• Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Report – Example, Writing Guide and Types

Research Report – Example, Writing Guide and Types

Table of Contents

Research Report

Research Report

Definition:

Research Report is a written document that presents the results of a research project or study, including the research question, methodology, results, and conclusions, in a clear and objective manner.

The purpose of a research report is to communicate the findings of the research to the intended audience, which could be other researchers, stakeholders, or the general public.

Components of Research Report

Components of Research Report are as follows:

Introduction

The introduction sets the stage for the research report and provides a brief overview of the research question or problem being investigated. It should include a clear statement of the purpose of the study and its significance or relevance to the field of research. It may also provide background information or a literature review to help contextualize the research.

Literature Review

The literature review provides a critical analysis and synthesis of the existing research and scholarship relevant to the research question or problem. It should identify the gaps, inconsistencies, and contradictions in the literature and show how the current study addresses these issues. The literature review also establishes the theoretical framework or conceptual model that guides the research.

Methodology

The methodology section describes the research design, methods, and procedures used to collect and analyze data. It should include information on the sample or participants, data collection instruments, data collection procedures, and data analysis techniques. The methodology should be clear and detailed enough to allow other researchers to replicate the study.

The results section presents the findings of the study in a clear and objective manner. It should provide a detailed description of the data and statistics used to answer the research question or test the hypothesis. Tables, graphs, and figures may be included to help visualize the data and illustrate the key findings.

The discussion section interprets the results of the study and explains their significance or relevance to the research question or problem. It should also compare the current findings with those of previous studies and identify the implications for future research or practice. The discussion should be based on the results presented in the previous section and should avoid speculation or unfounded conclusions.

The conclusion summarizes the key findings of the study and restates the main argument or thesis presented in the introduction. It should also provide a brief overview of the contributions of the study to the field of research and the implications for practice or policy.

The references section lists all the sources cited in the research report, following a specific citation style, such as APA or MLA.

The appendices section includes any additional material, such as data tables, figures, or instruments used in the study, that could not be included in the main text due to space limitations.

Types of Research Report

Types of Research Report are as follows:

Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master’s or Doctoral degree, although it can also be written by researchers or scholars in other fields.

Research Paper

Research paper is a type of research report. A research paper is a document that presents the results of a research study or investigation. Research papers can be written in a variety of fields, including science, social science, humanities, and business. They typically follow a standard format that includes an introduction, literature review, methodology, results, discussion, and conclusion sections.

Technical Report

A technical report is a detailed report that provides information about a specific technical or scientific problem or project. Technical reports are often used in engineering, science, and other technical fields to document research and development work.

Progress Report

A progress report provides an update on the progress of a research project or program over a specific period of time. Progress reports are typically used to communicate the status of a project to stakeholders, funders, or project managers.

Feasibility Report

A feasibility report assesses the feasibility of a proposed project or plan, providing an analysis of the potential risks, benefits, and costs associated with the project. Feasibility reports are often used in business, engineering, and other fields to determine the viability of a project before it is undertaken.

Field Report

A field report documents observations and findings from fieldwork, which is research conducted in the natural environment or setting. Field reports are often used in anthropology, ecology, and other social and natural sciences.

Experimental Report

An experimental report documents the results of a scientific experiment, including the hypothesis, methods, results, and conclusions. Experimental reports are often used in biology, chemistry, and other sciences to communicate the results of laboratory experiments.

Case Study Report

A case study report provides an in-depth analysis of a specific case or situation, often used in psychology, social work, and other fields to document and understand complex cases or phenomena.

Literature Review Report

A literature review report synthesizes and summarizes existing research on a specific topic, providing an overview of the current state of knowledge on the subject. Literature review reports are often used in social sciences, education, and other fields to identify gaps in the literature and guide future research.

Research Report Example

Following is a Research Report Example sample for Students:

Title: The Impact of Social Media on Academic Performance among High School Students

This study aims to investigate the relationship between social media use and academic performance among high school students. The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The findings indicate that there is a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students. The results of this study have important implications for educators, parents, and policymakers, as they highlight the need for strategies that can help students balance their social media use and academic responsibilities.

Introduction:

Social media has become an integral part of the lives of high school students. With the widespread use of social media platforms such as Facebook, Twitter, Instagram, and Snapchat, students can connect with friends, share photos and videos, and engage in discussions on a range of topics. While social media offers many benefits, concerns have been raised about its impact on academic performance. Many studies have found a negative correlation between social media use and academic performance among high school students (Kirschner & Karpinski, 2010; Paul, Baker, & Cochran, 2012).

Given the growing importance of social media in the lives of high school students, it is important to investigate its impact on academic performance. This study aims to address this gap by examining the relationship between social media use and academic performance among high school students.

Methodology:

The study utilized a quantitative research design, which involved a survey questionnaire administered to a sample of 200 high school students. The questionnaire was developed based on previous studies and was designed to measure the frequency and duration of social media use, as well as academic performance.

The participants were selected using a convenience sampling technique, and the survey questionnaire was distributed in the classroom during regular school hours. The data collected were analyzed using descriptive statistics and correlation analysis.

The findings indicate that the majority of high school students use social media platforms on a daily basis, with Facebook being the most popular platform. The results also show a negative correlation between social media use and academic performance, suggesting that excessive social media use can lead to poor academic performance among high school students.

Discussion:

The results of this study have important implications for educators, parents, and policymakers. The negative correlation between social media use and academic performance suggests that strategies should be put in place to help students balance their social media use and academic responsibilities. For example, educators could incorporate social media into their teaching strategies to engage students and enhance learning. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. Policymakers could develop guidelines and policies to regulate social media use among high school students.

Conclusion:

In conclusion, this study provides evidence of the negative impact of social media on academic performance among high school students. The findings highlight the need for strategies that can help students balance their social media use and academic responsibilities. Further research is needed to explore the specific mechanisms by which social media use affects academic performance and to develop effective strategies for addressing this issue.

Limitations:

One limitation of this study is the use of convenience sampling, which limits the generalizability of the findings to other populations. Future studies should use random sampling techniques to increase the representativeness of the sample. Another limitation is the use of self-reported measures, which may be subject to social desirability bias. Future studies could use objective measures of social media use and academic performance, such as tracking software and school records.

Implications:

The findings of this study have important implications for educators, parents, and policymakers. Educators could incorporate social media into their teaching strategies to engage students and enhance learning. For example, teachers could use social media platforms to share relevant educational resources and facilitate online discussions. Parents could limit their children’s social media use and encourage them to prioritize their academic responsibilities. They could also engage in open communication with their children to understand their social media use and its impact on their academic performance. Policymakers could develop guidelines and policies to regulate social media use among high school students. For example, schools could implement social media policies that restrict access during class time and encourage responsible use.

References:

  • Kirschner, P. A., & Karpinski, A. C. (2010). Facebook® and academic performance. Computers in Human Behavior, 26(6), 1237-1245.
  • Paul, J. A., Baker, H. M., & Cochran, J. D. (2012). Effect of online social networking on student academic performance. Journal of the Research Center for Educational Technology, 8(1), 1-19.
  • Pantic, I. (2014). Online social networking and mental health. Cyberpsychology, Behavior, and Social Networking, 17(10), 652-657.
  • Rosen, L. D., Carrier, L. M., & Cheever, N. A. (2013). Facebook and texting made me do it: Media-induced task-switching while studying. Computers in Human Behavior, 29(3), 948-958.

Note*: Above mention, Example is just a sample for the students’ guide. Do not directly copy and paste as your College or University assignment. Kindly do some research and Write your own.

Applications of Research Report

Research reports have many applications, including:

  • Communicating research findings: The primary application of a research report is to communicate the results of a study to other researchers, stakeholders, or the general public. The report serves as a way to share new knowledge, insights, and discoveries with others in the field.
  • Informing policy and practice : Research reports can inform policy and practice by providing evidence-based recommendations for decision-makers. For example, a research report on the effectiveness of a new drug could inform regulatory agencies in their decision-making process.
  • Supporting further research: Research reports can provide a foundation for further research in a particular area. Other researchers may use the findings and methodology of a report to develop new research questions or to build on existing research.
  • Evaluating programs and interventions : Research reports can be used to evaluate the effectiveness of programs and interventions in achieving their intended outcomes. For example, a research report on a new educational program could provide evidence of its impact on student performance.
  • Demonstrating impact : Research reports can be used to demonstrate the impact of research funding or to evaluate the success of research projects. By presenting the findings and outcomes of a study, research reports can show the value of research to funders and stakeholders.
  • Enhancing professional development : Research reports can be used to enhance professional development by providing a source of information and learning for researchers and practitioners in a particular field. For example, a research report on a new teaching methodology could provide insights and ideas for educators to incorporate into their own practice.

How to write Research Report

Here are some steps you can follow to write a research report:

  • Identify the research question: The first step in writing a research report is to identify your research question. This will help you focus your research and organize your findings.
  • Conduct research : Once you have identified your research question, you will need to conduct research to gather relevant data and information. This can involve conducting experiments, reviewing literature, or analyzing data.
  • Organize your findings: Once you have gathered all of your data, you will need to organize your findings in a way that is clear and understandable. This can involve creating tables, graphs, or charts to illustrate your results.
  • Write the report: Once you have organized your findings, you can begin writing the report. Start with an introduction that provides background information and explains the purpose of your research. Next, provide a detailed description of your research methods and findings. Finally, summarize your results and draw conclusions based on your findings.
  • Proofread and edit: After you have written your report, be sure to proofread and edit it carefully. Check for grammar and spelling errors, and make sure that your report is well-organized and easy to read.
  • Include a reference list: Be sure to include a list of references that you used in your research. This will give credit to your sources and allow readers to further explore the topic if they choose.
  • Format your report: Finally, format your report according to the guidelines provided by your instructor or organization. This may include formatting requirements for headings, margins, fonts, and spacing.

Purpose of Research Report

The purpose of a research report is to communicate the results of a research study to a specific audience, such as peers in the same field, stakeholders, or the general public. The report provides a detailed description of the research methods, findings, and conclusions.

Some common purposes of a research report include:

  • Sharing knowledge: A research report allows researchers to share their findings and knowledge with others in their field. This helps to advance the field and improve the understanding of a particular topic.
  • Identifying trends: A research report can identify trends and patterns in data, which can help guide future research and inform decision-making.
  • Addressing problems: A research report can provide insights into problems or issues and suggest solutions or recommendations for addressing them.
  • Evaluating programs or interventions : A research report can evaluate the effectiveness of programs or interventions, which can inform decision-making about whether to continue, modify, or discontinue them.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies.

When to Write Research Report

A research report should be written after completing the research study. This includes collecting data, analyzing the results, and drawing conclusions based on the findings. Once the research is complete, the report should be written in a timely manner while the information is still fresh in the researcher’s mind.

In academic settings, research reports are often required as part of coursework or as part of a thesis or dissertation. In this case, the report should be written according to the guidelines provided by the instructor or institution.

In other settings, such as in industry or government, research reports may be required to inform decision-making or to comply with regulatory requirements. In these cases, the report should be written as soon as possible after the research is completed in order to inform decision-making in a timely manner.

Overall, the timing of when to write a research report depends on the purpose of the research, the expectations of the audience, and any regulatory requirements that need to be met. However, it is important to complete the report in a timely manner while the information is still fresh in the researcher’s mind.

Characteristics of Research Report

There are several characteristics of a research report that distinguish it from other types of writing. These characteristics include:

  • Objective: A research report should be written in an objective and unbiased manner. It should present the facts and findings of the research study without any personal opinions or biases.
  • Systematic: A research report should be written in a systematic manner. It should follow a clear and logical structure, and the information should be presented in a way that is easy to understand and follow.
  • Detailed: A research report should be detailed and comprehensive. It should provide a thorough description of the research methods, results, and conclusions.
  • Accurate : A research report should be accurate and based on sound research methods. The findings and conclusions should be supported by data and evidence.
  • Organized: A research report should be well-organized. It should include headings and subheadings to help the reader navigate the report and understand the main points.
  • Clear and concise: A research report should be written in clear and concise language. The information should be presented in a way that is easy to understand, and unnecessary jargon should be avoided.
  • Citations and references: A research report should include citations and references to support the findings and conclusions. This helps to give credit to other researchers and to provide readers with the opportunity to further explore the topic.

Advantages of Research Report

Research reports have several advantages, including:

  • Communicating research findings: Research reports allow researchers to communicate their findings to a wider audience, including other researchers, stakeholders, and the general public. This helps to disseminate knowledge and advance the understanding of a particular topic.
  • Providing evidence for decision-making : Research reports can provide evidence to inform decision-making, such as in the case of policy-making, program planning, or product development. The findings and conclusions can help guide decisions and improve outcomes.
  • Supporting further research: Research reports can provide a foundation for further research on a particular topic. Other researchers can build on the findings and conclusions of the report, which can lead to further discoveries and advancements in the field.
  • Demonstrating expertise: Research reports can demonstrate the expertise of the researchers and their ability to conduct rigorous and high-quality research. This can be important for securing funding, promotions, and other professional opportunities.
  • Meeting regulatory requirements: In some fields, research reports are required to meet regulatory requirements, such as in the case of drug trials or environmental impact studies. Producing a high-quality research report can help ensure compliance with these requirements.

Limitations of Research Report

Despite their advantages, research reports also have some limitations, including:

  • Time-consuming: Conducting research and writing a report can be a time-consuming process, particularly for large-scale studies. This can limit the frequency and speed of producing research reports.
  • Expensive: Conducting research and producing a report can be expensive, particularly for studies that require specialized equipment, personnel, or data. This can limit the scope and feasibility of some research studies.
  • Limited generalizability: Research studies often focus on a specific population or context, which can limit the generalizability of the findings to other populations or contexts.
  • Potential bias : Researchers may have biases or conflicts of interest that can influence the findings and conclusions of the research study. Additionally, participants may also have biases or may not be representative of the larger population, which can limit the validity and reliability of the findings.
  • Accessibility: Research reports may be written in technical or academic language, which can limit their accessibility to a wider audience. Additionally, some research may be behind paywalls or require specialized access, which can limit the ability of others to read and use the findings.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

  • Research Report: Definition, Types + [Writing Guide]

busayo.longe

One of the reasons for carrying out research is to add to the existing body of knowledge. Therefore, when conducting research, you need to document your processes and findings in a research report. 

With a research report, it is easy to outline the findings of your systematic investigation and any gaps needing further inquiry. Knowing how to create a detailed research report will prove useful when you need to conduct research.  

What is a Research Report?

A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

In many ways, a research report can be considered as a summary of the research process that clearly highlights findings, recommendations, and other important details. Reading a well-written research report should provide you with all the information you need about the core areas of the research process.

Features of a Research Report 

So how do you recognize a research report when you see one? Here are some of the basic features that define a research report. 

  • It is a detailed presentation of research processes and findings, and it usually includes tables and graphs. 
  • It is written in a formal language.
  • A research report is usually written in the third person.
  • It is informative and based on first-hand verifiable information.
  • It is formally structured with headings, sections, and bullet points.
  • It always includes recommendations for future actions. 

Types of Research Report 

The research report is classified based on two things; nature of research and target audience.

Nature of Research

  • Qualitative Research Report

This is the type of report written for qualitative research . It outlines the methods, processes, and findings of a qualitative method of systematic investigation. In educational research, a qualitative research report provides an opportunity for one to apply his or her knowledge and develop skills in planning and executing qualitative research projects.

A qualitative research report is usually descriptive in nature. Hence, in addition to presenting details of the research process, you must also create a descriptive narrative of the information.

  • Quantitative Research Report

A quantitative research report is a type of research report that is written for quantitative research. Quantitative research is a type of systematic investigation that pays attention to numerical or statistical values in a bid to find answers to research questions. 

In this type of research report, the researcher presents quantitative data to support the research process and findings. Unlike a qualitative research report that is mainly descriptive, a quantitative research report works with numbers; that is, it is numerical in nature. 

Target Audience

Also, a research report can be said to be technical or popular based on the target audience. If you’re dealing with a general audience, you would need to present a popular research report, and if you’re dealing with a specialized audience, you would submit a technical report. 

  • Technical Research Report

A technical research report is a detailed document that you present after carrying out industry-based research. This report is highly specialized because it provides information for a technical audience; that is, individuals with above-average knowledge in the field of study. 

In a technical research report, the researcher is expected to provide specific information about the research process, including statistical analyses and sampling methods. Also, the use of language is highly specialized and filled with jargon. 

Examples of technical research reports include legal and medical research reports. 

  • Popular Research Report

A popular research report is one for a general audience; that is, for individuals who do not necessarily have any knowledge in the field of study. A popular research report aims to make information accessible to everyone. 

It is written in very simple language, which makes it easy to understand the findings and recommendations. Examples of popular research reports are the information contained in newspapers and magazines. 

Importance of a Research Report 

  • Knowledge Transfer: As already stated above, one of the reasons for carrying out research is to contribute to the existing body of knowledge, and this is made possible with a research report. A research report serves as a means to effectively communicate the findings of a systematic investigation to all and sundry.  
  • Identification of Knowledge Gaps: With a research report, you’d be able to identify knowledge gaps for further inquiry. A research report shows what has been done while hinting at other areas needing systematic investigation. 
  • In market research, a research report would help you understand the market needs and peculiarities at a glance. 
  • A research report allows you to present information in a precise and concise manner. 
  • It is time-efficient and practical because, in a research report, you do not have to spend time detailing the findings of your research work in person. You can easily send out the report via email and have stakeholders look at it. 

Guide to Writing a Research Report

A lot of detail goes into writing a research report, and getting familiar with the different requirements would help you create the ideal research report. A research report is usually broken down into multiple sections, which allows for a concise presentation of information.

Structure and Example of a Research Report

This is the title of your systematic investigation. Your title should be concise and point to the aims, objectives, and findings of a research report. 

  • Table of Contents

This is like a compass that makes it easier for readers to navigate the research report.

An abstract is an overview that highlights all important aspects of the research including the research method, data collection process, and research findings. Think of an abstract as a summary of your research report that presents pertinent information in a concise manner. 

An abstract is always brief; typically 100-150 words and goes straight to the point. The focus of your research abstract should be the 5Ws and 1H format – What, Where, Why, When, Who and How. 

  • Introduction

Here, the researcher highlights the aims and objectives of the systematic investigation as well as the problem which the systematic investigation sets out to solve. When writing the report introduction, it is also essential to indicate whether the purposes of the research were achieved or would require more work.

In the introduction section, the researcher specifies the research problem and also outlines the significance of the systematic investigation. Also, the researcher is expected to outline any jargons and terminologies that are contained in the research.  

