The Role of Science, Technology and Innovation in Transforming Food Systems Globally

  • Open Access
  • First Online: 02 January 2023

Cite this chapter

You have full access to this open access chapter

essay on food technology

  • Robin Fears 5 &
  • Claudia Canales 5  

18k Accesses

1 Citations

9 Altmetric

Although much progress has been made in past decades, the prospects for food and nutrition security are now deteriorating and the converging crises of climate change and Covid-19 present major risks for nutrition and health, and challenges to the development of sustainable food systems. In 2018, the InterAcademy Partnership published a report on the scientific opportunities and challenges for food and nutrition security and agriculture based on four regional reports by academy networks in Africa, Asia, the Americas and Europe. The present chapter draws on new evidence from the regions reaffirming the continuing rapid pace of science, technology and innovation and the need to act urgently worldwide to capitalise on the new opportunities to transform food systems. We cover issues around sustainable, healthy food systems in terms of the whole food value chain, including consumption and waste, the interconnections between agriculture and natural resources, and the objectives for developing a more balanced food production strategy (for land and sea) to deliver nutritional, social and environmental benefits. Our focus is on science, and we discuss a range of transdisciplinary research opportunities that can underpin the UN FSS Action Tracks, inform the introduction of game-changers, and provide core resources to stimulate innovation, inform practice and guide policy decisions. Academies of science, with their strengths of scientific excellence, inclusiveness, diversity and the capacity to link the national, regional and global levels, are continuing to support the scientific community’s a key role in catalysing action. Our recommendations concentrate on priorities around building the science base – including the recognition of the importance of fundamental research – to generate diverse yet equitable solutions for providing sustainable, healthy diets that are culturally sensitive and attend to the needs of vulnerable populations. We also urge better use of the transdisciplinary science base to advise policymaking, and suggest that this would be greatly advanced by constituting an international advisory Panel for Food and Nutrition Security, with particular emphasis on sustainable food systems.

You have full access to this open access chapter,  Download chapter PDF

Similar content being viewed by others

essay on food technology

Innovation can accelerate the transition towards a sustainable food system

essay on food technology

Contested agri-food futures: Introduction to the Special Issue

essay on food technology

The Food Industry as a Partner for Public Health?

1 introduction: the transformation of food systems.

The world is not on track to meet the Sustainable Development Goal (SDG) targets linked to hunger and food and nutrition security. According to FAO data (FAO 2020 ), the number of hungry people has increased by 10% in the past 5 years and 3 billion people cannot afford a healthy diet. Some countries in Asia and Africa have made significant progress in increasing food and nutrition security alongside reducing poverty in the past decade, but others have not (EIU 2020 ). The risks continue to be compounded by the impacts of population growth, urbanisation, climate and other environmental changes, market instability and economic inequality. Furthermore, the Covid-19 pandemic has exacerbated problems and imposed disproportionate effects on the economically vulnerable, including marginalised groups in urban areas and smallholder farmers in rural areas (FAO 2020 ; EIU 2020 ). However, while there are unprecedented challenges, there are also unprecedented opportunities to capitalise on science, technology and innovation for the purpose of transforming food systems.

In 2018, the InterAcademy Partnership (IAP), the global network of more than 140 academies of science, engineering and medicine, published a global report on food and nutrition security and agriculture, drawing on information from four regional reports prepared by academy networks in Africa (NASAC), Asia (AASSA), the Americas (IANAS) and Europe (EASAC) and emphasising the value of taking a transdisciplinary approach. In the present chapter, we present an update on some of the issues from that global report linked to the assessments made in the chapters in this volume prepared by the regional academy networks for the UNFSS.

The work of the academies has adopted an integrative food systems approach that considers all points along the value chain, encompassing food processing, transport, retail, consumption, and recycling, as well as agricultural production. Moreover, in the transformation of food systems towards economic, social and environmental sustainability, setting agricultural priorities must take account of climate change and pressures on other critical natural resources, particularly water soil and energy, and the continuing need to avoid further loss in ecosystem biodiversity. Interest worldwide in the sustainability of food systems is accelerating (e.g., Global Panel 2020 ; IFPRI 2020 ; Food Systems Dashboard 2020 ; von Braun et al. 2021 ).

In this chapter, which covers the opportunities and challenges for food systems in tackling malnutrition in all its forms (undernutrition, micronutrient deficiencies, overweight and obesity), we frame the contribution that science can make to the local-global connectivity of food systems: (i) to strengthen and safeguard international public goods, i.e., those goods and services that have to be provided at a scale beyond that of individual countries or that can be better achieved collectively; (ii) to understand and tackle environmental and institutional risks in an increasingly uncertain world; and (iii) to help to address the SDGs by resolving complexities within evidence-based policies and programmes and their potential conflicts.

2 Regional Heterogeneity

Inevitably, in a summary of the global position, it is difficult to capture the diversity within and between regions relating to the challenges for food systems. The regional chapters are indicative of the territorial dimension in analysing obstacles to food and nutrition security, emphasising specific contexts for marginalised peoples and smallholder farmers, e.g., for the Hindu Kush Himalayan region (AASSA 2021 ). In Africa, although remarkable progress has been made over the last two decades in reducing extreme hunger, there are increasing pressures on food systems that require radical action (discussed in detail in NASAC 2021 ). Most African Union member states are not on track to achieve the Comprehensive Africa Agricultural Development Plan goals (African Union 2020 ). In the comprehensive publication on country-level data in the Americas that accompanied the regional report on food and nutrition security and agriculture (IANAS 2017 , regional update IANAS 2021 ), there was detailed discussion of diversities within the region and of variation in the social determinants of food and nutrition security, e.g., related to gender. Other regional assessments find moderate-severe food insecurity (SDG Indicator 2.1.2) across the FAO Europe-Central Asia region, varying from 6.7% in the EU to 19% in the Caucasus. Obesity throughout this region is higher than the world average, Footnote 1 a challenge that has been examined by EASAC ( 2021 ).

3 Agriculture-Environment Nexus

IAP defines the desired outcome for food systems as access for all to a healthy and affordable diet that is environmentally sustainably produced and culturally acceptable. The IAP report from 2018 cautioned that an emphasis on increasing total factor productivity (TFP, the efficiency in the use of labour, land, capital and other inputs) is not warranted if such a focus leads to reductions in environmental protection. Since then, there has been continuing interest in using research to leverage TFP for sustainable and resilient farming (e.g., Coomes et al. 2019 ). In particular, the paradox of productivity has been highlighted (Benton and Bailey 2019 ), whereby agricultural productivity may generate food system inefficiency. That is, productivity, when leading to the increased availability of cheaper calories, may help to promote obesity, although nutritional content matters as much as calories. Current global competition policies incentivise producers who can produce the most food for the least amount of money, typically with accompanying environmental damage, including biodiversity loss (Chatham House 2021 ). The strategic focus of research and development, as well as production systems, should shift from staple crops, with the current emphasis on production of a narrow range of calorie-intensive staples, to a balanced strategy for crops that are of more value in terms of nutritional, social and environmental benefits, including fruit, vegetables, seeds, nuts and legumes (as food and feed, NASAC 2021 ).

Reform of food systems requires decision-makers to recognise the interdependence of supply-side and demand-side (including dietary change and waste reduction) actions. There must be further consideration given to strengthening coherence between global agreements, e.g., on responsible investment, and national action (Chatham House 2021 ). And, the continuing food system sustainability challenge of balancing production objectives for agricultural exports with satisfying domestic food and nutrition requirements is an issue for some countries (e.g., IANAS 2021 ).

Current intensive agricultural production depends heavily on fertilisers, pesticides, energy, land and water, with negative consequences for environmental sustainability. Changing environmental conditions and competition for key resources such as land and water provoke violence and conflict, exacerbating the vicious circle of hunger and poverty (NASAC 2021 ). Discussion in the NASAC ( 2021 ) Policy Brief exemplifies some of the particular issues for managing water demand, including conservation and the recycling of waste water, and notes the opportunities for science, technology and innovation in new irrigation schemes. Research and innovation play a crucial role in the transformation to sustainable food systems that produce more efficiently by environmentally friendly means. The options for the convergence of technological and societal innovation (including outputs from biotechnology, AI, digitalisation, and from social and cognitive sciences), exemplified later in this chapter, help to underpin the objectives for sustainable food systems.

Agro-ecology encompasses various approaches to using nature-based solutions for regenerative agriculture innovation (HLPE 2019 ) and systems research is still needed to help strengthen the evidence base for agro-ecological (nature-based) approaches. For example, agroforestry in sub-Saharan Africa has the potential to help tackle health concerns associated with a lack of food and nutrition security (non-communicable diseases) and with human migration, but requires additional research to characterise any increased risk from infectious disease alongside the beneficial outcomes (Rosenstock et al. 2019 ).

Developing diverse and resilient production systems worldwide is important in preparing for the likelihood of cumulative threats from extreme weather events through spillover across multiple food sectors on land and sea (Cottrell et al. 2019 ). In this context, it is relevant to note the interest in the potential of oceans for sustainable economies in addressing food security, biodiversity and climate change. One of the UK Presidency’s core themes for UN FCCC COP26 is “Nature,” with objectives for sustainable land use, sustainable and resilient agriculture, and increasing ambition and awareness of the ocean’s potential. This potential is also of great importance for the UN FSS Action Track on nature-positive production. By contrast with difficulties in expanding land-based agriculture, the potential for the sustainable production of fish and other seafood is increasingly recognised (Lubchenco et al. 2020 ; Costello et al. 2020 ) and brings new possibilities for local livelihoods. Fish supplies provide 19% of the animal protein in African diets (Chan et al. 2019 ; NASAC 2021 ). However, currently, one-third of the world’s marine fish stocks are overfished (FAO 2020 ). Realising the potential of the oceans requires technological innovation and policy reform for fishery management and governance, to restore wild fish stocks, eliminate illegal and unregulated fishing, and ensure sustainable mariculture so as to minimise environmental impacts. Oceans can contribute to climate change mitigation as well as to improved food systems, but it is important to be aware of inadvertent consequences of policy action, e.g., adoption of industrial-scale aquaculture can be associated with rapid growth in GHGs (in China, Yuan et al. 2019 ). Genetic improvement of fish species may help to reduce the environmental footprint of aquaculture (for example, in Africa, where aquaculture has been expanding at a faster rate than in some other places, NASAC 2021 ). This exemplifies a general point about seeking co-ordinated policy across sectors to avoid unintended effects and negative trade-offs. Another example is provided by poorly-designed land use policies to increase bioenergy production, which drive increases in land rent with negative implications for food and nutrition security (Fujimori et al. 2019 ).

4 Delivering Healthy Diets, Sustainably Produced, Under Climate Change

An accumulating evidence base demonstrates that climate change exacerbates food insecurity in all regions by reducing crop yield and nutritional content and by posing additional food safety risks from toxins and microbial contamination (e.g., IPCC 2019 ; Park et al. 2019 ; Ray et al. 2019 ; Watts et al. 2021 ). The effects are most pronounced in those groups who are already vulnerable, e.g., children, because of reduced nutrient intake (Park et al. 2019 ) or a decline in dietary diversity (Niles et al. 2021 ). A systematic review of the literature identified climate change and violent conflict as the most consistent predictors of child malnutrition (Brown et al. 2020 ). By increasing the volatility of risks in the global food system, climate change may also reduce the incentive to invest (IAP 2018 ), and rising heat- and humidity-induced declines in labour productivity reduce the income of subsistence farmers (Andrews et al. 2018 ).

Although better international integration of food trade can be a key component of climate change adaptation at the global scale, it requires sensitive implementation to benefit all regions (Janssens et al. 2020 ): in hunger-affected export-oriented regions, partial trade integration may exacerbate food and nutrition insecurity by increasing exports at the expense of domestic food availability. When assessing trade implications, it is also important to appreciate that climate change presents a risk to global port operations, with the greatest risk being projected for ports located in the Pacific Islands, the Caribbean Sea, the Indian Ocean, the Arabian Peninsula and the African Mediterranean (Izaguirre et al. 2021 ).

There are twin, overarching challenges for food systems: how can they adapt to climate change and, at the same time, reduce their own contribution to it, including in regard to GHG emissions? These intertwined challenges are discussed in all of the regional assessments. Multiple scientific opportunities have been identified to adapt by developing climate-resilient agriculture, e.g., from the application of biosciences to breed improved crop varieties resistant to biotic and abiotic stresses, as well as for the social sciences to understand and influence the behaviour of farmers, manufacturers and consumers in responding to climate change (see, for example, EASAC 2021 ). Combining evidence-based measures will also be essential to mitigate GHG emissions from the sector (currently contributing approximately 30% of global GHGs, Watts et al. 2021 ), including improving agronomic practices, reducing waste, and shifting to diets with a lower carbon footprint. For example, a background paper prepared in 2020 for the Subsidiary Body for Scientific and Technological Advice (SBSTA) of UN FCCC COP Footnote 2 explored agronomic case studies (in South America, Asia, Africa and Europe) for managing nitrogen pollution (including the powerful GHG nitrous oxide) and improving manure management so as to decrease GHGs and benefit the environment. Capitalising on such research requires better connections between science and the broader community, along with relevant policy processes. There is particular need to dismantle obstacles to the transferability of practices and the scaling up of local research results to guide decision-making at the national and regional levels.

One major mitigation opportunity discussed by IAP ( 2018 ) and in all of the regional assessments relates to the potential to adjust dietary consumption patterns so as to reduce GHGs and, at the same time, gain significant potential health benefits (see Neufeld et al. 2021 for discussion of the definition of a healthy diet). For example, there is evidence that reducing red meat consumption, where it is excessive, can improve population health (Willett et al. 2019 ; systematic review of the literature in Jarmul et al. 2020 ). Red meat supplies only 1% of calories worldwide, while accounting for 25% of all land use emissions (Hong et al. 2021 ), though meat is an important source of protein, minerals and vitamins. The policies for reaching such consumption adjustments require more research to actually identify solutions. The proportion of excess deaths attributable to excess red meat consumption is highest in Europe, the Eastern Mediterranean, the Americas and the Western Pacific (Watts et al. 2021 ). However, some populations consume sustainable diets that are meat-based, e.g., the Inuit Indigenous People in the Canadian Arctic: proposals for dietary change must be carefully designed, evidence-based and culturally sensitive in being adapted to circumstances and protecting nutrient supplies for the most vulnerable groups. It should also be acknowledged that the efficiency of livestock production varies according to farming system, such that conclusions, e.g., about the sustainability of pastoral cattle production, may be different from those for feed-lot cattle production (Adeosogen et al. 2019 ; AASSA 2021 ), and that livestock may be the only agricultural activity possible in dryland regions that do not support the cultivation of crops.

Although Africa accounts for the smallest regional share of total anthropogenic GHG emissions, about half of this is linked to agriculture, and the continent is experiencing the fastest increase of all regions (Tongwane and Moeletsi 2018 ; Latin America and South East Asia are also demonstrating rapid growth, Hong et al. 2021 ). As part of the whole systems approach, formulation of mitigation solutions must decouple increases in livestock productivity (and cereal productivity, Loon et al. 2019 ) from increases in GHGs. Progress is being made (e.g., in China, Cui et al. 2018 ; AASSA 2021 ), and decoupling can be informed by better use of the research evidence available, e.g., for improving herd management and animal health, breeding new varieties (with better feed conversion and energy utilisation efficiencies), improving forage provision (e.g., NASAC 2021 ) and strengthening targeted social protection mechanisms, alongside more generic recommendations for dietary change (EASAC 2021 ).

There are unprecedented scientific opportunities coming within range, but there are also multiple obstacles to mainstreaming climate change solutions into food system development planning. Evaluation of obstacles in India (Singh et al. 2017 ) highlights the limited access to finance, difficulties in accessing research and education, and delays in accessing weather information. Systematic review of the literature on smallholder production systems in South Asia (Aryal et al. 2020 ) notes weaknesses in the institutional infrastructure for implementing and disseminating available solutions: the application of science requires institutional change. At the global scale, there is a need for enhanced access to climate information and services around climate-resilient food security actions (WMO 2019 ), e.g., to aid decisions on the most suitable crops and planting times.

5 Responding to Covid-19

Climate change and Covid-19 are converging crises for health in many respects (Anon 2021 ), including food and nutrition security. Observations early in the pandemic Footnote 3 indicated that the production of staple food crops during critical periods (planting and harvesting) was vulnerable to interruptions in labour supply; food processing, transport and retail were also affected early on, particularly the relatively perishable, nutritionally-important fresh fruit and vegetables (Ali et al. 2020 ). Subsequent comprehensive assessment of consequences for global food security (Swinner and McDermott 2020 ) has evaluated how adverse effects on local practice and routines are transmitted to longer-term impacts on poverty and food systems worldwide in increasingly interconnected trade and markets. In some cases, supply disruption has been aggravated by national decisions to restrict the export of food. Footnote 4 The combined effects of Covid-19 in regard to economic recession and food system disruption are particularly detrimental to the poor (Ali et al. 2020 ; Swinner and McDermott 2020 , which includes case studies in Ethiopia, China, Egypt and Myanmar; NASAC 2021 ). However, in some regions, food systems proved relatively resilient (IANAS 2021 ), and there are also examples of good practice in new safety net programmes, including school feeding programmes that should be more widely shared and implemented. Tackling the consequences for child malnutrition has been identified as a particular priority for action (Fore et al. 2020 ), as has attention to gender bias, whereby women are suffering more adverse effects as a consequence of Covid-19-changed household and community dynamics (Swinner and McDermott 2020 ).

As emphasised by EASAC ( 2021 ), the pandemic has exposed the vulnerability of over-reliance on just-in-time and lean delivery systems, globalised food production and distribution based on complex value chains. Therefore, opportunities for increasing the localisation of production systems should be re-examined. However, there is often a mismatch in the timescale needed to adapt to Covid-19 between the imperative for early action to protect vulnerable groups and the relatively slow policy responses (Savary et al. 2020 ). Capitalising on the scientific opportunities may help to minimise this mismatch, e.g., improving food safety and reducing post-harvest losses (IAP 2018 ), implementing evidence-based social protection measures and using Information and Communication Technologies for e-commerce, food supply resilience, early warning systems, and health delivery. Post-Covid-19 initiatives on novel foods, and urban and peri-urban farming systems, can also strengthen food supply chains and create new livelihoods for expanding urban populations, although it is also important to understand and manage inadvertent consequences for rural employment and the environment (Ali et al. 2020 ).

6 Using Science, Technology and Innovation to Promote and Evaluate Action

Continuing with business as usual will not meet the objectives for transformative change. To reaffirm a core message from IAP ( 2018 ): there is urgent need to use currently available evidence to strengthen policies and programmes, and to invest in initiatives to gain new knowledge. Examples of what is possible are discussed extensively elsewhere (e.g., Fanzo et al. 2020 ; Lillford and Hermansson 2020 ). Footnote 5 It is not the purpose here to provide a detailed assessment of transdisciplinary research priorities, but in Table 1 , we map some onto the UN FSS Action Tracks to emphasise new opportunities that are coming within range and the need for science to achieve its potential. Examples are illustrative, not comprehensive; more detail on these and other research priorities are provided in IAP ( 2018 ), the regional chapters and in Sects. 1 , 2 , 3 , and 4 of this chapter. There are also, of course, many interactions between research streams and objectives that cannot be captured in Table 1 .

Several general recommendations can be made:

There is a need to increase the commitment to invest in fundamental science, and then connect that to applications and align it all with development priorities. There is also an important priority to develop improved methodologies for understanding the levers of change, including the attributes of “game-changers.” That is, how to attribute outcomes and impact to investments chosen and scientific or other actions undertaken.

There are new opportunities to improve collaboration and coordination worldwide, as well as build partnerships among the public and private sectors, NGOs and other stakeholders to co-design and conduct research. Transdisciplinary approaches should be encouraged. There is increasing entrepreneurial activity worldwide, e.g., in the Latin America region, a wide range of start-up company activities includes novel foods, novel production systems, and novel approaches to the optimisation of water and other natural resources (IANAS 2021 ). There are also considerable opportunities in Africa for action on agriculture to stimulate economic growth, reducing poverty while also increasing food and nutrition security (Baumuller et al. 2021 ; NASAC 2021 ).

Training and mentoring the next generation of researchers worldwide is essential: academies of science have a key role in encouraging younger scientists.

Obstacles, especially in low- and middle-income countries, in the use and production of data and in the scaling up of applications must be addressed. For example, although big data/mobile-based communications bring significant benefits (e.g., IANAS 2021 ; NASAC 2021 ) and there have been advances in using mobile technology to deliver climate services for agriculture in Africa (Dayamba et al. 2018 ), more should be done to increase access for small-scale farmers (Mehrabi et al. 2021 ). A digital inclusion agenda is needed for governments and the private sector to increase access to data-driven agriculture.

In addition to generating excellent science, it is vital to reduce the delay in translating research outputs into innovation, public policy and practice (IAP 2018 ). Time lags may arise from negative attitudes associated with perceived risks, from excessive regulatory requirements in some countries or from an absence of regulation in others. This leads to fragmentation in the capture of benefits. For example, there is current heterogeneity in considering whether new plant-breeding techniques – such as those based on genome editing – should be included within older legislation governing genetically modified organisms. Scientific advances are occurring worldwide, e.g., collaborative work in Colombia, Germany, France, the Philippines and the USA to develop rice that is resistant to bacterial blight (Oliva et al. 2019 ; IANAS 2021 ). The controversy created by a situation in which regulatory frameworks are disconnected from robust science is discussed by EASAC ( 2021 ). Figure 1 demonstrates the resulting incoherence that acts to deter science, innovation and competitiveness, creates non-tariff barriers to trade and undermines collective action to enhance food and nutrition security. This may have particular adverse consequences for those already suffering malnutrition; for example, the acceptance of gene-based technologies has been mixed in Africa, even though there may be considerable scientific opportunities for using biotechnology in crop breeding programmes to increase resistance to biotic and abiotic stress and to improve nutrient content and nitrogen use efficiency (NASAC 2021 ).

The world map depicts the diversity in genomes with gene-edited crops regulated as G M Os, gene-edited crops without foreign D N A, regulations under consideration, and regulations under development.

