Crossrail Learning Legacy

We are always improving the Learning Legacy website and we want your help to make it better.

Complete the quick survey Remind me later No thanks

crossrail bim case study

Print this Technical Paper

Crossrail Project: Application of BIM (Building Information Modelling) and Lessons Learned

Document type: Technical Paper Author: Malcolm Taylor Publication Date: 09/07/2018

Between 2008-12, Crossrail Limited (CRL) established the main elements of the programme information environment, part of which is now known as Building Information Modelling (BIM).  This paper describes a number of the initiatives used to exploit the opportunities BIM technology can bring to design and construction. The paper illustrates specific tactical initiatives to exploit technology advances such as the use of 3D models into 4D and 5D as a tool to manage construction fit-out, as well as being linked to asset data through a geographical information system (GIS). The process of handover into operations and maintenance is also described.  The paper also summarises the benefits and lessons learnt in creating and using BIM processes and technologies.

Read the full document

1  introduction.

Just as bar coding revolutionised the retail sector in the 1970s, the construction industry has an opportunity to use digital technology and processes to become more effective and efficient.

In 2011, the Government announced that all publicly funded projects must reach BIM (Building Information Modelling) Level 2 by 2016. The construction industry’s capability for visualisations and data management flourished, and BIM technologies were adopted by many architects, designers and some contractors – but not that many clients.

In the 10 years since Crossrail’s Parliamentary phase concluded in 2008 technology has advanced unrecognisably. Mobile devices and apps are now in everyday use; the cost of processing power has decreased by a factor of fifty and data storage costs are fifteen times lower. The price of sensors has halved, whilst bandwidth is forty times greater.

This has had a profound effect on how major projects like Crossrail can manage and leverage data, not only when building infrastructure but also understanding how it behaves when in use. Crossrail had always intended to build two railways: one virtual, to facilitate design and construction and then the subsequent management of the physical. For Crossrail to successfully transition into the Elizabeth line as an operational railway, both must be achieved and the advances in technology need to be exploited in both construction and operation.

Between 2008-12, CRL established the main elements of the programme information environment, part of which is now known as Building Information Modelling (BIM).  A previous paper ( Crossrail project: building a virtual version of London’s Elizabeth line ) described the development of the Common Data Environment (CDE) and the information landscape. That paper also illustrated that the Crossrail BIM environment and many related processes were established prior to the 2012 UK Government mandate on BIM.

This paper now describes the application of BIM with examples of a few of the tactical initiatives used to exploit the technologies available. This paper also summarises the benefits and lessons learnt in creating and using BIM processes and technologies.

2  Overview of BIM

Crossrail defines BIM as the process of generating and managing information throughout the whole life of the asset lifecycle by using model-based technologies linked to databases of reliable information. The CRL BIM objective has been stated as:

To set a world-class standard in creating and managing data for constructing, operating and maintaining railways by:

The BIM strategy seeks to take advantage of new available technologies to link databases of information, together with Master Data Management (a BIM Level 3 concept), all of which give leverage to the value and potential of information in design, construction and project management  decision-making. Further details of the approach taken by Crossrail can be found in the learning legacy document on BIM principles .

The CRL BIM environment at its basic level comprises a set of several linked databases which use workflows to carry out business activities, rather than a set of separate specific software applications. Following the trend in the BIM world, the federated 3D parametric CAD models on Crossrail were kept as light and as unintelligent as possible, with all the asset details being contained in separate linked databases – this allows the asset data to be structured in a much more user-friendly and efficient way. The 3D models are also easier to manipulate, for example linked to scheduling packages to create construction sequences. So the initial core service of the Project Information team on the Crossrail programme in a BIM context was to create a Common Data Environment providing a ‘Single Source of Truth’ for all information enabling the future operators and maintainers to manage their assets.

The duration of the Crossrail programme, which has taken over 10 years between Parliamentary Approval and opening of the railway, has profound implications in terms of technology development and expectation. Long construction contract schedules can make it difficult for both clients and contractors to take advantage of new technologies. For example, Wi-Fi on trains and in stations is expected as normal in 2018, but was never an original functional requirement for the railway in 2008. Fortunately, the NEC Target Cost nature of most contracts meant that new ideas and innovations could be adopted and brought into use by agreement.

3  Technology Initiatives

3.1  use of 3d & 4d modelling to manage construction fit-out of mep&a.

