10 Methods of Data Presentation with 5 Great Tips to Practice, Best in 2024

10 Methods of Data Presentation with 5 Great Tips to Practice, Best in 2024

Leah Nguyen • 05 Apr 2024 • 11 min read

There are different ways of presenting data, so which one is suited you the most? You can end deathly boring and ineffective data presentation right now with our 10 methods of data presentation . Check out the examples from each technique!

Have you ever presented a data report to your boss/coworkers/teachers thinking it was super dope like you’re some cyber hacker living in the Matrix, but all they saw was a pile of static numbers that seemed pointless and didn’t make sense to them?

Understanding digits is rigid . Making people from non-analytical backgrounds understand those digits is even more challenging.

How can you clear up those confusing numbers in the types of presentation that have the flawless clarity of a diamond? So, let’s check out best way to present data. 💎

Table of Contents

  • What are Methods of Data Presentations?
  • #1 – Tabular

#2 – Text

#3 – pie chart, #4 – bar chart, #5 – histogram, #6 – line graph, #7 – pictogram graph, #8 – radar chart, #9 – heat map, #10 – scatter plot.

  • 5 Mistakes to Avoid
  • Best Method of Data Presentation

Frequently Asked Questions

More tips with ahaslides.

  • Marketing Presentation
  • Survey Result Presentation
  • Types of Presentation

Alternative Text

Start in seconds.

Get any of the above examples as templates. Sign up for free and take what you want from the template library!

What are Methods of Data Presentation?

The term ’data presentation’ relates to the way you present data in a way that makes even the most clueless person in the room understand. 

Some say it’s witchcraft (you’re manipulating the numbers in some ways), but we’ll just say it’s the power of turning dry, hard numbers or digits into a visual showcase that is easy for people to digest.

Presenting data correctly can help your audience understand complicated processes, identify trends, and instantly pinpoint whatever is going on without exhausting their brains.

Good data presentation helps…

  • Make informed decisions and arrive at positive outcomes . If you see the sales of your product steadily increase throughout the years, it’s best to keep milking it or start turning it into a bunch of spin-offs (shoutout to Star Wars👀).
  • Reduce the time spent processing data . Humans can digest information graphically 60,000 times faster than in the form of text. Grant them the power of skimming through a decade of data in minutes with some extra spicy graphs and charts.
  • Communicate the results clearly . Data does not lie. They’re based on factual evidence and therefore if anyone keeps whining that you might be wrong, slap them with some hard data to keep their mouths shut.
  • Add to or expand the current research . You can see what areas need improvement, as well as what details often go unnoticed while surfing through those little lines, dots or icons that appear on the data board.

Methods of Data Presentation and Examples

Imagine you have a delicious pepperoni, extra-cheese pizza. You can decide to cut it into the classic 8 triangle slices, the party style 12 square slices, or get creative and abstract on those slices. 

There are various ways for cutting a pizza and you get the same variety with how you present your data. In this section, we will bring you the 10 ways to slice a pizza – we mean to present your data – that will make your company’s most important asset as clear as day. Let’s dive into 10 ways to present data efficiently.

#1 – Tabular 

Among various types of data presentation, tabular is the most fundamental method, with data presented in rows and columns. Excel or Google Sheets would qualify for the job. Nothing fancy.

a table displaying the changes in revenue between the year 2017 and 2018 in the East, West, North, and South region

This is an example of a tabular presentation of data on Google Sheets. Each row and column has an attribute (year, region, revenue, etc.), and you can do a custom format to see the change in revenue throughout the year.

When presenting data as text, all you do is write your findings down in paragraphs and bullet points, and that’s it. A piece of cake to you, a tough nut to crack for whoever has to go through all of the reading to get to the point.

  • 65% of email users worldwide access their email via a mobile device.
  • Emails that are optimised for mobile generate 15% higher click-through rates.
  • 56% of brands using emojis in their email subject lines had a higher open rate.

(Source: CustomerThermometer )

All the above quotes present statistical information in textual form. Since not many people like going through a wall of texts, you’ll have to figure out another route when deciding to use this method, such as breaking the data down into short, clear statements, or even as catchy puns if you’ve got the time to think of them.

A pie chart (or a ‘donut chart’ if you stick a hole in the middle of it) is a circle divided into slices that show the relative sizes of data within a whole. If you’re using it to show percentages, make sure all the slices add up to 100%.

Methods of data presentation

The pie chart is a familiar face at every party and is usually recognised by most people. However, one setback of using this method is our eyes sometimes can’t identify the differences in slices of a circle, and it’s nearly impossible to compare similar slices from two different pie charts, making them the villains in the eyes of data analysts.

a half-eaten pie chart

Bonus example: A literal ‘pie’ chart! 🥧

The bar chart is a chart that presents a bunch of items from the same category, usually in the form of rectangular bars that are placed at an equal distance from each other. Their heights or lengths depict the values they represent.

They can be as simple as this:

a simple bar chart example

Or more complex and detailed like this example of presentation of data. Contributing to an effective statistic presentation, this one is a grouped bar chart that not only allows you to compare categories but also the groups within them as well.

an example of a grouped bar chart

Similar in appearance to the bar chart but the rectangular bars in histograms don’t often have the gap like their counterparts.

Instead of measuring categories like weather preferences or favourite films as a bar chart does, a histogram only measures things that can be put into numbers.

an example of a histogram chart showing the distribution of students' score for the IQ test

Teachers can use presentation graphs like a histogram to see which score group most of the students fall into, like in this example above.

Recordings to ways of displaying data, we shouldn’t overlook the effectiveness of line graphs. Line graphs are represented by a group of data points joined together by a straight line. There can be one or more lines to compare how several related things change over time. 

an example of the line graph showing the population of bears from 2017 to 2022

On a line chart’s horizontal axis, you usually have text labels, dates or years, while the vertical axis usually represents the quantity (e.g.: budget, temperature or percentage).

A pictogram graph uses pictures or icons relating to the main topic to visualise a small dataset. The fun combination of colours and illustrations makes it a frequent use at schools.

How to Create Pictographs and Icon Arrays in Visme-6 pictograph maker

Pictograms are a breath of fresh air if you want to stay away from the monotonous line chart or bar chart for a while. However, they can present a very limited amount of data and sometimes they are only there for displays and do not represent real statistics.

If presenting five or more variables in the form of a bar chart is too stuffy then you should try using a radar chart, which is one of the most creative ways to present data.

Radar charts show data in terms of how they compare to each other starting from the same point. Some also call them ‘spider charts’ because each aspect combined looks like a spider web.

a radar chart showing the text scores between two students

Radar charts can be a great use for parents who’d like to compare their child’s grades with their peers to lower their self-esteem. You can see that each angular represents a subject with a score value ranging from 0 to 100. Each student’s score across 5 subjects is highlighted in a different colour.

a radar chart showing the power distribution of a Pokemon

If you think that this method of data presentation somehow feels familiar, then you’ve probably encountered one while playing Pokémon .

A heat map represents data density in colours. The bigger the number, the more colour intense that data will be represented.

a heatmap showing the electoral votes among the states between two candidates

Most U.S citizens would be familiar with this data presentation method in geography. For elections, many news outlets assign a specific colour code to a state, with blue representing one candidate and red representing the other. The shade of either blue or red in each state shows the strength of the overall vote in that state.

a heatmap showing which parts the visitors click on in a website

Another great thing you can use a heat map for is to map what visitors to your site click on. The more a particular section is clicked the ‘hotter’ the colour will turn, from blue to bright yellow to red.

If you present your data in dots instead of chunky bars, you’ll have a scatter plot. 

A scatter plot is a grid with several inputs showing the relationship between two variables. It’s good at collecting seemingly random data and revealing some telling trends.

a scatter plot example showing the relationship between beach visitors each day and the average daily temperature

For example, in this graph, each dot shows the average daily temperature versus the number of beach visitors across several days. You can see that the dots get higher as the temperature increases, so it’s likely that hotter weather leads to more visitors.

5 Data Presentation Mistakes to Avoid

#1 – assume your audience understands what the numbers represent.

You may know all the behind-the-scenes of your data since you’ve worked with them for weeks, but your audience doesn’t.

a sales data board from Looker

Showing without telling only invites more and more questions from your audience, as they have to constantly make sense of your data, wasting the time of both sides as a result.

While showing your data presentations, you should tell them what the data are about before hitting them with waves of numbers first. You can use interactive activities such as polls , word clouds , online quiz and Q&A sections , combined with icebreaker games , to assess their understanding of the data and address any confusion beforehand.

#2 – Use the wrong type of chart

Charts such as pie charts must have a total of 100% so if your numbers accumulate to 193% like this example below, you’re definitely doing it wrong.

a bad example of using a pie chart in the 2012 presidential run

Before making a chart, ask yourself: what do I want to accomplish with my data? Do you want to see the relationship between the data sets, show the up and down trends of your data, or see how segments of one thing make up a whole?

Remember, clarity always comes first. Some data visualisations may look cool, but if they don’t fit your data, steer clear of them. 

#3 – Make it 3D

3D is a fascinating graphical presentation example. The third dimension is cool, but full of risks.

data presentation methods for questionnaires

Can you see what’s behind those red bars? Because we can’t either. You may think that 3D charts add more depth to the design, but they can create false perceptions as our eyes see 3D objects closer and bigger than they appear, not to mention they cannot be seen from multiple angles.

#4 – Use different types of charts to compare contents in the same category

data presentation methods for questionnaires

This is like comparing a fish to a monkey. Your audience won’t be able to identify the differences and make an appropriate correlation between the two data sets. 

Next time, stick to one type of data presentation only. Avoid the temptation of trying various data visualisation methods in one go and make your data as accessible as possible.

#5 – Bombard the audience with too much information

The goal of data presentation is to make complex topics much easier to understand, and if you’re bringing too much information to the table, you’re missing the point.

a very complicated data presentation with too much information on the screen

The more information you give, the more time it will take for your audience to process it all. If you want to make your data understandable and give your audience a chance to remember it, keep the information within it to an absolute minimum. You should set your session with open-ended questions , to avoid dead-communication!

What are the Best Methods of Data Presentation?

Finally, which is the best way to present data?

The answer is…

There is none 😄 Each type of presentation has its own strengths and weaknesses and the one you choose greatly depends on what you’re trying to do. 

For example:

  • Go for a scatter plot if you’re exploring the relationship between different data values, like seeing whether the sales of ice cream go up because of the temperature or because people are just getting more hungry and greedy each day?
  • Go for a line graph if you want to mark a trend over time. 
  • Go for a heat map if you like some fancy visualisation of the changes in a geographical location, or to see your visitors’ behaviour on your website.
  • Go for a pie chart (especially in 3D) if you want to be shunned by others because it was never a good idea👇

example of how a bad pie chart represents the data in a complicated way

What is chart presentation?

A chart presentation is a way of presenting data or information using visual aids such as charts, graphs, and diagrams. The purpose of a chart presentation is to make complex information more accessible and understandable for the audience.

When can I use charts for presentation?

Charts can be used to compare data, show trends over time, highlight patterns, and simplify complex information.

Why should use charts for presentation?

You should use charts to ensure your contents and visual look clean, as they are the visual representative, provide clarity, simplicity, comparison, contrast and super time-saving!

What are the 4 graphical methods of presenting data?

Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon.

' src=

Leah Nguyen

Words that convert, stories that stick. I turn complex ideas into engaging narratives - helping audiences learn, remember, and take action.

More from AhaSlides

Business Analyst Skills 101: A Roadmap To Success In The Data-Driven Era

  • AI Templates
  • Get a demo Sign up for free Log in Log in

Buttoning up research: How to present and visualize qualitative data

data presentation methods for questionnaires

15 Minute Read

data presentation methods for questionnaires

There is no doubt that data visualization is an important part of the qualitative research process. Whether you're preparing a presentation or writing up a report, effective visualizations can help make your findings clear and understandable for your audience. 

In this blog post, we'll discuss some tips for creating effective visualizations of qualitative data. 

First, let's take a closer look at what exactly qualitative data is.

What is qualitative data?

Qualitative data is information gathered through observation, questionnaires, and interviews. It's often subjective, meaning that the researcher has to interpret it to draw meaningful conclusions from it. 

The difference between qualitative data and quantitative data

When researchers use the terms qualitative and quantitative, they're referring to two different types of data. Qualitative data is subjective and descriptive, while quantitative data is objective and numerical.

Qualitative data is often used in research involving psychology or sociology. This is usually where a researcher may be trying to identify patterns or concepts related to people's behavior or attitudes. It may also be used in research involving economics or finance, where the focus is on numerical values such as price points or profit margins. 

Before we delve into how best to present and visualize qualitative data, it's important that we highlight how to be gathering this data in the first place. ‍

data presentation methods for questionnaires

How best to gather qualitative data

In order to create an effective visualization of qualitative data, ensure that the right kind of information has been gathered. 

Here are six ways to gather the most accurate qualitative data:

  • Define your research question: What data is being set out to collect? A qualitative research question is a definite or clear statement about a condition to be improved, a project’s area of concern, a troubling question that exists, or a difficulty to be eliminated. It not only defines who the participants will be but guides the data collection methods needed to achieve the most detailed responses.
  • ‍ Determine the best data collection method(s): The data collected should be appropriate to answer the research question. Some common qualitative data collection methods include interviews, focus groups, observations, or document analysis. Consider the strengths and weaknesses of each option before deciding which one is best suited to answer the research question.  ‍
  • Develop a cohesive interview guide: Creating an interview guide allows researchers to ask more specific questions and encourages thoughtful responses from participants. It’s important to design questions in such a way that they are centered around the topic of discussion and elicit meaningful insight into the issue at hand. Avoid leading or biased questions that could influence participants’ answers, and be aware of cultural nuances that may affect their answers.
  • ‍ Stay neutral – let participants share their stories: The goal is to obtain useful information, not to influence the participant’s answer. Allowing participants to express themselves freely will help to gather more honest and detailed responses. It’s important to maintain a neutral tone throughout interviews and avoid judgment or opinions while they are sharing their story. 
  • ‍ Work with at least one additional team member when conducting qualitative research: Participants should always feel comfortable while providing feedback on a topic, so it can be helpful to have an extra team member present during the interview process – particularly if this person is familiar with the topic being discussed. This will ensure that the atmosphere of the interview remains respectful and encourages participants to speak openly and honestly.
  • ‍ Analyze your findings: Once all of the data has been collected, it’s important to analyze it in order to draw meaningful conclusions. Use tools such as qualitative coding or content analysis to identify patterns or themes in the data, then compare them with prior research or other data sources. This will help to draw more accurate and useful insights from the results. 

By following these steps, you will be well-prepared to collect and analyze qualitative data for your research project. Next, let's focus on how best to present the qualitative data that you have gathered and analyzed.

data presentation methods for questionnaires

Create your own AI-powered templates for better, faster research synthesis. Discover new customer insights from data instantly.

data presentation methods for questionnaires

The top 10 things Notably shipped in 2023 and themes for 2024.

How to visually present qualitative data.

When it comes to how to present qualitative data visually, the goal is to make research findings clear and easy to understand. To do this, use visuals that are both attractive and informative. 

Presenting qualitative data visually helps to bring the user’s attention to specific items and draw them into a more in-depth analysis. Visuals provide an efficient way to communicate complex information, making it easier for the audience to comprehend. 

Additionally, visuals can help engage an audience by making a presentation more interesting and interactive.

Here are some tips for creating effective visuals from qualitative data:

  • ‍ Choose the right type of visualization: Consider which type of visual would best convey the story that is being told through the research. For example, bar charts or line graphs might be appropriate for tracking changes over time, while pie charts or word clouds could help show patterns in categorical data. 
  • ‍ Include contextual information: In addition to showing the actual numbers, it's helpful to include any relevant contextual information in order to provide context for the audience. This can include details such as the sample size, any anomalies that occurred during data collection, or other environmental factors.
  • ‍ Make it easy to understand: Always keep visuals simple and avoid adding too much detail or complexity. This will help ensure that viewers can quickly grasp the main points without getting overwhelmed by all of the information. 
  • ‍ Use color strategically: Color can be used to draw attention to certain elements in your visual and make it easier for viewers to find the most important parts of it. Just be sure not to use too many different colors, as this could create confusion instead of clarity. 
  • ‍ Use charts or whiteboards: Using charts or whiteboards can help to explain the data in more detail and get viewers engaged in a discussion. This type of visual tool can also be used to create storyboards that illustrate the data over time, helping to bring your research to life. 

data presentation methods for questionnaires

Visualizing qualitative data in Notably

Notably helps researchers visualize their data on a flexible canvas, charts, and evidence based insights. As an all-in-one research platform, Notably enables researchers to collect, analyze and present qualitative data effectively.

Notably provides an intuitive interface for analyzing data from a variety of sources, including interviews, surveys, desk research, and more. Its powerful analytics engine then helps you to quickly identify insights and trends in your data . Finally, the platform makes it easy to create beautiful visuals that will help to communicate research findings with confidence. 