Variation in the regulation of genome editing for plant breeding

7 Strengthening the Contribution of Research to Policymaking

Alongside action to accelerate investment in agriculture and food systems research (von Braun et al. 2020 ), there must be transdisciplinary integration of priorities at the science-policy interface across all relevant sectors (Fears et al. 2019 ), including agriculture, the environment, health and social care, rural and urban development, and fiscal policy. There must also be linkage of policy at the local, regional and global levels (Fears et al. 2020 ), while taking account of local values and circumstances and recognising the challenges for coordination. One recent example from Asia (Islam and Kieu 2020 ) of developing critical mass in regional policy for climate change and food security discusses criteria for successive steps in policy planning, implementation, cooperation and legal obligation, and observes that the latter two steps often present fundamental barriers to moving from the priorities in a national development agenda to regional coherence. In the African region, the recent Joint Ministerial Declaration and Action Agenda (AU 2020 ) calls upon governments to build greater productive capacity in agriculture and strengthen resilience throughout Africa’s agri-food systems.

Scaling efforts for critical mass requires individual countries to recognise that their policy decisions may have an impact on other countries and regions. For example, some countries export their lack of environmental sustainability by increasing food imports from elsewhere (IAP 2018 ).

Academies and others within the scientific community (STCMG 2020 ) have a key role in overcoming obstacles to effective policy by working together across disciplines to show the value of an inclusive approach, e.g., to the SDGs. Moreover, systematic review of the literature indicates that public support for a policy can be increased by communicating evidence of its effectiveness (Reynolds et al. 2020 ; Fears et al. 2020 ). Therefore, the work of academies in using the evidence base to inform policy development and implementation can help to provide the bridge between policymakers and the public.

What are the implications for the UN FSS? UN FSS discussions have highlighted the place of “game-changers” in driving transformative action, and the scientific community has much to contribute in exploring the potential of game-changers to underpin transformation at the science-policy interface (see AASSA 2021 ). For example, a recent commentary on Action Track 1 Footnote 6 identified some key precepts that can be illustrated by academies’ work at the regional and global levels (Table 2 ).

We suggest that there is an additional game-changer, applicable to all Action Tracks: the development of a new international science advisory Panel on Food and Nutrition Security (IAP 2018 ), with a broad remit for food systems, focused on shaping policy choices and strengthening governance mechanisms. A new Panel, recognising the new opportunities and challenges for food system governance, could help to streamline research efficiency in its linkage to policy action and increase the legitimacy of that science advice by using robust assessment procedures (Global Panel 2020 ). The impetus created by the UN FSS requires the coordination and management of food systems by more sectors of government and stakeholders than had been the case for food security, creating an unprecedented opportunity to develop a framework for greater transparency, accountability and the sharing of knowledge. By consolidating the present myriad, fragmented, array of panels and advisory committees, the proposed international advisory Panel could draw on the large scientific community already working on these topics – including academies – and should be asked to address the most pressing issues for transformative change in the face of the mounting global challenges. Food and nutrition security, particularly for high-risk groups, must be a top priority on every country’s national agenda, yet many countries do not have a national security strategy in place (EIU 2020 ). Furthermore, as already noted, advisory capacities, governance policies, and institutions are sometimes weak at the regional level (AASSA 2021 ; NASAC 2021 ). Thus, in addition to building the critical mass for evaluating complex issues at the global scale, an international advisory Panel could help to drive momentum for a national food system strategy in all countries and engender regional-level initiatives in policy development and implementation.

IAP recommends that the UN FSS now consider options for constituting a new international advisory Panel, so as to make best use of the rapid advances in science, technology and innovation, and to motivate evidence-based policymaking at all levels. IAP and its regional academy networks are eager to be involved.

8 Conclusions

Achieving food and nutrition security worldwide by transforming food systems remains a major challenge, compounded by recent pressures from climate change and the Covid-19 pandemic. Actions to promote food systems are relevant to multiple SDGs. It is essential to identify opportunities for synergies and trade-offs while avoiding inadvertent negative consequences, and to engage everybody, in order to enable change. This requires advances in complex food system modelling.

Food systems are diverse and heterogeneous. Continuing research is needed to inform diverse yet equitable solutions for sustainable, healthy diets that are culturally sensitive, focusing on vulnerable groups. That calls for stronger connections between local and international research entities. The opportunities for complex and innovative remote sensing and web-based data should also be explored for this purpose.

Greater transdisciplinarity is needed in research to progress from the current scientific agenda, which is still too often focused on individual components of food systems or on agriculture separate from its environmental context. Social science research must be better integrated with other disciplines, e.g., to understand and inform consumer, farmer and manufacturer behaviours and to guide policies to deliver objectives for social justice. The development of improved methodologies for understanding the attribution of impact is also a critical research priority.

Science is a public good, yet the conduct and use of basic and other research is often fragmented. There is still much to be done to build critical mass worldwide, to share skills and a research infrastructure, and to collaborate in agreeing upon and addressing research priorities and avoiding unnecessary duplication. There is a continued convening role for academies of science to facilitate the exploration of opportunities and tackle the obstacles to research collaboration between disciplines and between the public and private research communities.

There are also opportunities to improve science-policy interfaces and integrate policy development at the local, regional and global levels. One game-changer would be to constitute an international advisory Panel on Food and Nutrition Security with new emphasis on food systems to make better use of the best science to inform, motivate and implement evidence-based policymaking at all levels.

FAO ( 2020 ) “Sustainable food systems and healthy diets in Europe and Central Asia.” ERC/20/2, on www.fao.org/3/nc226en/nc2262n.pdf . This report discusses multiple issues around diversified and sustainable food systems, improving supply chains and reducing food loss and waste.

SBSTA 52nd Session 2020. “Improved nutrient use and manure management towards sustainable and resilient agricultural systems”. FCCC/SB/2020/1.

CGIAR’s response to COVID-19. www.cgiar.org/news-events/all-news/our-response-to-covid-19

International Monetary Fund “Policy responses to COVID-19”. https://www.imf.org/en/Topics/imf-and-covid-19/Policy-Responses-to-COVID-19

See also repositories of recent literature, e.g., Sustainable solutions to end hunger ( https://www.nature.com/collections/dhiggjeagd ); Sustainable nutrition ( https://www.nature.com/collections/fibbgbiebc ); and Socio-technical innovation bundles for agri-food transformation ( https://www.nature.com/documents/Bundles_agrifood_transformation.pdf ).

Haddad, L. 2021 “Food systems “game changers”: reflections so far”, on https://un-food-systems.medium.com/food-systems-game-changers-reflections-so-far-d4c8200c5663

AASSA (2021) Regional brief for UN FSSS

Google Scholar  

Adesogan AT, Havelaar AH, McKune SL, Eilitta M, Dahl GE (2019) Animal source foods: sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob Food Secur 25:100325. https://doi.org/10.1016/j.gfs.2019.100325

Article   Google Scholar  

Ali Z, Green R, Zougmore RB et al (2020) Long-term impact of West African food system responses to COVID-19. Nat Food 1:768–770

Article   CAS   Google Scholar  

Andrews O, Le Quere C, Kjellstrom T, Lemke B, Haines A (2018) Implications for workability and survivability in populations exposed to extreme heat under climate change: a modelling study. Lancet Planet Health 2:e540–e547

Anon. (2021) Climate and COVID-19 converging crises. Lancet 397:71

Aryal JP, Sapkota TB, Khurana R, Khatri-Chhetri A, Rahut DB, Jat ML (2020) Climate change and agriculture in South Asia: adaptation options in smallholder production systems. Environ Dev Sustain 22:504505075

AU (African Union) (2020) Joint virtual meeting of the African Ministers responsible for agriculture, trade and finance on the impact of COVID-19 on food and nutrition security in Africa, 27 July 2020. Joint Ministerial Declaration and Action Agenda. AU, Addis Ababa

Basso B, Antle J (2020) Digital agriculture to design sustainable agricultural systems. Nat Sustain 3:254–256

Baumüller K, Admassie A, Hendriks S, Tadesse G, von Braun J (eds) (2021) From potentials to reality: transforming Africa’s food production – investment and policy priorities for sufficient, nutritious and sustainable food supplies. Peter Lang Publ. (Forthcoming, an earlier draft is available at https://www.zef.de/fileadmin/downloads/ZEF_Akademiya2063.pdf )

Benton TG, Bailey R (2019) The paradox of productivity: agricultural productivity promotes food system inefficiency. Glob Sustain 2:e6

Brown ME, Backer D, Billing T et al (2020) Empirical studies of factors associated with child malnutrition: highlighting the evidence about climate and conflict shocks. Food Secur. https://doi.org/10.1007/s12571-020-01041-y

Chan C, Tran N, Pethiyagoda S, Crissman C, Sulser T, Phillips M (2019) Prospects and challenges of fish for food security in Africa. Glob Food Sec 20:17–25

Chatham House (2021) Food system impacts on biodiversity. ISBN: 978 1 78413 433 4

Coomes OT, Barham BL, MacDonald GK, Ramankutty N, Chavas J-P (2019) Leveraging total factor productivity growth for sustainable and resilient farming. Nat Sustain 2:22–28

Costello C, Cao L, Gelcich S et al (2020) The future of food from the sea. Nature 588:95–100

Cottrell RS, Nash KL, Halpern BS et al (2019) Food production shocks across land and sea. Nat Sustain 2:130–137

Cuevas RP, de Guia A, Demont M (2017) Developing a framework of gastronomic systems research to unravel drivers of food choice. Int J Gastron Food Sci 9:86–99

Cui Z, Zhang H, Chen X et al (2018) Pursuing sustainable productivity with millions of smallholder farmers. Nature 555:363–366

Dayamba DS, Ky-Dembele C, Bayala J et al (2018) Assessment of the use of Participatory Integrated Climate Services for Agriculture (PICSA) approach by farmers to manage climate risk in Mali and Senegal. Clim Serv 12:27–35

EASAC (2021) Regional brief for UN FSSS

Economist Intelligence Unit (2020) 2020 Global food security index. https://foodsecurityindex.eiu.com/index

Eker S, Reese G, Obersteiner M (2019) Modelling the drivers of a widespread shift to sustainable diets. Nat Sustain 2:725–735

Fanzo J, Covic N, Dobermann A et al (2020) A research vision for food systems in the 2020s: defying the status quo. Glob Food Sec 26:100397

FAO (2019) Tracking progress on food and agriculture-related SDG indicators. FAO

FAO (2020) State of food security and nutrition in the world. FAO

Fears R, ter Meulen V, von Braun J (2019) Global food and nutrition security needs more and new science. Sci Adv 5:eaba2946

Fears R, Canales Holzeis C, ter Meulen V (2020) Designing inter-regional engagement to inform cohesive policy making. Palgrave Commun 6:107

Food systems Dashboard (2020) A food systems framework. https://foodsystemsdashboard.org/about-food-system

Fore HH, Dongyu O, Beasley DM, Ghebreyesus TA (2020) Child malnutrition and COVID-19: the time to act is now. Lancet 396:517–518

Fujimori S, Hasegawa T, Krey V et al (2019) A multi-model assessment of food security implications of climate change mitigation. Nat Sustain 2:386–396

Global Panel on Agriculture and Food systems for Nutrition (2020) Future food systems: for people, our planet, and prosperity. Foresight 2.0

High Level Panel of Experts on Food Security and Nutrition (2019) Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. Committee on World Food Security

Hodson De Jaramillo E, Henry G, Trigo E (2019) La Bioeconomía. Nuevo marco para el crecimiento sostenible en América Latina/Bioeconomy. New Framework for Sustainable Growth in Latin America. Editorial Pontificia Universidad Javeriana, Bogotá. ISBN 978-958-781-378-4. Available at https://repository.javeriana.edu.co/handle/10554/43705

Hong C, Burney JA, Pongratz J et al (2021) Global and regional drivers of land-use emissions in 1961-2017. Nature 589:554–561

IANAS (2017) Challenges and opportunities for food and nutrition security in the Americas. The view of the academies of sciences

IANAS (2021). Regional brief for UN FSS

IAP (2018) Opportunities for future research and innovation on food and nutrition security and agriculture. The InterAcademy Partnership’s global perspective

IFPRI (2020) Building inclusive food systems. Global Food Policy Report

IPCC (2019) Climate change and land. In: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems

Islam MS, Kieu E (2020) Tackling regional climate change impacts and food security issues: a critical analysis across ASEAN, PIF, and SAARC. Sustainability 12:883

Izaguirre C, Losada IJ, Camus P, Vigh JL, Stenek V (2021) Climate change risk to global port operations. Nat Clim Chang 11:14–20

Jain M, Singh B, Rao P et al (2019) The impact of agricultural interventions can be doubled by using satellite data. Nat Sustain 2:931–934

Janssens C, Havlik P, Krisztin T et al (2020) Global hunger and climate change adaptation through international trade. Nat Clim Chang 10:829–835

Jarmul S, Dangour AD, Green R et al (2020) Climate change mitigation through dietary change: a systematic review of empirical and modelling studies on the environmental footprints and health effects of “sustainable diets”. Environ Res Lett 15:123014

Kongerslev TT, Bertram HC, Bonjour J-P et al (2017) Whole dairy matrix or single nutrients in an assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr 105:1033–1045

Laar A, Barnes A, Aryeetey R et al (2020) Implementation of healthy food environment policies to prevent nutrition-related non-communicable diseases in Ghana: national experts’ assessment of government action. Food Policy 93:101907

Lillford P, Hermansson A-M (2020) Global missions and the critical needs of food science and technology. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2020.04.009

Lubchenco J, Haugan P, Pangestu ME (2020) Five priorities for a sustainable ocean economy. Nature 588:30–32

Mabhaudhi T, Vimbayi V, Chimonyo G et al (2019) Prospects of orphan crops in climate change. Planta 250:695–708

Mehrabi Z, McDowell MJ, Ricciardi V et al (2021) The global divide in data-driven farming. Nat Sustain 4:154–160

NASAC (2021) Regional brief for UN FSS

Neufeld LM, Hendriks S, Hugas M (2021) Healthy diet: a definition for the United Nations Food Systems Summit 2021. Scientific Group Report. https://sc-fss2021.org

Niles MT, Emery BF, Wiltshire S et al (2021) Climate impacts associated with reduced diet diversity in children across nineteen countries. Environ Res Lett 16:015010

Nuffield Council on Bioethics (2019) Meat alternatives. Bioethics Briefing Note

Oliva R, Ji C, Atienza-Grande G et al (2019) Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37:1344–1350

Park CS, Vogel E, Larson LM et al (2019) The global effect of extreme weather events on nutrient supply: a superposed epoch analysis. Lancet Planet Health 3:e429–e438

Pironen S, Etherington TR, Borrell JS et al (2019) Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat Clim Chang 9:758–763

Ray DK, West PC, Clark M et al (2019) Climate change has likely already affected global food production. PLoS One. https://doi.org/10.1371/journal.pone.0217148

Reynolds JP, Stautz K, Pilling M et al (2020) Communicating the effectiveness and ineffectiveness of government policies and their impact on public support: a systematic review with meta-analysis. R Soc Open Sci 7. https://doi.org/10.1098/rsos.190522

Rosenstock TS, Dawson IK, Aynekulu E et al (2019) A planetary health perspective on agroforestry in sub-Saharan Africa. One Earth 1:330–344

Savary S, Akter S, Almekinders C et al (2020) Mapping disruption and resilience mechanisms in food systems. Food Secur 12:695–717

Scientific and Technological Community Major Group (2020) Position paper on the theme of the 2020 High-Level Political Forum. https://council.science/wp-content/uploads/2020/06/Position-Paper-STC-29_June.pdf

Singh NP, Arathy A, Pavithra S et al (2017) Mainstreaming climate change adaptation into development planning, Policy Paper 32. ICAR – National Institute of Agricultural Economics and Policy Research, New Delhi

Singh BK, Trivedi P, Egidi E et al (2020) Crop microbiome and sustainable agriculture. Nat Rev Microbiol 18:601–602

Smith J, Andersson G, Gourlay R et al (2016) Balancing competing policy demands: the case of sustainable public sector food procurement. J Clean Prod 112:249–256

Swinnen J, McDermott J (eds) (2020) COVID-19 and global food security. IFPRI

Thorrez L, Vandenburg H (2019) Challenges in the quest for “clean meat”. Nat Biotechnol 37:215–216

Tongwane MI, Moeletsi ME (2018) A review of greenhouse gas emissions from the agriculture sector in Africa. Agric Syst 166:124–134

van Loon MP, Hijbeek R, ten Berge HFM et al (2019) Impacts of intensifying or expanding cereal cropping in sub-Saharan Africa on greenhouse gas emissions and food security. Glob Chang Biol. https://doi.org/10.1111/gcb.14783

von Braun J, Chichaibelu BB, Torero CM, Laborde D, Smaller C (2020) Ending hunger by 2030 – policy actions and costs. ZEF Policy Brief

von Braun J, Afsano K, Fresco L, Hassan M, Torero M (2021) Food systems – definition, concept and application for the UN Food Systems Summit. Scientific Group Report. https://sc-fss2021.org

Watts N, Amann M, Arnell N et al (2021) The 2020 report of The Lancet Countdown on health and climate change: responding to converging crises. Lancet 397:129–170

Willett W, Rockstrom J, Loken B et al (2019) Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393:447–492

WMO (2019) 2019 State of climate services. Report WMO-No. 1242

Yuan J, Xiang J, Liu D et al (2019) Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture. Nat Clim Chang 9:318–322

Download references

Acknowledgements

This IAP Brief was drafted by Robin Fears and Claudia Canales in discussion with Volker ter Meulen. We thank Sheryl Hendriks (NASAC), Elizabeth Hodson (IANAS) and Paul Moughan (AASSA) for their helpful advice.

Author information

Authors and affiliations.

European Academies’ Science Advisory Council’s (EASAC) Biosciences Programme, Halle (Saale), Germany

Robin Fears & Claudia Canales

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Claudia Canales .

Editor information

Editors and affiliations.

Center for Development Research, University of Bonn, Bonn, Nordrhein-Westfalen, Germany

Joachim von Braun

James P Grant School of Public Health, BRAC University, Dhaka, Bangladesh

Kaosar Afsana

Wageningen University and Research, Wageningen, Gelderland, The Netherlands

Louise O. Fresco

The World Academy of Sciences for the Advancement of Science in Developing Countries (TWAS), Trieste, Italy

Mohamed Hag Ali Hassan

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2023 The Author(s)

About this chapter

Fears, R., Canales, C. (2023). The Role of Science, Technology and Innovation in Transforming Food Systems Globally. In: von Braun, J., Afsana, K., Fresco, L.O., Hassan, M.H.A. (eds) Science and Innovations for Food Systems Transformation. Springer, Cham. https://doi.org/10.1007/978-3-031-15703-5_44

Download citation

DOI : https://doi.org/10.1007/978-3-031-15703-5_44

Published : 02 January 2023

Publisher Name : Springer, Cham

Print ISBN : 978-3-031-15702-8

Online ISBN : 978-3-031-15703-5

eBook Packages : Biomedical and Life Sciences Biomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Royal Society of Chemistry

Journals, books & databases

  • Our journals

Top Image

Sustainable Food Technology

Cultivating sustainable solutions to food processing and engineering

essay on food technology

What would you like to know about Sustainable Food Technology ?

Impact factor: n/a

Time to first decision (all decisions): 33.0 days**

Time to first decision (peer-reviewed only): 49.0 days***

Editor-in-Chief: Jorge Barros Velázquez

Gold open access, APCs waived until mid-2025

Indexed in the Directory of Open Access Journals (DOAJ) and Scopus

Read this journal

Submit an article

Sign up for regular email alerts

View all journal metrics

Open. Impactful. Multidisciplinary.

An open access forum for new food technologies.

What can we do to ensure food security around the globe? How do we end world hunger? Where can we find the solutions to produce food more sustainably?

Sustainable Food Technology seeks the answers to these big questions. While our companion journal, Food & Function , focuses on the purpose of food and its relation to health and nutrition, this new journal publishes high-quality sustainable research on food engineering and technologies. Key topics include food preservation methods, shelf life and the creation of greener packaging.

Hear from our Editor-in-Chief

image block

Read and publish in our themed collections

Sustainable Food Technology publishes a number of themed collections every year, guest edited by members of the community on timely and important topics.

Interested in contributing your work? Explore the latest open calls for papers in Sustainable Food Technology

Journal scope

Sustainable Food Technology is a gold open access journal focused on cutting-edge strategies for food production, that aim to provide quality and safe foods in an environmentally conscious and sustainable way.

We welcome novel green strategies applied to both crops and animal foods from every step of the food chain, “from farm to fork”. Circular economy strategies and life cycle analysis are particularly welcomed, from those adding value to food by-products to those focused on the appropriate reuse of food waste.

Manuscripts submitted to Sustainable Food Technology  should focus on either applied or fundamental science and cover the development and optimisation of technologies aimed at improving post-harvest supply-chain of food. All manuscripts must address environmental, economic and/or health challenges associated with food sustainability.

The quantitative and/or qualitative aspect of sustainability e.g. water usage, energy efficiency, process intensification, by-product extraction, or benchmarking of proposed sustainable packaging against conventional should be demonstrated and discussed.

Topics of interest include but are not limited to:

  • Novel and sustainable food resources and food ingredients
  • Food fortification
  • Food production systems requiring less energy and water consumption
  • Nanotechnology and biosensors in food processing, packaging and safety
  • Data harmonisation, digitalisation and artificial intelligence to assist food production and control
  • Omics-based food traceability tools to prevent economic and sanitary threats
  • Biotechnology and bioengineering approaches to increase food production, quality and safety
  • Emerging food preservation techniques: non-thermal processes, bioactive compounds
  • Green active and intelligent packaging and storage systems
  • Circular strategies for adding value to food by-products and food waste (recovery and valorisation)
  • Life cycle analysis and sustainability metrics in food production
  • Sustainable intensification of food production and processing

image block

Manuscripts without a foundation in sustainability, or studies that are purely descriptive in nature are not suitable for publication in this journal.

Manuscripts must show significant novelty and exhibit cutting-edge technologies or engineering advances. Sufficient chemical, microbiological and/or nutritional analysis must be provided to justify claims of novelty, interest and applicability of the research presented.

The following fields of study are not included in the scope of Sustainable Food Technology :

  • Nutritional and toxicological studies – these can be published in Food & Function
  • Routine applications of well-established processing and preservation techniques
  • Compositional analyses of conventional foods not representing novel food resources
  • In-vitro characterization of microorganisms not performed in food models or food systems
  • Incremental advances or application of agricultural practices

Submissions

Submissions are initially assessed and taken through peer-review by our high-profile, internationally-recognised  Associate Editors . The journal operates a single-anonymised peer review model, and a minimum of two reviewer reports are required.

See who's on the team

Meet Sustainable Food Technology  Editor-in-Chief and board members.