  • Literature Review

A literature review is a written survey of existing knowledge in the field of study. In other words, it is the section where you provide an overview and analysis of different research works that are relevant to your systematic investigation. 

It highlights existing research knowledge and areas needing further investigation, which your research has sought to fill. At this stage, you can also hint at your research hypothesis and its possible implications for the existing body of knowledge in your field of study. 

  • An Account of Investigation

This is a detailed account of the research process, including the methodology, sample, and research subjects. Here, you are expected to provide in-depth information on the research process including the data collection and analysis procedures. 

In a quantitative research report, you’d need to provide information surveys, questionnaires and other quantitative data collection methods used in your research. In a qualitative research report, you are expected to describe the qualitative data collection methods used in your research including interviews and focus groups. 

In this section, you are expected to present the results of the systematic investigation. 

This section further explains the findings of the research, earlier outlined. Here, you are expected to present a justification for each outcome and show whether the results are in line with your hypotheses or if other research studies have come up with similar results.

  • Conclusions

This is a summary of all the information in the report. It also outlines the significance of the entire study. 

  • References and Appendices

This section contains a list of all the primary and secondary research sources. 

Tips for Writing a Research Report

  • Define the Context for the Report

As is obtainable when writing an essay, defining the context for your research report would help you create a detailed yet concise document. This is why you need to create an outline before writing so that you do not miss out on anything. 

  • Define your Audience

Writing with your audience in mind is essential as it determines the tone of the report. If you’re writing for a general audience, you would want to present the information in a simple and relatable manner. For a specialized audience, you would need to make use of technical and field-specific terms. 

  • Include Significant Findings

The idea of a research report is to present some sort of abridged version of your systematic investigation. In your report, you should exclude irrelevant information while highlighting only important data and findings. 

  • Include Illustrations

Your research report should include illustrations and other visual representations of your data. Graphs, pie charts, and relevant images lend additional credibility to your systematic investigation.

  • Choose the Right Title

A good research report title is brief, precise, and contains keywords from your research. It should provide a clear idea of your systematic investigation so that readers can grasp the entire focus of your research from the title. 

  • Proofread the Report

Before publishing the document, ensure that you give it a second look to authenticate the information. If you can, get someone else to go through the report, too, and you can also run it through proofreading and editing software. 

How to Gather Research Data for Your Report  

  • Understand the Problem

Every research aims at solving a specific problem or set of problems, and this should be at the back of your mind when writing your research report. Understanding the problem would help you to filter the information you have and include only important data in your report. 

  • Know what your report seeks to achieve

This is somewhat similar to the point above because, in some way, the aim of your research report is intertwined with the objectives of your systematic investigation. Identifying the primary purpose of writing a research report would help you to identify and present the required information accordingly. 

  • Identify your audience

Knowing your target audience plays a crucial role in data collection for a research report. If your research report is specifically for an organization, you would want to present industry-specific information or show how the research findings are relevant to the work that the company does. 

  • Create Surveys/Questionnaires

A survey is a research method that is used to gather data from a specific group of people through a set of questions. It can be either quantitative or qualitative. 

A survey is usually made up of structured questions, and it can be administered online or offline. However, an online survey is a more effective method of research data collection because it helps you save time and gather data with ease. 

You can seamlessly create an online questionnaire for your research on Formplus . With the multiple sharing options available in the builder, you would be able to administer your survey to respondents in little or no time. 

Formplus also has a report summary too l that you can use to create custom visual reports for your research.

Step-by-step guide on how to create an online questionnaire using Formplus  

  • Sign into Formplus

In the Formplus builder, you can easily create different online questionnaires for your research by dragging and dropping preferred fields into your form. To access the Formplus builder, you will need to create an account on Formplus. 

Once you do this, sign in to your account and click on Create new form to begin. 

  • Edit Form Title : Click on the field provided to input your form title, for example, “Research Questionnaire.”
  • Edit Form : Click on the edit icon to edit the form.
  • Add Fields : Drag and drop preferred form fields into your form in the Formplus builder inputs column. There are several field input options for questionnaires in the Formplus builder. 
  • Edit fields
  • Click on “Save”
  • Form Customization: With the form customization options in the form builder, you can easily change the outlook of your form and make it more unique and personalized. Formplus allows you to change your form theme, add background images, and even change the font according to your needs. 
  • Multiple Sharing Options: Formplus offers various form-sharing options, which enables you to share your questionnaire with respondents easily. You can use the direct social media sharing buttons to share your form link to your organization’s social media pages.  You can also send out your survey form as email invitations to your research subjects too. If you wish, you can share your form’s QR code or embed it on your organization’s website for easy access. 

Conclusion  

Always remember that a research report is just as important as the actual systematic investigation because it plays a vital role in communicating research findings to everyone else. This is why you must take care to create a concise document summarizing the process of conducting any research. 

In this article, we’ve outlined essential tips to help you create a research report. When writing your report, you should always have the audience at the back of your mind, as this would set the tone for the document. 

Logo

Connect to Formplus, Get Started Now - It's Free!

  • ethnographic research survey
  • research report
  • research report survey
  • busayo.longe

Formplus

You may also like:

Assessment Tools: Types, Examples & Importance

In this article, you’ll learn about different assessment tools to help you evaluate performance in various contexts

content of research reports

Ethnographic Research: Types, Methods + [Question Examples]

Simple guide on ethnographic research, it types, methods, examples and advantages. Also highlights how to conduct an ethnographic...

How to Write a Problem Statement for your Research

Learn how to write problem statements before commencing any research effort. Learn about its structure and explore examples

21 Chrome Extensions for Academic Researchers in 2022

In this article, we will discuss a number of chrome extensions you can use to make your research process even seamless

Formplus - For Seamless Data Collection

Collect data the right way with a versatile data collection tool. try formplus and transform your work productivity today..

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

content of research reports

Home Market Research

Research Reports: Definition and How to Write Them

Research Reports

Reports are usually spread across a vast horizon of topics but are focused on communicating information about a particular topic and a niche target market. The primary motive of research reports is to convey integral details about a study for marketers to consider while designing new strategies.

Certain events, facts, and other information based on incidents need to be relayed to the people in charge, and creating research reports is the most effective communication tool. Ideal research reports are extremely accurate in the offered information with a clear objective and conclusion. These reports should have a clean and structured format to relay information effectively.

What are Research Reports?

Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods .

A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony of all the work done to garner specificities of research.

The various sections of a research report are:

  • Background/Introduction
  • Implemented Methods
  • Results based on Analysis
  • Deliberation

Learn more: Quantitative Research

Components of Research Reports

Research is imperative for launching a new product/service or a new feature. The markets today are extremely volatile and competitive due to new entrants every day who may or may not provide effective products. An organization needs to make the right decisions at the right time to be relevant in such a market with updated products that suffice customer demands.

The details of a research report may change with the purpose of research but the main components of a report will remain constant. The research approach of the market researcher also influences the style of writing reports. Here are seven main components of a productive research report:

  • Research Report Summary: The entire objective along with the overview of research are to be included in a summary which is a couple of paragraphs in length. All the multiple components of the research are explained in brief under the report summary.  It should be interesting enough to capture all the key elements of the report.
  • Research Introduction: There always is a primary goal that the researcher is trying to achieve through a report. In the introduction section, he/she can cover answers related to this goal and establish a thesis which will be included to strive and answer it in detail.  This section should answer an integral question: “What is the current situation of the goal?”.  After the research design was conducted, did the organization conclude the goal successfully or they are still a work in progress –  provide such details in the introduction part of the research report.
  • Research Methodology: This is the most important section of the report where all the important information lies. The readers can gain data for the topic along with analyzing the quality of provided content and the research can also be approved by other market researchers . Thus, this section needs to be highly informative with each aspect of research discussed in detail.  Information needs to be expressed in chronological order according to its priority and importance. Researchers should include references in case they gained information from existing techniques.
  • Research Results: A short description of the results along with calculations conducted to achieve the goal will form this section of results. Usually, the exposition after data analysis is carried out in the discussion part of the report.

Learn more: Quantitative Data

  • Research Discussion: The results are discussed in extreme detail in this section along with a comparative analysis of reports that could probably exist in the same domain. Any abnormality uncovered during research will be deliberated in the discussion section.  While writing research reports, the researcher will have to connect the dots on how the results will be applicable in the real world.
  • Research References and Conclusion: Conclude all the research findings along with mentioning each and every author, article or any content piece from where references were taken.

Learn more: Qualitative Observation

15 Tips for Writing Research Reports

Writing research reports in the manner can lead to all the efforts going down the drain. Here are 15 tips for writing impactful research reports:

  • Prepare the context before starting to write and start from the basics:  This was always taught to us in school – be well-prepared before taking a plunge into new topics. The order of survey questions might not be the ideal or most effective order for writing research reports. The idea is to start with a broader topic and work towards a more specific one and focus on a conclusion or support, which a research should support with the facts.  The most difficult thing to do in reporting, without a doubt is to start. Start with the title, the introduction, then document the first discoveries and continue from that. Once the marketers have the information well documented, they can write a general conclusion.
  • Keep the target audience in mind while selecting a format that is clear, logical and obvious to them:  Will the research reports be presented to decision makers or other researchers? What are the general perceptions around that topic? This requires more care and diligence. A researcher will need a significant amount of information to start writing the research report. Be consistent with the wording, the numbering of the annexes and so on. Follow the approved format of the company for the delivery of research reports and demonstrate the integrity of the project with the objectives of the company.
  • Have a clear research objective: A researcher should read the entire proposal again, and make sure that the data they provide contributes to the objectives that were raised from the beginning. Remember that speculations are for conversations, not for research reports, if a researcher speculates, they directly question their own research.
  • Establish a working model:  Each study must have an internal logic, which will have to be established in the report and in the evidence. The researchers’ worst nightmare is to be required to write research reports and realize that key questions were not included.

Learn more: Quantitative Observation

  • Gather all the information about the research topic. Who are the competitors of our customers? Talk to other researchers who have studied the subject of research, know the language of the industry. Misuse of the terms can discourage the readers of research reports from reading further.
  • Read aloud while writing. While reading the report, if the researcher hears something inappropriate, for example, if they stumble over the words when reading them, surely the reader will too. If the researcher can’t put an idea in a single sentence, then it is very long and they must change it so that the idea is clear to everyone.
  • Check grammar and spelling. Without a doubt, good practices help to understand the report. Use verbs in the present tense. Consider using the present tense, which makes the results sound more immediate. Find new words and other ways of saying things. Have fun with the language whenever possible.
  • Discuss only the discoveries that are significant. If some data are not really significant, do not mention them. Remember that not everything is truly important or essential within research reports.

Learn more: Qualitative Data

  • Try and stick to the survey questions. For example, do not say that the people surveyed “were worried” about an research issue , when there are different degrees of concern.
  • The graphs must be clear enough so that they understand themselves. Do not let graphs lead the reader to make mistakes: give them a title, include the indications, the size of the sample, and the correct wording of the question.
  • Be clear with messages. A researcher should always write every section of the report with an accuracy of details and language.
  • Be creative with titles – Particularly in segmentation studies choose names “that give life to research”. Such names can survive for a long time after the initial investigation.
  • Create an effective conclusion: The conclusion in the research reports is the most difficult to write, but it is an incredible opportunity to excel. Make a precise summary. Sometimes it helps to start the conclusion with something specific, then it describes the most important part of the study, and finally, it provides the implications of the conclusions.
  • Get a couple more pair of eyes to read the report. Writers have trouble detecting their own mistakes. But they are responsible for what is presented. Ensure it has been approved by colleagues or friends before sending the find draft out.

Learn more: Market Research and Analysis

MORE LIKE THIS

Employee Engagement App

Employee Engagement App: Top 11 For Workforce Improvement 

Apr 10, 2024

employee evaluation software

Top 15 Employee Evaluation Software to Enhance Performance

event feedback software

Event Feedback Software: Top 11 Best in 2024

Apr 9, 2024

free market research tools

Top 10 Free Market Research Tools to Boost Your Business

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Research report guide: Definition, types, and tips

Last updated

5 March 2024

Reviewed by

From successful product launches or software releases to planning major business decisions, research reports serve many vital functions. They can summarize evidence and deliver insights and recommendations to save companies time and resources. They can reveal the most value-adding actions a company should take.

However, poorly constructed reports can have the opposite effect! Taking the time to learn established research-reporting rules and approaches will equip you with in-demand skills. You’ll be able to capture and communicate information applicable to numerous situations and industries, adding another string to your resume bow.

  • What are research reports?

A research report is a collection of contextual data, gathered through organized research, that provides new insights into a particular challenge (which, for this article, is business-related). Research reports are a time-tested method for distilling large amounts of data into a narrow band of focus.

Their effectiveness often hinges on whether the report provides:

Strong, well-researched evidence

Comprehensive analysis

Well-considered conclusions and recommendations

Though the topic possibilities are endless, an effective research report keeps a laser-like focus on the specific questions or objectives the researcher believes are key to achieving success. Many research reports begin as research proposals, which usually include the need for a report to capture the findings of the study and recommend a course of action.

A description of the research method used, e.g., qualitative, quantitative, or other

Statistical analysis

Causal (or explanatory) research (i.e., research identifying relationships between two variables)

Inductive research, also known as ‘theory-building’

Deductive research, such as that used to test theories

Action research, where the research is actively used to drive change

  • Importance of a research report

Research reports can unify and direct a company's focus toward the most appropriate strategic action. Of course, spending resources on a report takes up some of the company's human and financial resources. Choosing when a report is called for is a matter of judgment and experience.

Some development models used heavily in the engineering world, such as Waterfall development, are notorious for over-relying on research reports. With Waterfall development, there is a linear progression through each step of a project, and each stage is precisely documented and reported on before moving to the next.

The pace of the business world is faster than the speed at which your authors can produce and disseminate reports. So how do companies strike the right balance between creating and acting on research reports?

The answer lies, again, in the report's defined objectives. By paring down your most pressing interests and those of your stakeholders, your research and reporting skills will be the lenses that keep your company's priorities in constant focus.

Honing your company's primary objectives can save significant amounts of time and align research and reporting efforts with ever-greater precision.

Some examples of well-designed research objectives are:

Proving whether or not a product or service meets customer expectations

Demonstrating the value of a service, product, or business process to your stakeholders and investors

Improving business decision-making when faced with a lack of time or other constraints

Clarifying the relationship between a critical cause and effect for problematic business processes

Prioritizing the development of a backlog of products or product features

Comparing business or production strategies

Evaluating past decisions and predicting future outcomes

  • Features of a research report

Research reports generally require a research design phase, where the report author(s) determine the most important elements the report must contain.

Just as there are various kinds of research, there are many types of reports.

Here are the standard elements of almost any research-reporting format:

Report summary. A broad but comprehensive overview of what readers will learn in the full report. Summaries are usually no more than one or two paragraphs and address all key elements of the report. Think of the key takeaways your primary stakeholders will want to know if they don’t have time to read the full document.

Introduction. Include a brief background of the topic, the type of research, and the research sample. Consider the primary goal of the report, who is most affected, and how far along the company is in meeting its objectives.

Methods. A description of how the researcher carried out data collection, analysis, and final interpretations of the data. Include the reasons for choosing a particular method. The methods section should strike a balance between clearly presenting the approach taken to gather data and discussing how it is designed to achieve the report's objectives.

Data analysis. This section contains interpretations that lead readers through the results relevant to the report's thesis. If there were unexpected results, include here a discussion on why that might be. Charts, calculations, statistics, and other supporting information also belong here (or, if lengthy, as an appendix). This should be the most detailed section of the research report, with references for further study. Present the information in a logical order, whether chronologically or in order of importance to the report's objectives.

Conclusion. This should be written with sound reasoning, often containing useful recommendations. The conclusion must be backed by a continuous thread of logic throughout the report.

  • How to write a research paper

With a clear outline and robust pool of research, a research paper can start to write itself, but what's a good way to start a research report?

Research report examples are often the quickest way to gain inspiration for your report. Look for the types of research reports most relevant to your industry and consider which makes the most sense for your data and goals.

The research report outline will help you organize the elements of your report. One of the most time-tested report outlines is the IMRaD structure:

Introduction

...and Discussion

Pay close attention to the most well-established research reporting format in your industry, and consider your tone and language from your audience's perspective. Learn the key terms inside and out; incorrect jargon could easily harm the perceived authority of your research paper.

Along with a foundation in high-quality research and razor-sharp analysis, the most effective research reports will also demonstrate well-developed:

Internal logic

Narrative flow

Conclusions and recommendations

Readability, striking a balance between simple phrasing and technical insight

How to gather research data for your report

The validity of research data is critical. Because the research phase usually occurs well before the writing phase, you normally have plenty of time to vet your data.

However, research reports could involve ongoing research, where report authors (sometimes the researchers themselves) write portions of the report alongside ongoing research.

One such research-report example would be an R&D department that knows its primary stakeholders are eager to learn about a lengthy work in progress and any potentially important outcomes.

However you choose to manage the research and reporting, your data must meet robust quality standards before you can rely on it. Vet any research with the following questions in mind:

Does it use statistically valid analysis methods?

Do the researchers clearly explain their research, analysis, and sampling methods?

Did the researchers provide any caveats or advice on how to interpret their data?

Have you gathered the data yourself or were you in close contact with those who did?

Is the source biased?

Usually, flawed research methods become more apparent the further you get through a research report.

It's perfectly natural for good research to raise new questions, but the reader should have no uncertainty about what the data represents. There should be no doubt about matters such as:

Whether the sampling or analysis methods were based on sound and consistent logic

What the research samples are and where they came from

The accuracy of any statistical functions or equations

Validation of testing and measuring processes

When does a report require design validation?

A robust design validation process is often a gold standard in highly technical research reports. Design validation ensures the objects of a study are measured accurately, which lends more weight to your report and makes it valuable to more specialized industries.

Product development and engineering projects are the most common research-report examples that typically involve a design validation process. Depending on the scope and complexity of your research, you might face additional steps to validate your data and research procedures.

If you’re including design validation in the report (or report proposal), explain and justify your data-collection processes. Good design validation builds greater trust in a research report and lends more weight to its conclusions.

Choosing the right analysis method

Just as the quality of your report depends on properly validated research, a useful conclusion requires the most contextually relevant analysis method. This means comparing different statistical methods and choosing the one that makes the most sense for your research.

Most broadly, research analysis comes down to quantitative or qualitative methods (respectively: measurable by a number vs subjectively qualified values). There are also mixed research methods, which bridge the need for merging hard data with qualified assessments and still reach a cohesive set of conclusions.

