• Daily Crossword
  • Word Puzzle
  • Word Finder
  • Word of the Day
  • Synonym of the Day
  • Word of the Year
  • Language stories
  • All featured
  • Gender and sexuality
  • All pop culture
  • Grammar Coach ™
  • Writing hub
  • Grammar essentials
  • Commonly confused
  • All writing tips
  • Pop culture
  • Writing tips

Advertisement

  • problem-solving

adjective as in analytic

Strongest matches

  • investigative

Weak matches

adjective as in analytical

  • interpretive
  • penetrating
  • explanatory
  • inquisitive
  • perspicuous
  • questioning
  • ratiocinative

adjective as in analytic/analytical

  • well-grounded

Discover More

Related words.

Words related to problem-solving are not direct synonyms, but are associated with the word problem-solving . Browse related words to learn more about word associations.

adjective as in logical

adjective as in examining and determining

adjective as in examining

Viewing 5 / 11 related words

Example Sentences

“These are problem-solving products but that incorporate technology in a really subtle, unobtrusive way,” she says.

And it is a “problem-solving populism” that marries the twin impulses of populism and progressivism.

“We want a Republican Party that returns to problem-solving mode,” he said.

Problem-solving entails accepting realities, splitting differences, and moving forward.

It teaches female factory workers technical and life skills, such as literacy, communication and problem-solving.

Problem solving with class discussion is absolutely essential, and should occupy at least one third of the entire time.

In teaching by the problem-solving method Professor Lancelot 22 makes use of three types of problems.

Sequential Problem Solving is written for those with a whole brain thinking style.

Thus problem solving involves both the physical world and the interpersonal world.

Sequential Problem Solving begins with the mechanics of learning and the role of memorization in learning.

Synonym of the day

Start each day with the Synonym of the Day in your inbox!

By clicking "Sign Up", you are accepting Dictionary.com Terms & Conditions and Privacy Policies.

On this page you'll find 87 synonyms, antonyms, and words related to problem-solving, such as: analytical, investigative, inquiring, rational, sound, and systematic.

From Roget's 21st Century Thesaurus, Third Edition Copyright © 2013 by the Philip Lief Group.

bottom_desktop desktop:[300x250]

  • To save this word, you'll need to log in. Log In

problem-solving

Definition of problem-solving

Examples of problem-solving in a sentence.

These examples are programmatically compiled from various online sources to illustrate current usage of the word 'problem-solving.' Any opinions expressed in the examples do not represent those of Merriam-Webster or its editors. Send us feedback about these examples.

Dictionary Entries Near problem-solving

Cite this entry.

“Problem-solving.” Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/problem-solving. Accessed 30 Mar. 2024.

Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!

Play Quordle: Guess all four words in a limited number of tries.  Each of your guesses must be a real 5-letter word.

Can you solve 4 words at once?

Word of the day.

See Definitions and Examples »

Get Word of the Day daily email!

Popular in Grammar & Usage

The tangled history of 'it's' and 'its', more commonly misspelled words, commonly misspelled words, how to use em dashes (—), en dashes (–) , and hyphens (-), absent letters that are heard anyway, popular in wordplay, the words of the week - mar. 29, 9 superb owl words, 'gaslighting,' 'woke,' 'democracy,' and other top lookups, 10 words for lesser-known games and sports, your favorite band is in the dictionary, games & quizzes.

Play Blossom: Solve today's spelling word game by finding as many words as you can using just 7 letters. Longer words score more points.

Cambridge Dictionary

  • Cambridge Dictionary +Plus

Meaning of problem-solving in English

Your browser doesn't support HTML5 audio

  • problem-solver

Examples of problem-solving

{{randomImageQuizHook.quizId}}

Word of the Day

Hippocratic oath

a promise made by people when they become doctors to do everything possible to help their patients and to have high moral standards in their work

Sitting on the fence (Newspaper idioms)

Sitting on the fence (Newspaper idioms)

the word for problem solving

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • problem-solving
  • All translations

Add problem-solving to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

the word for problem solving

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

the word for problem solving

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Dictionaries home
  • American English
  • Collocations
  • German-English
  • Grammar home
  • Practical English Usage
  • Learn & Practise Grammar (Beta)
  • Word Lists home
  • My Word Lists
  • Recent additions
  • Resources home
  • Text Checker

Definition of problem-solving noun from the Oxford Advanced Learner's Dictionary

problem-solving

  • to develop problem-solving skills and strategies

Questions about grammar and vocabulary?

Find the answers with Practical English Usage online, your indispensable guide to problems in English.

Nearby words

loading

How it works

For Business

Join Mind Tools

Article • 4 min read

The Problem-Solving Process

Looking at the basic problem-solving process to help keep you on the right track.

By the Mind Tools Content Team

Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself.

We face and solve problems every day, in a variety of guises and of differing complexity. Some, such as the resolution of a serious complaint, require a significant amount of time, thought and investigation. Others, such as a printer running out of paper, are so quickly resolved they barely register as a problem at all.

the word for problem solving

Despite the everyday occurrence of problems, many people lack confidence when it comes to solving them, and as a result may chose to stay with the status quo rather than tackle the issue. Broken down into steps, however, the problem-solving process is very simple. While there are many tools and techniques available to help us solve problems, the outline process remains the same.

The main stages of problem-solving are outlined below, though not all are required for every problem that needs to be solved.

the word for problem solving

1. Define the Problem

Clarify the problem before trying to solve it. A common mistake with problem-solving is to react to what the problem appears to be, rather than what it actually is. Write down a simple statement of the problem, and then underline the key words. Be certain there are no hidden assumptions in the key words you have underlined. One way of doing this is to use a synonym to replace the key words. For example, ‘We need to encourage higher productivity ’ might become ‘We need to promote superior output ’ which has a different meaning.

2. Analyze the Problem

Ask yourself, and others, the following questions.

  • Where is the problem occurring?
  • When is it occurring?
  • Why is it happening?

Be careful not to jump to ‘who is causing the problem?’. When stressed and faced with a problem it is all too easy to assign blame. This, however, can cause negative feeling and does not help to solve the problem. As an example, if an employee is underperforming, the root of the problem might lie in a number of areas, such as lack of training, workplace bullying or management style. To assign immediate blame to the employee would not therefore resolve the underlying issue.

Once the answers to the where, when and why have been determined, the following questions should also be asked:

  • Where can further information be found?
  • Is this information correct, up-to-date and unbiased?
  • What does this information mean in terms of the available options?

3. Generate Potential Solutions

When generating potential solutions it can be a good idea to have a mixture of ‘right brain’ and ‘left brain’ thinkers. In other words, some people who think laterally and some who think logically. This provides a balance in terms of generating the widest possible variety of solutions while also being realistic about what can be achieved. There are many tools and techniques which can help produce solutions, including thinking about the problem from a number of different perspectives, and brainstorming, where a team or individual write as many possibilities as they can think of to encourage lateral thinking and generate a broad range of potential solutions.

4. Select Best Solution

When selecting the best solution, consider:

  • Is this a long-term solution, or a ‘quick fix’?
  • Is the solution achievable in terms of available resources and time?
  • Are there any risks associated with the chosen solution?
  • Could the solution, in itself, lead to other problems?

This stage in particular demonstrates why problem-solving and decision-making are so closely related.

5. Take Action

In order to implement the chosen solution effectively, consider the following:

  • What will the situation look like when the problem is resolved?
  • What needs to be done to implement the solution? Are there systems or processes that need to be adjusted?
  • What will be the success indicators?
  • What are the timescales for the implementation? Does the scale of the problem/implementation require a project plan?
  • Who is responsible?

Once the answers to all the above questions are written down, they can form the basis of an action plan.

6. Monitor and Review

One of the most important factors in successful problem-solving is continual observation and feedback. Use the success indicators in the action plan to monitor progress on a regular basis. Is everything as expected? Is everything on schedule? Keep an eye on priorities and timelines to prevent them from slipping.

If the indicators are not being met, or if timescales are slipping, consider what can be done. Was the plan realistic? If so, are sufficient resources being made available? Are these resources targeting the correct part of the plan? Or does the plan need to be amended? Regular review and discussion of the action plan is important so small adjustments can be made on a regular basis to help keep everything on track.

Once all the indicators have been met and the problem has been resolved, consider what steps can now be taken to prevent this type of problem recurring? It may be that the chosen solution already prevents a recurrence, however if an interim or partial solution has been chosen it is important not to lose momentum.

Problems, by their very nature, will not always fit neatly into a structured problem-solving process. This process, therefore, is designed as a framework which can be adapted to individual needs and nature.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

the word for problem solving

Get 20% off your first year of Mind Tools

Our on-demand e-learning resources let you learn at your own pace, fitting seamlessly into your busy workday. Join today and save with our limited time offer!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article am7y1zt

Pain Points Podcast - Balancing Work And Kids

Article aexy3sj

Pain Points Podcast - Improving Culture

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - what is ai.

Exploring Artificial Intelligence

Pain Points Podcast - How Do I Get Organized?