Jorge Barros Velázquez

Editor-in-Chief University of Santiago de Compostela, Spain

Benu Adhikari

Associate Editor RMIT University, Australia

Rekha S. Singhal

Associate Editor Institute of Chemical Technology, India

Qin Wang

Associate Editor University of Maryland, USA

Paula Bourke

Editorial Board Member University College Dublin, Ireland

Cristóbal N. Aguilar, Universidad Autónoma de Coahuila, Mexico

Rafael Auras ,  Michigan State University, USA

Maria G. Corradini, University of Guelph, Canada

Sakamon Devahastin, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand

Tian Ding, Zhejiang University, China

Hao Feng, North Carolina A&T State University, USA

Elena Ibañez , CIAL-CSIC, Spain

Joe P. Kerry, University College Cork, Ireland

Olga Martín-Belloso, University of Lleida, Catalonia, Spain

Maria Angela A Meireles , Universidade Estadual de Campinas, Brazil

Manjusri Misra , University of Guelph, Canada

Solange I. Mussatto, Technical University of Denmark, Denmark

Indrawati Oey, University of Otago, New Zealand

Umezuruike Linus Opara, Stellenbosch University, South Africa

Federico Pallottino , CREA-IT, Italy

Marco Poiana, Mediterranean University of Reggio Calabria, Italy

Anet Režek Jambrak, University of Zagreb, Croatia

Victor Rodov , Agricultural Research Organization - The Volcani Institute, Israel

Andreas Schieber, University of Bonn, Institute of Nutritional and Food Sciences, Germany

Juming Tang , Washington State University, USA

Paula Teixeira, Universidade Católica Portuguesa, Portugal

Long Yu , South China University of Technology, Institute of Chemistry, Henan Academy of Sciences, China

Min Zhang , Jiangnan University, China

Bhesh Bhandari , University of Queensland, Australia 

Anna Rulka , Executive Editor, ORCID: 0000-0002-3236-9801

Audra Taylor , Deputy Editor

Viktoria Titmus , Editorial Production Manager

Angelica-Jane Kechinyere Onyekwere , Assistant Editor

Shwetha Krishna , Assistant Editor

Michael Whitelaw , Assistant Editor

Alexander Whiteside , Assistant Editor ORCID:  0000-0002-1743-1531

Samantha Campos , Editorial Assistant 

Brittany Hanlon , Publishing Assistant

Neil Hammond , Publisher, ORCID: 0000-0001-6390-8874

Open access

We want the research published here to be easily accessible and beneficial to people globally. That’s why Sustainable Food Technology is gold open access with all article processing charges (APCs) paid by us until mid-2025 – so initially you can publish for free. We’re committed to increasing the visibility of your articles and making a difference around the world. As part of the submission process, authors will be asked to agree to the Sustainable Food Technology open access terms & conditions.

We offer Sustainable Food Technology authors a choice of two Creative Commons licences: CC BY or CC BY NC. Publication under these licences means that authors retain the copyright of their article, but users are allowed to read, download, copy, distribute, print, search, or link to the full texts of articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. Read our open access statement for further information. All published articles are deposited with LOCKSS, CLOCKSS, Portico and the British Library for archiving.

Dive into the benefits of open access publishing

Find out more about open access publishing routes

Explore Royal Society of Chemistry open access journals

Read our Researchers’ voice report in response to Plan S

Transparent peer review policy

To support increased transparency, we offer authors the option to publish the peer review history alongside their article. Reviewers are anonymous unless they choose to sign their reports.

Find out more about our transparent peer review policy .

Article Types

Sustainable Food Technology publishes:

Communications

Full papers.

Our Communication format is ideally suited to short studies - which can be preliminary in nature - that are of such importance that they require accelerated publication.

Communications must contain original and highly significant work whose interest to the Sustainable Food Technology readership and high novelty warrants rapid publication. Authors should supply with their submission a justification of why the work merits urgent publication as a Communication. Referees will be asked to judge the work on these grounds.

Communications are given high visibility within the journal as they are published at the front of an issue. Communications will not normally exceed the length of five printed journal pages.

These must demonstrate an advance in strategies for sustainable food production and are judged according to originality, quality of scientific content and contribution to existing knowledge.

Although there is no page limit for Full papers, appropriateness of length to content of new science will be taken into consideration.

Reviews should be definitive, comprehensive and provide a critical evaluation of the chosen topic area. These are normally commissioned by the editorial board and editorial office, although suggestions from readers for topics and authors are most welcome and should be directed to the editorial office.

Reviews must be high-quality, authoritative and state-of-the-art accounts of the selected research field. They should be timely and add to the existing literature, rather than duplicate existing articles, and should be of general interest to the journal's readership.

All review content should consist of original text and interpretation, avoiding any direct reproduction. If a significant amount of other people's material is to be used, either textual or image-based, permission must be sought by the author in accordance with copyright law and must be made clear in the manuscript. We recommend that systematic reviews and meta-analyses should follow the PRISMA guidelines for the transparent reporting of these studies.

All reviews undergo a rigorous and full peer review procedure in the same way as regular research papers.

Comments and Replies are a medium for the discussion and exchange of scientific opinions between authors and readers concerning material published in Sustainable Food Technology .

For publication, a Comment should present an alternative analysis of and/or a new insight into the previously published material. Any Reply should further the discussion presented in the original article and the Comment. Comments and Replies that contain any form of personal attack are not suitable for publication.

Comments that are acceptable for publication will be forwarded to the authors of the work being discussed, and these authors will be given the opportunity to submit a Reply. The Comment and Reply will both be subject to rigorous peer review in consultation with the journal’s Editorial Board where appropriate. The Comment and Reply will be published together.

Author Guidelines

General author guidelines.

For general guidance on preparing an article please visit our Prepare your article page , the content of which is relevant to all our journals.

To learn more about the Royal Society of Chemistry's policies and processes, including licensing, publishing ethics, peer review, and formatting, please refer to our Resources for authors page .

All submitted papers must include a cover letter that should specify the novelty of the work and give a justification for the publication of the paper.

Sustainability Spotlight Statement

All submitted manuscripts must include a Sustainability Spotlight Statement (120 words maximum) that should categorically state the sustainable advance of the work and how it aligns with the  UN’s Sustainable Development Goals . This statement should be different from the abstract and set the work in a broader context regarding sustainability. It should aim to answer the following questions.

  • What is the situation and why is it important to address/understand this?
  • What is the sustainable advancement of the work?
  • How the work aligns with the  UN SDG(s) ?

This statement will be seen by the reviewers and will help ascertain the relevance of the article for a broad but technical audience and authors should use it to show that they have given serious consideration to problems that are sustainable in nature. If the paper is accepted this statement will also be published. Manuscripts cannot be reviewed without this statement.

Peer review and editorial process

All articles published in  Sustainable Food Technology are subject to external peer review by experts in the field and all manuscripts submitted are handled by a team of internationally recognised  Associate Editors , who are all practicing scientists in the field.

The peer review for all articles submitted to the journal consists of the following stages:

  • Phase 1 : Your manuscript is  initially assessed  by an associate editor to determine its suitability for peer review
  • Phase 2 : If the manuscript passes the initial assessment process, the associate editor solicits recommendations from at least two reviewers who are experts in the field. They will provide a report along with their recommendation.
  • Phase 3 : The associate editor handling your manuscript makes a decision based on the reviewer reports received. In the event that no clear decision can be made, another reviewer will be consulted.

Sustainable Food Technology is committed to a rigorous peer review process and expert editorial oversight for all published content. Please refer to  our processes and policies  for full details including our appeals procedure.

All submissions to our Open Calls will undergo an initial assessment by the journal Editors and subsequent peer review as per the usual standards of RSC journals .

Publication frequency

Articles accepted for publication in Sustainable Food Technology are published online with citeable DOIs as Advance Articles after they are edited and typeset. Articles are then assigned page numbers and published in an issue. Issues of Sustainable Food Technology are published every other month. Please find our most recent issue here .

Ethical Requirements

Sustainable Food Technology authors, editors, reviewers and published works are required to uphold the Royal Society of Chemistry’s  ethical standards . The Royal Society of Chemistry is a member of  Committee on Publication Ethics  (COPE) and our ethical standards follow COPE’s  core practices  and  best practice guidelines . In cases where these guidelines are breached or appear to be so, the Royal Society of Chemistry will consult with COPE.

When a study involves the use of live animals or human subjects, authors must include in the 'methods/experimental' section of the manuscript a statement that all experiments were performed in compliance with the author’s institute’s policy on animal use and ethics; where possible, details of compliance with national or international laws or guidelines should be included. The statement must name the institutional/local ethics committee which has approved the study; where possible, the approval or case number should be provided. A statement that informed consent was obtained for any experimentation with human subjects is required. Reviewers may be asked to comment specifically on any cases in which concerns arise.

For further guidance on author responsibilities and code of conduct, which apply to  Sustainable Food Technology and to all manuscripts submitted to Royal Society of Chemistry journals, please visit  our author hub .

Themed Collections

Sustainable Food Technology  publishes a number of themed collections every year on timely and important topics, guest edited by members of the community. All submissions to our themed collections undergo an initial assessment by the journal's associate editors and subsequent peer review as per the usual standards of RSC journals.

Subscription Information

Sustainable Food Technology is fully gold open access – articles can be downloaded free from the website with no barriers to access.

Online only: ISSN 2753-8095

Copyright is retained by authors when an open access licence is accepted, as with our standard licence to publish agreement. Full and accurate attribution to the original author is required for any re-use of the work. Find out more about copyright, licences and re-use permission .

Get email alerts about Sustainable Food Technology

For the latest editorial board news, scope details and announcements, sign up for news and issue alerts by using the form below. For any other queries, please get in touch using the contact us form on this page.

Please update your browser to a newer version to use this form.

Terms and conditions

Please tick this box to acknowledge that:

  • You have read, understood and accept the terms and conditions .
  • We need to collect and manage your personal data in order to provide this service. Our privacy statement explains how we do this.

Edit your RSC contact preferences .

**The median time from submission to first decision including manuscripts rejected without peer review from the previous calendar year

***The median time from submission to first decision for peer-reviewed manuscripts from the previous calendar year

  • Reference Manager
  • Simple TEXT file

People also looked at

Review article, insight on current advances in food science and technology for feeding the world population.

essay on food technology

  • 1 Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
  • 2 Helsinki Institute of Sustainability Science, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland

While the world population is steadily increasing, the capacity of Earth to renew its resources is continuously declining. Consequently, the bioresources required for food production are diminishing and new approaches are needed to feed the current and future global population. In the last decades, scientists have developed novel strategies to reduce food loss and waste, improve food production, and find new ingredients, design and build new food structures, and introduce digitalization in the food system. In this work, we provide a general overview on circular economy, alternative technologies for food production such as cellular agriculture, and new sources of ingredients like microalgae, insects, and wood-derived fibers. We present a summary of the whole process of food design using creative problem-solving that fosters food innovation, and digitalization in the food sector such as artificial intelligence, augmented and virtual reality, and blockchain technology. Finally, we briefly discuss the effect of COVID-19 on the food system. This review has been written for a broad audience, covering a wide spectrum and giving insights on the most recent advances in the food science and technology area, presenting examples from both academic and industrial sides, in terms of concepts, technologies, and tools which will possibly help the world to achieve food security in the next 30 years.

Introduction

The capacity of Earth to regenerate its own resources is continuously and drastically reducing due to the exponential growth of the human population ( Ehrlich and Holdren, 1971 ; Henderson and Loreau, 2018 ). Over the last 50 years, the global human population has doubled, while the Earth overshoot day—the day on which humanity has exhausted the annual renewable bioresources of the Earth—has continuously become earlier, reaching its earliest date (July 29) in 2018 and 2019. Exceptionally, the Earth overshoot day was delayed to August 22 in 2020, due to the novel Coronavirus pandemic ( Global Footprint Network, 2020a ) ( Figure 1 ). However, this delay is the result of a pandemic disease and it is not the consequence of any long-term planned strategy, which is still required to improve the sustainability of our society. Bioresources are necessary to feed people. However, the production, including loss and waste of food account for 26% of the human ecological footprint ( Global Footprint Network, 2020b ). This is due to low efficiency in food production coupled with non-optimal waste management. By taking action and promoting sustainable behavior in the entire food chain and among consumers, the Earth overshoot day could be delayed, preserving Earth's regenerative capacity ( Moore et al., 2012 ).

www.frontiersin.org

Figure 1 . Earth overshoot day (blue) and global population (orange) evolution over the last 50 years.

By 2050, the population is expected to reach 9.7 billion and ensuring global food security will be a priority ( Berners-Lee et al., 2018 ). The first step toward food security is the reduction of waste and loss of food. According to the Food and Agriculture Organization (FAO), ~1.3 billion tons of food are lost/wasted in the food chain from production to retail and by consumers annually ( Wieben, 2017 ), which highlights the importance of the circular economy and consumer education. In addition, economic barriers should be addressed to give access to healthier and sustainable food to low-income consumers ( Hirvonen et al., 2020 ). However, the reduction of waste and economic barriers is not enough to reach global food security. Indeed, to feed the world population of 2050, food production should increase by 70% ( Floros et al., 2010 ). Additionally, diets should change and rely less on animal products, including more plant-, insect-, and microalgae-based products ( van Huis and Oonincx, 2017 ; Caporgno and Mathys, 2018 ; Lynch et al., 2018 ). This change is necessary as animal-based diets are less sustainable comparatively due to their demand for more natural resources, resulting in more environmental degradation ( Sabaté and Soret, 2014 ). Unfortunately, changing food production and consumption habits is not a straightforward process; it has to be efficient, sustainable, and economically feasible. New food products have to be nutritionally adequate, culturally and socially acceptable, economically accessible, as well as palatable. Moreover, new food products should aim to maintain or improve the health of consumers. Food science and technology can help address these problems by improving food production processes, including novel ingredients from more sustainable sources, and designing new highly-accepted food products.

However, the benefits of consuming novel and upgraded food products is not sufficient to obtain an effect on consumers. Indeed, the acceptability of, and demand for food varies around the world, based on, for example, geographic location, society structure, economy, personal income, religious constraints, and available technology. Food safety and nutritionally adequate foods (in terms of both macro- and micronutrients) are most important in low-income countries ( Sasson, 2012 ; Bain et al., 2013 ), whereas medium- and high-income countries prioritize foods to reduce risk of chronic disease, and functional and environmentally friendly food ( Azais-Braesco et al., 2009 ; Cencic and Chingwaru, 2010 ; Govindaraj, 2015 ). The concept of food has evolved from the amount of nutrients needed by a person to survive on a daily basis ( Floros et al., 2010 ) to a tool to prevent nutrition-related diseases (e.g., non-communicable diseases: type 2 diabetes, coronary diseases, cancer, and obesity), and to improve human physical and mental well-being ( Siró et al., 2008 ), and to slow/control aging ( Rockenfeller and Madeo, 2010 ). Therefore, the development of new food products should consider the needs and demands of consumers. In spite of this, across countries, personal income can limit the access to sufficient food for survival, let alone new and improved food products that have extra benefits.

Coupled to this complex scenario, food demand is also constrained, and affected by human psychology ( Wang et al., 2019 ). The naturally-occurring conservative and neophobic behavior of humans toward new food can lead to nutrition-related diseases due to poor dietary patterns already established during childhood ( Perry et al., 2015 ) and can lead to acceptability problems related to food containing novel ingredients such as insects in Western countries ( La Barbera et al., 2018 ). Additionally, the introduction in our diets of new food products obtained by means of novel technologies and ingredients from food waste and by-products can be undermined by low acceptability caused by human psychology ( Bhatt et al., 2018 ; Cattaneo et al., 2018 ; Siegrist and Hartmann, 2020 ). Therefore, to increase the successful integration of the solutions discussed in this paper into the diet, consumer behavior has to be considered. Finally, it should not be forgotten that food consumption is also determined by pleasure rather than just being a merely mechanical process driven by the need for calories ( Mela, 2006 ; Lowe and Butryn, 2007 ). The latter concept is particularly important when consumers are expected to change their eating habits. New food products developed using sustainable ingredients and processes should be designed to take in consideration sensorial attributes and psychological considerations, which will allow a straightforward transition to more sustainable diets.

The actions needed in the area of food to develop a sustainable society allowing the regeneration of Earth's bio-resources are several. They include changing our eating habits and dietary choices, reducing food waste and loss, preserving biodiversity, reducing the prevalence of food-related diseases, and balancing the distribution of food worldwide. To promote these actions, new ingredients and technologies are necessary ( Table 1 ).

www.frontiersin.org

Table 1 . Challenges/solutions matrix for the development of the food of the future using the most recent advances in food science and technology.

This review discusses the most recent advances in food science and technology that aim to ensure food security for the growing human population by developing the food of the future. We discuss (i) the circular economy, where food waste is valorized and enters back into the food production chain improving the sustainability of the food system and reduces Earth's biodiversity and resources loss; (ii) alternative technologies and sources for food production like cellular agriculture, algae, microalgae, insects, and wood-derived fibers, which use Earth's bioresources more efficiently; (iii) the design of food in terms of creative problem-solving that fosters food innovation allowing transition to more sustainable and nutritionally adequate diets without undermining their consumer acceptability; and (iv) digitalization in which artificial intelligence (AI), virtual reality (VR), and blockchain technology are used to better control and manage the food chain, and assist the development of novel ingredients and food, boosting the technological shift in the whole food system; (v) we also briefly discuss the effect of COVID-19 on the food supply chain, showing the need to develop a resilient food system.

Food Science and Technology Solutions for Global Food Security

The circular economy.

The unsustainable practice of producing and consuming materials based on the linear (take-make-dispose) economic model calls for a shift toward innovative and sustainable approaches embodied in the principles of the circular economy ( Jørgensen and Pedersen, 2018 ). In contrast to a linear economic model, where materials are produced linearly from a presumably infinite source of raw materials, the circular economy is based on closing the loop of materials and substances in the supply chain. In this model, the value of products, materials, and resources is preserved in the economy for as long as possible ( Merli et al., 2018 ).

Integrated into the food system, the circular economy offers solutions to achieve global food sustainability by minimizing food loss and waste, promoting efficient use of natural resources and mitigating biodiversity loss ( Jurgilevich et al., 2016 ), by retaining the resources within a loop, i.e., the resources are used in a cyclic process, reducing the demand for fresh raw materials in food production. This efficient use of natural resources for food in a circular economy, in turn, helps to rebuild biodiversity by preventing further conversion of natural habitats to agricultural land, which is one of the greatest contributors to biodiversity loss ( Dudley and Alexander, 2017 ).

This measure is highlighted by the fact that an enormous amount of waste is generated at various stages of the food supply chain. Food loss and waste accounts for 30% of the food produced for human consumption globally, translating into an estimated economic loss of USD 1 trillion annually ( FAO, 2019 ). Food loss and waste also takes its toll on the environment in relation to the emission of greenhouse gases associated with disposal of food waste in landfills, as well as in activities associated with the production of food such as agriculture, processing, manufacturing, transportation, storage, refrigeration, distribution, and retail ( Papargyropoulou et al., 2014 ). The various steps in the food supply chain have an embedded greenhouse gas impact, which is exacerbated when food is wasted and lost.

Addressing the challenge of minimizing food loss and waste requires proper identification of what constitutes food loss and waste. The FAO defines food loss and waste as a decrease in the quantity or quality of food along the food supply chain ( FAO, 2019 ). Food loss occurs along the food supply chain from harvest, slaughter, and up to, but not including, the retail level. Food waste, on the other hand, occurs at the retail and consumption level. From the FAO's definition, food that is converted for other uses such as animal feed, and inedible parts of foods, for example, bones, feathers, and peel, are not considered food loss or waste. The Waste and Resources Action Programme ( Quested and Johnson, 2009 ), a charity based in the UK, has defined and categorized food waste as both avoidable and unavoidable. Avoidable food waste includes food that is still considered edible but was thrown away, such as vegetables or fruits that do not pass certain standards, leftover food, and damaged stock that has not been used. Unavoidable food waste arises from food preparation or production and includes those by-products that are not edible in normal circumstances, such as vegetable and fruit peels, bones, fat, and feathers. Despite the lack of consensus on the definition of food loss and waste, the reduction in food loss and waste points in one direction and that is securing global food sustainability.

In a circular food system, the strategies for reducing food waste vary with the type of waste ( Figure 2 ). The best measure to reduce avoidable food waste is prevention, which can be integrated in the various stages of the food supply chain. Preventing overproduction, improving packaging and storage facilities, reducing food surplus by ensuring balanced food distribution, and educating consumers about proper meal planning, better understanding of best before dates, and buying food that may not pass quality control standards based on aesthetics are some preventive measures to reduce avoidable food waste ( Papargyropoulou et al., 2014 ). For unavoidable food waste, reduction can be achieved by utilizing side-stream products as raw materials for the production of new food or non-food materials. The residual waste generated, both from the processing of avoidable and unavoidable food waste, can still be treated through composting, which returns nutrients back to the soil, and used for another cycle of food production ( Jurgilevich et al., 2016 ). Indeed, in a circular food system, waste is ideally non-existent because it is used as a feedstock for another cycle, creating a system that mimics natural regeneration ( Ellen MacArthur Foundation, 2019 ).

www.frontiersin.org

Figure 2 . Strategies to reduce food waste in the food supply chain in a circular food system: prevention for avoidable food waste (yellow curve) and valorization for unavoidable food waste (orange curve).

The valorization of unavoidable food waste, which mostly includes by-products or side-stream materials from the food processing industries, has resulted in novel food technologies that harness the most out of food waste and add value to food waste. These novel food technologies serve as new routes to achieving a circular food system by converting food waste into new food ingredients or non-food materials. Several ongoing examples of side-stream valorization have been explored and some of the most recent technologies are presented herein and summarized in Table 2 .

www.frontiersin.org

Table 2 . Summary of potentially functional and nutritional food components from cheese production, meat processing, seafood processing, and plant-based food production by-products.

One of the most famous success stories of side-stream valorization is the processing of whey, the leftover liquid from cheese production. It is an environmental hazard when disposed of without treatment, having a high biological oxygen demand (BOD) value of >35,000 ppm as well as a high chemical oxygen demand (COD) value of >60,000 ppm ( Smithers, 2008 ). These high BOD and COD values can be detrimental to aquatic life where the untreated whey is disposed of, reducing the available dissolved oxygen for fish and other aquatic animals. However, whey is loaded with both lactose and proteins, and therefore in the early days cheese producers sent their whey for use as pig feed, as still occurs in some areas today. As dairy science advanced, it was discovered that lactose and whey protein have great nutritional and technological potential. Lactose and its derivatives can be separated by various filtration and crystallization methods, which can then be used in infant formula or as a feedstock for glucose and galactose production ( Smithers, 2008 ; de Souza et al., 2010 ). Whey protein has also gained popularity for use in sports performance nutrition and as an enhancer of the functional properties of food, and so has experienced a significant increase in demand, both as isolate and concentrate products ( Lagrange et al., 2015 ).