Some of the most common analysis methods in research reports include:

Significance testing (aka hypothesis analysis), which compares test and control groups to determine how likely the data was the result of random chance.

Regression analysis , to establish relationships between variables, control for extraneous variables , and support correlation analysis.

Correlation analysis (aka bivariate testing), a method to identify and determine the strength of linear relationships between variables. It’s effective for detecting patterns from complex data, but care must be exercised to not confuse correlation with causation.

With any analysis method, it's important to justify which method you chose in the report. You should also provide estimates of the statistical accuracy (e.g., the p-value or confidence level of quantifiable data) of any data analysis.

This requires a commitment to the report's primary aim. For instance, this may be achieving a certain level of customer satisfaction by analyzing the cause and effect of changes to how service is delivered. Even better, use statistical analysis to calculate which change is most positively correlated with improved levels of customer satisfaction.

  • Tips for writing research reports

There's endless good advice for writing effective research reports, and it almost all depends on the subjective aims of the people behind the report. Due to the wide variety of research reports, the best tips will be unique to each author's purpose.

Consider the following research report tips in any order, and take note of the ones most relevant to you:

No matter how in depth or detailed your report might be, provide a well-considered, succinct summary. At the very least, give your readers a quick and effective way to get up to speed.

Pare down your target audience (e.g., other researchers, employees, laypersons, etc.), and adjust your voice for their background knowledge and interest levels

For all but the most open-ended research, clarify your objectives, both for yourself and within the report.

Leverage your team members’ talents to fill in any knowledge gaps you might have. Your team is only as good as the sum of its parts.

Justify why your research proposal’s topic will endure long enough to derive value from the finished report.

Consolidate all research and analysis functions onto a single user-friendly platform. There's no reason to settle for less than developer-grade tools suitable for non-developers.

What's the format of a research report?

The research-reporting format is how the report is structured—a framework the authors use to organize their data, conclusions, arguments, and recommendations. The format heavily determines how the report's outline develops, because the format dictates the overall structure and order of information (based on the report's goals and research objectives).

What's the purpose of a research-report outline?

A good report outline gives form and substance to the report's objectives, presenting the results in a readable, engaging way. For any research-report format, the outline should create momentum along a chain of logic that builds up to a conclusion or interpretation.

What's the difference between a research essay and a research report?

There are several key differences between research reports and essays:

Research report:

Ordered into separate sections

More commercial in nature

Often includes infographics

Heavily descriptive

More self-referential

Usually provides recommendations

Research essay

Does not rely on research report formatting

More academically minded

Normally text-only

Less detailed

Omits discussion of methods

Usually non-prescriptive 

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 5 March 2024

Last updated: 25 November 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • Academic Skills
  • Reading, writing and referencing

Research reports

This resource will help you identify the common elements and basic format of a research report.

Research reports generally follow a similar structure and have common elements, each with a particular purpose. Learn more about each of these elements below.

Common elements of reports

Your title should be brief, topic-specific, and informative, clearly indicating the purpose and scope of your study. Include key words in your title so that search engines can easily access your work. For example:  Measurement of water around Station Pier.

An abstract is a concise summary that helps readers to quickly assess the content and direction of your paper. It should be brief, written in a single paragraph and cover: the scope and purpose of your report; an overview of methodology; a summary of the main findings or results; principal conclusions or significance of the findings; and recommendations made.

The information in the abstract must be presented in the same order as it is in your report. The abstract is usually written last when you have developed your arguments and synthesised the results.

The introduction creates the context for your research. It should provide sufficient background to allow the reader to understand and evaluate your study without needing to refer to previous publications. After reading the introduction your reader should understand exactly what your research is about, what you plan to do, why you are undertaking this research and which methods you have used. Introductions generally include:

  • The rationale for the present study. Why are you interested in this topic? Why is this topic worth investigating?
  • Key terms and definitions.
  • An outline of the research questions and hypotheses; the assumptions or propositions that your research will test.

Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction.

A literature review is a critical survey of recent relevant research in a particular field. The review should be a selection of carefully organised, focused and relevant literature that develops a narrative ‘story’ about your topic. Your review should answer key questions about the literature:

  • What is the current state of knowledge on the topic?
  • What differences in approaches / methodologies are there?
  • Where are the strengths and weaknesses of the research?
  • What further research is needed? The review may identify a gap in the literature which provides a rationale for your study and supports your research questions and methodology.

The review is not just a summary of all you have read. Rather, it must develop an argument or a point of view that supports your chosen methodology and research questions.

The purpose of this section is to detail how you conducted your research so that others can understand and replicate your approach.

You need to briefly describe the subjects (if appropriate), any equipment or materials used and the approach taken. If the research method or method of data analysis is commonly used within your field of study, then simply reference the procedure. If, however, your methods are new or controversial then you need to describe them in more detail and provide a rationale for your approach. The methodology is written in the past tense and should be as concise as possible.

This section is a concise, factual summary of your findings, listed under headings appropriate to your research questions. It’s common to use tables and graphics. Raw data or details about the method of statistical analysis used should be included in the Appendices.

Present your results in a consistent manner. For example, if you present the first group of results as percentages, it will be confusing for the reader and difficult to make comparisons of data if later results are presented as fractions or as decimal values.

In general, you won’t discuss your results here. Any analysis of your results usually occurs in the Discussion section.

Notes on visual data representation:

  • Graphs and tables may be used to reveal trends in your data, but they must be explained and referred to in adjacent accompanying text.
  • Figures and tables do not simply repeat information given in the text: they summarise, amplify or complement it.
  • Graphs are always referred to as ‘Figures’, and both axes must be clearly labelled.
  • Tables must be numbered, and they must be able to stand-alone or make sense without your reader needing to read all of the accompanying text.

The Discussion responds to the hypothesis or research question. This section is where you interpret your results, account for your findings and explain their significance within the context of other research. Consider the adequacy of your sampling techniques, the scope and long-term implications of your study, any problems with data collection or analysis and any assumptions on which your study was based. This is also the place to discuss any disappointing results and address limitations.

Checklist for the discussion

  • To what extent was each hypothesis supported?
  • To what extent are your findings validated or supported by other research?
  • Were there unexpected variables that affected your results?
  • On reflection, was your research method appropriate?
  • Can you account for any differences between your results and other studies?

Conclusions in research reports are generally fairly short and should follow on naturally from points raised in the Discussion. In this section you should discuss the significance of your findings. To what extent and in what ways are your findings useful or conclusive? Is further research required? If so, based on your research experience, what suggestions could you make about improvements to the scope or methodology of future studies?

Also, consider the practical implications of your results and any recommendations you could make. For example, if your research is on reading strategies in the primary school classroom, what are the implications of your results for the classroom teacher? What recommendations could you make for teachers?

A Reference List contains all the resources you have cited in your work, while a Bibliography is a wider list containing all the resources you have consulted (but not necessarily cited) in the preparation of your work. It is important to check which of these is required, and the preferred format, style of references and presentation requirements of your own department.

Appendices (singular ‘Appendix’) provide supporting material to your project. Examples of such materials include:

  • Relevant letters to participants and organisations (e.g. regarding the ethics or conduct of the project).
  • Background reports.
  • Detailed calculations.

Different types of data are presented in separate appendices. Each appendix must be titled, labelled with a number or letter, and referred to in the body of the report.

Appendices are placed at the end of a report, and the contents are generally not included in the word count.

Fi nal ti p

While there are many common elements to research reports, it’s always best to double check the exact requirements for your task. You may find that you don’t need some sections, can combine others or have specific requirements about referencing, formatting or word limits.

Two people looking over study materials

Looking for one-on-one advice?

Get tailored advice from an Academic Skills Adviser by booking an Individual appointment, or get quick feedback from one of our Academic Writing Mentors via email through our Writing advice service.

Go to Student appointments

  • Search This Site All UCSD Sites Faculty/Staff Search Term
  • Contact & Directions
  • Climate Statement
  • Cognitive Behavioral Neuroscience
  • Cognitive Psychology
  • Developmental Psychology
  • Social Psychology
  • Adjunct Faculty
  • Non-Senate Instructors
  • Researchers
  • Psychology Grads
  • Affiliated Grads
  • New and Prospective Students
  • Honors Program
  • Experiential Learning
  • Programs & Events
  • Psi Chi / Psychology Club
  • Prospective PhD Students
  • Current PhD Students
  • Area Brown Bags
  • Colloquium Series
  • Anderson Distinguished Lecture Series
  • Speaker Videos
  • Undergraduate Program
  • Academic and Writing Resources

Writing Research Papers

  • Research Paper Structure

Whether you are writing a B.S. Degree Research Paper or completing a research report for a Psychology course, it is highly likely that you will need to organize your research paper in accordance with American Psychological Association (APA) guidelines.  Here we discuss the structure of research papers according to APA style.

Major Sections of a Research Paper in APA Style

A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1  Many will also contain Figures and Tables and some will have an Appendix or Appendices.  These sections are detailed as follows (for a more in-depth guide, please refer to " How to Write a Research Paper in APA Style ”, a comprehensive guide developed by Prof. Emma Geller). 2

What is this paper called and who wrote it? – the first page of the paper; this includes the name of the paper, a “running head”, authors, and institutional affiliation of the authors.  The institutional affiliation is usually listed in an Author Note that is placed towards the bottom of the title page.  In some cases, the Author Note also contains an acknowledgment of any funding support and of any individuals that assisted with the research project.

One-paragraph summary of the entire study – typically no more than 250 words in length (and in many cases it is well shorter than that), the Abstract provides an overview of the study.

Introduction

What is the topic and why is it worth studying? – the first major section of text in the paper, the Introduction commonly describes the topic under investigation, summarizes or discusses relevant prior research (for related details, please see the Writing Literature Reviews section of this website), identifies unresolved issues that the current research will address, and provides an overview of the research that is to be described in greater detail in the sections to follow.

What did you do? – a section which details how the research was performed.  It typically features a description of the participants/subjects that were involved, the study design, the materials that were used, and the study procedure.  If there were multiple experiments, then each experiment may require a separate Methods section.  A rule of thumb is that the Methods section should be sufficiently detailed for another researcher to duplicate your research.

What did you find? – a section which describes the data that was collected and the results of any statistical tests that were performed.  It may also be prefaced by a description of the analysis procedure that was used. If there were multiple experiments, then each experiment may require a separate Results section.

What is the significance of your results? – the final major section of text in the paper.  The Discussion commonly features a summary of the results that were obtained in the study, describes how those results address the topic under investigation and/or the issues that the research was designed to address, and may expand upon the implications of those findings.  Limitations and directions for future research are also commonly addressed.

List of articles and any books cited – an alphabetized list of the sources that are cited in the paper (by last name of the first author of each source).  Each reference should follow specific APA guidelines regarding author names, dates, article titles, journal titles, journal volume numbers, page numbers, book publishers, publisher locations, websites, and so on (for more information, please see the Citing References in APA Style page of this website).

Tables and Figures

Graphs and data (optional in some cases) – depending on the type of research being performed, there may be Tables and/or Figures (however, in some cases, there may be neither).  In APA style, each Table and each Figure is placed on a separate page and all Tables and Figures are included after the References.   Tables are included first, followed by Figures.   However, for some journals and undergraduate research papers (such as the B.S. Research Paper or Honors Thesis), Tables and Figures may be embedded in the text (depending on the instructor’s or editor’s policies; for more details, see "Deviations from APA Style" below).

Supplementary information (optional) – in some cases, additional information that is not critical to understanding the research paper, such as a list of experiment stimuli, details of a secondary analysis, or programming code, is provided.  This is often placed in an Appendix.

Variations of Research Papers in APA Style

Although the major sections described above are common to most research papers written in APA style, there are variations on that pattern.  These variations include: 

  • Literature reviews – when a paper is reviewing prior published research and not presenting new empirical research itself (such as in a review article, and particularly a qualitative review), then the authors may forgo any Methods and Results sections. Instead, there is a different structure such as an Introduction section followed by sections for each of the different aspects of the body of research being reviewed, and then perhaps a Discussion section. 
  • Multi-experiment papers – when there are multiple experiments, it is common to follow the Introduction with an Experiment 1 section, itself containing Methods, Results, and Discussion subsections. Then there is an Experiment 2 section with a similar structure, an Experiment 3 section with a similar structure, and so on until all experiments are covered.  Towards the end of the paper there is a General Discussion section followed by References.  Additionally, in multi-experiment papers, it is common for the Results and Discussion subsections for individual experiments to be combined into single “Results and Discussion” sections.

Departures from APA Style

In some cases, official APA style might not be followed (however, be sure to check with your editor, instructor, or other sources before deviating from standards of the Publication Manual of the American Psychological Association).  Such deviations may include:

  • Placement of Tables and Figures  – in some cases, to make reading through the paper easier, Tables and/or Figures are embedded in the text (for example, having a bar graph placed in the relevant Results section). The embedding of Tables and/or Figures in the text is one of the most common deviations from APA style (and is commonly allowed in B.S. Degree Research Papers and Honors Theses; however you should check with your instructor, supervisor, or editor first). 
  • Incomplete research – sometimes a B.S. Degree Research Paper in this department is written about research that is currently being planned or is in progress. In those circumstances, sometimes only an Introduction and Methods section, followed by References, is included (that is, in cases where the research itself has not formally begun).  In other cases, preliminary results are presented and noted as such in the Results section (such as in cases where the study is underway but not complete), and the Discussion section includes caveats about the in-progress nature of the research.  Again, you should check with your instructor, supervisor, or editor first.
  • Class assignments – in some classes in this department, an assignment must be written in APA style but is not exactly a traditional research paper (for instance, a student asked to write about an article that they read, and to write that report in APA style). In that case, the structure of the paper might approximate the typical sections of a research paper in APA style, but not entirely.  You should check with your instructor for further guidelines.

Workshops and Downloadable Resources

  • For in-person discussion of the process of writing research papers, please consider attending this department’s “Writing Research Papers” workshop (for dates and times, please check the undergraduate workshops calendar).

Downloadable Resources

  • How to Write APA Style Research Papers (a comprehensive guide) [ PDF ]
  • Tips for Writing APA Style Research Papers (a brief summary) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – empirical research) [ PDF ]
  • Example APA Style Research Paper (for B.S. Degree – literature review) [ PDF ]

Further Resources

How-To Videos     

  • Writing Research Paper Videos

APA Journal Article Reporting Guidelines

  • Appelbaum, M., Cooper, H., Kline, R. B., Mayo-Wilson, E., Nezu, A. M., & Rao, S. M. (2018). Journal article reporting standards for quantitative research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 3.
  • Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board task force report . American Psychologist , 73 (1), 26.  

External Resources

  • Formatting APA Style Papers in Microsoft Word
  • How to Write an APA Style Research Paper from Hamilton University
  • WikiHow Guide to Writing APA Research Papers
  • Sample APA Formatted Paper with Comments
  • Sample APA Formatted Paper
  • Tips for Writing a Paper in APA Style

1 VandenBos, G. R. (Ed). (2010). Publication manual of the American Psychological Association (6th ed.) (pp. 41-60).  Washington, DC: American Psychological Association.

2 geller, e. (2018).  how to write an apa-style research report . [instructional materials]. , prepared by s. c. pan for ucsd psychology.

Back to top  

  • Formatting Research Papers
  • Using Databases and Finding References
  • What Types of References Are Appropriate?
  • Evaluating References and Taking Notes
  • Citing References
  • Writing a Literature Review
  • Writing Process and Revising
  • Improving Scientific Writing
  • Academic Integrity and Avoiding Plagiarism
  • Writing Research Papers Videos

Uncomplicated Reviews of Educational Research Methods

  • Writing a Research Report

.pdf version of this page

This review covers the basic elements of a research report. This is a general guide for what you will see in journal articles or dissertations. This format assumes a mixed methods study, but you can leave out either quantitative or qualitative sections if you only used a single methodology.

This review is divided into sections for easy reference. There are five MAJOR parts of a Research Report:

1.    Introduction 2.    Review of Literature 3.    Methods 4.    Results 5.    Discussion

As a general guide, the Introduction, Review of Literature, and Methods should be about 1/3 of your paper, Discussion 1/3, then Results 1/3.

Section 1 : Cover Sheet (APA format cover sheet) optional, if required.

Section 2: Abstract (a basic summary of the report, including sample, treatment, design, results, and implications) (≤ 150 words) optional, if required.

Section 3 : Introduction (1-3 paragraphs) •    Basic introduction •    Supportive statistics (can be from periodicals) •    Statement of Purpose •    Statement of Significance

Section 4 : Research question(s) or hypotheses •    An overall research question (optional) •    A quantitative-based (hypotheses) •    A qualitative-based (research questions) Note: You will generally have more than one, especially if using hypotheses.

Section 5: Review of Literature ▪    Should be organized by subheadings ▪    Should adequately support your study using supporting, related, and/or refuting evidence ▪    Is a synthesis, not a collection of individual summaries

Section 6: Methods ▪    Procedure: Describe data gathering or participant recruitment, including IRB approval ▪    Sample: Describe the sample or dataset, including basic demographics ▪    Setting: Describe the setting, if applicable (generally only in qualitative designs) ▪    Treatment: If applicable, describe, in detail, how you implemented the treatment ▪    Instrument: Describe, in detail, how you implemented the instrument; Describe the reliability and validity associated with the instrument ▪    Data Analysis: Describe type of procedure (t-test, interviews, etc.) and software (if used)

Section 7: Results ▪    Restate Research Question 1 (Quantitative) ▪    Describe results ▪    Restate Research Question 2 (Qualitative) ▪    Describe results

Section 8: Discussion ▪    Restate Overall Research Question ▪    Describe how the results, when taken together, answer the overall question ▪    ***Describe how the results confirm or contrast the literature you reviewed

Section 9: Recommendations (if applicable, generally related to practice)

Section 10: Limitations ▪    Discuss, in several sentences, the limitations of this study. ▪    Research Design (overall, then info about the limitations of each separately) ▪    Sample ▪    Instrument/s ▪    Other limitations

Section 11: Conclusion (A brief closing summary)

Section 12: References (APA format)

Share this:

About research rundowns.

Research Rundowns was made possible by support from the Dewar College of Education at Valdosta State University .

  • Experimental Design
  • What is Educational Research?
  • Writing Research Questions
  • Mixed Methods Research Designs
  • Qualitative Coding & Analysis
  • Qualitative Research Design
  • Correlation
  • Effect Size
  • Instrument, Validity, Reliability
  • Mean & Standard Deviation
  • Significance Testing (t-tests)
  • Steps 1-4: Finding Research
  • Steps 5-6: Analyzing & Organizing
  • Steps 7-9: Citing & Writing

Create a free website or blog at WordPress.com.

