billings, V. D. & Rozenblit, L. Discerning the division of cognitive labor: an emerging understanding of how knowledge is clustered in other minds. Cogn. Sci. 32 , 259–300 (2008).

Sperber, D. et al. Epistemic vigilance. Mind Lang. 25 , 359–393 (2010).

Wilkenfeld, D. A., Plunkett, D. & Lombrozo, T. Depth and deference: when and why we attribute understanding. Philos. Stud. 173 , 373–393 (2016).

Sparrow, B., Liu, J. & Wegner, D. M. Google effects on memory: cognitive consequences of having information at our fingertips. Science 333 , 776–778 (2011).

Fisher, M., Goddu, M. K. & Keil, F. C. Searching for explanations: how the internet inflates estimates of internal knowledge. J. Exp. Psychol. Gen. 144 , 674–687 (2015).

De Freitas, J., Agarwal, S., Schmitt, B. & Haslam, N. Psychological factors underlying attitudes toward AI tools. Nat. Hum. Behav. 7 , 1845–1854 (2023).

Castelo, N., Bos, M. W. & Lehmann, D. R. Task-dependent algorithm aversion. J. Mark. Res. 56 , 809–825 (2019).

Cadario, R., Longoni, C. & Morewedge, C. K. Understanding, explaining, and utilizing medical artificial intelligence. Nat. Hum. Behav. 5 , 1636–1642 (2021).

Oktar, K. & Lombrozo, T. Deciding to be authentic: intuition is favored over deliberation when authenticity matters. Cognition 223 , 105021 (2022).

Bigman, Y. E., Yam, K. C., Marciano, D., Reynolds, S. J. & Gray, K. Threat of racial and economic inequality increases preference for algorithm decision-making. Comput. Hum. Behav. 122 , 106859 (2021).

Claudy, M. C., Aquino, K. & Graso, M. Artificial intelligence can’t be charmed: the effects of impartiality on laypeople’s algorithmic preferences. Front. Psychol. 13 , 898027 (2022).

Snyder, C., Keppler, S. & Leider, S. Algorithm reliance under pressure: the effect of customer load on service workers. Preprint at SSRN https://doi.org/10.2139/ssrn.4066823 (2022).

Bogert, E., Schecter, A. & Watson, R. T. Humans rely more on algorithms than social influence as a task becomes more difficult. Sci Rep. 11 , 8028 (2021).

Raviv, A., Bar‐Tal, D., Raviv, A. & Abin, R. Measuring epistemic authority: studies of politicians and professors. Eur. J. Personal. 7 , 119–138 (1993).

Cummings, L. The “trust” heuristic: arguments from authority in public health. Health Commun. 29 , 1043–1056 (2014).

Lee, M. K. Understanding perception of algorithmic decisions: fairness, trust, and emotion in response to algorithmic management. Big Data Soc. 5 , https://doi.org/10.1177/2053951718756684 (2018).

Kissinger, H. A., Schmidt, E. & Huttenlocher, D. The Age of A.I. And Our Human Future (Little, Brown, 2021).

Lombrozo, T. Explanatory preferences shape learning and inference. Trends Cogn. Sci. 20 , 748–759 (2016). This paper provides an overview of philosophical theories of explanatory virtues and reviews empirical evidence on the sorts of explanations people find satisfying .

Vrantsidis, T. H. & Lombrozo, T. Simplicity as a cue to probability: multiple roles for simplicity in evaluating explanations. Cogn. Sci. 46 , e13169 (2022).

Johnson, S. G. B., Johnston, A. M., Toig, A. E. & Keil, F. C. Explanatory scope informs causal strength inferences. In Proc. 36th Annual Meeting of the Cognitive Science Society 2453–2458 (Cognitive Science Society, 2014).

Khemlani, S. S., Sussman, A. B. & Oppenheimer, D. M. Harry Potter and the sorcerer’s scope: latent scope biases in explanatory reasoning. Mem. Cognit. 39 , 527–535 (2011).

Liquin, E. G. & Lombrozo, T. Motivated to learn: an account of explanatory satisfaction. Cogn. Psychol. 132 , 101453 (2022).

Hopkins, E. J., Weisberg, D. S. & Taylor, J. C. V. The seductive allure is a reductive allure: people prefer scientific explanations that contain logically irrelevant reductive information. Cognition 155 , 67–76 (2016).

Weisberg, D. S., Hopkins, E. J. & Taylor, J. C. V. People’s explanatory preferences for scientific phenomena. Cogn. Res. Princ. Implic. 3 , 44 (2018).

Jerez-Fernandez, A., Angulo, A. N. & Oppenheimer, D. M. Show me the numbers: precision as a cue to others’ confidence. Psychol. Sci. 25 , 633–635 (2014).

Kim, J., Giroux, M. & Lee, J. C. When do you trust AI? The effect of number presentation detail on consumer trust and acceptance of AI recommendations. Psychol. Mark. 38 , 1140–1155 (2021).

Nguyen, C. T. The seductions of clarity. R. Inst. Philos. Suppl. 89 , 227–255 (2021). This article describes how reductive and quantitative explanations can generate a sense of understanding that is not necessarily correlated with actual understanding .

Fisher, M., Smiley, A. H. & Grillo, T. L. H. Information without knowledge: the effects of internet search on learning. Memory 30 , 375–387 (2022).

Eliseev, E. D. & Marsh, E. J. Understanding why searching the internet inflates confidence in explanatory ability. Appl. Cogn. Psychol. 37 , 711–720 (2023).

Fisher, M. & Oppenheimer, D. M. Who knows what? Knowledge misattribution in the division of cognitive labor. J. Exp. Psychol. Appl. 27 , 292–306 (2021).

Chromik, M., Eiband, M., Buchner, F., Krüger, A. & Butz, A. I think I get your point, AI! The illusion of explanatory depth in explainable AI. In 26th International Conference on Intelligent User Interfaces (eds Hammond, T. et al.) 307–317 (Association for Computing Machinery, 2021).

Strevens, M. No understanding without explanation. Stud. Hist. Philos. Sci. A 44 , 510–515 (2013).

Ylikoski, P. in Scientific Understanding: Philosophical Perspectives (eds De Regt, H. et al.) 100–119 (Univ. Pittsburgh Press, 2009).

Giudice, M. D. The prediction–explanation fallacy: a pervasive problem in scientific applications of machine learning. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/4vq8f (2021).

Hofman, J. M. et al. Integrating explanation and prediction in computational social science. Nature 595 , 181–188 (2021). This paper highlights the advantages and disadvantages of explanatory versus predictive approaches to modelling, with a focus on applications to computational social science .

Shmueli, G. To explain or to predict? Stat. Sci. 25 , 289–310 (2010).

Article   MathSciNet   Google Scholar  

Hofman, J. M., Sharma, A. & Watts, D. J. Prediction and explanation in social systems. Science 355 , 486–488 (2017).

Logg, J. M., Minson, J. A. & Moore, D. A. Algorithm appreciation: people prefer algorithmic to human judgment. Organ. Behav. Hum. Decis. Process. 151 , 90–103 (2019).

Nguyen, C. T. Cognitive islands and runaway echo chambers: problems for epistemic dependence on experts. Synthese 197 , 2803–2821 (2020).

Breiman, L. Statistical modeling: the two cultures. Stat. Sci. 16 , 199–215 (2001).

Gao, J. & Wang, D. Quantifying the benefit of artificial intelligence for scientific research. Preprint at arxiv.org/abs/2304.10578 (2023).

Hanson, B. et al. Garbage in, garbage out: mitigating risks and maximizing benefits of AI in research. Nature 623 , 28–31 (2023).

Kleinberg, J. & Raghavan, M. Algorithmic monoculture and social welfare. Proc. Natl Acad. Sci. USA 118 , e2018340118 (2021). This paper uses formal modelling methods to demonstrate that when companies all rely on the same algorithm to make decisions (an algorithmic monoculture), the overall quality of those decisions is reduced because valuable options can slip through the cracks, even when the algorithm performs accurately for individual companies .

Article   MathSciNet   CAS   PubMed   PubMed Central   Google Scholar  

Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl Acad. Sci. USA 117 , 9284–9291 (2020).

Hong, L. & Page, S. E. Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc. Natl Acad. Sci. USA 101 , 16385–16389 (2004).

Page, S. E. Where diversity comes from and why it matters? Eur. J. Soc. Psychol. 44 , 267–279 (2014). This article reviews research demonstrating the benefits of cognitive diversity and diversity in methodological approaches for problem solving and innovation .

Clarke, A. E. & Fujimura, J. H. (eds) The Right Tools for the Job: At Work in Twentieth-Century Life Sciences (Princeton Univ. Press, 2014).