The meat-processing industry produces various by-products that can also be further processed to obtain food ingredients. The plasma fraction of animal blood, which can easily be obtained by centrifugation, contains various plasma proteins, some of which can stabilize colloidal food systems, just like whey proteins. Others, like fibrinogen and thrombin, can act as meat glue and are therefore useful to make restructured meat product. Leftover skin, bones, and connective tissues can be processed to produce gelatin, an important gelling agent, as well as short peptides that impart an umami taste and are used in flavor enhancers. However, the use of non-muscle tissue from farm animals, especially from cows, would require strict toxicology assessment to ensure safety. There is a risk of spreading transmissible spongiform encephalopathy, a deadly disease caused by prion proteins which might spread to humans through the consumption of materials derived from non-meat tissues ( Toldrá et al., 2012 ).

The by-products of the seafood industry also provide great opportunities for valorization, with several known products and many other yet to be discovered. Fish-derived gelatin from leftover fish skin and bones can be presented as a gelatin alternative for several religious groups, for whom cattle- and swine-derived gelatin products are unacceptable ( Karayannakidis and Zotos, 2016 ). Rich in carotenoid and chitin, shells of common seafood such as crabs, lobster, and prawns can be further processed to extract functional ingredients. The extracted chitin from the shells can be treated to produce chitosan, a well-known biopolymer with the potential to be used as food packaging. One can also extract the red carotenoids present in the shells, most prominently astaxanthin, which can then be used as a nutritional and technological food additive ( Kandra et al., 2012 ). The liquid side stream of the fish-canning industry also has potential as a source of bioactive lipids, such as polyunsaturated omega-3 fatty acids ( Monteiro et al., 2018 ).

The increasing demand for plant-derived functional ingredients to cater for the vegetarian and vegan market can also be complemented with ingredients isolated from plant food processing side streams. Nixtamalization, the alkaline processing of maize, produces wastewater that is highly alkaline with a high COD of 10 200–20,000 ppm but is rich in carbohydrates and polyphenols ( Gutiérrez-Uribe et al., 2010 ). Microfiltration and ultrafiltration methods are used to isolate enriched fractions of carbohydrates and polyphenols from nixtamalization wastewater, which can later be integrated into various subsequent processes ( Castro-Muñoz and Yáñez-Fernández, 2015 ). Waste from the cereal, fruit, and vegetable industry can also be fermented by microbial means to produce various pigments for food production ( Panesar et al., 2015 ). Pigment extraction can also be performed on the leftover waste of the fresh-cut salad industry, which includes leafy vegetables and fruits that are deemed to be too blemished to be sold to the customer. Aside from pigments, such waste can also be a source of natural gelling agents and bioactive compounds that can be refined for further use in the food industry ( Plazzotta et al., 2017 ). Extraction of carotenoids, flavonoids, and phenolic compounds from fruits and vegetables waste as well as from wastewater (e.g., from olive mill) can be achieved using green technologies such as supercritical carbon dioxide, ultrasound, microwave, pulsed electric fields, enzymes, membrane techniques, and resin adsorption ( Rahmanian et al., 2014 ; Saini et al., 2019 ). Additionally, waste from potato processing, such as potato peel and potato fruit juice (a by-product of potato starch production), can yield various polyphenols, alkaloids, and even protein extracts by using different refining methods ( Fritsch et al., 2017 ).

In addition to food waste, there are also other, often unexpected, sources of food ingredients. For example, while wood cannot be considered part of the food industry by itself, the extraction of emulsifier from sawdust can serve as an example of how the waste of one industrial cycle can be used as a feedstock for another industrial cycle and in effect reduce the overall wasted material ( Pitkänen et al., 2018 ). Straw from grain production, such as barley and wheat, can also be processed to extract oligosaccharides to be used as prebiotic additives into other food matrices ( Huang et al., 2017 ; Alvarez et al., 2020 ). While young bamboo shoots have been commonly used in various Asian cuisines, older bamboo leaves can also act as a source of polyphenolic antioxidants, which can be used to fortify food with bioactive compounds ( Ni et al., 2012 ; Nirmala et al., 2018 ).

Alternative Technologies and Sources for Food Production

To feed the growing population, the circular economy concept must be combined with increasing food production. However, food production has been impaired by depletion of resources, such as water and arable land, and by climate change. Projections indicate that 529,000 climate-related deaths will occur worldwide in 2050, corresponding with the predicted 3.2% reduction in global food availability (including fruits, vegetables, and red meat) caused by climate change ( Springmann et al., 2016 ). Strategies to overcome food production issues have been developed and implemented that aim to improve agricultural productivity and resource use (vertical farming and genetic modification), increase and/or tailor the nutritional value of food (genetic engineering), produce new alternatives to food and/or food ingredients (cellular cultures, insects, algae, and dietary fibers), and protect biodiversity. Such solutions have been designed to supply current and future food demand by sustainably optimizing the use of natural resources and boosting the restructuration of the food industry models ( Figure 3 ).

www.frontiersin.org

Figure 3 . A view of future food based on current prospects for optimizing the use of novel techniques, food sources, and nutritional ingredients.

Cellular agriculture is an emerging field with the potential to increase food productivity locally using fewer resources and optimizing the use of land. Cellular agriculture has the potential to produce various types of food with a high content of protein, lipids, and fibers. This technique can be performed with minimal or no animal involvement following two routes: tissue engineering and fermentation ( Stephens et al., 2018 ). In the tissue engineering process, cells collected from living animals are cultured using mechanical and enzymatic techniques to produce muscles to be consumed as food. In the case of the fermentation process, organic molecules are biofabricated by genetically modified bacteria, algae, or yeasts, eliminating the need for animal cells. The Solar Foods company uses the fermentation process to produce Solein, a single-cell pure protein ( https://solarfoods.fi/solein/ ). This bioprocess combines the use of water, vitamins, nutrients, carbon dioxide (CO 2 ) from air, and solar energy to grow microorganisms. After that, the protein is obtained in powder form and can be used as a food ingredient. Most of the production in cellular agriculture has been focused on animal-derived products such as beef, chicken, fish, lobster, and proteins for the production of milk and eggs ( Post, 2014 ; Stephens et al., 2018 ). Compared with traditional meat, the production of cultured meat can (i) reduce the demand for livestock products, (ii) create a novel nutrition variant for people with dietary restrictions, (iii) favor the control and design of the composition, quality, and flavor of the product, and (iv) reduce the need for land, transportation costs (it can be produced locally), waste production, and greenhouse gas emissions ( Bhat and Fayaz, 2011 ). Moreover, the controlled production of cultured meat can eliminate the presence of unwanted elements, such as saturated fat, microorganisms, hormones, and antibiotics ( Bhat and Fayaz, 2011 ). One of the most important events for cultured meat took place in a 2013 press conference in London, when cultured beef burger meat was tasted by the public for the first time ( O'Riordan et al., 2017 ). After this, cultured meat has inspired several start-ups around the world and some examples are presented in Table 3 ( Clean Meat News Australia, 2019 ).

www.frontiersin.org

Table 3 . Examples of start-ups producing different cultured products around the world.

However, cellular agriculture has the potential to produce more than only animal-derivative products. A recent study conducted by the VTT Technical Research Centre of Finland explored the growing of plant cell cultures from cloudberry, lingonberry, and stoneberry in a plant growth medium. The cells were described to be richer in protein, essential polyunsaturated fatty acids, sugars, and dietary fibers than berry fruits, and additionally to have a fresh odor and flavor ( Nordlund et al., 2018 ). Regarding their use, berry cells can be used to replace berry fruits in smoothies, yogurt, jam, etc. or be dried and incorporated as ingredients in several preparations (e.g., cakes, desserts, and toppings).

Insects are potentially an important source of essential nutrients such as proteins, fat (including unsaturated fatty acids), polysaccharides (including chitin), fiber, vitamins, and minerals. Edible insects are traditionally consumed in different forms (raw, steamed, roasted, smoked, fried, etc.) by populations in Africa, Central and South America, and Asia ( Duda et al., 2019 ; Melgar-Lalanne et al., 2019 ). The production of edible insects is highly efficient, yielding various generations during the year with low mortality rates and requiring only little space, such as vertical systems ( Ramos-Elorduy, 2009 ). Additionally, the cultivation of edible insects utilizes very cheap materials, usually easily found in the surrounding area. Indeed, insects can be fed by food waste and agricultural by-products not consumed by humans, which fits well in the circular bioeconomy models (section The circular economy). The introduction of insect proteins could diversify and create more sustainable dietary alternatives. However, the resistance of consumers to the ingestion of insects needs to be overcome ( La Barbera et al., 2018 ). The introduction of insects in the form of powder or flour can help solve consumer resistance ( Duda et al., 2019 ; Melgar-Lalanne et al., 2019 ). Several technologies are used to transform insect biomass into food ingredients, including drying processes (freeze-drying, oven-drying, fluidized bed drying, microwave-drying, etc.) and extraction methods (ultrasound-assisted extraction, cold atmospheric pressure plasma, and dry fractionation) ( Melgar-Lalanne et al., 2019 ). Recently, cricket powder was used for enriching pasta, resulting in a significant increase in protein, fat, and mineral content, and additionally improving its texture and appearance ( Duda et al., 2019 ). Chitin, extracted from the outer skeleton of insects, is a precursor for bioactive derivatives, such as chitosan, which presents potential to prevent and treat diseases ( Azuma et al., 2015 ; Kerch, 2015 ). Regenerated chitin has been recognized as a promising emulsifier ( Xiao et al., 2018 ), with potential applications including stabilizing yogurt, creams, ice cream, etc. Whole insects, insect powder, and food products from insects such as flavored snacks, energy bars and shakes, and candies are already commercialized around the world. However, food processing and technology is currently needed to help address consumer neophobia and meet sensory requirements ( Melgar-Lalanne et al., 2019 ).

Algae and microalgae are a source of nutrients in various Asian countries ( Priyadarshani and Rath, 2012 ; Wells et al., 2017 ; Sathasivam et al., 2019 ), that can be consumed as such (bulk material) or as an extract. The extracts consists of biomolecules that are synthesize more efficiently than plants ( Torres-Tiji et al., 2020 ). Some techniques used for improving algae and microalgae productivity and their nutritional quality are genotype selection, alteration, and improvement, and controlling growing conditions ( Torres-Tiji et al., 2020 ). Although their direct intake is more traditional (e.g., nori used in sushi preparation), in recent years the extraction of bioactive compounds from algae and microalgae for the preparation of functional food has attracted great interest. Spirulina and Chlorella are the most used microalgae species for this purpose, being recognized by the European Union for uses in food ( Zarbà et al., 2020 ). These microalgae are rich in proteins (i.e., phycocyanin), essential fatty acids (i.e., omega-3, docosahexaenoic acid, and eicosapentaenoic acid), β-glucan, vitamins from various groups (e.g., A, B, C, D2, E, and H), minerals like iodine, potassium, iron, magnesium, and calcium, antioxidants (i.e., ß-carotene), and pigments (i.e., astaxanthin) ( Priyadarshani and Rath, 2012 ; Vigani et al., 2015 ; Wells et al., 2017 ; Sathasivam et al., 2019 ). The latter molecules can be recovered using, for example, pulsed electric field, ultrasound, microwaves, and supercritical CO 2 ( Kadam et al., 2013 ; Buchmann et al., 2018 ).

Finally, in addition to proteins, lipids, and digestible carbohydrates, it is necessary to introduce fiber in to the diet. Dietary fibers include soluble (pectin and hydrocolloids) and insoluble (polysaccharides and lignin) fractions, which are usually obtained through the direct ingestion of fruits, vegetables, cereals, and grains ( McKee and Latner, 2000 ). Although appropriate dietary fiber intake leads to various health benefits, the proliferation of low fiber foods, especially in Western countries resulted in low dietary intake ( McKee and Latner, 2000 ; Anderson et al., 2009 ). This lack of consumed dietary fibers created the demand for fiber supplementation in functional foods ( McKee and Latner, 2000 ; Doyon and Labrecque, 2008 ). As additives, besides all benefits in health and well-being, dietary fibers contribute to food structure and texture formation ( Sakagami et al., 2010 ; Tolba et al., 2011 ; Jones, 2014 ; Aura and Lille, 2016 ).

Sources of dietary fibers include food crops (e.g., wheat, corn, oats, sorghum, oat, etc.), vegetables/fruits (e.g., apple and pear biomasses recovered after juicing process, orange peel and pulp, pineapple shells, etc.) ( McKee and Latner, 2000 ) and wood ( Pitkänen et al., 2018 ). The use of plant-based derivatives and waste aligns with the circular bioeconomy framework and contributes to the sustainability of the food chain.

It is worth mentioning that new and alternative sources of food and food ingredients require approval in the corresponding regulatory systems before commercialization. In Europe, safety assessment is carried out according to the novel food regulation of the European Union [Regulation (EU) 2015/2283]. Important aspects such as composition, stability, allergenicity, and toxicology should be evaluated for each new food or food ingredient ( Pitkänen et al., 2018 ). Such regulatory assessments are responsible for guaranteeing that new food and food ingredients are safe for human consumption.

Food Design

Humans are at the center of the food supply ecosystem, with diverse and dynamic expectations. To impart sustainability in food supply by utilizing novel materials and technologies discussed in the preceding chapters, the framework of food production and consumption should go beyond creating edible objects and integrate creativity to subvert neophobic characteristics of consumers and enhance acceptability of sustainable product innovations. These innovations should also consider changing consumer demographics, lifestyle and nutritional requirements. Food design is a newly practiced discipline to foster human-centric innovation in the food value chain by applying a design thinking process in every step of production to the disposal of food ( Olsen, 2015 ). The design concept utilizes the core ideas of consumer empathy, rapid prototyping, and mandate the collaboration of a multitude of sectors involved in designing food and the distribution of food to the space where we consume it ( Figure 4 ) ( Zampollo, 2020 ).

www.frontiersin.org

Figure 4 . Neural network graphical representation of the major disciplines (black dots) in the food design concept and their interconnections. Sub-disciplines arising through communion of ideas of some major disciplines indicated by gray dots.

The sub-discipline of food product design relates to the curation of food products from a technological perspective utilizing innovative process and structured engineering methodologies to translate consumer wishes into product properties. In the future, food producers need to shift their focus from the current conventional approach of mass production, to engineering of food products that emphasizes food structure-property-taste. Through food product design, it is possible to influence the health of consumers by regulating nutrient bioavailability, satiety, gut health, and developing feelings of well-being, as well as encompass consumer choice by modulating consumers sensorial experience. These aspects become important with the introduction of new materials and healthy alternatives where the neophobic characteristic of humans can lead to poor food choices and eating habits due to consumer prejudices or inferior sensorial experience. For example, environmental concerns related to meat substitutes were less relevant for consumers, and sensorial properties were the decisive factor ( Hoek et al., 2011 ; Weinrich, 2019 ). In this regard, food designers and chefs will have an important role in influencing sustainable and healthy eating choices by increasing the acceptability of food products, using molecular gastronomy principles. Innogusto ( www.innogusto.com ), a start-up founded in 2018, aims to develop gastronomic dishes based on meat substitutes to increase their acceptability.

To stimulate taste sensations, electric and thermal energy have been studied, referred to as “digital taste” ( Green and Nachtigal, 2015 ; Ranasinghe et al., 2019 ). For example, reducing the temperature of sweet food products can increase sweet taste adaptation and reduce sweetness intensity ( Green and Nachtigal, 2015 ). On the other hand, electric taste augmentation can modulate the perception of saltiness and sourness in unsalted and diluted food products leading to a possible reduction of salt ( Ranasinghe et al., 2019 ). Another external stimulus that can modify the sensorial experience during food consumption, is social context. In this case, interaction with other people leads to a resonance “mirror” mechanism, that allow people to tune in to the emotions of others. Indeed, positive emotions such as happiness increase the desirability and acceptability of food, contrarily to neutral and negative emotions (angriness) ( Rizzato et al., 2016 ). Also, auditory responses such as that to background music, referred to as “sonic seasoning” ( Reinoso Carvalho et al., 2016 ) have been studied in the context of desirability and overall perception of food. Noise is able to reduce the perception of sweetness and enhance the perception of an umami taste ( Yan and Dando, 2015 ). Bridging the interior design concepts with the sensory perception in a holistic food space design is an interesting opportunity to influence healthy habits and accommodate unconventional food in our daily lives.

Food packaging which falls under the Design for food sub-discipline is expected to play an integral role to tackle issues of food waste/loss. Potential solutions to food waste/loss at the consumers level can be realized by the design of resealable packages, consideration of portion size, clear labeling of “best by” and expiration dates, for example. Although a clear understanding on the interdependency of food waste and packaging design in the circular economy has not yet been established, the design of smart packaging to prolong shelf life and quality of highly perishable food like fresh vegetables, fruits, dairy, and meat products has been considered the most efficient option ( Halloran et al., 2014 ). Packaging is a strong non-verbal medium of communication between product designers and consumers which can potentially be used to favor the consumption of healthier and sustainable options ( Plasek et al., 2020 ). Packaging linguistics has shown differential effect on taste and quality perceptions ( Khan and Lee, 2020 ), whereas designs have shown to create emotional attachment to the product surpassing the effect of taste ( Gunaratne et al., 2019 ). Visual stimuli such as weight, color, size, and shape of the food containers have been linked to the overall liking of the food ( Piqueras-Fiszman and Spence, 2011 ; Harrar and Spence, 2013 ). Food was perceived to be dense with higher satiety when presented in heavy containers compared with light-weighted containers ( Piqueras-Fiszman and Spence, 2011 ).

In light of emerging techniques in food production, it is envisioned that technologies like 3D printing, at both the industrial and household level, will be widely used to design food and recycle food waste ( Gholamipour-Shirazi et al., 2020 ). Upprinting Food ( https://upprintingfood.com/ ), a start-up company, has initiated the production of snacks from waste bread using 3D printing. These initiatives will also encourage the inclusion of industrial side streams (discussed in section the circular economy) in the mainstream using novel technologies. In addition to the increasing need for healthy food, it is envisioned that the food industry will see innovation regarding personalized solutions ( Poutanen et al., 2017 ). In the latter, consumers will be at the center of the food production system, where they can choose food that supports their personal physical and mental well-being, and ethical values. Techniques such as 3D printers can be applied in smart groceries and in the home, where one can print personalized food ( Sun et al., 2015 ) inclusive of molecular gastronomy methods ( D'Angelo et al., 2016 ). A challenge will be to incorporate the food structure-property-taste factor in such systems. In a highly futuristic vision, concepts of personalized medicine are borrowed to address the diverse demands of food through personalized or “smart” food, possibly solving food-related diseases, while reducing human ecological footprint.

Digitalization

Many major challenges faced by global food production, as discussed previously and presented in Table 1 (eating habits and dietary choices, food waste and loss, biodiversity, diseases, and resource availability), can be addressed by food system digitalization. The most recent research advances aim to overcome these challenges using digitalization (summarized in Table 4 and Figure 5 ). The rapidly advancing information and communication technology (ICT) sector has enabled innovative technologies to be applied along the agri-food chain to meet the demands for safe and sustainable food production (i.e., traceability) ( Demartini et al., 2018 ; Raheem et al., 2019 ).

www.frontiersin.org

Table 4 . Recent research advances in digitalization solutions to overcome challenges in global food production.

www.frontiersin.org

Figure 5 . Digitalization solutions for the development of future food. Red area represents digitalization-enabled targets. IoT, Internet of Things; ML, Machine Learning; RFID, Radio Frequency Identification; AI, Artificial Intelligence.

An interesting part of ICT is artificial intelligence (AI). The latter is a field of computer science that allows machines, especially computer systems, to have cognitive functions like humans. These machines can learn, infer, adapt, and make decisions based on collected data ( Salah et al., 2019 ). Over the past decade, AI has changed the food industry in extensive ways by aiding crop sustainability, marketing strategies, food sales, eating habits and preferences, food design and new product development, maintaining health and safety systems, managing food waste, and predicting health problems associated with food.

Digitalization can be used to modify our perception of food and help solve unsustainable eating behaviors. It is hoped that a better insight into how the neural network in the human brain works upon seeing food can be discovered using AI in the future and can thus direct consumer preference toward healthier diets. Additionally, it can be used to assist the development of new food structures and molecules such as modeling food gelling agents (e.g., using fuzzy modeling to predict the influence of different gum-protein emulsifier concentration on mayonnaise), and the design of liquid-crystalline food (by predicting the most stable liquid crystalline phases using predictive computer simulation tool based on field theory) ( Mezzenga et al., 2006 ; Ghoush et al., 2008 ; Dalkas and Euston, 2020 ). In addition, the development of aroma profiles can be explored using AI. Electronic eyes, noses, and tongues can analyze food similarly to sensory panelists and help in the optimization of quality control in food production ( Loutfi et al., 2015 ; Nicolotti et al., 2019 ; Xu et al., 2019 ). Companies like Gastrograph AI ( https://gastrograph.com/ ) and Whisk ( https://whisk.com/ ) are using AI and natural language processing to model consumer sensory perception, predict their preferences toward food and beverage products, map the world's food ingredients, and provide specific advertisements based on consumer personalization and preferences.

With the advancement of augmented reality (AR) and virtual reality (VR), in the future, digitalization can offer obesity-related solutions, where consumers can eat healthy food while simultaneously seeing unhealthy desirable food. This possibility has been studied by Okajima et al. (2013) using an AR system to change visual food appearance in real time. In their study, the visual appearance of food can highly influence food perception in terms of taste and perceived texture.

AI also provides a major solution to food waste problems by estimating food demand quantity, predicting waste volumes, and supporting effective cleaning methods by smart waste management ( Adeogba et al., 2019 ; Calp, 2019 ; Gupta et al., 2019 ).