It's Time to Get Yourself Sorted!

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Top tips for staying focused.

If You Have Trouble Concentrating These Tips Will Help You Focus

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Algebra Topics  - Introduction to Word Problems

Algebra topics  -, introduction to word problems, algebra topics introduction to word problems.

GCFLearnFree Logo

Algebra Topics: Introduction to Word Problems

Lesson 9: introduction to word problems.

/en/algebra-topics/solving-equations/content/

What are word problems?

A word problem is a math problem written out as a short story or scenario. Basically, it describes a realistic problem and asks you to imagine how you would solve it using math. If you've ever taken a math class, you've probably solved a word problem. For instance, does this sound familiar?

Johnny has 12 apples. If he gives four to Susie, how many will he have left?

You could solve this problem by looking at the numbers and figuring out what the problem is asking you to do. In this case, you're supposed to find out how many apples Johnny has left at the end of the problem. By reading the problem, you know Johnny starts out with 12 apples. By the end, he has 4 less because he gave them away. You could write this as:

12 - 4 = 8 , so you know Johnny has 8 apples left.

Word problems in algebra

If you were able to solve this problem, you should also be able to solve algebra word problems. Yes, they involve more complicated math, but they use the same basic problem-solving skills as simpler word problems.

You can tackle any word problem by following these five steps:

  • Read through the problem carefully, and figure out what it's about.
  • Represent unknown numbers with variables.
  • Translate the rest of the problem into a mathematical expression.
  • Solve the problem.
  • Check your work.

We'll work through an algebra word problem using these steps. Here's a typical problem:

The rate to rent a small moving van is $30 per day, plus $0.50 per mile. Jada rented a van to drive to her new home. It took two days, and the van cost $360. How many miles did she drive?

It might seem complicated at first glance, but we already have all of the information we need to solve it. Let's go through it step by step.

Step 1: Read through the problem carefully.

With any problem, start by reading through the problem. As you're reading, consider:

  • What question is the problem asking?
  • What information do you already have?

Let's take a look at our problem again. What question is the problem asking? In other words, what are you trying to find out?

The rate to rent a small moving van is $30 per day, plus $0.50 per mile. Jada rented a van to drive to her new home. It took 2 days, and the van cost $360. How many miles did she drive?

There's only one question here. We're trying to find out how many miles Jada drove . Now we need to locate any information that will help us answer this question.

There are a few important things we know that will help us figure out the total mileage Jada drove:

  • The van cost $30 per day.
  • In addition to paying a daily charge, Jada paid $0.50 per mile.
  • Jada had the van for 2 days.
  • The total cost was $360 .

Step 2: Represent unknown numbers with variables.

In algebra, you represent unknown numbers with letters called variables . (To learn more about variables, see our lesson on reading algebraic expressions .) You can use a variable in the place of any amount you don't know. Looking at our problem, do you see a quantity we should represent with a variable? It's often the number we're trying to find out.

Since we're trying to find the total number of miles Jada drove, we'll represent that amount with a variable—at least until we know it. We'll use the variable m for miles . Of course, we could use any variable, but m should be easy to remember.

Step 3: Translate the rest of the problem.

Let's take another look at the problem, with the facts we'll use to solve it highlighted.

The rate to rent a small moving van is $30 per day , plus $0.50 per mile . Jada rented a van to drive to her new home. It took 2 days , and the van cost $360 . How many miles did she drive?

We know the total cost of the van, and we know that it includes a fee for the number of days, plus another fee for the number of miles. It's $30 per day, and $0.50 per mile. A simpler way to say this would be:

$30 per day plus $0.50 per mile is $360.

If you look at this sentence and the original problem, you can see that they basically say the same thing: It cost Jada $30 per day and $0.50 per mile, and her total cost was $360 . The shorter version will be easier to translate into a mathematical expression.

Let's start by translating $30 per day . To calculate the cost of something that costs a certain amount per day, you'd multiply the per-day cost by the number of days—in other words, 30 per day could be written as 30 ⋅ days, or 30 times the number of days . (Not sure why you'd translate it this way? Check out our lesson on writing algebraic expressions .)

$30 per day and $.50 per mile is $360

$30 ⋅ day + $.50 ⋅ mile = $360

As you can see, there were a few other words we could translate into operators, so and $.50 became + $.50 , $.50 per mile became $.50 ⋅ mile , and is became = .

Next, we'll add in the numbers and variables we already know. We already know the number of days Jada drove, 2 , so we can replace that. We've also already said we'll use m to represent the number of miles, so we can replace that too. We should also take the dollar signs off of the money amounts to make them consistent with the other numbers.

30 ⋅ 2 + .5 ⋅ m = 360

Now we have our expression. All that's left to do is solve it.

Step 4: Solve the problem.

This problem will take a few steps to solve. (If you're not sure how to do the math in this section, you might want to review our lesson on simplifying expressions .) First, let's simplify the expression as much as possible. We can multiply 30 and 2, so let's go ahead and do that. We can also write .5 ⋅ m as 0.5 m .

60 + .5m = 360

Next, we need to do what we can to get the m alone on the left side of the equals sign. Once we do that, we'll know what m is equal to—in other words, it will let us know the number of miles in our word problem.

We can start by getting rid of the 60 on the left side by subtracting it from both sides .

The only thing left to get rid of is .5 . Since it's being multiplied with m , we'll do the reverse and divide both sides of the equation with it.

.5 m / .5 is m and 300 / 0.50 is 600 , so m = 600 . In other words, the answer to our problem is 600 —we now know Jada drove 600 miles.

Step 5: Check the problem.

To make sure we solved the problem correctly, we should check our work. To do this, we can use the answer we just got— 600 —and calculate backward to find another of the quantities in our problem. In other words, if our answer for Jada's distance is correct, we should be able to use it to work backward and find another value, like the total cost. Let's take another look at the problem.

According to the problem, the van costs $30 per day and $0.50 per mile. If Jada really did drive 600 miles in 2 days, she could calculate the cost like this:

$30 per day and $0.50 per mile

30 ⋅ day + .5 ⋅ mile

30 ⋅ 2 + .5 ⋅ 600

According to our math, the van would cost $360, which is exactly what the problem says. This means our solution was correct. We're done!

While some word problems will be more complicated than others, you can use these basic steps to approach any word problem. On the next page, you can try it for yourself.

Let's practice with a couple more problems. You can solve these problems the same way we solved the first one—just follow the problem-solving steps we covered earlier. For your reference, these steps are:

If you get stuck, you might want to review the problem on page 1. You can also take a look at our lesson on writing algebraic expressions for some tips on translating written words into math.

Try completing this problem on your own. When you're done, move on to the next page to check your answer and see an explanation of the steps.

A single ticket to the fair costs $8. A family pass costs $25 more than half of that. How much does a family pass cost?

Here's another problem to do on your own. As with the last problem, you can find the answer and explanation to this one on the next page.

Flor and Mo both donated money to the same charity. Flor gave three times as much as Mo. Between the two of them, they donated $280. How much money did Mo give?

Problem 1 Answer

Here's Problem 1:

A single ticket to the fair costs $8. A family pass costs $25 more than half that. How much does a family pass cost?

Answer: $29

Let's solve this problem step by step. We'll solve it the same way we solved the problem on page 1.

Step 1: Read through the problem carefully

The first in solving any word problem is to find out what question the problem is asking you to solve and identify the information that will help you solve it . Let's look at the problem again. The question is right there in plain sight:

So is the information we'll need to answer the question:

  • A single ticket costs $8 .
  • The family pass costs $25 more than half the price of the single ticket.

Step 2: Represent the unknown numbers with variables

The unknown number in this problem is the cost of the family pass . We'll represent it with the variable f .

Step 3: Translate the rest of the problem

Let's look at the problem again. This time, the important facts are highlighted.

A single ticket to the fair costs $8 . A family pass costs $25 more than half that . How much does a family pass cost?

In other words, we could say that the cost of a family pass equals half of $8, plus $25 . To turn this into a problem we can solve, we'll have to translate it into math. Here's how:

  • First, replace the cost of a family pass with our variable f .

f equals half of $8 plus $25

  • Next, take out the dollar signs and replace words like plus and equals with operators.

f = half of 8 + 25

  • Finally, translate the rest of the problem. Half of can be written as 1/2 times , or 1/2 ⋅ :

f = 1/2 ⋅ 8 + 25

Step 4: Solve the problem

Now all we have to do is solve our problem. Like with any problem, we can solve this one by following the order of operations.

  • f is already alone on the left side of the equation, so all we have to do is calculate the right side.
  • First, multiply 1/2 by 8 . 1/2 ⋅ 8 is 4 .
  • Next, add 4 and 25. 4 + 25 equals 29 .

That's it! f is equal to 29. In other words, the cost of a family pass is $29 .

Step 5: Check your work

Finally, let's check our work by working backward from our answer. In this case, we should be able to correctly calculate the cost of a single ticket by using the cost we calculated for the family pass. Let's look at the original problem again.