Silva, V. J., Bonacelli, M. B. M. & Pacheco, C. A. Framing the effects of machine learning on science. AI Soc. https://doi.org/10.1007/s00146-022-01515-x (2022).

Sassenberg, K. & Ditrich, L. Research in social psychology changed between 2011 and 2016: larger sample sizes, more self-report measures, and more online studies. Adv. Methods Pract. Psychol. Sci. 2 , 107–114 (2019).

Simon, A. F. & Wilder, D. Methods and measures in social and personality psychology: a comparison of JPSP publications in 1982 and 2016. J. Soc. Psychol. https://doi.org/10.1080/00224545.2022.2135088 (2022).

Anderson, C. A. et al. The MTurkification of social and personality psychology. Pers. Soc. Psychol. Bull. 45 , 842–850 (2019).

Latour, B. in The Social After Gabriel Tarde: Debates and Assessments (ed. Candea, M.) 145–162 (Routledge, 2010).

Porter, T. M. Trust in Numbers: The Pursuit of Objectivity in Science and Public Life (Princeton Univ. Press, 1996).

Lazer, D. et al. Meaningful measures of human society in the twenty-first century. Nature 595 , 189–196 (2021).

Knox, D., Lucas, C. & Cho, W. K. T. Testing causal theories with learned proxies. Annu. Rev. Polit. Sci. 25 , 419–441 (2022).

Barberá, P. Birds of the same feather tweet together: Bayesian ideal point estimation using Twitter data. Polit. Anal. 23 , 76–91 (2015).

Brady, W. J., McLoughlin, K., Doan, T. N. & Crockett, M. J. How social learning amplifies moral outrage expression in online social networks. Sci. Adv. 7 , eabe5641 (2021).

Article   PubMed   PubMed Central   ADS   Google Scholar  

Barnes, J., Klinger, R. & im Walde, S. S. Assessing state-of-the-art sentiment models on state-of-the-art sentiment datasets. In Proc. 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis (eds Balahur, A. et al.) 2–12 (Association for Computational Linguistics, 2017).

Gitelman, L. (ed.) “Raw Data” is an Oxymoron (MIT Press, 2013).

Breznau, N. et al. Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty. Proc. Natl Acad. Sci. USA 119 , e2203150119 (2022). This study demonstrates how 73 research teams analysing the same dataset reached different conclusions about the relationship between immigration and public support for social policies, highlighting the subjectivity and uncertainty involved in analysing complex datasets .

Gillespie, T. in Media Technologies: Essays on Communication, Materiality, and Society (eds Gillespie, T. et al.) 167–194 (MIT Press, 2014).

Leonelli, S. Data-Centric Biology: A Philosophical Study (Univ. Chicago Press, 2016).

Wang, A., Kapoor, S., Barocas, S. & Narayanan, A. Against predictive optimization: on the legitimacy of decision-making algorithms that optimize predictive accuracy. ACM J. Responsib. Comput. , https://doi.org/10.1145/3636509 (2023).

Athey, S. Beyond prediction: using big data for policy problems. Science 355 , 483–485 (2017).

del Rosario Martínez-Ordaz, R. Scientific understanding through big data: from ignorance to insights to understanding. Possibility Stud. Soc. 1 , 279–299 (2023).

Nussberger, A.-M., Luo, L., Celis, L. E. & Crockett, M. J. Public attitudes value interpretability but prioritize accuracy in artificial intelligence. Nat. Commun. 13 , 5821 (2022).

Zittrain, J. in The Cambridge Handbook of Responsible Artificial Intelligence: Interdisciplinary Perspectives (eds. Voeneky, S. et al.) 176–184 (Cambridge Univ. Press, 2022). This article articulates the epistemic risks of prioritizing predictive accuracy over explanatory understanding when AI tools are interacting in complex systems.

Shumailov, I. et al. The curse of recursion: training on generated data makes models forget. Preprint at arxiv.org/abs/2305.17493 (2023).

Latour, B. Science In Action: How to Follow Scientists and Engineers Through Society (Harvard Univ. Press, 1987). This book provides strategies and approaches for thinking about science as a social endeavour .

Franklin, S. Science as culture, cultures of science. Annu. Rev. Anthropol. 24 , 163–184 (1995).

Haraway, D. Situated knowledges: the science question in feminism and the privilege of partial perspective. Fem. Stud. 14 , 575–599 (1988). This article acknowledges that the objective ‘view from nowhere’ is unobtainable: knowledge, it argues, is always situated .

Harding, S. Objectivity and Diversity: Another Logic of Scientific Research (Univ. Chicago Press, 2015).

Longino, H. E. Science as Social Knowledge: Values and Objectivity in Scientific Inquiry (Princeton Univ. Press, 1990).

Daston, L. & Galison, P. Objectivity (Princeton Univ. Press, 2007). This book is a historical analysis of the shifting modes of ‘objectivity’ that scientists have pursued, arguing that objectivity is not a universal concept but that it shifts alongside scientific techniques and ambitions .

Prescod-Weinstein, C. Making Black women scientists under white empiricism: the racialization of epistemology in physics. Signs J. Women Cult. Soc. 45 , 421–447 (2020).

Mavhunga, C. What Do Science, Technology, and Innovation Mean From Africa? (MIT Press, 2017).

Schiebinger, L. The Mind Has No Sex? Women in the Origins of Modern Science (Harvard Univ. Press, 1991).

Martin, E. The egg and the sperm: how science has constructed a romance based on stereotypical male–female roles. Signs J. Women Cult. Soc. 16 , 485–501 (1991). This case study shows how assumptions about gender affect scientific theories, sometimes delaying the articulation of what might be considered to be more accurate descriptions of scientific phenomena .

Harding, S. Rethinking standpoint epistemology: What is “strong objectivity”? Centen. Rev. 36 , 437–470 (1992). In this article, Harding outlines her position on ‘strong objectivity’, by which clearly articulating one’s standpoint can lead to more robust knowledge claims .

Oreskes, N. Why Trust Science? (Princeton Univ. Press, 2019). This book introduces the reader to 20 years of scholarship in science and technology studies, arguing that the tools the discipline has for understanding science can help to reinstate public trust in the institution .

Rolin, K., Koskinen, I., Kuorikoski, J. & Reijula, S. Social and cognitive diversity in science: introduction. Synthese 202 , 36 (2023).

Hong, L. & Page, S. E. Problem solving by heterogeneous agents. J. Econ. Theory 97 , 123–163 (2001).

Sulik, J., Bahrami, B. & Deroy, O. The diversity gap: when diversity matters for knowledge. Perspect. Psychol. Sci. 17 , 752–767 (2022).

Lungeanu, A., Whalen, R., Wu, Y. J., DeChurch, L. A. & Contractor, N. S. Diversity, networks, and innovation: a text analytic approach to measuring expertise diversity. Netw. Sci. 11 , 36–64 (2023).

AlShebli, B. K., Rahwan, T. & Woon, W. L. The preeminence of ethnic diversity in scientific collaboration. Nat. Commun. 9 , 5163 (2018).

Campbell, L. G., Mehtani, S., Dozier, M. E. & Rinehart, J. Gender-heterogeneous working groups produce higher quality science. PLoS ONE 8 , e79147 (2013).

Nielsen, M. W., Bloch, C. W. & Schiebinger, L. Making gender diversity work for scientific discovery and innovation. Nat. Hum. Behav. 2 , 726–734 (2018).

Yang, Y., Tian, T. Y., Woodruff, T. K., Jones, B. F. & Uzzi, B. Gender-diverse teams produce more novel and higher-impact scientific ideas. Proc. Natl Acad. Sci. USA 119 , e2200841119 (2022).

Kozlowski, D., Larivière, V., Sugimoto, C. R. & Monroe-White, T. Intersectional inequalities in science. Proc. Natl Acad. Sci. USA 119 , e2113067119 (2022).

Fehr, C. & Jones, J. M. Culture, exploitation, and epistemic approaches to diversity. Synthese 200 , 465 (2022).

Nakadai, R., Nakawake, Y. & Shibasaki, S. AI language tools risk scientific diversity and innovation. Nat. Hum. Behav. 7 , 1804–1805 (2023).

National Academies of Sciences, Engineering, and Medicine et al. Advancing Antiracism, Diversity, Equity, and Inclusion in STEMM Organizations: Beyond Broadening Participation (National Academies Press, 2023).

Winner, L. Do artifacts have politics? Daedalus 109 , 121–136 (1980).

Eubanks, V. Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor (St. Martin’s Press, 2018).

Littmann, M. et al. Validity of machine learning in biology and medicine increased through collaborations across fields of expertise. Nat. Mach. Intell. 2 , 18–24 (2020).

Carusi, A. et al. Medical artificial intelligence is as much social as it is technological. Nat. Mach. Intell. 5 , 98–100 (2023).

