Career Sidekick

Interview Questions

Comprehensive Interview Guide: 60+ Professions Explored in Detail

26 Good Examples of Problem Solving (Interview Answers)

By Biron Clark

Published: November 15, 2023

Employers like to hire people who can solve problems and work well under pressure. A job rarely goes 100% according to plan, so hiring managers will be more likely to hire you if you seem like you can handle unexpected challenges while staying calm and logical in your approach.

But how do they measure this?

They’re going to ask you interview questions about these problem solving skills, and they might also look for examples of problem solving on your resume and cover letter. So coming up, I’m going to share a list of examples of problem solving, whether you’re an experienced job seeker or recent graduate.

Then I’ll share sample interview answers to, “Give an example of a time you used logic to solve a problem?”

Problem-Solving Defined

It is the ability to identify the problem, prioritize based on gravity and urgency, analyze the root cause, gather relevant information, develop and evaluate viable solutions, decide on the most effective and logical solution, and plan and execute implementation. 

Problem-solving also involves critical thinking, communication, listening, creativity, research, data gathering, risk assessment, continuous learning, decision-making, and other soft and technical skills.

Solving problems not only prevent losses or damages but also boosts self-confidence and reputation when you successfully execute it. The spotlight shines on you when people see you handle issues with ease and savvy despite the challenges. Your ability and potential to be a future leader that can take on more significant roles and tackle bigger setbacks shine through. Problem-solving is a skill you can master by learning from others and acquiring wisdom from their and your own experiences. 

It takes a village to come up with solutions, but a good problem solver can steer the team towards the best choice and implement it to achieve the desired result.

Watch: 26 Good Examples of Problem Solving

Examples of problem solving scenarios in the workplace.

  • Correcting a mistake at work, whether it was made by you or someone else
  • Overcoming a delay at work through problem solving and communication
  • Resolving an issue with a difficult or upset customer
  • Overcoming issues related to a limited budget, and still delivering good work through the use of creative problem solving
  • Overcoming a scheduling/staffing shortage in the department to still deliver excellent work
  • Troubleshooting and resolving technical issues
  • Handling and resolving a conflict with a coworker
  • Solving any problems related to money, customer billing, accounting and bookkeeping, etc.
  • Taking initiative when another team member overlooked or missed something important
  • Taking initiative to meet with your superior to discuss a problem before it became potentially worse
  • Solving a safety issue at work or reporting the issue to those who could solve it
  • Using problem solving abilities to reduce/eliminate a company expense
  • Finding a way to make the company more profitable through new service or product offerings, new pricing ideas, promotion and sale ideas, etc.
  • Changing how a process, team, or task is organized to make it more efficient
  • Using creative thinking to come up with a solution that the company hasn’t used before
  • Performing research to collect data and information to find a new solution to a problem
  • Boosting a company or team’s performance by improving some aspect of communication among employees
  • Finding a new piece of data that can guide a company’s decisions or strategy better in a certain area

Problem Solving Examples for Recent Grads/Entry Level Job Seekers

  • Coordinating work between team members in a class project
  • Reassigning a missing team member’s work to other group members in a class project
  • Adjusting your workflow on a project to accommodate a tight deadline
  • Speaking to your professor to get help when you were struggling or unsure about a project
  • Asking classmates, peers, or professors for help in an area of struggle
  • Talking to your academic advisor to brainstorm solutions to a problem you were facing
  • Researching solutions to an academic problem online, via Google or other methods
  • Using problem solving and creative thinking to obtain an internship or other work opportunity during school after struggling at first

You can share all of the examples above when you’re asked questions about problem solving in your interview. As you can see, even if you have no professional work experience, it’s possible to think back to problems and unexpected challenges that you faced in your studies and discuss how you solved them.

Interview Answers to “Give an Example of an Occasion When You Used Logic to Solve a Problem”

Now, let’s look at some sample interview answers to, “Give me an example of a time you used logic to solve a problem,” since you’re likely to hear this interview question in all sorts of industries.

Example Answer 1:

At my current job, I recently solved a problem where a client was upset about our software pricing. They had misunderstood the sales representative who explained pricing originally, and when their package renewed for its second month, they called to complain about the invoice. I apologized for the confusion and then spoke to our billing team to see what type of solution we could come up with. We decided that the best course of action was to offer a long-term pricing package that would provide a discount. This not only solved the problem but got the customer to agree to a longer-term contract, which means we’ll keep their business for at least one year now, and they’re happy with the pricing. I feel I got the best possible outcome and the way I chose to solve the problem was effective.

Example Answer 2:

In my last job, I had to do quite a bit of problem solving related to our shift scheduling. We had four people quit within a week and the department was severely understaffed. I coordinated a ramp-up of our hiring efforts, I got approval from the department head to offer bonuses for overtime work, and then I found eight employees who were willing to do overtime this month. I think the key problem solving skills here were taking initiative, communicating clearly, and reacting quickly to solve this problem before it became an even bigger issue.