We calculated that a family pass costs $29. Our problem says the pass costs $25 more than half the cost of a single ticket. In other words, half the cost of a single ticket will be $25 less than $29.

  • We could translate this into this equation, with s standing for the cost of a single ticket.

1/2s = 29 - 25

  • Let's work on the right side first. 29 - 25 is 4 .
  • To find the value of s , we have to get it alone on the left side of the equation. This means getting rid of 1/2 . To do this, we'll multiply each side by the inverse of 1/2: 2 .

According to our math, s = 8 . In other words, if the family pass costs $29, the single ticket will cost $8. Looking at our original problem, that's correct!

So now we're sure about the answer to our problem: The cost of a family pass is $29 .

Solver Title

Practice

Generating PDF...

  • Pre Algebra Order of Operations Factors & Primes Fractions Long Arithmetic Decimals Exponents & Radicals Ratios & Proportions Percent Modulo Number Line Mean, Median & Mode
  • Algebra Equations Inequalities System of Equations System of Inequalities Basic Operations Algebraic Properties Partial Fractions Polynomials Rational Expressions Sequences Power Sums Interval Notation Pi (Product) Notation Induction Logical Sets Word Problems
  • Pre Calculus Equations Inequalities Scientific Calculator Scientific Notation Arithmetics Complex Numbers Polar/Cartesian Simultaneous Equations System of Inequalities Polynomials Rationales Functions Arithmetic & Comp. Coordinate Geometry Plane Geometry Solid Geometry Conic Sections Trigonometry
  • Calculus Derivatives Derivative Applications Limits Integrals Integral Applications Integral Approximation Series ODE Multivariable Calculus Laplace Transform Taylor/Maclaurin Series Fourier Series Fourier Transform
  • Functions Line Equations Functions Arithmetic & Comp. Conic Sections Transformation
  • Linear Algebra Matrices Vectors
  • Trigonometry Identities Proving Identities Trig Equations Trig Inequalities Evaluate Functions Simplify
  • Statistics Mean Geometric Mean Quadratic Mean Average Median Mode Order Minimum Maximum Probability Mid-Range Range Standard Deviation Variance Lower Quartile Upper Quartile Interquartile Range Midhinge Standard Normal Distribution
  • Physics Mechanics
  • Chemistry Chemical Reactions Chemical Properties
  • Finance Simple Interest Compound Interest Present Value Future Value
  • Economics Point of Diminishing Return
  • Conversions Roman Numerals Radical to Exponent Exponent to Radical To Fraction To Decimal To Mixed Number To Improper Fraction Radians to Degrees Degrees to Radians Hexadecimal Scientific Notation Distance Weight Time Volume
  • Pre Algebra
  • One-Step Addition
  • One-Step Subtraction
  • One-Step Multiplication
  • One-Step Division
  • One-Step Decimals
  • Two-Step Integers
  • Two-Step Add/Subtract
  • Two-Step Multiply/Divide
  • Two-Step Fractions
  • Two-Step Decimals
  • Multi-Step Integers
  • Multi-Step with Parentheses
  • Multi-Step Rational
  • Multi-Step Fractions
  • Multi-Step Decimals
  • Solve by Factoring
  • Completing the Square
  • Quadratic Formula
  • Biquadratic
  • Logarithmic
  • Exponential
  • Rational Roots
  • Floor/Ceiling
  • Equation Given Roots
  • Newton Raphson
  • Substitution
  • Elimination
  • Cramer's Rule
  • Gaussian Elimination
  • System of Inequalities
  • Perfect Squares
  • Difference of Squares
  • Difference of Cubes
  • Sum of Cubes
  • Polynomials
  • Distributive Property
  • FOIL method
  • Perfect Cubes
  • Binomial Expansion
  • Negative Rule
  • Product Rule
  • Quotient Rule
  • Expand Power Rule
  • Fraction Exponent
  • Exponent Rules
  • Exponential Form
  • Logarithmic Form
  • Absolute Value
  • Rational Number
  • Powers of i
  • Partial Fractions
  • Is Polynomial
  • Leading Coefficient
  • Leading Term
  • Standard Form
  • Complete the Square
  • Synthetic Division
  • Linear Factors
  • Rationalize Denominator
  • Rationalize Numerator
  • Identify Type
  • Convergence
  • Interval Notation
  • Pi (Product) Notation
  • Boolean Algebra
  • Truth Table
  • Mutual Exclusive
  • Cardinality
  • Caretesian Product
  • Age Problems
  • Distance Problems
  • Cost Problems
  • Investment Problems
  • Number Problems
  • Percent Problems
  • Addition/Subtraction
  • Multiplication/Division
  • Dice Problems
  • Coin Problems
  • Card Problems
  • Pre Calculus
  • Linear Algebra
  • Trigonometry
  • Conversions

Click to reveal more operations

Most Used Actions

Number line.

  • \mathrm{Lauren's\:age\:is\:half\:of\:Joe's\:age.\:Emma\:is\:four\:years\:older\:than\:Joe.\:The\:sum\:of\:Lauren,\:Emma,\:and\:Joe's\:age\:is\:54.\:How\:old\:is\:Joe?}
  • \mathrm{Kira\:went\:for\:a\:drive\:in\:her\:new\:car.\:She\:drove\:for\:142.5\:miles\:at\:a\:speed\:of\:57\:mph.\:For\:how\:many\:hours\:did\:she\:drive?}
  • \mathrm{The\:sum\:of\:two\:numbers\:is\:249\:.\:Twice\:the\:larger\:number\:plus\:three\:times\:the\:smaller\:number\:is\:591\:.\:Find\:the\:numbers.}
  • \mathrm{If\:2\:tacos\:and\:3\:drinks\:cost\:12\:and\:3\:tacos\:and\:2\:drinks\:cost\:13\:how\:much\:does\:a\:taco\:cost?}
  • \mathrm{You\:deposit\:3000\:in\:an\:account\:earning\:2\%\:interest\:compounded\:monthly.\:How\:much\:will\:you\:have\:in\:the\:account\:in\:15\:years?}
  • How do you solve word problems?
  • To solve word problems start by reading the problem carefully and understanding what it's asking. Try underlining or highlighting key information, such as numbers and key words that indicate what operation is needed to perform. Translate the problem into mathematical expressions or equations, and use the information and equations generated to solve for the answer.
  • How do you identify word problems in math?
  • Word problems in math can be identified by the use of language that describes a situation or scenario. Word problems often use words and phrases which indicate that performing calculations is needed to find a solution. Additionally, word problems will often include specific information such as numbers, measurements, and units that needed to be used to solve the problem.
  • Is there a calculator that can solve word problems?
  • Symbolab is the best calculator for solving a wide range of word problems, including age problems, distance problems, cost problems, investments problems, number problems, and percent problems.
  • What is an age problem?
  • An age problem is a type of word problem in math that involves calculating the age of one or more people at a specific point in time. These problems often use phrases such as 'x years ago,' 'in y years,' or 'y years later,' which indicate that the problem is related to time and age.

word-problems-calculator

  • Middle School Math Solutions – Inequalities Calculator Next up in our Getting Started maths solutions series is help with another middle school algebra topic - solving...

Please add a message.

Message received. Thanks for the feedback.

  • For a new problem, you will need to begin a new live expert session.
  • You can contact support with any questions regarding your current subscription.
  • You will be able to enter math problems once our session is over.
  • I am only able to help with one math problem per session. Which problem would you like to work on?
  • Does that make sense?
  • I am currently working on this problem.
  • Are you still there?
  • It appears we may have a connection issue. I will end the session - please reconnect if you still need assistance.
  • Let me take a look...
  • Can you please send an image of the problem you are seeing in your book or homework?
  • If you click on "Tap to view steps..." you will see the steps are now numbered. Which step # do you have a question on?
  • Please make sure you are in the correct subject. To change subjects, please exit out of this live expert session and select the appropriate subject from the menu located in the upper left corner of the Mathway screen.
  • What are you trying to do with this input?
  • While we cover a very wide range of problems, we are currently unable to assist with this specific problem. I spoke with my team and we will make note of this for future training. Is there a different problem you would like further assistance with?
  • Mathway currently does not support this subject. We are more than happy to answer any math specific question you may have about this problem.
  • Mathway currently does not support Ask an Expert Live in Chemistry. If this is what you were looking for, please contact support.
  • Mathway currently only computes linear regressions.
  • We are here to assist you with your math questions. You will need to get assistance from your school if you are having problems entering the answers into your online assignment.
  • Have a great day!
  • Hope that helps!
  • You're welcome!
  • Per our terms of use, Mathway's live experts will not knowingly provide solutions to students while they are taking a test or quiz.

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

Solving Word Questions

With LOTS of examples!

In Algebra we often have word questions like:

Example: Sam and Alex play tennis.

On the weekend Sam played 4 more games than Alex did, and together they played 12 games.

How many games did Alex play?

How do we solve them?

The trick is to break the solution into two parts:

Turn the English into Algebra.

Then use Algebra to solve.