' src=

  • Already have a WordPress.com account? Log in now.
  • Subscribe Subscribed
  • Copy shortlink
  • Report this content
  • View post in Reader
  • Manage subscriptions
  • Collapse this bar

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Section 1- Evidence-based practice (EBP)

Chapter 6: Components of a Research Report

Components of a research report.

Partido, B.B.

Elements of  research report

The research report contains four main areas:

  • Introduction – What is the issue? What is known? What is not known? What are you trying to find out? This sections ends with the purpose and specific aims of the study.
  • Methods – The recipe for the study. If someone wanted to perform the same study, what information would they need? How will you answer your research question? This part usually contains subheadings: Participants, Instruments, Procedures, Data Analysis,
  • Results – What was found? This is organized by specific aims and provides the results of the statistical analysis.
  • Discussion – How do the results fit in with the existing  literature? What were the limitations and areas of future research?

Formalized Curiosity for Knowledge and Innovation Copyright © by partido1. All Rights Reserved.

Geektonight

  • Research Report
  • Post last modified: 11 January 2022
  • Reading time: 25 mins read
  • Post category: Research Methodology

Coursera 7-Day Trail offer

What is Research Report?

Research reporting is the oral or written presentation of the findings in such detail and form as to be readily understood and assessed by the society, economy or particularly by the researchers.

As earlier said that it is the final stage of the research process and its purpose is to convey to interested persons the whole result of the study. Report writing is common to both academic and managerial situations. In academics, a research report is prepared for comprehensive and application-oriented learning. In businesses or organisations, reports are used for the basis of decision making.

Table of Content

  • 1 What is Research Report?
  • 2 Research Report Definition
  • 3.1 Preliminary Part
  • 3.2 Introduction of the Report
  • 3.3 Review of Literature
  • 3.4 The Research Methodology
  • 3.5 Results
  • 3.6 Concluding Remarks
  • 3.7 Bibliography
  • 4 Significance of Report Writing
  • 5 Qualities of Good Report
  • 6.1 Analysis of the subject matter
  • 6.2 Research outline
  • 6.3 Preparation of rough draft
  • 6.4 Rewriting and polishing
  • 6.5 Writing the final draft
  • 7 Precautions for Writing Research Reports
  • 8.1.1 Technical Report
  • 8.1.2 Popular Report
  • 8.2.1 Written Report
  • 8.2.2 Oral Report

Research Report Definition

According to C. A. Brown , “A report is a communication from someone who has information to someone who wants to use that information.”

According to Goode and Hatt , “The preparation of report is the final stage of research, and it’s purpose is to convey to the interested persons the whole result of the study, in sufficient detail and so arranged as to enable each reader to comprehend the data and to determine for himself the validity of the conclusions.”

It is clear from the above definitions of a research report, it is a brief account of the problem of investigation, the justification of its selection and the procedure of analysis and interpretation. It is only a summary of the entire research proceedings.

In other words, it can be defined as written documents, which presents information in a specialized and concise manner.

Contents of Research Report

Although no hard and fast rules can be laid down, the report must contain the following points.

  • Acknowledgement
  • Table of contents
  • List of tables
  • List of graphs
  • Introduction
  • Background of the research study
  • Statement of the problem
  • Brief outline of the chapters
  • Books review
  • Review of articles published in books, journals, periodicals, etc
  • Review of articles published in leading newspapers
  • Working papers / discusssion paper / study reports
  • Articles on authorised websites
  • A broad conclusion and indications for further research
  • The theoretical framework (variables)
  • Model / hypothesis
  • Instruments for data collection
  • Data collection
  • Pilot study
  • Processing of data
  • Hypothesis / model testing
  • Data analysis and interpretation
  • Tables and figures
  • Conclusions
  • Shortcomings
  • Suggestions to the problems
  • Direction for further research

Preliminary Part

The preliminary part may have seven major components – cover, title, preface, acknowledgement, table of contents, list of tables, list of graphs. Long reports presented in book form have a cover made up of a card sheet. The cover contains title of the research report, the authority to whom the report is submitted, name of the author, etc.

The preface introduces the report to the readers. It gives a very brief introduction of the report. In the acknowledgements author mention names of persons and organisations that have extended co-operation and helped in the various stages of research. Table of contents is essential. It gives the title and page number of each chapter.

Introduction of the Report

The introduction of the research report should clearly and logically bring out the background of the problem addressed in the research. The purpose of the introduction is to introduce the research project to the readers. A clear statement of the problem with specific questions to be answered is presented in the introduction. It contains a brief outline of the chapters.

Review of Literature

The third section reviews the important literature related to the study. A comprehensive review of the research literature referred to must be made. Previous research studies and the important writings in the area under study should be reviewed. Review of literature is helpful to provide a background for the development of the present study.

The researcher may review concerned books, articles published in edited books, journals and periodicals. Researcher may also take review of articles published in leading newspapers. A researcher should study working papers/discussion papers/study reports. It is essential for a broad conclusion and indications for further research.

The Research Methodology

Research methodology is an integral part of the research. It should clearly indicate the universe and the selection of samples, techniques of data collection, analysis and interpretation, statistical techniques, etc.

Results contain pilot study, processing of data, hypothesis/model testing, data analysis and interpretation, tables and figures, etc. This is the heart of the research report. If a pilot study is planned to be used, it’s purpose should be given in the research methodology.

The collected data and the information should be edited, coded, tabulated and analysed with a view to arriving at a valid and authentic conclusion. Tables and figures are used to clarify the significant relationship. The results obtained through tables, graphs should be critically interpreted.

Concluding Remarks

The concluding remarks should discuss the results obtained in the earlier sections, as well as their usefulness and implications. It contains findings, conclusions, shortcomings, suggestions to the problem and direction for future research. Findings are statements of factual information based upon the data analysis.

Conclusions must clearly explain whether the hypothesis have been established and rejected. This part requires great expertise and preciseness. A report should also refer to the limitations of the applicability of the research inferences. It is essential to suggest the theoretical, practical and policy implications of the research. The suggestions should be supported by scientific and logical arguments. The future direction of research based on the work completed should also be outlined.

Bibliography

The bibliography is an alphabetic list of books, journal articles, reports, etc, published or unpublished, read, referred to, examined by the researcher in preparing the report. The bibliography should follow standard formats for books, journal articles, research reports.

The end of the research report may consist of appendices, listed in respect of all technical data. Appendices are for the purpose of providing detailed data or information that would be too cumbersome within the main body of the research report.

Significance of Report Writing

Report writing is an important communication medium in organisations. The most crucial findings might have come out through a research report. Report is common to academics and managers also. Reports are used for comprehensive and application oriented learning in academics. In organisations, reports are used for the basis of decision making. The importance of report writing can be discussed as under.

Through research reports, a manager or an executive can quickly get an idea of a current scenario which improves his information base for making sound decisions affecting future operations of the company or enterprise. The research report acts as a means of communication of various research findings to the interested parties, organisations and general public.

Good report writing play, a significant role of conveying unknown facts about the phenomenon to the concerned parties. This may provide new insights and new opportunities to the people. Research report plays a key role in making effective decisions in marketing, production, banking, materials, human resource development and government also. Good report writing is used for economic planning and optimum utilisation of resources for the development of a nation.

Report writing facilitates the validation of generalisation. A research report is an end product of research. As earlier said that report writing provides useful information in arriving at rational decisions that may reform the business and society. The findings, conclusions, suggestions and recommendations are useful to academicians, scholars and policymakers. Report writing provides reference material for further research in the same or similar areas of research to the concerned parties.

While preparing a research report, a researcher should take some proper precautions. Report writing should be simple, lucid and systematic. Report writing should be written speedily without interrupting the continuity of thought. The report writing should sustain the interest of readers.

Qualities of Good Report

Report writing is a highly skilled job. It is a process of analysing, understanding and consolidating the findings and projecting a meaningful view of the phenomenon studied. A good report writing is essential for effective communication.

Following are the essential qualities of good report:

  • A research report is essentially a scientific documentation. It should have a suggestive title, headings and sub-headings, paragraphs arranged in a logical sequence.
  • Good research report should include everything that is relevant and exclude everything that is irrelevant. It means that it should contain the facts rather than opinion.
  • The language of the report should be simple and unambiguous. It means that it should be free from biases of the researchers derived from the past experience. Confusion, pretentiousness and pomposity should be carefully guarded against. It means that the language of the report should be simple, employing appropriate words, idioms and expressions.
  • The report must be free from grammatical mistakes. It must be grammatically accurate. Faulty construction of sentences makes the meaning of the narrative obscure and ambiguous.
  • The report has to take into consideration two facts. Firstly, for whom the report is meant and secondly, what is his level of knowledge. The report has to look to the subject matter of the report and the fact as to the level of knowledge of the person for whom it is meant. Because all reports are not meant for research scholars.

Steps in Writing Research Report

Report writing is a time consuming and expensive exercise. Therefore, reports have to be very sharply focused in purpose content and readership. There is no single universally acceptable method of writing a research report.

Following are the general steps in writing a research report:

Analysis of the subject matter

Research outline, preparation of rough draft, rewriting and polishing, writing the final draft.

This is the first and important step in writing a research report. It is concerned with the development of a subject. Subject matter should be written in a clear, logical and concise manner. The style adopted should be open, straightforward and dignified and folk style language should be avoided.

The data, the reliability and validity of the results of the statistical analysis should be in the form of tables, figures and equations. All redundancy in the data or results presented should be eliminated.

The research outline is an organisational framework prepared by the researcher well in advance. It is an aid to logical organisation of material and a reminder of the points to be stressed in the report. In the process of writing, if need be, outline may be revised accordingly.

Time and place of the study, scope and limitations of the study, study design, summary of pilot study, methods of data collection, analysis interpretation, etc., may be included in a research outline.

Having prepared the primary and secondary data, the researcher has to prepare a rough draft. While preparing the rough draft, the researcher should keep the objectives of the research in mind, and focus on one objective at a time. The researcher should make a checklist of the important points that are necessary to be covered in the manuscript. A researcher should use dictionary and relevant reference materials as and when required.

This is an important step in writing a research report. It takes more time than a rough draft. While rewriting and polishing, a researcher should check the report for weakness in logical development or presentation. He should take breaks in between rewriting and polishing since this gives the time to incubate the ideas.

The last and important step is writing the final draft. The language of the report should be simple, employing appropriate words and expressions and should avoid vague expressions such as ‘it seems’ and ‘there may be’ etc.

It should not used personal pronouns, such as I, We, My, Us, etc and should substitute these by such expressions as a researcher, investigator, etc. Before the final drafting of the report, it is advisable that the researcher should prepare a first draft for critical considerations and possible improvements. It will be helpful in writing the final draft. Finally, the report should be logically outlined with the future directions of the research based on the work completed.

Precautions for Writing Research Reports

A research report is a means of conveying the research study to a specific target audience. The following precautions should be taken while preparing a research report:

  • Its hould belong enough to cover the subject and short enough to preserve interest.
  • It should not be dull and complicated.
  • It should be simple, without the usage of abstract terms and technical jargons.
  • It should offer ready availability of findings with the help of charts, tables and graphs, as readers prefer quick knowledge of main findings.
  • The layout of the report should be in accordance with the objectives of the research study.
  • There should be no grammatical errors and writing should adhere to the techniques of report writing in case of quotations, footnotes and documentations.
  • It should be original, intellectual and contribute to the solution of a problem or add knowledge to the concerned field.
  • Appendices should been listed with respect to all the technical data in the report.
  • It should be attractive, neat and clean, whether handwritten or typed.
  • The report writer should refrain from confusing the possessive form of the word ‘it’ is with ‘it’s.’ The accurate possessive form of ‘it is’ is ‘its.’ The use of ‘it’s’ is the contractive form of ‘it is.
  • A report should not have contractions. Examples are ‘didn’t’ or ‘it’s.’ In report writing, it is best to use the non-contractive form. Therefore, the examples would be replaced by ‘did not’ and ‘it is.’ Using ‘Figure’ instead of ‘Fig.’ and ‘Table’ instead of ‘Tab.’ will spare the reader of having to translate the abbreviations, while reading. If abbreviations are used, use them consistently throughout the report. For example, do not switch among ‘versus,’ and ‘vs’.
  • It is advisable to avoid using the word ‘very’ and other such words that try to embellish a description. They do not add any extra meaning and, therefore, should be dropped.
  • Repetition hampers lucidity. Report writers must avoid repeating the same word more than once within a sentence.
  • When you use the word ‘this’ or ‘these’ make sure you indicate to what you are referring. This reduces the ambiguity in your writing and helps to tie sentences together.
  • Do not use the word ‘they’ to refer to a singular person. You can either rewrite the sentence to avoid needing such a reference or use the singular ‘he or she.’

Types of Research Report

Research reports are designed in order to convey and record the information that will be of practical use to the reader. It is organized into distinct units of specific and highly visible information. The kind of audience addressed in the research report decides the type of report.

Research reports can be categorized on the following basis:

Classification on the Basis of Information

Classification on the basis of representation.

Following are the ways through which the results of the research report can be presented on the basis of information contained:

Technical Report

A technical report is written for other researchers. In writing the technical reports, the importance is mainly given to the methods that have been used to collect the information and data, the presumptions that are made and finally, the various presentation techniques that are used to present the findings and data.

Following are main features of a technical report:

  • Summary: It covers a brief analysis of the findings of the research in a very few pages. 
  • Nature: It contains the reasons for which the research is undertaken, the analysis and the data that is required in order to prepare a report. 
  • Methods employed: It contains a description of the methods that were employed in order to collect the data. 
  • Data: It covers a brief analysis of the various sources from which the data has been collected with their features and drawbacks 
  • Analysis of data and presentation of the findings: It contains the various forms through which the data that has been analysed can be presented. 
  • Conclusions: It contains a brief explanation of findings of the research. 
  • Bibliography: It contains a detailed analysis of the various bibliographies that have been used in order to conduct a research. 
  • Technical appendices: It contains the appendices for the technical matters and for questionnaires and mathematical derivations. 
  • Index: The index of the technical report must be provided at the end of the report.

Popular Report

A popular report is formulated when there is a need to draw conclusions of the findings of the research report. One of the main points of consideration that should be kept in mind while formulating a research report is that it must be simple and attractive. It must be written in a very simple manner that is understandable to all. It must also be made attractive by using large prints, various sub-headings and by giving cartoons occasionally.

Following are the main points that must be kept in mind while preparing a popular report:

  • Findings and their implications : While preparing a popular report, main importance is given to the findings of the information and the conclusions that can be drawn out of these findings.
  • Recommendations for action : If there are any deviations in the report then recommendations are made for taking corrective action in order to rectify the errors.
  • Objective of the study : In a popular report, the specific objective for which the research has been undertaken is presented.
  • Methods employed : The report must contain the various methods that has been employed in order to conduct a research.
  • Results : The results of the research findings must be presented in a suitable and appropriate manner by taking the help of charts and diagrams.
  • Technical appendices : The report must contain an in-depth information used to collect the data in the form of appendices.

Following are the ways through which the results of the research report can be presented on the basis of representation:

  • Writtenreport
  • Oral report

Written Report

A written report plays a vital role in every business operation. The manner in which an organization writes business letters and business reports creates an impression of its standard. Therefore, the organization should emphasize on the improvement of the writing skills of the employees in order to maintain effective relations with their customers.

Writing effective written reports requires a lot of hard work. Therefore, before you begin writing, it is important to know the objective, i.e., the purpose of writing, collection and organization of required data.

Oral Report

At times, oral presentation of the results that are drawn out of research is considered effective, particularly in cases where policy recommendations are to be made. This approach proves beneficial because it provides a medium of interaction between a listener and a speaker. This leads to a better understanding of the findings and their implications.

However, the main drawback of oral presentation is the lack of any permanent records related to the research. Oral presentation of the report is also effective when it is supported with various visual devices, such as slides, wall charts and whiteboards that help in better understanding of the research reports.

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • What is Hypothesis?
  • Sampling Method
  • Research Methods

Data Collection in Research

  • Methods of Collecting Data
  • Application of Business Research
  • Levels of Measurement
  • What is Sampling?
  • Hypothesis Testing
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is research design features, components, what is hypothesis definition, meaning, characteristics, sources, what is scaling techniques types, classifications, techniques, what is research problem components, identifying, formulating,, what is causal research advantages, disadvantages, how to perform, what is research design types, what is questionnaire design characteristics, types, don’t, what is measure of skewness, steps in questionnaire design, data analysis in research, cross-sectional and longitudinal research, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal growth.

content of research reports

Development

content of research reports

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Content Analysis | Guide, Methods & Examples

Content Analysis | Guide, Methods & Examples

Published on July 18, 2019 by Amy Luo . Revised on June 22, 2023.

Content analysis is a research method used to identify patterns in recorded communication. To conduct content analysis, you systematically collect data from a set of texts, which can be written, oral, or visual:

  • Books, newspapers and magazines
  • Speeches and interviews
  • Web content and social media posts
  • Photographs and films

Content analysis can be both quantitative (focused on counting and measuring) and qualitative (focused on interpreting and understanding).  In both types, you categorize or “code” words, themes, and concepts within the texts and then analyze the results.

Table of contents

What is content analysis used for, advantages of content analysis, disadvantages of content analysis, how to conduct content analysis, other interesting articles.

Researchers use content analysis to find out about the purposes, messages, and effects of communication content. They can also make inferences about the producers and audience of the texts they analyze.

Content analysis can be used to quantify the occurrence of certain words, phrases, subjects or concepts in a set of historical or contemporary texts.

Quantitative content analysis example

To research the importance of employment issues in political campaigns, you could analyze campaign speeches for the frequency of terms such as unemployment , jobs , and work  and use statistical analysis to find differences over time or between candidates.

In addition, content analysis can be used to make qualitative inferences by analyzing the meaning and semantic relationship of words and concepts.

Qualitative content analysis example

To gain a more qualitative understanding of employment issues in political campaigns, you could locate the word unemployment in speeches, identify what other words or phrases appear next to it (such as economy,   inequality or  laziness ), and analyze the meanings of these relationships to better understand the intentions and targets of different campaigns.

Because content analysis can be applied to a broad range of texts, it is used in a variety of fields, including marketing, media studies, anthropology, cognitive science, psychology, and many social science disciplines. It has various possible goals:

  • Finding correlations and patterns in how concepts are communicated
  • Understanding the intentions of an individual, group or institution
  • Identifying propaganda and bias in communication
  • Revealing differences in communication in different contexts
  • Analyzing the consequences of communication content, such as the flow of information or audience responses

Prevent plagiarism. Run a free check.

