Amrita Akhouri

Phase 0 Trial


Adaptive Dose-finding Design

Adaptive Seamless Design

Sample Size Re-estimation (SSR) Design

Group Sequential Design

Adaptive Trial Design

Bioequivalence Studies

Assessment of Bioavailability

Absolute Bioavailability Vs. Relative Bioavailability


Difference between Case control study and Retrospective cohort study

Case control study inspects individuals by outcome/disease status. But, the retrospective cohort study inspects individuals by their exposure status.

retrospective cohort study vs case control

Case control study

Case–control study is a type of observational study where individuals with outcome of interest (cases) and individuals without outcome of interest (controls) are first identified. Then these groups are studied retrospectively to compare the frequency of the exposure to a risk factor in order to estimate the relationship between the risk factor and the subsequent outcome. Case control study is also known as "retrospective study" and "case-referent study".

Example of Case control study

The researcher selects few cancer patients and non- cancer patients and studies the histories of both groups to compare the frequency of exposure to risk factors i.e., smoking for each group in order to estimate the relationship between the risk factor (smoking) and the disease (lung cancer).

Here, the researcher begins his/her study with the outcomes (cases and controls) and tries to determine the exposure details in both the groups.

retrospective cohort study vs case control

Retrospective cohort study

A retrospective cohort study is a longitudinal cohort study where a cohort group of individuals who share a common characteristic or exposure is identified and studied with the help of past records to determine the effect of the exposure on the development of current outcome. Retrospective cohort study is also known as “historic cohort study”.

Example of Retrospective cohort study

The researcher identifies a cohort of individuals who share a common exposure factor such as habit of smoking. He then examines the past records of these individuals (smokers and non-smokers) to understand the effect of the smoking on the development of current outcome i.e., lung cancer. He classifies the sample into two groups i.e., exposed to risk factors (smoking) and not exposed to risk factors (no smoking) to study the relationship.

Here, the researcher begins his study with the past records of exposure of the individuals to find out the possible link between the exposure to risk factor and the present outcome.

retrospective cohort study vs case control

Retrospective cohort study starts after the target population have already developed the outcomes of interest. The researcher travels in past and tries to read the past records of the selected cohort at a point in time before they have developed the outcomes of interest. Then the researcher examines the exposure details (the form and time of exposure to a factor, the latent period, the time of any subsequent occurrence of the outcome, etc) of the cohort at that point in time.

There is no follow-up process with the sample however the starting point for retrospective cohort study will be the same as other cohort studies i.e., researcher starts studies when the outcome of interest has not developed.

Thus, retrospective cohort study works when all the details such as outcome, exposure, etc are available. The researcher just jumps into the past and reads and analyses the association of exposure and outcome.

Case control study Vs. Retrospective study

Case-Control Study uses subjects who have a particular outcome (cases) and do not have particular outcome (controls) and looks back (retrospectively) to determine what the exposure was. Whereas, retrospective cohort study uses historical data to explain the exposure level at some baseline in the past and then explains the subsequent outcome/disease in the present.

retrospective cohort study vs case control

Case-Control Study starts with the study of the outcome/disease and it checks if it is associated with the exposure of risk factors. This type of study is typically used for rare diseases where comparison of cases (with rare disease) is done with a control group (without disease). Hence, case control study can use odd ratio. On the other hand, retrospective cohort study starts with the study of the exposure to a risk factor and it checks if it has played a role in development of current outcome. It describes a degree of risk (probability) of disease occurrence due to exposure compared to non-exposure i.e. the relative risk. Hence, relative risk and attributable risk can be used in retrospective cohort study.


1. Case control study proceeds from

a) Cause to effect

b) Effect to cause

c) Only (a)

d) Only (b)

2. Retrospective cohort study proceeds from

a) Effect to cause

b) Cause to effect

c) Both (a) and (b)

d) Only (a)

3. Relative risk can be used for

a) Retrospective cohort study

b) Case control study

d) None of the above

4. Odd ratio can be used for

a) Case control study

b) Retrospective study

c) Case-referent study

d) All of the above

5. Case control study inspects individuals by outcome/disease status. But, the retrospective cohort study inspects individuals by their exposure status.

Case-control and Cohort studies: A brief overview

Posted on 6th December 2017 by Saul Crandon

Man in suit with binoculars


Case-control and cohort studies are observational studies that lie near the middle of the hierarchy of evidence . These types of studies, along with randomised controlled trials, constitute analytical studies, whereas case reports and case series define descriptive studies (1). Although these studies are not ranked as highly as randomised controlled trials, they can provide strong evidence if designed appropriately.

Case-control studies

Case-control studies are retrospective. They clearly define two groups at the start: one with the outcome/disease and one without the outcome/disease. They look back to assess whether there is a statistically significant difference in the rates of exposure to a defined risk factor between the groups. See Figure 1 for a pictorial representation of a case-control study design. This can suggest associations between the risk factor and development of the disease in question, although no definitive causality can be drawn. The main outcome measure in case-control studies is odds ratio (OR) .

retrospective cohort study vs case control

Figure 1. Case-control study design.

Cases should be selected based on objective inclusion and exclusion criteria from a reliable source such as a disease registry. An inherent issue with selecting cases is that a certain proportion of those with the disease would not have a formal diagnosis, may not present for medical care, may be misdiagnosed or may have died before getting a diagnosis. Regardless of how the cases are selected, they should be representative of the broader disease population that you are investigating to ensure generalisability.

Case-control studies should include two groups that are identical EXCEPT for their outcome / disease status.

As such, controls should also be selected carefully. It is possible to match controls to the cases selected on the basis of various factors (e.g. age, sex) to ensure these do not confound the study results. It may even increase statistical power and study precision by choosing up to three or four controls per case (2).

Case-controls can provide fast results and they are cheaper to perform than most other studies. The fact that the analysis is retrospective, allows rare diseases or diseases with long latency periods to be investigated. Furthermore, you can assess multiple exposures to get a better understanding of possible risk factors for the defined outcome / disease.

Nevertheless, as case-controls are retrospective, they are more prone to bias. One of the main examples is recall bias. Often case-control studies require the participants to self-report their exposure to a certain factor. Recall bias is the systematic difference in how the two groups may recall past events e.g. in a study investigating stillbirth, a mother who experienced this may recall the possible contributing factors a lot more vividly than a mother who had a healthy birth.

A summary of the pros and cons of case-control studies are provided in Table 1.

retrospective cohort study vs case control

Table 1. Advantages and disadvantages of case-control studies.

Cohort studies

Cohort studies can be retrospective or prospective. Retrospective cohort studies are NOT the same as case-control studies.

In retrospective cohort studies, the exposure and outcomes have already happened. They are usually conducted on data that already exists (from prospective studies) and the exposures are defined before looking at the existing outcome data to see whether exposure to a risk factor is associated with a statistically significant difference in the outcome development rate.

Prospective cohort studies are more common. People are recruited into cohort studies regardless of their exposure or outcome status. This is one of their important strengths. People are often recruited because of their geographical area or occupation, for example, and researchers can then measure and analyse a range of exposures and outcomes.

The study then follows these participants for a defined period to assess the proportion that develop the outcome/disease of interest. See Figure 2 for a pictorial representation of a cohort study design. Therefore, cohort studies are good for assessing prognosis, risk factors and harm. The outcome measure in cohort studies is usually a risk ratio / relative risk (RR).

retrospective cohort study vs case control

Figure 2. Cohort study design.

Cohort studies should include two groups that are identical EXCEPT for their exposure status.

As a result, both exposed and unexposed groups should be recruited from the same source population. Another important consideration is attrition. If a significant number of participants are not followed up (lost, death, dropped out) then this may impact the validity of the study. Not only does it decrease the study’s power, but there may be attrition bias – a significant difference between the groups of those that did not complete the study.

Cohort studies can assess a range of outcomes allowing an exposure to be rigorously assessed for its impact in developing disease. Additionally, they are good for rare exposures, e.g. contact with a chemical radiation blast.

Whilst cohort studies are useful, they can be expensive and time-consuming, especially if a long follow-up period is chosen or the disease itself is rare or has a long latency.

A summary of the pros and cons of cohort studies are provided in Table 2.

retrospective cohort study vs case control

The Strengthening of Reporting of Observational Studies in Epidemiology Statement (STROBE)

STROBE provides a checklist of important steps for conducting these types of studies, as well as acting as best-practice reporting guidelines (3). Both case-control and cohort studies are observational, with varying advantages and disadvantages. However, the most important factor to the quality of evidence these studies provide, is their methodological quality.

' src=

Saul Crandon

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

No Comments on Case-control and Cohort studies: A brief overview

' src=

Very well presented, excellent clarifications. Has put me right back into class, literally!

' src=

Very clear and informative! Thank you.

' src=

very informative article.

' src=

Thank you for the easy to understand blog in cohort studies. I want to follow a group of people with and without a disease to see what health outcomes occurs to them in future such as hospitalisations, diagnoses, procedures etc, as I have many health outcomes to consider, my questions is how to make sure these outcomes has not occurred before the “exposure disease”. As, in cohort studies we are looking at incidence (new) cases, so if an outcome have occurred before the exposure, I can leave them out of the analysis. But because I am not looking at a single outcome which can be checked easily and if happened before exposure can be left out. I have EHR data, so all the exposure and outcome have occurred. my aim is to check the rates of different health outcomes between the exposed)dementia) and unexposed(non-dementia) individuals.

' src=

Very helpful information

' src=

Thanks for making this subject student friendly and easier to understand. A great help.

' src=

Thanks a lot. It really helped me to understand the topic. I am taking epidemiology class this winter, and your paper really saved me.

Happy new year.

' src=

Wow its amazing n simple way of briefing ,which i was enjoyed to learn this.its very easy n quick to pick ideas .. Thanks n stay connected

' src=

Saul you absolute melt! Really good work man

' src=

am a student of public health. This information is simple and well presented to the point. Thank you so much.

' src=

very helpful information provided here

' src=

really thanks for wonderful information because i doing my bachelor degree research by survival model

' src=

Quite informative thank you so much for the info please continue posting. An mph student with Africa university Zimbabwe.

' src=

Thank you this was so helpful amazing

' src=

Apreciated the information provided above.