Turning English into Algebra

To turn the English into Algebra it helps to:

  • Read the whole thing first
  • Do a sketch if possible
  • Assign letters for the values
  • Find or work out formulas

You should also write down what is actually being asked for , so you know where you are going and when you have arrived!

Also look for key words:

Thinking Clearly

Some wording can be tricky, making it hard to think "the right way around", such as:

Example: Sam has 2 dollars less than Alex. How do we write this as an equation?

  • Let S = dollars Sam has
  • Let A = dollars Alex has

Now ... is that: S − 2 = A

or should it be: S = A − 2

or should it be: S = 2 − A

The correct answer is S = A − 2

( S − 2 = A is a common mistake, as the question is written "Sam ... 2 less ... Alex")

Example: on our street there are twice as many dogs as cats. How do we write this as an equation?

  • Let D = number of dogs
  • Let C = number of cats

Now ... is that: 2D = C

or should it be: D = 2C

Think carefully now!

The correct answer is D = 2C

( 2D = C is a common mistake, as the question is written "twice ... dogs ... cats")

Let's start with a really simple example so we see how it's done:

Example: A rectangular garden is 12m by 5m, what is its area ?

Turn the English into Algebra:

  • Use w for width of rectangle: w = 12m
  • Use h for height of rectangle: h = 5m

Formula for Area of a Rectangle : A = w × h

We are being asked for the Area.

A = w × h = 12 × 5 = 60 m 2

The area is 60 square meters .

Now let's try the example from the top of the page:

tennis

Example: Sam and Alex play Tennis. On the weekend Sam played 4 more games than Alex did, and together they played 12 games. How many games did Alex play?

  • Use S for how many games Sam played
  • Use A for how many games Alex played

We know that Sam played 4 more games than Alex, so: S = A + 4

And we know that together they played 12 games: S + A = 12

We are being asked for how many games Alex played: A

Which means that Alex played 4 games of tennis.

Check: Sam played 4 more games than Alex, so Sam played 8 games. Together they played 8 + 4 = 12 games. Yes!

A slightly harder example:

table

Example: Alex and Sam also build tables. Together they make 10 tables in 12 days. Alex working alone can make 10 in 30 days. How long would it take Sam working alone to make 10 tables?

  • Use a for Alex's work rate
  • Use s for Sam's work rate

12 days of Alex and Sam is 10 tables, so: 12a + 12s = 10

30 days of Alex alone is also 10 tables: 30a = 10

We are being asked how long it would take Sam to make 10 tables.

30a = 10 , so Alex's rate (tables per day) is: a = 10/30 = 1/3

Which means that Sam's rate is half a table a day (faster than Alex!)

So 10 tables would take Sam just 20 days.

Should Sam be paid more I wonder?

And another "substitution" example:

track

Example: Jenna is training hard to qualify for the National Games. She has a regular weekly routine, training for five hours a day on some days and 3 hours a day on the other days. She trains altogether 27 hours in a seven day week. On how many days does she train for five hours?

  • The number of "5 hour" days: d
  • The number of "3 hour" days: e

We know there are seven days in the week, so: d + e = 7

And she trains 27 hours in a week, with d 5 hour days and e 3 hour days: 5d + 3e = 27

We are being asked for how many days she trains for 5 hours: d

The number of "5 hour" days is 3

Check : She trains for 5 hours on 3 days a week, so she must train for 3 hours a day on the other 4 days of the week.

3 × 5 hours = 15 hours, plus 4 × 3 hours = 12 hours gives a total of 27 hours

Some examples from Geometry:

Example: A circle has an area of 12 mm 2 , what is its radius?

  • Use A for Area: A = 12 mm 2
  • Use r for radius

And the formula for Area is: A = π r 2

We are being asked for the radius.

We need to rearrange the formula to find the area

Example: A cube has a volume of 125 mm 3 , what is its surface area?

Make a quick sketch:

  • Use V for Volume
  • Use A for Area
  • Use s for side length of cube
  • Volume of a cube: V = s 3
  • Surface area of a cube: A = 6s 2

We are being asked for the surface area.

First work out s using the volume formula:

Now we can calculate surface area:

An example about Money:

pizza

Example: Joel works at the local pizza parlor. When he works overtime he earns 1¼ times the normal rate. One week Joel worked for 40 hours at the normal rate of pay and also worked 12 hours overtime. If Joel earned $660 altogether in that week, what is his normal rate of pay?

  • Joel's normal rate of pay: $N per hour
  • Joel works for 40 hours at $N per hour = $40N
  • When Joel does overtime he earns 1¼ times the normal rate = $1.25N per hour
  • Joel works for 12 hours at $1.25N per hour = $(12 × 1¼N) = $15N
  • And together he earned $660, so:

$40N + $(12 × 1¼N) = $660

We are being asked for Joel's normal rate of pay $N.

So Joel’s normal rate of pay is $12 per hour

Joel’s normal rate of pay is $12 per hour, so his overtime rate is 1¼ × $12 per hour = $15 per hour. So his normal pay of 40 × $12 = $480, plus his overtime pay of 12 × $15 = $180 gives us a total of $660

More about Money, with these two examples involving Compound Interest

Example: Alex puts $2000 in the bank at an annual compound interest of 11%. How much will it be worth in 3 years?

This is the compound interest formula:

So we will use these letters:

  • Present Value PV = $2,000
  • Interest Rate (as a decimal): r = 0.11
  • Number of Periods: n = 3
  • Future Value (the value we want): FV

We are being asked for the Future Value: FV

Example: Roger deposited $1,000 into a savings account. The money earned interest compounded annually at the same rate. After nine years Roger's deposit has grown to $1,551.33 What was the annual rate of interest for the savings account?

The compound interest formula:

  • Present Value PV = $1,000
  • Interest Rate (the value we want): r
  • Number of Periods: n = 9
  • Future Value: FV = $1,551.33

We are being asked for the Interest Rate: r

So the annual rate of interest is 5%

Check : $1,000 × (1.05) 9 = $1,000 × 1.55133 = $1,551.33

And an example of a Ratio question:

Example: At the start of the year the ratio of boys to girls in a class is 2 : 1 But now, half a year later, four boys have left the class and there are two new girls. The ratio of boys to girls is now 4 : 3 How many students are there altogether now?

  • Number of boys now: b
  • Number of girls now: g

The current ratio is 4 : 3

Which can be rearranged to 3b = 4g

At the start of the year there was (b + 4) boys and (g − 2) girls, and the ratio was 2 : 1

b + 4 g − 2 = 2 1

Which can be rearranged to b + 4 = 2(g − 2)

We are being asked for how many students there are altogether now: b + g

There are 12 girls !

And 3b = 4g , so b = 4g/3 = 4 × 12 / 3 = 16 , so there are 16 boys

So there are now 12 girls and 16 boys in the class, making 28 students altogether .

There are now 16 boys and 12 girls, so the ratio of boys to girls is 16 : 12 = 4 : 3 At the start of the year there were 20 boys and 10 girls, so the ratio was 20 : 10 = 2 : 1

And now for some Quadratic Equations :

Example: The product of two consecutive even integers is 168. What are the integers?

Consecutive means one after the other. And they are even , so they could be 2 and 4, or 4 and 6, etc.

We will call the smaller integer n , and so the larger integer must be n+2

And we are told the product (what we get after multiplying) is 168, so we know:

n(n + 2) = 168

We are being asked for the integers

That is a Quadratic Equation , and there are many ways to solve it. Using the Quadratic Equation Solver we get −14 and 12.

Check −14: −14(−14 + 2) = (−14)×(−12) = 168 YES

Check 12: 12(12 + 2) = 12×14 = 168 YES

So there are two solutions: −14 and −12 is one, 12 and 14 is the other.

Note: we could have also tried "guess and check":

  • We could try, say, n=10: 10(12) = 120 NO (too small)
  • Next we could try n=12: 12(14) = 168 YES

But unless we remember that multiplying two negatives make a positive we might overlook the other solution of (−14)×(−12).

Example: You are an Architect. Your client wants a room twice as long as it is wide. They also want a 3m wide veranda along the long side. Your client has 56 square meters of beautiful marble tiles to cover the whole area. What should the length of the room be?

Let's first make a sketch so we get things right!:

  • the length of the room: L
  • the width of the room: W
  • the total Area including veranda: A
  • the width of the room is half its length: W = ½L
  • the total area is the (room width + 3) times the length: A = (W+3) × L = 56

We are being asked for the length of the room: L

This is a quadratic equation , there are many ways to solve it, this time let's use factoring :

And so L = 8 or −14

There are two solutions to the quadratic equation, but only one of them is possible since the length of the room cannot be negative!

So the length of the room is 8 m

L = 8, so W = ½L = 4

So the area of the rectangle = (W+3) × L = 7 × 8 = 56

There we are ...

... I hope these examples will help you get the idea of how to handle word questions. Now how about some practice?