  • Unobtrusive data collection

You can analyze communication and social interaction without the direct involvement of participants, so your presence as a researcher doesn’t influence the results.

  • Transparent and replicable

When done well, content analysis follows a systematic procedure that can easily be replicated by other researchers, yielding results with high reliability .

  • Highly flexible

You can conduct content analysis at any time, in any location, and at low cost – all you need is access to the appropriate sources.

Focusing on words or phrases in isolation can sometimes be overly reductive, disregarding context, nuance, and ambiguous meanings.

Content analysis almost always involves some level of subjective interpretation, which can affect the reliability and validity of the results and conclusions, leading to various types of research bias and cognitive bias .

  • Time intensive

Manually coding large volumes of text is extremely time-consuming, and it can be difficult to automate effectively.

If you want to use content analysis in your research, you need to start with a clear, direct  research question .

Example research question for content analysis

Is there a difference in how the US media represents younger politicians compared to older ones in terms of trustworthiness?

Next, you follow these five steps.

1. Select the content you will analyze

Based on your research question, choose the texts that you will analyze. You need to decide:

  • The medium (e.g. newspapers, speeches or websites) and genre (e.g. opinion pieces, political campaign speeches, or marketing copy)
  • The inclusion and exclusion criteria (e.g. newspaper articles that mention a particular event, speeches by a certain politician, or websites selling a specific type of product)
  • The parameters in terms of date range, location, etc.

If there are only a small amount of texts that meet your criteria, you might analyze all of them. If there is a large volume of texts, you can select a sample .

2. Define the units and categories of analysis

Next, you need to determine the level at which you will analyze your chosen texts. This means defining:

  • The unit(s) of meaning that will be coded. For example, are you going to record the frequency of individual words and phrases, the characteristics of people who produced or appear in the texts, the presence and positioning of images, or the treatment of themes and concepts?
  • The set of categories that you will use for coding. Categories can be objective characteristics (e.g. aged 30-40 ,  lawyer , parent ) or more conceptual (e.g. trustworthy , corrupt , conservative , family oriented ).

Your units of analysis are the politicians who appear in each article and the words and phrases that are used to describe them. Based on your research question, you have to categorize based on age and the concept of trustworthiness. To get more detailed data, you also code for other categories such as their political party and the marital status of each politician mentioned.

3. Develop a set of rules for coding

Coding involves organizing the units of meaning into the previously defined categories. Especially with more conceptual categories, it’s important to clearly define the rules for what will and won’t be included to ensure that all texts are coded consistently.

Coding rules are especially important if multiple researchers are involved, but even if you’re coding all of the text by yourself, recording the rules makes your method more transparent and reliable.

In considering the category “younger politician,” you decide which titles will be coded with this category ( senator, governor, counselor, mayor ). With “trustworthy”, you decide which specific words or phrases related to trustworthiness (e.g. honest and reliable ) will be coded in this category.

4. Code the text according to the rules

You go through each text and record all relevant data in the appropriate categories. This can be done manually or aided with computer programs, such as QSR NVivo , Atlas.ti and Diction , which can help speed up the process of counting and categorizing words and phrases.

Following your coding rules, you examine each newspaper article in your sample. You record the characteristics of each politician mentioned, along with all words and phrases related to trustworthiness that are used to describe them.

5. Analyze the results and draw conclusions

Once coding is complete, the collected data is examined to find patterns and draw conclusions in response to your research question. You might use statistical analysis to find correlations or trends, discuss your interpretations of what the results mean, and make inferences about the creators, context and audience of the texts.

Let’s say the results reveal that words and phrases related to trustworthiness appeared in the same sentence as an older politician more frequently than they did in the same sentence as a younger politician. From these results, you conclude that national newspapers present older politicians as more trustworthy than younger politicians, and infer that this might have an effect on readers’ perceptions of younger people in politics.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

content of research reports

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Measures of central tendency
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Thematic analysis
  • Cohort study
  • Peer review
  • Ethnography

Research bias

  • Implicit bias
  • Cognitive bias
  • Conformity bias
  • Hawthorne effect
  • Availability heuristic
  • Attrition bias
  • Social desirability bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Luo, A. (2023, June 22). Content Analysis | Guide, Methods & Examples. Scribbr. Retrieved April 9, 2024, from https://www.scribbr.com/methodology/content-analysis/

Is this article helpful?

Amy Luo

Other students also liked

Qualitative vs. quantitative research | differences, examples & methods, descriptive research | definition, types, methods & examples, reliability vs. validity in research | difference, types and examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

MBA Knowledge Base

Business • Management • Technology

Home » Research Methodology » Contents and Layout of Research Report

Contents and Layout of Research Report

Contents of  research  report.

The researcher must keep in mind that his research report must contain following aspects:

  • Purpose of study
  • Significance of his study or statement of the problem
  • Review of literature
  • Methodology
  • Interpretation of data
  • Conclusions and suggestions
  • Bibliography

These can be discussed in detail as under:

(1) Purpose of study:

Research is one direction oriented study. He should discuss the problem of his study. He must give background of the problem. He must lay down his hypothesis of the study. Hypothesis is the statement indicating the nature of the problem. He should be able to collect data, analyze it and prove the hypothesis . The importance of the problem for the advancement of knowledge or removed of some evil may also be explained. He must use review of literature or the data from secondary source for explaining the statement of the problems.

(2) Significance of study:

Research is re-search and hence the researcher may highlight the earlier research in new manner or establish new theory. He must refer earlier research work and distinguish his own research from earlier work. He must explain how his research is different and how his research topic is different and how his research topic is important. In a statement of his problem, he must be able to explain in brief the historical account of the topic and way in which he can make and attempt. In his study to conduct the research on his topic.

(3) Review of Literature :

Research is a continuous process. He cannot avoid earlier research work. He must start with earlier work. He should note down all such research work, published in books, journals or unpublished thesis. He will get guidelines for his research from taking a review of literature . He should collect information in respect of earlier research work. He should enlist them in the given below:

  • Author/researcher
  • Title of research /Name of book
  • Year of publication
  • Objectives of his study
  • Conclusion/suggestions

Then he can compare this information with his study to show separate identity of his study. He must be honest to point out similarities and differences of his study from earlier research work.

(4) Methodology:

It is related to collection of data. There are two sources for collecting data; primary and secondary. Primary data is original and collected in field work, either through questionnaire interviews. The secondary data relied on library work. Such primary data are collected by sampling method . The procedure for selecting the sample must be mentioned. The methodology must give various aspects of the problem that are studied for valid generalization about the phenomena. The scales of measurement must be explained along with different concepts used in the study.

While conducting a research based on field work, the procedural things like definition of universe, preparation of source list must be given. We use case study method , historical research etc. He must make it clear as to which method is used in his research work. When questionnaire is prepared, a copy of it must be given in appendix.

(5) Interpretation of data :

Mainly the data collected from primary source need to be interpreted in systematic manner. The tabulation must be completed to draw conclusions. All the questions are not useful for report writing . One has to select them or club them according to hypothesis or objectives of study .

(6) Conclusions/suggestions:

Data analysis forms the crux of the research problem . The information collected in field work is useful to draw conclusions of study. In relation with the objectives of study the analysis of data may lead the researcher to pin point his suggestions. This is the most important part of study. The conclusions must be based on logical and statistical reasoning. The report should contain not only the generalization of inference but also the basis on which the inferences are drawn. All sorts of proofs, numerical and logical, must be given in support of any theory that has been advanced. He should point out the limitations of his study.

(7) Bibliography:

The list of references must be arranged in alphabetical order and be presented in appendix. The books should be given in first section and articles are in second section and research projects in the third. The pattern of bibliography is considered convenient and satisfactory from the point of view of reader.

(8) Appendices:

The general information in tabular form which is not directly used in the analysis of data but which is useful to understand the background of study can be given in appendix.

Layout of the Research Report

There is scientific method for the layout of research report . The layout of research report means as to what the research report should contain. The contents of the research report are noted below:

  • Preliminary Page

(1) Preliminary Pages:

These must be title of the research topic and data. There must be preface of foreword to the research work. It should be followed by table of contents. The list of tables, maps should be given.

(2) Main Text:

It provides the complete outline of research report along with all details. The title page is reported in the main text. Details of text are given continuously as divided in different chapters.

  • (a)       Introduction
  • (b)     Statement of the problem
  • (c)   The analysis of data
  • (d)     The implications drawn from the results
  • (e)   The summary

(a)       Introduction :

Its purpose is to introduce the research topic to readers. It must cover statement of the research problem , hypotheses, objectives of study, review of literature, and the methodology to cover primary and secondary data, limitations of study and chapter scheme. Some may give in brief in the first chapter the introduction of the research project highlighting the importance of study. This is followed by research methodology in separate chapter.

The methodology should point out the method of study, the research design and method of data collection.

(b)     Statement of the problem :

This is crux of his research. It highlights main theme of his study. It must be in nontechnical language. It should be in simple manner so ordinary reader may follow it. The social research must be made available to common man. The research in agricultural problems must be easy for farmers to read it.

(c)       Analysis of data :

Data so collected should be presented in systematic manner and with its help, conclusions can be drawn. This helps to test the hypothesis . Data analysis must be made to confirm the objectives of the study.

(d)     Implications of Data :

The results based on the analysis of data must be valid. This is the main body of research. It contains statistical summaries and analysis of data. There should be logical sequence in the analysis of data. The primary data may lead to establish the results. He must have separate chapter on conclusions and recommendations. The conclusions must be based on data analysis. The conclusions must be such which may lead to generalization and its applicability in similar circumstances. The conditions of research work limiting its scope for generalization must be made clear by the researcher.

(e)       Summary :

This is conclusive part of study. It makes the reader to understand by reading summary the knowledge of the research work. This is also a synopsis of study.

(3) End Matter:

It covers relevant appendices covering general information, the concepts and bibliography. The index may also be added to the report.

Related Posts:

  • Sources of Hypothesis in Research
  • Referencing a Research Report
  • Primary stages of research process
  • Interpretation of Research Data
  • Pre-Testing Research Data Collection Instruments
  • Exploratory research and it's methods
  • Significance and Problems of Social Research
  • Descriptive research and it's methods
  • The Role of Business Research
  • Secondary Data Sources for Research

One thought on “ Contents and Layout of Research Report ”

Any more research’s is welcome….

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Writing up a Research Report

  • First Online: 10 November 2021

Cite this chapter

Book cover

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  

2994 Accesses

A research report is one big argument how and why you came up with your conclusions. To make it a convincing argument, a typical guiding structure has developed. In the different chapters, distinct issues need to be addressed to explain to the reader why your conclusions are valid. The governing principle for writing the report is full disclosure: to explain everything and ensure replicability by another researcher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Barros, L. O. (2016). The only academic phrasebook you’ll ever need. Createspace Independent Publishing Platform.

Google Scholar  

Field, A. (2016). An adventure in statistics. The reality enigma . SAGE.

Field, A. (2020). Discovering statistics using IBM SPSS statistics (5th ed.). SAGE.

Früh, M., Keimer, I., & Blankenagel, M. (2019). The impact of Balanced Scorecard excellence on shareholder returns. IFZ Working Paper No. 0003/2019. Retrieved June 09, 2021, from https://zenodo.org/record/2571603#.YMDUafkzZaQ .

Yin, R. K. (2013). Case study research: Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ – Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug , Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Hunziker, S., Blankenagel, M. (2021). Writing up a Research Report. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34357-6_4

Download citation

DOI : https://doi.org/10.1007/978-3-658-34357-6_4

Published : 10 November 2021

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-34356-9

Online ISBN : 978-3-658-34357-6

eBook Packages : Business and Economics (German Language)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Mission and history
  • Platform features
  • Library Advisory Group
  • What’s in JSTOR
  • For Librarians
  • For Publishers

Open research reports

JSTOR hosts a growing curated collection of more than 50,000 open research reports from 187 think tanks and research institutes from around the world. These publications are freely accessible to everyone on JSTOR and discoverable as their own content type alongside journals, books, and primary sources. We update research reports on our platform each month as they become available through contributing institutes.

Download the list (xlsx) of contributing policy institutes.

Research reports provide current analysis on many of today’s most discussed and debated issues from a diversity of ideological and international perspectives representing 40 countries and 29 languages. A sample of topics would include: climate change, border security, fake news, cybersecurity, electric vehicles, artificial intelligence, energy policy, gender issues, terrorism, remote learning, recent trends in business and economics, and various public health issues, including COVID-19.

Although the briefs, papers, and reports published by these institutes are not peer-reviewed, they are written by policy experts and members of the academic community who are fellows in residence. This is content that impacts policy, both foreign and domestic. It is also increasingly used by faculty in their classrooms for its currency, breadth, and accessibility.

JSTOR’s research reports cover seven Areas of Focus: Business & Economics, Critical Race & Ethnic Studies, Education, Gender & Sexuality, Public Health, Security Studies, and Sustainability.

Browse research reports

Why research reports on JSTOR?

Input from faculty and librarians revealed that although research reports were for the most part freely available outside of JSTOR, they were hard to find and not easily discoverable alongside relevant material. It was also difficult for students to differentiate between the most credible research reports and a growing corpus of questionable sources on the Web.

JSTOR has attempted to redress these issues by centralizing a curated collection of think tank research reports on a single platform, making this content freely available to all JSTOR users, and enhancing its discoverability through comprehensive searching and the application of rich metadata.

Your Article Library

Contents of the research report.

content of research reports

ADVERTISEMENTS:

After reading this article you will learn about the contents of a research report. It includes:- 1. Introduction 2. Method 3. Results of the Study 4. Discussion 5. Summary or Abstract 6. References 7. Appendix.

1. Introduction:

The research report should ordinarily start with a statement of the problem selected for investigation. The reporter should introduce the background and nature of the problem under investigation.

Although quite a few times the study might be posing a simple empirical question about human behaviour or might be directed toward a practical problem or some policy-issue, the researcher must place the question or the issue into a larger, theoretical or practical context. This helps the readers to appreciate why the problem is of a general significance and theoretic import.

If the enquiry was planned with a view to making some contribution to certain aspects of social theory, the reporter should summarise the theory or conceptual scheme within which the reporter/researcher is working. Regardless of the nature of the study, it is important that an intelligent but, may be, a non-professional person would be able to understand the nature of problem and appreciate its larger relevance.

The report should not contain a lot of jargon except when there is no feasible alternative to it, certain constraints warranting its use. The reader is not always prepared to intelligibly appreciate the problem of research, he is often not conversant with the relevant theoretic structure.

Hence, it is important that the general reader is gradually led up to the formal theoretic statement of the problem. Intelligible examples are necessary for illustrating theoretic ideas and the technical terms.

It is extremely desirable that a summary of the current state of knowledge in the area of investigation is presented, once the problem of the study is explained. The summary should comprise allusions to the previous researches conducted in the problem-area, and pertinent theories relating to the phenomena (if any).

A researcher must have familiarized himself with the previous work in the field before designing the study. Most of the literature search should have been done by the time the researcher is ready to write the report.

If the researcher was required to recast his study in a somewhat different framework than his initial problem would warrant, he would need to give references he had not previously consulted.

That is, he will be obliged to go back to the literature which in the light of the above shift has become relevant. Review of previous work should comprise only the pertinent findings and insights relating to the issue the researcher is dealing with.

If such a review article already exists, the researcher will do well to simply address his readers to the review article and present only the bare highlights in the report. Books and articles need to be cited with the author’s last name and year of publication.

Towards the end of the section on introduction, it is desirable that the researcher introduces his own study in a brief overview. This affords a smooth transition into the method section which follows the introductory section.

2. Method (Design of Study):

The readers of the report do like to know in detail how the research was carried out and what its basic design was like. Suppose the research involved experimentation, the readers would like to know the nature of experimental manipulation; the method and points at which measurements were taken and so on.

The readers also need to know, in case of the descriptive and exploratory studies, how the data were collected, the nature of questions asked, the strategies adopted by interviewers during the collection of data, the training they had and the recording procedure adopted for recording of responses.

The readers also need to know how the observations or replies to questions were translated into measures of the variables with which the enquiry was concerned, in the main, e.g., what questions were asked to estimate the degree of ‘commitment’ or alienation.

In regard to the sample covered by the study with a view to arriving at general conclusions about the population which the sample supposedly represents, the readers are expected to be told about the general character of the subjects, the number of them covered by the sample, mode of selection etc.

Information on these points is crucial for understanding the probable limits of generalizability of the findings, i.e., whether there is any justifiable basis for extending the sample findings to the population.

This information can betray the biases of the researcher in selecting the subjects for the study. Thus, the claim of the researcher as to generalizability of findings to population at large could be evaluated.

Although meaningful studies based on a small number of cases barely representing a specifiable population are possible, nevertheless, the number of characteristics of the respondent on which the findings are based must be plainly reported so that readers are enabled to arrive at their own verdict regarding the applicability of the given findings to other groups similarly placed in the social structure.

If the researcher has conducted a complex experiment, the report should include some description of the study as it was seen from the viewpoint of the subjects.

This would involve a description of the subjects, the experimental setting, and the variables assessed. The sequence of events in a chronological order also needs to be presented to the reader, who, in a sense, is carried through the experience as though he was a subject.

Even if the reporter customarily reproduces the complete questionnaire/schedule or testing scales in the appendix to the report, a summary of stimulus items, a sample of questionnaire items and scale-items should be included in this section of the report. All this goes a long way toward giving the reader a feel of what it would have been like to be a subject.

This has an important bearing on the interpretation of study results, and understandably, the reader is placed thereby in a position to judge the worth of the study results. In quite a few studies the subject/participants are called upon to co­operate actively in the research enterprise.

The report should advisedly make a mention of how the participants in the research were compensated for their time and effort and if there was deception practiced on them in the course of the study. Such unethical practices like deception or misinformation about the procedure cannot unfortunately be dispensed with in certain studies.

The readers need to be told how these human participants were told about these practices afterwards, the amount of freedom afforded to subjects in the matter of withdrawing their participation, subjection to threats, concealed observations of them, strategies for protecting their anonymity etc., should also be faithfully reported.

3. Results of the Study:

The section is closed generally with statement that informs the conclusions reached as also the qualifications imposed upon them by the conceptual and practical difficulties faced by the researcher in executing the study-design in a manner he would ideally have desired.

But if the researcher wishes to present different kinds of results before he is able to integrate them or draw any inferences based on them or if he wants to discuss certain matters in the final discussion then the discussion section is better presented separately.