Raghu, M. & Schmidt, E. A survey of deep learning for scientific discovery. Preprint at arxiv.org/abs/2003.11755 (2020).

Bishop, C. AI4Science to empower the fifth paradigm of scientific discovery. Microsoft Research Blog www.microsoft.com/en-us/research/blog/ai4science-to-empower-the-fifth-paradigm-of-scientific-discovery/ (2022).

Whittaker, M. The steep cost of capture. Interactions 28 , 50–55 (2021).

Liesenfeld, A., Lopez, A. & Dingemanse, M. Opening up ChatGPT: Tracking openness, transparency, and accountability in instruction-tuned text generators. In Proc. 5th International Conference on Conversational User Interfaces 1–6 (Association for Computing Machinery, 2023).

Chu, J. S. G. & Evans, J. A. Slowed canonical progress in large fields of science. Proc. Natl Acad. Sci. USA 118 , e2021636118 (2021).

Park, M., Leahey, E. & Funk, R. J. Papers and patents are becoming less disruptive over time. Nature 613 , 138–144 (2023).

Frith, U. Fast lane to slow science. Trends Cogn. Sci. 24 , 1–2 (2020). This article explains the epistemic risks of a hyperfocus on scientific productivity and explores possible avenues for incentivizing the production of higher-quality science on a slower timescale .

Stengers, I. Another Science is Possible: A Manifesto for Slow Science (Wiley, 2018).

Lake, B. M. & Baroni, M. Human-like systematic generalization through a meta-learning neural network. Nature 623 , 115–121 (2023).

Feinman, R. & Lake, B. M. Learning task-general representations with generative neuro-symbolic modeling. Preprint at arxiv.org/abs/2006.14448 (2021).

Schölkopf, B. et al. Toward causal representation learning. Proc. IEEE 109 , 612–634 (2021).

Mitchell, M. AI’s challenge of understanding the world. Science 382 , eadm8175 (2023).

Sartori, L. & Bocca, G. Minding the gap(s): public perceptions of AI and socio-technical imaginaries. AI Soc. 38 , 443–458 (2023).

Download references

Acknowledgements

We thank D. S. Bassett, W. J. Brady, S. Helmreich, S. Kapoor, T. Lombrozo, A. Narayanan, M. Salganik and A. J. te Velthuis for comments. We also thank C. Buckner and P. Winter for their feedback and suggestions.

Author information

These authors contributed equally: Lisa Messeri, M. J. Crockett

Authors and Affiliations

Department of Anthropology, Yale University, New Haven, CT, USA

Lisa Messeri

Department of Psychology, Princeton University, Princeton, NJ, USA

M. J. Crockett

University Center for Human Values, Princeton University, Princeton, NJ, USA

You can also search for this author in PubMed   Google Scholar

Contributions

The authors contributed equally to the research and writing of the paper.

Corresponding authors

Correspondence to Lisa Messeri or M. J. Crockett .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature thanks Cameron Buckner, Peter Winter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Cite this article.

Messeri, L., Crockett, M.J. Artificial intelligence and illusions of understanding in scientific research. Nature 627 , 49–58 (2024). https://doi.org/10.1038/s41586-024-07146-0

Download citation

Received : 31 July 2023

Accepted : 31 January 2024

Published : 06 March 2024

Issue Date : 07 March 2024

DOI : https://doi.org/10.1038/s41586-024-07146-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

introduction to artificial intelligence research paper

Browse Course Material

Course info.

  • Patrick Henry Winston

Departments

  • Electrical Engineering and Computer Science

As Taught In

  • Algorithms and Data Structures
  • Artificial Intelligence
  • Theory of Computation

Learning Resource Types

Lecture 1: introduction and scope.

Description: In this lecture, Prof. Winston introduces artificial intelligence and provides a brief history of the field. The last ten minutes are devoted to information about the course at MIT.

Instructor: Patrick H. Winston

  • Download video
  • Download transcript

facebook

Artificial intelligence and illusions of understanding in scientific research

Affiliations.

  • 1 Department of Anthropology, Yale University, New Haven, CT, USA. [email protected].
  • 2 Department of Psychology, Princeton University, Princeton, NJ, USA. [email protected].
  • 3 University Center for Human Values, Princeton University, Princeton, NJ, USA. [email protected].
  • PMID: 38448693
  • DOI: 10.1038/s41586-024-07146-0

Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might improve research. Why are AI tools so attractive and what are the risks of implementing them across the research pipeline? Here we develop a taxonomy of scientists' visions for AI, observing that their appeal comes from promises to improve productivity and objectivity by overcoming human shortcomings. But proposed AI solutions can also exploit our cognitive limitations, making us vulnerable to illusions of understanding in which we believe we understand more about the world than we actually do. Such illusions obscure the scientific community's ability to see the formation of scientific monocultures, in which some types of methods, questions and viewpoints come to dominate alternative approaches, making science less innovative and more vulnerable to errors. The proliferation of AI tools in science risks introducing a phase of scientific enquiry in which we produce more but understand less. By analysing the appeal of these tools, we provide a framework for advancing discussions of responsible knowledge production in the age of AI.

© 2024. Springer Nature Limited.

  • Artificial Intelligence* / supply & distribution
  • Artificial Intelligence* / trends
  • Diffusion of Innovation
  • Reproducibility of Results
  • Research Design* / standards
  • Research Design* / trends
  • Research Personnel* / psychology
  • Research Personnel* / standards

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • J Family Med Prim Care
  • v.8(7); 2019 Jul

Overview of artificial intelligence in medicine

1 Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India

Paras Malik

Monika pathania, vyas kumar rathaur.

2 Department of Paediatrics, Government Doon Medical College, Dehradun, Uttarakhand, India

Background:

Artificial intelligence (AI) is the term used to describe the use of computers and technology to simulate intelligent behavior and critical thinking comparable to a human being. John McCarthy first described the term AI in 1956 as the science and engineering of making intelligent machines.

This descriptive article gives a broad overview of AI in medicine, dealing with the terms and concepts as well as the current and future applications of AI. It aims to develop knowledge and familiarity of AI among primary care physicians.

Materials and Methods:

PubMed and Google searches were performed using the key words ‘artificial intelligence’. Further references were obtained by cross-referencing the key articles.

Recent advances in AI technology and its current applications in the field of medicine have been discussed in detail.

Conclusions:

AI promises to change the practice of medicine in hitherto unknown ways, but many of its practical applications are still in their infancy and need to be explored and developed better. Medical professionals also need to understand and acclimatize themselves with these advances for better healthcare delivery to the masses.

Introduction

Alan Turing (1950) was one of the founders of modern computers and AI. The “Turing test” was based on the fact that the intelligent behavior of a computer is the ability to achieve human level performance in cognition related tasks.[ 1 ] The 1980s and 1990s saw a surge in interest in AI. Artificial intelligent techniques such as fuzzy expert systems, Bayesian networks, artificial neural networks, and hybrid intelligent systems were used in different clinical settings in health care. In 2016, the biggest chunk of investments in AI research were in healthcare applications compared with other sectors.[ 2 ]

AI in medicine can be dichotomized into two subtypes: Virtual and physical.[ 3 ] The virtual part ranges from applications such as electronic health record systems to neural network-based guidance in treatment decisions. The physical part deals with robots assisting in performing surgeries, intelligent prostheses for handicapped people, and elderly care.

The basis of evidence-based medicine is to establish clinical correlations and insights via developing associations and patterns from the existing database of information. Traditionally, we used to employ statistical methods to establish these patterns and associations. Computers learn the art of diagnosing a patient via two broad techniques - flowcharts and database approach.

The flowchart-based approach involves translating the process of history-taking, i.e. a physician asking a series of questions and then arriving at a probable diagnosis by combining the symptom complex presented. This requires feeding a large amount of data into machine-based cloud networks considering the wide range of symptoms and disease processes encountered in routine medical practice. The outcomes of this approach are limited because the machines are not able to observe and gather cues which can only be observed by a doctor during the patient encounter.

On the contrary, the database approach utilizes the principle of deep learning or pattern recognition that involves teaching a computer via repetitive algorithms in recognizing what certain groups of symptoms or certain clinical/radiological images look like. An example of this approach is the Google's artificial brain project launched in 2012. This system trained itself to recognize cats based on 10 million YouTube videos with efficiency improving by reviewing more and more images. After 3 days of learning, it could predict an image of a cat with 75% accuracy.[ 4 , 5 ]

Materials and Methods

PubMed and Google searches were performed using the key words “artificial intelligence.” Further references were obtained by cross-referencing the key articles. An overview of different applications utilizing AI technologies currently in use or in development is described.

A lot of AI is already being utilized in the medical field, ranging from online scheduling of appointments, online check-ins in medical centers, digitization of medical records, reminder calls for follow-up appointments and immunization dates for children and pregnant females to drug dosage algorithms and adverse effect warnings while prescribing multidrug combinations. Summarized in the pie chart [ Figure 1 ] are the broad applications of AI in medicine.