MAKE WAVES WITH THIS FREE WEEKLONG VOCABULARY UNIT!

the word for problem solving

Strategies for Solving Word Problems – Math

the word for problem solving

It’s one thing to solve a math equation when all of the numbers are given to you but with word problems, when you start adding reading to the mix, that’s when it gets especially tricky.

The simple addition of those words ramps up the difficulty (and sometimes the math anxiety) by about 100!

How can you help your students become confident word problem solvers? By teaching your students to solve word problems in a step by step, organized way, you will give them the tools they need to solve word problems in a much more effective way.

Here are the seven strategies I use to help students solve word problems.

1. read the entire word problem.

Before students look for keywords and try to figure out what to do, they need to slow down a bit and read the whole word problem once (and even better, twice). This helps kids get the bigger picture to be able to understand it a little better too.

2. Think About the Word Problem

Students need to ask themselves three questions every time they are faced with a word problem. These questions will help them to set up a plan for solving the problem.

Here are the questions:

A. what exactly is the question.

What is the problem asking? Often times, curriculum writers include extra information in the problem for seemingly no good reason, except maybe to train kids to ignore that extraneous information (grrrr!). Students need to be able to stay focused, ignore those extra details, and find out what the real question is in a particular problem.

B. What do I need in order to find the answer?

Students need to narrow it down, even more, to figure out what is needed to solve the problem, whether it’s adding, subtracting, multiplying, dividing, or some combination of those. They’ll need a general idea of which information will be used (or not used) and what they’ll be doing.

This is where key words become very helpful. When students learn to recognize that certain words mean to add (like in all, altogether, combined ), while others mean to subtract, multiply, or to divide, it helps them decide how to proceed a little better

Here’s a Key Words Chart I like to use for teaching word problems. The handout could be copied at a smaller size and glued into interactive math notebooks. It could be placed in math folders or in binders under the math section if your students use binders.

One year I made huge math signs (addition, subtraction, multiplication, and divide symbols) and wrote the keywords around the symbols. These served as a permanent reminder of keywords for word problems in the classroom.

If you’d like to download this FREE Key Words handout, click here:

the word for problem solving

C. What information do I already have?

This is where students will focus in on the numbers which will be used to solve the problem.

3. Write on the Word Problem

This step reinforces the thinking which took place in step number two. Students use a pencil or colored pencils to notate information on worksheets (not books of course, unless they’re consumable). There are lots of ways to do this, but here’s what I like to do:

  • Circle any numbers you’ll use.
  • Lightly cross out any information you don’t need.
  • Underline the phrase or sentence which tells exactly what you’ll need to find.

4. Draw a Simple Picture and Label It

Drawing pictures using simple shapes like squares, circles, and rectangles help students visualize problems. Adding numbers or names as labels help too.

For example, if the word problem says that there were five boxes and each box had 4 apples in it, kids can draw five squares with the number four in each square. Instantly, kids can see the answer so much more easily!

5. Estimate the Answer Before Solving

Having a general idea of a ballpark answer for the problem lets students know if their actual answer is reasonable or not. This quick, rough estimate is a good math habit to get into. It helps students really think about their answer’s accuracy when the problem is finally solved.

6. Check Your Work When Done

This strategy goes along with the fifth strategy. One of the phrases I constantly use during math time is, Is your answer reasonable ? I want students to do more than to be number crunchers but to really think about what those numbers mean.

Also, when students get into the habit of checking work, they are more apt to catch careless mistakes, which are often the root of incorrect answers.

7. Practice Word Problems Often

Just like it takes practice to learn to play the clarinet, to dribble a ball in soccer, and to draw realistically, it takes practice to become a master word problem solver.

When students practice word problems, often several things happen. Word problems become less scary (no, really).

They start to notice similarities in types of problems and are able to more quickly understand how to solve them. They will gain confidence even when dealing with new types of word problems, knowing that they have successfully solved many word problems in the past.

If you’re looking for some word problem task cards, I have quite a few of them for 3rd – 5th graders.

This 3rd grade math task cards bundle has word problems in almost every one of its 30 task card sets..

There are also specific sets that are dedicated to word problems and two-step word problems too. I love these because there’s a task card set for every standard.

CLICK HERE to take a look at 3rd grade:

3rd Grade Math Task Cards Mega Bundle | 3rd Grade Math Centers Bundle

This 4th Grade Math Task Cards Bundle also has lots of word problems in almost every single of its 30 task card sets. These cards are perfect for centers, whole class, and for one on one.

CLICK HERE to see 4th grade:

th Grade 960 Math Task Cards Mega Bundle | 4th Grade Math Centers

This 5th Grade Math Task Cards Bundle is also loaded with word problems to give your students focused practice.

CLICK HERE to take a look at 5th grade:

5th Grade Math Task Cards Mega Bundle - 5th Grade Math Centers

Want to try a FREE set of math task cards to see what you think?

3rd Grade: Rounding Whole Numbers Task Cards

4th Grade: Convert Fractions and Decimals Task Cards

5th Grade: Read, Write, and Compare Decimals Task Cards

Thanks so much for stopping by!

The Teacher Next Door - Creating upper elementary resources that target standards for busy teachers

  • Read more about: Math

You might also like...

the word for problem solving

Fraction Activities Students Love – Math

Fractions can be tough! While it takes time and repeated exposure with fractions for students to have a real understanding of them, there are lots

the word for problem solving

Math Games Using Dice

Games are an important part of math class, in my opinion. Not only are kids able to practice the skills that we have been focusing

the word for problem solving

Math Games Using Dominoes

Math games have always been part of our math time. I love the fact that any time I introduce a math game, I know I’ll

Hi, I’m Jenn, CEO and owner of The Teacher Next Door!

I know that you strive to be an effective upper elementary teacher while maintaining a healthy work-life balance.

In order to do that, you need resources that are impactful, yet simple .

The problem is that most resources and curriculums out there are far from simple. The pages upon pages of daily lesson plans are just plain overwhelming .

At TTND, we believe teachers should be living their lives outside of the classroom, and not spend hours lesson planning and searching for resources.

We understand that now, more than ever, teachers need space to be themselves which is why we create and support teachers with timesaving tips and standards-aligned resources.

Want access to TTND's Free Resource Library? Sign up for our newsletter and we'll email you the exclusive password!

Trending posts.

the word for problem solving

SEARCH BY TOPIC

  • Classroom Ideas
  • Holidays and Seasonal
  • Mentor Texts
  • Reading Block
  • Uncategorized
  • Writing & Grammar

POPULAR RESOURCES

Complete Paragraph Bundle - Explicit Writing Instruction - The Teacher Next Door Product Cover

Facebook Group

Teachers Pay Teachers

Free Resource Library

💌 Contact Us

Disclosures

Privacy Policy

Refund Policy

Purchase Orders

Your Downloads

Reward Points

©  The Teacher Next Door, LLC. All rights reserved.

FREE RESOURCE LIBRARY (3)

* Please note: If your school has strong email filters, you may wish to use your personal email to ensure access.

Word Problem Calculator

Get detailed solutions to your math problems with our word problem step-by-step calculator . practice your math skills and learn step by step with our math solver. check out all of our online calculators here .,  example,  solved problems,  difficult problems, struggling with math.

Access detailed step by step solutions to thousands of problems, growing every day!

 Popular problems

Want Better Math Grades?

✅ Unlimited Solutions

✅ Step-by-Step Answers

✅ Available 24/7

➕ Free Bonuses ($1085 value!)

On this page

  • Search IntMath
  • Math interactives
  • About (site info)
  • Uses of Trignometry
  • ASCIIMath input, KaTeX output
  • ASCIIMath input, LaTeX and KaTeX output
  • Send Math in emails
  • Syntax for ASCIIMathML
  • Math Display Experiments
  • Scientific Notebook

Math Problem Solver

Related Sections

Math Tutoring

Need help? Chat with a tutor anytime, 24/7.

AI Math Calculator Reviews

This tool combines the power of mathematical computation engine that excels at solving mathematical formulas with the power of artificial intelligence large language models to parse and generate natural language answers. This creates a math problem solver that's more accurate than ChatGPT, more flexible than a math calculator, and provides answers faster than a human tutor.

Sign up for free here .

Problem Solver Subjects

Our math problem solver that lets you input a wide variety of math math problems and it will provide a step by step answer. This math solver excels at math word problems as well as a wide range of math subjects.

  • Math Word Problems
  • Pre-Algebra
  • Geometry Graphing
  • Trigonometry
  • Precalculus
  • Finite Math
  • Linear Algebra

Here are example math problems within each subject that can be input into the calculator and solved. This list is constanstly growing as functionality is added to the calculator.

Basic Math Solutions

Below are examples of basic math problems that can be solved.

  • Long Arithmetic
  • Rational Numbers
  • Operations with Fractions
  • Ratios, Proportions, Percents
  • Measurement, Area, and Volume
  • Factors, Fractions, and Exponents
  • Unit Conversions
  • Data Measurement and Statistics
  • Points and Line Segments

Math Word Problem Solutions

Math word problems require interpreting what is being asked and simplifying that into a basic math equation. Once you have the equation you can then enter that into the problem solver as a basic math or algebra question to be correctly solved. Below are math word problem examples and their simplified forms.