' src=

So clear and perfect. The language is simple and superb.I am recommending this to all budding epidemiology students. Thanks a lot.

' src=

Great to hear, thank you AJ!

' src=

I have recently completed an investigational study where evidence of phlebitis was determined in a control cohort by data mining from electronic medical records. We then introduced an intervention in an attempt to reduce incidence of phlebitis in a second cohort. Again, results were determined by data mining. This was an expedited study, so there subjects were enrolled in a specific cohort based on date(s) of the drug infused. How do I define this study? Thanks so much.

' src=

thanks for the information and knowledge about observational studies. am a masters student in public health/epidemilogy of the faculty of medicines and pharmaceutical sciences , University of Dschang. this information is very explicit and straight to the point

' src=

Very much helpful

Subscribe to our newsletter

You will receive our monthly newsletter and free access to Trip Premium.

Related Articles


Cluster Randomized Trials: Concepts

This blog summarizes the concepts of cluster randomization, and the logistical and statistical considerations while designing a cluster randomized controlled trial.


Expertise-based Randomized Controlled Trials

This blog summarizes the concepts of Expertise-based randomized controlled trials with a focus on the advantages and challenges associated with this type of study.


An introduction to different types of study design

Conducting successful research requires choosing the appropriate study design. This article describes the most common types of designs conducted by researchers.

Log in using your username and password

You are here

A case-control or a retrospective cohort study comment on the article by martinez-zamorra et al..

Dear Editor,

I read with interest the study by Martinez-Zammora et al. (1), which reported an increased incidence of thrombotic events in patients with antiphospholipid syndrome with recurrent spontaneous abortion (APS-RSA group) in comparison with 3 different control groups. Although their conclusions seem to be valid, some comments may be appropriate.

This study is labeled as 'case-control', but it is actually a retrospective cohort study. Case-control studies have a different design, where researchers select cases and controls based on the presence or absence of the outcome, respectively, and look back in time for disproportionate exposures (2). Cohort studies follow groups defined by different exposures and observe the incidence of the outcomes. In the retrospective cohort design, the researcher starts the study at the time follow-up has already been completed (3). This kind of mislabeling of study design has been frequently observed in medical journals, and may cause confusion among readers (2).

Given that this is a cohort study, the relative risk (RR) should have been calculated instead of the odds ratio. Odds ratios frequently generate larger differences between exposed and non-exposed groups (especially when dealing with non-rare events), therefore overestimating the observed effect (4). However, considering the longer follow-up time of the APS-RSA group in comparison to the tRSA and uRSA groups, perhaps the incidence rate ratio (5) would be more adequate than the RR to compare de risk of thrombosis in this study.

The authors should have made the exclusion criteria (like history of thrombotic events previously to the beginning of the follow-up period) clearer in methods. Also, the plotting of the Kaplan-Meier curves seems to be inaccurate, since the curves that represent cumulative incidences in the tRSA and uRSA groups should have ended when the patients with longer permanence in the cohort were censored or had presented an event (6). In the abstract, the reporting of "12 year cumulative thrombotic incidence rate" gives the wrong idea that the mean follow-up time was 12 years.

Despite the problems of analysis and reporting, this study has adequate internal validity and problably external validity (albeit only Spanish Caucasian individuals were included), representing an advance in the knowledge about the antiphospholipid syndrome.

1. Martinez-Zamora MA, Peralta S, Creus M, et al. Risk of thromboembolic events after recurrent spontaneous abortion in antiphospholipid syndrome: a case-control study. Ann Rheum Dis 2011 [Epub ahead of print].

2. Grimes DA. "Case-control" confusion: mislabeled reports in obstetrics and gynecology journals. Obstet Gynecol 2009;114:1284-6.

3. Euser AM, Zoccali C, Jager KJ, et al. Cohort studies: prospective versus retrospective. Nephron Clin Pract 2009;113:214-7.

4. Case LD, Kimmick G, Paskett ED, et al. Interpreting measures of treatment effect in cancer clinical trials. Oncologist 2002;7:181-7.

5. Pearce N. Effect measures in prevalence studies. Environ Health Perspect 2004;112:1047-50.

6. Clark TG, Bradburn MJ, Love SB, et al. Survival analysis part I: basic concepts and first analyses. Br J Cancer 2003;89:232-8.

Conflict of Interest:

None declared

Conflict of Interest

Log in using your username and password

You are here

Download PDF

Cohort, cross sectional, and case-control studies are collectively referred to as observational studies. Often these studies are the only practicable method of studying various problems, for example, studies of aetiology, instances where a randomised controlled trial might be unethical, or if the condition to be studied is rare. Cohort studies are used to study incidence, causes, and prognosis. Because they measure events in chronological order they can be used to distinguish between cause and effect. Cross sectional studies are used to determine prevalence. They are relatively quick and easy but do not permit distinction between cause and effect. Case controlled studies compare groups retrospectively. They seek to identify possible predictors of outcome and are useful for studying rare diseases or outcomes. They are often used to generate hypotheses that can then be studied via prospective cohort or other studies.

Statistics from

Request permissions.

If you wish to reuse any or all of this article please use the link below which will take you to the Copyright Clearance Center’s RightsLink service. You will be able to get a quick price and instant permission to reuse the content in many different ways.

Cohort, cross sectional, and case-control studies are often referred to as observational studies because the investigator simply observes. No interventions are carried out by the investigator. With the recent emphasis on evidence based medicine and the formation of the Cochrane Database of randomised controlled trials, such studies have been somewhat glibly maligned. However, they remain important because many questions can be efficiently answered by these methods and sometimes they are the only methods available.

The objective of most clinical studies is to determine one of the following—prevalence, incidence, cause, prognosis, or effect of treatment; it is therefore useful to remember which type of study is most commonly associated with each objective (table 1)

While an appropriate choice of study design is vital, it is not sufficient. The hallmark of good research is the rigor with which it is conducted. A checklist of the key points in any study irrespective of the basic design is given in box 1.

Study purpose

The aim of the study should be clearly stated.

The sample should accurately reflect the population from which it is drawn.

The source of the sample should be stated.

The sampling method should be described and the sample size should be justified.

Entry criteria and exclusions should be stated and justified.

The number of patients lost to follow up should be stated and explanations given.

Control group

The control group should be easily identifiable.

The source of the controls should be explained—are they from the same population as the sample?

Are the controls matched or randomised—to minimise bias and confounding.

Quality of measurements and outcomes

Validity—are the measurements used regarded as valid by other investigators?

Reproducibility—can the results be repeated or is there a reason to suspect they may be a “one off”?

Blinded—were the investigators or subjects aware of their subject/control allocation?

Quality control—has the methodology been rigorously adhered to?


Compliance—did all patients comply with the study?

Drop outs—how many failed to complete the study?

Missing data—how much are unavailable and why?

Distorting influences

Extraneous treatments—other interventions that may have affected some but not all of the subjects.

Confounding factors—Are there other variables that might influence the results?

Appropriate analysis—Have appropriate statistical tests been used?

All studies should be internally valid. That is, the conclusions can be logically drawn from the results produced by an appropriate methodology. For a study to be regarded as valid it must be shown that it has indeed demonstrated what it says it has. A study that is not internally valid should not be published because the findings cannot be accepted.

The question of external validity relates to the value of the results of the study to other populations—that is, the generalisability of the results. For example, a study showing that 80% of the Swedish population has blond hair, might be used to make a sensible prediction of the incidence of blond hair in other Scandinavian countries, but would be invalid if applied to most other populations.

Every published study should contain sufficient information to allow the reader to analyse the data with reference to these key points.

In this article each of the three important observational research methods will be discussed with emphasis on their strengths and weaknesses. In so doing it should become apparent why a given study used a particular research method and which method might best answer a particular clinical problem.


These are the best method for determining the incidence and natural history of a condition. The studies may be prospective or retrospective and sometimes two cohorts are compared.

Prospective cohort studies

A group of people is chosen who do not have the outcome of interest (for example, myocardial infarction). The investigator then measures a variety of variables that might be relevant to the development of the condition. Over a period of time the people in the sample are observed to see whether they develop the outcome of interest (that is, myocardial infarction).

In single cohort studies those people who do not develop the outcome of interest are used as internal controls.

Where two cohorts are used, one group has been exposed to or treated with the agent of interest and the other has not, thereby acting as an external control.

Retrospective cohort studies

These use data already collected for other purposes. The methodology is the same but the study is performed posthoc. The cohort is “followed up” retrospectively. The study period may be many years but the time to complete the study is only as long as it takes to collate and analyse the data.

Advantages and disadvantages

The use of cohorts is often mandatory as a randomised controlled trial may be unethical; for example, you cannot deliberately expose people to cigarette smoke or asbestos. Thus research on risk factors relies heavily on cohort studies.

As cohort studies measure potential causes before the outcome has occurred the study can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is cause and which is effect.

A further advantage is that a single study can examine various outcome variables. For example, cohort studies of smokers can simultaneously look at deaths from lung, cardiovascular, and cerebrovascular disease. This contrasts with case-control studies as they assess only one outcome variable (that is, whatever outcome the cases have entered the study with).

Cohorts permit calculation of the effect of each variable on the probability of developing the outcome of interest (relative risk). However, where a certain outcome is rare then a prospective cohort study is inefficient. For example, studying 100 A&E attenders with minor injuries for the outcome of diabetes mellitus will probably produce only one patient with the outcome of interest. The efficiency of a prospective cohort study increases as the incidence of any particular outcome increases. Thus a study of patients with a diagnosis of deliberate self harm in the 12 months after initial presentation would be efficiently studied using a cohort design.

Another problem with prospective cohort studies is the loss of some subjects to follow up. This can significantly affect the outcome. Taking incidence analysis as an example (incidence = cases/per period of time), it can be seen that the loss of a few cases will seriously affect the numerator and hence the calculated incidence. The rarer the condition the more significant this effect.

Retrospective studies are much cheaper as the data have already been collected. One advantage of such a study design is the lack of bias because the outcome of current interest was not the original reason for the data to be collected. However, because the cohort was originally constructed for another purpose it is unlikely that all the relevant information will have been rigorously collected.

Retrospective cohorts also suffer the disadvantage that people with the outcome of interest are more likely to remember certain antecedents, or exaggerate or minimise what they now consider to be risk factors (recall bias).