AI-enabled agents, Internet of Things (IoT) sensors, and blockchain technology can be combined to maximize the supply network and increase the revenue of all parties involved along the agri-food value chain ( Salah et al., 2019 ). Blockchain is a technology that can record multiple transactions from multiple parties across a complex network. Changing the records inside the blockchain requires the consensus of all parties involved, thus giving a high level of confidence in the data ( Olsen et al., 2019 ). Blockchain technology can support the traceability and transparency of the food supply chain, possibly increasing the trust of consumers, and in combination with AI, intelligent precision farming can be achieved, as illustrated in Figure 6 .

www.frontiersin.org

Figure 6 . Digitalization in the food supply chain: intelligent precision farming with artificial intelligence (AI) and blockchain. IoT, Internet of Things; ML, Machine Learning. Modified from Salah et al. (2019) and reproduced with permission from IEEE.

The physical flow of the food supply chain is supported by the digital flow, consisting of different interconnected digital tools. As each block is approved, it can be added to the chain of transactions, and it becomes a permanent record of the entire process. Each blockchain contains specific information about the process where it describes the crops used, equipment, process methods, batch number, conditions, shelf-time, expiration date, etc. ( Kamath, 2018 ; Kamilaris et al., 2019 ).

Traceability and transparency of the complex food supply network are continuously increasing their importance in food manufacturing management. Not only are they an effective way to control the quality and safety of food production, but they can also be effective tools to monitor the flow of resources from raw materials to the end consumer. In the future, it will be essential to recognize the bottlenecks of the entire food supply chain and redirect the food resource allocation accordingly to minimize food waste.

The digital tools reviewed here can be combined with all the solutions proposed before, enabling fast achievement of the necessary conditions for feeding the increasing world population while maintaining our natural resources.

The Effect of Novel Coronavirus Disease (COVID-19) Pandemic on the Food System

Although the strategies examined in this review can possibly help reaching food security in 2050, the entire food system has been facing a new challenge because of COVID-19 pandemic. Since December 2019, a new severe acute respiratory syndrome (SARS) caused by a novel Coronavirus started spreading worldwide from China. To contain the diffusion of the novel Coronavirus and avoid the collapse of national sanitary systems, several governments locked down entire nations. These actions had severe consequences on global economy, including the food system.

As first consequence, the lockdown changed consumer purchasing behavior. At the initial stage of the lockdown, panic-buying behavior was dominant, in which consumers were buying canned foods and stockpiling them, leading to shortage of food in several supermarkets ( Nicola et al., 2020 ). However, as the lockdown proceeded, this behavior become more moderate ( Bakalis et al., 2020 ). The problems faced by the food supply chain in assuring food availability for the entire population have risen concerns about its architecture. Indeed, as discussed by Bakalis et al. (2020) , the western world food supply chain has an architecture with a bottleneck at the supermarkets/suppliers interface where most of the food is controlled by a small number of organizations. Additionally, as noted by these authors, problems with timely packaging of basic foods (such as flour) led to their shortage. Bakalis et al. (2020) suggest that the architecture of the food system should be more local, decentralized, sustainable, and efficient. The COVID-19 pandemic highlighted the vulnerability of the food system, indicating that the aid of future automation (robotics) and AI would help to maintain an operational supply chain. Therefore, the entire food system should be rethought with a resilient and sustainable perspective, which can assure adequate, safe, and health-promoting food to all despite of unpredictable events such as COVID-19, by balancing the roles of local and global producers and involving policymakers ( Bakalis et al., 2020 ; Galanakis, 2020 ).

Another problem caused by the lockdown was food waste. Indeed, restaurants, catering services, and food producers increased their food waste due to forced closure and rupture of the food chain ( Bakalis et al., 2020 ). On the other hand, consumers become more aware of food waste and strived to reduce household food waste. Unfortunately, the positive behavior of consumers toward reducing food waste has been more driven by the COVID-19 lockdown situation rather than an awareness ( Jribi et al., 2020 ).

COVID-19 has also showed the importance of designing food products that can help boosting our immune system and avoid the diffusion of virions through the entire food chain ( Galanakis, 2020 ; Roos, 2020 ). Virions can enter the food chain during food production, handling, packing, storage, and transportation and be transmitted to consumers. This possibility is increased with minimally processed foods and animal products. Therefore, packaging and handling of minimally processed foods should be considered to reduce viral transfer while avoiding increasing waste. The survival of virions in food products can be reduced by better designing and engineering foods taking into consideration for example not only thermal inactivation of virions but also the interaction between temperature of inactivation, water activity of food, and food matrix effects ( Roos, 2020 ).

Therefore, to reach food security by 2050, besides the solutions highlighted in section (Food science and technology solutions for global food security), it is of foremost important to implement actions in the entire food system that can counteract exceptional circumstances such as the global pandemic caused by the novel Coronavirus.

Conclusions and Outlook

To achieve food security in the next 30 years while maintaining our natural bioresources, a transition from the current food system to a more efficient, healthier, equal, and consumer- and environment-centered food system is necessary. This transition, however, is complex and not straightforward. First, we need to fully transition from a linear to a circular economy where side streams and waste are valorized as new sources of food materials/ingredients, leading to more efficient use of the available bioresources. Secondly, food production has to increase. For this, vertical farming, genetic engineering, cellular agriculture, and unconventional sources of ingredients such as microalgae, insects, and wood-derived fibers can make a valid contribution by leading to a more efficient use of land, an increase in food and ingredient productivity, a shift from global to local production which reduces transportation, and the transformation of non-reusable and inedible waste into ingredients with novel functionalities. However, to obtain acceptable sustainable food using novel ingredients and technologies, the aid of food design is necessary in which conceptualization, development, and engineering in terms of food structure, appearance, functionality, and service result in food with higher appeal for consumers. To complement these solutions, digital technology offers an additional potential boost. Indeed, AI, blockchain, and VR and AR are tools which can better manage the whole food chain to guarantee quality and sustainability, assist in the development of new ingredients and structures, and change the perception of food improving acceptability, which can lead to a reduction of food-related diseases.

By cooperating on a global scale, we can envision that in the future it may be common to, for example, 3D print a steak at home using cells or plant-based proteins. The understanding of the interaction between our gastrointestinal tract and the food ingredients/structures aided by AI and biosensors might allow the 3D printed steak to be tailored in terms of nutritional value and individual preferences. The food developed in the future can possibly also self-regulate its digestibility and bioavailability of nutrients. In this context, the same foodstuff consumed by two different people would be absorbed according to the individuals' needs. In this futuristic example, the food of the future would be able to solve food-related diseases such as obesity and type 2 diabetes, while maintaining the ability of the Earth to renew its bioresources.

However, the strategies and solutions proposed here can possibly only help to achieve sustainable food supply by 2050 if they are supported and encouraged globally by common policies. Innovations in food science and technology can ensure the availability of acceptable, adequate, and nutritious food, and can help shape the behavior of consumers toward a more sustainable diet. Finally, the recent COVID-19 global pandemic has highlighted the importance of developing a resilient food system, which can cope with exceptional and unexpected situations. All these actions can possibly help in achieving food security by 2050.

Author Contributions

FV wrote abstract, sections introduction, the effect of novel Coronavirus disease (COVID-19) pandemic on the food system, and conclusions and outlook, and coordinated the writing process. MA and FA wrote section the circular economy. DM and JS wrote section alternative technologies and sources for food production. MB and JV wrote section food design. AA and EP wrote section digitalization. FV and KM revised and edited the whole manuscript. All authors have approved the final version before submission and contributed to planning the contents of the manuscript.

FV, MA, FA, and KM acknowledge the Academy of Finland for funding (FV: Project No. 316244, MA: Project No. 330617, FA: Project No. 322514, KM: Project No. 311244). DM acknowledges Tandem Forest Values for funding (TFV 2018-0016).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

We thank JV for drawing Figures 2 – 6 , and Mr. Troy Faithfull for revising and editing the manuscript.

Adeogba, E., Barty, P., O'Dwyer, E., and Guo, M. (2019). Waste-to-resource transformation: gradient boosting modeling for organic fraction municipal solid waste projection. ACS Sustain. Chem. Eng. 7, 10460–10466. doi: 10.1021/acssuschemeng.9b00821

CrossRef Full Text | Google Scholar

Ahlswede, S., Asam, S., and Röder, A. (2021). Hedgerow object detection in very high-resolution satellite images using convolutional neural networks. J. Appl. Remote Sens. 15:018501. doi: 10.1117/1.JRS.15.018501

Alfian, G., Syafrudin, M., Farooq, U., Ma'arif, M. R., Syaekhoni, M. A., Fitriyani, N. L., et al. (2020). Improving efficiency of rfid-based traceability system for perishable food by utilizing iot sensors and machine learning model. Food Control 110:107016. doi: 10.1016/j.foodcont.2019.107016

Alvarez, C., Gonzalez, A., Alonso, J. L., Saez, F., Negro, M. J., and Gullon, B. (2020). Xylooligosaccharides from steam-exploded barley straw: structural features and assessment of bifidogenic properties. Food Bioproducts Process. 124, 131–142. doi: 10.1016/j.fbp.2020.08.014

Anderson, J. W., Baird, P., Davis, R. H. Jr., Ferreri, S., Knudtson, M., Koraym, A., et al. (2009). Health benefits of dietary fiber. Nutr. Rev. 67, 188–205. doi: 10.1111/j.1753-4887.2009.00189.x

PubMed Abstract | CrossRef Full Text | Google Scholar

Aura, A. M., and Lille, M. (2016). Wood Components to Boost the Quality of Food Products . VTT – Technical Research Center of Finland Ltd. Available online at: https://news.cision.com/vtt-info/r/wood-components-to-boost-the-quality-of-food-products.c2020810

Azais-Braesco, V., Brighenti, F., Paoletti, R., Peracino, A., Scarborough, P., Visioli, F., et al. (2009). Healthy food and healthy choices: a new european profile approach. Atheroscler. Suppl. 10, 1–11. doi: 10.1016/j.atherosclerosissup.2009.09.001

Azuma, K., Nagae, T., Nagai, T., Izawa, H., Morimoto, M., Murahata, Y., et al. (2015). Effects of surface-deacetylated chitin nanofibers in an experimental model of hypercholesterolemia. Int. J. Mol. Sci. 16, 17445–17455. doi: 10.3390/ijms160817445

Bain, L. E., Awah, P. K., Geraldine, N., Kindong, N. P., Sigal, Y., Bernard, N., et al. (2013). Malnutrition in sub-saharan africa: burden, causes and prospects. Pan Afr. Med. J. 15:120. doi: 10.11604/pamj.2013.15.120.2535

Bakalis, S., Valdramidis, V. P., Argyropoulos, D., Ahrne, L., Chen, J., Cullen, P. J., et al. (2020). Perspectives from co+re: how covid-19 changed our food systems and food security paradigms. Curr. Res. Food Sci. 3, 166–172. doi: 10.1016/j.crfs.2020.05.003

Berners-Lee, M., Kennelly, C., Watson, R., and Hewitt, C. N. (2018). Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. Elementa Sci. Anthropocene 6, 52–66. doi: 10.1525/elementa.310

Bhat, Z. F., and Fayaz, H. (2011). Prospectus of cultured meat—advancing meat alternatives. J. Food Sci. Technol. 48, 125–140. doi: 10.1007/s13197-010-0198-7

Bhatt, S., Lee, J., Deutsch, J., Ayaz, H., Fulton, B., and Suri, R. (2018). From food waste to value-added surplus products (vasp): consumer acceptance of a novel food product category. J. Consum. Behav. 17, 57–63. doi: 10.1002/cb.1689

Buchmann, L., Bocker, L., Frey, W., Haberkorn, I., Nyffeler, M., and Mathys, A. (2018). Energy input assessment for nanosecond pulsed electric field processing and its application in a case study with chlorella vulgaris. Innovative Food Sci. Emerg. Technol. 47, 445–453. doi: 10.1016/j.ifset.2018.04.013

Calp, M. (2019). An estimation of personnel food demand quantity for businesses by using artificial neural networks. J. Polytech. 22, 675–686. doi: 10.2339/politeknik.444380

Caporgno, M. P., and Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Front. Nutr. 5:58. doi: 10.3389/fnut.2018.00058

Castro-Muñoz, R., and Yáñez-Fernández, J. (2015). Valorization of nixtamalization wastewaters (nejayote) by integrated membrane process. Food Bioprod. Process. 95, 7–18. doi: 10.1016/j.fbp.2015.03.006

Cattaneo, C., Lavelli, V., Proserpio, C., Laureati, M., and Pagliarini, E. (2018). Consumers' attitude towards food by-products: the influence of food technology neophobia, education and information. Int. J. Food Sci. Technol. 54, 679–687. doi: 10.1111/ijfs.13978

Cencic, A., and Chingwaru, W. (2010). The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2, 611–625. doi: 10.3390/nu2060611

Clean Meat News Australia (2019). Clean Meat Startups: 10 Lab-Grown Meat Producers to Watch . Available online at: https://www.cleanmeats.com.au/2019/07/24/clean-meat-startups-10-lab-grown-meat-producers-to-watch/ (accessed: October 30, 2019).

Google Scholar

Dalkas, G., and Euston, S. R. (2020). “Modelling and computer simulation approaches to understand and predict food structure development: Structuring by gelation and self-association of biomolecules,” in Handbook of Food Structure Development , eds F. Spyropoulos, A. Lazidis and I. Norton, editors. (The Royal Society of Chemistry), 383–401. doi: 10.1039/9781788016155-00383

D'Angelo, G., Hansen, H. N., and Hart, A. J. (2016). Molecular gastronomy meets 3d printing: layered construction via reverse spherification. 3D Printing Addit. Manuf. 3, 153–159. doi: 10.1089/3dp.2016.0024

de Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Faria, S. H. B., and Gimenes, M. L. (2010). Recovery and purification of lactose from whey. Chem. Eng. Process. 49, 1137–1143. doi: 10.1016/j.cep.2010.08.015

Demartini, M., Pinna, C., Tonelli, F., Terzi, S., Sansone, C., and Testa, C. (2018). Food industry digitalization: from challenges and trends to opportunities and solutions. IFAC-PapersOnLine 51, 1371–1378. doi: 10.1016/j.ifacol.2018.08.337

Doyon, M., and Labrecque, J. (2008). Functional foods: a conceptual definition. Br. Food J. 110, 1133–1149. doi: 10.1108/00070700810918036

Duda, A., Adamczak, J., Chelminska, P., Juszkiewicz, J., and Kowalczewski, P. (2019). Quality and nutritional/textural properties of durum wheat pasta enriched with cricket powder. Foods 8:46. doi: 10.3390/foods8020046

Dudley, N., and Alexander, S. (2017). Agriculture and biodiversity: a review. Biodiversity 18, 45–49. doi: 10.1080/14888386.2017.1351892

Ehrlich, P. R., and Holdren, J. P. (1971). Impact of population growth. Science 171, 1212–1217. doi: 10.1126/science.171.3977.1212

Ellen MacArthur Foundation (2019). Cities and Circular Economy for Food . Available online at: https://www.ellenmacarthurfoundation.org/assets/downloads/Cities-and-Circular-Economy-for-Food_280119.pdf (accessed: october 30, 2019).

FAO (2019). The State of Food and Agriculture 2019. Moving Forward on Food Loss and Waste Reduction . Available online at: http://www.fao.org/3/ca6030en/ca6030en.pdf

Feng, P. Y., Wang, B., Liu, D. L., and Yu, Q. (2019). Machine learning-based integration of remotely-sensed drought factors can improve the estimation of agricultural drought in south-eastern australia. Agric. Syst. 173, 303–316. doi: 10.1016/j.agsy.2019.03.015

Floros, J. D., Newsome, R., Fisher, W., Barbosa-Canovas, G. V., Chen, H. D., Dunne, C. P., et al. (2010). Feeding the world today and tomorrow: the importance of food science and technology an ift scientific review. Compr. Rev. Food Sci. Food Saf. 9, 572–599. doi: 10.1111/j.1541-4337.2010.00127.x

Fritsch, C., Staebler, A., Happel, A., Marquez, M. A. C., Aguilo-Aguayo, I., Abadias, M., et al. (2017). Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: a review. Sustainability 9:1492. doi: 10.3390/su9081492

Galanakis, C. M. (2020). The food systems in the era of the coronavirus (covid-19) pandemic crisis. Foods 9:523. doi: 10.3390/foods9040523

Gholamipour-Shirazi, A., Kamlow, M. -A. T., Norton, I., and Mills, T. (2020). How to formulate for structure and texture via medium of additive manufacturing-a review. Foods 9:497. doi: 10.3390/foods9040497

Ghoush, M. A., Samhouri, M., Al-Holy, M., and Herald, T. (2008). Formulation and fuzzy modeling of emulsion stability and viscosity of a gum–protein emulsifier in a model mayonnaise system. J. Food Eng. 84, 348–357. doi: 10.1016/j.jfoodeng.2007.05.025

Global Footprint Network (2020a). Earth Overshoot Day . Available online at: https://www.overshootday.org (accessed: June 20, 2020).

Global Footprint Network (2020b). Earth Overshoot Day, Food . Available online at: https://www.overshootday.org/solutions/food/ (accessed: June 6, 2020)

Govindaraj, M. (2015). Is fortification or bio fortification of staple food crops will offer a simple solution to complex nutritional disorder in developing countries? J. Nutr. Food Sci. 5:351. doi: 10.4172/2155-9600.1000351

Green, B. G., and Nachtigal, D. (2015). Temperature affects human sweet taste via at least two mechanisms. Chem. Senses 40, 391–399. doi: 10.1093/chemse/bjv021

Guirado, E., Blanco-Sacristan, J., Rodriguez-Caballero, E., Tabik, S., Alcaraz-Segura, D., Martinez-Valderrama, J., et al. (2021). Mask r-cnn and obia fusion improves the segmentation of scattered vegetation in very high-resolution optical sensors. Sensors 21:320. doi: 10.3390/s21010320

Gunaratne, N. M., Fuentes, S., Gunaratne, T. M., Torrico, D. D., Francis, C., Ashman, H., et al. (2019). Effects of packaging design on sensory liking and willingness to purchase: a study using novel chocolate packaging. Heliyon 5:e01696. doi: 10.1016/j.heliyon.2019.e01696

Guo, Y. H., Fu, Y. S., Hao, F. H., Zhang, X., Wu, W. X., Jin, X. L., et al. (2021). Integrated phenology and climate in rice yields prediction using machine learning methods. Ecol. Indic. 120:106935. doi: 10.1016/j.ecolind.2020.106935

Gupta, P. K., Shree, V., Hiremath, L., and Rajendran, S. (2019). “The use of modern technology in smart waste management and recycling: artificial intelligence and machine learning,” in Recent Advances in Computational Intelligence , eds R. Kumar and U. K. Wiil (Cham: Springer International Publishing), 173–188. doi: 10.1007/978-3-030-12500-4_11

Gutiérrez-Uribe, J. A., Rojas-Garcia, C., Garcia-Lara, S., and Serna-Saldivar, S. O. (2010). Phytochemical analysis of wastewater (nejayote) obtained after lime-cooking of different types of maize kernels processed into masa for tortillas. J. Cereal Sci. 52, 410–416. doi: 10.1016/j.jcs.2010.07.003

Halloran, A., Clement, J., Kornum, N., Bucatariu, C., and Magid, J. (2014). Addressing food waste reduction in denmark. Food Policy 49, 294–301. doi: 10.1016/j.foodpol.2014.09.005

Harrar, V., and Spence, C. (2013). The taste of cutlery: how the taste of food is affected by the weight, size, shape, and colour of the cutlery used to eat it. Flavour 2:21. doi: 10.1186/2044-7248-2-21

Henderson, K., and Loreau, M. (2018). How ecological feedbacks between human population and land cover influence sustainability. PLoS Comput. Biol. 14:e1006389. doi: 10.1371/journal.pcbi.1006389

Hirvonen, K., Bai, Y., Haedey, D., and Masters, W. A. (2020). Affordability of the eat– lancet reference diet: a global analysis. Lancet Glob Health 8:e59–e66. doi: 10.1016/S2214-109X(19)30447-4

Hoek, A. C., Luning, P. A., Weijzen, P., Engels, W., Kok, F. J., and de Graaf, C. (2011). Replacement of meat by meat substitutes. a survey on person- and product-related factors in consumer acceptance. Appetite 56, 662–673. doi: 10.1016/j.appet.2011.02.001

Huang, C., Lai, C., Wu, X., Huang, Y., He, J., Huang, C., et al. (2017). An integrated process to produce bio-ethanol and xylooligosaccharides rich in xylobiose and xylotriose from high ash content waste wheat straw. Bioresour. Technol. 241, 228–235. doi: 10.1016/j.biortech.2017.05.109

Jones, J. M. (2014). Codex-aligned dietary fiber definitions help to bridge the 'fiber gap'. Nutr. J. 13:34. doi: 10.1186/1475-2891-13-34

Jørgensen, S., and Pedersen, L. J. T. (2018). “The circular rather than the linear economy,” in Restart Sustainable Business Model Innovation , eds S. Jørgensen and L. J. T. Pedersen (London: Palgrave Macmillan), 103–120. doi: 10.1007/978-3-319-91971-3_8

Jribi, S., Ben Ismail, H., Doggui, D., and Debbabi, H. (2020). Covid-19 virus outbreak lockdown: what impacts on household food wastage? Environ. Dev. Sustain. 22, 3939–3955. doi: 10.1007/s10668-020-00740-y

Jurgilevich, A., Birge, T., Kentala-Lehtonen, J., Korhonen-Kurki, K., Pietikainen, J., Saikku, L., et al. (2016). Transition towards circular economy in the food system. Sustainability 8:69. doi: 10.3390/su8010069

Kadam, S. U., Tiwari, B. K., and O'Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 61, 4667–4675. doi: 10.1021/jf400819p

Kamath, R. (2018). Food traceability on blockchain: walmart's pork and mango pilots with ibm. J. Br. Blockchain Assoc. 1, 47–53. doi: 10.31585/jbba-1-1-(10)2018

Kamilaris, A., Fonts, A., and Prenafeta-Bold?, F. X. (2019). The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci. Technol. 91 640–652. doi: 10.1016/j.tifs.2019.07.034

Kandra, P., Challa, M. M., and Jyothi, H. K. (2012). Efficient use of shrimp waste: present and future trends. Appl. Microbiol. Biotechnol. 93, 17–29. doi: 10.1007/s00253-011-3651-2

Karayannakidis, P. D., and Zotos, A. (2016). Fish processing by-products as a potential source of gelatin: a review. J. Aquat. Food Product Technol. 25, 65–92. doi: 10.1080/10498850.2013.827767

Kerch, G. (2015). The potential of chitosan and its derivatives in prevention and treatment of age-related diseases. Mar. Drugs 13, 2158–2182. doi: 10.3390/md13042158

Khan, H., and Lee, R. (2020). Does packaging influence taste and quality perceptions across varying consumer demographics? Food Qual. Prefer. 84:103932. doi: 10.1016/j.foodqual.2020.103932

La Barbera, F., Verneau, F., Amato, M., and Grunert, K. (2018). Understanding westerners' disgust for the eating of insects: the role of food neophobia and implicit associations. Food Qual. Prefer. 64 120–125. doi: 10.1016/j.foodqual.2017.10.002

Lagrange, V., Whitsett, D., and Burris, C. (2015). Global market for dairy proteins. J. Food Sci. 1, A16–22. doi: 10.1111/1750-3841.12801

Loutfi, A., Coradeschi, S., Mani, G. K., Shankar, P., and Rayappan, J. B. B. (2015). Electronic noses for food quality: a review. J. Food Eng. 144, 103–111. doi: 10.1016/j.jfoodeng.2014.07.019

Lowe, M. R., and Butryn, M. L. (2007). Hedonic hunger: a new dimension of appetite? Physiol. Behav. 91, 432–439. doi: 10.1016/j.physbeh.2007.04.006

Lynch, H., Johnston, C., and Wharton, C. (2018). Plant-based diets: considerations for environmental impact, protein quality, and exercise performance. Nutrients 10:1841. doi: 10.3390/nu10121841

Mazloumian, A., Rosenthal, M., and Gelke, H. (2020). Deep Learning for Classifying Food Waste . arXiv preprint (Ithaca, NY).