An external file that holds a picture, illustration, etc.
Object name is JFMPC-8-2328-g001.jpg

Applications of artificial intelligence in health care

Radiology is the branch that has been the most upfront and welcoming to the use of new technology.[ 6 ] Computers being initially used in clinical imaging for administrative work like image acquisition and storage to now becoming an indispensable component of the work environment with the origin of picture archiving and communication system. The use of CAD (computer-assisted diagnosis) in a screening mammography is well known. Recent studies have indicated that CAD is not of a lot of diagnostic aid, based on positive predictive values, sensitivity, and specificity. In addition, the false-positive diagnoses may distract the radiologist resulting in unnecessary work-ups.[ 7 , 8 ] As suggested by a study,[ 6 ] AI could provide substantial aid in radiology by not only labeling abnormal exams but also by identifying quick negative exams in computed tomographies, X-rays, magnetic resonance images especially in high volume settings, and in hospitals with less available human resources.

A decision support system known as DXplain was developed by the university of Massachusetts in 1986, which gives a list of probable differentials based on the symptom complex and it is also used as an educational tool for medical students filling the gaps not explained in standard textbooks.[ 9 ] Germwatcher is a system developed by the University of Washington to detect and investigate hospital acquired infections.[ 10 ] An online application in UK known as Babylon can be used by the patients to consult the doctor online, check for symptoms, get advice, monitor their health, and order test kits. Apart from that, the spectrum of AI has expanded to provide therapeutic facilities as well. AI-therapy is an online course that helps patients treat their social anxiety using therapeutic approach of cognitive behavior therapy. It was developed from a program CBTpsych.com at University of Sydney.[ 11 ]

The Da Vinci robotic surgical system developed by Intuitive surgicals has revolutionized the field of surgery especially urological and gynecological surgeries. The robotic arms of the system mimics a surgeon's hand movements with better precision and has a 3D view and magnification options which allow the surgeon to perform minute incisions.[ 3 ] Since 2018, Buoy Health and the Boston children's hospital are collaboratively working on a web interface-based AI system that provides advice to parents for their ill child by answering questions about medications and whether symptoms require a doctor visit.[ 12 ] The National Institute of Health (NIH) has created an AiCure App, which monitors the use of medications by the patient via smartphone webcam access and hence reduce nonadherence rates.[ 13 ]

Fitbit, Apple, and other health trackers can monitor heart rate, activity levels, sleep levels, and some have even launched ECG tracings as a new feature. All these new advances can alert the user regarding any variation and let the doctor have a better idea of the patient's condition. The Netherlands uses AI for their healthcare system analysis - detecting mistakes in treatment, workflow inefficiencies to avoid unnecessary hospitalizations.

Apart from the inventions which already exist, there are certain advances in various phases of development, which will help physicians be better doctors. IBM's Watson Health being a prime example of the same, which will be equipped to efficiently identify symptoms of heart disease and cancer. Stanford University is making a program AI-assisted care (PAC). PAC has intelligent senior wellbeing support system and smart ICUs, which will sense any behavioral changes in elderly people living alone[ 14 ] and ICU patients,[ 15 ] respectively, via the use of multiple sensors. PAC is also extending its projects over Intelligent Hand Hygiene support and Healthcare conversational agents. Hand hygiene support is using depth sensors refining computer vison technology to achieve perfect hand hygiene for clinicians and nursing staff reducing hospital acquired infections.[ 16 ] Healthcare conversational projects analyzes how Siri, Google Now, S voice, and Cortana respond to mental health, interpersonal violence, and physical health questions from mobile phone users allowing patients to seek care earlier. Molly is a virtual nurse that is being developed to provide follow-up care to discharged patients allowing doctors to focus on more pressing cases.

AI is growing into the public health sector and is going to have a major impact on every aspect of primary care. AI-enabled computer applications will help primary care physicians to better identify patients who require extra attention and provide personalized protocols for each individual. Primary care physicians can use AI to take their notes, analyze their discussions with patients, and enter required information directly into EHR systems. These applications will collect and analyze patient data and present it to primary care physicians alongside insight into patient's medical needs.

A study conducted in 2016[ 17 ] found that physicians spent 27% of their office day on direct clinical face time with their patients and spent 49.2% of their office day on electronic hospital records and desk work. When in the examination room with patients, physicians spent 52.9% of their time on EHR and other work. In conclusion, the physicians who used documentation support such as dictation assistance or medical scribe services engaged in more direct face time with patients than those who did not use these services. In addition, increased AI usage in medicine not only reduces manual labor and frees up the primary care physician's time but also increases productivity, precision, and efficacy.

Searching and developing pharmaceutical agents against a specific disease via clinical trials take years and cost a gazillion dollars. To quote a recent example, AI was used to screen existing medications, which could be used to fight against the emerging Ebola virus menace which would have taken years to process otherwise. With the help of AI, we would be able to embrace the new concept of “precision medicine.”

Some studies have been documented where AI systems were able to outperform dermatologists in correctly classifying suspicious skin lesions.[ 18 ] This because AI systems can learn more from successive cases and can be exposed to multiple cases within minutes, which far outnumber the cases a clinician could evaluate in one mortal lifetime. AI-based decision-making approaches bring used in situations where experts often disagree, such as identifying pulmonary tuberculosis on chest radiographs.[ 19 ]

This new era of AI-augmented practice has an equal number of skeptics as proponents [ Figure 2 ]. The increased utilization of technology has reduced the number of job opportunities, which many doctors in the making and practicing doctors are concerned about. Analytically and logically machines may be able to translate human behavior, but certain human traits such as critical thinking, interpersonal and communication skills, emotional intelligence, and creativity cannot be honed by the machines.

An external file that holds a picture, illustration, etc.
Object name is JFMPC-8-2328-g002.jpg

Advantages and disadvantages of artificial intelligence in medicine

In 2016, the Digital Mammography DREAM Challenge was done where several networks of computers were connected, and the goal was to establish an AI-based algorithm by reviewing 640,000 digital mammograms. The best which was achieved was a specificity of 0.81, sensitivity of 0.80, area under receiver operator curve was 0.87, which is roughly approximated to bottom 10% radiologists.[ 20 ] In conclusion, AI has potential, but it is unlikely that AI will replace doctors out rightly.

AI would be an integral part of medicine in the future. Hence, it is important to train the new generation of medical trainees regarding the concepts and applicability of AI and how to function efficiently in a workspace alongside machines for better productivity along with cultivating soft skills like empathy in them.

In conclusion, it is important that primary care physicians get well versed with the future AI advances and the new unknown territory the world of medicine is heading toward. The goal should be to strike a delicate mutually beneficial balance between effective use of automation and AI and the human strengths and judgment of trained primary care physicians. This is essential because AI completely replacing humans in the field of medicine is a concern which might otherwise hamper the benefits which can be derived from it.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Advertisement

Advertisement

Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel

  • Original Article
  • Published: 14 March 2023
  • Volume 30 , pages 251–265, ( 2023 )

Cite this article

  • David Dreizin   ORCID: orcid.org/0000-0002-0176-0912 1 ,
  • Pedro V. Staziaki 2 ,
  • Garvit D. Khatri 3 ,
  • Nicholas M. Beckmann 4 ,
  • Zhaoyong Feng 5 ,
  • Yuanyuan Liang 5 ,
  • Zachary S. Delproposto 6 ,
  • Maximiliano Klug   ORCID: orcid.org/0000-0003-2844-5020 7 ,
  • J. Stephen Spann 8 ,
  • Nathan Sarkar 9 &
  • Yunting Fu 10  

778 Accesses

8 Citations

1 Altmetric

Explore all metrics

AI/ML CAD tools can potentially improve outcomes in the high-stakes, high-volume model of trauma radiology. No prior scoping review has been undertaken to comprehensively assess tools in this subspecialty.

To map the evolution and current state of trauma radiology CAD tools along key dimensions of technology readiness.

Following a search of databases, abstract screening, and full-text document review, CAD tool maturity was charted using elements of data curation, performance validation, outcomes research, explainability, user acceptance, and funding patterns. Descriptive statistics were used to illustrate key trends.

A total of 4052 records were screened, and 233 full-text articles were selected for content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials with heterogeneous external data. Scalable convolutional neural network–based implementations increased steeply after 2016 and were used in all commercial products; however, options for explainability were narrow. Of FDA-approved tools, 9/10 performed detection tasks. Dataset sizes ranged from < 100 to > 500,000 patients, and commercialization coincided with public dataset availability. Cross-sectional torso datasets were uniformly small. Data curation methods with ground truth labeling by independent readers were uncommon. No papers assessed user acceptance, and no method included human–computer interaction. The USA and China had the highest research output and frequency of research funding.