Word Problem: Rachel has 17 apples. She gives some to Sarah. Sarah now has 8 apples. How many apples did Rachel give her?

Simplified Equation: 17 - x = 8

Word Problem: Rhonda has 12 marbles more than Douglas. Douglas has 6 marbles more than Bertha. Rhonda has twice as many marbles as Bertha has. How many marbles does Douglas have?

Variables: Rhonda's marbles is represented by (r), Douglas' marbles is represented by (d) and Bertha's marbles is represented by (b)

Simplified Equation: {r = d + 12, d = b + 6, r = 2 �� b}

Word Problem: if there are 40 cookies all together and Angela takes 10 and Brett takes 5 how many are left?

Simplified: 40 - 10 - 5

Pre-Algebra Solutions

Below are examples of Pre-Algebra math problems that can be solved.

  • Variables, Expressions, and Integers
  • Simplifying and Evaluating Expressions
  • Solving Equations
  • Multi-Step Equations and Inequalities
  • Ratios, Proportions, and Percents
  • Linear Equations and Inequalities

Algebra Solutions

Below are examples of Algebra math problems that can be solved.

  • Algebra Concepts and Expressions
  • Points, Lines, and Line Segments
  • Simplifying Polynomials
  • Factoring Polynomials
  • Linear Equations
  • Absolute Value Expressions and Equations
  • Radical Expressions and Equations
  • Systems of Equations
  • Quadratic Equations
  • Inequalities
  • Complex Numbers and Vector Analysis
  • Logarithmic Expressions and Equations
  • Exponential Expressions and Equations
  • Conic Sections
  • Vector Spaces
  • 3d Coordinate System
  • Eigenvalues and Eigenvectors
  • Linear Transformations
  • Number Sets
  • Analytic Geometry

Trigonometry Solutions

Below are examples of Trigonometry math problems that can be solved.

  • Algebra Concepts and Expressions Review
  • Right Triangle Trigonometry
  • Radian Measure and Circular Functions
  • Graphing Trigonometric Functions
  • Simplifying Trigonometric Expressions
  • Verifying Trigonometric Identities
  • Solving Trigonometric Equations
  • Complex Numbers
  • Analytic Geometry in Polar Coordinates
  • Exponential and Logarithmic Functions
  • Vector Arithmetic

Precalculus Solutions

Below are examples of Precalculus math problems that can be solved.

  • Operations on Functions
  • Rational Expressions and Equations
  • Polynomial and Rational Functions
  • Analytic Trigonometry
  • Sequences and Series
  • Analytic Geometry in Rectangular Coordinates
  • Limits and an Introduction to Calculus

Calculus Solutions

Below are examples of Calculus math problems that can be solved.

  • Evaluating Limits
  • Derivatives
  • Applications of Differentiation
  • Applications of Integration
  • Techniques of Integration
  • Parametric Equations and Polar Coordinates
  • Differential Equations

Statistics Solutions

Below are examples of Statistics problems that can be solved.

  • Algebra Review
  • Average Descriptive Statistics
  • Dispersion Statistics
  • Probability
  • Probability Distributions
  • Frequency Distribution
  • Normal Distributions
  • t-Distributions
  • Hypothesis Testing
  • Estimation and Sample Size
  • Correlation and Regression

Finite Math Solutions

Below are examples of Finite Math problems that can be solved.

  • Polynomials and Expressions
  • Equations and Inequalities
  • Linear Functions and Points
  • Systems of Linear Equations
  • Mathematics of Finance
  • Statistical Distributions

Linear Algebra Solutions

Below are examples of Linear Algebra math problems that can be solved.

  • Introduction to Matrices
  • Linear Independence and Combinations

Chemistry Solutions

Below are examples of Chemistry problems that can be solved.

  • Unit Conversion
  • Atomic Structure
  • Molecules and Compounds
  • Chemical Equations and Reactions
  • Behavior of Gases
  • Solutions and Concentrations

Physics Solutions

Below are examples of Physics math problems that can be solved.

  • Static Equilibrium
  • Dynamic Equilibrium
  • Kinematics Equations
  • Electricity
  • Thermodymanics

Geometry Graphing Solutions

Below are examples of Geometry and graphing math problems that can be solved.

  • Step By Step Graphing
  • Linear Equations and Functions
  • Polar Equations

Looking for the old Mathway Calculator? We've moved it to here .

Tips, tricks, lessons, and tutoring to help reduce test anxiety and move to the top of the class.

Email Address Sign Up

Grammarhow

“Problem-Solving” Or “Problem Solving”? Learn If It Is Hyphenated

Is it problem-solving or problem solving? Hyphenation rules seem to be a little confusing when you’re first picking up a language. Don’t worry, though. They’re not nearly as complicated as the language may have led you to believe!

Problem-Solving Or Problem Solving – Hyphenated Or Not?

When we discuss the problem-solving hyphen rule, we learn that problem-solving is hyphenated when used to modify a noun or object in a sentence. We keep the two words separated when using them as their own noun and not modifying anything else in the sentence.

Examples Of When To Use “Problem-Solving”

Now that we’re into the whole debate of problem-solving vs problem solving, let’s look through some examples of how we can use “problem-solving” with a hyphen. As stated above, we use “problem-solving” when modifying a noun or object in a sentence. It’s the most common way to write “problem-solving.” Even the spelling without a hyphen is slowly being pushed out of common language use!

  • This is a problem-solving class.
  • I hold a problem-solving position at my workplace.
  • My manager put me in charge of the problem-solving accounts.
  • They say I have a problem-solving mind.
  • We’re known as problem-solving children.

Examples Of When To Use “Problem Solving”

Though much less common to be seen written as a phrase noun, it is still worth mentioning. It’s grammatically correct to use “problem solving” at the end of a sentence or clause without a hyphen. However, as we stated above, many people are beginning to prefer the ease of sticking to the hyphenated spelling, meaning that it’s slowly phasing out of existence even in this form.

  • I’m good at problem solving.
  • This requires a lot of problem solving.
  • We are all trained in problem solving.
  • My job asks for problem solving.
  • Did you say you were good at problem solving?

Is Problem-Solving Hyphenated AP Style?

Have you had a look through the rules in the AP stylebook before? Even if you haven’t, there’s a good explanation for hyphens there. As we stated above, we use hyphens when linking close words that modify a noun or object in a sentence. They’re used to help a reader better understand what is going on through the modification of the clause.

Should I Capitalize “Solving” In The Word “Problem-Solving”?

The question of “is problem-solving hyphenated” was answered, but now we’ve got a new question. What happens to capitalization rules when we add a hyphen to a title. It depends on your own title choices, so let’s look a little further into the three potential options. The first option capitalizes only the first word and any proper nouns in a title. In this case, neither word in “problem-solving” is capitalized.

The second option capitalizes all words except for short conjunctions, short prepositions, and articles. In this case, you will always capitalize “problem” but always leave “solving” uncapitalized. The final option capitalizes every single word in a title. No matter what, you’ll capitalize both words in “problem-solving” when using this style to write your titles.

Does The Rule Also Apply To “Problem Solver” Vs “Problem-Solver”?

The same rule does apply when we use “problem solver” instead of “problem solving.” However, it’s not often that we’ll see a “problem-solver” modifying a noun or object (unless it’s a problem-solver robot or something). So, it’s most likely you’ll write “problem solver.”

Alternatives To “Problem-Solving”

If you’re still struggling with the hyphen rule of whether it’s problem solving or problem-solving, there’s one last thing we can help you with. We can give you some alternatives that have the same meanings but don’t require a hyphen. This way, you can be safe in your own knowledge without having to worry about getting the rules wrong.

  • interpretive

Quiz – Problem-Solving Or Problem Solving?

We’ll finish with a quiz to see how much you’ve learned from this article. The answers are all multiple choice, so you should have a blast with them! We’ll include the answers at the end to reference as well.

  • I’ve been told that I’m good at (A. problem-solving / B. problem solving).
  • I hold my (A. problem-solving / B. problem solving) skills close to my heart.
  • We aren’t great at (A. problem-solving / B. problem solving).
  • These are all the best (A. problem-solving / B. problem solving) subjects.
  • Can we have a go at a (A. problem-solving / B. problem solving) puzzle?

Quiz Answers

martin lassen dam grammarhow

Martin holds a Master’s degree in Finance and International Business. He has six years of experience in professional communication with clients, executives, and colleagues. Furthermore, he has teaching experience from Aarhus University. Martin has been featured as an expert in communication and teaching on Forbes and Shopify. Read more about Martin here .