Research Frameworks in Analysis

The canvas in Analysis is a multi-dimensional workspace to play with your data spatially to find likeness and tension. Here, you may use a grounded theory approach to drag and drop notes into themes or patterns that emerge in your research. Utilizing the canvas tools such as shapes, lines, and images, allows researchers to build out frameworks such as journey maps, empathy maps, 2x2's, etc. to help synthesize their data.

Going one step further, you may begin to apply various lenses to this data driven canvas. For example, recoloring by sentiment shows where pain points may distributed across your customer journey. Or, recoloring by participant may reveal if one of your participants may be creating a bias towards a particular theme.

data presentation methods for questionnaires

Exploring Qualitative Data through a Quantitative Lens

Once you have begun your analysis, you may visualize your qualitative data in a quantitative way through charts. You may choose between a pie chart and or a stacked bar chart to visualize your data. From here, you can segment your data to break down the ‘bar’ in your bar chart and slices in your pie chart one step further.

To segment your data, you can choose between ‘Tag group’, ‘Tag’, ‘Theme’, and ‘Participant'. Each group shows up as its own bar in the bar chart or slice in the pie chart. For example, try grouping data as ‘Participant’ to see the volume of notes assigned to each person. Or, group by ‘Tag group’ to see which of your tag groups have the most notes.

Depending on how you’ve grouped or segmented your charts will affect the options available to color your chart. Charts use colors that are a mix of sentiment, tag, theme, and default colors. Consider color as a way of assigning another layer of meaning to your data. For example, choose a red color for tags or themes that are areas of friction or pain points. Use blue for tags that represent opportunities.

data presentation methods for questionnaires

AI Powered Insights and Cover Images

One of the most powerful features in Analysis is the ability to generate insights with AI. Insights combine information, inspiration, and intuition to help bridge the gap between knowledge and wisdom. Even before you have any tags or themes, you may generate an AI Insight from your entire data set. You'll be able to choose one of our AI Insight templates that are inspired by trusted design thinking frameworks to stimulate generative, and divergent thinking. With just the click of a button, you'll get an insight that captures the essence and story of your research. You may experiment with a combination of tags, themes, and different templates or, create your own custom AI template. These insights are all evidence-based, and are centered on the needs of real people. You may package these insights up to present your research by embedding videos, quotes and using AI to generate unique cover image.

data presentation methods for questionnaires

You can sign up to run an end to end research project for free and receive tips on how to make the most out of your data. Want to chat about how Notably can help your team do better, faster research? Book some time here for a 1:1 demo with your whole team.

data presentation methods for questionnaires

Introducing Notably + Miro Integration: 3 Tips to Analyze Miro Boards with AI in Notably

data presentation methods for questionnaires

5 Steps to turn data into insights with Notably

Give your research synthesis superpowers..

Try Teams for 7 days

Free for 1 project

data presentation methods for questionnaires


5 ways to effectively present assessment or survey results

  • Written August 8, 2021
  • by Roman Daneghyan

In today’s business world, understanding your customers is crucial.

Collecting data can be challenging , but turning that data into useful information or representative statistics is a whole different game.

Speaking about statistics, l et’s take a look at the importance of statistics in business:

  • Eases performance evaluation and management
  • Offers factual data
  • Keeps the brand in operation
  • Projection of future events
  • Makes your business clear and understandable
  • Helps businesses in setting long-term goals

You might have heard this old saying, “ A picture is worth a thousand words .”

The best technique for understanding any assessment or survey results is to visualize them . You can display survey results in different forms from simple charts to presentations, video infographics, and more.

In this post, we will take a closer look at the top 5 ways to effectively present your assessment or survey results. Want to dive straight into creating questionnaires with advanced and automated report generation? Find out if our software is what you’re looking for.

1. Using charts

A chart or graph is a visual presentation of data. The major goal of using charts is to display your assessment or survey results in a meaningful way.

Good charts convey information easily and quickly to the audience, whereas a bad chart leaves you confused. They highlight the salient characteristics of the assessment results and deliver a convenient method to compare different sets of it. Whether you want to show a relationship, highlight a trend, or make a comparison, charts help the users in understanding what you’re talking about.

Have a look at the images below of both good charts and bad charts.

Good chart: precise and clear

data presentation methods for questionnaires

Bad chart: confusing and unclear

bad chart

There are several chart types such as bar graph, line graph, Venn diagram, pie chart, and more. Different situations require different chart types for a simple and clear presentation of the assessment or survey assessment results you’ve collected. For this, you need to pick the chart that best fits your situation.

You can display your charts in these business presentation examples , helping you craft engaging and persuasive presentations for various purposes, from sales pitches to corporate meetings.

Bar charts are a type of graph used to display and compare the number, frequency, or other measures for different discrete categories of data.

Bar charts are one of the most commonly used types of graphs because they are simple to create and very easy to interpret. They are also a flexible chart type and there are several variations of the standard bar chart including horizontal bar charts, grouped or component charts, and stacked bar charts.

Bar graphs are best used to compare things between different groups or to track changes over time. However, when trying to measure change over time, bar graphs are best when the changes are larger.


Line graphs are usually used to show time-series data – that is how one or more variables vary over a period of time.

Line graphs are particularly useful for identifying patterns and trends in the data such as seasonal effects, large changes, and turning points. As well as time-series data, line graphs can also be appropriate for displaying data that are measured over other continuous variables such as distance. For example, a line graph could be used to show how pollution levels vary with increasing distance from a source, or how the level of a chemical varies with the depth of soil. However, it is important to consider whether the data have been collected at sufficiently regular intervals so that estimates made for a point lying halfway along the line between two successive measurements would be reasonable. In a line graph, the x-axis represents the continuous variable (for example year or distance) whilst the y-axis has a scale and indicates the measurement. Several data series can be plotted on the same line chart and this is particularly useful for analyzing and comparing trends

Typical examples of the types of data that can be presented using line graphs are monthly rainfall and annual unemployment rates.

line graph

Venn diagram

A Venn diagram (also called primary diagram, set diagram, or logic diagram) is used to show all possible logical relations between different sets. This diagram uses overlapping shapes, often circles to illustrate the logical relationships between two or more sets of items.

You can use Canva’s free Venn diagram maker to create your own Venn diagram.

For example, say you have three characteristics, you can present them as follows:

data presentation methods for questionnaires

This is one of the popular types of charts out there. These are used to comparing parts. Each arc is delineated by building outspread lines from its closures to the focal point of the circle, making wedge-formed “slices”. The sum of all slices is always 100%.

pie chart

2. Video infographics

data presentation methods for questionnaires

Video infographics or animated infographics are another way to present your statistics.

Video infographics are created by combining different animations in one informational video. It helps you in explaining assessment or survey results in an engaging manner.

It can add an extra dimension of excitement and provide a brief overview of your business data.

Apart from this, visual infographics offer an effective communication source capable of conveying concrete and complex information effortlessly. If you have a killer video infographic idea, it allows you to create a video infographic for your business using a video-making tool. 

From several online video-making tools available, you can take help from Renderforest . It is a free video-making platform that helps you in building promotional videos, slideshows, intros, special events videos, and more within minutes. Use Renderforest as an affordable, fast, and easy-to-use tool to make video infographics and to present your survey results in a more understanding and attractive way.

data presentation methods for questionnaires

3. Make use of infographics

Infographics are another great way to share your business statistics with your audience. Survey results are easily translated into graphs and charts, making survey results and infographics the perfect couple.

Infographics are not only eye-catching, but they also make your business data look more pleasing and impactful. There are a number of examples of statistical infographics that have gone viral in the industry.

For example,  Bill Gates’ World’s Deadliest Animal Infographic .


A strong infographic will leave an unforgettable impression on your audience. You can also take the idea from this chart and create something outside-the-box. The best thing about infographics is that they are easy to design and anyone can create them, even without a designing background.

Our friends over at Venngage have written a great article on turning survey results into an infographic .

4. Data visualization

One of the best ways to interpret the statistics is to visualize the numbers as an image. This can help you to see a pattern that is otherwise not visible. According to MIT , the human brain can easily process an image in only 13 milliseconds. This clearly shows the importance of visual representation.

To present your survey results, a visual representation can promote your message and shows statistical information. It can be in the form of diagrams, tables or graphs . Excel makes it incredibly quick and simple to edit all aspects of a graph and because it’s so widely used. If you’re not experienced with Excel it’s easy to find training programs to get you up to speed.

Have a look at the column chart:

data presentation methods for questionnaires

  • Choosing accent colors to highlight important data or changes
  • Horizontal labels to improve the level of readability
  • Y-Axis to 0 to reflect the precise values in your graph

Remember, for readers visual representations are easy to understand. Statistics presented in the form of visuals can be easily understood compared to long list of numbers. The visual presentation illustrates current trends quickly and is an efficient way to transfer the database information into the reader’s mind.

It is also important to keep in mind that poor visualization of statistics can often be misleading. Therefore, to balance function and design is very essential. Visuals that are complex fail to communicate with the audience. Misleading information can also be an outcome of distinctive cultural traditions. For instance, colors might hold different symbolic meanings globally.

5. Use presentations

Last but not least presentations . Data can only work if it is understandable to your audience.

The best way to decipher a jumble of numbers, data, and statistics is by turning it into a visual presentation . Have you ever used a presentation maker for presenting your business statistics? If no, try this now. It is an efficient and famous method to get your message across your potential audience effectively.


Creating a data visualization presentation is in itself an art. You need to take into consideration various factors e.g., the type of data you would like to share and the medium for your data.

By analyzing your data and selecting a medium, you can design an effective presentation to represent your data. Also, you need to ensure that the presentations you’re creating must be of high quality and engaging to the visitors. Once you’ve presented your survey results using these effective methods, don’t forget to provide feedback channels for your audience to share their thoughts and insights. Your audience’s feedback can help you refine your presentation techniques and better meet their information needs.

Always keep in mind that there is a story behind every statistic, and a data visualization presentation can help you in depicting that story successfully.

Final words

Graphs, diagrams, and tables are all great and attractive ways to present survey results that are easy to understand. The major reason for using visuals is clarity as some data can be better understood when explained visually. And when it comes to presenting data, nothing is more effective than a table or graph. Add your logo to your presentation and you have a professionally branded survey report .

Create your own assessment for free!

About the author:.

Roman Daneghyan

Roman Daneghyan

One response.

Thank you. it’s useful to me :>

Recommended reading

data presentation methods for questionnaires

How youth development specialist Halogen reaches thousands of young Singaporeans with Pointerpro

Singapore, in Southeast Asia, is a global, economic powerhouse with a population of a little less than 6 million people.

data presentation methods for questionnaires

Accountancy marketing: 3 ways to make the numbers human again [case study]

Like so many aspects of business, accountancy practices have made their ascent into the cloud. For accountants, that means more

An ai generated image of the concept of a word sandwich

Business writing to grab attention in the digital world: Write like a human

During the first years of my professional career, I was no copywriter. But I was notorious for writing colossal emails.

Want to know more?

Subscribe to our newsletter and get hand-picked articles directly to your inbox.

data presentation methods for questionnaires

The Pointerpro newsletter brings you the latest market trends and will give you an overview of compelling testimonials from our community. Register now!

Popular Articles

Get to know us.

Contact us Careers (We’re hiring!)

Help Center

Careers (We’re hiring!)

Let’s stay in touch, we’d like that


  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Present Your Data Like a Pro

  • Joel Schwartzberg

data presentation methods for questionnaires

Demystify the numbers. Your audience will thank you.

While a good presentation has data, data alone doesn’t guarantee a good presentation. It’s all about how that data is presented. The quickest way to confuse your audience is by sharing too many details at once. The only data points you should share are those that significantly support your point — and ideally, one point per chart. To avoid the debacle of sheepishly translating hard-to-see numbers and labels, rehearse your presentation with colleagues sitting as far away as the actual audience would. While you’ve been working with the same chart for weeks or months, your audience will be exposed to it for mere seconds. Give them the best chance of comprehending your data by using simple, clear, and complete language to identify X and Y axes, pie pieces, bars, and other diagrammatic elements. Try to avoid abbreviations that aren’t obvious, and don’t assume labeled components on one slide will be remembered on subsequent slides. Every valuable chart or pie graph has an “Aha!” zone — a number or range of data that reveals something crucial to your point. Make sure you visually highlight the “Aha!” zone, reinforcing the moment by explaining it to your audience.

With so many ways to spin and distort information these days, a presentation needs to do more than simply share great ideas — it needs to support those ideas with credible data. That’s true whether you’re an executive pitching new business clients, a vendor selling her services, or a CEO making a case for change.

data presentation methods for questionnaires

  • JS Joel Schwartzberg oversees executive communications for a major national nonprofit, is a professional presentation coach, and is the author of Get to the Point! Sharpen Your Message and Make Your Words Matter and The Language of Leadership: How to Engage and Inspire Your Team . You can find him on LinkedIn and X. TheJoelTruth

Partner Center


How to Analyze Questionnaire Data: A Step by Step Guide

How to Analyze Questionnaire Data: A Step by Step Guide

Approaching your questionnaire with the right principles in mind and tools in hand will produce easily-understood results packed with actionable insights.

In this guide you'll be led through the basics behind questionnaire data, then move on to a step-by-step approach for analyzing your responses. 

What is Questionnaire Data?

Types of questionnaire data, how to analyze questionnaire data.

Survey data , aka questionnaire data, is data collected during a survey campaign. This data can be analyzed and broken down, yielding statistics and insights that can be used to boost business.

What is Questionnaire Data Analysis?

The end all be all of customer feedback collection, whether questionnaires, online reviews, or other data, should always be the improvement of your overall customer experience for the benefit of existing and future customers.

The modern market has shown customer experience (CX) to be the number one differentiator between competitors. A large amount of this is by virtue of active customer experience management's attentiveness to existing customers -- companies who are able to convert existing customers into 'Promoters' (on the NPS scale ) improve their lifetime value by 6 to 14 times according to Bain & Co .

This is especially relevant when it comes to customer surveys as surveys are invariably distributed to existing and/or past users. The data they collect and the insights they derive apply directly to the customer journey.

By actively listening to the voices of your customers and analyzing survey data you are getting strategic tips from the best, and most honest, possible source. 

Questionnaire data, or survey data, comes in one of two formats: close-ended data and open-ended data .

Close-ended Questionnaire Data

Close-ended data is what people think of first when they imagine a survey result. It is data that translates directly into numbers. The 'big three' feedback questions ( NPS, CSAT and CES surveys ) all start with a close-ended question. They vary in format, with CSAT being a yes/no binary, NPS a 1-10 scale and CES a 1-5, but the responses can be tabulated in a straightforward manner and analyzed using basic software such as Excel.

From there, close-ended data can be interpreted using basic statistics to derive clear insights. This is basic survey analysis , and there are a ton of tools out there to help you quickly and effectively break down, cross tabulate, and display your results.

However, you aren't getting the most out of your surveys unless you pair your close-ended approach with open-ended questions , which draw out otherwise unseen but invaluable data .

Open-ended Questionnaire Data

Open-ended data is the 'why' behind your close-ended metrics, and for this reason it is key to excellent questionnaire analysis .

You know those additional written comments at the end of surveys? Those are open-ended questions. Throwing out these responses means missing out on the context behind whatever rating the customer is giving you.

The next logical question is, 'How can I measure text-based responses?'. 

Until a few years ago, each dataset's answers would require manual tabulation, which is both tedious and inaccurate. Now, with the power of machine learning and utilizing  techniques such as sentiment analysis and keyword extraction you can interpret your open-ended responses right alongside your close-ended metrics at scale, and in real time .

Having the right customer feedback analysis tools at your disposal can help make sure your survey analysis approaches, both close and open ended, are properly paired and integrated. This is crucial as losing which open-ended comment is tied to which close-ended score can mean losing the depth behind that data, making accurate analysis impossible.

That in mind, let's move on to the main course, our step-by-step approach to survey data analysis.

  • Interrogate your question
  • Cross tabulate quantitative results
  • Expand with open-ended questions
  • Analyze your open-ended data
  • Visualize your results
  • Interpret actionable insights

We landed on these particular steps because they convey a clear journey from the inception of your survey campaign to the implementation of your survey's insights.

1. Interrogate your question

An easy first mistake some businesses make is not knowing what they are looking for out of their survey. This of course directly affects the question(s) you are going to ask within your survey.

So, to form the best possible question and get clear answers, interrogate what you are looking for.  Are you curious as to customer opinion of your price point? Or is it something else entirely.

Deciding on the main goal or goals of your survey before distributing it ensures that you will, at bare minimum, answer your main concerns. That is not to say drilling down on what you are asking limits the possibilities of your survey. With additional comment or thought bubbles for customers to fill out, yielding open-ended response data, you are sure to uncover other, related but hidden, trends. But clarity as to purpose makes sure you don't confuse yourself, or worse, your customers with your survey.

2. Cross tabulate quantitative results

Cross tabulate is just a fancy word for filtering your survey so that you can compare customer groups aka subgroups. Think of it as the process of sorting your data by demographic so that you can unearth trends.