Example Answer 3:

In my current marketing role, my manager asked me to come up with a solution to our declining social media engagement. I assessed our current strategy and recent results, analyzed what some of our top competitors were doing, and then came up with an exact blueprint we could follow this year to emulate our best competitors but also stand out and develop a unique voice as a brand. I feel this is a good example of using logic to solve a problem because it was based on analysis and observation of competitors, rather than guessing or quickly reacting to the situation without reliable data. I always use logic and data to solve problems when possible. The project turned out to be a success and we increased our social media engagement by an average of 82% by the end of the year.

Answering Questions About Problem Solving with the STAR Method

When you answer interview questions about problem solving scenarios, or if you decide to demonstrate your problem solving skills in a cover letter (which is a good idea any time the job description mention problem solving as a necessary skill), I recommend using the STAR method to tell your story.

STAR stands for:

It’s a simple way of walking the listener or reader through the story in a way that will make sense to them. So before jumping in and talking about the problem that needed solving, make sure to describe the general situation. What job/company were you working at? When was this? Then, you can describe the task at hand and the problem that needed solving. After this, describe the course of action you chose and why. Ideally, show that you evaluated all the information you could given the time you had, and made a decision based on logic and fact.

Finally, describe a positive result you got.

Whether you’re answering interview questions about problem solving or writing a cover letter, you should only choose examples where you got a positive result and successfully solved the issue.

Example answer:

Situation : We had an irate client who was a social media influencer and had impossible delivery time demands we could not meet. She spoke negatively about us in her vlog and asked her followers to boycott our products. (Task : To develop an official statement to explain our company’s side, clarify the issue, and prevent it from getting out of hand). Action : I drafted a statement that balanced empathy, understanding, and utmost customer service with facts, logic, and fairness. It was direct, simple, succinct, and phrased to highlight our brand values while addressing the issue in a logical yet sensitive way.   We also tapped our influencer partners to subtly and indirectly share their positive experiences with our brand so we could counter the negative content being shared online.  Result : We got the results we worked for through proper communication and a positive and strategic campaign. The irate client agreed to have a dialogue with us. She apologized to us, and we reaffirmed our commitment to delivering quality service to all. We assured her that she can reach out to us anytime regarding her purchases and that we’d gladly accommodate her requests whenever possible. She also retracted her negative statements in her vlog and urged her followers to keep supporting our brand.

What Are Good Outcomes of Problem Solving?

Whenever you answer interview questions about problem solving or share examples of problem solving in a cover letter, you want to be sure you’re sharing a positive outcome.

Below are good outcomes of problem solving:

  • Saving the company time or money
  • Making the company money
  • Pleasing/keeping a customer
  • Obtaining new customers
  • Solving a safety issue
  • Solving a staffing/scheduling issue
  • Solving a logistical issue
  • Solving a company hiring issue
  • Solving a technical/software issue
  • Making a process more efficient and faster for the company
  • Creating a new business process to make the company more profitable
  • Improving the company’s brand/image/reputation
  • Getting the company positive reviews from customers/clients

Every employer wants to make more money, save money, and save time. If you can assess your problem solving experience and think about how you’ve helped past employers in those three areas, then that’s a great start. That’s where I recommend you begin looking for stories of times you had to solve problems.

Tips to Improve Your Problem Solving Skills

Throughout your career, you’re going to get hired for better jobs and earn more money if you can show employers that you’re a problem solver. So to improve your problem solving skills, I recommend always analyzing a problem and situation before acting. When discussing problem solving with employers, you never want to sound like you rush or make impulsive decisions. They want to see fact-based or data-based decisions when you solve problems.

Next, to get better at solving problems, analyze the outcomes of past solutions you came up with. You can recognize what works and what doesn’t. Think about how you can get better at researching and analyzing a situation, but also how you can get better at communicating, deciding the right people in the organization to talk to and “pull in” to help you if needed, etc.

Finally, practice staying calm even in stressful situations. Take a few minutes to walk outside if needed. Step away from your phone and computer to clear your head. A work problem is rarely so urgent that you cannot take five minutes to think (with the possible exception of safety problems), and you’ll get better outcomes if you solve problems by acting logically instead of rushing to react in a panic.

You can use all of the ideas above to describe your problem solving skills when asked interview questions about the topic. If you say that you do the things above, employers will be impressed when they assess your problem solving ability.

If you practice the tips above, you’ll be ready to share detailed, impressive stories and problem solving examples that will make hiring managers want to offer you the job. Every employer appreciates a problem solver, whether solving problems is a requirement listed on the job description or not. And you never know which hiring manager or interviewer will ask you about a time you solved a problem, so you should always be ready to discuss this when applying for a job.