McKee, L. H., and Latner, T. A. (2000). Underutilized sources of dietary fiber: a review. Plant Foods Hum. Nutr. 55, 285–304. doi: 10.1023/A:1008144310986

Mela, D. J. (2006). Eating for pleasure or just wanting to eat? Reconsidering sensory hedonic responses as a driver of obesity. Appetite 47, 10–17. doi: 10.1016/j.appet.2006.02.006

Melgar-Lalanne, G., Hernández-Álvarez, A. J., and Salinas-Castro, A. (2019). Edible insects processing: traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 18, 1166–1191. doi: 10.1111/1541-4337.12463

Merli, R., Preziosi, M., and Acampora, A. (2018). How do scholars approach the circular economy? A systematic literature review. J. Cleaner Prod. 178, 703–722. doi: 10.1016/j.jclepro.2017.12.112

Mezzenga, R., Bo Lee, W., and Fredrickson, G. H. (2006). Design of liquid-crystalline foods via field theoretic computer simulations. Trends Food Sci. Technol. 17, 220–226. doi: 10.1016/j.tifs.2005.11.009

Monteiro, A., Paquincha, D., Martins, F., Queiros, R. P., Saraiva, J. A., Svarc-Gajic, J., et al. (2018). Liquid by-products from fish canning industry as sustainable sources of omega3 lipids. J. Environ. Manage. 219, 9–17. doi: 10.1016/j.jenvman.2018.04.102

Moore, D., Cranston, G., Reed, A., and Galli, A. (2012). Projecting future human demand on the earth's regenerative capacity. Ecol. Indic. 16, 3–10. doi: 10.1016/j.ecolind.2011.03.013

Ni, Q., Xu, G., Wang, Z., Gao, Q., Wang, S., and Zhang, Y. (2012). Seasonal variations of the antioxidant composition in ground bamboo sasa argenteastriatus leaves. Int. J. Mol. Sci. 13, 2249–2262. doi: 10.3390/ijms13022249

Nicola, M., Alsafi, Z., Sohrabi, C., Kerwan, A., Al-Jabir, A., Iosifidis, C., et al. (2020). The socio-economic implications of the coronavirus pandemic (covid-19): a review. Int. J. Surg. 78, 185–193. doi: 10.1016/j.ijsu.2020.04.018

Nicolotti, L., Mall, V., and Schieberle, P. (2019). Characterization of key aroma compounds in a commercial rum and an australian red wine by means of a new sensomics-based expert system (sebes)-an approach to use artificial intelligence in determining food odor codes. J. Agric. Food Chem. 67, 4011–4022. doi: 10.1021/acs.jafc.9b00708

Nirmala, C., Bisht, M. S., Bajwa, H. K., and Santosh, O. (2018). Bamboo: A rich source of natural antioxidants and its applications in the food and pharmaceutical industry. Trends Food Sci. Technol. 77, 91–99. doi: 10.1016/j.tifs.2018.05.003

Nordlund, E., Lille, M., Silventoinen, P., Nygren, H., Seppanen-Laakso, T., Mikkelson, A., et al. (2018). Plant cells as food - a concept taking shape. Food Res. Int. 107, 297–305. doi: 10.1016/j.foodres.2018.02.045

Okajima, K., Ueda, J., and Spence, C. (2013). Effects of visual texture on food perception. J. Vis. 13, 1078–1078. doi: 10.1167/13.9.1078

Olsen, N. V. (2015). Design thinking and food innovation. Trends Food Sci. Technol. 41, 182–187. doi: 10.1016/j.tifs.2014.10.001

Olsen, P., Borit, M., and Syed, S. (2019). Applications, Limitations, Costs, and Benefits Related to the Use of Blockchain Technology in the Food Industry . Nofima rapportserie. Available online at: http://hdl.handle.net/11250/2586121

O'Riordan, K., Fotopoulou, A., and Stephens, N. (2017). The first bite: imaginaries, promotional publics and the laboratory grown burger. Public Underst. Sci. 26, 148–163. doi: 10.1177/0963662516639001

Panesar, R., Kaur, S., and Panesar, P. S. (2015). Production of microbial pigments utilizing agro-industrial waste: a review. Curr. Opin. Food Sci. 1, 70–76. doi: 10.1016/j.cofs.2014.12.002

Papargyropoulou, E., Lozano, R., Steinberger, J. K., Wright, N., and bin Ujang, Z. (2014). The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 76, 106–115. doi: 10.1016/j.jclepro.2014.04.020

Pennanen, K., Närväinen, J., Vanhatalo, S., Raisamo, R., and Sozer, N. (2020). Effect of virtual eating environment on consumers' evaluations of healthy and unhealthy snacks. Food Qual. Prefer. 82:103871. doi: 10.1016/j.foodqual.2020.103871

Pentikäinen, S., Tanner, H., Karhunen, L., Kolehmainen, M., Poutanen, K., and Pennanen, K. (2019). Mobile phone app for self-monitoring of eating rhythm: field experiment. JMIR mHealth uHealth 7:e11490. doi: 10.2196/11490

Perry, R. A., Mallan, K. M., Koo, J., Mauch, C. E., Daniels, L. A., and Magarey, A. M. (2015). Food neophobia and its association with diet quality and weight in children aged 24 months: a cross sectional study. Int. J. Behav. Nutr. Phys. Act. 12:13. doi: 10.1186/s12966-015-0184-6

Piqueras-Fiszman, B., and Spence, C. (2011). Do the material properties of cutlery affect the perception of the food you eat? An exploratory study. J. Sens. Stud. 26, 358–362. doi: 10.1111/j.1745-459X.2011.00351.x

Pitkänen, L., Heinonen, M., and Mikkonen, K. S. (2018). Safety considerations of phenolic-rich plant polysaccharides for food use: case study on softwood galactoglucomannan. Food Funct. 9, 1931–1943. doi: 10.1039/C7FO01425B

Plasek, B., Lakner, Z., and Temesi, A. (2020). Factors that influence the perceived healthiness of food-review. Nutrients 12:1881. doi: 10.3390/nu12061881

Plazzotta, S., Manzocco, L., and Nicoli, M. C. (2017). Fruit and vegetable waste management and the challenge of fresh-cut salad. Trends Food Sci. Technol. 63, 51–59. doi: 10.1016/j.tifs.2017.02.013

Post, M. J. (2014). Cultured beef: medical technology to produce food. J. Sci. Food Agric. 94, 1039–1041. doi: 10.1002/jsfa.6474

Poutanen, K., Nordlund, E., Paasi, J., Vehmas, K., and Åkerman, M. (2017). Food Economy 4.0. VTT - Technical Research Center of Finland Ltd . Available online at: https://www.vtt.fi/inf/pdf/visions/2017/V10.pdf

Priyadarshani, I., and Rath, B. (2012). Commercial and industrial applications of micro algae—a review. J. Algal Biomass Util. 3, 89–100.

Quested, T., and Johnson, H. (2009). Household Food and Drink Waste in the Uk . WRAP. Available online at: https://wrap.org.uk/resources/report/household-food-and-drink-waste-uk-2009

Raheem, D., Shishaev, M., and Dikovitsky, V. (2019). Food system digitalization as a means to promote food and nutrition security in the barents region. Agriculture 9:168. doi: 10.3390/agriculture9080168

Rahmanian, N., Jafari, S. M., and Galanakis, C. M. (2014). Recovery and removal of phenolic compounds from olive mill wastewater. J. Am. Oil Chem. Soc. 91, 1–18. doi: 10.1007/s11746-013-2350-9

Ramos-Elorduy, J. (2009). Anthropo-entomophagy: cultures, evolution and sustainability. Entomol. Res. 39, 271–288. doi: 10.1111/j.1748-5967.2009.00238.x

Ranasinghe, N., Tolley, D., Nguyen, T. N. T., Yan, L., Chew, B., and Do, E. Y. (2019). Augmented flavours: modulation of flavour experiences through electric taste augmentation. Food Res. Int. 117, 60–68. doi: 10.1016/j.foodres.2018.05.030

Reinoso Carvalho, F., Velasco, C., van Ee, R., Leboeuf, Y., and Spence, C. (2016). Music influences hedonic and taste ratings in beer. Front. Psychol. 7:636. doi: 10.3389/fpsyg.2016.00636

Rizzato, M., Di Dio, C., Fasano, F., Gilli, G., Marchetti, A., and Sensidoni, A. (2016). Is food desirability affected by social interaction? Food Qual. Prefer. 50, 109–116. doi: 10.1016/j.foodqual.2016.02.005

Rockenfeller, P., and Madeo, F. (2010). Ageing and eating. Biochim. Biophys. Acta 1803, 499–506. doi: 10.1016/j.bbamcr.2010.01.001

Roos, Y. H. (2020). Water and pathogenic viruses inactivation—food engineering perspectives. Food Eng. Rev. 12, 251–267. doi: 10.1007/s12393-020-09234-z

Ryan, C., Gúeret, C., Berry, D., Corcoran, M., Keane, M. T., and Mac Namee, B. (2021). Predicting Illness for a Sustainable Dairy Agriculture: Predicting and Explaining the Onset of Mastitis in Dairy Cows . arXiv preprint.

Sabaté, J., and Soret, S. (2014). Sustainability of plant-based diets: back to the future. Am. J. Clin. Nutr. 100, 476S–482S. doi: 10.3945/ajcn.113.071522

Saini, A., Panesar, P. S., and Bera, M. B. (2019). Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 6:26. doi: 10.1186/s40643-019-0261-9

Sakagami, H., Kushida, T., Oizumi, T., Nakashima, H., and Makino, T. (2010). Distribution of lignin-carbohydrate complex in plant kingdom and its functionality as alternative medicine. Pharmacol. Ther. 128, 91–105. doi: 10.1016/j.pharmthera.2010.05.004

Salah, K., Rehman, M. H. U., Nizamuddin, N., and Al-Fuqaha, A. (2019). Blockchain for ai: review and open research challenges. IEEE Access 7, 10127–10149. doi: 10.1109/ACCESS.2018.2890507

Sasson, A. (2012). Food security for africa: an urgent global challenge. Agric. Food Secur. 1:2. doi: 10.1186/2048-7010-1-2

Sathasivam, R., Radhakrishnan, R., Hashem, A., and Abd Allah, E. F. (2019). Microalgae metabolites: a rich source for food and medicine. Saudi J. Biol. Sci. 26, 709–722. doi: 10.1016/j.sjbs.2017.11.003

Siegrist, M., and Hartmann, C. (2020). Consumer acceptance of novel food technologies. Nat. Food 1, 343–350. doi: 10.1038/s43016-020-0094-x

Siró, I., Kapolna, E., Kapolna, B., and Lugasi, A. (2008). Functional food. Product development, marketing and consumer acceptance-a review. Appetite 51, 456–467. doi: 10.1016/j.appet.2008.05.060

Smithers, G. W. (2008). Whey and whey proteins—from ‘gutter-to-gold'. Int. Dairy J. 18, 695–704. doi: 10.1016/j.idairyj.2008.03.008

Springmann, M., Mason-D'Croz, D., Robinson, S., Garnett, T., Godfray, H. C., Gollin, D., et al. (2016). Global and regional health effects of future food production under climate change: a modelling study. Lancet 387, 1937–1946. doi: 10.1016/S0140-6736(15)01156-3

Stephens, N., Di Silvio, L., Dunsford, I., Ellis, M., Glencross, A., and Sexton, A. (2018). Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci. Technol. 78, 155–166. doi: 10.1016/j.tifs.2018.04.010

Sun, J., Zhou, W. B., Huang, D. J., Fuh, J. Y. H., and Hong, G. S. (2015). An overview of 3d printing technologies for food fabrication. Food Bioprocess Technol. 8, 1605–1615. doi: 10.1007/s11947-015-1528-6

Tolba, R., Wu, G., and Chen, A. (2011). Adsorption of dietary oils onto lignin for promising pharameutical and nutritional applications. Bioresources 6, 1322–1335.

Toldrá, F., Aristoy, M. C., Mora, L., and Reig, M. (2012). Innovations in value-addition of edible meat by-products. Meat Sci. 92, 290–296. doi: 10.1016/j.meatsci.2012.04.004

Torres-Tiji, Y., Fields, F. J., and Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnol. Adv. 41:107536. doi: 10.1016/j.biotechadv.2020.107536

van Huis, A., and Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 37, 43. doi: 10.1007/s13593-017-0452-8

Vigani, M., Parisi, C., Rodriguez-Cerezo, E., Barbosa, M. J., Sijtsma, L., Ploeg, M., et al. (2015). Food and feed products from micro-algae: market opportunities and challenges for the eu. Trends Food Sci. Technol. 42, 81–92. doi: 10.1016/j.tifs.2014.12.004

Wang, Q. J., Mielby, L. A., Junge, J. Y., Bertelsen, A. S., Kidmose, U., Spence, C., et al. (2019). The role of intrinsic and extrinsic sensory factors in sweetness perception of food and beverages: a review. Foods 8:211. doi: 10.3390/foods8060211

Weinrich, R. (2019). Opportunities for the adoption of health-based sustainable dietary patterns: a review on consumer research of meat substitutes. Sustainability 11:4028. doi: 10.3390/su11154028

Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., Helliwell, K. E., et al. (2017). Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29, 949–982. doi: 10.1007/s10811-016-0974-5

Wieben, E. (2017). Food loss and Waste and the Linkage to Global Ecosystems. Food and Agriculture Organization of the United Nations . Available online at: http://www.fao.org/publications/card/en/c/7fed720c-18e6-4be4-83d2-385b05b79ace/

Xiao, J.-R., Chung, P.-C., Wu, H.-Y., Phan, Q.-H., Yeh, J.-L. A., and Hou, M. T.-K. (2021). Detection of strawberry diseases using a convolutional neural network. Plants 10:31. doi: 10.3390/plants10010031

Xiao, Y., Chen, C., Wang, B., Mao, Z., Xu, H., Zhong, Y., et al. (2018). In vitro digestion of oil-in-water emulsions stabilized by regenerated chitin. J. Agric. Food Chem. 66, 12344–12352. doi: 10.1021/acs.jafc.8b03873

Xu, M., Wang, J., and Zhu, L. (2019). The qualitative and quantitative assessment of tea quality based on e-nose, e-tongue and e-eye combined with chemometrics. Food Chem. 289, 482–489. doi: 10.1016/j.foodchem.2019.03.080

Yan, K. S., and Dando, R. (2015). A crossmodal role for audition in taste perception. J. Exp. Psychol. 41, 590–596. doi: 10.1037/xhp0000044

Zampollo, F. (2020). Food Design and Food Design Thinking . Available online at: http://francesca-zampollo.com/category/uncategorized/

PubMed Abstract | Google Scholar

Zarbà, C., La Via, G., Pappalardo, G., and Hamam, M. S. M. (2020). The sustainability of novel foods in the transition phase to the circular economy; the trade “algae fit for human consumption” in european union. AIMS Agric. Food 5, 54–75. doi: 10.3934/agrfood.2020.1.54

CrossRef Full Text

Keywords: food loss and food waste, circular economy, food production and food security, food structure design, new ingredients, digitalization, food design

Citation: Valoppi F, Agustin M, Abik F, Morais de Carvalho D, Sithole J, Bhattarai M, Varis JJ, Arzami ANAB, Pulkkinen E and Mikkonen KS (2021) Insight on Current Advances in Food Science and Technology for Feeding the World Population. Front. Sustain. Food Syst. 5:626227. doi: 10.3389/fsufs.2021.626227

Received: 30 November 2020; Accepted: 23 September 2021; Published: 21 October 2021.

Reviewed by:

Copyright © 2021 Valoppi, Agustin, Abik, Morais de Carvalho, Sithole, Bhattarai, Varis, Arzami, Pulkkinen and Mikkonen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Fabio Valoppi, fabio.valoppi@helsinki.fi

Food Technology: What It Is + Why It Matters

essay on food technology

Technology touches every facet of our lives, and our food is no different

Technology touches every facet of our lives, and our food is no different. From growing crops to processing ingredients to preparing delicious meals, food technology plays a key role in the lifecycle of the food we eat. To grow and process tasty and nutritious food on a scale to feed billions of people, nature sometimes needs a little help. That’s where food technology comes in.

What is Food Technology?

While the word “technology” may conjure thoughts of robotics, and computer algorithms nowadays, the definition of food technology isn’t tied to the latest tech innovations of today. Even the process of canning (developed in 1810 by Nicolas Appert) is considered a part of food technology because it uses technology (stoves and containers) to preserve food and make it last longer. 

According to the Institute of Food Technologists (IFT) , one can define food technology as the application of food science to the various foods we eat, and it includes:

  • food selection
  • food preservation
  • food processing
  • food packaging
  • food distribution, and
  • food usage.

Fields of study related to food technology can include: 

  • analytical chemistry, 
  • biotechnology, 
  • engineering, 
  • nutrition, 
  • quality control, and 
  • food safety management.

essay on food technology

Food systems represent a massive industry that touches virtually everyone on the planet in some way. Many universities offer diplomas, degrees and certificates in food science and technology and have laboratories where new food technology is developed and tested. Sometimes these laboratories are also owned and run by governments or corporations.

The Importance of Food Technology

Regardless of whether it’s a school, government, food scientist, or corporation developing food tech, the purpose of it is to meet the growing demand for safe and healthy food across the globe. Advancement in food science, food system innovation, and technology leads to: 

  • reduced plant and crop disease, 
  • improved food quality, 
  • safer food consumption, 
  • a wider variety of food items, 
  • more affordable food items, 
  • better food preservation techniques, and 
  • less food waste.

Processed Food

essay on food technology

But, if we look back to our food technology definition, we can see that processed food refers to just about any food that’s a part of a food system. Even the act of picking an apple, washing it, packing it into a box and shipping it to a grocery store is a process. 

Processed food includes: 

  • soft drinks,
  • snack foods,
  • frozen foods, 
  • confectionary,
  • fresh produce,
  • tea and coffee,
  • canned products,
  • wine and beer, and 
  • prepared vegetables.

Food technology plays a pivotal role in making all the various processes these foods go through safer, more cost efficient and more energy efficient, from the farm right to your table.

Food Security

essay on food technology

Ensuring that supply chain demands are met to have a sufficient global food supply is crucial to keeping developing nations fed.

Making sure everyone in the world has access to safe, nutritious food doesn’t just mean growing more of it. It means converting as much of that freshly grown raw food as possible into wholesome products while using minimum energy consumption and creating minimal waste throughout the supply chain (processing, packaging and distribution) of the food. Food technology is vital to making sure the entire world is food secure.  

There is increasing demand for convenient food options like ready-made meals that we essentially just heat and eat, but there is also a growing demand for less salt, saturated fats and trans fats in those same types of meals. 

Food science and technology is constantly finding new ways of reducing salt and fat content in our convenience foods while also preserving the usefulness of what salt and fat do for these foods. Salt is key to flavoring these foods, lowering water activity in them, preventing them from spoiling, and increasing stability. Trans fats are important for getting an acceptable texture in them. There is a constant balance going on between lessening the use of salt and fat while finding new formulations that will perform their functions in food.

Developments in Food Technology

Nicolas Appert, a food scientist, is often cited as the father of food science or, at least, the father of canning, as he developed the first canning process in the early 1800s. However, using technology to grow and process food goes back much further than that. 

essay on food technology

Dr. ​​Diana Maricruz Perez-Santos, with the Instituto Politécnico Nacional in Mexico City, says food science and technology have been present throughout human history. In her opinion, food science and technology started when humans transitioned from nomadic to agricultural lifestyles, which facilitated practices like growing fruit, domesticating cattle and other animals, and farming.  

As human civilization expanded, the first processed food products, like bread and wine, were introduced to prolong the shelf life of raw ingredients by turning them into edible items that lasted longer than the ingredients otherwise would. 

Dr. Perez-Santos points to Appert’s invention of canning as a “turning point” in food science and technology, as it allowed for food preservation on a much larger, more industrial scale. 

Another notable development in food technology includes the development of the pasteurization process by French scientist Louis Pasteur in the 1860s, who discovered that heating items like milk would kill bacteria and make them safer for consumption.

Food Technology Examples

In addition to the many food technology examples we’ve covered so far, there are a lot of modern technologies being used to grow and process our food. 

essay on food technology

Robots also play a huge role in packing and processing foods. For example, some estimates suggest that, in Europe alone, there are approximately 30,000 robots in the food industry.  

Another type of technology that is changing the food industry is software. Like machine learning algorithms, software increases the predictability of crop yields by using data and aids in quality assurance. Meanwhile, artificial intelligence streamlines production lines, making them more efficient.

Man Scanning a Tray of Lettuce at Bowery Farming

3D printing is another modern form of technology that has made its way into the food industry. NASA astronauts can now 3D print pizzas in space and the technology can also help develop softer foods for people with swallowing disorders.

In addition to robots, drones (together with data technology) are used for precision agriculture, which is the monitoring and management of crop yields, soil levels, and even weather patterns to increase farming efficiency. If, for example, a disease outbreak occurs in a field, farmers can use the technology to manage the outbreak more precisely than they could before.