Take a look at this table for instance which reflects the answers to whether attendees of a conference think they will attend again next year, breaking the answers into three sub groups (Administrators, Teachers, and Students):

Table showing data from attendees of a conference.

What at first might have remained hidden if you only looked at the total percentage that wanted to return now becomes clear.

Administrators, as reflected in their 40% 'No' responses and their 46% 'Yes' responses (compared to 86% Students and 80% Teachers) clearly didn't get what they were looking for out of the conference.

Curious questionnaire/survey analysis is good practice -- by taking a deeper look at the data, in this survey's case, uncovered a hidden trend. However, referencing our first step, this wouldn't be possible without asking the right question and keeping track of the three distinct demographic groups.

With this discovery in hand, it would be wise to continue to compare and contrast your data. This could also be a form of benchmarking -- meaning viewing your data in contrast to other surveys. You could compare the number of attendees this year to those in the ten years previous, and, if possible, isolate the subgroups from those years (if they were surveyed). Doing so would let you know which years were most popular with each subgroup.

Now it's one thing to know the Administrators, in this year's case, were the least likely to come back, and quite another to know what made them feel this way. Here's where those pesky open-ended questions come in, and why they are so critical to obtain and dissect.

3. Expand with open-ended questions

While this is third in our list it really needs to be a priority from the jump. Taking every step possible to solicit written feedback will truly take your questionnaire/survey campaigns to the next level.

Attaching open-ended questionnaires to your survey campaigns will add depth to your data and inform you of the 'why' behind your scores.

Luckily, it's easier than ever with advancements in artificial intelligence. Which brings us to our next step, accurately and effectively analyzing your data.

4. Analyze your open-ended data

Machine learning-backed software, such as Monkeylearn takes heaps of text data and transforms it into objective insights.

Analyzing your data using sentiment analysis and keyword extraction text analysis techniques can make your questionnaire analysis best in class.

These, and other open-ended analysis techniques such as topic analysis make sure you get the absolute most of your data, deepening and adding context to your extant quantitative data. These include plug-and-play templates, designed for no-code users to be able to access and mold questionnaire data - Monkeylearn even offers a ready-made survey data template - book your demo today and try it out for free.

5. Visualize your results

Insights are worthless if they cannot be conveyed to the appropriate decision-makers. Look no further than complete visualization suites to get the graphs, stats, and charts that keep modern businesses ahead of the curve.

Monkeylearn's all-in-one dataviz suite, as seen below, embraces the ideal that best-practice visualization means having up-to-the-minute data visualization at your fingertips at all times. 

Monkeylearn's feedback analysis dashboard with colorful data visualizations: sorted data, pie charts, line graphs, etc.

If you have all the right graphs, and the ability to transform them at all times, you are able to deliver whatever graphs you need to your strategy times, rest assured that they are up to date and accurate.

6. Interpret accurate insights

Here is where we double down on the difference between insight and market data. Insights are the end product of any well-run questionnaire/survey campaign. But they require diligence in regards to what kind of questions you are asking and how deep you are digging to get actionable answers.

Great survey analysis/questionnaire campaigns ensure the applicability of their end data by maintaining a clear idea from the start of what kind of consumer insights they are looking for , while taking care to find the reasons behind their data via open-ended analysis along the way.

Just like that, if applied with care, you have an effective methodology for questionnaire analysis.\ Monkeylearn is here to help with the most powerful survey analysis software. Sign up for a free demo with one of our data analysis experts to get a custom model built for your business, or jump right in with a free trial today.

data presentation methods for questionnaires

Rachel Wolff

March 24th, 2022

Posts you might like...

data presentation methods for questionnaires

Survey Types for Success in 2022

How customer surveys are performed has changed radically for businesses. And this trend will continue long into the future. Fillable…

data presentation methods for questionnaires

What Is Survey Data Processing?

Designing and distributing the perfect survey can take a lot of precious resources. So, it's important that you get a return on this…

data presentation methods for questionnaires

Survey Responses: How & What to Ask to Get The Responses You Need

According to data from SurveyMonkey , two thirds of customers say they complete more than half of the surveys they receive. While that…

Text Analysis with Machine Learning

Turn tweets, emails, documents, webpages and more into actionable data. Automate business processes and save hours of manual data processing.

data presentation methods for questionnaires

The Ultimate Guide to Qualitative Research - Part 3: Presenting Qualitative Data

data presentation methods for questionnaires

  • Introduction

How do you present qualitative data?

Data visualization.

  • Research paper writing
  • Transparency and rigor in research
  • How to publish a research paper

Table of contents

  • Transparency and rigor

Navigate to other guide parts:

Part 1: The Basics or Part 2: Handling Qualitative Data

  • Presenting qualitative data

In the end, presenting qualitative research findings is just as important a skill as mastery of qualitative research methods for the data collection and data analysis process . Simply uncovering insights is insufficient to the research process; presenting a qualitative analysis holds the challenge of persuading your audience of the value of your research. As a result, it's worth spending some time considering how best to report your research to facilitate its contribution to scientific knowledge.

data presentation methods for questionnaires

When it comes to research, presenting data in a meaningful and accessible way is as important as gathering it. This is particularly true for qualitative research , where the richness and complexity of the data demand careful and thoughtful presentation. Poorly written research is taken less seriously and left undiscussed by the greater scholarly community; quality research reporting that persuades its audience stands a greater chance of being incorporated in discussions of scientific knowledge.

Qualitative data presentation differs fundamentally from that found in quantitative research. While quantitative data tend to be numerical and easily lend themselves to statistical analysis and graphical representation, qualitative data are often textual and unstructured, requiring an interpretive approach to bring out their inherent meanings. Regardless of the methodological approach , the ultimate goal of data presentation is to communicate research findings effectively to an audience so they can incorporate the generated knowledge into their research inquiry.

As the section on research rigor will suggest, an effective presentation of your research depends on a thorough scientific process that organizes raw data into a structure that allows for a thorough analysis for scientific understanding.

Preparing the data

The first step in presenting qualitative data is preparing the data. This preparation process often begins with cleaning and organizing the data. Cleaning involves checking the data for accuracy and completeness, removing any irrelevant information, and making corrections as needed. Organizing the data often entails arranging the data into categories or groups that make sense for your research framework.

data presentation methods for questionnaires

Coding the data

Once the data are cleaned and organized, the next step is coding , a crucial part of qualitative data analysis. Coding involves assigning labels to segments of the data to summarize or categorize them. This process helps to identify patterns and themes in the data, laying the groundwork for subsequent data interpretation and presentation. Qualitative research often involves multiple iterations of coding, creating new and meaningful codes while discarding unnecessary ones , to generate a rich structure through which data analysis can occur.

Uncovering insights

As you navigate through these initial steps, keep in mind the broader aim of qualitative research, which is to provide rich, detailed, and nuanced understandings of people's experiences, behaviors, and social realities. These guiding principles will help to ensure that your data presentation is not only accurate and comprehensive but also meaningful and impactful.

data presentation methods for questionnaires

While this process might seem intimidating at first, it's an essential part of any qualitative research project. It's also a skill that can be learned and refined over time, so don't be discouraged if you find it challenging at first. Remember, the goal of presenting qualitative data is to make your research findings accessible and understandable to others. This requires careful preparation, a clear understanding of your data, and a commitment to presenting your findings in a way that respects and honors the complexity of the phenomena you're studying.

In the following sections, we'll delve deeper into how to create a comprehensive narrative from your data, the visualization of qualitative data , and the writing and publication processes . Let's briefly excerpt some of the content in the articles in this part of the guide.

data presentation methods for questionnaires

ATLAS.ti helps you make sense of your data

Find out how with a free trial of our powerful data analysis interface.

How often do you read a research article and skip straight to the tables and figures? That's because data visualizations representing qualitative and quantitative data have the power to make large and complex research projects with thousands of data points comprehensible when authors present data to research audiences. Researchers create visual representations to help summarize the data generated from their study and make clear the pathways for actionable insights.

In everyday situations, a picture is always worth a thousand words. Illustrations, figures, and charts convey messages that words alone cannot. In research, data visualization can help explain scientific knowledge, evidence for data insights, and key performance indicators in an orderly manner based on data that is otherwise unstructured.

data presentation methods for questionnaires

For all of the various data formats available to researchers, a significant portion of qualitative and social science research is still text-based. Essays, reports, and research articles still rely on writing practices aimed at repackaging research in prose form. This can create the impression that simply writing more will persuade research audiences. Instead, framing research in terms that are easy for your target readers to understand makes it easier for your research to become published in peer-reviewed scholarly journals or find engagement at scholarly conferences. Even in market or professional settings, data visualization is an essential concept when you need to convince others about the insights of your research and the recommendations you make based on the data.

Importance of data visualization

Data visualization is important because it makes it easy for your research audience to understand your data sets and your findings. Also, data visualization helps you organize your data more efficiently. As the explanation of ATLAS.ti's tools will illustrate in this section, data visualization might point you to research inquiries that you might not even be aware of, helping you get the most out of your data. Strictly speaking, the primary role of data visualization is to make the analysis of your data , if not the data itself, clear. Especially in social science research, data visualization makes it easy to see how data scientists collect and analyze data.

Prerequisites for generating data visualizations

Data visualization is effective in explaining research to others only if the researcher or data scientist can make sense of the data in front of them. Traditional research with unstructured data usually calls for coding the data with short, descriptive codes that can be analyzed later, whether statistically or thematically. These codes form the basic data points of a meaningful qualitative analysis. They represent the structure of qualitative data sets, without which a scientific visualization with research rigor would be extremely difficult to achieve. In most respects, data visualization of a qualitative research project requires coding the entire data set so that the codes adequately represent the collected data.

A successfully crafted research study culminates in the writing of the research paper . While a pilot study or preliminary research might guide the research design , a full research study leads to discussion that highlights avenues for further research. As such, the importance of the research paper cannot be overestimated in the overall generation of scientific knowledge.

data presentation methods for questionnaires

The physical and natural sciences tend to have a clinical structure for a research paper that mirrors the scientific method: outline the background research, explain the materials and methods of the study, outline the research findings generated from data analysis, and discuss the implications. Qualitative research tends to preserve much of this structure, but there are notable and numerous variations from a traditional research paper that it's worth emphasizing the flexibility in the social sciences with respect to the writing process.

Requirements for research writing

While there aren't any hard and fast rules regarding what belongs in a qualitative research paper , readers expect to find a number of pieces of relevant information in a rigorously-written report. The best way to know what belongs in a full research paper is to look at articles in your target journal or articles that share a particular topic similar to yours and examine how successfully published papers are written.

It's important to emphasize the more mundane but equally important concerns of proofreading and formatting guidelines commonly found when you write a research paper. Research publication shouldn't strictly be a test of one's writing skills, but acknowledging the importance of convincing peer reviewers of the credibility of your research means accepting the responsibility of preparing your research manuscript to commonly accepted standards in research.

As a result, seemingly insignificant things such as spelling mistakes, page numbers, and proper grammar can make a difference with a particularly strict reviewer. Even when you expect to develop a paper through reviewer comments and peer feedback, your manuscript should be as close to a polished final draft as you can make it prior to submission.

Qualitative researchers face particular challenges in convincing their target audience of the value and credibility of their subsequent analysis. Numbers and quantifiable concepts in quantitative studies are relatively easier to understand than their counterparts associated with qualitative methods . Think about how easy it is to make conclusions about the value of items at a store based on their prices, then imagine trying to compare those items based on their design, function, and effectiveness.

Qualitative research involves and requires these sorts of discussions. The goal of qualitative data analysis is to allow a qualitative researcher and their audience to make such determinations, but before the audience can accept these determinations, the process of conducting research that produces the qualitative analysis must first be seen as trustworthy. As a result, it is on the researcher to persuade their audience that their data collection process and subsequent analysis is rigorous.

Qualitative rigor refers to the meticulousness, consistency, and transparency of the research. It is the application of systematic, disciplined, and stringent methods to ensure the credibility, dependability, confirmability, and transferability of research findings. In qualitative inquiry, these attributes ensure the research accurately reflects the phenomenon it is intended to represent, that its findings can be understood or used by others, and that its processes and results are open to scrutiny and validation.


It is easier to believe the information presented to you if there is a rigorous analysis process behind that information, and if that process is explicitly detailed. The same is true for qualitative research results, making transparency a key element in qualitative research methodologies. Transparency is a fundamental aspect of rigor in qualitative research. It involves the clear, detailed, and explicit documentation of all stages of the research process. This allows other researchers to understand, evaluate, replicate, and build upon the study. Transparency in qualitative research is essential for maintaining rigor, trustworthiness, and ethical integrity. By being transparent, researchers allow their work to be scrutinized, critiqued, and improved upon, contributing to the ongoing development and refinement of knowledge in their field.

Research papers are only as useful as their audience in the scientific community is wide. To reach that audience, a paper needs to pass the peer review process of an academic journal. However, the idea of having research published in peer-reviewed journals may seem daunting to newer researchers, so it's important to provide a guide on how an academic journal looks at your research paper as well as how to determine what is the right journal for your research.

data presentation methods for questionnaires

In simple terms, a research article is good if it is accepted as credible and rigorous by the scientific community. A study that isn't seen as a valid contribution to scientific knowledge shouldn't be published; ultimately, it is up to peers within the field in which the study is being considered to determine the study's value. In established academic research, this determination is manifest in the peer review process. Journal editors at a peer-reviewed journal assign papers to reviewers who will determine the credibility of the research. A peer-reviewed article that completed this process and is published in a reputable journal can be seen as credible with novel research that can make a profound contribution to scientific knowledge.

The process of research publication

The process has been codified and standardized within the scholarly community to include three main stages. These stages include the initial submission stage where the editor reviews the relevance of the paper, the review stage where experts in your field offer feedback, and, if reviewers approve your paper, the copyediting stage where you work with the journal to prepare the paper for inclusion in their journal.

Publishing a research paper may seem like an opaque process where those involved with academic journals make arbitrary decisions about the worthiness of research manuscripts. In reality, reputable publications assign a rubric or a set of guidelines that reviewers need to keep in mind when they review a submission. These guidelines will most likely differ depending on the journal, but they fall into a number of typical categories that are applicable regardless of the research area or the type of methods employed in a research study, including the strength of the literature review , rigor in research methodology , and novelty of findings.

Choosing the right journal isn't simply a matter of which journal is the most famous or has the broadest reach. Many universities keep lists of prominent journals where graduate students and faculty members should publish a research paper , but oftentimes this list is determined by a journal's impact factor and their inclusion in major academic databases.

data presentation methods for questionnaires

Guide your research to publication with ATLAS.ti

Turn insights into visualizations with our easy-to-use interface. Download a free trial today.

This section is part of an entire guide. Use this table of contents to jump to any page in the guide.

Part 1: The Basics

  • What is qualitative data?
  • 10 examples of qualitative data
  • Qualitative vs. quantitative research
  • What is mixed methods research?
  • Theoretical perspective
  • Theoretical framework
  • Literature reviews
  • Research questions
  • Conceptual framework
  • Conceptual vs. theoretical framework
  • Focus groups
  • Observational research
  • Case studies
  • Survey research
  • What is ethnographic research?
  • Confidentiality and privacy in research
  • Bias in research
  • Power dynamics in research
  • Reflexivity

Part 2: Handling Qualitative Data

  • Research transcripts
  • Field notes in research
  • Research memos
  • Survey data
  • Images, audio, and video in qualitative research
  • Coding qualitative data
  • Coding frame
  • Auto-coding and smart coding
  • Organizing codes
  • Content analysis
  • Thematic analysis
  • Thematic analysis vs. content analysis
  • Narrative research
  • Phenomenological research
  • Discourse analysis
  • Grounded theory
  • Deductive reasoning
  • What is inductive reasoning?
  • Inductive vs. deductive reasoning
  • What is data interpretation?
  • Qualitative analysis software

Part 3: Presenting Qualitative Data

  • Data visualization - What is it and why is it important?

Book cover

Research Techniques for Computer Science, Information Systems and Cybersecurity pp 115–138 Cite as

Data Collection, Presentation and Analysis

  • Uche M. Mbanaso 4 ,
  • Lucienne Abrahams 5 &
  • Kennedy Chinedu Okafor 6  
  • First Online: 25 May 2023

459 Accesses

This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions. One of the interesting features of this chapter is the section dealing with using measurement scales in quantitative research, including nominal scales, ordinal scales, interval scales and ratio scales. It explains key facets of qualitative research including ethical clearance requirements. The chapter discusses the importance of data visualization as key to effective presentation of data, including tabular forms, graphical forms and visual charts such as those generated by Atlas.ti analytical software.