Project planning and control during construction can be achieved using a variety of different methods. Traditionally this involves utilising the 2D design drawings and using planners experience and known production rates to calculate task durations. Progress is then tracked through a combination of marked up 2D drawings, Excel spreadsheets and word of mouth. Crossrail has its construction contract deliverables based upon the traditional way of planning, but wanted to take advantage of how 3D modelling technologies could help improve understanding of progress and enable more informed decision making. The commitment to working in 3D is critical, much more than simply the creation of visually correct objects. In a BIM context, CAD is about space management and interface configuration, allowing designers of many different disciplines to use technology for smart clash detection and control of interfaces.

Using various software (e.g. Primavera, ProjectWise, Bentley Building Suite, Synchro Pro Navisworks, and Solibri), for specific elements and MEP disciplines the project schedule was linked to the 3D information to produce the 4D model. The information could exist in a number of different formats and particular care had be taken to ensure the most relevant formats were chosen. Viewpoints could then be created within the 4D model and appearance profiles set up to create visualisations that could show the progress of design and installation at any particular point  in time, and also includes quantities to create a 5D aspect.

Using 4D models to plan helps speed up understanding of progress within the project team considerably, also as it is quicker and simpler to understand it means that greater levels of detail can be visualised. The 4D models help analyse the schedule and visualise conflicts that are not apparent in the normal Primavera-type Gantt charts and diagrams. This enabled the project team to easily visualize time constraints and opportunities for improvement in the project schedule. The 4D model can also be used to manage expectations for payment as it allows all teams to understand progression better. It supports the planning team and financial team to have the same understanding so no work is paid for until it is agreed that the task is complete. An example of a typical report output is shown in Figure 1.

crossrail bim case study

Figure 1 – 4D model output in a typical report

Although 4D was never specified  contractually in the Works Information, there are many other examples of its use, such as:

3.2  Linking Asset Data through a Geographical Information System (GIS)

Tracking the location of assets is an essential asset management function. We have sought to use the potential of the geometric and feature information from 3D models by translating this information into our GIS. This allows designers and assurance staff to be much more efficient in understanding what assets are in particular spaces or rooms. Part of the asset inventory metadata within the information database eB includes the named space in which the asset can be found.  Historically across the industry, the ability to share information between CAD and GIS has been laden with difficulties, both in terms of the way in which information is stored, and the taxonomical classification of that information.  Nevertheless it was required that data be shared between these systems as seamlessly as possible.

In order for geospatial information to be able to be interoperable between different systems within Crossrail, adherence to a common data architecture was required.  As the Open Geospatial Consortium (OGC) had already built common geographic information architecture in the form of the Simple Feature Access Standard, this was adopted by Crossrail.

A workflow within ESRI extracts and transforms a space from the 3D CAD model. The use of an extruded 2D floor plan then enables the user to make a spatial query and identify which assets are within that space. For example, the user could go into the GIS, call up a station model in the 3D GIS, look at a floor plan and click on a specific room. They could then call up all assets within AssetWise that are located in that room. This enables the user to ensure that what is in there is correct, understand if anything is missing or continue with further queries within AssetWise about the assets. This use of a GIS can drastically reduce the time taken (reported anecdotally as by at least 75%) to understand what data is where.

crossrail bim case study

Figure 2 – GIS

This type of functionality has now been developed to allow this form of interrogation to be done by streaming over the internet, thereby giving considerable opportunity and access to this type of data.

3.3  Augmented Reality

In 2014 a mobile phone/tablet application was begun on the Custom House station project. The trial implemented a Bechtel-developed AR mobile (iPad) application to validate whether it brought process and quality efficiencies to existing site activities. The main metrics focused on process cycle times and information quality which it was assumed should lead to better decision making.

We believed that AR had the potential to benefit construction in a number of areas (or “use cases”). The specific use case tested in this pilot focused on how construction progress information can be captured against an AR 3D model in the field and automatically pushed back into the 4D model environment to assist with project planning activities.

crossrail bim case study

Figure 3- AR Pilot

The pilot successfully demonstrated a significant process cycle time improvement from 96 work-hours per month to 26 work-hours per month. This was realised because the construction progress updates were being entered directly into the 3D model (via the AR viewer) and then automatically pushed back to the 4D model being used by the planner. This removed a number of non-value-add manual steps from the traditional process.

This trial demonstrated the potential value of AR to construction but also highlighted that there are numerous factors and considerations that currently limit its suitability for large scale deployment. The trial is detailed in the Learning Legacy Augmented Reality Trials on Crossrail

3.4  Handover of Information into Maintenance & Operation

Crossrail Ltd. is only accountable for the early stages of the infrastructure life cycle – the design, construction and commissioning phases of the railway, not the operation or maintenance. Along with handing over the physical railway to the operators and maintainer, Crossrail must hand over all the associated information and data required for these activities, as well as all relevant records.