Of course, even here there cannot be a pure results section without an attendant discussion. Before the researcher can present his main results there are, in the main, ‘ two preliminary things that must concern him. Firstly, he needs to present proof that his study has ensured the conditions for testing the hypotheses and/or for answering the research questions.

For example, if the study required of the researcher that he produce two groups radically differing from each other in the character of their emotions, the report must demonstrate that the ratings on the two groups were conclusively different and it was not that the difference occasioned as a matter of chance.

In case the investigation required observers to record behaviour of the judges entrusted with rating the responses, the report should present quantitative proof of reliability of the recordings or ratings.

The result section should usually begin with a discussion on the safeguards and strategies adopted by the researcher to negate bias and unreliability in the course of the study. It is quite possible that some of these matters would have already found a place in the meth od section.

It is equally likely that in some studies discussion on these matters is rightly postponed to the final discussion section, where researcher tries to adduce alternative explanations of the study results.

What should be included at the beginning of the results section so that the readers are satisfied that the stage was successfully set for testing the research hypotheses, is a decision which would be governed by an understanding of the overall state of study results. No hard and fast rules lead to this decision.

Secondly, the method of data-analysis is a matter to be dealt with at the beginning of the results section. The researcher needs to describe the procedure adopted by him in converting his observations into data that may be readily analysed and the procedure adopted for coding and articulation of different observer’s ratings.

The readers must be told next, about the statistical analysis itself. If this analysis was unconventional or unorthodox and warranted certain statistical assumptions, a detailed discussion giving out the rationale for it, is called for. This could be the place in the report to afford the readers an overview of the results section, if it is fairly complicated.

The general rule of reporting research findings is to commence with the central findings and then move on to the more peripheral ones. This rule is also applicable to the sub-sections and it is advisable that the basic findings are stated first, followed by elaborations of them, as needed.

If the beginning is made with the most central results, the progress in reporting should follow the line suggested below:

(1) The researcher should remind the readers in a conceptual mould, about the question he is asking. For example, is democratic classroom atmosphere more conducive to learning by students as compared to the authoritarian atmosphere?

(2) Secondly, the reporter should remind the readers of the actual operations performed or the actual behaviour measured (which was assumed to be the empirical referent of learning or democratic atmosphere, in our example).

(3) The answer to the question which surfaced as a result of the study should be made known to the readers immediately and unequivocally.

(4) Relevant supporting numbers or figures, substantiating the study result should be given out. For example, x 2 = 11.2, df = 2. This should be followed by an elaboration of the overall conclusions. Limitations imposed upon these conclusions by certain factors which might have operated to produce results that may not be expected in a larger class of such situations should be honestly spelt out.

(5) It is necessary that every finding involving a comparison, e.g., between democratic and authoritarian classroom atmospheres, between certain groups or relationship between variables should be accompanied by its statistical level of significance. Failing this, the readers would have no basis of knowing whether or not the findings may be attributed to the chance factor.

The inferential statistics though important, do no constitute the core of the narrative and should be subordinated to the substantive results. The real purpose of descriptive statistics or indices should be to present to the readers the behaviour of people as vividly as possible. Effective reporting aims at giving to the readers a ‘feel’ of the observed behaviour.

(6) Ordinarily, in a detailed research report intended for a knowledgeable readership, every finding considered sufficiently important as to merit some emphasis should be accompanied by a table or graph or figure showing the relevant data. Thus, the reader is in a position to grasp the findings by reading the narration or by looking at the tables or figures, embodying result of interest.

As the writing on the section on results progresses, the reporter should continually keep summarizing and updating the readers’ fund of information lest they should be required to look back time and again, to keep in touch with the major points of the researcher’s thesis.

Towards the end of this section, is demonstrated the statistical reliability of the results. It is often useful to illustrate how particular individuals covered by the study behaved. Besides the illustrative function, this adds richness to the study-findings.

4. Discussion:

Especially for the more complex studies having more abstract and extensive implications, discussion constitutes a separate section. The section on discussion forms a coherent narration with the introductory section of the report.

Concerns of central importance to the researcher in view of his problem and hence embodied in the introduction section should appear again in the discussion for the discussion proceeds from the specific matters about the study through the more abiding and general concerns to the most inclusive generalization the researcher wishes to make.

Each of the new statements made in the discussion section should contribute something fresh to the reader’s understanding of the problem. The inferences that may be drawn from the findings should be clearly presented. These may often be at a high level of abstraction. If this be the case, the conceptual or theoretic linkages would need to be explicated.

Let us take an example. If the investigator has found better performance in terms of learning on the part of students, in classroom situations characterized by a ‘democratic’ atmosphere (democratic atmosphere in the classroom may be said to be characterized tentatively by the freedom allowed to students in respect of choosing the problems for discussion, electing the discussion leader, counter questioning the teacher, etc.), the investigator may conclude that in other situations where such freedom is allowed to participants, i.e., of choosing their problems for discussion or electing their own discussion leader, etc., similar effects will be seen.

However, the researcher may wish to carry his inference to a higher level of abstraction, especially if there is some partially developed theory to which it may be possible to link his finding or if there have been other studies in which the specific phenomena are different but these can be understood in terms of the same abstract principle.

For example, the investigator may find that the teachers in general feel dissatisfied or unhappy despite the improvement in their salary scales because the ‘others’ in comparable jobs whose salary scales too were subjected to an upward revision appear to them to have benefitted more by this scale revision.

The investigator may treat this state of affairs (characterized by dissatisfaction among teachers despite improvement in salary scales) as an instance of the more abstract concept of ‘relative’ deprivation.

On the basis of this abstract concept, the researcher may be able to link up the finding of his study to those of some other study which reported that in a community hit by a natural disaster some people who had themselves suffered loss of property and bereavement went out to help certain other families because the loss and bereavement suffered by these families as viewed by those who went out to help, was much greater compared to their own.

This phenomenon though different from the earlier one in concrete content, can be understood in terms of the same abstract principle which explains the dissatisfaction among teachers despite the increased objective gain.

The people who had incurred loss and bereavement in the second example compared their losses to those of the ‘significant others’ in the community and found that their own losses were much less or that they were much better compared to the ‘others’, and hence developed sympathy for these ‘others’ although objectively viewed, they themselves needed to be sympathized with.

The questions that still lie unanswered may also be alluded to. It is quite in order at this point to compare the results of the study with those reported by other investigators. The possible short-comings of the study should be honestly brought out.

The readers must be told about the conditions that might have limited the extent of legitimate generalization. Here, the readers should be reminded of the characteristics of the sample studied as also about the possibility that it might differ from the ‘population’ or ‘universe’ to which the researcher might want to generalize.

The specific characteristics of the method employed by the researcher which might have influenced the results or some factors that might have led to atypical results merit mention. The researcher should not, however, try to invest long involved long involved theories to explain away every ‘bump’ in the data.

On the contrary, if the study results suggest the beginnings of a new theory which injects amazing clarity into the data and affords a very meaningful view of the problem- area, it would be advisable to rewrite the entire report beginning with the new theory. The aim of scientific reporting is to provide the most informative, instructive and compelling framework for the study right from the first sentence.

5. Summary or Abstract:

In a way, the title of research report itself serve as part of the summary or abstract. Ideally, it conveys the content of the study as accurately and clearly as possible. A potential reader can on this basis decide whether or not to go ahead to read it. Those titles that mention both the dependent and independent variables are obviously the most informative ones.

6. References:

The section on references comprises a list of all books and articles cited in the text of the research report. These books and articles are arranged alphabetically according to the author’s last name, a format that corresponds to the way in which they are cited in a book.

The reference should clearly indicate the name of the author, the title of the book or article, the journal in which it appears, the publisher, place of publication and the year of publication.

7. Appendix:

The appendix to a report consists of copies of materials used in the study, like questionnaire, attitude scale, stimulus materials, drawings of apparatuses, etc. This is expected to help a person who would like to replicate the study.

A second appendix might contain tables of data which are too extensive and seemingly too marginal to be included in the body of the report. This is in the nature of a good turn done to the potential researchers, for this enables them to explore the researcher’s data in fine detail and to answer certain questions about the results that might not have occurred to the researcher.

Related Articles:

  • Principles of a Good Research Report
  • Research Report: Introduction, Definition and Report Format

Research , Social Research , Research Report , Contents , Contents of the Research Report

Comments are closed.

web statistics

AI Index Report

The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the complex field of AI. The report aims to be the world’s most credible and authoritative source for data and insights about AI.

Read the 2023 AI Index Report

AI Index coming soon

Coming Soon: 2024 AI Index Report!

The 2024 AI Index Report will be out April 15! Sign up for our mailing list to receive it in your inbox.

Steering Committee Co-Directors

Jack Clark

Ray Perrault

Steering committee members.

Erik Brynjolfsson

Erik Brynjolfsson

John Etchemendy

John Etchemendy

Katrina light

Katrina Ligett

Terah Lyons

Terah Lyons

James Manyika

James Manyika

Juan Carlos Niebles

Juan Carlos Niebles

Vanessa Parli

Vanessa Parli

Yoav Shoham

Yoav Shoham

Russell Wald

Russell Wald

Staff members.

Loredana Fattorini

Loredana Fattorini

Nestor Maslej

Nestor Maslej

Letter from the co-directors.

AI has moved into its era of deployment; throughout 2022 and the beginning of 2023, new large-scale AI models have been released every month. These models, such as ChatGPT, Stable Diffusion, Whisper, and DALL-E 2, are capable of an increasingly broad range of tasks, from text manipulation and analysis, to image generation, to unprecedentedly good speech recognition. These systems demonstrate capabilities in question answering, and the generation of text, image, and code unimagined a decade ago, and they outperform the state of the art on many benchmarks, old and new. However, they are prone to hallucination, routinely biased, and can be tricked into serving nefarious aims, highlighting the complicated ethical challenges associated with their deployment.

Although 2022 was the first year in a decade where private AI investment decreased, AI is still a topic of great interest to policymakers, industry leaders, researchers, and the public. Policymakers are talking about AI more than ever before. Industry leaders that have integrated AI into their businesses are seeing tangible cost and revenue benefits. The number of AI publications and collaborations continues to increase. And the public is forming sharper opinions about AI and which elements they like or dislike.

AI will continue to improve and, as such, become a greater part of all our lives. Given the increased presence of this technology and its potential for massive disruption, we should all begin thinking more critically about how exactly we want AI to be developed and deployed. We should also ask questions about who is deploying it—as our analysis shows, AI is increasingly defined by the actions of a small set of private sector actors, rather than a broader range of societal actors. This year’s AI Index paints a picture of where we are so far with AI, in order to highlight what might await us in the future.

- Jack Clark and Ray Perrault

Our Supporting Partners

AI Index Supporting Partners

Analytics & Research Partners

AI Index Supporting Partners

Stay up to date on the AI Index by subscribing to the  Stanford HAI newsletter.

Suggested Keywords

Businesses & Institutions

Global Research and Market Insights

content of research reports

Candace Browning

Head of BofA Global Research

March 24, 2024

Must Read Research: Changing the Game

This week we discuss the shift to Emerging Markets (EM), play-by-play from the 2024 Global Industrials Conference and 30 breakthrough technologies that can change the game.

Also featuring commentary from  Global Economic Weekly

sd

Global trends need global vision

Each week, our analysts discuss what’s emerging in global markets on the Global Research Unlocked™ podcast.

Featured content

A large energy-generating facility near a busy highway.

10 Macro Themes for 2024 – Breadth in rate cuts and markets

We identify 10 macro themes across global economics and strategy and provide our year ahead outlooks.

content of research reports

It’s not just research. It’s results.

We are honored to be named #1 in the All-America Research Team survey on Oct 24, 2023, collected during the polling period of May 30 – June 23. Read more for details and methodology.

An aerial view of beautiful rice field.

Around the world in 5 questions

The world economy is going through significant structural changes after many years of smooth globalization dynamics.

Aerial view of electricity pylons and a big Electrical substation.

Delivering the energy transition

The planet is warming but challenges hinder efforts to tackle climate change. We outline obstacles to the energy transition.

Futuristic Digital Technology Background

Artificial Intelligence…Is Intelligent!

We are at a defining moment – like the internet in the ‘90s – where Artificial Intelligence (AI) is moving toward mass adoption.

See the latest from Bank of America Institute

See the latest from Bank of America Institute

Uncovering powerful insights that move business and society forward.

About Global Research

About Global Research

Our award-winning analysts, supported by our BofA Data Analytics team, provide insightful, objective and in-depth research to help you make informed investing decisions. We service individual investors and a wide variety of institutional money managers including hedge funds, mutual funds, pension funds and sovereign wealth management funds.

BofA Mercury®

BofA Mercury®

Insights and tools to help optimize your trading strategies.  Sign in to BofA Mercury®.

Department of Health & Human Services

Case Summary: Brigidi, Gian-Stefano

Gian-Stefano Brigidi, Ph.D. University of California San Diego and University of Utah : Based on the report of an assessment conducted by the University of Utah (UU), and inquiry conducted by the University of California San Diego (UCSD), the Respondent’s admission, and additional analysis conducted by the Office of Research Integrity (ORI) in its oversight review, ORI found that Gian-Stefano Brigidi, Ph.D. (Respondent), who was a Postdoctoral Fellow, Department of Neurobiology, UCSD, and was an Assistant Professor, Department of Neurobiology, UU, engaged in research misconduct in research supported by U.S. Public Health Service (PHS) funds, specifically National Institute of Mental Health (NIMH), National Institutes of Health (NIH), grant F32 MH110141, National Human Genome Research Institute (NHGRI), NIH, grant T32 HG000044, National Institute of Neurological Disorders and Stroke (NINDS), NIH, grant P30 NS047101, and National Library of Medicine (NLM), NIH, grant T15 LM011271. The research was included in grant applications submitted for PHS funds, specifically R01 NS131809-01, R01 NS133405-01, DP2 NS127276-01, and R01 NS111162-01A1 submitted to NINDS, NIH, and R21 MH121860-01, R21 MH121860-01A1, F32 MH110141-01, F32 MH110141-01A1, and F32 MH110141-01AS1 submitted to NIMH, NIH.

ORI found that Respondent engaged in research misconduct by knowingly or intentionally falsifying and/or fabricating data and results by manipulating primary data values to falsely increase the n-value, manipulating fluorescence micrographs and their quantification graphs to augment the role of ITFs in murine hippocampal neurons, and/or manipulating confocal images that were obtained through different experimental conditions in twenty (20) figures of one (1) published paper and four (4) PHS grant applications, one (1) panel of one (1) poster, and seven (7) slides of one (1) presentation:  

  • Genomic Decoding of Neuronal Depolarization by Stimulus-Specific NPAS4 Heterodimers. Cell . 2019 Oct 3;179(2):373-391.e27. doi: 10.1016/j.cell.2019.09.004 (hereafter referred to as “ Cell 2019”).  
  • Genomic mechanisms linking neuronal activity history with present and future functions. Poster for “The Brigidi Lab – a neuronal activity lab in the Department of Neurobiology at the University of Utah” (hereafter referred to as the “UU Department of Neurobiology poster”).  
  • Decoding neural circuit stimuli into spatially organized gene regulation. Presentation presented to the UU Department of Neurobiology & Anatomy on January 23, 2020 (hereafter referred to as “UU Department of Neurobiology presentation”).   
  • DP2 NS127276-01, “Decoding neuronal activity history at the genome through the spatially segregated inducible transcription factors,” submitted to NINDS, NIH, on August 20, 2020, Awarded Project Dates: September 15, 2021-August 1, 2023.   
  • F32 MH110141-01, “Regulation of excitatory-inhibitory balance by the local translation of the immediate early gene Npas4,” submitted to NIMH, NIH, on August 10, 2015.   
  • F32 MH110141-01A1, “Regulation of Excitatory-Inhibitory Balance by Local Translation of the Immediate Early Gene Npas4,” submitted to NIMH, NIH, on December 8, 2015, Awarded Project Dates: August 1, 2016-July 31, 2018.   
  • F32 MH110141-01A1S1, “Regulation of Excitatory-Inhibitory Balance by Local Translation of the Immediate Early Gene Npas4,” submitted to NIMH, NIH, on December 8, 2016, Awarded Project Dates: December 1, 2016-July 31, 2017.  

The falsified and/or fabricated data also were included in twenty-three (23) figures in the following five (5) PHS grant applications:  

  • R01 NS131809-01, “Regulation and function of dendritic mRNA that encodes the neuronal transcription factor Npas4,” submitted to NINDS, NIH, on June 6, 2022.   
  • R01 NS133405-01, “Assessing the impact of the inducible transcription factor NPAS4 on spatial tuning in the mouse hippocampus,” submitted to NINDS, NIH, on October 5, 2022.   
  • R01 NS111162-01A1, “Molecular and cellular mechanisms underlying activity dependent gene regulation in neurons,” submitted to NINDS, NIH, on March 5, 2019, Awarded Project Dates: December 15, 2019-November 30, 2024.   
  • R21 MH121860-01, “Identification of dendritically-localized transcription factor mRNAs as a mechanism for conveying multiple streams of information to the nucleus,” submitted to NIMH, NIH, on February 19, 2019.   
  • R21 MH121860-01A1, “Identification of dendritically-localized transcription factor mRNAs,” submitted to NIMH, NIH, on March 16, 2020. 