  • Computer science data
  • Cybersecurity data analysis
  • Cybersecurity experiments
  • Information systems data collection
  • Information systems visualization

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


Abdullah, M. F., & Ahmad, K. (2013). The mapping process of unstructured data to structured data. Proceedings of the 2013 International Conference on Research and Innovation in Information Systems (ICRIIS) , Malaysia , 151–155. https://doi.org/10.1109/ICRIIS.2013.6716700

Adnan, K., & Akbar, R. (2019). An analytical study of information extraction from unstructured and multidimensional big data. Journal of Big Data, 6 , 91. https://doi.org/10.1186/s40537-019-0254-8

Article   Google Scholar  

Alsheref, F. K., & Fattoh, I. E. (2020). Medical text annotation tool based on IBM Watson Platform. Proceedings of the 2020 6th international conference on advanced computing and communication systems (ICACCS) , India , 1312–1316. https://doi.org/10.1109/ICACCS48705.2020.9074309

Cinque, M., Cotroneo, D., Della Corte, R., & Pecchia, A. (2014). What logs should you look at when an application fails? Insights from an industrial case study. Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and Networks , USA , 690–695. https://doi.org/10.1109/DSN.2014.69

Gideon, L. (Ed.). (2012). Handbook of survey methodology for the social sciences . Springer.

Google Scholar  

Leedy, P., & Ormrod, J. (2015). Practical research planning and design (12th ed.). Pearson Education.

Madaan, A., Wang, X., Hall, W., & Tiropanis, T. (2018). Observing data in IoT worlds: What and how to observe? In Living in the Internet of Things: Cybersecurity of the IoT – 2018 (pp. 1–7). https://doi.org/10.1049/cp.2018.0032

Chapter   Google Scholar  

Mahajan, P., & Naik, C. (2019). Development of integrated IoT and machine learning based data collection and analysis system for the effective prediction of agricultural residue/biomass availability to regenerate clean energy. Proceedings of the 2019 9th International Conference on Emerging Trends in Engineering and Technology – Signal and Information Processing (ICETET-SIP-19) , India , 1–5. https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092156 .

Mahmud, M. S., Huang, J. Z., Salloum, S., Emara, T. Z., & Sadatdiynov, K. (2020). A survey of data partitioning and sampling methods to support big data analysis. Big Data Mining and Analytics, 3 (2), 85–101. https://doi.org/10.26599/BDMA.2019.9020015

Miswar, S., & Kurniawan, N. B. (2018). A systematic literature review on survey data collection system. Proceedings of the 2018 International Conference on Information Technology Systems and Innovation (ICITSI) , Indonesia , 177–181. https://doi.org/10.1109/ICITSI.2018.8696036

Mosina, C. (2020). Understanding the diffusion of the internet: Redesigning the global diffusion of the internet framework (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/30723

Nkamisa, S. (2021). Investigating the integration of drone management systems to create an enabling remote piloted aircraft regulatory environment in South Africa (Research report, Master of Arts in ICT Policy and Regulation). LINK Centre, University of the Witwatersrand. https://hdl.handle.net/10539/33883

QuestionPro. (2020). Survey research: Definition, examples and methods . https://www.questionpro.com/article/survey-research.html

Rajanikanth, J. & Kanth, T. V. R. (2017). An explorative data analysis on Bangalore City Weather with hybrid data mining techniques using R. Proceedings of the 2017 International Conference on Current Trends in Computer, Electrical, Electronics and Communication (CTCEEC) , India , 1121-1125. https://doi/10.1109/CTCEEC.2017.8455008

Rao, R. (2003). From unstructured data to actionable intelligence. IT Professional, 5 , 29–35. https://www.researchgate.net/publication/3426648_From_Unstructured_Data_to_Actionable_Intelligence

Schulze, P. (2009). Design of the research instrument. In P. Schulze (Ed.), Balancing exploitation and exploration: Organizational antecedents and performance effects of innovation strategies (pp. 116–141). Gabler. https://doi.org/10.1007/978-3-8349-8397-8_6

Usanov, A. (2015). Assessing cybersecurity: A meta-analysis of threats, trends and responses to cyber attacks . The Hague Centre for Strategic Studies. https://www.researchgate.net/publication/319677972_Assessing_Cyber_Security_A_Meta-analysis_of_Threats_Trends_and_Responses_to_Cyber_Attacks

Van de Kaa, G., De Vries, H. J., van Heck, E., & van den Ende, J. (2007). The emergence of standards: A meta-analysis. Proceedings of the 2007 40th Annual Hawaii International Conference on Systems Science (HICSS’07) , USA , 173a–173a. https://doi.org/10.1109/HICSS.2007.529

Download references

Author information

Authors and affiliations.

Centre for Cybersecurity Studies, Nasarawa State University, Keffi, Nigeria

Uche M. Mbanaso

LINK Centre, University of the Witwatersrand, Johannesburg, South Africa

Lucienne Abrahams

Department of Mechatronics Engineering, Federal University of Technology, Owerri, Nigeria

Kennedy Chinedu Okafor

You can also search for this author in PubMed   Google Scholar

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Cite this chapter.

Mbanaso, U.M., Abrahams, L., Okafor, K.C. (2023). Data Collection, Presentation and Analysis. In: Research Techniques for Computer Science, Information Systems and Cybersecurity. Springer, Cham. https://doi.org/10.1007/978-3-031-30031-8_7

Download citation

DOI : https://doi.org/10.1007/978-3-031-30031-8_7

Published : 25 May 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-30030-1

Online ISBN : 978-3-031-30031-8

eBook Packages : Engineering Engineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Leeds Beckett University

Skills for Learning : Research Skills

Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis methods selected.

We run interactive workshops to help you develop skills related to doing research, such as data analysis, writing literature reviews and preparing for dissertations. Find out more on the Skills for Learning Workshops page.

We have online academic skills modules within MyBeckett for all levels of university study. These modules will help your academic development and support your success at LBU. You can work through the modules at your own pace, revisiting them as required. Find out more from our FAQ What academic skills modules are available?

Quantitative data analysis

Broadly speaking, 'statistics' refers to methods, tools and techniques used to collect, organise and interpret data. The goal of statistics is to gain understanding from data. Therefore, you need to know how to:

  • Produce data – for example, by handing out a questionnaire or doing an experiment.
  • Organise, summarise, present and analyse data.
  • Draw valid conclusions from findings.

There are a number of statistical methods you can use to analyse data. Choosing an appropriate statistical method should follow naturally, however, from your research design. Therefore, you should think about data analysis at the early stages of your study design. You may need to consult a statistician for help with this.

Tips for working with statistical data

  • Plan so that the data you get has a good chance of successfully tackling the research problem. This will involve reading literature on your subject, as well as on what makes a good study.
  • To reach useful conclusions, you need to reduce uncertainties or 'noise'. Thus, you will need a sufficiently large data sample. A large sample will improve precision. However, this must be balanced against the 'costs' (time and money) of collection.
  • Consider the logistics. Will there be problems in obtaining sufficient high-quality data? Think about accuracy, trustworthiness and completeness.
  • Statistics are based on random samples. Consider whether your sample will be suited to this sort of analysis. Might there be biases to think about?
  • How will you deal with missing values (any data that is not recorded for some reason)? These can result from gaps in a record or whole records being missed out.
  • When analysing data, start by looking at each variable separately. Conduct initial/exploratory data analysis using graphical displays. Do this before looking at variables in conjunction or anything more complicated. This process can help locate errors in the data and also gives you a 'feel' for the data.
  • Look out for patterns of 'missingness'. They are likely to alert you if there’s a problem. If the 'missingness' is not random, then it will have an impact on the results.
  • Be vigilant and think through what you are doing at all times. Think critically. Statistics are not just mathematical tricks that a computer sorts out. Rather, analysing statistical data is a process that the human mind must interpret!

Top tips! Try inventing or generating the sort of data you might get and see if you can analyse it. Make sure that your process works before gathering actual data. Think what the output of an analytic procedure will look like before doing it for real.

(Note: it is actually difficult to generate realistic data. There are fraud-detection methods in place to identify data that has been fabricated. So, remember to get rid of your practice data before analysing the real stuff!)

Statistical software packages

Software packages can be used to analyse and present data. The most widely used ones are SPSS and NVivo.

SPSS is a statistical-analysis and data-management package for quantitative data analysis. Click on ‘ How do I install SPSS? ’ to learn how to download SPSS to your personal device. SPSS can perform a wide variety of statistical procedures. Some examples are:

  • Data management (i.e. creating subsets of data or transforming data).
  • Summarising, describing or presenting data (i.e. mean, median and frequency).
  • Looking at the distribution of data (i.e. standard deviation).
  • Comparing groups for significant differences using parametric (i.e. t-test) and non-parametric (i.e. Chi-square) tests.
  • Identifying significant relationships between variables (i.e. correlation).

NVivo can be used for qualitative data analysis. It is suitable for use with a wide range of methodologies. Click on ‘ How do I access NVivo ’ to learn how to download NVivo to your personal device. NVivo supports grounded theory, survey data, case studies, focus groups, phenomenology, field research and action research.

  • Process data such as interview transcripts, literature or media extracts, and historical documents.
  • Code data on screen and explore all coding and documents interactively.
  • Rearrange, restructure, extend and edit text, coding and coding relationships.
  • Search imported text for words, phrases or patterns, and automatically code the results.

Qualitative data analysis

Miles and Huberman (1994) point out that there are diverse approaches to qualitative research and analysis. They suggest, however, that it is possible to identify 'a fairly classic set of analytic moves arranged in sequence'. This involves:

  • Affixing codes to a set of field notes drawn from observation or interviews.
  • Noting reflections or other remarks in the margins.
  • Sorting/sifting through these materials to identify: a) similar phrases, relationships between variables, patterns and themes and b) distinct differences between subgroups and common sequences.
  • Isolating these patterns/processes and commonalties/differences. Then, taking them out to the field in the next wave of data collection.
  • Highlighting generalisations and relating them to your original research themes.
  • Taking the generalisations and analysing them in relation to theoretical perspectives.

        (Miles and Huberman, 1994.)

Patterns and generalisations are usually arrived at through a process of analytic induction (see above points 5 and 6). Qualitative analysis rarely involves statistical analysis of relationships between variables. Qualitative analysis aims to gain in-depth understanding of concepts, opinions or experiences.

Presenting information

There are a number of different ways of presenting and communicating information. The particular format you use is dependent upon the type of data generated from the methods you have employed.

Here are some appropriate ways of presenting information for different types of data:

Bar charts: These   may be useful for comparing relative sizes. However, they tend to use a large amount of ink to display a relatively small amount of information. Consider a simple line chart as an alternative.

Pie charts: These have the benefit of indicating that the data must add up to 100%. However, they make it difficult for viewers to distinguish relative sizes, especially if two slices have a difference of less than 10%.

Other examples of presenting data in graphical form include line charts and  scatter plots .

Qualitative data is more likely to be presented in text form. For example, using quotations from interviews or field diaries.

  • Plan ahead, thinking carefully about how you will analyse and present your data.
  • Think through possible restrictions to resources you may encounter and plan accordingly.
  • Find out about the different IT packages available for analysing your data and select the most appropriate.
  • If necessary, allow time to attend an introductory course on a particular computer package. You can book SPSS and NVivo workshops via MyHub .
  • Code your data appropriately, assigning conceptual or numerical codes as suitable.
  • Organise your data so it can be analysed and presented easily.
  • Choose the most suitable way of presenting your information, according to the type of data collected. This will allow your information to be understood and interpreted better.

Primary, secondary and tertiary sources

Information sources are sometimes categorised as primary, secondary or tertiary sources depending on whether or not they are ‘original’ materials or data. For some research projects, you may need to use primary sources as well as secondary or tertiary sources. However the distinction between primary and secondary sources is not always clear and depends on the context. For example, a newspaper article might usually be categorised as a secondary source. But it could also be regarded as a primary source if it were an article giving a first-hand account of a historical event written close to the time it occurred.

  • Primary sources
  • Secondary sources
  • Tertiary sources
  • Grey literature

Primary sources are original sources of information that provide first-hand accounts of what is being experienced or researched. They enable you to get as close to the actual event or research as possible. They are useful for getting the most contemporary information about a topic.

Examples include diary entries, newspaper articles, census data, journal articles with original reports of research, letters, email or other correspondence, original manuscripts and archives, interviews, research data and reports, statistics, autobiographies, exhibitions, films, and artists' writings.

Some information will be available on an Open Access basis, freely accessible online. However, many academic sources are paywalled, and you may need to login as a Leeds Beckett student to access them. Where Leeds Beckett does not have access to a source, you can use our  Request It! Service .

Secondary sources interpret, evaluate or analyse primary sources. They're useful for providing background information on a topic, or for looking back at an event from a current perspective. The majority of your literature searching will probably be done to find secondary sources on your topic.

Examples include journal articles which review or interpret original findings, popular magazine articles commenting on more serious research, textbooks and biographies.

The term tertiary sources isn't used a great deal. There's overlap between what might be considered a secondary source and a tertiary source. One definition is that a tertiary source brings together secondary sources.

Examples include almanacs, fact books, bibliographies, dictionaries and encyclopaedias, directories, indexes and abstracts. They can be useful for introductory information or an overview of a topic in the early stages of research.

Depending on your subject of study, grey literature may be another source you need to use. Grey literature includes technical or research reports, theses and dissertations, conference papers, government documents, white papers, and so on.

Artificial intelligence tools

Before using any generative artificial intelligence or paraphrasing tools in your assessments, you should check if this is permitted on your course.

If their use is permitted on your course, you must  acknowledge any use of generative artificial intelligence tools  such as ChatGPT or paraphrasing tools (e.g., Grammarly, Quillbot, etc.), even if you have only used them to generate ideas for your assessments or for proofreading.

  • Academic Integrity Module in MyBeckett
  • Assignment Calculator
  • Building on Feedback
  • Disability Advice
  • Essay X-ray tool
  • International Students' Academic Introduction
  • Manchester Academic Phrasebank
  • Quote, Unquote
  • Skills and Subject Suppor t
  • Turnitin Grammar Checker

{{You can add more boxes below for links specific to this page [this note will not appear on user pages] }}

  • Research Methods Checklist
  • Sampling Checklist

Skills for Learning FAQs

Library & Student Services

0113 812 1000

  • University Disclaimer
  • Accessibility



Questionnaires can be classified as both, quantitative and qualitative method depending on the nature of questions. Specifically, answers obtained through closed-ended questions (also called restricted questions) with multiple choice answer options are analyzed using quantitative methods. Research findings in this case can be illustrated using tabulations, pie-charts, bar-charts and percentages.

Answers obtained to open-ended questionnaire questions (also known as unrestricted questions), on the other hand, are analyzed using qualitative methods. Primary data collected using open-ended questionnaires involve discussions and critical analyses without use of numbers and calculations.

There are following types of questionnaires:

Computer questionnaire . Respondents are asked to answer the questionnaire which is sent by mail. The advantages of the computer questionnaires include their inexpensive price, time-efficiency, and respondents do not feel pressured, therefore can answer when they have time, giving more accurate answers. However, the main shortcoming of the mail questionnaires is that sometimes respondents do not bother answering them and they can just ignore the questionnaire.

Telephone questionnaire .  Researcher may choose to call potential respondents with the aim of getting them to answer the questionnaire. The advantage of the telephone questionnaire is that, it can be completed during the short amount of time. The main disadvantage of the phone questionnaire is that it is expensive most of the time. Moreover, most people do not feel comfortable to answer many questions asked through the phone and it is difficult to get sample group to answer questionnaire over the phone.

In-house survey .  This type of questionnaire involves the researcher visiting respondents in their houses or workplaces. The advantage of in-house survey is that more focus towards the questions can be gained from respondents. However, in-house surveys also have a range of disadvantages which include being time consuming, more expensive and respondents may not wish to have the researcher in their houses or workplaces for various reasons.

Mail Questionnaire . This sort of questionnaires involve the researcher to send the questionnaire list to respondents through post, often attaching pre-paid envelope. Mail questionnaires have an advantage of providing more accurate answer, because respondents can answer the questionnaire in their spare time. The disadvantages associated with mail questionnaires include them being expensive, time consuming and sometimes they end up in the bin put by respondents.

Questionnaires can include the following types of questions:

Open question questionnaires . Open questions differ from other types of questions used in questionnaires in a way that open questions may produce unexpected results, which can make the research more original and valuable. However, it is difficult to analyze the results of the findings when the data is obtained through the questionnaire with open questions.

Multiple choice question s. Respondents are offered a set of answers they have to choose from. The downsize of questionnaire with multiple choice questions is that, if there are too many answers to choose from, it makes the questionnaire, confusing and boring, and discourages the respondent to answer the questionnaire.

Dichotomous Questions .  Thes type of questions gives two options to respondents – yes or no, to choose from. It is the easiest form of questionnaire for the respondent in terms of responding it.

Scaling Questions . Also referred to as ranking questions, they present an option for respondents to rank the available answers to questions on the scale of given range of values (for example from 1 to 10).

For a standard 15,000-20,000 word business dissertation including 25-40 questions in questionnaires will usually suffice. Questions need be formulated in an unambiguous and straightforward manner and they should be presented in a logical order.