Handover of information and data from the capex environment to the operation phase has always been a difficult and often fraught stage for infrastructure projects of any scale. For Crossrail, our Central Section had nine major stations each being delivered by different teams. Each station itself was made up of multiple contracts (advanced works; design; construction; etc.) by multiple parties that could produce information in a multiple number of ways. Each station comprises of typically 15,000-25,000 individual assets, each of which require documentation and supporting data that needs to be consistent across the Crossrail programme.

So the approach taken was for each individual contract within a station / facility or along the route to have a standard template for its deliverables. This template was created within our Information Database (AssetWise, formally known as eB). This would enable the data to be collected and managed in our CDE appropriately as the single source of truth. In a BIM context, it was originally conceived  that the future operator and main maintainer would also use the CDE (in line with PAS1192 Part 3) for operation and maintenance, so that the future Elizabeth Line could continue work within a BIM Level 2 type environment. The concept was for the CDE to act as the master data source and from which playlists of information could be created as shown in Figure 4.

crossrail bim case study

Figure 4 – Information Playlists

During 2018-19, Crossrail will now be handing over information directly to a variety of organisations: Transport for London, Rail for London and London Underground, as well as a number of other potential interested stakeholders such as Network Rail and local London Boroughs.

The greatest disappointment from a BIM perspective is that RfL decided to stay with the more traditional approach to their asset information management. They and London Underground Ltd simply require Crossrail to provide them with copies of information to be placed into their own separate RfL and LUL information systems for document control, asset management etc. The data and information packages are based on the LUL Mandatory Asset Information Deliverables (MAID) listing of documentation. RfL did initially set out with an aspiration of being at least BIM Level 2 but this has not materialised. For maintenance and operations, TfL do not yet have a unified approach across their business where currently it is perceived there is an emphasis on bringing technology into use rather than improving operational processes with smarter information management. Sadly, most of the relational links created between different types of data – useful during the delivery of the programme – will be lost. Although at BIM Level 2 during design and construction, at an operational level RfL and LUL will be working at a BIM Level 0 or 1 when the Elizabeth Line is opened.

TfL will corporately receive a complete archive of the CDE including all key information produced throughout the design and commissioning of the railway, including all relevant corporate data, but this will not be a day-to-day working environment as envisaged within the original BIM concept.

4  Benefits of BIM

Bearing in mind the broad objectives of BIM look to improve processes and activities across the full asset lifecycle, the range of benefits can be wide. The benefits achieved from BIM can be broken down into three main categories: direct, indirect and cost / time benefits. Each of these are outlined below.

4.1  Direct Benefits

The key benefits from working in a BIM environment in design and construction are improvements in efficiency (time saved etc.) and effectiveness (quality, compliance, etc.). They include:

4.2  Indirect Benefits

There are a number of indirect benefits and these include:

4.3  Cost & Time Benefits

For people unfamiliar with the breadth of BIM technologies available, there is occasionally a belief that working in a BIM environment can be expensive and not give a viable return on investment. Evidence based, this is not the case for most multiple contract construction programmes.

In Crossrail the creation of a BIM environment with the use of a CDE by all parties in design and construction to deliver a working railway has been a significant success, both in terms of cost efficiency and management of the programme of over 100 main separate contracts. Defining most of the information requirements and types early on meant there was never any doubt as to what was wanted. The use of workflows within linked databases for processes and activities meant that different types of data and information could be collected and related in a ‘single source of truth’. Had Crossrail retained different software packages for each of the specialist activities needed in design and construction, rather than using workflows, this would have indicatively cost over £10 million per annum for 7 years in additional software and support staff costs.

Use of visualisations such as the 3D model through design and then into 4D and 5D for progress reporting, are now commonplace BIM applications. The 5D approach as outlined in Section 3.1 above was brought into use on a number of sites and typically saved £1.2 million at each contract through the reduction of two full time equivalent staff needed to process and agree progress.

The analysis and interrogation construction scenarios using a 3D model with different planning schedules at Farringdon Station cost some £120k but enabled £8 million to be saved from risk contingency.

5   Lessons Learned & Recommendations for Future Projects

Over the design and construction phases, a reflection back on what was done – particularly in difficult or uncertain areas – may help others not to make the same mistakes, or help build upon any areas of success.  Utilising BIM on the Crossrail project a number of lessons were identified.