Software can be used to reduce food waste. For example, the Copia app connects places that need food, like shelters, after-school programs, and other nonprofit organizations,; with businesses that have surplus food.  

How Food Technology Benefits Consumers

Food technology provides a myriad of benefits to consumers. 

First and foremost is increased food safety. For example, in the Middle Ages, ergotism (poisoning via the ergot fungus) was prevalent in Northern Europe, particularly where rye bread consumption was high. Modern milling techniques – a type of food technology – have largely rendered ergot poisoning a thing of the past.

Consumers also benefit from better quality of food. Food science and technology are used to make foods more nutritious and better tasting, especially the convenient ready-made meals that play a large role in people’s busy modern lives. For example, milder production processes, that use high pressure or steam, better preserve the taste and nutrients in food.

If you have ever kept a can of food for an extended period of time before eating it, you’ve benefited from food technology’s ability to prolong the preservation of food. 

As you marvel at the array of different types of food items in your grocery store, you can thank food technology for developing all of them. The 200 varieties of cookies in the cookie aisle? Food technology. 

Imagine how limited your diet would be if you could only purchase raw ingredients and had to make everything from scratch. 

It also helps cut down on food, energy and general waste by helping to produce food more efficiently, developing more sustainable packaging, and distributing excess food to where it is needed. 

From increased food security via new farming methods to less food waste due to more streamlined supply chains, customers benefit greatly from food technology. 

How We’re Using Food Technology at Bowery

At Bowery, we use the ancient technology of hydroponics to grow our food in vertical shelves , but we also utilize the BoweryOS , a much more modern type of food technology.

We like to think of the BoweryOS as the central nervous system for each of our indoor farms . It collects billions of data points through an extensive network of sensors and cameras that feed into proprietary machine-learning algorithms that the BoweryOS interprets in real time.

FXBlogpost

That means the BoweryOS can pinpoint an arugula plant that needs more light while also identifying and alerting our farmers to a batch of butterhead lettuce that needs harvesting. The machine learning algorithm gets smarter with each growing cycle, meaning the food we grow also improves exponentially. 

Because we run completely indoor farms that are not directly affected by the weather, the BoweryOS gives us full control over things like:

  • spectra of light, 
  • photoperiod (day/night cycles), 
  • intensity of light, 
  • irrigation schedules, 
  • nutrients, 
  • temperature, 
  • humidity, and 

Our farmers control all these variables and can adjust them minute by minute, if necessary, to optimize for plant health and, ultimately, flavor. We use the massive amounts of data we receive from our array of cameras and sensors to tweak our growing schedules and optimize our crops for the very best nutrition and flavor. 

Scanning in a Bowery Farm for Traceability

Food technology has helped humans throughout our history to expand and thrive. For as long as humans have been cooking, growing and preserving our own food, we’ve relied on food technology to help us develop more delicious, nutritious, and bountiful harvests while also being able to keep that food for longer. Food technology will continue to be the most important industry on the planet, as we continue to find new ways to utilize technology to feed the world’s population .

Leaf through what’s new.

From tech to farm to table, we’re always cooking up something fresh.

A Letter from our Founder

A Letter from our Founder

Chef Leah Cohen’s Bowery Recipes

Chef Leah Cohen’s Bowery Recipes

Big Game Recipe Roundup

Big Game Recipe Roundup

food technology Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Food technology neophobia as a psychological barrier to clean meat acceptance

Exploring the design space for human-food-technology interaction: an approach from the lens of eating experiences.

Embedded in everyday practices, food can be a rich resource for interaction design. This article focuses on eating experiences to uncover how bodily, sensory, and socio-cultural aspects of eating can be better leveraged for the design of user experience. We report a systematic literature review of 109 papers, and interviews with 18 professional chefs, providing new understandings of prior HFI research, as well as how professional chefs creatively design eating experiences. The findings inform a conceptual framework of designing for user experience leveraging eating experiences. These findings also inform implications for HFI design suggesting the value of multisensory flavor experiences, external and internal sensory stimulation and deprivation, aspects of eating for communicating meaning, and designing with contrasting pleasurable and uncomfortable experiences. The article concludes with six charts as novel generative design tools for HFI experiences focused on sensory, emotional, communicative, performative, and temporal experiences.

Identifying Consumer Groups and Their Characteristics Based on Their Willingness to Engage with Cultured Meat: A Comparison of Four European Countries

Cultured meat, as a product of recent advancement in food technology, might become a viable alternative source of protein to traditional meat. As such, cultured meat production is disruptive as it has the potential to change the demand for traditional meats. Moreover, it has been claimed it can be more sustainable regarding the environment and that it is, perhaps, a solution to animal welfare issues. This study aimed at investigating associations between the consumer groups and demographic and psychographic factors as well as identifying distinct consumer groups based on their current willingness to engage with cultured meat. Four European countries were studied: the Netherlands (NL), the United Kingdom (UK), France (FR) and Spain (ES). A sample of 1291 responses from all four countries was collected between February 2017 and March 2019. Cluster analysis was used, resulting in three groups in the NL and UK, and two groups in FR and ES. The results suggest that Dutch consumers are the most willing to engage with cultured meat. Food neophobia and food technology neophobia seem to distinguish the groups the clearest. Moreover, there is some evidence that food cultural differences among the four countries seem to be also influencing consumers’ decision.

Errors in Making Indirect Questions in the Interlanguage of Students at the Faculty of Food Technology

In this paper, the author attempts to identify the most common errors that occur in the interlanguage of students at the Faculty of Food Technology when formulating indirect questions in English language. According to Processability theory (PT), language is acquired in a predictable way, in six stages, the last stage being acquiring word order in subordinate clauses, i.e. cancelling inversion. Since interlanguage presents a dynamic language system that retains some features of the first language or generalizes the second language rules in speech or writing, the origin of errors can be found in mother tongue or in the misapplication of the rules when adopting a second language. Although PT is not concerned with the errors made by the second language learners, this paper will try to identify the origin of errors that appear in the students' interlanguage and the acquisition of the last stage, i.e. the word order in subordinate clauses. In that way, it will be determined whether the errors (inter- or intralingual) made by the students prevent them from acquiring the last stage of PT.

Substitusi Tepung Ubi Jalar Ungu dan Tepung Tempe pada Bolu Cukke Merupakan Alternatif PMT untuk Ibu Hamil dan Balita

Supplementary food, especially for vulnerable groups such as pregnant women and toddlers, is one strategy in dealing with nutritional problems, especially during the COVID-19 pandemic. The aim of the study was to determine the acceptability of Bolu Cukke with purple sweet potato flour and tempeh flour substitutes. Experimental research was conducted at the Food Technology Laboratory, Department of Nutrition, Poltekkes, Ministry of Health Makassar with a total of 50 panelists in 2019. The nutritional content was analyzed using the Kjhedal method for protein, gravimetry for fat, and titrimetry for carbohydrates. Acceptance test was analyzed using Kruskal-Wallis and Mann-Whitney test with 95% confidence level. The results showed that the color and aroma of the four sample groups were different (p=0.000 and p=0.028), while there was no difference in texture and taste. Based on the nutritional content, group C had the highest protein content, group A had the highest fat content while group D had the highest carbohydrate content.

Mutu Gizi Aneka Kudapan Cokibus

Snacks are small meals usually served with drinks, both for daily use and for special occasions. Cokibus snack is a snack that is made to complement the intake of nutrients, especially for children who experience stunting. Makassar City has more malnourished children than other cities/districts, namely 22.1% underweight, 25.2% stunting, and 9.4% wasting. This study aims to determine changes in nutritional quality, namely the levels of macronutrients, iron, and calcium in various Cokibus snacks. This type of research is laboratory research. The sample consisted of 4 kinds of snacks, 1 type of Cokibus consisting of standard, and one substitution treatment of 10% snakehead fish meal. Each sample was repeated twice, so there were 16 samples in total. The research was conducted at the Food Technology Laboratory, Department of Nutrition, Poltekkes, Ministry of Health, Makassar, and the sample was examined at the Quality Control Laboratory of SMTI Makassar. The results showed that per 100 grams of various Cokibuses, the average carbohydrate content decreased -0.1%, protein content increased between 0.21% to 0.72%, fat increased 0.02% to 0.12%, iron increased between 0.43% to 0.63%. Calcium also increased between 0.29% to 0.85%. The snack with the highest increase in nutritional content was Charrot muffins, and the lowest increase in nutritional value was Chobus cupcakes.

Sentul Fruit (Sandoricum koetjape) Peel as Anti-Inflammation for Gingivitis after Scaling

Various herbs are used as analgesic, anti-inflammatory, anti-bacterial, anti-fungal, expectorant, anti-plaque and odorant. Sentul is an edible fruit and is also used in traditional medicinal herbs which can treat diarrhea, relieve fever, and as an anthelmintic. Sentul bark methanol extract can inhibit the growth of fungus Candida albican by 39.65%. In addition, the ethyl acetate extract of the sentul leaves also has anti-bacterial activity. The aim of this study is to determine the effect of fractionation with different types of solvents on the phytochemical compounds of Sentul fruit peel in Bali province. This research is an experimental study in a laboratory with qualitative and quantitative analysis models of chemical compounds. This research was carried out from March to August 2021. The research location was carried out in the laboratory of the Faculty of Food Technology, Udayana University. Sample criteria was old Sentul peel, about 30 kilograms. Data was collected based on the results of examinations from the Laboratory of the Faculty of Food Technology, Udayana University which subsequently analyzed qualitatively and descriptively. From several phytochemical compounds, flavonoids, saponins and tannins are aromatic hydroxyl groups that act as antibacterial. Therefore, seen from the highest levels of flavonoids, saponins and tannins, aqua fraction of Sentul ethanol extract is the best treatment with flavanoid levels of 11476.16 mg/100g QE, tannins 88.605 mg/g and saponins 6.862 mg/g.

Venture capital accelerates food technology innovation

Research of the influence of the components of chocolate glazes on their rheological characteristics.

Chocolate glaze is a large-tonnage component of various branches of food technology, which also performs important technological tasks, namely: helps to slow down oxidation processes; improving emulsifying and dispersing properties; prevents hardening of certain types of products; prevents the ingress of moisture, which increases the shelf life of the confectionery, etc. At the first stage, the main problems of production of the confectionery industry are determined - they require a scientific justification for the choice of competitive components of production technology, taking into account quality-cost indicators. Next, for the specified parameters of the production technology determine the components of the formulation of chocolate glazes. As an example, the results of studies of selected technological parameters of some compositions of chocolate glazes, a comparative analysis of their effectiveness on the rheological properties of compositions based on cocoa butter: alternative surfactants – standard lecithin – alternative surfactants - monoglycerides and a mixture of mono-, di- and triglycerides from palm oil by glycerolysis in the presence of an alkaline catalyst. Analysis of the system of results and calculation equations allowed to offer recommendations for the intensification of production processes: effectively reduces the viscosity of compositions based on cocoa butter, which, in turn, makes it possible to use them for partial replacement of lecithin in the manufacture of confectionery.

Development of Encapsulation Strategies and Composite Edible Films to Maintain Lactoferrin Bioactivity: A Review

Lactoferrin (LF) is a whey protein with various and valuable biological activities. For this reason, LF has been used as a supplement in formula milk and functional products. However, it must be considered that the properties of LF can be affected by technological treatments and gastrointestinal conditions. In this article, we have revised the literature published on the research done during the last decades on the development of various technologies, such as encapsulation or composite materials, to protect LF and avoid its degradation. Multiple compounds can be used to conduct this protective function, such as proteins, including those from milk, or polysaccharides, like alginate or chitosan. Furthermore, LF can be used as a component in complexes, nanoparticles, hydrogels and emulsions, to encapsulate, protect and deliver other bioactive compounds, such as essential oils or probiotics. Additionally, LF can be part of systems to deliver drugs or to apply certain therapies to target cells expressing LF receptors. These systems also allow improving the detection of gliomas and have also been used for treating some pathologies, such as different types of tumours. Finally, the application of LF in edible and active films can be effective against some contaminants and limit the increase of the natural microbiota present in meat, for example, becoming one of the most interesting research topics in food technology.

Export Citation Format

Share document.

Thijs Geijer

Senior Sector Economist

Food tech: Technology in the food industry

Technology is increasingly contributing to food’s journey from the farm to the fork. In this report, we look at the driving forces behind ‘food tech’ and the most promising food tech applications, robotics, data technology and novel processing techniques

Download pdf

Executive summary

  • More and better food through food tech

Technology helps food manufacturers to produce more efficiently for a growing world population. Improving shelf life and food safety revolves around technology, and greater use of machines and software ensures affordability and consistent quality. The importance of technology for manufacturers continues to grow.

  • Demanding customers, consumers and society

Food industry customers, like retailers, set stricter product requirements and require larger volumes at low prices. Higher efficiency and labour productivity are essential to remaining competitive. At the same time, consumers and society are demanding in terms of health and sustainability. Robotisation, digitalisation and novel processing methods enable companies to respond to this demand.

  • Food industry embraces robotics

The rise of robotics in the food industry is a tangible example of food tech. The number of robots in the European food industry is well over 30,000, while the number of robots per 10,000 employees rose from 62 in 2013 to 84 in 2017. Although Germany is the largest market, robot density is relatively highest in Sweden, Denmark, the Netherlands and Italy.

  • Impact of technology on the labour market

Robotisation and digitalisation increase the complexity of production processes and this impacts the labour market. Employees’ duties change and the required level of education increases. Applying food tech, therefore, requires both investments in capital goods and attention to training current staff and recruiting new staff.

The World Food Prize Foundation

  • Media Contact
  • World Food Prize Week Media Information
  • Join Our Media List
  • Interview Laureates
  • Archived News Coverage
  • The President's Blog

The Borlaug Blog

The role of technology in achieving global food security.

Global food security implies that all people throughout the world, including vulnerable groups such as the rural and urban poor, at all times have access to adequate quantities of safe and nutritious food to maintain a healthy and active life. Food security is a right that should be embraced by all countries, irrespective of their level of technical, economic and social development. Food security is essential to a country but it is challenged by factors such as: lack of education and political instability; inadequate planning and policies; lack of transparency and improper governance, financing; slow paces in technology development and other governance issues. Improving these factors should contribute to improved food intake and less hunger. I believe that technology can contribute to the achievement of global food security.

The term technology is broad and is defined as the collection of techniques, skills, methods and processes in the production of goods. The technology required to be food secure is country-specific. It depends on physical environment, infrastructure, climate, culture, literacy, economic conditions and governance. Developing countries typically develop food security strategies following paths and processes that are different from those adopted by developed countries. In developing countries, technologies to achieve food security span a wide range of subject areas, including land preparation, soil and water management, seed production, weed management, pest and disease control, farm management, harvesting and such post-harvest practices like storage, processing, packaging, marketing and distribution. Efficient irrigation technologies, water harvesting and conservation techniques can address water constraints in sub-Saharan Africa. Poor soils, water scarcity, crop pests/diseases/weeds, and unsuitable temperatures are well-known to reduce the productivity of food crops, leading to low efficiency of input use, suppressed crop output and ultimately reduced food security. Post-harvest losses of crops carry the burden of all resources consumed in producing the harvest that is lost. Storage and processing technologies in root and tuber crops, such as cassava and sweet potato, minimizes rates of post-harvest spoilage. Pests and diseases are frequent constraints and can significantly reduce crop productivity. Some of the technologies hasten completion of a task and at a lower cost. Moreover, food diversity is very important to meet required nutrition levels.

Food security in developing countries is further complicated by social equality and political stability. People lacking food security will search for a better life elsewhere. Food insecurity and hunger have led to the displacement of millions, and migration brought about by food insecurity has destabilized several countries. Complicating the situation even more, even when people may have enough to eat, they still may be unhealthy due to poor diets that lead to obesity, diabetes, heart disease and other malign conditions. Technology can help provide basic and extra food choices to vulnerable populations. This can come from improved crop varieties, for example orange-fleshed sweet potato added into a basket of purple- or white-fleshed sweet potato or iron rich beans. It can help restore political stability by ensuring that the production of food is based on: efficient agricultural activities; sustainable practices; high productivity from well adapted, improved crop varieties; dynamic employment and revenue generation for large numbers of people. Technology can support improved economic growth and social well-being; effective harvest and post-harvest practices to minimize food loss; effective storage and conservation practices to increase the value of harvested products; identification of high value added products to improve economic gains for processors and ensure long shelf-life and enhanced marketing of available foodstuffs at competitive prices, based on effective government policies.

Food security can be achieved by using knowledge of the best practices based on science. Technological packages have to be well chosen and be appropriate for local contexts so that they are used by a range of actors along the production to consumption chain. The effectiveness of the whole process will depend on location, farm sizes, farmer literacy, access to information and government policies and their enforcement. For example, some countries may use genetically modified seed whereas others will not. The choice will therefore depend on a deliberate, pragmatic and systematic analysis of the needs of each country.

Technologies used in achieving food security should ensure high quality food products. Low food quality exposes the population to poor nutrition and food safety issues, which in turn create a burden on the society, affecting overall socio-economic well-being. This issue of quality should be taken into account when making choices about types of staple crops, post-harvest practices and processing and packaging of finished products that are safe for consumption.

To ensure that food security is indeed global, the availability and use of technology should include a large number of trained professionals with the expertise needed in the different areas mentioned earlier. Training will be required, but without this there will be very little research and innovation, and adequately sized and dynamic businesses will not be developed to provide the needed sustained output of knowledge, skills and products.

Quick Links

Subscribe to the world food prize newsletter, connect with us, contact world food prize.

100 Locust Street Des Moines, Iowa 50309 USA

Phone:  +1 515-245-3783 +1 515-245-3783

Fax:  +1 515-245-3785

© 2024 The World Food Prize Foundation. All Rights Reserved. Sitemap

Talk to our experts

1800-120-456-456

  • Technology Essay

ffImage

Essay on Technology

The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes. Technology provides innovative ways of doing work through various smart and innovative means. 

Electronic appliances, gadgets, faster modes of communication, and transport have added to the comfort factor in our lives. It has helped in improving the productivity of individuals and different business enterprises. Technology has brought a revolution in many operational fields. It has undoubtedly made a very important contribution to the progress that mankind has made over the years.

The Advancement of Technology:

Technology has reduced the effort and time and increased the efficiency of the production requirements in every field. It has made our lives easy, comfortable, healthy, and enjoyable. It has brought a revolution in transport and communication. The advancement of technology, along with science, has helped us to become self-reliant in all spheres of life. With the innovation of a particular technology, it becomes part of society and integral to human lives after a point in time.

Technology is Our Part of Life:

Technology has changed our day-to-day lives. Technology has brought the world closer and better connected. Those days have passed when only the rich could afford such luxuries. Because of the rise of globalisation and liberalisation, all luxuries are now within the reach of the average person. Today, an average middle-class family can afford a mobile phone, a television, a washing machine, a refrigerator, a computer, the Internet, etc. At the touch of a switch, a man can witness any event that is happening in far-off places.  

Benefits of Technology in All Fields: 

We cannot escape technology; it has improved the quality of life and brought about revolutions in various fields of modern-day society, be it communication, transportation, education, healthcare, and many more. Let us learn about it.

Technology in Communication:

With the advent of technology in communication, which includes telephones, fax machines, cellular phones, the Internet, multimedia, and email, communication has become much faster and easier. It has transformed and influenced relationships in many ways. We no longer need to rely on sending physical letters and waiting for several days for a response. Technology has made communication so simple that you can connect with anyone from anywhere by calling them via mobile phone or messaging them using different messaging apps that are easy to download.

Innovation in communication technology has had an immense influence on social life. Human socialising has become easier by using social networking sites, dating, and even matrimonial services available on mobile applications and websites.

Today, the Internet is used for shopping, paying utility bills, credit card bills, admission fees, e-commerce, and online banking. In the world of marketing, many companies are marketing and selling their products and creating brands over the internet. 

In the field of travel, cities, towns, states, and countries are using the web to post detailed tourist and event information. Travellers across the globe can easily find information on tourism, sightseeing, places to stay, weather, maps, timings for events, transportation schedules, and buy tickets to various tourist spots and destinations.

Technology in the Office or Workplace:

Technology has increased efficiency and flexibility in the workspace. Technology has made it easy to work remotely, which has increased the productivity of the employees. External and internal communication has become faster through emails and apps. Automation has saved time, and there is also a reduction in redundancy in tasks. Robots are now being used to manufacture products that consistently deliver the same product without defect until the robot itself fails. Artificial Intelligence and Machine Learning technology are innovations that are being deployed across industries to reap benefits.

Technology has wiped out the manual way of storing files. Now files are stored in the cloud, which can be accessed at any time and from anywhere. With technology, companies can make quick decisions, act faster towards solutions, and remain adaptable. Technology has optimised the usage of resources and connected businesses worldwide. For example, if the customer is based in America, he can have the services delivered from India. They can communicate with each other in an instant. Every company uses business technology like virtual meeting tools, corporate social networks, tablets, and smart customer relationship management applications that accelerate the fast movement of data and information.

Technology in Education:

Technology is making the education industry improve over time. With technology, students and parents have a variety of learning tools at their fingertips. Teachers can coordinate with classrooms across the world and share their ideas and resources online. Students can get immediate access to an abundance of good information on the Internet. Teachers and students can access plenty of resources available on the web and utilise them for their project work, research, etc. Online learning has changed our perception of education. 

The COVID-19 pandemic brought a paradigm shift using technology where school-going kids continued their studies from home and schools facilitated imparting education by their teachers online from home. Students have learned and used 21st-century skills and tools, like virtual classrooms, AR (Augmented Reality), robots, etc. All these have increased communication and collaboration significantly. 

Technology in Banking:

Technology and banking are now inseparable. Technology has boosted digital transformation in how the banking industry works and has vastly improved banking services for their customers across the globe.

Technology has made banking operations very sophisticated and has reduced errors to almost nil, which were somewhat prevalent with manual human activities. Banks are adopting Artificial Intelligence (AI) to increase their efficiency and profits. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. 

You can now access your money, handle transactions like paying bills, money transfers, and online purchases from merchants, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe. You do not need to carry cash in your pocket or wallet; the payments can be made digitally using e-wallets. Mobile banking, banking apps, and cybersecurity are changing the face of the banking industry.