Questionnaires as primary data collection method offer the following advantages:

  • Uniformity: all respondents are asked exactly the same questions
  • Cost-effectiveness
  • Possibility to collect the primary data in shorter period of time
  • Minimum or no bias from the researcher during the data collection process
  • Usually enough time for respondents to think before answering questions, as opposed to interviews
  • Possibility to reach respondents in distant areas through online questionnaire

At the same time, the use of questionnaires as primary data collection method is associated with the following shortcomings:

  • Random answer choices by respondents without properly reading the question.
  • In closed-ended questionnaires no possibility for respondents to express their additional thoughts about the matter due to the absence of a relevant question.
  • Collecting incomplete or inaccurate information because respondents may not be able to understand questions correctly.
  • High rate of non-response

Survey Monkey represents one of the most popular online platforms for facilitating data collection through questionnaires. Substantial benefits offered by Survey Monkey include its ease to use, presentation of questions in many different formats and advanced data analysis capabilities.


Survey Monkey as a popular platform for primary data collection

There are other alternatives to Survey Monkey you might want to consider to use as a platform for your survey. These include but not limited to Jotform, Google Forms, Lime Survey, Crowd Signal, Survey Gizmo, Zoho Survey and many others.

My  e-book,  The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step approach  contains a detailed, yet simple explanation of quantitative methods. The e-book explains all stages of the research process starting from the selection of the research area to writing personal reflection. Important elements of dissertations such as research philosophy, research approach, research design, methods of data collection and data analysis are explained in simple words.

John Dudovskiy


  • AI & NLP
  • Churn & Loyalty
  • Customer Experience
  • Customer Journeys
  • Customer Metrics
  • Feedback Analysis
  • Product Experience
  • Product Updates
  • Sentiment Analysis
  • Surveys & Feedback Collection
  • Try Thematic

Welcome to the community

data presentation methods for questionnaires

Qualitative Data Analysis: Step-by-Step Guide (Manual vs. Automatic)

When we conduct qualitative methods of research, need to explain changes in metrics or understand people's opinions, we always turn to qualitative data. Qualitative data is typically generated through:

  • Interview transcripts
  • Surveys with open-ended questions
  • Contact center transcripts
  • Texts and documents
  • Audio and video recordings
  • Observational notes

Compared to quantitative data, which captures structured information, qualitative data is unstructured and has more depth. It can answer our questions, can help formulate hypotheses and build understanding.

It's important to understand the differences between quantitative data & qualitative data . But unfortunately, analyzing qualitative data is difficult. While tools like Excel, Tableau and PowerBI crunch and visualize quantitative data with ease, there are a limited number of mainstream tools for analyzing qualitative data . The majority of qualitative data analysis still happens manually.

That said, there are two new trends that are changing this. First, there are advances in natural language processing (NLP) which is focused on understanding human language. Second, there is an explosion of user-friendly software designed for both researchers and businesses. Both help automate the qualitative data analysis process.

In this post we want to teach you how to conduct a successful qualitative data analysis. There are two primary qualitative data analysis methods; manual & automatic. We will teach you how to conduct the analysis manually, and also, automatically using software solutions powered by NLP. We’ll guide you through the steps to conduct a manual analysis, and look at what is involved and the role technology can play in automating this process.

More businesses are switching to fully-automated analysis of qualitative customer data because it is cheaper, faster, and just as accurate. Primarily, businesses purchase subscriptions to feedback analytics platforms so that they can understand customer pain points and sentiment.

Overwhelming quantity of feedback

We’ll take you through 5 steps to conduct a successful qualitative data analysis. Within each step we will highlight the key difference between the manual, and automated approach of qualitative researchers. Here's an overview of the steps:

The 5 steps to doing qualitative data analysis

  • Gathering and collecting your qualitative data
  • Organizing and connecting into your qualitative data
  • Coding your qualitative data
  • Analyzing the qualitative data for insights
  • Reporting on the insights derived from your analysis

What is Qualitative Data Analysis?

Qualitative data analysis is a process of gathering, structuring and interpreting qualitative data to understand what it represents.

Qualitative data is non-numerical and unstructured. Qualitative data generally refers to text, such as open-ended responses to survey questions or user interviews, but also includes audio, photos and video.

Businesses often perform qualitative data analysis on customer feedback. And within this context, qualitative data generally refers to verbatim text data collected from sources such as reviews, complaints, chat messages, support centre interactions, customer interviews, case notes or social media comments.

How is qualitative data analysis different from quantitative data analysis?

Understanding the differences between quantitative & qualitative data is important. When it comes to analyzing data, Qualitative Data Analysis serves a very different role to Quantitative Data Analysis. But what sets them apart?

Qualitative Data Analysis dives into the stories hidden in non-numerical data such as interviews, open-ended survey answers, or notes from observations. It uncovers the ‘whys’ and ‘hows’ giving a deep understanding of people’s experiences and emotions.

Quantitative Data Analysis on the other hand deals with numerical data, using statistics to measure differences, identify preferred options, and pinpoint root causes of issues.  It steps back to address questions like "how many" or "what percentage" to offer broad insights we can apply to larger groups.

In short, Qualitative Data Analysis is like a microscope,  helping us understand specific detail. Quantitative Data Analysis is like the telescope, giving us a broader perspective. Both are important, working together to decode data for different objectives.

Qualitative Data Analysis methods

Once all the data has been captured, there are a variety of analysis techniques available and the choice is determined by your specific research objectives and the kind of data you’ve gathered.  Common qualitative data analysis methods include:

Content Analysis

This is a popular approach to qualitative data analysis. Other qualitative analysis techniques may fit within the broad scope of content analysis. Thematic analysis is a part of the content analysis.  Content analysis is used to identify the patterns that emerge from text, by grouping content into words, concepts, and themes. Content analysis is useful to quantify the relationship between all of the grouped content. The Columbia School of Public Health has a detailed breakdown of content analysis .

Narrative Analysis

Narrative analysis focuses on the stories people tell and the language they use to make sense of them.  It is particularly useful in qualitative research methods where customer stories are used to get a deep understanding of customers’ perspectives on a specific issue. A narrative analysis might enable us to summarize the outcomes of a focused case study.

Discourse Analysis

Discourse analysis is used to get a thorough understanding of the political, cultural and power dynamics that exist in specific situations.  The focus of discourse analysis here is on the way people express themselves in different social contexts. Discourse analysis is commonly used by brand strategists who hope to understand why a group of people feel the way they do about a brand or product.

Thematic Analysis

Thematic analysis is used to deduce the meaning behind the words people use. This is accomplished by discovering repeating themes in text. These meaningful themes reveal key insights into data and can be quantified, particularly when paired with sentiment analysis . Often, the outcome of thematic analysis is a code frame that captures themes in terms of codes, also called categories. So the process of thematic analysis is also referred to as “coding”. A common use-case for thematic analysis in companies is analysis of customer feedback.

Grounded Theory

Grounded theory is a useful approach when little is known about a subject. Grounded theory starts by formulating a theory around a single data case. This means that the theory is “grounded”. Grounded theory analysis is based on actual data, and not entirely speculative. Then additional cases can be examined to see if they are relevant and can add to the original grounded theory.

Methods of qualitative data analysis; approaches and techniques to qualitative data analysis

Challenges of Qualitative Data Analysis

While Qualitative Data Analysis offers rich insights, it comes with its challenges. Each unique QDA method has its unique hurdles. Let’s take a look at the challenges researchers and analysts might face, depending on the chosen method.

  • Time and Effort (Narrative Analysis): Narrative analysis, which focuses on personal stories, demands patience. Sifting through lengthy narratives to find meaningful insights can be time-consuming, requires dedicated effort.
  • Being Objective (Grounded Theory): Grounded theory, building theories from data, faces the challenges of personal biases. Staying objective while interpreting data is crucial, ensuring conclusions are rooted in the data itself.
  • Complexity (Thematic Analysis): Thematic analysis involves identifying themes within data, a process that can be intricate. Categorizing and understanding themes can be complex, especially when each piece of data varies in context and structure. Thematic Analysis software can simplify this process.
  • Generalizing Findings (Narrative Analysis): Narrative analysis, dealing with individual stories, makes drawing broad challenging. Extending findings from a single narrative to a broader context requires careful consideration.
  • Managing Data (Thematic Analysis): Thematic analysis involves organizing and managing vast amounts of unstructured data, like interview transcripts. Managing this can be a hefty task, requiring effective data management strategies.
  • Skill Level (Grounded Theory): Grounded theory demands specific skills to build theories from the ground up. Finding or training analysts with these skills poses a challenge, requiring investment in building expertise.

Benefits of qualitative data analysis

Qualitative Data Analysis (QDA) is like a versatile toolkit, offering a tailored approach to understanding your data. The benefits it offers are as diverse as the methods. Let’s explore why choosing the right method matters.

  • Tailored Methods for Specific Needs: QDA isn't one-size-fits-all. Depending on your research objectives and the type of data at hand, different methods offer unique benefits. If you want emotive customer stories, narrative analysis paints a strong picture. When you want to explain a score, thematic analysis reveals insightful patterns
  • Flexibility with Thematic Analysis: thematic analysis is like a chameleon in the toolkit of QDA. It adapts well to different types of data and research objectives, making it a top choice for any qualitative analysis.
  • Deeper Understanding, Better Products: QDA helps you dive into people's thoughts and feelings. This deep understanding helps you build products and services that truly matches what people want, ensuring satisfied customers
  • Finding the Unexpected: Qualitative data often reveals surprises that we miss in quantitative data. QDA offers us new ideas and perspectives, for insights we might otherwise miss.
  • Building Effective Strategies: Insights from QDA are like strategic guides. They help businesses in crafting plans that match people’s desires.
  • Creating Genuine Connections: Understanding people’s experiences lets businesses connect on a real level. This genuine connection helps build trust and loyalty, priceless for any business.

How to do Qualitative Data Analysis: 5 steps

Now we are going to show how you can do your own qualitative data analysis. We will guide you through this process step by step. As mentioned earlier, you will learn how to do qualitative data analysis manually , and also automatically using modern qualitative data and thematic analysis software.

To get best value from the analysis process and research process, it’s important to be super clear about the nature and scope of the question that’s being researched. This will help you select the research collection channels that are most likely to help you answer your question.

Depending on if you are a business looking to understand customer sentiment, or an academic surveying a school, your approach to qualitative data analysis will be unique.

Once you’re clear, there’s a sequence to follow. And, though there are differences in the manual and automatic approaches, the process steps are mostly the same.

The use case for our step-by-step guide is a company looking to collect data (customer feedback data), and analyze the customer feedback - in order to improve customer experience. By analyzing the customer feedback the company derives insights about their business and their customers. You can follow these same steps regardless of the nature of your research. Let’s get started.

Step 1: Gather your qualitative data and conduct research (Conduct qualitative research)

The first step of qualitative research is to do data collection. Put simply, data collection is gathering all of your data for analysis. A common situation is when qualitative data is spread across various sources.

Classic methods of gathering qualitative data

Most companies use traditional methods for gathering qualitative data: conducting interviews with research participants, running surveys, and running focus groups. This data is typically stored in documents, CRMs, databases and knowledge bases. It’s important to examine which data is available and needs to be included in your research project, based on its scope.

Using your existing qualitative feedback

As it becomes easier for customers to engage across a range of different channels, companies are gathering increasingly large amounts of both solicited and unsolicited qualitative feedback.

Most organizations have now invested in Voice of Customer programs , support ticketing systems, chatbot and support conversations, emails and even customer Slack chats.

These new channels provide companies with new ways of getting feedback, and also allow the collection of unstructured feedback data at scale.

The great thing about this data is that it contains a wealth of valubale insights and that it’s already there! When you have a new question about user behavior or your customers, you don’t need to create a new research study or set up a focus group. You can find most answers in the data you already have.

Typically, this data is stored in third-party solutions or a central database, but there are ways to export it or connect to a feedback analysis solution through integrations or an API.

Utilize untapped qualitative data channels

There are many online qualitative data sources you may not have considered. For example, you can find useful qualitative data in social media channels like Twitter or Facebook. Online forums, review sites, and online communities such as Discourse or Reddit also contain valuable data about your customers, or research questions.

If you are considering performing a qualitative benchmark analysis against competitors - the internet is your best friend. Gathering feedback in competitor reviews on sites like Trustpilot, G2, Capterra, Better Business Bureau or on app stores is a great way to perform a competitor benchmark analysis.

Customer feedback analysis software often has integrations into social media and review sites, or you could use a solution like DataMiner to scrape the reviews.

G2.com reviews of the product Airtable. You could pull reviews from G2 for your analysis.

Step 2: Connect & organize all your qualitative data

Now you all have this qualitative data but there’s a problem, the data is unstructured. Before feedback can be analyzed and assigned any value, it needs to be organized in a single place. Why is this important? Consistency!

If all data is easily accessible in one place and analyzed in a consistent manner, you will have an easier time summarizing and making decisions based on this data.

The manual approach to organizing your data

The classic method of structuring qualitative data is to plot all the raw data you’ve gathered into a spreadsheet.

Typically, research and support teams would share large Excel sheets and different business units would make sense of the qualitative feedback data on their own. Each team collects and organizes the data in a way that best suits them, which means the feedback tends to be kept in separate silos.

An alternative and a more robust solution is to store feedback in a central database, like Snowflake or Amazon Redshift .

Keep in mind that when you organize your data in this way, you are often preparing it to be imported into another software. If you go the route of a database, you would need to use an API to push the feedback into a third-party software.

Computer-assisted qualitative data analysis software (CAQDAS)

Traditionally within the manual analysis approach (but not always), qualitative data is imported into CAQDAS software for coding.

In the early 2000s, CAQDAS software was popularised by developers such as ATLAS.ti, NVivo and MAXQDA and eagerly adopted by researchers to assist with the organizing and coding of data.  

The benefits of using computer-assisted qualitative data analysis software:

  • Assists in the organizing of your data
  • Opens you up to exploring different interpretations of your data analysis
  • Allows you to share your dataset easier and allows group collaboration (allows for secondary analysis)

However you still need to code the data, uncover the themes and do the analysis yourself. Therefore it is still a manual approach.

The user interface of CAQDAS software 'NVivo'

Organizing your qualitative data in a feedback repository

Another solution to organizing your qualitative data is to upload it into a feedback repository where it can be unified with your other data , and easily searchable and taggable. There are a number of software solutions that act as a central repository for your qualitative research data. Here are a couple solutions that you could investigate:  

  • Dovetail: Dovetail is a research repository with a focus on video and audio transcriptions. You can tag your transcriptions within the platform for theme analysis. You can also upload your other qualitative data such as research reports, survey responses, support conversations, and customer interviews. Dovetail acts as a single, searchable repository. And makes it easier to collaborate with other people around your qualitative research.
  • EnjoyHQ: EnjoyHQ is another research repository with similar functionality to Dovetail. It boasts a more sophisticated search engine, but it has a higher starting subscription cost.

Organizing your qualitative data in a feedback analytics platform

If you have a lot of qualitative customer or employee feedback, from the likes of customer surveys or employee surveys, you will benefit from a feedback analytics platform. A feedback analytics platform is a software that automates the process of both sentiment analysis and thematic analysis . Companies use the integrations offered by these platforms to directly tap into their qualitative data sources (review sites, social media, survey responses, etc.). The data collected is then organized and analyzed consistently within the platform.

If you have data prepared in a spreadsheet, it can also be imported into feedback analytics platforms.

Once all this rich data has been organized within the feedback analytics platform, it is ready to be coded and themed, within the same platform. Thematic is a feedback analytics platform that offers one of the largest libraries of integrations with qualitative data sources.

Some of qualitative data integrations offered by Thematic

Step 3: Coding your qualitative data

Your feedback data is now organized in one place. Either within your spreadsheet, CAQDAS, feedback repository or within your feedback analytics platform. The next step is to code your feedback data so we can extract meaningful insights in the next step.

Coding is the process of labelling and organizing your data in such a way that you can then identify themes in the data, and the relationships between these themes.

To simplify the coding process, you will take small samples of your customer feedback data, come up with a set of codes, or categories capturing themes, and label each piece of feedback, systematically, for patterns and meaning. Then you will take a larger sample of data, revising and refining the codes for greater accuracy and consistency as you go.

If you choose to use a feedback analytics platform, much of this process will be automated and accomplished for you.

The terms to describe different categories of meaning (‘theme’, ‘code’, ‘tag’, ‘category’ etc) can be confusing as they are often used interchangeably.  For clarity, this article will use the term ‘code’.

To code means to identify key words or phrases and assign them to a category of meaning. “I really hate the customer service of this computer software company” would be coded as “poor customer service”.

How to manually code your qualitative data

  • Decide whether you will use deductive or inductive coding. Deductive coding is when you create a list of predefined codes, and then assign them to the qualitative data. Inductive coding is the opposite of this, you create codes based on the data itself. Codes arise directly from the data and you label them as you go. You need to weigh up the pros and cons of each coding method and select the most appropriate.
  • Read through the feedback data to get a broad sense of what it reveals. Now it’s time to start assigning your first set of codes to statements and sections of text.
  • Keep repeating step 2, adding new codes and revising the code description as often as necessary.  Once it has all been coded, go through everything again, to be sure there are no inconsistencies and that nothing has been overlooked.
  • Create a code frame to group your codes. The coding frame is the organizational structure of all your codes. And there are two commonly used types of coding frames, flat, or hierarchical. A hierarchical code frame will make it easier for you to derive insights from your analysis.
  • Based on the number of times a particular code occurs, you can now see the common themes in your feedback data. This is insightful! If ‘bad customer service’ is a common code, it’s time to take action.