Where two cohorts are compared one will have been exposed to the agent of interest and one will not. The major disadvantage is the inability to control for all other factors that might differ between the two groups. These factors are known as confounding variables.

A confounding variable is independently associated with both the variable of interest and the outcome of interest. For example, lung cancer (outcome) is less common in people with asthma (variable). However, it is unlikely that asthma in itself confers any protection against lung cancer. It is more probable that the incidence of lung cancer is lower in people with asthma because fewer asthmatics smoke cigarettes (confounding variable). There are a virtually infinite number of potential confounding variables that, however unlikely, could just explain the result. In the past this has been used to suggest that there is a genetic influence that makes people want to smoke and also predisposes them to cancer.

The only way to eliminate all possibility of a confounding variable is via a prospective randomised controlled study. In this type of study each type of exposure is assigned by chance and so confounding variables should be present in equal numbers in both groups.

Finally, problems can arise as a result of bias. Bias can occur in any research and reflects the potential that the sample studied is not representative of the population it was drawn from and/or the population at large. A classic example is using employed people, as employment is itself associated with generally better health than unemployed people. Similarly people who respond to questionnaires tend to be fitter and more motivated than those who do not. People attending A&E departments should not be presumed to be representative of the population at large.

How to run a cohort study

If the data are readily available then a retrospective design is the quickest method. If high quality, reliable data are not available a prospective study will be required.

The first step is the definition of the sample group. Each subject must have the potential to develop the outcome of interest (that is, circumcised men should not be included in a cohort designed to study paraphimosis). Furthermore, the sample population must be representative of the general population if the study is primarily looking at the incidence and natural history of the condition (descriptive).

If however the aim is to analyse the relation between predictor variables and outcomes (analytical) then the sample should contain as many patients likely to develop the outcome as possible, otherwise much time and expense will be spent collecting information of little value.

Cohort studies

Cohort studies describe incidence or natural history.

They analyse predictors (risk factors) thereby enabling calculation of relative risk.

Cohort studies measure events in temporal sequence thereby distinguishing causes from effects.

Retrospective cohorts where available are cheaper and quicker.

Confounding variables are the major problem in analysing cohort studies.

Subject selection and loss to follow up is a major potential cause of bias.

Each variable studied must be accurately measured. Variables that are relatively fixed, for example, height need only be recorded once. Where change is more probable, for example, drug misuse or weight, repeated measurements will be required.

To minimise the potential for missing a confounding variable all probable relevant variables should be measured. If this is not done the study conclusions can be readily criticised. All patients entered into the study should also be followed up for the duration of the study. Losses can significantly affect the validity of the results. To minimise this as much information about the patient (name, address, telephone, GP, etc) needs to be recorded as soon as the patient is entered into the study. Regular contact should be made; it is hardly surprising if the subjects have moved or lost interest and become lost to follow up if they are only contacted at 10 year intervals!

Beware, follow up is usually easier in people who have been exposed to the agent of interest and this may lead to bias.

There are many famous examples of Cohort studies including the Framingham heart study, 2 the UK study of doctors who smoke 3 and Professor Neville Butler‘s studies on British children born in 1958. 4 A recent example of a prospective cohort study by Davey Smith et al was published in the BMJ 5 and a retrospective cohort design was used to assess the use of A&E departments by people with diabetes. 6


These are primarily used to determine prevalence. Prevalence equals the number of cases in a population at a given point in time. All the measurements on each person are made at one point in time. Prevalence is vitally important to the clinician because it influences considerably the likelihood of any particular diagnosis and the predictive value of any investigation. For example, knowing that ascending cholangitis in children is very rare enables the clinician to look for other causes of abdominal pain in this patient population.

Cross sectional studies are also used to infer causation.

At one point in time the subjects are assessed to determine whether they were exposed to the relevant agent and whether they have the outcome of interest. Some of the subjects will not have been exposed nor have the outcome of interest. This clearly distinguishes this type of study from the other observational studies (cohort and case controlled) where reference to either exposure and/or outcome is made.

The advantage of such studies is that subjects are neither deliberately exposed, treated, or not treated and hence there are seldom ethical difficulties. Only one group is used, data are collected only once and multiple outcomes can be studied; thus this type of study is relatively cheap.

Many cross sectional studies are done using questionnaires. Alternatively each of the subjects may be interviewed. Table 2 lists the advantages and disadvantages of each.

Any study with a low response rate can be criticised because it can miss significant differences in the responders and non-responders. At its most extreme all the non-responders could be dead! Strenuous efforts must be made to maximise the numbers who do respond. The use of volunteers is also problematic because they too are unlikely to be representative of the general population. A good way to produce a valid sample would be to randomly select people from the electoral role and invite them to complete a questionnaire. In this way the response rate is known and non-responders can be identified. However, the electoral role itself is not an entirely accurate reflection of the general population. A census is another example of a cross sectional study.

Market research organisations often use cross sectional studies (for example, opinion polls). This entails a system of quotas to ensure the sample is representative of the age, sex, and social class structure of the population being studied. However, to be commercially viable they are convenience samples—only people available can be questioned. This technique is insufficiently rigorous to be used for medical research.

How to run a cross sectional study

Formulate the research question(s) and choose the sample population. Then decide what variables of the study population are relevant to the research question. A method for contacting sample subjects must be devised and then implemented. In this way the data are collected and can then be analysed

The most important advantage of cross sectional studies is that in general they are quick and cheap. As there is no follow up, less resources are required to run the study.

Cross sectional studies are the best way to determine prevalence and are useful at identifying associations that can then be more rigorously studied using a cohort study or randomised controlled study.

The most important problem with this type of study is differentiating cause and effect from simple association. For example, a study finding an association between low CD4 counts and HIV infection does not demonstrate whether HIV infection lowers CD4 levels or low CD4 levels predispose to HIV infection. Moreover, male homosexuality is associated with both but causes neither. (Another example of a confounding variable).

Often there are a number of plausible explanations. For example, if a study shows a negative relation between height and age it could be concluded that people lose height as they get older, younger generations are getting taller, or that tall people have a reduced life expectancy when compared with short people. Cross sectional studies do not provide an explanation for their findings.

Rare conditions cannot efficiently be studied using cross sectional studies because even in large samples there may be no one with the disease. In this situation it is better to study a cross sectional sample of patients who already have the disease (a case series). In this way it was found in 1983 that of 1000 patients with AIDS, 727 were homosexual or bisexual men and 236 were intrvenous drug abusers. 6 The conclusion that individuals in these two groups had a higher relative risk was inescapable. The natural history of HIV infection was then studied using cohort studies and efficacy of treatments via case controlled studies and randomised clinical trials.

An example of a cross sectional study was the prevalence study of skull fractures in children admitted to hospital in Edinburgh from 1983 to 1989. 7 Note that although the study period was seven years it was not a longitudinal or cohort study because information about each subject was recorded at a single point in time.

A questionnaire based cross sectional study explored the relation between A&E attendance and alcohol consumption in elderly persons. 9

A recent example can be found in the BMJ , in which the prevalence of serious eye disease in a London population was evaluated. 10

Cross sectional studies

Cross sectional studies are the best way to determine prevalence

Are relatively quick

Can study multiple outcomes

Do not themselves differentiate between cause and effect or the sequence of events


In contrast with cohort and cross sectional studies, case-control studies are usually retrospective. People with the outcome of interest are matched with a control group who do not. Retrospectively the researcher determines which individuals were exposed to the agent or treatment or the prevalence of a variable in each of the study groups. Where the outcome is rare, case-control studies may be the only feasible approach.

As some of the subjects have been deliberately chosen because they have the disease in question case-control studies are much more cost efficient than cohort and cross sectional studies—that is, a higher percentage of cases per study.

Case-control studies determine the relative importance of a predictor variable in relation to the presence or absence of the disease. Case-control studies are retrospective and cannot therefore be used to calculate the relative risk; this a prospective cohort study. Case-control studies can however be used to calculate odds ratios, which in turn, usually approximate to the relative risk.

How to run a case-control study

Decide on the research question to be answered. Formulate an hypothesis and then decide what will be measured and how. Specify the characteristics of the study group and decide how to construct a valid control group. Then compare the “exposure” of the two groups to each variable.

When conditions are uncommon, case-control studies generate a lot of information from relatively few subjects. When there is a long latent period between an exposure and the disease, case-control studies are the only feasible option. Consider the practicalities of a cohort study or cross sectional study in the assessment of new variant CJD and possible aetiologies. With less than 300 confirmed cases a cross sectional study would need about 200 000 subjects to include one symptomatic patient. Given a postulated latency of 10 to 30 years a cohort study would require both a vast sample size and take a generation to complete.

In case-control studies comparatively few subjects are required so more resources are available for studying each. In consequence a huge number of variables can be considered. This type of study is therefore useful for generating hypotheses that can then be tested using other types of study.

This flexibility of the variables studied comes at the expense of the restricted outcomes studied. The only outcome is the presence or absence of the disease or whatever criteria was chosen to select the cases.

The major problems with case-control studies are the familiar ones of confounding variables (see above) and bias. Bias may take two major forms.

Sampling bias

The patients with the disease may be a biased sample (for example, patients referred to a teaching hospital) or the controls may be biased (for example, volunteers, different ages, sex or socioeconomic group).

Observation and recall bias

As the study assesses predictor variables retrospectively there is great potential for a biased assessment of their presence and significance by the patient or the investigator, or both.

Overcoming sampling bias

Ideally the cases studied should be a random sample of all the patients with the disease. This is not only very difficult but in many instances is impossible because many cases may not have been diagnosed or have been misdiagnosed. For example, many cases of non-insulin dependent diabetes will not have sought medical attention and therefore be undiagnosed. Conversely many psychiatric diseases may be differently labelled in different countries and even by different doctors in the same country. As a result they will be misdiagnosed for the purposes of the study. However, in reality you are often left studying a sample of those patients who it is possible to recruit. Selecting the controls is often a more difficult problem.

To enable the controls to represent the same population as the cases, one of four techniques may be used.

A convenience sample—sampled in the same way as the cases, for example, attending the same outpatient department. While this is certainly convenient it may reduce the external validity of the study.