Manufacturing and Production Industry Automation:

At present, manufacturing industries are using all the latest technologies, ranging from big data analytics to artificial intelligence. Big data, ARVR (Augmented Reality and Virtual Reality), and IoT (Internet of Things) are the biggest manufacturing industry players. Automation has increased the level of productivity in various fields. It has reduced labour costs, increased efficiency, and reduced the cost of production.

For example, 3D printing is used to design and develop prototypes in the automobile industry. Repetitive work is being done easily with the help of robots without any waste of time. This has also reduced the cost of the products. 

Technology in the Healthcare Industry:

Technological advancements in the healthcare industry have not only improved our personal quality of life and longevity; they have also improved the lives of many medical professionals and students who are training to become medical experts. It has allowed much faster access to the medical records of each patient. 

The Internet has drastically transformed patients' and doctors’ relationships. Everyone can stay up to date on the latest medical discoveries, share treatment information, and offer one another support when dealing with medical issues. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many sites and apps through which we can contact doctors and get medical help. 

Breakthrough innovations in surgery, artificial organs, brain implants, and networked sensors are examples of transformative developments in the healthcare industry. Hospitals use different tools and applications to perform their administrative tasks, using digital marketing to promote their services.

Technology in Agriculture:

Today, farmers work very differently than they would have decades ago. Data analytics and robotics have built a productive food system. Digital innovations are being used for plant breeding and harvesting equipment. Software and mobile devices are helping farmers harvest better. With various data and information available to farmers, they can make better-informed decisions, for example, tracking the amount of carbon stored in soil and helping with climate change.

Disadvantages of Technology:

People have become dependent on various gadgets and machines, resulting in a lack of physical activity and tempting people to lead an increasingly sedentary lifestyle. Even though technology has increased the productivity of individuals, organisations, and the nation, it has not increased the efficiency of machines. Machines cannot plan and think beyond the instructions that are fed into their system. Technology alone is not enough for progress and prosperity. Management is required, and management is a human act. Technology is largely dependent on human intervention. 

Computers and smartphones have led to an increase in social isolation. Young children are spending more time surfing the internet, playing games, and ignoring their real lives. Usage of technology is also resulting in job losses and distracting students from learning. Technology has been a reason for the production of weapons of destruction.

Dependency on technology is also increasing privacy concerns and cyber crimes, giving way to hackers.

arrow-right

FAQs on Technology Essay

1. What is technology?

Technology refers to innovative ways of doing work through various smart means. The advancement of technology has played an important role in the development of human civilization. It has helped in improving the productivity of individuals and businesses.

2. How has technology changed the face of banking?

Technology has made banking operations very sophisticated. With the emergence of Internet banking, self-service tools have replaced the traditional methods of banking. You can now access your money, handle transactions, and monitor your bank statements anytime and from anywhere in the world. Technology has made banking more secure and safe.

3. How has technology brought a revolution in the medical field?

Patients and doctors keep each other up to date on the most recent medical discoveries, share treatment information, and offer each other support when dealing with medical issues. It has allowed much faster access to the medical records of each patient. Modern technology has allowed us to contact doctors from the comfort of our homes. There are many websites and mobile apps through which we can contact doctors and get medical help.

4. Are we dependent on technology?

Yes, today, we are becoming increasingly dependent on technology. Computers, smartphones, and modern technology have helped humanity achieve success and progress. However, in hindsight, people need to continuously build a healthy lifestyle, sorting out personal problems that arise due to technological advancements in different aspects of human life.

Zero Food Waste Technology in the UAE Essay

Introduction.

The United Arab Emirates is a country with a rapidly growing population and a corresponding increase in demand for food. The cost of food waste is estimated to be around $1 trillion per year, and it is estimated that reducing food waste by just 15% could feed 1 billion people (Beretta & Hellweg, 2019). Additionally, reducing food waste has environmental benefits, as it can help to reduce greenhouse gas emissions. In response, the UAE has been working to increase food production and reduce food waste. One way the UAE is doing this is by investing in technology that helps to reduce food waste.

One tech UAE employs to prevent food wastage is using agricultural robots that conduct crop management and harvesting. This helps reduce crop losses due to bad weather or pests and also reduces the amount of labor required for farming. Vertical farming is also widely used in the UAE to conserve food production resources (Sheldon, 2021). The UAE is home to the world’s largest vertical farm, which is located in Dubai. This type of farming uses less water and land than traditional farming and can be done indoors, making it ideal for desert climates. There is currently research being conducted to develop technology that can extend the shelf life of food. This would help lower food waste by allowing food to be stored for longer periods of time without spoiling.

The nation also utilizes food wastage tracking systems, which established that an average of 196 kg of food goes to waste per person in the UAE. The food waste tracking system will use data from various sources, including supermarkets, restaurants, and households. This data will be analyzed to determine where food is being wasted and why. Based on this information, the government will develop policies and programs to reduce food waste (Sheldon, 2021). The food waste tracking system is still in development, but it is hoped that it will help significantly prevent food waste in the UAE. The UAE is home to the world’s first food waste recycling plant, which turns food waste into animal feed (Sheldon, 2021). This helps to reduce the amount of food waste that ends up in landfills and also provides a sustainable source of food for animals.

Challenges of Implementing Zero Food Wastage Technology

Cost and lack of infrastructure.

The main challenge faced by organizations when implementing technology to reduce food waste is the cost. Agricultural robots, vertical farms, and food waste tracking systems can be expensive to set up and maintain. Additionally, food waste recycling plants require a steady supply of food waste, which can be difficult to guarantee (Ardra & Barua, 2022). The cost of the technology can be a significant barrier for organizations looking to implement food waste reduction strategies. Agricultural robots, for example, can cost tens of thousands of dollars. This is a significant investment for most organizations and may not be feasible for all. For smaller organizations or those with limited budgets, the cost of the technology can be prohibitive (Ardra & Barua, 2022). Another challenge is the lack of infrastructure in many countries. Vertical farms, for example, require a lot of space and electricity, which is not always available, making it difficult to implement this type of technology. Many organizations may lack facilities to compost food waste or lack infrastructure to recycle packaging. This can make it difficult to reduce food waste effectively.

Sustainability

One of the challenges of food waste reduction is sustainability. Once food waste is reduced, it is important to maintain the reduction. This can be a challenge for organizations, as it requires ongoing effort. One way to maintain food waste reduction is to make it part of the organizational culture. This means that food waste reduction needs to be embedded into the way the organization operates. This can be difficult, as it requires a change in the way the organization thinks about and deals with food waste (Ardra & Barua, 2022). Another way to maintain food waste reduction is to have ongoing monitoring and evaluation. This is important to ensure that the technology is effective and to make changes as needed.

Lack of Knowledge and Resistance to Change

Many people are resistant to change, and this can be a challenge when implementing new technology to reduce food waste. One of the challenges in reducing food waste is the lack of knowledge about food waste and how to reduce it. Many people are unaware of the amount of food they waste on a daily basis and are resistant to changing their habits (Van et al., 2022). It can be difficult to convince people to change their habits, especially if they feel it is unnecessary. However, with the right education and motivation, people can be convinced to change their ways and help reduce food waste.

Implementation Difficulties

One of the difficulties in implementing new technology to reduce food waste is the need for training and support. This is because new technology can be complex, and people may not know how to use it. This can be a challenge for organizations, as it can be time-consuming and expensive to provide training (Van et al., 2022). Additionally, new technology may require ongoing support in order to be used effectively. Companies require to monitor food waste reduction efforts through data collection and analysis. It is also difficult to evaluate the success of food waste reduction efforts. This is because there are many factors that can affect food waste, and it can be difficult to isolate the impact of technology.

Another challenge is that some of the technology is still in the development stage and may not be ready for widespread use. For example, the technology to extend the shelf life of food is still being researched and has not yet been commercialized. Organizations also need to be aware of the potential risks associated with using new technology (Van et al., 2022). For example, agricultural robots could potentially put farmers out of business if they become too efficient. Food waste tracking systems could also be abused if the data is not used properly.

Emirates Environmental Group

The Emirates Environmental Group (EEG) is a non-profit organization that works to protect the environment and promote sustainable development in the United Arab Emirates. One of the EEG’s main focus areas is food waste reduction, and the organization has been working to promote and implement various technologies and initiatives that can help to reduce food waste in the UAE. The EEG has been working with the Ministry of Climate Change and Environment to promote the use of new technologies that can help to reduce food waste, such as the development of a mobile app that allows users to track their food waste and learn about how to reduce it (Van et al., 2022). The app will also allow businesses to track their food waste and see where they can make improvements.

Moreover, the EEG has also been collaborating with the Ministry of Education to promote the implementation of food waste reduction initiatives in schools. One of the initiatives that the EEG is working on is the development of a food waste reduction curriculum that will be taught in all schools in the UAE (Pereira, 2018). The curriculum will teach students about the importance of reducing food waste and will provide them with tips and tricks on how to do so. In addition to its work with the government, the EEG is also working with the private sector to promote the use of new technologies to reduce food waste (Pereira, 2018). The organization is working with businesses to provide them with the resources and information they need to implement food waste reduction initiatives in their workplaces.

Furthermore, the EEG has been working to raise awareness about the issue of food waste and its impact on the environment. In 2015, the EEG launched a campaign called “Food for Thought” to educate the public about the issue of food waste and its impact on the environment. The campaign included a series of workshops, talks, and exhibitions. The EEG also launched a food waste reduction competition, which received over 1,000 entries from schools and businesses. Another key campaign is the “Food for Life” campaign, which aims to reduce food waste and promote sustainable agriculture (Pereira, 2018). The campaign has been successful in raising awareness about the issue of food waste and has resulted in some changes in behavior, such as the introduction of a food waste recycling program in Abu Dhabi.

Recently, the EEG launched the One Root One Communi-Tree movement aimed at getting people involved in tree planting and community-building. The campaign provides a way for people to connect with their local community and make a difference in the environment. Tree planting is a great way to improve air quality, reduce noise pollution, and provide a habitat for wildlife (One Planet: Handle with care, 2021). This campaign is a great way to get people involved in making their community a better place. There is better food productivity where the environment is more conducive.

However, there is still much work to be done in terms of reducing food waste in the UAE. The EEG is confident that the use of new technologies will help to reduce food waste in the UAE and make the country more sustainable. The organization is committed to continuing working with the government and the private sector to promote the use of new technologies and initiatives to reduce food waste (One Planet: Handle with care, 2021)The organization can adopt various food-saving technologies to promote its activities.

Impact of Adopting Zero Food Waste Technology in the EEG

Differentiation.

The potential impact of implementing a technology-driven approach to reducing food waste could be significant for the Emirates Environmental Group (EEG). As a non-profit organization, EEG is always looking for ways to operate more efficiently and effectively, and this trend could help them to do just that. The potential impact of implementing a technology towards zero food waste on the UAE organization’s operational excellence in terms of differentiation would be very positive (Monica McBride, 2021). This is because the technology would allow the organization to better manage its food waste and ultimately reduce the amount of waste that it produces. This would differentiate the organization from its competitors who are not using this technology and would allow the organization to be more environmentally friendly. This would be a major selling point for the organization and would attract new customers who are looking for a more sustainable option.

Cost Leadership

The potential impact of implementing a technology towards zero food waste on the UAE organization’s operational excellence in terms of cost leadership would be mixed. This is because the technology would require a significant investment to implement and maintain. However, the long-term savings from reduced food waste would eventually offset the initial investment. This would allow the organization to save money on food costs, which would give it a competitive advantage (Monica McBride, 2021). The organization would be able to make use of more efficient processes and would no longer need to dispose of food waste in the traditional way. As a result, EEG would be able to pass on these savings to its customers, which would make the organization more competitive.

Customer Responsiveness

Finally, in terms of customer responsiveness, a technology-driven approach to reducing food waste could also help EEG to be more responsive to its customers. This is because the organization would be able to better understand the needs of its customers and would be able to develop solutions that meet those needs (Monica McBride, 2021). As a result, EEG would be able to build stronger relationships with its customers and would be better able to retain them.

A technology-driven approach to reducing food waste could have a significant impact on the Emirates Environmental Group. The organization would be able to better manage its food waste, which would differentiate it from its competitors. Additionally, the organization would be able to save money on food costs, which would give it a competitive advantage. Finally, the organization would be better able to understand and respond to the needs of its customers.

Ardra, S., & Barua, M. K. (2022). Halving food waste generation by 2030: The challenges and strategies of monitoring UN Sustainable Development goal target 12.3 . Journal of Cleaner Production , 380 , 135042. Web.

Beretta, C., & Hellweg, S. (2019). Potential environmental benefits from food waste prevention in the food service sector . Resources, Conservation and Recycling , 147 , 169–178. Web.

Monica McBride, D. (2021). Turning food waste into feed: Benefits and trade-offs for nature . WWF. Web.

One Planet: Handle with care. (2021). One Root, one communi-tree 2020 . One Planet network. Web.

Pereira, N. (2018). EEG drums up efforts to reduce food waste – facilities management … EEG drums up efforts to reduce food waste. Web.

Sheldon, M. (2021). Artificial intelligence to reduce food waste in UAE . NYC Food Policy Center (Hunter College). Web.

Van, J. C., Tham, P. E., Lim, H. R., Khoo, K. S., Chang, J.-S., & Show, P. L. (2022). Integration of internet-of-things as sustainable smart farming technology for the rearing of black soldier fly to mitigate food waste . Journal of the Taiwan Institute of Chemical Engineers , 137 , 104235. Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2024, April 27). Zero Food Waste Technology in the UAE. https://ivypanda.com/essays/zero-food-waste-technology-in-the-uae/

"Zero Food Waste Technology in the UAE." IvyPanda , 27 Apr. 2024, ivypanda.com/essays/zero-food-waste-technology-in-the-uae/.

IvyPanda . (2024) 'Zero Food Waste Technology in the UAE'. 27 April.

IvyPanda . 2024. "Zero Food Waste Technology in the UAE." April 27, 2024. https://ivypanda.com/essays/zero-food-waste-technology-in-the-uae/.

1. IvyPanda . "Zero Food Waste Technology in the UAE." April 27, 2024. https://ivypanda.com/essays/zero-food-waste-technology-in-the-uae/.

Bibliography

IvyPanda . "Zero Food Waste Technology in the UAE." April 27, 2024. https://ivypanda.com/essays/zero-food-waste-technology-in-the-uae/.

  • Uses of EEG Waves to Control MIDI
  • Chiropractic Treatment in Electroencephalography
  • Epilepsy Prediction Using Machine Learning Method
  • Anxious Phobia Disorder Patients' Brain & Behavior
  • A System for Identify Evoked Smiles
  • Biopsychology Research Methods
  • Traumatic Brain Injury on Returning Soldiers
  • Electroencephalography in Behavioral Neuroscience
  • Psychiatric Differential Diagnoses, Tests, Biases
  • Contemporary Neuroimaging and Methods in Adult Neuropsychology
  • Distributed Ledger Technology and Governance Issues
  • Scanning for and Analyzing New Technologies
  • Impact of Covid-19 on the Smart Home Development
  • Electrical Multimeters: Overview and Application
  • IOS vs. Android: Privacy Enhancing Technologies

IMAGES

  1. (PDF) Introduction to Food Science

    essay on food technology

  2. Food Technology First Teacher's Resource by Geraldine Blake, Loose Leaf

    essay on food technology

  3. Healthy Diet Essay

    essay on food technology

  4. Introduction to Food Science and Technology 101

    essay on food technology

  5. PPT

    essay on food technology

  6. Food Technology

    essay on food technology

VIDEO

  1. General Essay- Food Problem- Appsc- Group-1 and Group-2

  2. 7 Things We Wish We Knew As Food Technology Students

  3. essay on food and culture/#shortsfeed /#essay

  4. Food Technology episode 2.friend subscribe my channel

  5. Food technology interview questions for freshers and experience

  6. Essay Writing About Food For Health

COMMENTS

  1. The future of the food industry: Food tech explained

    The global food tech market was worth $220.32 billion in 2019, according to Emergen Research, and is estimated to grow to $342.52 billion by 2027. Food tech is increasing food production to help reduce the rate of hunger and feed the world. Agriculture is becoming more automated by using digital and advanced technology to produce food and raw ...

  2. About Food Science and Technology

    Episode 33: Global Food System Challenge Growth Grant Winners July 5, 2022. Join us to celebrate the Global Food System Challenge Growth Grant Winners. Representatives from Food Systems for the Future (FSF Institute), iDE Global, and the African Center for Technology Studies discuss their work and the role that the generous funding from Seeding The Future Foundation plays in helping to make ...

  3. Feeding the World Today and Tomorrow: The Importance of Food Science

    The Institute of Food Technologists—a nonprofit scientific society of individual members engaged in food science, food technology, and related professions in industry, academia, and government—has the mission to advance the science of food and the long-range vision to ensure a safe and abundant food supply contributing to healthier people ...

  4. The Role of Science, Technology and Innovation in Transforming Food

    The world is not on track to meet the Sustainable Development Goal (SDG) targets linked to hunger and food and nutrition security. According to FAO data (FAO 2020), the number of hungry people has increased by 10% in the past 5 years and 3 billion people cannot afford a healthy diet.Some countries in Asia and Africa have made significant progress in increasing food and nutrition security ...

  5. Food: How Technology Has Changed the Way We Eat? Essay

    The use of technology has improved life in the aspect of transport, communication and entertainment among others (Sparks, 2011). Some of the technological products include cell phones, computers, televisions, washing machines and the internet. We will write a custom essay on your topica custom Essay on Food: How Technology Has Changed the Way ...

  6. How Technology Is Transforming The Food Industry

    The use of machines in the food industry also ensures quality and affordability. By using machines, it drives down the costs of keeping the food fresh and increases productivity. According to the ...

  7. Sustainable Food Technology

    Sustainable Food Technology is a gold open access journal focused on cutting-edge strategies for food production, that aim to provide quality and safe foods in an environmentally conscious and sustainable way. ... All submitted papers must include a cover letter that should specify the novelty of the work and give a justification for the ...

  8. Food Science and Technology

    About this journal. Food Science & Technology (FS&T) provides news and topical articles on all aspects of food science and technology. The subjects covered range from raw material composition to consumer acceptance, from physical properties to food engineering practices; and from quality assurance and safety to storage, distribution, marketing ...

  9. Frontiers

    While the world population is steadily increasing, the capacity of Earth to renew its resources is continuously declining. Consequently, the bioresources required for food production are diminishing and new approaches are needed to feed the current and future global population. In the last decades, scientists have developed novel strategies to reduce food loss and waste, improve food ...

  10. Trends in Food Science & Technology

    An official journal of the European Federation of Food Science and Technology (EFFoST), and the International Union of Food Science and Technology (IUFoST) Trends in Food Science & Technology is one of the premier international peer-reviewed journals publishing critical and comprehensive reviews and commentaries of current technology, food science and human nutrition.

  11. Nanotechnologies in Food Science: Applications, Recent Trends, and

    Introduction. Nanotechnology is the technology applied in the manipulation of nanomaterials for several purposes, which plays a crucial role in the food and agriculture sectors, contributes to crop improvement, enhances the food quality and safety, and promotes human health through novel and innovative approaches [].Owing to the unique physical, chemical, and biological properties with large ...

  12. Food Science & Technology

    The Food Science and Technology portfolio at Wiley features over 1 million published articles from over 20 peer-reviewed international journals on a broad spectrum of topics, including food analysis and chemistry, molecular nutrition and health aspects, food processing and engineering, food sensory and texture studies, food packaging and preservation, food safety as well as aspects on future ...

  13. Food Technology: What It Is + Why It Matters

    January 11, 2023. Technology touches every facet of our lives, and our food is no different. From growing crops to processing ingredients to preparing delicious meals, food technology plays a key role in the lifecycle of the food we eat. To grow and process tasty and nutritious food on a scale to feed billions of people, nature sometimes needs ...

  14. food technology Latest Research Papers

    Embedded in everyday practices, food can be a rich resource for interaction design. This article focuses on eating experiences to uncover how bodily, sensory, and socio-cultural aspects of eating can be better leveraged for the design of user experience. We report a systematic literature review of 109 papers, and interviews with 18 professional ...

  15. Food tech: Technology in the food industry

    Executive summary. Technology helps food manufacturers to produce more efficiently for a growing world population. Improving shelf life and food safety revolves around technology, and greater use of machines and software ensures affordability and consistent quality. The importance of technology for manufacturers continues to grow.

  16. Essay On Food Technology

    Essay On Food Technology. Food science and technology is a branch of science that deals with the study of processing of food. It is not limited to manufacturing but also includes methods of food preservation, food packaging, food safety, nutrition and many more subject areas related to food. The United States is one of the best countries to ...

  17. (PDF) Latest Food Technology

    Features: • provides information relevant to technology. • makes suggestions for equipment and devices. • looks at standardization in food technology. • explores new and innovative ...

  18. The Role of Technology in Achieving Global Food Security

    Technology can help provide basic and extra food choices to vulnerable populations. This can come from improved crop varieties, for example orange-fleshed sweet potato added into a basket of purple- or white-fleshed sweet potato or iron rich beans. It can help restore political stability by ensuring that the production of food is based on ...

  19. 67623 PDFs

    Abstract Based on the Essential Science Indicators database, this study analyzed 2,886 top papers in the subject category of Food Science and Technology from January 2011 to June 2021. The 2,886 ...

  20. (PDF) TOPICS IN FOOD TECHNOLOGY

    Food technology is the application of food science to the selection, preservation, processing, packaging, distribution, and use of safe food. Related fields include analytical chemistry ...

  21. Food Technology In Food Science

    The food science is studying physics chemistry, biological chemistry chemistry engineering in an attempt to understand food structure processes and try to use it to make new generation foods, food technology is the result of food extensive research, after the initial stages and development processes of food produces using ways of food technology.

  22. Food And Technology Essay

    Food Franchise Industry & Technology Essay. Food Franchise Industry Food franchises are considered to be the foundation of franchising. An approximate 57% of franchise industry employees work in areas of full or table service restaurants, quick service restaurants and retail food. The consistent experiences of well-maintained premises, tasty ...

  23. Technology Essay for Students in English

    Essay on Technology. The word "technology" and its uses have immensely changed since the 20th century, and with time, it has continued to evolve ever since. We are living in a world driven by technology. The advancement of technology has played an important role in the development of human civilization, along with cultural changes.

  24. Zero Food Waste Technology in the UAE Essay

    We will write a custom essay on your topic a custom Essay on Zero Food Waste Technology in the UAE. 808 writers online . Learn More . One tech UAE employs to prevent food wastage is using agricultural robots that conduct crop management and harvesting. This helps reduce crop losses due to bad weather or pests and also reduces the amount of ...