We have a detailed guide dedicated to manually coding your qualitative data .

Example of a hierarchical coding frame in qualitative data analysis

Using software to speed up manual coding of qualitative data

An Excel spreadsheet is still a popular method for coding. But various software solutions can help speed up this process. Here are some examples.

  • CAQDAS / NVivo - CAQDAS software has built-in functionality that allows you to code text within their software. You may find the interface the software offers easier for managing codes than a spreadsheet.
  • Dovetail/EnjoyHQ - You can tag transcripts and other textual data within these solutions. As they are also repositories you may find it simpler to keep the coding in one platform.
  • IBM SPSS - SPSS is a statistical analysis software that may make coding easier than in a spreadsheet.
  • Ascribe - Ascribe’s ‘Coder’ is a coding management system. Its user interface will make it easier for you to manage your codes.

Automating the qualitative coding process using thematic analysis software

In solutions which speed up the manual coding process, you still have to come up with valid codes and often apply codes manually to pieces of feedback. But there are also solutions that automate both the discovery and the application of codes.

Advances in machine learning have now made it possible to read, code and structure qualitative data automatically. This type of automated coding is offered by thematic analysis software .

Automation makes it far simpler and faster to code the feedback and group it into themes. By incorporating natural language processing (NLP) into the software, the AI looks across sentences and phrases to identify common themes meaningful statements. Some automated solutions detect repeating patterns and assign codes to them, others make you train the AI by providing examples. You could say that the AI learns the meaning of the feedback on its own.

Thematic automates the coding of qualitative feedback regardless of source. There’s no need to set up themes or categories in advance. Simply upload your data and wait a few minutes. You can also manually edit the codes to further refine their accuracy.  Experiments conducted indicate that Thematic’s automated coding is just as accurate as manual coding .

Paired with sentiment analysis and advanced text analytics - these automated solutions become powerful for deriving quality business or research insights.

You could also build your own , if you have the resources!

The key benefits of using an automated coding solution

Automated analysis can often be set up fast and there’s the potential to uncover things that would never have been revealed if you had given the software a prescribed list of themes to look for.

Because the model applies a consistent rule to the data, it captures phrases or statements that a human eye might have missed.

Complete and consistent analysis of customer feedback enables more meaningful findings. Leading us into step 4.

Step 4: Analyze your data: Find meaningful insights

Now we are going to analyze our data to find insights. This is where we start to answer our research questions. Keep in mind that step 4 and step 5 (tell the story) have some overlap . This is because creating visualizations is both part of analysis process and reporting.

The task of uncovering insights is to scour through the codes that emerge from the data and draw meaningful correlations from them. It is also about making sure each insight is distinct and has enough data to support it.

Part of the analysis is to establish how much each code relates to different demographics and customer profiles, and identify whether there’s any relationship between these data points.

Manually create sub-codes to improve the quality of insights

If your code frame only has one level, you may find that your codes are too broad to be able to extract meaningful insights. This is where it is valuable to create sub-codes to your primary codes. This process is sometimes referred to as meta coding.

Note: If you take an inductive coding approach, you can create sub-codes as you are reading through your feedback data and coding it.

While time-consuming, this exercise will improve the quality of your analysis. Here is an example of what sub-codes could look like.

Example of sub-codes

You need to carefully read your qualitative data to create quality sub-codes. But as you can see, the depth of analysis is greatly improved. By calculating the frequency of these sub-codes you can get insight into which  customer service problems you can immediately address.

Correlate the frequency of codes to customer segments

Many businesses use customer segmentation . And you may have your own respondent segments that you can apply to your qualitative analysis. Segmentation is the practise of dividing customers or research respondents into subgroups.

Segments can be based on:

  • Demographic
  • And any other data type that you care to segment by

It is particularly useful to see the occurrence of codes within your segments. If one of your customer segments is considered unimportant to your business, but they are the cause of nearly all customer service complaints, it may be in your best interest to focus attention elsewhere. This is a useful insight!

Manually visualizing coded qualitative data

There are formulas you can use to visualize key insights in your data. The formulas we will suggest are imperative if you are measuring a score alongside your feedback.

If you are collecting a metric alongside your qualitative data this is a key visualization. Impact answers the question: “What’s the impact of a code on my overall score?”. Using Net Promoter Score (NPS) as an example, first you need to:

  • Calculate overall NPS
  • Calculate NPS in the subset of responses that do not contain that theme
  • Subtract B from A

Then you can use this simple formula to calculate code impact on NPS .

Visualizing qualitative data: Calculating the impact of a code on your score

You can then visualize this data using a bar chart.

You can download our CX toolkit - it includes a template to recreate this.

Trends over time

This analysis can help you answer questions like: “Which codes are linked to decreases or increases in my score over time?”

We need to compare two sequences of numbers: NPS over time and code frequency over time . Using Excel, calculate the correlation between the two sequences, which can be either positive (the more codes the higher the NPS, see picture below), or negative (the more codes the lower the NPS).

Now you need to plot code frequency against the absolute value of code correlation with NPS. Here is the formula:

Analyzing qualitative data: Calculate which codes are linked to increases or decreases in my score

The visualization could look like this:

Visualizing qualitative data trends over time

These are two examples, but there are more. For a third manual formula, and to learn why word clouds are not an insightful form of analysis, read our visualizations article .

Using a text analytics solution to automate analysis

Automated text analytics solutions enable codes and sub-codes to be pulled out of the data automatically. This makes it far faster and easier to identify what’s driving negative or positive results. And to pick up emerging trends and find all manner of rich insights in the data.

Another benefit of AI-driven text analytics software is its built-in capability for sentiment analysis, which provides the emotive context behind your feedback and other qualitative textual data therein.

Thematic provides text analytics that goes further by allowing users to apply their expertise on business context to edit or augment the AI-generated outputs.

Since the move away from manual research is generally about reducing the human element, adding human input to the technology might sound counter-intuitive. However, this is mostly to make sure important business nuances in the feedback aren’t missed during coding. The result is a higher accuracy of analysis. This is sometimes referred to as augmented intelligence .

Codes displayed by volume within Thematic. You can 'manage themes' to introduce human input.

Step 5: Report on your data: Tell the story

The last step of analyzing your qualitative data is to report on it, to tell the story. At this point, the codes are fully developed and the focus is on communicating the narrative to the audience.

A coherent outline of the qualitative research, the findings and the insights is vital for stakeholders to discuss and debate before they can devise a meaningful course of action.

Creating graphs and reporting in Powerpoint

Typically, qualitative researchers take the tried and tested approach of distilling their report into a series of charts, tables and other visuals which are woven into a narrative for presentation in Powerpoint.

Using visualization software for reporting

With data transformation and APIs, the analyzed data can be shared with data visualisation software, such as Power BI or Tableau , Google Studio or Looker. Power BI and Tableau are among the most preferred options.

Visualizing your insights inside a feedback analytics platform

Feedback analytics platforms, like Thematic, incorporate visualisation tools that intuitively turn key data and insights into graphs.  This removes the time consuming work of constructing charts to visually identify patterns and creates more time to focus on building a compelling narrative that highlights the insights, in bite-size chunks, for executive teams to review.

Using a feedback analytics platform with visualization tools means you don’t have to use a separate product for visualizations. You can export graphs into Powerpoints straight from the platforms.

Two examples of qualitative data visualizations within Thematic

Conclusion - Manual or Automated?

There are those who remain deeply invested in the manual approach - because it’s familiar, because they’re reluctant to spend money and time learning new software, or because they’ve been burned by the overpromises of AI.  

For projects that involve small datasets, manual analysis makes sense. For example, if the objective is simply to quantify a simple question like “Do customers prefer X concepts to Y?”. If the findings are being extracted from a small set of focus groups and interviews, sometimes it’s easier to just read them

However, as new generations come into the workplace, it’s technology-driven solutions that feel more comfortable and practical. And the merits are undeniable.  Especially if the objective is to go deeper and understand the ‘why’ behind customers’ preference for X or Y. And even more especially if time and money are considerations.

The ability to collect a free flow of qualitative feedback data at the same time as the metric means AI can cost-effectively scan, crunch, score and analyze a ton of feedback from one system in one go. And time-intensive processes like focus groups, or coding, that used to take weeks, can now be completed in a matter of hours or days.

But aside from the ever-present business case to speed things up and keep costs down, there are also powerful research imperatives for automated analysis of qualitative data: namely, accuracy and consistency.

Finding insights hidden in feedback requires consistency, especially in coding.  Not to mention catching all the ‘unknown unknowns’ that can skew research findings and steering clear of cognitive bias.

Some say without manual data analysis researchers won’t get an accurate “feel” for the insights. However, the larger data sets are, the harder it is to sort through the feedback and organize feedback that has been pulled from different places.  And, the more difficult it is to stay on course, the greater the risk of drawing incorrect, or incomplete, conclusions grows.

Though the process steps for qualitative data analysis have remained pretty much unchanged since psychologist Paul Felix Lazarsfeld paved the path a hundred years ago, the impact digital technology has had on types of qualitative feedback data and the approach to the analysis are profound.  

If you want to try an automated feedback analysis solution on your own qualitative data, you can get started with Thematic .

data presentation methods for questionnaires

Community & Marketing

Tyler manages our community of CX, insights & analytics professionals. Tyler's goal is to help unite insights professionals around common challenges.

We make it easy to discover the customer and product issues that matter.

Unlock the value of feedback at scale, in one platform. Try it for free now!

  • Questions to ask your Feedback Analytics vendor
  • How to end customer churn for good
  • Scalable analysis of NPS verbatims
  • 5 Text analytics approaches
  • How to calculate the ROI of CX

Our experts will show you how Thematic works, how to discover pain points and track the ROI of decisions. To access your free trial, book a personal demo today.

Recent posts

Watercare is New Zealand's largest water and wastewater service provider. They are responsible for bringing clean water to 1.7 million people in Tamaki Makaurau (Auckland) and safeguarding the wastewater network to minimize impact on the environment. Water as a sector gets taken for granted, with drainage and pipe infrastructure

Become a qualitative theming pro! Creating a perfect code frame is hard, but thematic analysis software makes the process much easier.

Qualtrics is one of the most well-known and powerful Customer Feedback Management platforms. But even so, it has limitations. We recently hosted a live panel where data analysts from two well-known brands shared their experiences with Qualtrics, and how they extended this platform’s capabilities. Below, we’ll share the

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base


  • Survey Research | Definition, Examples & Methods

Survey Research | Definition, Examples & Methods

Published on August 20, 2019 by Shona McCombes . Revised on June 22, 2023.

Survey research means collecting information about a group of people by asking them questions and analyzing the results. To conduct an effective survey, follow these six steps:

  • Determine who will participate in the survey
  • Decide the type of survey (mail, online, or in-person)
  • Design the survey questions and layout
  • Distribute the survey
  • Analyze the responses
  • Write up the results

Surveys are a flexible method of data collection that can be used in many different types of research .

Table of contents

What are surveys used for, step 1: define the population and sample, step 2: decide on the type of survey, step 3: design the survey questions, step 4: distribute the survey and collect responses, step 5: analyze the survey results, step 6: write up the survey results, other interesting articles, frequently asked questions about surveys.

Surveys are used as a method of gathering data in many different fields. They are a good choice when you want to find out about the characteristics, preferences, opinions, or beliefs of a group of people.

Common uses of survey research include:

  • Social research : investigating the experiences and characteristics of different social groups
  • Market research : finding out what customers think about products, services, and companies
  • Health research : collecting data from patients about symptoms and treatments
  • Politics : measuring public opinion about parties and policies
  • Psychology : researching personality traits, preferences and behaviours

Surveys can be used in both cross-sectional studies , where you collect data just once, and in longitudinal studies , where you survey the same sample several times over an extended period.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Before you start conducting survey research, you should already have a clear research question that defines what you want to find out. Based on this question, you need to determine exactly who you will target to participate in the survey.


The target population is the specific group of people that you want to find out about. This group can be very broad or relatively narrow. For example:

  • The population of Brazil
  • US college students
  • Second-generation immigrants in the Netherlands
  • Customers of a specific company aged 18-24
  • British transgender women over the age of 50

Your survey should aim to produce results that can be generalized to the whole population. That means you need to carefully define exactly who you want to draw conclusions about.

Several common research biases can arise if your survey is not generalizable, particularly sampling bias and selection bias . The presence of these biases have serious repercussions for the validity of your results.

It’s rarely possible to survey the entire population of your research – it would be very difficult to get a response from every person in Brazil or every college student in the US. Instead, you will usually survey a sample from the population.

The sample size depends on how big the population is. You can use an online sample calculator to work out how many responses you need.

There are many sampling methods that allow you to generalize to broad populations. In general, though, the sample should aim to be representative of the population as a whole. The larger and more representative your sample, the more valid your conclusions. Again, beware of various types of sampling bias as you design your sample, particularly self-selection bias , nonresponse bias , undercoverage bias , and survivorship bias .

There are two main types of survey:

  • A questionnaire , where a list of questions is distributed by mail, online or in person, and respondents fill it out themselves.
  • An interview , where the researcher asks a set of questions by phone or in person and records the responses.

Which type you choose depends on the sample size and location, as well as the focus of the research.


Sending out a paper survey by mail is a common method of gathering demographic information (for example, in a government census of the population).

  • You can easily access a large sample.
  • You have some control over who is included in the sample (e.g. residents of a specific region).
  • The response rate is often low, and at risk for biases like self-selection bias .

Online surveys are a popular choice for students doing dissertation research , due to the low cost and flexibility of this method. There are many online tools available for constructing surveys, such as SurveyMonkey and Google Forms .

  • You can quickly access a large sample without constraints on time or location.
  • The data is easy to process and analyze.
  • The anonymity and accessibility of online surveys mean you have less control over who responds, which can lead to biases like self-selection bias .

If your research focuses on a specific location, you can distribute a written questionnaire to be completed by respondents on the spot. For example, you could approach the customers of a shopping mall or ask all students to complete a questionnaire at the end of a class.

  • You can screen respondents to make sure only people in the target population are included in the sample.
  • You can collect time- and location-specific data (e.g. the opinions of a store’s weekday customers).
  • The sample size will be smaller, so this method is less suitable for collecting data on broad populations and is at risk for sampling bias .

Oral interviews are a useful method for smaller sample sizes. They allow you to gather more in-depth information on people’s opinions and preferences. You can conduct interviews by phone or in person.

  • You have personal contact with respondents, so you know exactly who will be included in the sample in advance.
  • You can clarify questions and ask for follow-up information when necessary.
  • The lack of anonymity may cause respondents to answer less honestly, and there is more risk of researcher bias.

Like questionnaires, interviews can be used to collect quantitative data: the researcher records each response as a category or rating and statistically analyzes the results. But they are more commonly used to collect qualitative data : the interviewees’ full responses are transcribed and analyzed individually to gain a richer understanding of their opinions and feelings.

Next, you need to decide which questions you will ask and how you will ask them. It’s important to consider:

  • The type of questions
  • The content of the questions
  • The phrasing of the questions
  • The ordering and layout of the survey

Open-ended vs closed-ended questions

There are two main forms of survey questions: open-ended and closed-ended. Many surveys use a combination of both.

Closed-ended questions give the respondent a predetermined set of answers to choose from. A closed-ended question can include:

  • A binary answer (e.g. yes/no or agree/disagree )
  • A scale (e.g. a Likert scale with five points ranging from strongly agree to strongly disagree )
  • A list of options with a single answer possible (e.g. age categories)
  • A list of options with multiple answers possible (e.g. leisure interests)

Closed-ended questions are best for quantitative research . They provide you with numerical data that can be statistically analyzed to find patterns, trends, and correlations .

Open-ended questions are best for qualitative research. This type of question has no predetermined answers to choose from. Instead, the respondent answers in their own words.

Open questions are most common in interviews, but you can also use them in questionnaires. They are often useful as follow-up questions to ask for more detailed explanations of responses to the closed questions.

The content of the survey questions

To ensure the validity and reliability of your results, you need to carefully consider each question in the survey. All questions should be narrowly focused with enough context for the respondent to answer accurately. Avoid questions that are not directly relevant to the survey’s purpose.

When constructing closed-ended questions, ensure that the options cover all possibilities. If you include a list of options that isn’t exhaustive, you can add an “other” field.

Phrasing the survey questions

In terms of language, the survey questions should be as clear and precise as possible. Tailor the questions to your target population, keeping in mind their level of knowledge of the topic. Avoid jargon or industry-specific terminology.