Related interview questions & answers:

  • How do you handle stress?
  • How do you handle conflict?
  • Tell me about a time when you failed

Biron Clark

About the Author

Read more articles by Biron Clark

Continue Reading

15 Most Common Pharmacist Interview Questions and Answers

15 most common paralegal interview questions and answers, top 30+ funny interview questions and answers, 60 hardest interview questions and answers, 100+ best ice breaker questions to ask candidates, top 20 situational interview questions (& sample answers), 15 most common physical therapist interview questions and answers, 15 most common project manager interview questions and answers, create a professional resume for free.

No-sign up or payment required.

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

example for problem solving method

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

example for problem solving method

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

example for problem solving method

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

example for problem solving method

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

helpful professor logo

39 Best Problem-Solving Examples

problem-solving examples and definition, explained below

Problem-solving is a process where you’re tasked with identifying an issue and coming up with the most practical and effective solution.

This indispensable skill is necessary in several aspects of life, from personal relationships to education to business decisions.

Problem-solving aptitude boosts rational thinking, creativity, and the ability to cooperate with others. It’s also considered essential in 21st Century workplaces.

If explaining your problem-solving skills in an interview, remember that the employer is trying to determine your ability to handle difficulties. Focus on explaining exactly how you solve problems, including by introducing your thoughts on some of the following frameworks and how you’ve applied them in the past.

Problem-Solving Examples

1. divergent thinking.

Divergent thinking refers to the process of coming up with multiple different answers to a single problem. It’s the opposite of convergent thinking, which would involve coming up with a singular answer .

The benefit of a divergent thinking approach is that it can help us achieve blue skies thinking – it lets us generate several possible solutions that we can then critique and analyze .

In the realm of problem-solving, divergent thinking acts as the initial spark. You’re working to create an array of potential solutions, even those that seem outwardly unrelated or unconventional, to get your brain turning and unlock out-of-the-box ideas.

This process paves the way for the decision-making stage, where the most promising ideas are selected and refined.

Go Deeper: Divervent Thinking Examples

2. Convergent Thinking

Next comes convergent thinking, the process of narrowing down multiple possibilities to arrive at a single solution.

This involves using your analytical skills to identify the best, most practical, or most economical solution from the pool of ideas that you generated in the divergent thinking stage.

In a way, convergent thinking shapes the “roadmap” to solve a problem after divergent thinking has supplied the “destinations.”

Have a think about which of these problem-solving skills you’re more adept at: divergent or convergent thinking?

Go Deeper: Convergent Thinking Examples

3. Brainstorming

Brainstorming is a group activity designed to generate a multitude of ideas regarding a specific problem. It’s divergent thinking as a group , which helps unlock even more possibilities.

A typical brainstorming session involves uninhibited and spontaneous ideation, encouraging participants to voice any possible solutions, no matter how unconventional they might appear.

It’s important in a brainstorming session to suspend judgment and be as inclusive as possible, allowing all participants to get involved.

By widening the scope of potential solutions, brainstorming allows better problem definition, more creative solutions, and helps to avoid thinking “traps” that might limit your perspective.

Go Deeper: Brainstorming Examples

4. Thinking Outside the Box

The concept of “thinking outside the box” encourages a shift in perspective, urging you to approach problems from an entirely new angle.

Rather than sticking to traditional methods and processes, it involves breaking away from conventional norms to cultivate unique solutions.

In problem-solving, this mindset can bypass established hurdles and bring you to fresh ideas that might otherwise remain undiscovered.

Think of it as going off the beaten track when regular routes present roadblocks to effective resolution.

5. Case Study Analysis

Analyzing case studies involves a detailed examination of real-life situations that bear relevance to the current problem at hand.

For example, if you’re facing a problem, you could go to another environment that has faced a similar problem and examine how they solved it. You’d then bring the insights from that case study back to your own problem.

This approach provides a practical backdrop against which theories and assumptions can be tested, offering valuable insights into how similar problems have been approached and resolved in the past.

See a Broader Range of Analysis Examples Here

6. Action Research

Action research involves a repetitive process of identifying a problem, formulating a plan to address it, implementing the plan, and then analyzing the results. It’s common in educational research contexts.

The objective is to promote continuous learning and improvement through reflection and action. You conduct research into your problem, attempt to apply a solution, then assess how well the solution worked. This becomes an iterative process of continual improvement over time.

For problem-solving, this method offers a way to test solutions in real-time and allows for changes and refinements along the way, based on feedback or observed outcomes. It’s a form of active problem-solving that integrates lessons learned into the next cycle of action.

Go Deeper: Action Research Examples

7. Information Gathering

Fundamental to solving any problem is the process of information gathering.