Matching—the controls may be a matched or unmatched random sample from the unaffected population. Again the problems of controlling for unknown influences is present but if the controls are too closely matched they may not be representative of the general population. “Over matching” may cause the true difference to be underestimated.

The advantage of matching is that it allows a smaller sample size for any given effect to be statistically significant.

Using two or more control groups. If the study demonstrates a significant difference between the patients with the outcome of interest and those without, even when the latter have been sampled in a number of different ways (for example, outpatients, in patients, GP patients) then the conclusion is more robust.

Using a population based sample for both cases and controls. It is possible to take a random sample of all the patients with a particular disease from specific registers. The control group can then be constructed by selecting age and sex matched people randomly selected from the same population as the area covered by the disease register.

Overcoming observation and recall bias

Overcoming retrospective recall bias can be achieved by using data recorded, for other purposes, before the outcome had occurred and therefore before the study had started. The success of this strategy is limited by the availability and reliability of the data collected. Another technique is blinding where neither the subject nor the observer know if they are a case or control subject. Nor are they aware of the study hypothesis. In practice this is often difficult or impossible and only partial blinding is practicable. It is usually possible to blind the subjects and observers to the study hypothesis by asking spurious questions. Observers can also be easily blinded to the case or control status of the patient where the relevant observation is not of the patient themselves but a laboratory test or radiograph.

Case-control studies

Case-control studies are simple to organise

Retrospectively compare two groups

Aim to identify predictors of an outcome

Permit assessment of the influence of predictors on outcome via calculation of an odds ratio

Useful for hypothesis generation

Can only look at one outcome

Bias is an major problem

Blinding cases to their case or control status is usually impracticable as they already know that they have a disease or illness. Similarly observers can hardly be blinded to the presence of physical signs, for example, cyanosis or dyspnoea.

As a result of the problems of matching, bias and confounding, case-control studies, are often flawed. They are however useful for generating hypotheses. These hypotheses can then be tested more rigorously by other methods—randomised controlled trials or cohort studies.

Case-control studies are very common. They are particularly useful for studying infrequent events, for example, cot death, survival from out of hospital cardiac arrest, and toxicological emergencies.

A recent example was the study of atrial fibrillation in middle aged men during exercise. 11


Pre-existing databases provide an excellent and convenient source of data. There are a host of such databases and the increasing archiving of information on computers means that this is an enlarging area for obtaining data. Table 3 lists some common examples of potentially useful databases.

Such databases enable vast numbers of people to be entered into a study prospectively or retrospectively. They can be used to construct a cohort, to produce a sample for a cross sectional study, or to identify people with certain conditions or outcomes and produce a sample for a case controlled study. A recent study used census data from 11 countries to look at the relation between social class and mortality in middle aged men. 12

These type of data are ordinarily collected by people other than the researcher and independently of any specific hypothesis. The opportunity for observer bias is thus diminished. The use of previously collected data is efficient and comparatively inexpensive and moreover the data are collected in a very standardised way, permitting comparisons over time and between different countries. However, because the data are collected for other purposes it may not be ideally suited to the testing of the current hypothesis, additionally it may be incomplete. This may result in sampling bias. For example, the electoral roll depends upon registration by each individual. Many homeless, mentally ill, and chronically sick people will not be registered. Similarly the notification of certain communicable diseases is a statutory responsibility for doctors in the UK: while it is probable that most cases of cholera are reported it is highly unlikely that most cases of food poisoning are.

Causes and associations

Because observational studies are not experiments (as are randomised controlled trials) it is difficult to control many external variables. In consequence when faced with a clear and significant association between some form of illness or cause of death and some environmental influence a judgement has to be made as to whether this is a causal link or simply an association. Table 4 outlines the points to be considered when making this judgement. 13

None of these judgements can provide indisputable evidence of cause and effect, but taken together they do permit the investigator to answer the fundamental questions “is there any other way to explain the available evidence?” and is there any other more likely than cause and effect?”

Qualitative studies can produce high quality information but all such studies can be influenced by known and unknown confounding variables. Appropriate use of observational studies permits investigation of prevalence, incidence, associations, causes, and outcomes. Where there is little evidence on a subject they are cost effective ways of producing and investigating hypotheses before larger and more expensive study designs are embarked upon. In addition they are often the only realistic choice of research methodology, particularly where a randomised controlled trial would be impractical or unethical.

Cohort studies look forwards in time by following up each subject

Subjects are selected before the outcome of interest is observed

They establish the sequence of events

Numerous outcomes can be studied

They are the best way to establish the incidence of a disease

They are a good way to determine causes of diseases

The principal summary statistic of cohort studies is the relative risk ratio

If prospective, they are expensive and often take a long time for sufficient outcome events to occur to produce meaningful results

Cross sectional studies look at each subject at one point in time only

Subjects are selected without regard to the outcome of interest

Less expensive

They are the best way to determine prevalence

The principal summary statistic of cross sectional studies is the odds ratio

Weaker evidence of causality than cohort studies

Inaccurate when studying rare conditions

Case-control studies look back at what has happened to each subject

Subjects are selected specifically on the basis of the outcome of interest

Efficient (small sample sizes)

Produce odds ratios that approximate to relative risks for each variable studied

Prone to sampling bias and retrospective analysis bias

Only one outcome is studied


The inclusion of subjects or methods such that the results obtained are not truly representative of the population from which it is drawn

The process by which the researcher and or the subject is ignorant of which intervention or exposure has occurred.

Cochrane database

An international collaborative project collating peer reviewed prospective randomised clinical trials.

Is a component of a population identified so that one or more characteristic can be studied as it ages through time.

Confounding variable

A variable that is associated with both the exposure and outcome of interest that is not the variable being studied.

A group of people without the condition of interest, or unexposed to or not treated with the agent of interest.

False positive

A test result that suggests that the subject has a specific disease or condition when in fact the subject does not.

Is a rate and therefore is always related either explicitly or by implication to a time period. With regard to disease it can be defined as the number of new cases that develop during a specified time interval.

A period of time between exposure to an agent and the development of symptoms, signs, or other evidence of changes associated with that exposure.

The process by which each case is matched with one or more controls, which have been deliberately chosen to be as similar as the test subjects in all regards other than the variable being studied.

Observational study

A study in which no intervention is made (in contrast with an experimental study). Such studies provide estimates and examine associations of events in their natural settings without recourse to experimental intervention.

The ratio of the probability of an event occurring to the probability of non-occurrence. In a clinical setting this would be equivalent to the odds of a condition occurring in the exposed group divided by the odds of it occurring in the non-exposed group.

Is not defined by a time interval and is therefore not a rate. It may be defined as the number of cases of a disease that exist in a defined population at a specified point in time.

Randomised controlled trial

Subjects are assigned by statistically randomised methods to two or more groups. In doing so it is assumed that all variables other than the proposed intervention are evenly distributed between the groups. In this way bias is minimised.

Relative risk

This is the ratio of the probability of developing the condition if exposed to a certain variable compared with the probability if not exposed.

Response rate

The proportion of subjects who respond to either a treatment or a questionnaire.

Risk factor

A variable associated with a specific disease or outcome.


The rigour with which a study has been designed and executed—that is, can the conclusion be relied upon?


The usefulness of the findings of a study with respect to other populations.

A value or quality that can vary between subjects and/or over time

Study design for cohort studies.

Study design for cross sectional studies

Study design for case-control studies.

Read the full text or download the PDF:

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Logo of nihpa

Observational Studies: Cohort and Case-Control Studies

Jae w. song.

1 Research Fellow, Section of Plastic Surgery, Department of Surgery The University of Michigan Health System; Ann Arbor, MI

Kevin C. Chung

2 Professor of Surgery, Section of Plastic Surgery, Department of Surgery The University of Michigan Health System; Ann Arbor, MI

Observational studies are an important category of study designs. To address some investigative questions in plastic surgery, randomized controlled trials are not always indicated or ethical to conduct. Instead, observational studies may be the next best method to address these types of questions. Well-designed observational studies have been shown to provide results similar to randomized controlled trials, challenging the belief that observational studies are second-rate. Cohort studies and case-control studies are two primary types of observational studies that aid in evaluating associations between diseases and exposures. In this review article, we describe these study designs, methodological issues, and provide examples from the plastic surgery literature.

Because of the innovative nature of the specialty, plastic surgeons are frequently confronted with a spectrum of clinical questions by patients who inquire about “best practices.” It is thus essential that plastic surgeons know how to critically appraise the literature to understand and practice evidence-based medicine (EBM) and also contribute to the effort by carrying out high-quality investigations. 1 Well-designed randomized controlled trials (RCTs) have held the pre-eminent position in the hierarchy of EBM as level I evidence ( Table 1 ). However, RCT methodology, which was first developed for drug trials, can be difficult to conduct for surgical investigations. 3 Instead, well-designed observational studies, recognized as level II or III evidence, can play an important role in deriving evidence for plastic surgery. Results from observational studies are often criticized for being vulnerable to influences by unpredictable confounding factors. However, recent work has challenged this notion, showing comparable results between observational studies and RCTs. 4 , 5 Observational studies can also complement RCTs in hypothesis generation, establishing questions for future RCTs, and defining clinical conditions.

Levels of Evidence Based Medicine

From REF 1 .

Observational studies fall under the category of analytic study designs and are further sub-classified as observational or experimental study designs ( Figure 1 ). The goal of analytic studies is to identify and evaluate causes or risk factors of diseases or health-related events. The differentiating characteristic between observational and experimental study designs is that in the latter, the presence or absence of undergoing an intervention defines the groups. By contrast, in an observational study, the investigator does not intervene and rather simply “observes” and assesses the strength of the relationship between an exposure and disease variable. 6 Three types of observational studies include cohort studies, case-control studies, and cross-sectional studies ( Figure 1 ). Case-control and cohort studies offer specific advantages by measuring disease occurrence and its association with an exposure by offering a temporal dimension (i.e. prospective or retrospective study design). Cross-sectional studies, also known as prevalence studies, examine the data on disease and exposure at one particular time point ( Figure 2 ). 6 Because the temporal relationship between disease occurrence and exposure cannot be established, cross-sectional studies cannot assess the cause and effect relationship. In this review, we will primarily discuss cohort and case-control study designs and related methodologic issues.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0001.jpg

Analytic Study Designs. Adapted with permission from Joseph Eisenberg, Ph.D.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0002.jpg

Temporal Design of Observational Studies: Cross-sectional studies are known as prevalence studies and do not have an inherent temporal dimension. These studies evaluate subjects at one point in time, the present time. By contrast, cohort studies can be either retrospective (latin derived prefix, “retro” meaning “back, behind”) or prospective (greek derived prefix, “pro” meaning “before, in front of”). Retrospective studies “look back” in time contrasting with prospective studies, which “look ahead” to examine causal associations. Case-control study designs are also retrospective and assess the history of the subject for the presence or absence of an exposure.