  • Full time or Full-time? Learn if “Full time” is hyphenated
  • “Well written” or “Well-written”? Learn If “Well written” Is Hyphenated
  • “On-Time” Or “On Time”? Learn If “On Time” Is Hyphenated
  • Year round or Year-round? (Hyphen Rule Explained)

WorkSheets Buddy

Download Math, Science, English and Many More WorkSheets

Word Problems Worksheets For Kindergarten Pictures

Word Problems Worksheets For Kindergarten With Pictures Free PDF Download

Free Word Problems Worksheets: Are you planning to improve your kid’s math skills in a fun and engaging manner? You’ve landed on the right page. You will find the Math Word Problems Worksheets for Kindergarten to Grade 5 students.

Our Kindergarten basic math work problems activities help kids boost their underlying skills and solve irrelevant data-related word sums easily. For more details, jump into the below sections and download word problems worksheet printables free to learn & practice.

Word Problems Worksheets For Kindergarten With Pictures

The following Math word and story problem worksheets cover math concepts like addition, subtraction, division, and multiplication. When you think to make your child practice word problems interestingly then going with these worksheet resources is the best approach.

These free printable Math word problem worksheet activities will challenge the young minds’ problem-solving skills. Given relatable situations and interesting story telling math questions will build the curiosity in kids to learn and solve them.

However, begin your preparation and strengthen the basic math concepts at a young age for a better study life and career.

math word problems worksheets pdf (1)

Also Check: 

  • Count and Graph Worksheets
  • Connect Other Half Worksheets

Word Problems Worksheets For Kindergarten

Multi Step Word Problems Worksheets PDF Free Download

Multi-step word problem worksheets can aid students enhance their skills in solving complex math problems. You can find various worksheets available on the internet that are free of cost and provide a range of problems that need students to utilize their critical thinking and problem-solving skills to discover the solution.

However, these word problem worksheets are appropriate for introducing the order of operations (PEDMAS) or providing students with a challenge. They offer different difficulty levels and problem types to cater to students of all abilities.

kindergarten math word problems worksheets free

Final Words

Hoping that the furnished Word Problem Worksheets PDF Free Printables have shed some light on your kids in enhancing their problem-solving skills and mastery of basic math concepts. Also, if you want them to be expert in the match topics and score well in their primary grade exams, visit our site regularly to get updated worksheets on maths and other subjects.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Leave a Comment Cancel reply

Notify me of follow-up comments by email.

Notify me of new posts by email.

Help | Advanced Search

Mathematics > Geometric Topology

Title: residual finiteness of fundamental $n$-quandles of links.

Abstract: In this paper, we investigate residual finiteness and subquandle separability of quandles. The existence of these finiteness properties implies the solvability of the word problem and the generalised word problem for quandles. We prove that the fundamental $n$-quandle of any link in the 3-sphere is residually finite for each $n \ge 2$. This supplements the recent result on residual finiteness of link quandles and the classification of links whose fundamental $n$-quandles are finite for some $n$. We also establish several general results on these finiteness properties and give many families of quandles admitting them.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

  • Arts & Entertainment
  • Admin Log In/Out

Note about Unsupported Devices:

You seem to be browsing on a screen size, browser, or device that this website cannot support. Some things might look and act a little weird.

Solving the problem of praise for free will truthers

By Ava Liversidge

March 29, 2024

Recall the warm feeling that bubbles up in your stomach and blossoms into a shy smile on the offhand occasion that you are awarded a simple “good work.” Praise lights us up inside. Offering praise to someone, usually someone to whom you are an elder, is a mark of self-actualization. Oftentimes, the act of praise-giving is a consequence of some guidance one has previously offered the recipient. The giver reasons: I am in an appropriate epistemic position and possess enough knowledge in a certain arena to endow such knowledge to another and, later, evaluate (approve or disapprove of) the application of my guidance. If your guidance is heeded, praise is justified and expected; anything less would be, well, awkward.

Now think of the simmering cheeks and ringing ears of childhood scoldings and public admonishment. Shame pumps through the body with blood. We know this well—but, as soon as the blush fades, we turn and finger-wag at others. There is something undeniably human about wanting to be responsible for one’s own actions and wanting to hold others responsible for theirs, about taking ownership. We are free agents! Let’s exercise those liberties!

Thus, praise and criticism assume essential persuasive roles in the free will debate. These are semantic institutions we ought to protect, and supposedly go unprotected by determinism. Taking criticism as example, the free willer’s argument loosely goes like this:

{1} It only makes sense to criticize someone’s actions if they have control over their actions.

{2} We want to be able to coherently criticize bad behavior.

{3} Determinism states that people don’t have ultimate control over their own actions.

{4} We ought to reject determinism.

Compelling, yes. But I don’t think praise and criticism pose as great a threat to determinism as the argument suggests. The trick about the free will debate is that, even if someone is a staunch determinist, the vast majority of us (save the dogmatic) act as if they have free will. Our judicial, economic and social orders all function under the premise that people are responsible for their own actions. Our structures accept the free will premise, so we act as if we do too. You don’t get to plead “determinist” in court and be absolved of your crimes. So, determinist or not, free will we accept. This is a difficult position for a determinist to be in: at what point do the beliefs we merely accept as a pragmatic matter become our true beliefs? The line blurs.

The determinist risks contradicting themself upon embracing certain features of infrastructural free will discerningly, as is often the case with praise and criticism. We don’t want criminals to run amuck with no means of coherent reparation available to us. We don’t want to let the good deeds of our neighbors and family members go unnoticed. Even the most devout determinist can see how bleak a world without this looks. But, noble determinists, don’t concede yet; we can save ourselves from this.

The main issue we face is that, yes, how we feel about others’ behavior often buttresses great emotional weight. How can this be true in a determined world in which feelings of reproach seem nonsense? But, it seems clear enough to me that we have a stake in how we think people ought to exist; our ideals bear a great emotional load.

Praise isn’t a thing in itself. What do we offer someone when we praise them? Is it a gift of kind words and gentle glances? This is what the free willer must believe: that praise is a thing to be offered to people as reward for their good acts. Similarly, criticism is a thing to be unloaded onto people in consequence of their bad acts. Actions, in their glorious free-will-autonomy, become bids for recognition. This seems unlikely: there must be a further thrust to this impulse than the promise of a kind look. Even if we really, really feel like good deeds deserve high praise, it’s hard to see why when the offering is so amorphous.

I suppose a much more plausible conclusion is that praise and criticism are pattern-reinforcement and correction mechanisms, and that is all. I offer praise to a student or a friend because I want to encourage them to act similarly in the future. We bestow awards on graduating peers in hopes of inspiring similarly good acts in the younger students in the audience. I remark on how good of a dog Mo is because I value a world in which affection is free-flowing and abundant. We criticize decisions we hope to never be seen made again. Remember, these evaluations are naturally informed by the ideals we hold about how one ought to behave. Usually the standard is as close to one’s own behavior as possible. Praise and criticism assume the mode of a hegemonic contouring wand for behavioral standard in one’s direct surroundings.

This interpretative move may seem cold-hearted. We don’t want praise to be a mechanism of subordination. We want to hold on to the sanctity of a “good job” with no strings attached, but this is just another way we fool ourselves into embracing free will.

Before submitting a comment, please review our comment policy . Some key points from the policy:

  • No hate speech, profanity, disrespectful or threatening comments.
  • No personal attacks on reporters.
  • Comments must be under 200 words.
  • You are strongly encouraged to use a real name or identifier ("Class of '92").
  • Any comments made with an email address that does not belong to you will get removed.

Leave a Reply Cancel reply

Any comments that do not follow the policy will not be published.

0/200 words

Save my name, email, and website in this browser for the next time I comment.

Screen Rant

Today's wordle hints & answer - march 24, 2024 (puzzle #1009).

March 24’s Wordle answer shouldn’t pose too much of a problem for players if they use some relevant hints that give them more context.

March 24’s Wordle is not the hardest puzzle to solve, as it is a very common item in our bathrooms. While the word does have two vowels, finding their correct positions should not be challenging. But if your players don’t use any hints and start today’s Wordle with random guesses, they might run out of attempts quickly and lose their daily streak.

Using Wordle ’s hard mode is another way to solve answers that could be slightly tricky. This mode doesn’t let players use confirmed letters in different spots , preventing them from using random guesses and preserving their attempts. Veterans often use the mode it, which is an excellent tool for developing new strategies. You can also use this mode in tandem with some starting words that will give you a slight edge over the competition.

10 Wordle Strategies To Keep Your Streak Alive

Best starting words for today’s wordle answer, three starting words to help you solve wordle.

If you don’t want to use hints yet but want to have a great start on today’s Wordle answer, you can use some starting words that will give you ample information. These words might share consonants, vowels, or even the same letters as the answer , which can be highly advantageous during your first few attempts.

The three starting words can be classified into three difficulties: one will be fairly easy to follow up with an attempt, while the other will pose a challenge for players who won’t want any help. Here are three starting words you can use for today’s Wordle answer.

If you like to use your best starting words and combos for today’s Wordle answer, they might work if they share enough attributes. However, the starting words below are hand-picked for solving today’s Wordle answer.

Challenging Start Word For Today's Wordle

  • Shares no consonants with today's answer.
  • Shares one vowel with today's answer.
  • Two letters are in the correct position for today's answer.