Conclusions

Trauma imaging CAD tools are likely to improve patient care but are currently in an early stage of maturity, with few FDA-approved products for a limited number of uses. The scarcity of high-quality annotated data remains a major barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

introduction to artificial intelligence research paper

Castro DC, Walker I, Glocker B (2020) Causality matters in medical imaging. Nat Commun 11(1):1–10

Article   Google Scholar  

Willemink MJ, Koszek WA, Hardell C, Wu J, Fleischmann D, Harvey H, Folio LR, Summers RM, Rubin DL, Lungren MP (2020) Preparing medical imaging data for machine learning. Radiology 295(1):4–15

Article   PubMed   Google Scholar  

Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D (2017) Interpretive error in radiology. Am J Roentgenol 208(4):739–749

Chung JH, Strigel RM, Chew AR, Albrecht E, Gunn ML (2009) Overnight resident interpretation of torso CT at a level 1 trauma center: an analysis and review of the literature. Acad Radiol 16(9):1155–1160

Bruno MA, Duncan JR, Bierhals AJ, Tappouni R (2018) Overnight resident versus 24-hour attending radiologist coverage in academic medical centers. Radiology 289(3):809–813

Banaste N, Caurier B, Bratan F, Bergerot J-F, Thomson V, Millet I (2018) Whole-body CT in patients with multiple traumas: factors leading to missed injury. Radiology 289(2):374–383

Glover M IV, Almeida RR, Schaefer PW, Lev MH, Mehan WA Jr (2017) Quantifying the impact of noninterpretive tasks on radiology report turn-around times. J Am Coll Radiol 14(11):1498–1503

Hunter TB, Taljanovic MS, Krupinski E, Ovitt T, Stubbs AY (2007) Academic radiologists’ on-call and late-evening duties. J Am Coll Radiol 4(10):716–719

Hanna TN, Loehfelm T, Khosa F, Rohatgi S, Johnson J-O (2016) Overnight shift work: factors contributing to diagnostic discrepancies. Emerg Radiol 23(1):41–47

Barquist ES, Pizano LR, Feuer W, Pappas PA, McKenney KA, LeBlang SD, Henry RP, Rivas LA, Cohn SM (2004) Inter-and intrarater reliability in computed axial tomographic grading of splenic injury: why so many grading scales? J Trauma Acute Care Surg 56(2):334–338

Clark R, Hird K, Misur P, Ramsay D, Mendelson R (2011) CT grading scales for splenic injury: why can’t we agree? J Med Imaging Radiat Oncol 55(2):163–169

Chen H, Unberath M, Dreizin D (2023) Toward automated interpretable AAST grading for blunt splenic injury. Emerg Radiol 30(1):41–50. https://doi.org/10.1007/s10140-022-02099-1

Furey AJ, O’Toole RV, Nascone JW, Sciadini MF, Copeland CE, Turen C (2009) Classification of pelvic fractures: analysis of inter-and intraobserver variability using the Young-Burgess and Tile classification systems. Orthopedics (Online) 32(6):401

Google Scholar  

Liu J, Varghese B, Taravat F, Eibschutz LS, Gholamrezanezhad A (2022) An extra set of intelligent eyes: application of artificial intelligence in imaging of abdominopelvic pathologies in emergency radiology. Diagnostics 12(6):1351

Article   PubMed   PubMed Central   Google Scholar  

Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE conference on computer vision and pattern recognition p. 770–778

Ronneberger O, Fischer P, Brox T (2015) U-Net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention – MICCAI 2015. MICCAI 2015. Lecture notes in computer science(), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28

Chapter   Google Scholar  

Zhou SK, Greenspan H, Davatzikos C, Duncan JS, Van Ginneken B, Madabhushi A, Prince JL, Rueckert D, Summers RM (2021) A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE 109(5):820–838

Article   CAS   Google Scholar  

Fujita H (2020) AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiol Phys Technol 13(1):6–19

West E, Mutasa S, Zhu Z, Ha R (2019) Global trend in artificial intelligence–based publications in radiology from 2000 to 2018. Am J Roentgenol 213(6):1204–1206

Harvey HB, Gowda V (2020) How the FDA regulates AI. Acad Radiol 27(1):58–61

Ebrahimian S, Kalra MK, Agarwal S, Bizzo BC, Elkholy M, Wald C, Allen B, Dreyer KJ (2022) FDA-regulated AI algorithms: trends, strengths, and gaps of validation studies. Acad Radiol 29(4):559–566

Sammer MB, Sher AC, Towbin AJ (2022) Ensuring adequate development and appropriate use of artificial intelligence in pediatric medical imaging. Am J Roentgenol 218(1):182–183

Yang L, Ene IC, Arabi Belaghi R, Koff D, Stein N, Santaguida PL (2022) Stakeholders' perspectives on the future of artificial intelligence in radiology: a scoping review. Eur Radiol 32(3):1477–1495. https://doi.org/10.1007/s00330-021-08214-z

Benjamens S, Dhunnoo P, Meskó B (2020) The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 3(1):1–8

He J, Baxter SL, Xu J, Xu J, Zhou X, Zhang K (2019) The practical implementation of artificial intelligence technologies in medicine. Nat Med 25(1):30–36

Article   CAS   PubMed   PubMed Central   Google Scholar  

Dreizin D, Munera F (2012) Blunt polytrauma: evaluation with 64-section whole-body CT angiography. Radiographics 32(3):609–631. https://doi.org/10.1148/rg.323115099

Dreizin D, Munera F (2015) Multidetector CT for penetrating torso trauma: state of the art. Radiology 277(2):338–355

Varoquaux G, Cheplygina V (2022) Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit Med 5(1):1–8

Weikert T, Cyriac J, Yang S, Nesic I, Parmar V, Stieltjes B (2020) A practical guide to artificial intelligence–based image analysis in radiology. Invest Radiol 55(1):1–7

Arksey H, O’Malley L (2005) Scoping studies: towards a methodological framework. Int J Soc Res Methodol 8(1):19–32

Pham MT, Rajić A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA (2014) A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Meth 5(4):371–385

Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, Flanders AE, Lungren MP, Mendelson DS, Rudie JD (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology 291(3):781

Allen B Jr, Seltzer SE, Langlotz CP, Dreyer KP, Summers RM, Petrick N, Marinac-Dabic D, Cruz M, Alkasab TK, Hanisch RJ (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. J Am Coll Radiol 16(9):1179–1189

Majkowska A, Mittal S, Steiner DF, Reicher JJ, McKinney SM, Duggan GE, Eswaran K, Cameron Chen P-H, Liu Y, Kalidindi SR (2020) Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation. Radiology 294(2):421–431

Seah JC, Tang CH, Buchlak QD, Holt XG, Wardman JB, Aimoldin A, Esmaili N, Ahmad H, Pham H, Lambert JF (2021) Effect of a comprehensive deep-learning model on the accuracy of chest x-ray interpretation by radiologists: a retrospective, multireader multicase study. Lancet Digit Health 3(8):e496–e506

Article   CAS   PubMed   Google Scholar  

Jones RM, Sharma A, Hotchkiss R, Sperling JW, Hamburger J, Ledig C, O’Toole R, Gardner M, Venkatesh S, Roberts MM (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3(1):1–6

Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P (2018) Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 392(10162):2388–2396

Dreizin D, Zhou Y, Chen T, Li G, Yuille AL, McLenithan A, Morrison JJ (2020) Deep learning-based quantitative visualization and measurement of extraperitoneal hematoma volumes in patients with pelvic fractures: potential role in personalized forecasting and decision support. J Trauma Acute Care Surg 88(3):425

Harris RJ, Kim S, Lohr J, Towey S, Velichkovich Z, Kabachenko T, Driscoll I, Baker B (2019) Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network. J Digit Imaging 32(6):939–946

Ginat DT (2020) Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology 62(3):335–340

Ginat D (2021) Implementation of machine learning software on the radiology worklist decreases scan view delay for the detection of intracranial hemorrhage on CT. Brain Sci 11(7):832

Kundisch A, Hönning A, Mutze S, Kreissl L, Spohn F, Lemcke J, Sitz M, Sparenberg P, Goelz L (2021) Deep learning algorithm in detecting intracranial hemorrhages on emergency computed tomographies. PLoS ONE 16(11):e0260560

Ojeda P, Zawaideh M, Mossa-Basha M, Haynor D (2019) The ional neural network for detection of intracranial bleeds on non-contrast head computed tomography studies. In: Proc. SPIE 10949, Medical Imaging 2019: Image processing, 109493J. https://doi.org/10.1117/12.2513167

Kau T, Ziurlys M, Taschwer M, Kloss-Brandstätter A, Grabner G, Deutschmann H (2022) FDA-approved deep learning software application versus radiologists with different levels of expertise: detection of intracranial hemorrhage in a retrospective single-center study. Neuroradiology 64(5):981–990