Survey questions are at risk for biases like social desirability bias , the Hawthorne effect , or demand characteristics . It’s critical to use language that respondents will easily understand, and avoid words with vague or ambiguous meanings. Make sure your questions are phrased neutrally, with no indication that you’d prefer a particular answer or emotion.

Ordering the survey questions

The questions should be arranged in a logical order. Start with easy, non-sensitive, closed-ended questions that will encourage the respondent to continue.

If the survey covers several different topics or themes, group together related questions. You can divide a questionnaire into sections to help respondents understand what is being asked in each part.

If a question refers back to or depends on the answer to a previous question, they should be placed directly next to one another.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

data presentation methods for questionnaires

Before you start, create a clear plan for where, when, how, and with whom you will conduct the survey. Determine in advance how many responses you require and how you will gain access to the sample.

When you are satisfied that you have created a strong research design suitable for answering your research questions, you can conduct the survey through your method of choice – by mail, online, or in person.

There are many methods of analyzing the results of your survey. First you have to process the data, usually with the help of a computer program to sort all the responses. You should also clean the data by removing incomplete or incorrectly completed responses.

If you asked open-ended questions, you will have to code the responses by assigning labels to each response and organizing them into categories or themes. You can also use more qualitative methods, such as thematic analysis , which is especially suitable for analyzing interviews.

Statistical analysis is usually conducted using programs like SPSS or Stata. The same set of survey data can be subject to many analyses.

Finally, when you have collected and analyzed all the necessary data, you will write it up as part of your thesis, dissertation , or research paper .

In the methodology section, you describe exactly how you conducted the survey. You should explain the types of questions you used, the sampling method, when and where the survey took place, and the response rate. You can include the full questionnaire as an appendix and refer to it in the text if relevant.

Then introduce the analysis by describing how you prepared the data and the statistical methods you used to analyze it. In the results section, you summarize the key results from your analysis.

In the discussion and conclusion , you give your explanations and interpretations of these results, answer your research question, and reflect on the implications and limitations of the research.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval
  • Quartiles & Quantiles
  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Prospective cohort study

Research bias

  • Implicit bias
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hindsight bias
  • Affect heuristic
  • Social desirability bias

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, June 22). Survey Research | Definition, Examples & Methods. Scribbr. Retrieved April 8, 2024, from https://www.scribbr.com/methodology/survey-research/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, qualitative vs. quantitative research | differences, examples & methods, questionnaire design | methods, question types & examples, what is a likert scale | guide & examples, what is your plagiarism score.

Grad Coach

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

data presentation methods for questionnaires

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations.

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

data presentation methods for questionnaires

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Narrative analysis explainer


Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.


i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner


Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?


Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’


Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you


Thank you so much this helped


Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative


THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.


Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done


The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.


thank you so much, your presentation helped me a lot


I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.




An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!


wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful


Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!


Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks


I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?


The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!


So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow


This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up


Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.


Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.


Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.


very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.


Always greet intro and summary. I learn so much from GradCoach


Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.


Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Questionnaire Design | Methods, Question Types & Examples

Questionnaire Design | Methods, Question Types & Examples

Published on 6 May 2022 by Pritha Bhandari . Revised on 10 October 2022.

A questionnaire is a list of questions or items used to gather data from respondents about their attitudes, experiences, or opinions. Questionnaires can be used to collect quantitative and/or qualitative information.

Questionnaires are commonly used in market research as well as in the social and health sciences. For example, a company may ask for feedback about a recent customer service experience, or psychology researchers may investigate health risk perceptions using questionnaires.

Table of contents

Questionnaires vs surveys, questionnaire methods, open-ended vs closed-ended questions, question wording, question order, step-by-step guide to design, frequently asked questions about questionnaire design.

A survey is a research method where you collect and analyse data from a group of people. A questionnaire is a specific tool or instrument for collecting the data.

Designing a questionnaire means creating valid and reliable questions that address your research objectives, placing them in a useful order, and selecting an appropriate method for administration.

But designing a questionnaire is only one component of survey research. Survey research also involves defining the population you’re interested in, choosing an appropriate sampling method , administering questionnaires, data cleaning and analysis, and interpretation.

Sampling is important in survey research because you’ll often aim to generalise your results to the population. Gather data from a sample that represents the range of views in the population for externally valid results. There will always be some differences between the population and the sample, but minimising these will help you avoid sampling bias .

Prevent plagiarism, run a free check.

Questionnaires can be self-administered or researcher-administered . Self-administered questionnaires are more common because they are easy to implement and inexpensive, but researcher-administered questionnaires allow deeper insights.

Self-administered questionnaires

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or by post. All questions are standardised so that all respondents receive the same questions with identical wording.

Self-administered questionnaires can be:

  • Cost-effective
  • Easy to administer for small and large groups
  • Anonymous and suitable for sensitive topics

But they may also be:

  • Unsuitable for people with limited literacy or verbal skills
  • Susceptible to a nonreponse bias (most people invited may not complete the questionnaire)
  • Biased towards people who volunteer because impersonal survey requests often go ignored

Researcher-administered questionnaires

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents.

Researcher-administered questionnaires can:

  • Help you ensure the respondents are representative of your target audience
  • Allow clarifications of ambiguous or unclear questions and answers
  • Have high response rates because it’s harder to refuse an interview when personal attention is given to respondents

But researcher-administered questionnaires can be limiting in terms of resources. They are:

  • Costly and time-consuming to perform
  • More difficult to analyse if you have qualitative responses
  • Likely to contain experimenter bias or demand characteristics
  • Likely to encourage social desirability bias in responses because of a lack of anonymity

Your questionnaire can include open-ended or closed-ended questions, or a combination of both.

Using closed-ended questions limits your responses, while open-ended questions enable a broad range of answers. You’ll need to balance these considerations with your available time and resources.

Closed-ended questions

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. Closed-ended questions are best for collecting data on categorical or quantitative variables.

Categorical variables can be nominal or ordinal. Quantitative variables can be interval or ratio. Understanding the type of variable and level of measurement means you can perform appropriate statistical analyses for generalisable results.

Examples of closed-ended questions for different variables

Nominal variables include categories that can’t be ranked, such as race or ethnicity. This includes binary or dichotomous categories.

It’s best to include categories that cover all possible answers and are mutually exclusive. There should be no overlap between response items.

In binary or dichotomous questions, you’ll give respondents only two options to choose from.

White Black or African American American Indian or Alaska Native Asian Native Hawaiian or Other Pacific Islander

Ordinal variables include categories that can be ranked. Consider how wide or narrow a range you’ll include in your response items, and their relevance to your respondents.

Likert-type questions collect ordinal data using rating scales with five or seven points.

When you have four or more Likert-type questions, you can treat the composite data as quantitative data on an interval scale . Intelligence tests, psychological scales, and personality inventories use multiple Likert-type questions to collect interval data.

With interval or ratio data, you can apply strong statistical hypothesis tests to address your research aims.

Pros and cons of closed-ended questions

Well-designed closed-ended questions are easy to understand and can be answered quickly. However, you might still miss important answers that are relevant to respondents. An incomplete set of response items may force some respondents to pick the closest alternative to their true answer. These types of questions may also miss out on valuable detail.

To solve these problems, you can make questions partially closed-ended, and include an open-ended option where respondents can fill in their own answer.

Open-ended questions

Open-ended, or long-form, questions allow respondents to give answers in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered. For example, respondents may want to answer ‘multiracial’ for the question on race rather than selecting from a restricted list.

  • How do you feel about open science?
  • How would you describe your personality?
  • In your opinion, what is the biggest obstacle to productivity in remote work?

Open-ended questions have a few downsides.

They require more time and effort from respondents, which may deter them from completing the questionnaire.

For researchers, understanding and summarising responses to these questions can take a lot of time and resources. You’ll need to develop a systematic coding scheme to categorise answers, and you may also need to involve other researchers in data analysis for high reliability .

Question wording can influence your respondents’ answers, especially if the language is unclear, ambiguous, or biased. Good questions need to be understood by all respondents in the same way ( reliable ) and measure exactly what you’re interested in ( valid ).

Use clear language

You should design questions with your target audience in mind. Consider their familiarity with your questionnaire topics and language and tailor your questions to them.

For readability and clarity, avoid jargon or overly complex language. Don’t use double negatives because they can be harder to understand.

Use balanced framing

Respondents often answer in different ways depending on the question framing. Positive frames are interpreted as more neutral than negative frames and may encourage more socially desirable answers.

Use a mix of both positive and negative frames to avoid bias , and ensure that your question wording is balanced wherever possible.

Unbalanced questions focus on only one side of an argument. Respondents may be less likely to oppose the question if it is framed in a particular direction. It’s best practice to provide a counterargument within the question as well.

Avoid leading questions

Leading questions guide respondents towards answering in specific ways, even if that’s not how they truly feel, by explicitly or implicitly providing them with extra information.

It’s best to keep your questions short and specific to your topic of interest.

  • The average daily work commute in the US takes 54.2 minutes and costs $29 per day. Since 2020, working from home has saved many employees time and money. Do you favour flexible work-from-home policies even after it’s safe to return to offices?
  • Experts agree that a well-balanced diet provides sufficient vitamins and minerals, and multivitamins and supplements are not necessary or effective. Do you agree or disagree that multivitamins are helpful for balanced nutrition?

Keep your questions focused

Ask about only one idea at a time and avoid double-barrelled questions. Double-barrelled questions ask about more than one item at a time, which can confuse respondents.

This question could be difficult to answer for respondents who feel strongly about the right to clean drinking water but not high-speed internet. They might only answer about the topic they feel passionate about or provide a neutral answer instead – but neither of these options capture their true answers.

Instead, you should ask two separate questions to gauge respondents’ opinions.

Strongly Agree Agree Undecided Disagree Strongly Disagree

Do you agree or disagree that the government should be responsible for providing high-speed internet to everyone?

You can organise the questions logically, with a clear progression from simple to complex. Alternatively, you can randomise the question order between respondents.

Logical flow

Using a logical flow to your question order means starting with simple questions, such as behavioural or opinion questions, and ending with more complex, sensitive, or controversial questions.

The question order that you use can significantly affect the responses by priming them in specific directions. Question order effects, or context effects, occur when earlier questions influence the responses to later questions, reducing the validity of your questionnaire.

While demographic questions are usually unaffected by order effects, questions about opinions and attitudes are more susceptible to them.

  • How knowledgeable are you about Joe Biden’s executive orders in his first 100 days?
  • Are you satisfied or dissatisfied with the way Joe Biden is managing the economy?
  • Do you approve or disapprove of the way Joe Biden is handling his job as president?

It’s important to minimise order effects because they can be a source of systematic error or bias in your study.


Randomisation involves presenting individual respondents with the same questionnaire but with different question orders.

When you use randomisation, order effects will be minimised in your dataset. But a randomised order may also make it harder for respondents to process your questionnaire. Some questions may need more cognitive effort, while others are easier to answer, so a random order could require more time or mental capacity for respondents to switch between questions.

Follow this step-by-step guide to design your questionnaire.

Step 1: Define your goals and objectives

The first step of designing a questionnaire is determining your aims.

  • What topics or experiences are you studying?
  • What specifically do you want to find out?
  • Is a self-report questionnaire an appropriate tool for investigating this topic?

Once you’ve specified your research aims, you can operationalise your variables of interest into questionnaire items. Operationalising concepts means turning them from abstract ideas into concrete measurements. Every question needs to address a defined need and have a clear purpose.

Step 2: Use questions that are suitable for your sample

Create appropriate questions by taking the perspective of your respondents. Consider their language proficiency and available time and energy when designing your questionnaire.

  • Are the respondents familiar with the language and terms used in your questions?
  • Would any of the questions insult, confuse, or embarrass them?
  • Do the response items for any closed-ended questions capture all possible answers?
  • Are the response items mutually exclusive?
  • Do the respondents have time to respond to open-ended questions?

Consider all possible options for responses to closed-ended questions. From a respondent’s perspective, a lack of response options reflecting their point of view or true answer may make them feel alienated or excluded. In turn, they’ll become disengaged or inattentive to the rest of the questionnaire.

Step 3: Decide on your questionnaire length and question order

Once you have your questions, make sure that the length and order of your questions are appropriate for your sample.

If respondents are not being incentivised or compensated, keep your questionnaire short and easy to answer. Otherwise, your sample may be biased with only highly motivated respondents completing the questionnaire.

Decide on your question order based on your aims and resources. Use a logical flow if your respondents have limited time or if you cannot randomise questions. Randomising questions helps you avoid bias, but it can take more complex statistical analysis to interpret your data.

Step 4: Pretest your questionnaire

When you have a complete list of questions, you’ll need to pretest it to make sure what you’re asking is always clear and unambiguous. Pretesting helps you catch any errors or points of confusion before performing your study.

Ask friends, classmates, or members of your target audience to complete your questionnaire using the same method you’ll use for your research. Find out if any questions were particularly difficult to answer or if the directions were unclear or inconsistent, and make changes as necessary.

If you have the resources, running a pilot study will help you test the validity and reliability of your questionnaire. A pilot study is a practice run of the full study, and it includes sampling, data collection , and analysis.

You can find out whether your procedures are unfeasible or susceptible to bias and make changes in time, but you can’t test a hypothesis with this type of study because it’s usually statistically underpowered .

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analysing data from people using questionnaires.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviours. It is made up of four or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with five or seven possible responses, to capture their degree of agreement.

You can organise the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomisation can minimise the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). Questionnaire Design | Methods, Question Types & Examples. Scribbr. Retrieved 8 April 2024, from https://www.scribbr.co.uk/research-methods/questionnaire-design/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, doing survey research | a step-by-step guide & examples, what is a likert scale | guide & examples, reliability vs validity in research | differences, types & examples.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Perspect Clin Res
  • v.14(3); Jul-Sep 2023
  • PMC10405529

Designing and validating a research questionnaire - Part 1

Priya ranganathan.

Department of Anaesthesiology, Tata Memorial Centre, Homi Bhabha National Institute, Mumbai, Maharashtra, India

Carlo Caduff

1 Department of Global Health and Social Medicine, King’s College London, London, United Kingdom

Questionnaires are often used as part of research studies to collect data from participants. However, the information obtained through a questionnaire is dependent on how it has been designed, used, and validated. In this article, we look at the types of research questionnaires, their applications and limitations, and how a new questionnaire is developed.


In research studies, questionnaires are commonly used as data collection tools, either as the only source of information or in combination with other techniques in mixed-method studies. However, the quality and accuracy of data collected using a questionnaire depend on how it is designed, used, and validated. In this two-part series, we discuss how to design (part 1) and how to use and validate (part 2) a research questionnaire. It is important to emphasize that questionnaires seek to gather information from other people and therefore entail a social relationship between those who are doing the research and those who are being researched. This social relationship comes with an obligation to learn from others , an obligation that goes beyond the purely instrumental rationality of gathering data. In that sense, we underscore that any research method is not simply a tool but a situation, a relationship, a negotiation, and an encounter. This points to both ethical questions (what is the relationship between the researcher and the researched?) and epistemological ones (what are the conditions under which we can know something?).

At the start of any kind of research project, it is crucial to select the right methodological approach. What is the research question, what is the research object, and what can a questionnaire realistically achieve? Not every research question and not every research object are suitable to the questionnaire as a method. Questionnaires can only provide certain kinds of empirical evidence and it is thus important to be aware of the limitations that are inherent in any kind of methodology.


A research questionnaire can be defined as a data collection tool consisting of a series of questions or items that are used to collect information from respondents and thus learn about their knowledge, opinions, attitudes, beliefs, and behavior and informed by a positivist philosophy of the natural sciences that consider methods mainly as a set of rules for the production of knowledge; questionnaires are frequently used instrumentally as a standardized and standardizing tool to ask a set of questions to participants. Outside of such a positivist philosophy, questionnaires can be seen as an encounter between the researcher and the researched, where knowledge is not simply gathered but negotiated through a distinct form of communication that is the questionnaire.


A questionnaire may not always be the most appropriate way of engaging with research participants and generating knowledge that is needed for a research study. Questionnaires have advantages that have made them very popular, especially in quantitative studies driven by a positivist philosophy: they are a low-cost method for the rapid collection of large amounts of data, even from a wide sample. They are practical, can be standardized, and allow comparison between groups and locations. However, it is important to remember that a questionnaire only captures the information that the method itself (as the structured relationship between the researcher and the researched) allows for and that the respondents are willing to provide. For example, a questionnaire on diet captures what the respondents say they eat and not what they are eating. The problem of social desirability emerges precisely because the research process itself involves a social relationship. This means that respondents may often provide socially acceptable and idealized answers, particularly in relation to sensitive questions, for example, alcohol consumption, drug use, and sexual practices. Questionnaires are most useful for studies investigating knowledge, beliefs, values, self-understandings, and self-perceptions that reflect broader social, cultural, and political norms that may well diverge from actual practices.