5.1  The Common Data Environment

5.2  Asset classification and definition

Details of Crossrail’s approach to asset classification can be found in the learning legacy document on asset information management which sets out the CRL approach to Asset Information Management and gives a number of lessons learned including:

5.3  Process

5.5  Construction Progress Reporting in 4D and 5D

5.6  People

5.7  Technology


The author would like to thank and acknowledge the important role played by past and present members of the Crossrail Technical Information Department and IT Directorate, whose hard work, skills and commitment ensured the information (BIM) strategy was successfully delivered.

Photo of Malcolm Taylor

Malcolm Taylor - Crossrail Ltd

Head of Technical Information

Case Studies

Bim4rail – crossrail london railway stations, sector: rail & guided transport, services: digital twins,.

Laser scanning of three London Railway Stations to create a BIM, allowing the re-design to take place for new Crossrail plans.

Crossrail Limited, established in 2001, is the company that has been set up to build the new railway that will become known as the Elizabeth line when it opens through central London in 2018. Crossrail is pioneering the use of Building Information Modelling in Europe on a scale that has not been undertaken before. This has directly enabled us to develop innovative engineering design solutions, minimise waste and reduce future costs for maintaining the railway.’ – Crossrail.

In 2014 Severn Partnership were commissioned by Hochtief to undertake laser scan surveys of three London stations. The surveys took 3 weeks; one week per station, capturing up to 500 RGB static scans.

These stations are situated on the proposed Crossrail route & therefore are due to undergo substantial refurbishment.

Project Details

In 2016 many discussions took place between Severn & the design team with regards to the creation of a 3D model of each station. It was important that each model was suitable for each profession in terms of the level of detail and information included. For example, the Architect required LOD4 throughout all platforms capturing changes of surfaces such as drainage routes, concrete & tactile paving.

The model included all visible elements; platform furniture (seating, screens), tracks, sleepers, gantries, canopies, OLE, lighting and topography, as well as the main station buildings internally.

Each model needed to be created to within +/- 10mm. This lead to the decision to create the models within AutoCAD and export to the necessary DGN file format, to then be used within Bentley Microstation. CAD offered flexible modelling, allowing tight tolerances to be met for features such as the OLE. All components were categorised into the required and compliant Network Rail layering system. This was necessary to allow models to be segregated and federated between all stakeholders throughout GRIP design stages.

There are many challenges that come as a consequence from exporting to DGN (commonly loss of data). Our modelling team have processes in place to mitigate these risks. For example using the most up-to-date plug-in software exporting options, carrying out 3D visual checks and ensuring layering and entities are consistent between the two software packages.

The design team have utilised other deliverables such as Seeable Maps and TruViews, which are often agreed to be delivered as a package alongside 3D models. 360 Panoramic Images are taken on site in specified locations. Those images are then embedded within a 2D site plan or 3D model. Seeable Maps increase stakeholder understanding and allow visibility, ultimately reducing the need for on-site inspections. TruViews are a similar application which allow the user to ‘walk-through’ the point cloud. TruViews are hosted online for free, allowing anyone involved within the project to easily view and measure from the point cloud (using the various tools available). These tools have been made especially appropriate for those who have software restrictions.

All Severn Partnership surveyors are appropriately trained for working within the railway environment; with a dedicated HSQE performing site audits and completing necessary documentation.

Project Workflow

Exchange of Specifications / EIRS.

Initial meeting prior to quotation stage.

Quote / Pre-Tender BEP supplied.


Site survey.

Office processing.

Provide templates (SEED / layering system).

Work in progress quality assurance procedures.

Submission of models as per the agreement (i.e staged if necessary).

Work in progress meeting with the design team to ensure any issues are mitigated.

Model maintenance & adaption.

Professional lean team. Contact us to discuss your next project.

Bim4refurb – laser scanning sheffield university, bridges – laser scanning & modelling a railway corridor, get in touch.

To discuss your project requirements get in touch with our expert team today:

Request a callback.

Send Message

crossrail bim case study

We use cookies to ensure we give you the best experience on our website. You can find out about our cookies and how to disable cookies in our Privacy Policy . If you continue to use this website without disabling cookies, we will assume you are happy to receive them. Close .

crossrail bim case study

Designing Buildings - The Construction Wiki

File:(BIM) Building Information Modelling Case Study- Stephen Trench .pdf

File history.

crossrail bim case study

In May 2011 the UK government announced a new Construction Strategy with the aim to “reduce whole-life costs of buildings and infrastructure by 20%, and achieve reductions in CO2 emissions ” '... Government will require fully collaborative 3D BIM (with all project and asset information , documentation and data being electronic ) as a minimum by 2016'

This paper focuses on my opinions regarding the challenges of successful implementation of BIM , what applicable software platforms are available and what specific packages I believe are of key relevance to the Crossrail Project to ensure success.