Voter AF, Meram E, Garrett JW, John-Paul JY (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of intracranial hemorrhage. J Am Coll Radiol 18(8):1143–1152

Wismüller A, Stockmaster L (2020) A prospective randomized clinical trial for measuring radiology study reporting time on artificial intelligence-based detection of intracranial hemorrhage in emergent care head CT. In: Proc. SPIE 11317, Medical Imaging 2020: Biomedical applications in molecular, structural, and functional imaging, 113170M. https://doi.org/10.1117/12.2552400

Heit J, Coelho H, Lima F, Granja M, Aghaebrahim A, Hanel R, Kwok K, Haerian H, Cereda C, Venkatasubramanian C (2021) Automated cerebral hemorrhage detection using RAPID. Am J Neuroradiol 42(2):273–278

Gipson J, Tang V, Seah J, Kavnoudias H, Zia A, Lee R, Mitra B, Clements W (2022) Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma. Br J Radiol 95:20210979

Small J, Osler P, Paul A, Kunst M (2021) Ct cervical spine fracture detection using a convolutional neural network. Am J Neuroradiol 42(7):1341–1347

Voter A, Larson M, Garrett J, Yu J-P (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. Am J Neuroradiol 42(8):1550–1556

Weikert T, Noordtzij LA, Bremerich J, Stieltjes B, Parmar V, Cyriac J, Sommer G, Sauter AW (2020) Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol 21(7):891

Hayashi D, Kompel AJ, Ventre J, Ducarouge A, Nguyen T, Regnard N-E, Guermazi A (n.d.) Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning. Skelet Radiol 2022:1–11

Hayashi D, Kompel AJ, Ventre J, Ducarouge A, Nguyen T, Regnard NE, Guermazi A (2022) Automated detection of acute appendicular skeletal fractures in pediatric patients using deep learning. Skeletal Radiol 51(11):2129–2139. https://doi.org/10.1007/s00256-022-04070-0

Duron L, Ducarouge A, Gillibert A, Lainé J, Allouche C, Cherel N, Zhang Z, Nitche N, Lacave E, Pourchot A (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300(1):120–129

Dupuis M, Delbos L, Veil R, Adamsbaum C (2022) External validation of a commercially available deep learning algorithm for fracture detection in children. Diagn Interv Imaging 103(3):151–159

Rueckel J, Sperl JI, Kaestle S, Hoppe BF, Fink N, Rudolph J, Schwarze V, Geyer T, Strobl FF, Ricke J (2021) Reduction of missed thoracic findings in emergency whole-body computed tomography using artificial intelligence assistance. Quant Imaging Med Surg 11:2486–2498

Genant HK, Li J, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3(3):281–290

Davis MA, Rao B, Cedeno PA, Saha A, Zohrabian VM (2022) Machine learning and improved quality metrics in acute intracranial hemorrhage by noncontrast computed tomography. Curr Probl Diagn Radiol 51(4):556–561. https://doi.org/10.1067/j.cpradiol.2020.10.007

Shin H-C et al (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298. https://doi.org/10.1109/TMI.2016.2528162

Remedios SW, Roy S, Bermudez C, Patel MB, Butman JA, Landman BA, Pham DL (2020) Distributed deep learning across multisite datasets for generalized CT hemorrhage segmentation. Med Phys 47(1):89–98

Mutasa S, Varada S, Goel A, Wong TT, Rasiej MJ (2020) Advanced deep learning techniques applied to automated femoral neck fracture detection and classification. J Digit Imaging 33(5):1209–1217

Zhou Y, Dreizin D, Wang Y, Liu F, Shen W, Yuille AL (2021) External attention assisted multi-phase splenic vascular injury segmentation with limited data. IEEE Trans Med Imaging 41(6):1346–1357

Lind A, Akbarian E, Olsson S, Nåsell H, Sköldenberg O, Razavian AS, Gordon M (2021) Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system. PLoS ONE 16(4):e0248809

Jin L, Yang J, Kuang K, Ni B, Gao Y, Sun Y, Gao P, Ma W, Tan M, Kang H (2020) Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet. EBioMedicine 62:103106

Zhou Q-Q, Hu Z-C, Tang W, Xia Z-Y, Wang J, Zhang R, Li X, Chen C-Y, Zhang B, Lu L (2022) Precise anatomical localization and classification of rib fractures on CT using a convolutional neural network. Clin Imaging 81:24–32

Olczak J, Emilson F, Razavian A, Antonsson T, Stark A, Gordon M (2020) Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification. Acta Orthop 92(1):102–108

Huang Y-J, Liu W, Wang X, Fang Q, Wang R, Wang Y, Chen H, Chen H, Meng D, Wang L (2020) Rectifying supporting regions with mixed and active supervision for rib fracture recognition. IEEE Trans Med Imaging 39(12):3843–3854

Luo J, Kitamura G, Doganay E, Arefan D, Wu S (2021) Medical knowledge-guided deep curriculum learning for elbow fracture diagnosis from x-ray images. In: Proc. SPIE 11597, Medical Imaging 2021: Computer-aided diagnosis, 1159712. https://doi.org/10.1117/12.2582184

Zapaishchykova A, Dreizin D, Li Z, Wu JY, Faghihroohi S, Unberath M (2021) An interpretable approach to automated severity scoring in pelvic trauma. In: Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021, vol 12903. Lecture Notes in Computer Science(), Springer, Cham. https://doi.org/10.1007/978-3-030-87199-4_40

Diaz-Pinto A, Alle S, Ihsani A, Asad M, Nath V, Pérez-García F, Mehta P, Li W, Roth HR, Vercauteren T (2022) Monai label: a framework for ai-assisted interactive labeling of 3d medical images. arXiv preprint arXiv:220312362

Diaz-Pinto A, Mehta P, Alle S, Asad M, Brown R, Nath V, Ihsani A, Antonelli M, Palkovics D, Pinter C (2022) DeepEdit: deep editable learning for interactive segmentation of 3D medical images. MICCAI Workshop on Data Augmentation, Labelling, and Imperfections: Springer, p. 11–21

Burns JE, Yao J, Muñoz H, Summers RM (2016) Automated detection, localization, and classification of traumatic vertebral body fractures in the thoracic and lumbar spine at CT. Radiology 278(1):64

Bandyopadhyay O, Biswas A, Bhattacharya BB (2016) Long-bone fracture detection in digital X-ray images based on digital-geometric techniques. Comput Methods Programs Biomed 123:2–14

Sun L, Kong Q, Huang Y, Yang J, Wang S, Zou R, Yin Y, Peng J (2020) Automatic segmentation and measurement on knee computerized tomography images for patellar dislocation diagnosis. Comput Math Methods Med 2020

Seo JW, Lim SH, Jeong JG, Kim YJ, Kim KG, Jeon JY (2021) A deep learning algorithm for automated measurement of vertebral body compression from X-ray images. Sci Rep 11(1):1–10

Baum T, Bauer JS, Klinder T, Dobritz M, Rummeny EJ, Noël PB, Lorenz C (2014) Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur Radiol 24(4):872–880

Xia X, Zhang X, Huang Z, Ren Q, Li H, Li Y, Liang K, Wang H, Han K, Meng X (2021) Automated detection of 3D midline shift in spontaneous supratentorial intracerebral haemorrhage with non-contrast computed tomography using deep convolutional neural networks. Am J Transl Res 13(10):11513

PubMed   PubMed Central   Google Scholar  

Guo J, Mu Y, Xue D, Li H, Chen J, Yan H, Xu H, Wang W (2021) Automatic analysis system of calcaneus radiograph: Rotation-invariant landmark detection for calcaneal angle measurement, fracture identification and fracture region segmentation. Comput Methods Programs Biomed 206:106124

Monchka BA, Kimelman D, Lix LM, Leslie WD (2021) Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: the Manitoba Bone Mineral Density Registry. Bone 150:116017

Rajpurkar P, Irvin J, Bagul A, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball RL (2017) Mura: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:171206957

Wang Y, Wang K, Peng X, Shi L, Sun J, Zheng S, Shan F, Shi W, Liu L (2021) DeepSDM: Boundary-aware pneumothorax segmentation in chest X-ray images. Neurocomputing 454:201–211

Flanders AE, Prevedello LM, Shih G, Halabi SS, Kalpathy-Cramer J, Ball R, Mongan JT, Stein A, Kitamura FC, Lungren MP (2020) Construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. Radiology: Artif Intell 2(3):e190211

Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE conference on computer vision and pattern recognition, p. 2097–2106

Choi JW, Cho YJ, Ha JY, Lee YY, Koh SY, Seo JY, Choi YH, Cheon J-E, Phi JH, Kim I (2022) Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs. Korean J Radiol 23(3):343