The term “cohort” is derived from the Latin word cohors . Roman legions were composed of ten cohorts. During battle each cohort, or military unit, consisting of a specific number of warriors and commanding centurions, were traceable. The word “cohort” has been adopted into epidemiology to define a set of people followed over a period of time. W.H. Frost, an epidemiologist from the early 1900s, was the first to use the word “cohort” in his 1935 publication assessing age-specific mortality rates and tuberculosis. 7 The modern epidemiological definition of the word now means a “group of people with defined characteristics who are followed up to determine incidence of, or mortality from, some specific disease, all causes of death, or some other outcome.” 7

Study Design

A well-designed cohort study can provide powerful results. In a cohort study, an outcome or disease-free study population is first identified by the exposure or event of interest and followed in time until the disease or outcome of interest occurs ( Figure 3A ). Because exposure is identified before the outcome, cohort studies have a temporal framework to assess causality and thus have the potential to provide the strongest scientific evidence. 8 Advantages and disadvantages of a cohort study are listed in Table 2 . 2 , 9 Cohort studies are particularly advantageous for examining rare exposures because subjects are selected by their exposure status. Additionally, the investigator can examine multiple outcomes simultaneously. Disadvantages include the need for a large sample size and the potentially long follow-up duration of the study design resulting in a costly endeavor.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0003.jpg

Cohort and Case-Control Study Designs

Advantages and Disadvantages of the Cohort Study

Cohort studies can be prospective or retrospective ( Figure 2 ). Prospective studies are carried out from the present time into the future. Because prospective studies are designed with specific data collection methods, it has the advantage of being tailored to collect specific exposure data and may be more complete. The disadvantage of a prospective cohort study may be the long follow-up period while waiting for events or diseases to occur. Thus, this study design is inefficient for investigating diseases with long latency periods and is vulnerable to a high loss to follow-up rate. Although prospective cohort studies are invaluable as exemplified by the landmark Framingham Heart Study, started in 1948 and still ongoing, 10 in the plastic surgery literature this study design is generally seen to be inefficient and impractical. Instead, retrospective cohort studies are better indicated given the timeliness and inexpensive nature of the study design.

Retrospective cohort studies, also known as historical cohort studies, are carried out at the present time and look to the past to examine medical events or outcomes. In other words, a cohort of subjects selected based on exposure status is chosen at the present time, and outcome data (i.e. disease status, event status), which was measured in the past, are reconstructed for analysis. The primary disadvantage of this study design is the limited control the investigator has over data collection. The existing data may be incomplete, inaccurate, or inconsistently measured between subjects. 2 However, because of the immediate availability of the data, this study design is comparatively less costly and shorter than prospective cohort studies. For example, Spear and colleagues examined the effect of obesity and complication rates after undergoing the pedicled TRAM flap reconstruction by retrospectively reviewing 224 pedicled TRAM flaps in 200 patients over a 10-year period. 11 In this example, subjects who underwent the pedicled TRAM flap reconstruction were selected and categorized into cohorts by their exposure status: normal/underweight, overweight, or obese. The outcomes of interest were various flap and donor site complications. The findings revealed that obese patients had a significantly higher incidence of donor site complications, multiple flap complications, and partial flap necrosis than normal or overweight patients. An advantage of the retrospective study design analysis is the immediate access to the data. A disadvantage is the limited control over the data collection because data was gathered retrospectively over 10-years; for example, a limitation reported by the authors is that mastectomy flap necrosis was not uniformly recorded for all subjects. 11

An important distinction lies between cohort studies and case-series. The distinguishing feature between these two types of studies is the presence of a control, or unexposed, group. Contrasting with epidemiological cohort studies, case-series are descriptive studies following one small group of subjects. In essence, they are extensions of case reports. Usually the cases are obtained from the authors' experiences, generally involve a small number of patients, and more importantly, lack a control group. 12 There is often confusion in designating studies as “cohort studies” when only one group of subjects is examined. Yet, unless a second comparative group serving as a control is present, these studies are defined as case-series. The next step in strengthening an observation from a case-series is selecting appropriate control groups to conduct a cohort or case-control study, the latter which is discussed in the following section about case-control studies. 9

Methodological Issues

Selection of subjects in cohort studies.

The hallmark of a cohort study is defining the selected group of subjects by exposure status at the start of the investigation. A critical characteristic of subject selection is to have both the exposed and unexposed groups be selected from the same source population ( Figure 4 ). 9 Subjects who are not at risk for developing the outcome should be excluded from the study. The source population is determined by practical considerations, such as sampling. Subjects may be effectively sampled from the hospital, be members of a community, or from a doctor's individual practice. A subset of these subjects will be eligible for the study.

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0005.jpg

Levels of Subject Selection. Adapted from Ref 9 .

Attrition Bias (Loss to follow-up)

Because prospective cohort studies may require long follow-up periods, it is important to minimize loss to follow-up. Loss to follow-up is a situation in which the investigator loses contact with the subject, resulting in missing data. If too many subjects are loss to follow-up, the internal validity of the study is reduced. A general rule of thumb requires that the loss to follow-up rate not exceed 20% of the sample. 6 Any systematic differences related to the outcome or exposure of risk factors between those who drop out and those who stay in the study must be examined, if possible, by comparing individuals who remain in the study and those who were loss to follow-up or dropped out. It is therefore important to select subjects who can be followed for the entire duration of the cohort study. Methods to minimize loss to follow-up are listed in Table 3 .

Methods to Minimize Loss to Follow-Up

Adapted from REF 2 .


Case-control studies were historically borne out of interest in disease etiology. The conceptual basis of the case-control study is similar to taking a history and physical; the diseased patient is questioned and examined, and elements from this history taking are knitted together to reveal characteristics or factors that predisposed the patient to the disease. In fact, the practice of interviewing patients about behaviors and conditions preceding illness dates back to the Hippocratic writings of the 4 th century B.C. 7

Reasons of practicality and feasibility inherent in the study design typically dictate whether a cohort study or case-control study is appropriate. This study design was first recognized in Janet Lane-Claypon's study of breast cancer in 1926, revealing the finding that low fertility rate raises the risk of breast cancer. 13 , 14 In the ensuing decades, case-control study methodology crystallized with the landmark publication linking smoking and lung cancer in the 1950s. 15 Since that time, retrospective case-control studies have become more prominent in the biomedical literature with more rigorous methodological advances in design, execution, and analysis.

Case-control studies identify subjects by outcome status at the outset of the investigation. Outcomes of interest may be whether the subject has undergone a specific type of surgery, experienced a complication, or is diagnosed with a disease ( Figure 3B ). Once outcome status is identified and subjects are categorized as cases, controls (subjects without the outcome but from the same source population) are selected. Data about exposure to a risk factor or several risk factors are then collected retrospectively, typically by interview, abstraction from records, or survey. Case-control studies are well suited to investigate rare outcomes or outcomes with a long latency period because subjects are selected from the outset by their outcome status. Thus in comparison to cohort studies, case-control studies are quick, relatively inexpensive to implement, require comparatively fewer subjects, and allow for multiple exposures or risk factors to be assessed for one outcome ( Table 4 ). 2 , 9

Advantages and Disadvantages of the Case-Control Study

An example of a case-control investigation is by Zhang and colleagues who examined the association of environmental and genetic factors associated with rare congenital microtia, 16 which has an estimated prevalence of 0.83 to 17.4 in 10,000. 17 They selected 121 congenital microtia cases based on clinical phenotype, and 152 unaffected controls, matched by age and sex in the same hospital and same period. Controls were of Hans Chinese origin from Jiangsu, China, the same area from where the cases were selected. This allowed both the controls and cases to have the same genetic background, important to note given the investigated association between genetic factors and congenital microtia. To examine environmental factors, a questionnaire was administered to the mothers of both cases and controls. The authors concluded that adverse maternal health was among the main risk factors for congenital microtia, specifically maternal disease during pregnancy (OR 5.89, 95% CI 2.36-14.72), maternal toxicity exposure during pregnancy (OR 4.76, 95% CI 1.66-13.68), and resident area, such as living near industries associated with air pollution (OR 7.00, 95% CI 2.09-23.47). 16 A case-control study design is most efficient for this investigation, given the rarity of the disease outcome. Because congenital microtia is thought to have multifactorial causes, an additional advantage of the case-control study design in this example is the ability to examine multiple exposures and risk factors.

Selection of Cases

Sampling in a case-control study design begins with selecting the cases. In a case-control study, it is imperative that the investigator has explicitly defined inclusion and exclusion criteria prior to the selection of cases. For example, if the outcome is having a disease, specific diagnostic criteria, disease subtype, stage of disease, or degree of severity should be defined. Such criteria ensure that all the cases are homogenous. Second, cases may be selected from a variety of sources, including hospital patients, clinic patients, or community subjects. Many communities maintain registries of patients with certain diseases and can serve as a valuable source of cases. However, despite the methodologic convenience of this method, validity issues may arise. For example, if cases are selected from one hospital, identified risk factors may be unique to that single hospital. This methodological choice may weaken the generalizability of the study findings. Another example is choosing cases from the hospital versus the community; most likely cases from the hospital sample will represent a more severe form of the disease than those in the community. 2 Finally, it is also important to select cases that are representative of cases in the target population to strengthen the study's external validity ( Figure 4 ). Potential reasons why cases from the original target population eventually filter through and are available as cases (study participants) for a case-control study are illustrated in Figure 5 .

An external file that holds a picture, illustration, etc.
Object name is nihms-237355-f0006.jpg

Levels of Case Selection. Adapted from Ref 2 .