Research questionnaires may be classified in several ways:

Depending on mode of administration

Research questionnaires may be self-administered (by the research participant) or researcher administered. Self-administered (also known as self-reported or self-completed) questionnaires are designed to be completed by respondents without assistance from a researcher. Self-reported questionnaires may be administered to participants directly during hospital or clinic visits, mailed through the post or E-mail, or accessed through websites. This technique allows respondents to answer at their own pace and simplifies research costs and logistics. The anonymity offered by self-reporting may facilitate more accurate answers. However, the disadvantages are that there may be misinterpretations of questions and low response rates. Significantly, relevant context information is missing to make sense of the answers provided. Researcher-reported (or interviewer-reported) questionnaires may be administered face-to-face or through remote techniques such as telephone or videoconference and are associated with higher response rates. They allow the researcher to have a better understanding of how the data are collected and how answers are negotiated, but are more resource intensive and require more training from the researchers.

The choice between self-administered and researcher-administered questionnaires depends on various factors such as the characteristics of the target audience (e.g., literacy and comprehension level and ability to use technology), costs involved, and the need for confidentiality/privacy.

Depending on the format of the questions

Research questionnaires can have structured or semi-structured formats. Semi-structured questionnaires allow respondents to answer more freely and on their terms, with no restrictions on their responses. They allow for unusual or surprising responses and are useful to explore and discover a range of answers to determine common themes. Typically, the analysis of responses to open-ended questions is more complex and requires coding and analysis. In contrast, structured questionnaires provide a predefined set of responses for the participant to choose from. The use of standard items makes the questionnaire easier to complete and allows quick aggregation, quantification, and analysis of the data. However, structured questionnaires can be restrictive if the scope of responses is limited and may miss potential answers. They also may suggest answers that respondents may not have considered before. Respondents may be forced to fit their answers into the predetermined format and may not be able to express personal views and say what they really want to say or think. In general, this type of questionnaire can turn the research process into a mechanical, anonymous survey with little incentive for participants to feel engaged, understood, and taken seriously.


Some examples of close-ended questions include:

e.g., Please indicate your marital status:

  • Prefer not to say.

e.g., Describe your areas of work (circle or tick all that apply):

  • Clinical service
  • Administration
  • Strongly agree
  • Strongly disagree.
  • Numerical scales: Please rate your current pain on a scale of 1–10 where 1 is no pain and 10 is the worst imaginable pain
  • Symbolic scales: For example, the Wong-Baker FACES scale to rate pain in older children
  • Ranking: Rank the following cities as per the quality of public health care, where 1 is the best and 5 is the worst.

A matrix questionnaire consists of a series of rows with items to be answered with a series of columns providing the same answer options. This is an efficient way of getting the respondent to provide answers to multiple questions. The EORTC QLQ-C30 is an example of a matrix questionnaire.[ 1 ]

For a more detailed review of the types of research questions, readers are referred to a paper by Boynton and Greenhalgh.[ 2 ]


Before developing a questionnaire for a research study, a researcher can check whether there are any preexisting-validated questionnaires that might be adapted and used for the study. The use of validated questionnaires saves time and resources needed to design a new questionnaire and allows comparability between studies.

However, certain aspects need to be kept in mind: is the population/context/purpose for which the original questionnaire was designed similar to the new study? Is cross-cultural adaptation required? Are there any permission needed to use the questionnaire? In many situations, the development of a new questionnaire may be more appropriate given that any research project entails both methodological and epistemological questions: what is the object of knowledge and what are the conditions under which it can be known? It is important to understand that the standardizing nature of questionnaires contributes to the standardization of objects of knowledge. Thus, the seeming similarity in the object of study across diverse locations may be an artifact of the method. Whatever method one uses, it will always operate as the ground on which the object of study is known.


Once the researcher has decided to design a new questionnaire, several steps should be considered:

Gathering content

It creates a conceptual framework to identify all relevant areas for which the questionnaire will be used to collect information. This may require a scoping review of the published literature, appraising other questionnaires on similar topics, or the use of focus groups to identify common themes.

Create a list of questions

Questions need to be carefully formulated with attention to language and wording to avoid ambiguity and misinterpretation. Table 1 lists a few examples of poorlyworded questions that could have been phrased in a more appropriate manner. Other important aspects to be noted are:

Examples of poorly phrased questions in a research questionnaire

  • Provide a brief introduction to the research study along with instructions on how to complete the questionnaire
  • Allow respondents to indicate levels of intensity in their replies, so that they are not forced into “yes” or “no” answers where intensity of feeling may be more appropriate
  • Collect specific and detailed data wherever possible – this can be coded into categories. For example, age can be captured in years and later classified as <18 years, 18–45 years, 46 years, and above. The reverse is not possible
  • Avoid technical terms, slang, and abbreviations. Tailor the reading level to the expected education level of respondents
  • The format of the questionnaire should be attractive with different sections for various subtopics. The font should be large and easy to read, especially if the questionnaire is targeted at the elderly
  • Question sequence: questions should be arranged from general to specific, from easy to difficult, from facts to opinions, and sensitive topics should be introduced later in the questionnaire.[ 3 ] Usually, demographic details are captured initially followed by questions on other aspects
  • Use contingency questions: these are questions which need to be answered only by a subgroup of the respondents who provide a particular answer to a previous question. This ensures that participants only respond to relevant sections of the questionnaire, for example, Do you smoke? If yes, then how long have you been smoking? If not, then please go to the next section.


A questionnaire needs to be valid and reliable, and therefore, any new questionnaire needs to be pilot tested in a small sample of respondents who are representative of the larger population. In addition to validity and reliability, pilot testing provides information on the time taken to complete the questionnaire and whether any questions are confusing or misleading and need to be rephrased. Validity indicates that the questionnaire measures what it claims to measure – this means taking into consideration the limitations that come with any questionnaire-based study. Reliability means that the questionnaire yields consistent responses when administered repeatedly even by different researchers, and any variations in the results are due to actual differences between participants and not because of problems with the interpretation of the questions or their responses. In the next article in this series, we will discuss methods to determine the reliability and validity of a questionnaire.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Barcelona Field Studies Centre

  • All Data Presentations
  • 3D Chart Example
  • 3D Chart Maker
  • Bar Chart (Divided)
  • Bar Chart Maker
  • Bar Chart (Percentage)
  • Bar Chart (Range)
  • Beach Profile Maker
  • Bi-Polar Graphs
  • Bihistogram Creator
  • Bi-Polar Chart Maker
  • Box Plot Creator
  • Cailleux Roundness
  • Choropleth Maps
  • Coding Analysis
  • Cross Section Maker
  • Cumulative Frequency
  • Divided Bar Charts
  • Donut Chart Maker
  • Histogram Creator
  • Line Chart Maker

Line of Best Fit

  • Kite Data Entity Example
  • Kites Data Entity Maker
  • Kites Species Creator
  • Kites Species Example
  • Map Cross Section Maker
  • Percentage Bar Charts
  • Pie Chart Maker
  • Pie Chart Maker Example
  • Polar Area Chart Maker
  • Polar Area Example
  • Polar Chart Example
  • Polar Chart Maker
  • Polar Overlays Example
  • Polar Overlays Maker
  • Polar Scatter Maker
  • Proportional Circles
  • Proportional Circle Maker

Radar Charts

  • Radar Chart Maker

Radar Chart Overlays

  • Range Bar Charts

River Cross Sections

  • Rose Diagram Example
  • Rose Diagram Maker
  • Sand Dune Profiles

Scatter Graphs

  • Scatter Graph Maker
  • Slope Profile Example
  • Slope Profile Maker
  • Stacked Bar Chart Maker
  • Stacked Bar Example

Triangular Graphs

  • Triangular Graph Example
  • Triangular Graph Maker
  • Word Cloud Example
  • Word Cloud Maker
  • Beach Profiles
  • Lichenometry
  • Map Reading
  • River Discharge
  • Gentrification
  • Mapping Techniques
  • Slope Steepness
  • Minimum Sample Size
  • Optimum Quadrat Size
  • Random Numbers
  • Random Sampling
  • Sampling Problems
  • Sample Size
  • Urban Sampling
  • Box Plot Maker
  • Beach Volume
  • Hydraulic Radius
  • Mann Whitney U Test
  • Manning's n
  • Nearest Neighbour
  • River Cross Section
  • Scatter Graph Creator
  • Simpson's Diversity Index
  • Slope Steepness Index
  • Spearman's Rank
  • Spearman's Calculator
  • Standard Deviation
  • Statistical Methods
  • Wetted Perimeter

Geography Data Presentation Techniques and Methods

Many of the most appropriate types of data presentation techniques used to visualise raw geographical data are shown on this page. We provide the tools to create and save the images shown and these are quick and easy to use, free with no account or log-in required.

Besides creating images, the geography data presentation tools have many mathematical functions. These include the calculation of cross sectional area for beach profiles and river cross sections, trend lines for scatter graphs and standard deviation for box plots.

Simply open the calculator for your chosen technique, enter your data, adjust titles and data labels. An image of your data presentation and the calculations used to create it are then instantly ready for download.

Percentage or Divided Bar Charts

Stacked bar charts, min-max range floating bar charts, beach profiles (using slope angle data), beach profiles (using height change data).

Beach Profile using height change data

Beach Profiles (using absolute height data)

Beach Profile using absolute height data


Bi-polar charts, box plots or box and whisker charts (horizontal), box plots (vertical).

Box Plots Vertical Data Sets 1 and 2

Box Plots (Outliers)

Box Plots Data Set 2 Outliers

Box Plots (Mean and Standard Deviation)

Box Plots Data Set 2 (Mean and Standard Deviation)

Cumulative Frequency Chart

Cumulative Percentage Frequency

Donut (Doughnut) Charts

Kite diagrams (any data entities), kite diagrams (species abundance), line charts.

Line of Best Fit

Map Cross Sections

Map Cross Section

Polar Area Charts

Polar Area Chart

Polar Charts

Polar Chart Example

Polar Chart Overlays

Polar Chart Overlays Example

Polar Scatter Charts

Proportional circles chart.

Radar Chart Overlays

Rose Diagrams

Rose Diagram

Sand Dune Profiles (using slope angle data)

Sand Dune Profile

Slope Profiles (using slope angle data)

Slope Profile

Word Clouds

Word Cloud


  1. How to Analyze Questionnaire Data: A Step by Step Guide

    data presentation methods for questionnaires

  2. How to Collect Data

    data presentation methods for questionnaires

  3. 4 Data Collection Techniques: Which One's Right for You?

    data presentation methods for questionnaires

  4. 12 Questionnaire Design Tips for Successful Surveys

    data presentation methods for questionnaires

  5. Questionnaires : Définition, avantages et exemples |%sitename%%%%

    data presentation methods for questionnaires

  6. PPT

    data presentation methods for questionnaires


  1. Questionnaires & Surveys

  2. Primary Data Collection Methods

  3. Creating and Using Custom Online Questionnaires

  4. Mailing & Enumerator’s Method(s)

  5. Methods Of Collecting Primary Data

  6. Statistics Class 11| Chapter 3 Part 2


  1. 10 Methods of Data Presentation with 5 Great Tips to ...

    Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon. Tags: Types of Presentation. How to present the data in a way that even the clueless person in the room can understand? Check out our 10 methods of data presentation for a better idea.

  2. How to present and visualize qualitative data

    To do this, use visuals that are both attractive and informative. Presenting qualitative data visually helps to bring the user's attention to specific items and draw them into a more in-depth analysis. Visuals provide an efficient way to communicate complex information, making it easier for the audience to comprehend.

  3. PDF 3l

    In fact, qualitative data can and should, be presented , a number of in interesting and attractive ways. _____ Quotation Banks . Creating a transcript of any interviews that are taken or oral histories that are recorded should provide the researcher with a number of relevant quotations, each of which can be used as a piece of data.

  4. Questionnaire Design

    Questionnaires vs. surveys. A survey is a research method where you collect and analyze data from a group of people. A questionnaire is a specific tool or instrument for collecting the data.. Designing a questionnaire means creating valid and reliable questions that address your research objectives, placing them in a useful order, and selecting an appropriate method for administration.

  5. 5 ways to effectively present assessment or survey results

    1. Using charts. A chart or graph is a visual presentation of data. The major goal of using charts is to display your assessment or survey results in a meaningful way. Good charts convey information easily and quickly to the audience, whereas a bad chart leaves you confused.

  6. Present Your Data Like a Pro

    TheJoelTruth. While a good presentation has data, data alone doesn't guarantee a good presentation. It's all about how that data is presented. The quickest way to confuse your audience is by ...

  7. How to Analyze Questionnaire Data: A Step by Step Guide

    Expand with open-ended questions. Analyze your open-ended data. Visualize your results. Interpret actionable insights. We landed on these particular steps because they convey a clear journey from the inception of your survey campaign to the implementation of your survey's insights. 1. Interrogate your question.


    CHAPTER FOUR. DATA PRESENTATION, ANALYSIS AND INTERPRETATION. 4.0 Introduction. This chapter is concerned with data pres entation, of the findings obtained through the study. The. findings are ...

  9. How to Present Your Qualitative Data

    Preparing the data. The first step in presenting qualitative data is preparing the data. This preparation process often begins with cleaning and organizing the data. Cleaning involves checking the data for accuracy and completeness, removing any irrelevant information, and making corrections as needed.

  10. Data Collection, Presentation and Analysis

    Abstract. This chapter covers the topics of data collection, data presentation and data analysis. It gives attention to data collection for studies based on experiments, on data derived from existing published or unpublished data sets, on observation, on simulation and digital twins, on surveys, on interviews and on focus group discussions.

  11. Presenting and Evaluating Qualitative Research

    The purpose of this paper is to help authors to think about ways to present qualitative research papers in the American Journal of Pharmaceutical Education. It also discusses methods for reviewers to assess the rigour, quality, and usefulness of qualitative research. Examples of different ways to present data from interviews, observations, and ...

  12. (PDF) Data Presentation in Qualitative Research: The Outcomes of the

    The data presentation is one of the segments of the methodology in every research depending on the approach. The methodology, therefore, refers to the design and the theory that underpins the ...

  13. The Library: Research Skills: Analysing and Presenting Data

    Overview. Data analysis is an ongoing process that should occur throughout your research project. Suitable data-analysis methods must be selected when you write your research proposal. The nature of your data (i.e. quantitative or qualitative) will be influenced by your research design and purpose. The data will also influence the analysis ...

  14. Questionnaires

    Questionnaires can be classified as both, quantitative and qualitative method depending on the nature of questions. Specifically, answers obtained through closed-ended questions (also called restricted questions) with multiple choice answer options are analyzed using quantitative methods. Research findings in this case can be illustrated using ...

  15. Data Collection

    Data Collection | Definition, Methods & Examples. Published on June 5, 2020 by Pritha Bhandari.Revised on June 21, 2023. Data collection is a systematic process of gathering observations or measurements. Whether you are performing research for business, governmental or academic purposes, data collection allows you to gain first-hand knowledge and original insights into your research problem.

  16. PDF Chapter 4 Presentation and Analysis of Data From Questionnaires 4.1

    4.1. Introduction. The previous chapter outlined the research design, as well as the instruments and procedures used to collect data and answer the research questions. This chapter will look at the data collected from the questionnaires. There were two sets of different questionnaires: the first set was administered to the teachers and learners ...

  17. Qualitative Data Analysis: Step-by-Step Guide (Manual vs ...

    Step 1: Gather your qualitative data and conduct research (Conduct qualitative research) The first step of qualitative research is to do data collection. Put simply, data collection is gathering all of your data for analysis. A common situation is when qualitative data is spread across various sources.

  18. Survey Research

    Survey research means collecting information about a group of people by asking them questions and analyzing the results. To conduct an effective survey, follow these six steps: Determine who will participate in the survey. Decide the type of survey (mail, online, or in-person) Design the survey questions and layout.

  19. Quantitative Data Analysis Methods & Techniques 101

    Quantitative data analysis is one of those things that often strikes fear in students. It's totally understandable - quantitative analysis is a complex topic, full of daunting lingo, like medians, modes, correlation and regression.Suddenly we're all wishing we'd paid a little more attention in math class…. The good news is that while quantitative data analysis is a mammoth topic ...

  20. Questionnaire Design

    Questionnaires vs surveys. A survey is a research method where you collect and analyse data from a group of people. A questionnaire is a specific tool or instrument for collecting the data.. Designing a questionnaire means creating valid and reliable questions that address your research objectives, placing them in a useful order, and selecting an appropriate method for administration.

  21. Designing and validating a research questionnaire

    However, the quality and accuracy of data collected using a questionnaire depend on how it is designed, used, and validated. In this two-part series, we discuss how to design (part 1) and how to use and validate (part 2) a research questionnaire. It is important to emphasize that questionnaires seek to gather information from other people and ...

  22. Geography Data Presentation Techniques and Methods

    These include the calculation of cross sectional area for beach profiles and river cross sections, trend lines for scatter graphs and standard deviation for box plots. Simply open the calculator for your chosen technique, enter your data, adjust titles and data labels. An image of your data presentation and the calculations used to create it ...

  23. (PDF) Data Analysis in Mixed Research: A Primer

    The research applies a mixed-methods research approach with a convergent parallel design type supported by a survey method. Research data was obtained from the distribution of questionnaires ...