Oakden-Rayner L, Gale W, Bonham TA, Lungren MP, Carneiro G, Bradley AP, Palmer LJ (2022) Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study. Lancet Digit Health 4(5):e351–e358

Jiménez-Sánchez A, Kazi A, Albarqouni S, Kirchhoff C, Biberthaler P, Navab N, Kirchhoff S, Mateus D (2020) Precise proximal femur fracture classification for interactive training and surgical planning. Int J Comput Assist Radiol Surg 15(5):847–857

Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD (2019) Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a registry-based cohort study of dual X-ray absorptiometry. Radiology 293(2):405–411

Cai W, Lee J-G, Fikry K, Yoshida H, Novelline R, de Moya M (2012) MDCT quantification is the dominant parameter in decision-making regarding chest tube drainage for stable patients with traumatic pneumothorax. Comput Med Imaging Graph 36(5):375–386

Dreizin D, Zhou Y, Fu S, Wang Y, Li G, Champ K, Siegel E, Wang Z, Chen T, Yuille AL (2020) A multiscale deep learning method for quantitative visualization of traumatic hemoperitoneum at CT: Assessment of feasibility and comparison with subjective categorical estimation. Radiol Artif Intell 2(6):e190220. https://doi.org/10.1148/ryai.2020190220

Dreizin D, Goldmann F, LeBedis C, Boscak A, Dattwyler M, Bodanapally U, Li G, Anderson S, Maier A, Unberath M (2021) An automated deep learning method for tile AO/OTA pelvic fracture severity grading from trauma whole-body CT. J Digit Imaging 34(1):53–65

Dreizin D, Chen T, Liang Y, Zhou Y, Paes F, Wang Y, Yuille AL, Roth P, Champ K, Li G (2021) Added value of deep learning-based liver parenchymal CT volumetry for predicting major arterial injury after blunt hepatic trauma: a decision tree analysis. Abdom Radiol 46(6):2556–2566

Okimatsu S, Maki S, Furuya T, Fujiyoshi T, Kitamura M, Inada T, Aramomi M, Yamauchi T, Miyamoto T, Inoue T (2022) Determining the short-term neurological prognosis for acute cervical spinal cord injury using machine learning. J Clin Neurosci 96:74–79

McCoy D, Dupont S, Gros C, Cohen-Adad J, Huie R, Ferguson A, Duong-Fernandez X, Thomas L, Singh V, Narvid J (2019) Convolutional neural network–based automated segmentation of the spinal cord and contusion injury: deep learning biomarker correlates of motor impairment in acute spinal cord injury. Am J Neuroradiol 40(4):737–744

CAS   PubMed   PubMed Central   Google Scholar  

Chaganti S, Plassard AJ, Wilson L, Smith MA, Patel MB, Landman BA (2016) A Bayesian framework for early risk prediction in traumatic brain injury. Proc SPIE Int Soc Opt Eng 27(9784):978422. https://doi.org/10.1117/12.2217306

Cai Y, Wu S, Zhao W, Li Z, Wu Z, Ji S (2018) Concussion classification via deep learning using whole-brain white matter fiber strains. PLoS ONE 13(5):e0197992

Hellyer PJ, Leech R, Ham TE, Bonnelle V, Sharp DJ (2013) Individual prediction of white matter injury following traumatic brain injury. Ann Neurol 73(4):489–499

Kim Y-T, Kim H, Lee C-H, Yoon BC, Kim JB, Choi YH, Cho W-S, Oh B-M, Kim D-J (2021) Intracranial densitometry-augmented machine learning enhances the prognostic value of brain CT in pediatric patients with traumatic brain injury: A retrospective pilot study. Front Pediatr 9:750272. https://doi.org/10.3389/fped.2021.750272

Mohamed M, Alamri A, Mohamed M, Khalid N, O'Halloran P, Staartjes V, Uff C (2022) Prognosticating outcome using magnetic resonance imaging in patients with moderate to severe traumatic brain injury: A machine learning approach. Brain Inj 36(3):353–358. https://doi.org/10.1080/02699052.2022.2034184

Yao H, Williamson C, Gryak J, Najarian K (2020) Automated hematoma segmentation and outcome prediction for patients with traumatic brain injury. Artif Intell Med 107:101910

Choi J, Mavrommati K, Li NY, Patil A, Chen K, Hindin DI, Forrester JD (2022) Scalable deep learning algorithm to compute percent pulmonary contusion among patients with rib fractures. J Trauma Acute Care Surg 93(4):461–466

Röhrich S, Hofmanninger J, Negrin L, Langs G, Prosch H (2021) Radiomics score predicts acute respiratory distress syndrome based on the initial CT scan after trauma. Eur Radiol 31(8):5443–5453

Lee S, Summers RM (2021) Clinical artificial intelligence applications in radiology: chest and abdomen. Radiol Clin 59(6):987–1002

Dreizin D, Zhou Y, Zhang Y, Tirada N, Yuille AL (2020) Performance of a deep learning algorithm for automated segmentation and quantification of traumatic pelvic hematomas on CT. J Digit Imaging 33(1):243–251

Chen H, Gomez C, Huang C-M, Unberath M (2022) Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. npj Digit Med 5(1):1–15

Mongan J, Moy L, Kahn CE Jr (2020) Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A guide for authors and reviewers. Radiol Artif Intell 2(2):e200029. https://doi.org/10.1148/ryai.2020200029

Sounderajah V, Ashrafian H, Aggarwal R, De Fauw J, Denniston AK, Greaves F, Karthikesalingam A, King D, Liu X, Markar SR (2020) Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: the STARD-AI Steering Group. Nat Med 26(6):807–808

Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, Moons K, Collins G, Moher D, Bossuyt PM (2021) Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 11(6):e047709

Download references

David Dreizin funding source: NIH K08 EB027141-01A1 (PI: David Dreizin, MD)

Author information

Authors and affiliations.

Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA

David Dreizin

Cardiothoracic Imaging, Department of Radiology, Larner College of Medicine, University of Vermont, Burlington, VT, USA

Pedro V. Staziaki

Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA

Garvit D. Khatri

Memorial Hermann Orthopedic & Spine Hospital, McGovern Medical School at UTHealth, Houston, TX, USA

Nicholas M. Beckmann

Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, MD, USA

Zhaoyong Feng & Yuanyuan Liang

Division of Emergency Radiology, Department of Radiology, University of Michigan, Ann Arbor, MI, USA

Zachary S. Delproposto

Sheba Medical Center, Ramat Gan, Israel

Maximiliano Klug

Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA

J. Stephen Spann

University of Maryland School of Medicine, Baltimore, MD, USA

Nathan Sarkar

Health Sciences and Human Services Library, University of Maryland, Baltimore, Baltimore, MD, USA

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to David Dreizin .

Ethics declarations

Conflict of interest.

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 54 KB)

Supplementary file2 (docx 34 kb), supplementary file3 (docx 38 kb), rights and permissions.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Dreizin, D., Staziaki, P.V., Khatri, G.D. et al. Artificial intelligence CAD tools in trauma imaging: a scoping review from the American Society of Emergency Radiology (ASER) AI/ML Expert Panel. Emerg Radiol 30 , 251–265 (2023). https://doi.org/10.1007/s10140-023-02120-1

Download citation

Received : 27 January 2023

Accepted : 27 February 2023

Published : 14 March 2023

Issue Date : June 2023

DOI : https://doi.org/10.1007/s10140-023-02120-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Emergency radiology
  • Artificial intelligence
  • Machine learning
  • Computer-aided detection
  • Scoping review
  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. (PDF) ARTIFICIAL INTELLIGENCE IN EDUCATION

    introduction to artificial intelligence research paper

  2. 😀 Research paper artificial intelligence. Research paper on artificial

    introduction to artificial intelligence research paper

  3. (PDF) Applications of Artificial Intelligence in Marketing

    introduction to artificial intelligence research paper

  4. (PDF) A Study on Artificial Intelligence Technologies and its

    introduction to artificial intelligence research paper

  5. (PDF) Artificial Intelligence and its Implications in Education

    introduction to artificial intelligence research paper

  6. Artificial Intelligence Essay 300 Words

    introduction to artificial intelligence research paper

VIDEO

  1. INTRODUCTION TO ARTIFICIAL INTELLIGENCE

  2. 01 Artificial Intelligence

  3. Solution of Artificial Intelligence Question Paper || AI || 843 Class 12 || CBSE Board 2023-24

  4. Artificial intelligence introducing

  5. Introduction to Artificial Intelligence

  6. Artificial Intelligence Introduction

COMMENTS

  1. PDF AN INTRODUCTION TO ARTIFICIAL INTELLIGENCE

    2 • Artificial intelligence (AI), sometimes called machine intelligence, is intelligence demonstrated by machines, in contrast to the natural intelligence displayed by humans and other animals, such as "learning" and "problem solving. . In computer science AI research is defined as the study of "intelligent agents": any device that perceives its environment and

  2. A brief introduction to artificial intelligence

    INTRODUCTION Since the seminal paper of Alan Turing in 1950 about the possibility of programming an electronic computer to behave intelligently, Artificial Intelligence (AI) has been experiencing for the past few decades a rapid growth in research and development. Such areas as expert systems, natural language processing, speech recognition ...