Specifically,   ORI found that:  

  • Respondent knowingly or intentionally combined two to three real data sets and two to five fabricated data sets to falsely increase the n-values reported in:    
  • Figures 1B, 1D, 1E, 1G, 1I, 1J, 1M-1O, 1Q-1T, S2B-S2D, S2F-S2H, S3I, S3L, S3M, and S6H of Cell 2019 and Slides 6-10, 13, and 28 of the UU Department of Neurobiology presentation representing the quantification of NPAS4 immunohistofluorescence

Figures 2H, 2I, 2K, 2P, 3C, 3E, 4D-4G, 4K-4N, 4P-4Q, S3G, S5B, and S5C of Cell  2019 representing the quantification of Npas4 mRNA or puro-PLA puncta 

  • Figures S1E, S1G, and S1H of Cell  2019 representing the quantification of whole-cell clamp recordings of CA1 PN
  • Figures 2 (lower panel) and 3c of F32 MH110141-01, Figures 1g, 2b, 2d, and 4 of F32 MH110141-01A1S1, and Figures 1g, 2b, 2d, and 4 of F32 MH110141-01A1 representing time points of NPAS4 quantification after no stimulation or post-stimulation in the alveus or radiatum SR, SO, SP, SLM, with or without the addition of an inhibitor
  • Respondent knowingly or intentionally manipulated confocal images that were obtained through different experimental conditions in: 

Figures 1A, 1C, and 1F of Cell 2019 and Slides 6-9 of the UU Department of Neurobiology presentation representing confocal images of hippocampal slices immunostained for NPAS4 and Neu

Figures S2A and S2E of Cell 2019 by manipulating and misrepresenting the GFP signals as NPAS4 signals in wildtype mice 

Figures 1H, 1L, 1P, S3K, S6F, and S6G of Cell 2019 and Slides 9 and 28 of the UU Department of Neurobiology presentation by manipulating the raw images of hippocampal slices immunostained with NPAS4 and Neu and/or ARNT1 or ARNT2 by generating a mask of NPAS4 immunofluorescent signal through GFP signal from tissue obtained from Thy1-GFP mice to intentionally enhance the appearance of the dendritic NPAS4 signal

Figures S6F and S6G of Cell 2019 by manipulating the raw images of hippocampus slices by overlaying a GFP channel over ARNT1 channel and using the multiply feature in Photoshop to restrict ARNT1 signal through GFP to enhance the ARNT1 signal in three panels

  • Slides 7, 9, and 28 of the UU Department of Neurobiology presentation by manipulating six images representing post-stimulation with different time points by using a GFP mask overlaid on top of raw NPAS4 immunofluorescence

Figure 4 of DP2 NS127276-01 and panel 1 of the UU Department of Neurobiology poster representing twelve images in columns 2-4 labeled EGR, FOS, ATF4 by mislabeling the microscope images as immunofluorescent stained with antibodies against EGR, FOS, and ATF4 when they actually were stained with anti-NPAS4 and selected images to support the immunofluorescence data in the ITF induction graphs 

Figure 5 of DP2 NS127276-01 representing two confocal images in the far-right column by intentionally and selectively enhancing the brightness of the anti-NPAS4 immunofluorescent channel within the dashed box and left brightness unchanged in surrounding areas of the images 

Figure 6 of DP2 NS127276-01 in twelve images in columns 2-5 labeled Egr2 , Fos , and Atf4 by intentionally mislabeling the microscope images as RNA in situ hybridization with probes against Egr2, Fos, and Atf4 when they actually were stained with NPAS4 probes and intentionally selecting and quantifying images in the quantification graphs to support the conclusions of the grant application

Respondent knowingly or intentionally manipulated the fluorescence micrographs and their quantification graphs to augment the role of ITFs in murine hippocampal neurons in Figures 2B-2G, 2J, 2L-2O, 3B, 3D, 3F-3H, 4C, 4J, 4O, S1A-S1D, S1F, S1I-S1J, S3A-S3F, S3H, S3J, S3N-S3T, S5D-S5G, and S6A-S6E of Cell  2019; the falsified/fabricated data also were included in Figures 2B-2H, 3, 4B-4E, and 5C-5G of R21 MH121860-01, Figures 2, 3B-3E, 4B-4C, 4E-4I, and 5B-5E of R21 MH121860-01A1, Figures 3, 5, 6B, 7, 8, 10B-10D, 11A-11C, and 11E-11F in R01 NS131809-01, Figure 8 of R01 NS133405-01, and Figures 3B-3C, 3E-3I, 4B-4I, 5, 9, 10B-10E, and 11-12 of R01 NS111162-01A1.

Respondent entered into a Voluntary Settlement Agreement (Agreement) and voluntarily agreed to the following:  

  • Respondent will have his research supervised for a period of five (5) years beginning on March 24, 2024 (the “Supervision Period”). Prior to the submission of an application for PHS support for a research project on which Respondent’s participation is proposed and prior to Respondent’s participation in any capacity in PHS-supported research, Respondent will submit a plan for supervision of Respondent’s duties to ORI for approval. The supervision plan must be designed to ensure the integrity of Respondent’s research. Respondent will not participate in any PHS-supported research until such a supervision plan is approved by ORI. Respondent will comply with the agreed-upon supervision plan.  
  • A committee of 2-3 senior faculty members at the institution who are familiar with Respondent’s field of research, but not including Respondent’s supervisor or collaborators, will provide oversight and guidance for a period of five (5) years from the effective date of the Agreement. The committee will review primary data from Respondent’s laboratory on a quarterly basis and submit a report to ORI at six (6) month intervals setting forth the committee meeting dates and Respondent’s compliance with appropriate research standards and confirming the integrity of Respondent’s research.

The committee will conduct an advance review of each application for PHS funds, or report, manuscript, or abstract involving PHS-supported research in which Respondent is involved. The review will include a discussion with Respondent of the primary data represented in those documents and will include a certification to ORI that the data presented in the proposed application, report, manuscript, or abstract are supported by the research record. 

  • During the Supervision Period, Respondent will ensure that any institution employing him submits, in conjunction with each application for PHS funds, or report, manuscript, or abstract involving PHS-supported research in which Respondent is involved, a certification to ORI that the data provided by Respondent are based on actual experiments or are otherwise legitimately derived and that the data, procedures, and methodology are accurately reported and not plagiarized in the application, report, manuscript, or abstract.
  •   If no supervision plan is provided to ORI, Respondent will provide certification to ORI at the conclusion of the Supervision Period that his participation was not proposed on a research project for which an application for PHS support was submitted and that he has not participated in any capacity in PHS-supported research.
  •   During the Supervision Period, Respondent will exclude himself voluntarily from serving in any advisory or consultant capacity to PHS including, but not limited to, service on any PHS advisory committee, board, and/or peer review committee.
  •   Respondent will request that the following paper be corrected or retracted:
  • Cell. 2019 Oct 3;179(2):373-391.e27. doi: 10.1016/j.cell.2019.09.004

Respondent will copy ORI and the Research Integrity Officer at UCSD on the correspondence with the journal.

A Federal Register notice (FRN) has been submitted to the Federal Register for this case. When the FRN is published in the Federal Register ,  the link will be provided here.

PDF

Email Updates

Read our research on: Gun Policy | International Conflict | Election 2024

Regions & Countries

6 facts about americans and tiktok.

A photo of TikTok in the Apple App store. (Michael M. Santiago/Getty Images)

Increasing shares of U.S. adults are turning to the short-form video sharing platform TikTok in general and for news .

Pew Research Center conducted this analysis to better understand Americans’ use and perceptions of TikTok. The data for this analysis comes from several Center surveys conducted in 2023.

More information about the surveys and their methodologies, including the sample sizes and field dates, can be found at the links in the text.

Pew Research Center is a subsidiary of The Pew Charitable Trusts, its primary funder. This is the latest analysis in Pew Research Center’s ongoing investigation of the state of news, information and journalism in the digital age, a research program funded by The Pew Charitable Trusts, with generous support from the John S. and James L. Knight Foundation.

This analysis draws from several Pew Research Center reports on Americans’ use of and attitudes about social media, based on surveys conducted in 2023. For more information, read:

Americans’ Social Media Use

How u.s. adults use tiktok.

  • Social Media and News Fact Sheet
  • Teens, Social Media and Technology 2023

At the same time, some Americans have concerns about the Chinese-owned platform’s approach to data privacy and its potential impact on national security. Lawmakers in the U.S. House of Representatives recently passed a bill that, if passed in the Senate and signed into law, would restrict TikTok’s ability to operate in the United States.

Here are six key facts about Americans and TikTok, drawn from Pew Research Center surveys.

A third of U.S. adults – including a majority of adults under 30 – use TikTok. Around six-in-ten U.S. adults under 30 (62%) say they use TikTok, compared with 39% of those ages 30 to 49, 24% of those 50 to 64, and 10% of those 65 and older.

In a 2023 Center survey , TikTok stood out from other platforms we asked about for the rapid growth of its user base. Just two years earlier, 21% of U.S. adults used the platform.

A bar chart showing that a majority of U.S. adults under 30 say they use TikTok.

A majority of U.S. teens use TikTok. About six-in-ten teens ages 13 to 17 (63%) say they use the platform. More than half of teens (58%) use it daily, including 17% who say they’re on it “almost constantly.”

A higher share of teen girls than teen boys say they use TikTok almost constantly (22% vs. 12%). Hispanic teens also stand out: Around a third (32%) say they’re on TikTok almost constantly, compared with 20% of Black teens and 10% of White teens.

In fall 2023, support for a U.S. TikTok ban had declined. Around four-in-ten Americans (38%) said that they would support the U.S. government banning TikTok, down from 50% in March 2023. A slightly smaller share (27%) said they would oppose a ban, while 35% were not sure. This question was asked before the House of Representatives passed the bill that could ban the app.

Republicans and Republican-leaning independents were far more likely than Democrats and Democratic leaners to support a TikTok ban (50% vs. 29%), but support had declined across both parties since earlier in the year.

Adults under 30 were less likely to support a ban than their older counterparts. About three-in-ten adults under 30 (29%) supported a ban, compared with 36% of those ages 30 to 49, 39% of those ages 50 to 64, and 49% of those ages 65 and older.

In a separate fall 2023 survey, only 18% of U.S. teens said they supported a ban. 

A line chart showing that support for a U.S. TikTok ban has dropped since March 2023.

A relatively small share of users produce most of TikTok’s content. About half of U.S. adult TikTok users (52%) have ever posted a video on the platform. In fact, of all the TikTok content posted by American adults, 98% of publicly accessible videos come from the most active 25% of users .

Those who have posted TikTok content are more active on the site overall. These users follow more accounts, have more followers and are more likely to have filled out an account bio.

Although younger U.S. adults are more likely to use TikTok, their posting behaviors don’t look much different from those of older age groups.

A chart showing that The most active 25% of U.S. adult TikTok users produce 98% of public content

About four-in-ten U.S. TikTok users (43%) say they regularly get news there. While news consumption on other social media sites has declined or remained stagnant in recent years, the share of U.S. TikTok users who get news on the site has doubled since 2020, when 22% got news there.

Related: Social Media and News Fact Sheet

TikTok news consumers are especially likely to be:

  • Young. The vast majority of U.S. adults who regularly get news on TikTok are under 50: 44% are ages 18 to 29 and 38% are 30 to 49. Just 4% of TikTok news consumers are ages 65 and older.
  • Women. A majority of regular TikTok news consumers in the U.S. are women (58%), while 39% are men. These gender differences are similar to those among news consumers on Instagram and Facebook.
  • Democrats. Six-in-ten regular news consumers on TikTok are Democrats or Democratic-leaning independents, while a third are Republicans or GOP leaners.
  • Hispanic or Black. Three-in-ten regular TikTok news users in the U.S. are Hispanic, while 19% are Black. Both shares are higher than these groups’ share of the adult population. Around four-in-ten (39%) TikTok news consumers are White, although this group makes up 59% of U.S. adults overall .

Charts that show the share of TikTok users who regularly get news there has nearly doubled since 2020.

A majority of Americans (59%) see TikTok as a major or minor threat to U.S. national security, including 29% who see the app as a major threat. Our May 2023 survey also found that opinions vary across several groups:

  • About four-in-ten Republicans (41%) see TikTok as a major threat to national security, compared with 19% of Democrats.
  • Older adults are more likely to see TikTok as a major threat: 46% of Americans ages 65 and older say this, compared with 13% of those ages 18 to 29.
  • U.S. adults who do not use TikTok are far more likely than TikTok users to believe TikTok is a major threat (36% vs. 9%).

Sign up for our weekly newsletter

Fresh data delivered Saturday mornings

WhatsApp and Facebook dominate the social media landscape in middle-income nations

Teens and social media fact sheet, most popular.

About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of The Pew Charitable Trusts .

ANA | Driving Growth

Your company may already be a member. View our member list to find out, or create a new account .

Forgot Password?

Content Library

You can search our content library for case studies, research, industry insights, and more.

You can search our website for events, press releases, blog posts, and more.

Decoding Compensation Models and Implementing the Right Model

April 11, 2024    

T his joint initiative from the ANA and the 4A's, developed by a task force of ANA and 4A's members, is an executive-level guide that details various compensation models that focus on better outcomes for both marketers and their agencies. The primary objective is to establish a robust framework that benefits marketers and agencies, raise awareness about the available choices of compensation methods, and empower stakeholders to make well-informed decisions.

The guide outlines commonly used compensation models, provides foundational knowledge, definitions, best practices, and analysis of the pros and cons for each model. Moreover, it offers a framework enabling both agencies and marketers to determine the right model for their engagement and strategies for successful implementation.

Click the DOWNLOAD NOW button for the full report.

"Decoding Compensation Models and Implementing the Right Model." ANA and 4A's, April 2024.

content of research reports

Main Container

Prime Minister of Canada Justin Trudeau

Search form Mobile

Search

  • Securing Canada’s AI advantage

Subscribe to email updates

Search form

Main content.

content of research reports

This website is not compatible with Internet Explorer or older version of Microsoft Edge(version 78 and older).

For full functionality please use a supported browser .

  • news releases

Artificial intelligence (AI) has incredible potential to transform the economy, improve the way we work, and enhance our way of life. The global race to scale up and adopt AI is on, and Canada is at the forefront of this technology. To make sure we can seize every opportunity in the economy of the future, and set every generation up for success, we need to scale up our innovation ambitions. And do it in a way that brings everyone along. For Millennials and Gen Z, who feel their hard work isn’t paying off like it did for previous generations, we must invest in good-paying opportunities that help them get ahead. That’s why we’re focused on creating more good jobs, including in innovation and technology, which are among the highest paying of all industries.

AI is already unlocking massive growth in industries across the economy. Many Canadians are already feeling the benefits of using AI to work smarter and faster. The rapid advance of generative AI today will unlock immense economic potential for Canada, significantly improving productivity and reducing the time workers have to spend on repetitive tasks. Researchers and companies in Canada are also using AI to create incredible new innovations and job opportunities across all facets of the Canadian economy, from drug discovery to energy efficiency to housing innovation. In the past year, job growth in AI increased by nearly one third in Canada – among the highest growth of any sector. And most AI jobs pay well above the average income.

Canada has a world-leading AI ecosystem – from development, to commercialization, to safety. We have an advantage that can make sure Canadian values and Canadian ideas help shape this globally in-demand technology. Canada was the first country in the world to introduce a national AI strategy and has invested over $2 billion since 2017 to support AI and digital research and innovation. Since then, countries around the world have begun investing significant funding and efforts into AI to advance their economies, particularly in computing infrastructure. In order to maintain Canada’s competitive edge, and secure good paying jobs and job security for generations of young Canadians, we must raise the bar.

The Prime Minister, Justin Trudeau, today announced a $2.4 billion package of measures from the upcoming Budget 2024 to secure Canada’s AI advantage. These investments will accelerate job growth in Canada’s AI sector and beyond, boost productivity by helping researchers and businesses develop and adopt AI, and ensure this is done responsibly.

These measures include:

  • Investing $2 billion to build and provide access to computing capabilities and technological infrastructure for Canada’s world-leading AI researchers, start-ups, and scale-ups. As part of this investment, we will soon be consulting with AI stakeholders to inform the launch of a new AI Compute Access Fund to provide near-term support to researchers and industry. We will also develop a new Canadian AI Sovereign Compute Strategy to catalyze the development of Canadian-owned and located AI infrastructure. Ensuring access to cutting-edge computing infrastructure will attract more global AI investment to Canada, develop and recruit the best talent, and help Canadian businesses compete and succeed on the world stage.
  • Boosting AI start-ups to bring new technologies to market, and accelerating AI adoption in critical sectors , such as agriculture, clean technology, health care, and manufacturing, with $200 million in support through Canada’s Regional Development Agencies.
  • Investing $100 million in the NRC IRAP AI Assist Program to help small and medium-sized businesses scale up and increase productivity by building and deploying new AI solutions. This will help companies incorporate AI into their businesses and take on research, product development, testing, and validation work for new AI-based solutions.
  • Supporting workers who may be impacted by AI, such as creative industries, with $50 million for the Sectoral Workforce Solutions Program, which will provide new skills training for workers in potentially disrupted sectors and communities.
  • Creating a new Canadian AI Safety Institute, with $50 million to further the safe development and deployment of AI. The Institute, which will leverage input from stakeholders and work in coordination with international partners, will help Canada better understand and protect against the risks of advanced or nefarious AI systems, including to specific communities.
  • Strengthening enforcement of the Artificial Intelligence and Data Act, with $5.1 million for the Office of the AI and Data Commissioner. The proposed Act aims to guide AI innovation in a positive direction to help ensure Canadians are protected from potential risks by ensuring the responsible adoption of AI by Canadian businesses.

Today’s announcement is about investing in innovation and economic growth to secure Canada’s world-leading AI advantage today and for generations to come. This will create good-paying opportunities for every generation, boost innovation across the economy, raise productivity, and accelerate economic growth – and it’s just one of the things that we are going to be doing in Budget 2024. Alongside these measures, we’re building more homes faster, ensuring every kid has the food they need, investing in health care, making life more affordable, and creating good jobs to make sure every generation can get ahead.