Click on a date/time to view the file as it appeared at that time.

There are no pages that link to this file.


Featured articles and news

UK Construction Week makes welcome return to London

UKCW 2023 logo 350.jpg

New features, famous faces, interactive demos and ground-breaking products.

The heat pump skills gap of the UK in 2023

Heat pump Installer for press 350.jpg

Installers lack skills, training, awareness and guidance.

Make UK Modular releases first impact report with mission report cover 22 350.jpg

30/30 to deliver 30,000 modular homes a year by 2030.

2023 Spring Budget summary points and industry response

Spring Budget 2023 cover 350.jpg

ECA, CIOB and APM positve with some hesitations.

Built environment students join CIOB annual festival

CIOB student festival 23 actual 350.jpg

Two days with more than 100 people from 25 countries.

Railway station development remembers its master

Thomas Wakefield sq 350.jpg

Thomas Wakefield of Lazonby and Kirkoswald Station.

Economic stability must be priority for 2023 Spring Budget

Budget Clamp 350.jpg

APM urge government, based on results of earlier poll.

Max Fordham: Engineering Ideas, Engineering Change

Max Fordham exhibtion Building Centre 350.jpg

One week left until close on the 24th at the Building Centre.

Housebuilder pledges support to Women in Property group.

Genesis Chief Executive Nicky Gordon.jpg

Through sponsorship of the Cumbria and Lancashire branch

The Women's Engineering Society Annual Conference

WES 23 Logo 350.jpg

Brings together women and allies from across all disciplines.

The 20th Century Society Buildings at Risk list.

C20 risk list 2023 350.jpg

Published every two years with 10 buildings.

See more news.

Designing Buildings Anywhere

Get the Firefox add-on to access 20,000 definitions direct from any website


  1. Crossrail Project: Application of BIM (Building Information Modelling) and Lessons Learned

    crossrail bim case study

  2. Crossrail Recruitment Case Study

    crossrail bim case study

  3. BIM application in London Crossrail

    crossrail bim case study

  4. London Crossrail: BIM and CDE in the Design and Construction

    crossrail bim case study

  5. London Crossrail: BIM and CDE in the Design and Construction

    crossrail bim case study

  6. RIBA Client Adviser case study: Crossrail, London

    crossrail bim case study


  1. Second Try

  2. How To Get Numby's Velocity Setting !! (Davinci Resolve)

  3. apple iphone 14 pro max ASMR:- its amazing case

  4. True Crime Astrology! Idaho Murder Suspect. Bryan Kohberger Astrology

  5. Barbie Pencil box with Calculator

  6. Weather Plus by Billie 010623 E30 CA- Floods! E Coast-Get Ready! Bio 3-Siberia! Easter Island!


  1. Crossrail: A Case Study in BIM

    Crossrail: A Case Study in BIM. Authors: Ilka May, Malcolm Taylor, Daniel Irwin. 1. Introduction. Crossrail, currently Europe's biggest civil engineering

  2. Crossrail Project: Application of BIM (Building Information Modelling

    Between 2008-12, Crossrail Limited (CRL) established the main elements of the programme information environment, part of which is now known

  3. Crossrail -Elizabeth Line London, UK

    Crossrail, the new Elizabeth Line railway project, is currently the largest ... 13 ”Crossrail: A Case Study in BIM,” Ilka May, Malcolm Taylor, Daniel Irwin.

  4. Crossrail: A Case Study in BIM (Draft 26th July 2013)

    model-based technology linked with project information databases. Page 14. CRL BIM Strategy. Reflects. The BIM lifecycle status.

  5. A Case Study in BIM and Asset Management

    Dr. Mark Coleman: Crossrail - A Case Study in BIM and Asset Management. Watch later. Share. Copy link. Info. Shopping. Tap to unmute.

  6. BIM application in London Crossrail

    Let us present you London Crossrail, a world-class railway where ... of our Masterclass on the subject that covers the real case study.

  7. BIM4Rail

    Summary. Laser scanning of three London Railway Stations to create a BIM, allowing the re-design to take place for new Crossrail plans. Background.

  8. File:(BIM) Building Information Modelling Case Study- Stephen

    File:(BIM) Building Information Modelling Case Study- Stephen Trench . ... are of key relevance to the Crossrail Project to ensure success.

  9. BIM Integration into Railway Projects

    experimentation of study under BIM of a railway project in Morocco. ... practical case study in a project in Morocco. ... Crossrail, UK.

  10. BIM and Cloud Computing Combine to Build the Crossrail

    Here's a look at the project: However, it also happens to serve as a case study for building information modeling (BIM) in Europe as the largest