  3. (PDF) Introduction to Artificial Intelligence

    AI is a branch of computer science concerned with the creation of intelligent machines capable of working and responding in the same way that human do [3]. In 1950, Alan Turing claimed that a ...

  4. (PDF) Introduction to artificial intelligence

    This paper presents an introductory view of Artificial Intelligence (AI). In addition to defining AI, it discusses the foundations on which it rests, research in the field, and current and ...

  5. Artificial intelligence: A powerful paradigm for scientific research

    Cognitive intelligence is a higher-level ability of induction, reasoning and acquisition of knowledge. It is inspired by cognitive science, brain science, and brain-like intelligence to endow machines with thinking logic and cognitive ability similar to human beings. Once a machine has the abilities of perception and cognition, it is often ...

  6. AI technologies for education: Recent research & future directions

    2.1 Prolific countries. Artificial intelligence in education (AIEd) research has been conducted in many countries around the world. The 40 articles reported AIEd research studies in 16 countries (See Table 1).USA was so far the most prolific, with nine articles meeting all criteria applied in this study, and noticeably seven of them were conducted in K-12.

  7. Introduction to Artificial Intelligence

    Abstract. The chapter introduces natural and artificial intelligence characteristics such as non-algorithmic approach, use of heuristics, self-learning, and ability to handle partial inputs along with various types of artificial intelligence and application areas. Terms like weak AI, narrow AI, classical AI, modern AI, symbolic AI, machine ...

  8. Introduction to Artificial Intelligence

    1 What Is AI. The term Artificial Intelligence (AI) is a branch of computer science to make computers perform human-like tasks, and thus, computers can appropriately sense and learn inputs for perception, knowledge representation, reasoning, problem-solving, and planning. Various types of innovative AI technologies are designed to imitate the ...

  9. PDF The Impact of Artificial Intelligence on Innovation

    artificial intelligence, broadly defined, and divides these outputs into those associated with robotics, symbolic systems, and deep learning. Though preliminary in nature (and inherently imperfect given that key elements of research activity in artificial intelligence may not be

  10. Introduction to Machine Learning, Neural Networks, and Deep Learning

    Introduction. Over the past decade, artificial intelligence (AI) has become a popular subject both within and outside of the scientific community; an abundance of articles in technology and non-technology-based journals have covered the topics of machine learning (ML), deep learning (DL), and AI. 1 - 6 Yet there still remains confusion around AI, ML, and DL.

  11. A Brief Introduction To Artificial Intelligence

    Artificial Intelligence (A.I.) is a multidisciplinary field whose goal is to automate activities that presently require human intelligence. Recent successes in A.I. include computerized medical diagnosticians and systems that automatically customize hardware to particular user requirements. The major problem areas addressed in A.I. can be summarized as Perception, Manipulation, Reasoning ...

  12. Introduction

    AI Defined. Artificial intelligence (AI) refers to the capacity of computers or other machines to perform tasks that typically require human intelligence such as reasoning, problem-solving, and decision-making. AI systems use algorithms and computational techniques to process large volumes of data, extract patterns, and make predictions or ...

  13. Artificial intelligence in healthcare: transforming the practice of

    Artificial intelligence in healthcare: transforming the practice of medicine is a review article that explores the current and potential applications of AI in various domains of medicine, such as diagnosis, treatment, research, and education. The article also discusses the challenges and ethical issues of implementing AI in healthcare, and provides some recommendations for future directions ...

  14. (PDF) Research paper on Artificial Intelligence

    March 2015 · Artificial Intelligence Research. Samuel Huang. Supervised feature selection research has a long history. Its popularity exploded in the past 30 years due to the advance ...

  15. Research Guides: Artificial Intelligence (AI): AI in Research

    Experiment Design: AI algorithms can assist researchers in designing experiments by suggesting variables, methodologies, and potential outcomes based on existing data. Communication of Findings: AI can assist in drafting, proof-reading, and editing research papers. Collaboration and Networking: AI-driven recommendation systems can help ...

  16. Artificial intelligence in information systems research: A systematic

    The structure of the paper is as follows. First, an introduction to related work on AI in the IS field is presented. ... Russel & Norvig's book Artificial Intelligence: ... meaning of "intelligence" that AI research projects should abide by, at least among those that consider defining AI. Yet "intelligence" by its dictionary ...

  17. Artificial intelligence and illusions of understanding in scientific

    The proliferation of artificial intelligence tools in scientific research risks creating illusions of understanding, where scientists believe they understand more about the world than they ...

  18. Lecture 1: Introduction and Scope

    Lecture 1: Introduction and Scope. Viewing videos requires an internet connection Description: In this lecture, Prof. Winston introduces artificial intelligence and provides a brief history of the field. The last ten minutes are devoted to information about the course at MIT. Instructor: Patrick H. Winston.

  19. Artificial intelligence and illusions of understanding in scientific

    Scientists are enthusiastically imagining ways in which artificial intelligence (AI) tools might improve research. Why are AI tools so attractive and what are the risks of implementing them across the research pipeline? Here we develop a taxonomy of scientists' visions for AI, observing that their a …

  20. Artificial intelligence: A powerful paradigm for scientific research

    Cognitive intelligence is a higher-level ability of induction, reasoning and acquisition of knowledge. It is inspired by cognitive science, brain science, and brain-like intelligence to endow machines with thinking logic and cognitive ability similar to human beings. Once a machine has the abilities of perception and cognition, it is often ...

  21. PDF Research Paper on Artificial Intelligence & Its Applications

    Artificial intelligence forms the basis for all computer learning and is the future of all complex decision making. This paper examines features of artificial Intelligence, introduction, definitions of AI, history, applications, growth and achievements.

  22. Overview of artificial intelligence in medicine

    Background: Artificial intelligence (AI) is the term used to describe the use of computers and technology to simulate intelligent behavior and critical thinking comparable to a human being. John McCarthy first described the term AI in 1956 as the science and engineering of making intelligent machines.

  23. (PDF) Research Paper on Artificial Intelligence

    Research Paper on Artificial Intelligence. February 2023; International Journal Of Engineering And Computer Science 12(02):25654-20656 ... Introduction . Artificial intelligence is defined as ...

  24. PDF Responsible Artificial Intelligence: A Structured Literature Review

    Introduction In the past years, a lot of research is being conducted to improve Artificial Intelligence ... The reason for selecting these databases was to limit our search to peer-reviewed research papers only. 2.4. Studies Selection ... White Paper on Artificial Intelligence A European ap-proach to excellence and trust. European Commission ...

  25. Natural and Artificial Intelligence: A brief introduction to the

    Neuroscience and artificial intelligence (AI) share a long history of collaboration. Advances in neuroscience, alongside huge leaps in computer processing power over the last few decades, have given rise to a new generation of in silico neural networks inspired by the architecture of the brain. These AI systems are now capable of many of the advanced perceptual and cognitive abilities of ...

  26. A (very) basic guide to artificial intelligence

    Understanding artificial intelligence, linear separability, neural networks, transformers, and the role of GPUs in machine learning.

  27. Introducing the next generation of Claude \ Anthropic

    It can read an information and data dense research paper on arXiv (~10k tokens) with charts and graphs in less than three seconds. Following launch, we expect to improve performance even further. For the vast majority of workloads, Sonnet is 2x faster than Claude 2 and Claude 2.1 with higher levels of intelligence.

  28. Artificial Intelligence in Business: From Research and Innovation to

    For the last few years, one can see the emergence of a large number of intelligent products and services, their commercial availability and the socioeconomic impact, this raises the question if the present emergence of AI is just hype or does it really have the capability of transforming the world.

  29. Artificial intelligence CAD tools in trauma imaging: a ...

    A total of 4052 records were screened, and 233 full-text articles were selected for content analysis. Twenty-one papers described FDA-approved commercial tools, and 212 reported algorithm prototypes. Works ranged from foundational research to multi-reader multi-case trials with heterogeneous external data.

  30. 95-891: Introduction to Artificial Intelligence

    95-891: Introduction to Artificial Intelligence . Spring 2023 (12 units); TTh 5:00 PM - 6:20 PM Eastern, Hamburg Hall 1204 (or on Zoom ... David was Director in the Center for Advanced Research at PwC, Senior Director of Technology and Business Development at Kanisa, and Managing Director at Scient. David holds a Ph.D. in