Selection of Controls

Selecting the appropriate group of controls can be one of the most demanding aspects of a case-control study. An important principle is that the distribution of exposure should be the same among cases and controls; in other words, both cases and controls should stem from the same source population. The investigator may also consider the control group to be an at-risk population, with the potential to develop the outcome. Because the validity of the study depends upon the comparability of these two groups, cases and controls should otherwise meet the same inclusion criteria in the study.

A case-control study design that exemplifies this methodological feature is by Chung and colleagues, who examined maternal cigarette smoking during pregnancy and the risk of newborns developing cleft lip/palate. 18 A salient feature of this study is the use of the 1996 U.S. Natality database, a population database, from which both cases and controls were selected. This database provides a large sample size to assess newborn development of cleft lip/palate (outcome), which has a reported incidence of 1 in 1000 live births, 19 and also enabled the investigators to choose controls (i.e., healthy newborns) that were generalizable to the general population to strengthen the study's external validity. A significant relationship with maternal cigarette smoking and cleft lip/palate in the newborn was reported in this study (adjusted OR 1.34, 95% CI 1.36-1.76). 18

Matching is a method used in an attempt to ensure comparability between cases and controls and reduces variability and systematic differences due to background variables that are not of interest to the investigator. 8 Each case is typically individually paired with a control subject with respect to the background variables. The exposure to the risk factor of interest is then compared between the cases and the controls. This matching strategy is called individual matching. Age, sex, and race are often used to match cases and controls because they are typically strong confounders of disease. 20 Confounders are variables associated with the risk factor and may potentially be a cause of the outcome. 8 Table 5 lists several advantages and disadvantages with a matching design.

Advantages and Disadvantages for Using a Matching Strategy

Multiple Controls

Investigations examining rare outcomes may have a limited number of cases to select from, whereas the source population from which controls can be selected is much larger. In such scenarios, the study may be able to provide more information if multiple controls per case are selected. This method increases the “statistical power” of the investigation by increasing the sample size. The precision of the findings may improve by having up to about three or four controls per case. 21 - 23

Bias in Case-Control Studies

Evaluating exposure status can be the Achilles heel of case-control studies. Because information about exposure is typically collected by self-report, interview, or from recorded information, it is susceptible to recall bias, interviewer bias, or will rely on the completeness or accuracy of recorded information, respectively. These biases decrease the internal validity of the investigation and should be carefully addressed and reduced in the study design. Recall bias occurs when a differential response between cases and controls occurs. The common scenario is when a subject with disease (case) will unconsciously recall and report an exposure with better clarity due to the disease experience. Interviewer bias occurs when the interviewer asks leading questions or has an inconsistent interview approach between cases and controls. A good study design will implement a standardized interview in a non-judgemental atmosphere with well-trained interviewers to reduce interviewer bias. 9

The STROBE Statement: The Strengthening the Reporting of Observational Studies in Epidemiology Statement

In 2004, the first meeting of the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) group took place in Bristol, UK. 24 The aim of the group was to establish guidelines on reporting observational research to improve the transparency of the methods, thereby facilitating the critical appraisal of a study's findings. A well-designed but poorly reported study is disadvantaged in contributing to the literature because the results and generalizability of the findings may be difficult to assess. Thus a 22-item checklist was generated to enhance the reporting of observational studies across disciplines. 25 , 26 This checklist is also located at the following website: . This statement is applicable to cohort studies, case-control studies, and cross-sectional studies. In fact, 18 of the checklist items are common to all three types of observational studies, and 4 items are specific to each of the 3 specific study designs. In an effort to provide specific guidance to go along with this checklist, an “explanation and elaboration” article was published for users to better appreciate each item on the checklist. 27 Plastic surgery investigators should peruse this checklist prior to designing their study and when they are writing up the report for publication. In fact, some journals now require authors to follow the STROBE Statement. A list of participating journals can be found on this website: .

Due to the limitations in carrying out RCTs in surgical investigations, observational studies are becoming more popular to investigate the relationship between exposures, such as risk factors or surgical interventions, and outcomes, such as disease states or complications. Recognizing that well-designed observational studies can provide valid results is important among the plastic surgery community, so that investigators can both critically appraise and appropriately design observational studies to address important clinical research questions. The investigator planning an observational study can certainly use the STROBE statement as a tool to outline key features of a study as well as coming back to it again at the end to enhance transparency in methodology reporting.


Supported in part by a Midcareer Investigator Award in Patient-Oriented Research (K24 AR053120) from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (to Dr. Kevin C. Chung).

None of the authors has a financial interest in any of the products, devices, or drugs mentioned in this manuscript.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Open topic with navigation

Prospective vs. Retrospective Studies


A prospective study watches for outcomes, such as the development of a disease, during the study period and relates this to other factors such as suspected risk or protection factor(s). The study usually involves taking a cohort of subjects and watching them over a long period. The outcome of interest should be common; otherwise, the number of outcomes observed will be too small to be statistically meaningful (indistinguishable from those that may have arisen by chance). All efforts should be made to avoid sources of bias such as the loss of individuals to follow up during the study. Prospective studies usually have fewer potential sources of bias and confounding than retrospective studies.


A retrospective study looks backwards and examines exposures to suspected risk or protection factors in relation to an outcome that is established at the start of the study. Many valuable case-control studies, such as Lane and Claypon's 1926 investigation of risk factors for breast cancer, were retrospective investigations. Most sources of error due to confounding and bias are more common in retrospective studies than in prospective studies. For this reason, retrospective investigations are often criticised. If the outcome of interest is uncommon, however, the size of prospective investigation required to estimate relative risk is often too large to be feasible. In retrospective studies the odds ratio provides an estimate of relative risk. You should take special care to avoid sources of bias and confounding in retrospective studies.

Prospective investigation is required to make precise estimates of either the incidence of an outcome or the relative risk of an outcome based on exposure.

Case-Control studies

Case-Control studies are usually but not exclusively retrospective, the opposite is true for cohort studies. The following notes relate case-control to cohort studies:

Cohort studies

Cohort studies are usually but not exclusively prospective, the opposite is true for case-control studies. The following notes relate cohort to case-control studies:

Copyright © 2000-2022 StatsDirect Limited, all rights reserved. Download a free trial here .

Clarifying the distinction between case series and cohort studies in systematic reviews of comparative studies: potential impact on body of evidence and workload

BMC Medical Research Methodology volume  17 , Article number:  107 ( 2017 ) Cite this article

83k Accesses

78 Citations

20 Altmetric

Metrics details

Distinguishing cohort studies from case series is difficult.

We propose a conceptualization of cohort studies in systematic reviews of comparative studies. The main aim of this conceptualization is to clarify the distinction between cohort studies and case series. We discuss the potential impact of the proposed conceptualization on the body of evidence and workload.

All studies with exposure-based sampling gather multiple exposures (with at least two different exposures or levels of exposure) and enable calculation of relative risks that should be considered cohort studies in systematic reviews, including non-randomized studies. The term “enables/can” means that a predefined analytic comparison is not a prerequisite (i.e., the absolute risks per group and/or a risk ratio are provided). Instead, all studies for which sufficient data are available for reanalysis to compare different exposures (e.g., sufficient data in the publication) are classified as cohort studies.

There are possibly large numbers of studies without a comparison for the exposure of interest but that do provide the necessary data to calculate effect measures for a comparison. Consequently, more studies could be included in a systematic review. Therefore, on the one hand, the outlined approach can increase the confidence in effect estimates and the strengths of conclusions. On the other hand, the workload would increase (e.g., additional data extraction and risk of bias assessment, as well as reanalyses).

Peer Review reports

Systematic reviews that include non-randomized studies often consider different observational study designs [ 1 ]. However, the distinction between different non-randomized study designs is difficult. One key design feature to classify observational study designs is to distinguish comparative from non-comparative studies [ 2 , 3 ]. The lack of a comparison group is of particular importance for distinguishing cohort studies from case series because in many definitions, they share a main design feature of having a follow-up period examining the exposed individuals over time [ 2 , 3 ]. The only difference between cohort studies and case series in many definitions is that cohort studies compare different groups (i.e., examine the association between exposure and outcome), while case series are uncontrolled [ 3 , 4 , 5 ]. Table 1 shows an example definition [ 3 ]. The problem with this definition is that vague terms, such as comparison and examination of association, might be interpreted as an analytic comparison of at least two exposures (i.e., interventions, risk factors or prognostic factors).

For example, imagine a study of 20 consecutive patients with a certain disease that can be treated in two different ways. A study that divides the 20 patients into two groups according to the treatment received and compares the outcomes of these groups (e.g., provides aggregated absolute risks per group or a risk ratio) would be probably classified as a cohort study (the example used in the following sections is denoted “study 1”). A sample of this study type is illustrated in Fig. 1 and Table 2 .

Cohort study (vague definition)

In contrast, a publication that describes the interventions received and outcomes for each patient/case separately would probably be classified as a case series (the example in the following sections is denoted “study 2”). An example of this study type is illustrated in Fig. 2 and Table 3 . In the medical literature, the data on exposure and outcomes are usually provided in either running text or spreadsheet formats [ 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ]. A good example is the study by Wong et al. [ 10 ]. In this study, information on placental invasion (exposure) and blood loss (outcome) is separately provided for 40 pregnant women in a table. The study by Cheng et al. is an example of a study providing information in the running text (i.e., anticoagulation management [exposure] and recovery [outcome] for paediatric stroke) [ 6 ].

Case series (vague definition)

These examples illustrate that distinguishing between cohort studies and case series is difficult. Vague definitions are probably the reason for the common confusion between study designs. A recent study found that approximately 72% of cohort studies are mislabelled as case series [ 22 ]. Many systematic reviews of non-randomized studies included cohort studies but excluded case series (see examples in [ 23 , 24 , 25 , 26 , 27 , 28 ]). Therefore, the unclear distinction between case series and cohort studies can result in inconsistent study selection and unjustified exclusions from a systematic review. The risk of misclassification is particularly high because study authors also often mislabel their study or studies are not classified by their authors at all (see examples in [ 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 ]).

We propose a conceptualization of cohort studies in systematic reviews of comparative studies. The main objective of this conceptualization is to clarify the distinction between cohort studies and case series in systematic reviews, including non-randomized comparative studies. We discuss the potential impact of the proposed conceptualization on the body of evidence and workload.