“AI has the potential to transform the economy. And our potential lies in capitalizing on the undeniable Canadian advantage. These investments in Budget 2024 will help harness the full potential of AI so Canadians, and especially young Canadians, can get good-paying jobs while raising our productivity, and growing our economy. This announcement is a major investment in our future, in the future of workers, in making sure that every industry, and every generation, has the tools to succeed and prosper in the economy of tomorrow.” The Rt. Hon. Justin Trudeau, Prime Minister of Canada
“Today, we are making a significant investment to boost our economic growth. This will keep Canada a global leader in AI and ensure we are at the very cutting-edge of new technologies. And most importantly, this will mean more high-paying careers for Canadians who are leading the charge in AI.” The Hon. Chrystia Freeland, Deputy Prime Minister and Minister of Finance

Quick Facts

  • The Government of Canada’s Budget 2024 will be tabled in the House of Commons by the Deputy Prime Minister and Minister of Finance on Tuesday, April 16, 2024.
  • In 2017, Canada was the first country to establish a national AI strategy. The Pan-Canadian Artificial Intelligence Strategy is helping Canada maintain its position as a world leader in AI, businesses be more competitive, and Canadians benefit from growth in the digital economy. Phase 2 of the strategy was announced in 2022 with funding of more than $443 million.
  • The federal research granting agencies – the Canadian Institutes of Health Research (CIHR), the Natural Sciences and Engineering Research Council (NSERC), and the Social Sciences and Humanities Research Council (SSHRC) – together have awarded $936.8 million in funding for AI-related research since 2017-18.
  • Since 2017, the National Research Council of Canada Industrial Research Assistance Program (NRC IRAP) provided $705.8 million in contributions to AI-related firms. This funding supported 1,111 firms and 3,837 projects in the AI and Big Data Technology space.
  • In addition, the NRC Digital Technologies Research Centre has invested over $27 million both directly to firms and on collaborative AI projects related to natural language processing, Indigenous languages, and high-performance computing for AI.
  • In 2023, Canada announced renewed funding for the Global Innovation Clusters , including Scale AI , bringing total funding for the company to up to $284 million. Scale AI is dedicated to promoting collaboration in AI and supply chain management research and innovation by strengthening linkages between researchers in industry, academia, and research institutes in Canada and abroad, and providing financial support for AI and supply chain management projects.
  • Canada has also made significant investments in fast-scaling AI-related companies through the Strategic Innovation Fund , including Sanctuary AI and semiconductor firm Ranovus .
  • Canada was recently ranked number 1 among 80 countries, tied with South Korea and Japan, in the Center for AI and Digital Policy’s 2024 global report on Artificial Intelligence and Democratic Values .
  • The Artificial Intelligence and Data Act (AIDA) was introduced in Parliament as part of Bill C-27 in June 2022. It is designed to promote the responsible design, development, and use of AI systems in Canada’s private sector, with a focus on systems with the greatest impact on health, safety, and human rights. Since the introduction of the bill, the government has engaged extensively with stakeholders on the novel challenges posed by generative AI. Canada is one of the first countries in the world to propose a law to regulate AI. Learn more .
  • The Voluntary Code of Conduct on the Responsible Development and Management of Advanced Generative AI Systems – announced in September 2023 and signed by major tech firms including Cohere, Ada, Coveo, BlackBerry, TELUS, OpenText, and IBM – enables companies to demonstrate that they are developing and using generative AI systems responsibly and strengthen Canadians’ confidence in the technology.
  • The Public Awareness Working Group on AI was launched in 2020 under Canada’s Advisory Council on Artificial Intelligence with a mandate to examine avenues to boost public awareness and foster trust in AI. Its objective is to help Canadians have a more grounded conversation around AI, and help citizens better understand the technology, its potential uses, and its associated risks. The Working Group published a report on its public engagement activities in February 2023. A further public report is upcoming specifically on the Working Group’s engagement with First Nations, Inuit, and Métis communities to better understand their needs, interests, and priorities for AI development and use.
  • Since the 1990s, Canada has been a leader in AI and deep learning, made possible by the research and innovations of the “Godfathers of AI”, Canadians Yoshua Bengio and Geoffrey Hinton. In the decades since, Canada has built up a robust and growing AI industry across Canada, anchored by our three national AI institutes in Montréal, Toronto, and Edmonton.
  • In 2022-23, there were over 140,000 actively engaged AI professionals in Canada, an increase of 29 per cent compared to the previous year.
  • Canada has 10 per cent of the world’s top-tier AI researchers, the second most in the world.
  • Canada ranks first globally for year-over-year growth of women in AI (67 per cent growth in 2022-23 alone), first in the G7 for year-over-year growth of AI talent, and since 2019, has ranked first in the G7 for the number of AI-related papers published per capita.
  • The number of AI patents filed by Canadian investors increased by 57 per cent in 2022-23 compared to the previous year – nearly three times the G7 average of just 23 per cent over the same period.
  • In 2022, the Canadian AI sector attracted over $8.6 billion in venture capital, accounting for nearly 30 per cent of all venture capital activity in Canada.
  • Canada ranks third in the G7 in total funding per capita raised for AI companies, with more than 670 Canadian AI start-ups and 30 Canadian generative AI companies receiving at least one investment deal valued at more than $1 million USD since 2019.
  • Restore generational fairness for renters, particularly Millennials and Gen Z, by taking new action to protect renters’ rights and unlock pathways for them to become homeowners. Learn more .
  • Save more young families money and help more moms return to their careers by building more affordable child care spaces and training more early childhood educators across Canada. Learn more .
  • Create a National School Food Program to provide meals to about 400,000 kids every year and help ensure every child has the best start in life, no matter their circumstances. Learn more .
  • Launch a new $6 billion Canada Housing Infrastructure Fund to accelerate the construction or upgrade of essential infrastructure across the country and get more homes built for Canadians. Learn more .
  • Top-up the Apartment Construction Loan Program with $15 billion, make new reforms so it is easier to access, and launch Canada Builds to call on all provinces and territories to join a Team Canada effort to build more homes, faster. Learn more .
  • Support renters by launching a new $1.5 billion Canada Rental Protection Fund to preserve more rental homes and make sure they stay affordable. Learn more .
  • Change the way we build homes in Canada by announcing over $600 million to make it easier and cheaper to build more homes, faster, including through a new Homebuilding Technology and Innovation Fund and a new Housing Design Catalogue. Learn more .

Associated Links

  • Responsible use of artificial intelligence (AI)
  • Sectoral Workforce Solutions Program

Economic conditions outlook, March 2024

Executives’ latest views on the global economy and their countries’ economies lean much more positive than they did at the end of 2023.

In the latest McKinsey Global Survey on economic conditions, 1 The online survey was in the field from March 4 to March 8, 2024, and garnered responses from 957 participants representing the full range of regions, industries, company sizes, functional specialties, and tenures. To adjust for differences in response rates, the data are weighted by the contribution of each respondent’s nation to global GDP. the outlook on domestic conditions in most regions has become more hopeful, despite ongoing shared concerns about geopolitical instability and conflicts. In a year brimming with national elections, 2 Katharina Buchholz, “2024: The super election year,” Statista, January 19, 2024. respondents increasingly see transitions of political leadership as a primary hazard to the global economy, particularly in Asia–Pacific, Europe, and North America.

Furthermore, respondents now view policy and regulatory changes as a top threat to their companies’ performance, and they offer more muted optimism than in December about their companies’ prospects.

Optimism builds over global and domestic conditions

Respondents share much brighter assessments of the global economy and conditions in their countries than they did at the end of 2023, and views of the global economy are the most positive they’ve been since March 2022 (Exhibit 1). In the December survey, respondents were equally likely to say the global economy had improved and worsened. Today, respondents are twice as likely to report improving rather than deteriorating conditions. Looking ahead to the next six months, respondents are also more optimistic than they were last quarter. Forty-six percent expect the global economy to improve—nearly double the share expecting worsening conditions—while 37 percent expected improvement in the previous survey.

Likewise, respondents offer hopeful views when asked about the most likely near-term scenario for the global economy, suggesting confidence in central banks. They are more likely to expect a soft landing overall—with either slowing or accelerating growth compared with 2023—than a recession (Exhibit 2). The largest share of respondents expect a soft landing, with slowing growth relative to 2023.

Respondents’ views on their own economies have also become more upbeat. Nearly half of respondents say economic conditions at home are better now than they were six months ago, up from 41 percent in December, while just 22 percent say conditions have gotten worse. Respondents in Europe—who offered the most negative assessments of any respondents in September and December—are now nearly twice as likely as in December to say conditions have improved in the past six months, though it is unclear what has prompted that change and whether it is a durable finding.

McKinsey Global Surveys

McKinsey’s original survey research

More than half of respondents expect their economies to improve over the next six months. It’s the first time in two years that a majority of respondents have said that. In most regions, larger shares of respondents express optimism about economic conditions at home now than in December (Exhibit 3).

Geopolitical instability remains top of mind as concerns over political transitions rise

Geopolitical instability and conflict continues to be the most cited risk to global growth, selected by two-thirds of respondents for the second quarter in a row (Exhibit 4). Yet in this first quarterly survey of 2024—a year in which more than 60 countries will hold national elections 3 Katharina Buchholz, “2024: The super election year,” Statista, January 19, 2024. —transitions of political leadership have jumped from the fifth-most-cited to the second-most-cited threat to the world economy. The share of respondents in Europe reporting political transitions as a top threat is 2.4 times the share in December, while the shares in North America and Asia–Pacific have nearly doubled. 4 Prior to the latest survey, respondents in Mexico were included in Latin America in analyses but are now included in North America. We see a smaller uptick in concern about supply chain disruptions, which is cited as a threat by the largest share of respondents since December 2022.

Looking at risks to growth in respondents’ countries, geopolitical instability and conflict remains the top perceived threat, cited by a larger share than in any quarter since March 2022. Uneasiness about domestic political conflicts and transitions of political leadership, now the second- and third-most-cited risks, have overtaken concerns about inflation, which was the second-most-cited risk in December. Among respondents in North America, transitions of political leadership are cited nearly twice as often as in December (Exhibit 5). In Greater China, multiple risks now appear to carry equal weight, whereas in December, inflation was the top concern.

Policy and regulatory changes top the list of cited threats to companies’ growth

As respondents’ concerns about inflation as a domestic threat wane, the survey results suggest that companies are holding off on price increases. For the first time since we began asking about companies’ prices in September 2022, less than half of private-sector respondents in the latest survey—45 percent—say their companies increased the price of their goods or services over the past six months, down from 56 percent in December.

For five quarters, respondents’ most cited risk to their companies’ performance in the next 12 months was weak customer demand. Now, they most often point to policy and regulatory changes as a threat. In December 2023, policy and regulatory changes weren’t even one of the top five perceived risks. This increased wariness of policy changes cuts across most regions, though we see the largest increase in Europe.

Even though weak demand is no longer the most cited risk for companies, optimism over expected demand has tapered  since December. Fifty-one percent of respondents expect an increase in customer demand over the next six months, down from 57 percent in December. Yet expectations about profits remain upbeat: about six in ten respondents expect increasing profits in the months ahead, in line with expectations in much of 2023.

The survey content and analysis were developed by Jeffrey Condon , a senior knowledge expert in McKinsey’s Atlanta office; Krzysztof Kwiatkowski , a capabilities and insights expert in the Boston office; and Sven Smit , chair of insights and ecosystems, chair of the McKinsey Global Institute, and a senior partner in the Amsterdam office.

They wish to thank Jan Mischke for his contributions to this work.

This article was edited by Heather Hanselman, a senior editor in the Atlanta office.

Explore a career with us

Related articles.

Image of a 3D sphere deconstructed in slices.

Geopolitics and the geometry of global trade

Uneven bar chart composed of up and down arrows

Survey results: Expectations for company performance, by industry

Construction industry, cranes

Global Economics Intelligence executive summary, February 2024

COMMENTS

  1. Research Report

    Thesis. Thesis is a type of research report. A thesis is a long-form research document that presents the findings and conclusions of an original research study conducted by a student as part of a graduate or postgraduate program. It is typically written by a student pursuing a higher degree, such as a Master's or Doctoral degree, although it ...

  2. Writing up a Research Report

    A research report is one big argument about how and why you came up with your conclusions. To make it a convincing argument, a typical guiding structure has developed. ... Before describing the purpose and content of the various sections of a research report, we address several misconceptions about academic or scientific writing: No surprises: ...

  3. Research Report: Definition, Types + [Writing Guide]

    A research report is a well-crafted document that outlines the processes, data, and findings of a systematic investigation. It is an important document that serves as a first-hand account of the research process, and it is typically considered an objective and accurate source of information.

  4. Research Reports: Definition and How to Write Them

    Research reports are recorded data prepared by researchers or statisticians after analyzing the information gathered by conducting organized research, typically in the form of surveys or qualitative methods. A research report is a reliable source to recount details about a conducted research. It is most often considered to be a true testimony ...

  5. Research Report: Definition, Types, Guide

    A description of the research method used, e.g., qualitative, quantitative, or other. Statistical analysis. Causal (or explanatory) research (i.e., research identifying relationships between two variables) Inductive research, also known as 'theory-building'. Deductive research, such as that used to test theories.

  6. Scientific Reports

    This handout provides a general guide to writing reports about scientific research you've performed. In addition to describing the conventional rules about the format and content of a lab report, we'll also attempt to convey why these rules exist, so you'll get a clearer, more dependable idea of how to approach this writing situation ...

  7. Research reports

    An outline of the research questions and hypotheses; the assumptions or propositions that your research will test. Literature Review. Not all research reports have a separate literature review section. In shorter research reports, the review is usually part of the Introduction. A literature review is a critical survey of recent relevant ...

  8. PDF How to Write an Effective Research REport

    Abstract. This guide for writers of research reports consists of practical suggestions for writing a report that is clear, concise, readable, and understandable. It includes suggestions for terminology and notation and for writing each section of the report—introduction, method, results, and discussion. Much of the guide consists of ...

  9. PDF Writing a Research Report

    Use the section headings (outlined above) to assist with your rough plan. Write a thesis statement that clarifies the overall purpose of your report. Jot down anything you already know about the topic in the relevant sections. 3 Do the Research. Steps 1 and 2 will guide your research for this report.

  10. Research Paper Structure

    A complete research paper in APA style that is reporting on experimental research will typically contain a Title page, Abstract, Introduction, Methods, Results, Discussion, and References sections. 1 Many will also contain Figures and Tables and some will have an Appendix or Appendices. These sections are detailed as follows (for a more in ...

  11. How to Write a Research Paper

    Develop a thesis statement. Create a research paper outline. Write a first draft of the research paper. Write the introduction. Write a compelling body of text. Write the conclusion. The second draft. The revision process. Research paper checklist.

  12. Writing a Research Report

    Section 1: Cover Sheet (APA format cover sheet) optional, if required. Section 2: Abstract (a basic summary of the report, including sample, treatment, design, results, and implications) (≤ 150 words) optional, if required. Section 3: Introduction (1-3 paragraphs) • Basic introduction. • Supportive statistics (can be from periodicals ...

  13. Chapter 13 Writing a Research Report: Organisation and presentation

    address of the author/ s and the date. The report's title should be no longer than 12- 15 words and in a larger font size (e.g. 16-20 point) than the rest of the text on the cover page. Make ...

  14. Chapter 6: Components of a Research Report

    What are the implications of the findings? The research report contains four main areas: Introduction - What is the issue? What is known? What is not known? What are you trying to find out? This sections ends with the purpose and specific aims of the study. Methods - The recipe for the study. If someone wanted to perform the same study ...

  15. What Is Research Report? Definition, Contents, Significance, Qualities

    A research report is an end product of research. As earlier said that report writing provides useful information in arriving at rational decisions that may reform the business and society. The findings, conclusions, suggestions and recommendations are useful to academicians, scholars and policymakers.

  16. Writing a Research Paper Introduction

    Table of contents. Step 1: Introduce your topic. Step 2: Describe the background. Step 3: Establish your research problem. Step 4: Specify your objective (s) Step 5: Map out your paper. Research paper introduction examples. Frequently asked questions about the research paper introduction.

  17. Content Analysis

    Content analysis is a research method used to identify patterns in recorded communication. To conduct content analysis, you systematically collect data from a set of texts, which can be written, oral, or visual: Books, newspapers and magazines. Speeches and interviews. Web content and social media posts. Photographs and films.

  18. Research Reports

    Research Reports. Research reports present the results of formal investigations into the properties, behavior, structures, and principles of material and conceptual entities. Almost any physical phenomenon or concept may be investigated in a research framework. The following are some key differences between formal research, and other less ...

  19. Contents and Layout of Research Report

    The layout of research report means as to what the research report should contain. The contents of the research report are noted below: Preliminary Page. Main Text. End Matter. (1) Preliminary Pages: These must be title of the research topic and data. There must be preface of foreword to the research work.

  20. Writing up a Research Report

    If the assignment is a 2000-word essay, the introduction should be between 160 and 200 words, while for a 3500-word report it should be between 290 and 350 words. There is no absolute rule for the length. Be as reasonable about it as you can. The introduction contains the relevant background of the problem.

  21. Open research reports

    Open research reports. JSTOR hosts a growing curated collection of more than 50,000 open research reports from 187 think tanks and research institutes from around the world. These publications are freely accessible to everyone on JSTOR and discoverable as their own content type alongside journals, books, and primary sources. We update research ...

  22. Contents of the Research Report

    ADVERTISEMENTS: After reading this article you will learn about the contents of a research report. It includes:- 1. Introduction 2. Method 3. Results of the Study 4. Discussion 5. Summary or Abstract 6. References 7. Appendix. 1. Introduction: The research report should ordinarily start with a statement of the problem selected for investigation. The reporter […]

  23. AI Index Report

    AI Index Report. The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Our mission is to provide unbiased, rigorously vetted, broadly sourced data in order for policymakers, researchers, executives, journalists, and the general public to develop a more thorough and nuanced understanding of the ...

  24. Market & Financial Insights, Research & Strategy

    About Global Research. Our award-winning analysts, supported by our BofA Data Analytics team, provide insightful, objective and in-depth research to help you make informed investing decisions. We service individual investors and a wide variety of institutional money managers including hedge funds, mutual funds, pension funds and sovereign ...

  25. Case Summary: Brigidi, Gian-Stefano

    Gian-Stefano Brigidi, Ph.D. University of California San Diego and University of Utah: Based on the report of an assessment conducted by the University of Utah (UU), and inquiry conducted by the University of California San Diego (UCSD), the Respondent's admission, and additional analysis conducted by the Office of Research Integrity (ORI) in its oversight review, ORI found that Gian-Stefano ...

  26. 6 facts about Americans and TikTok

    Here are six key facts about Americans and TikTok, drawn from Pew Research Center surveys. A third of U.S. adults - including a majority of adults under 30 - use TikTok. Around six-in-ten U.S. adults under 30 (62%) say they use TikTok, compared with 39% of those ages 30 to 49, 24% of those 50 to 64, and 10% of those 65 and older. In a 2023 ...

  27. Decoding Compensation Models and Implementing the Right Model

    All MKC Content; Research Studies; Research Reports. Decoding Compensation Models and Implementing the Right Model. April 11, 2024 Share T his joint initiative from the ANA and the 4A's, developed by a task force of ANA and 4A's members, is an executive-level guide that details various compensation models that focus on better outcomes for both ...

  28. Securing Canada's AI advantage

    The Prime Minister, Justin Trudeau, today announced a $2.4 billion package of measures from the upcoming Budget 2024 to secure Canada's AI advantage. These investments will accelerate job growth in Canada's AI sector and beyond, boost productivity by helping researchers and businesses develop and adopt AI, and ensure this is done responsibly.

  29. How to Hit a Golf Ball Farther, According to Research

    Lucas Valera. Golfers are constantly trying all sorts of things to improve their golf game. They try new clubs, new grips, new stance, new attitude. But they often ignore the one thing that is ...

  30. Economic conditions outlook, March 2024

    Executives' latest views on the global economy and their countries' economies lean much more positive than they did at the end of 2023.. In the latest McKinsey Global Survey on economic conditions, 1 The online survey was in the field from March 4 to March 8, 2024, and garnered responses from 957 participants representing the full range of regions, industries, company sizes, functional ...