Medium Start Word For Today's Wordle

Easy start word for today's wordle.

  • Shares one consonant with today's answer.
  • Shares two vowels with today's answer.
  • Four letters are in the correct position for today's answer.

If you need some tips to solve most Wordle questions, check out this video by BuzzFeedPlayer player on YouTube.

Save Your Wordle Streak: Hints For Today's Wordle Answer

March 24 #1009.

If you want to solve today’s Wordle answer without cheating, you can use some hints that might give you a fair idea about the answer. These hints do not give the answer away but should be enough so that you can solve the answer in a few attempts. The clues are akin to hints seen in other games and only describe the answer instead of giving too much information. Here are four hints that should be able to help you solve March 24’s Wordle answer:

5 Letter Words Wordle Hasn't Used Yet (Updated Daily)

Today's wordle answer.

If you are on your very last attempt and don’t want to risk your streak, you can use the actual answer to solve today’s Wordle answer . But if you used one or all of our suggested starting words, you would have been able to find the correct positions of all five letters and solve the answer on your fourth attempt.

March 24’s Wordle answer is TOWEL .

Other Games Like Wordle

If you are in need of playing more games like Wordle , you can check out some of the recommendations listed below. These games share quite a bit with Wordle , as they might use some of the same mechanics or have a twist to keep things more challenging. Here are four more games you can play on your next break.

Video Credit: BuzzFeedPlayer/YouTube

IMAGES

  1. What IS Problem-Solving?

    the word for problem solving

  2. Word Problem Solving Help

    the word for problem solving

  3. 5 Unique Word Problem Solving Strategies That Get Results

    the word for problem solving

  4. Five Steps To Problem Solving

    the word for problem solving

  5. 7 Steps to Problem Solving

    the word for problem solving

  6. Solving Word Problems Chart Grade 2-8

    the word for problem solving

VIDEO

  1. Calculus Word Problem Solving

  2. Math Word Problem Solving Strategy

  3. Solving Word Problems Involving Quadratic Inequalities

  4. Solve Word Problems

COMMENTS

  1. 80 Synonyms & Antonyms for problem-solving

    Find 80 different ways to say problem-solving, along with antonyms, related words, and example sentences at Thesaurus.com.

  2. What is another word for problem-solving

    Synonyms for problem-solving include analytic, analytical, diagnostic, logical, methodical, scientific, systematic, investigative, pinpointing and rational. Find more ...

  3. 784 Words and Phrases for Problem-solving

    Synonyms for Problem-solving (other words and phrases for Problem-solving). Synonyms for Problem-solving. 784 other terms for problem-solving- words and phrases with similar meaning. Lists. synonyms. antonyms. definitions. sentences. thesaurus. words. phrases. Parts of speech. adjectives. nouns. Tags. investigative. logical. systematic.

  4. Problem-solving Definition & Meaning

    The meaning of PROBLEM-SOLVING is the process or act of finding a solution to a problem. How to use problem-solving in a sentence.

  5. Problem Solving synonyms

    brainstorming and devising. bugfix. bugfixes. bugfixing. buzan. Another way to say Problem Solving? Synonyms for Problem Solving (other words and phrases for Problem Solving).

  6. PROBLEM-SOLVING definition

    PROBLEM-SOLVING meaning: the process of finding solutions to problems: . Learn more.

  7. PROBLEM-SOLVING

    PROBLEM-SOLVING definition: the process of finding solutions to problems: . Learn more.

  8. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  9. What is Problem Solving? Steps, Process & Techniques

    1. Define the problem. Diagnose the situation so that your focus is on the problem, not just its symptoms. Helpful problem-solving techniques include using flowcharts to identify the expected steps of a process and cause-and-effect diagrams to define and analyze root causes.. The sections below help explain key problem-solving steps.

  10. problem-solving

    Definition of problem-solving noun in Oxford Advanced Learner's Dictionary. Meaning, pronunciation, picture, example sentences, grammar, usage notes, synonyms and more.

  11. Algebraic word problems

    Algebraic word problems are questions that require translating sentences to equations, then solving those equations. The equations we need to write will only involve. basic arithmetic operations. and a single variable. Usually, the variable represents an unknown quantity in a real-life scenario.

  12. The Problem-Solving Process

    The Problem-Solving Process. Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity.

  13. What Are Problem-Solving Skills? Definition and Examples

    Problem-Solving Skills Definition. Problem-solving skills are the ability to identify problems, brainstorm and analyze answers, and implement the best solutions. An employee with good problem-solving skills is both a self-starter and a collaborative teammate; they are proactive in understanding the root of a problem and work with others to ...

  14. Algebra Topics: Introduction to Word Problems

    The first in solving any word problem is to find out what question the problem is asking you to solve and identify the information that will help you solve it. Let's look at the problem again. The question is right there in plain sight: A single ticket to the fair costs $8. A family pass costs $25 more than half that.

  15. PDF Key Words for Solving Word Problems

    The hardest part of solving a word problem is actually understanding the problem and determining the operation (or operations) that needs to be performed. Listed below are a few of the most commonly used key words in word problems and the operations that they signal. Keep in mind that same key words may signal more than one operation.

  16. Word Problems Calculator

    To solve word problems start by reading the problem carefully and understanding what it's asking. Try underlining or highlighting key information, such as numbers and key words that indicate what operation is needed to perform. Translate the problem into mathematical expressions or equations, and use the information and equations generated to ...

  17. 10 Creative Problem-Solving Techniques You Need to Try Today

    10 Creative Problem-solving Techniques. 1. Brainstorming. Brainstorming remains a classic method for rapidly generating a plethora of ideas, creating an atmosphere devoid of judgment. This technique can be used individually or in a group setting, and it can help you generate a wide range of potential solutions to a problem.

  18. Word problem (mathematics)

    Word problem (mathematics) In computational mathematics, a word problem is the problem of deciding whether two given expressions are equivalent with respect to a set of rewriting identities. A prototypical example is the word problem for groups, but there are many other instances as well.

  19. Mathway

    Free math problem solver answers your algebra homework questions with step-by-step explanations.

  20. Solving Word Questions

    Turning English into Algebra. To turn the English into Algebra it helps to: Read the whole thing first; Do a sketch if possible; Assign letters for the values; Find or work out formulas; You should also write down what is actually being asked for, so you know where you are going and when you have arrived!. Also look for key words:

  21. Strategies for Solving Word Problems

    1. Read the Entire Word Problem. Before students look for keywords and try to figure out what to do, they need to slow down a bit and read the whole word problem once (and even better, twice). This helps kids get the bigger picture to be able to understand it a little better too. 2.

  22. Word Problem Calculator & Solver

    How many does she have? Add the values 3, 4 and 0.5. Integrate x^2 (x+1) Find the derivative of sin (2x + 1) Alex has two books. Chris has nine books. If Chris gives every book he has to Alex, how many books will Alex have? Solve x^2-5x+6=0 using the quadratic formula. Find the differential dy of y=cos (x)

  23. Math Problem Solver

    Problem Solver Subjects. Our math problem solver that lets you input a wide variety of math math problems and it will provide a step by step answer. This math solver excels at math word problems as well as a wide range of math subjects. Here are example math problems within each subject that can be input into the calculator and solved.

  24. 14 Visual Puzzles and Brainteasers That Will Challenge Your Mind

    Brain benefits: Aside from giving your linguistic abilities a workout, visual word puzzles also engage your creative thinking and problem-solving muscles. Like the example above, some of them even ...

  25. "Problem-Solving" Or "Problem Solving"? Learn If It Is Hyphenated

    In this case, neither word in "problem-solving" is capitalized. The second option capitalizes all words except for short conjunctions, short prepositions, and articles. In this case, you will always capitalize "problem" but always leave "solving" uncapitalized. The final option capitalizes every single word in a title.

  26. Word Problem Worksheets & Free Printables PDF Download for K-5 Kids

    These free printable Math word problem worksheet activities will challenge the young minds' problem-solving skills. Given relatable situations and interesting story telling math questions will build the curiosity in kids to learn and solve them. However, begin your preparation and strengthen the basic math concepts at a young age for a better ...

  27. Residual finiteness of fundamental $n$-quandles of links

    In this paper, we investigate residual finiteness and subquandle separability of quandles. The existence of these finiteness properties implies the solvability of the word problem and the generalised word problem for quandles. We prove that the fundamental n -quandle of any link in the 3-sphere is residually finite for each n ≥ 2.

  28. Solving the problem of praise for free will truthers

    Taking criticism as example, the free willer's argument loosely goes like this: {1} It only makes sense to criticize someone's actions if they have control over their actions. {2} We want to be able to coherently criticize bad behavior. {3} Determinism states that people don't have ultimate control over their own actions.

  29. Today's Wordle Hints & Answer

    Here are four hints that should be able to help you solve March 24's Wordle answer: Hint 1. There are no repeating letters. Hint 2. The answer is a noun and a verb. Hint 3. The vowels are in the 2nd and 4th positions. Hint 4.