Clarifying the distinction between case series and cohort studies (the solution)

In the following report, we propose a conceptualization for cohort studies and case series (e.g., sampling) for systematic reviews, including comparative non-randomized studies. Our proposal is based on a recent conceptualization of cohort studies and case series by Dekkers et al. [ 29 ]. The main feature of this conceptualization is that it is exclusively based on inherent design features and is not affected by the analysis.

Cohort studies of one exposure/one group

Dekkers et al. [ 29 ] defined cohort studies with one exposure as studies with exposure-based sampling that enable calculating absolute effects measures for a risk of outcome. This definition means that “the absence of a control group in an exposure-based study does not define a case series” [ 29 ]. The definition of cohort studies according to Dekkers et al. [ 29 ] is summarized in Table 4 .

Cohort studies of multiple exposures/more than one group

This idea can be easily extended to studies with more than one exposure. In this case, all studies with exposure-based sampling gathering multiple exposures (i.e., at least two different exposures, manifestations of exposures or levels of exposures) can be considered as (comparative) cohort studies (Fig. 3 ). The sampling is based on exposure, and there are different groups. Consequently, relative risks can be calculated [ 29 ]. The term “enables/can” implies that a predefined analytic comparison is not a prerequisite but that all studies with sufficient data to enable a reanalysis (e.g., in the publication, study reports, and supplementary material) would be classified as cohort studies.

Cohort study (deduced from Dekkers et al. [ 28 ])

In short, all studies that enable calculation of a relative risk to quantify a difference in outcomes between different groups should be considered cohort studies.

Case series

According to Dekkers et al. [ 29 ], the sampling of a case series is either based on exposure and outcome (e.g., all patients are treated and have an adverse event) or case series include patients with a certain outcome regardless of exposure (see Fig. 4 ). Consequently, no absolute risk and also no relative effect measures for an outcome can be calculated in a case series. Note that sampling in a case series does not need to be consecutive. Consecutiveness would increase the quality of the case series, but a non-consecutive series is also a case series [ 29 ].

Case series (Deckers et al. [ 28 ])

In short, for a case series, there are no absolute risks, and also, no risk ratios can be calculated. Consequently, a case series cannot be comparative. The definition of a case series by Dekkers et al. [ 29 ] is summarized in Table 4 .

It is noteworthy that the conceptualization also ensures a clear distinction of case series from other study designs that apply outcome-based sampling. Case series, case-control studies (including case-time-control), and self-controlled case-control designs (e.g., case-crossover) all have outcome-based sampling in common [ 29 ].

Case series have no control at all because only patients with a certain manifestation of outcomes are sampled (e.g., individuals with a disease or deceased individuals). In contrast, all case-control designs as well as self-controlled case-control designs have a control group. In case-control studies, the control group constitutes individuals with another manifestation of the outcome (e.g., healthy individuals or survivors). This outcome can be considered as two case series (i.e., case group and no case group).

Self-controlled case-control studies are characterized by an intra-individual comparison (each individual is their own control) [ 30 ]. Information is also sampled when patients are not exposed. Therefore, case-control designs as well as self-controlled case-control studies enable the calculation of risk ratios. This approach is not possible for a case series.

Illustrating example

Above, we illustrated that by using a vague definition, the classification of a study design might be influenced by the preparation and analysis of the study data. The proposed conceptualization is exclusively based on the inherent design features (e.g., sampling, exposure). After considering the example studies again using the proposed conceptualization, all studies would be classified as cohort studies because the relative risk can be calculated. This outcome becomes clear looking at Table 2 and Table 3 . If the patients in Table 3 are rearranged according the exposure and the data are reanalysed (i.e., calculation of absolute risk per group and relative risks to compare groups), Table 3 can be converted into Table 2 (and also, Fig. 2 can be converted to Fig. 3 ). In the study by Wong et al. [ 10 ], the mean blood loss in the group with placental invasion and in the group without placental invasion can be calculated and compared (e.g., relative risk with 95% confidence limits). In this study, the data on gestational age are also provided in the table. Therefore, it is even possible to adjust the results for gestational age (e.g., using a logistic regression).

Discussion (the impact)

Influence on the body of evidence.

The proposed conceptualization is exclusively based on inherent study design features; therefore, there is less room for misinterpretation compared to existing conceptualizations because analysis features, presentation of data and labelling of the study are not determined. Thus, the conceptualization ensures consistent study selection for systematic reviews.

The prerequisite of an analytical comparison in the publication can lead to the unjustified exclusion of relevant studies from a systematic review. Study 1 would likely be included, and Study 2 would be excluded from the systematic review. The only differences between Study 1 and Study 2 are the analysis and preparation of data. If the data source (e.g., chart review) and the reanalysis (calculation of effect measures and statistical tests) to compare the intervention and control group in Study 2 are performed exactly with the same approach as the existing analysis in Study 1, there can be no difference in the effect estimates between studies, and the studies are at the same risk of bias. Thus, the inclusion of Study 1 and the exclusion of Study 2 are contradictory to the requirement that systematic reviews identify all available evidence [ 31 ].

Considering that more studies would be eligible for inclusion and that the hierarchical paradigm of the levels of evidence is not valid per se, the proposed conceptualization can potentially enrich bodies of evidence and increase confidence in effect estimates.

Influence on workload

The additional inclusion of all studies that enable calculating relative risk for the comparison of interest might impact the workload of systematic reviews. There might be a considerable number of studies not performing a comparison already but that provide sufficient data for reanalysis. Usually the electronic search strategy for systematic reviews of non-randomized studies is not limited to certain study types because there are no sensitive search filters available yet [ 32 ]. Therefore, the search results do not usually include cohort studies as discussed above. However, in many abstracts it would be not directly clear if sufficient data for re-calculations are reported in the full text article (e.g., a table like Table 3 ). Consequently, many additional potentially relevant full-text studies have to be screened. Additionally, studies often assess various exposures (e.g., different baseline characteristics), and it might thus be difficult to identify relevant exposures. Considering the large amount of wrongly labelled studies, this approach can lead to additional screening effort [ 22 ].

As a result, more studies would be included in systematic reviews. All articles that provide potentially relevant data would have to be assessed in detail to decide whether reanalysis is feasible. For these data extractions, a risk of bias assessment would have to be performed. Challenges in the risk of bias assessment would arise because most assessment tools are constructed to assess a predefined control group [ 33 ]. For example, items regarding the adequacy of analysis (e.g., adjustment for confounders) cannot be assessed anymore. Effect measures must be calculated (e.g., risks by group and relative risk with a 95% confidence limit), and eventually further analyses (e.g., adjustments for confounders) might be necessary for studies that provide sufficient data. Moreover, advanced biometrical expertise would be necessary to judge the feasibility (i.e., determining the possibility to calculate relative risks and whether there are sufficient data to adjust for confounders) of a re-analysis and to conduct the reanalysis.

Promising areas of application

In the medical literature, it is likely that more retrospective mislabelled cohort studies (comparison planned after data collection) based on routinely collected data (e.g., chart review, review of radiology databases) than prospectively planned (i.e., comparisons planned before data collection) and wrongly labelled cohort studies can be found. Thus, it can be assumed that the wrongly labelled studies tend to have lower methodological quality than studies that already include a comparison. This aspect should be considered in decisions about including studies that must be reanalysed. In research areas in which randomized controlled trials or large planned prospective and well-conducted cohort studies can be expected (e.g., risk factors for widespread diseases), the approach is less promising for enriching the body of evidence. Consequently, in these areas, the additional effort might not be worthwhile.

Again, the conceptualization is particularly promising in research areas in which evidence is sparse because studies are difficult to conduct or populations are small or the event rates are low. These areas include rare diseases, adverse events/complications, sensitive groups (e.g., children or individuals with cognitive deficiencies) or rarely used interventions (e.g., costly innovations). In these areas, there might be no well-conducted studies at all [ 34 , 35 ]. Therefore, the proposed conceptualization in this report has great potential to increase confidence in effect estimates.

We proposed a conceptualization for cohort studies with multiple exposures that ensures a clear distinction from case series. In this conceptualization, all studies that contain sufficient data to conduct a reanalysis and not only studies with a pre-existing analytic comparison are classified as cohort studies and are considered appropriate for inclusion in systematic reviews. To the best of our knowledge, no systematic reviews exist that reanalyse (mislabelled) case series to create cohort studies. The outlined approach is a method that can potentially enrich the body of evidence and subsequently enhance confidence in effect estimates and the strengths of conclusions. However, the enrichment of the body of evidence should be balanced against the additional workload.

Ijaz S, Verbeek JH, Mischke C, Ruotsalainen J. Inclusion of nonrandomized studies in Cochrane systematic reviews was found to be in need of improvement. J Clin Epidemiol. 2014;67(6):645–53.

Article   PubMed   Google Scholar  

Ev E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335(7624):806–8.

Article   Google Scholar  

Reeves BC, Deeks JJ, Higgins JP. 13 including non-randomized studies. Cochrane Handbook Syst Rev Interventions. 2008;1:391.

Google Scholar  

Hartling L, Bond K, Santaguida PL, Viswanathan M, Dryden DM. Testing a tool for the classification of study designs in systematic reviews of interventions and exposures showed moderate reliability and low accuracy. J Clin Epidemiol. 2011;64(8):861–71.

EPOC-specific resources for review authors: What study designs should be included in an EPOC review and what should they be called? [ ]. Accessed 12 July 2017.

Cheng WW, Ko CH, Chan AK. Paediatric stroke: case series. Hong Kong Med J. 2002;8(3):216–20.

CAS   PubMed   Google Scholar  

Hernot S, Wadhera R, Kaintura M, Bhukar S, Pillai DS, Sehrawat U, George JS. Tracheocutaneous fistula closure: comparison of rhomboid flap repair with Z Plasty repair in a case series of 40 patients. Aesthet Plast Surg. 2016.

Stacchiotti S, Provenzano S, Dagrada G, Negri T, Brich S, Basso U, Brunello A, Grosso F, Galli L, Palassini E, et al. Sirolimus in advanced Epithelioid Hemangioendothelioma: a retrospective case-series analysis from the Italian rare cancer network database. Ann Surg Oncol. 2016;23(9):2735–44.

Sofiah S, Fung LYC. Placenta accreta: clinical risk factors, accuracy of antenatal diagnosis and effect on pregnancy outcome. Med J Malays. 2009;64(4):298–302.

CAS   Google Scholar  

Wong HS, Hutton J, Zuccollo J, Tait J, Pringle KC. The maternal outcome in placenta accreta: the significance of antenatal diagnosis and non-separation of placenta at delivery. N Z Med J. 2008;121(1277):30–8.

PubMed   Google Scholar  

Mayorandan S, Meyer U, Gokcay G, Segarra NG, de Baulny HO, van Spronsen F, Zeman J, de Laet C, Spiekerkoetter U, Thimm E, et al. Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet J Rare Dis. 2014;9(1):107.

Article   PubMed   PubMed Central   Google Scholar  

Bartlett DC, Lloyd C, McKiernan PJ, Newsome PN. Early nitisinone treatment reduces the need for liver transplantation in children with tyrosinaemia type 1 and improves post-transplant renal function. J Inherit Metab Dis. 2014;37(5):745–52.

Article   CAS   PubMed   Google Scholar  

El-Karaksy H, Fahmy M, El-Raziky M, El-Koofy N, El-Sayed R, Rashed MS, El-Kiki H, El-Hennawy A, Mohsen N. Hereditary tyrosinemia type 1 from a single center in Egypt: clinical study of 22 cases. World J Pediatr. 2011;7(3):224–31.

Zeybek AC, Kiykim E, Soyucen E, Cansever S, Altay S, Zubarioglu T, Erkan T, Aydin A. Hereditary tyrosinemia type 1 in Turkey: twenty year single-center experience. Pediatr Int. 2015;57(2):281–9.

Helmy N, Akl Y, Kaddah S, El Hafiz HA, El Makhzangy H. A case series: Egyptian experience in using chemical pleurodesis as an alternative management in refractory hepatic hydrothorax. Arch Med Sci. 2010;6(3):336–42.

Niesen AD, Sprung J, Prakash YS, Watson JC, Weingarten TN. Case series: anesthetic management of patients with spinal and bulbar muscular atrophy (Kennedy's disease). Can J Anaesth. 2009;56(2):136–41.

de Mauroy JC, Journe A, Gagaliano F, Lecante C, Barral F, Pourret S. The new Lyon ARTbrace versus the historical Lyon brace: a prospective case series of 148 consecutive scoliosis with short time results after 1 year compared with a historical retrospective case series of 100 consecutive scoliosis; SOSORT award 2015 winner. Scoliosis. 2015;10:26.

Forner D, Phillips T, Rigby M, Hart R, Taylor M, Trites J. Submental island flap reconstruction reduces cost in oral cancer reconstruction compared to radial forearm free flap reconstruction: a case series and cost analysis. J Otolaryngol Head Neck Surg. 2016;45:11.

Article   CAS   PubMed   PubMed Central   Google Scholar  

Kuhnt D, Bauer MHA, Sommer J, Merhof D, Nimsky C. Optic radiation fiber Tractography in Glioma patients based on high angular resolution diffusion imaging with compressed sensing compared with diffusion tensor imaging - initial experience. PLoS One. 2013;8(7):e70973.

Naesens R, Vlieghe E, Verbrugghe W, Jorens P, Ieven M. A retrospective observational study on the efficacy of colistin by inhalation as compared to parenteral administration for the treatment of nosocomial pneumonia associated with multidrug-resistant Pseudomonas Aeruginosa. BMC Infect Dis. 2011;11:317.

Toktas ZO, Konakci M, Yilmaz B, Eksi MS, Aksoy T, Yener Y, Koban O, Kilic T, Konya D. Pain control following posterior spine fusion: patient-controlled continuous epidural catheter infusion method yields better post-operative analgesia control compared to intravenous patient controlled analgesia method. A retrospective case series. Eur Spine J. 2016;25(5):1608–13.

Esene IN, Ngu J, Zoghby M, Solaroglu I, Sikod AM, Kotb A, Dechambenoit G, Husseiny H. Case series and descriptive cohort studies in neurosurgery: the confusion and solution. Childs Nerv Syst. 2014;30(8):1321–32.

Kellesarian SV, Yunker M, Ramakrishnaiah R, Malmstrom H, Kellesarian TV, Ros Malignaggi V, Javed F. Does incorporating zinc in titanium implant surfaces influence osseointegration? A systematic review. J Prosthet Dent. 2017;117(1):41–7.

Wijnands TF, Gortjes AP, Gevers TJ, Jenniskens SF, Kool LJ, Potthoff A, Ronot M, Drenth JP. Efficacy and safety of aspiration Sclerotherapy of simple hepatic cysts: a systematic review. AJR Am J Roentgenol. 2017;208(1):201–7.

Zapata LB, Oduyebo T, Whiteman MK, Houtchens MK, Marchbanks PA, Curtis KM. Contraceptive use among women with multiple sclerosis: a systematic review. Contraception. 2016;94(6):612–20.

Dogramaci EJ, Rossi-Fedele G. Establishing the association between nonnutritive sucking behavior and malocclusions: a systematic review and meta-analysis. J Am Dent Assoc. 2016;147(12):926–34. e926.

Kellesarian SV, Abduljabbar T, Vohra F, Gholamiazizi E, Malmstrom H, Romanos GE, Javed F. Does local Ibandronate and/or Pamidronate delivery enhance Osseointegration? A systematic review. J Prosthodont. 2016.

Crandall M, Eastman A, Violano P, Greene W, Allen S, Block E, Christmas AB, Dennis A, Duncan T, Foster S, et al. Prevention of firearm-related injuries with restrictive licensing and concealed carry laws: an eastern Association for the Surgery of trauma systematic review. J Trauma Acute Care Surg. 2016;81(5):952–60.

Dekkers OM, Egger M, Altman DG, Vandenbroucke JP. Distinguishing case series from cohort studies. Ann Intern Med. 2012;156(1_Part_1):37–40.

Petersen I, Douglas I, Whitaker H. Self controlled case series methods: an alternative to standard epidemiological study designs. BMJ. 2016;354.

Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions, vol. 5: Wiley Online Library; 2008.

Marcano Belisario JS, Tudor Car L, Reeves TJA, Gunn LH, Car J. Search strategies to identify observational studies in MEDLINE and EMBASE. Cochrane Database Syst Rev. 2013;12.

Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–6.

Institute for Quality and Efficiency in Health Care (IQWIG): Newborn screening for severe combined immunodeficiency (S15–02). In . ; 2017.

Institute for Quality and Efficiency in Health Care (IQWIG): Newborn screening for tyrosinaemia type 1 (S15–01). In . ; 2017.

Download references


There was no external funding for the research or publication of this article.

Availability of data and materials

Not applicable.

Author information

Authors and affiliations.

Institute for Research in Operative Medicine, Chair of Surgical Research, Faculty of Health, School of Medicine, Witten/Herdecke University, Ostmerheimer Str. 200, 51109, Cologne, Germany

Tim Mathes & Dawid Pieper

You can also search for this author in PubMed   Google Scholar


All authors have made substantial contributions to the work. Both authors read and approved the final manuscript.

Corresponding author

Correspondence to Tim Mathes .

Ethics declarations

Ethics approval and consent to participate.

Not applicable. No human data involved.

Consent for publication

Not applicable. The manuscript contains no individual person’s data.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( ) applies to the data made available in this article, unless otherwise stated.

Reprints and Permissions

About this article

Cite this article.

Mathes, T., Pieper, D. Clarifying the distinction between case series and cohort studies in systematic reviews of comparative studies: potential impact on body of evidence and workload. BMC Med Res Methodol 17 , 107 (2017).

Download citation

Received : 17 January 2017

Accepted : 10 July 2017

Published : 17 July 2017


Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

BMC Medical Research Methodology

ISSN: 1471-2288

retrospective cohort study vs case control


  1. The difference between a retrospective cohort study and a prospective cohort study.

    retrospective cohort study vs case control

  2. Retrospective cohort study

    retrospective cohort study vs case control

  3. Case Study Control

    retrospective cohort study vs case control

  4. Cohort study

    retrospective cohort study vs case control

  5. Difference between Case control study and Retrospective cohort study

    retrospective cohort study vs case control

  6. Difference between Case control study and Retrospective cohort study

    retrospective cohort study vs case control


  1. Study designs

  2. دراسة الحالة Case report / case study

  3. Major Health Sciences Study Designs

  4. Case-control study design

  5. Cohort and Case Control Studies

  6. Late Night Study vs Early Morning Study


  1. Difference between Case control study and Retrospective cohort study

    Case control study inspects individuals by outcome/disease status. But, the retrospective cohort study inspects individuals by their exposure

  2. Case-control and Cohort studies: A brief overview

    Case-control studies are retrospective. They clearly define two groups at the start: one with the outcome/disease and one without the outcome/

  3. A Case-control or a retrospective cohort study? Comment on the

    Cohort studies follow groups defined by different exposures and observe the incidence of the outcomes. In the retrospective cohort design, the

  4. cohort, cross sectional, and case-control studies

    Case controlled studies compare groups retrospectively. They seek to identify possible predictors of outcome and are useful for studying rare diseases or

  5. Observational Studies: Cohort and Case-Control Studies

    Case-control study designs are also retrospective and assess the history of the subject for the presence or absence of an exposure. Go to: COHORT STUDY. The

  6. Retrospective Cohort vs Case Control Study?

    If you're having trouble to differentiate the RESTROSPECTIVE COHORT STUDY from the CASE CONTROL STUDY, you are in the right place.


    In this video the Dr. Hassaan Tohid will explain the case-control and the retrospective cohort studies Pointing out the differences of each

  8. Retrospective cohort study

    While retrospective cohort studies try to compare the risk of developing a disease to some already known exposure factors, a case-control study will try to

  9. Prospective, Retrospective, Case-control, Cohort Studies

    A prospective study watches for outcomes, such as the development of a disease, during the study period and relates this to other factors such as suspected risk

  10. Clarifying the distinction between case series and cohort studies in

    The only difference between cohort studies and case series in many definitions is that cohort studies compare different groups (i.e., examine