This involves collecting relevant data , facts, and details about the issue at hand, significantly aiding in the understanding and conceptualization of the problem.

In problem-solving, information gathering underpins every decision you make.

This process ensures your actions are based on concrete information and evidence, allowing for an informed approach to tackle the problem effectively.

8. Seeking Advice

Seeking advice implies turning to knowledgeable and experienced individuals or entities to gain insights on problem-solving.

It could include mentors, industry experts, peers, or even specialized literature.

The value in this process lies in leveraging different perspectives and proven strategies when dealing with a problem. Moreover, it aids you in avoiding pitfalls, saving time, and learning from others’ experiences.

9. Creative Thinking

Creative thinking refers to the ability to perceive a problem in a new way, identify unconventional patterns, or produce original solutions.

It encourages innovation and uniqueness, often leading to the most effective results.

When applied to problem-solving, creative thinking can help you break free from traditional constraints, ideal for potentially complex or unusual problems.

Go Deeper: Creative Thinking Examples

10. Conflict Resolution

Conflict resolution is a strategy developed to resolve disagreements and arguments, often involving communication, negotiation, and compromise.

When employed as a problem-solving technique, it can diffuse tension, clear bottlenecks, and create a collaborative environment.

Effective conflict resolution ensures that differing views or disagreements do not become roadblocks in the process of problem-solving.

Go Deeper: Conflict Resolution Examples

11. Addressing Bottlenecks

Bottlenecks refer to obstacles or hindrances that slow down or even halt a process.

In problem-solving, addressing bottlenecks involves identifying these impediments and finding ways to eliminate them.

This effort not only smooths the path to resolution but also enhances the overall efficiency of the problem-solving process.

For example, if your workflow is not working well, you’d go to the bottleneck – that one point that is most time consuming – and focus on that. Once you ‘break’ this bottleneck, the entire process will run more smoothly.

12. Market Research

Market research involves gathering and analyzing information about target markets, consumers, and competitors.

In sales and marketing, this is one of the most effective problem-solving methods. The research collected from your market (e.g. from consumer surveys) generates data that can help identify market trends, customer preferences, and competitor strategies.

In this sense, it allows a company to make informed decisions, solve existing problems, and even predict and prevent future ones.

13. Root Cause Analysis

Root cause analysis is a method used to identify the origin or the fundamental reason for a problem.

Once the root cause is determined, you can implement corrective actions to prevent the problem from recurring.

As a problem-solving procedure, root cause analysis helps you to tackle the problem at its source, rather than dealing with its surface symptoms.

Go Deeper: Root Cause Analysis Examples

14. Mind Mapping

Mind mapping is a visual tool used to structure information, helping you better analyze, comprehend and generate new ideas.

By laying out your thoughts visually, it can lead you to solutions that might not have been apparent with linear thinking.

In problem-solving, mind mapping helps in organizing ideas and identifying connections between them, providing a holistic view of the situation and potential solutions.

15. Trial and Error

The trial and error method involves attempting various solutions until you find one that resolves the problem.

It’s an empirical technique that relies on practical actions instead of theories or rules.

In the context of problem-solving, trial and error allows you the flexibility to test different strategies in real situations, gaining insights about what works and what doesn’t.

16. SWOT Analysis

SWOT is an acronym standing for Strengths, Weaknesses, Opportunities, and Threats.

It’s an analytic framework used to evaluate these aspects in relation to a particular objective or problem.

In problem-solving, SWOT Analysis helps you to identify favorable and unfavorable internal and external factors. It helps to craft strategies that make best use of your strengths and opportunities, whilst addressing weaknesses and threats.

Go Deeper: SWOT Analysis Examples

17. Scenario Planning

Scenario planning is a strategic planning method used to make flexible long-term plans.

It involves imagining, and then planning for, multiple likely future scenarios.

By forecasting various directions a problem could take, scenario planning helps manage uncertainty and is an effective tool for problem-solving in volatile conditions.

18. Six Thinking Hats

The Six Thinking Hats is a concept devised by Edward de Bono that proposes six different directions or modes of thinking, symbolized by six different hat colors.

Each hat signifies a different perspective, encouraging you to switch ‘thinking modes’ as you switch hats. This method can help remove bias and broaden perspectives when dealing with a problem.

19. Decision Matrix Analysis

Decision Matrix Analysis is a technique that allows you to weigh different factors when faced with several possible solutions.

After listing down the options and determining the factors of importance, each option is scored based on each factor.

Revealing a clear winner that both serves your objectives and reflects your values, Decision Matrix Analysis grounds your problem-solving process in objectivity and comprehensiveness.

20. Pareto Analysis

Also known as the 80/20 rule, Pareto Analysis is a decision-making technique.

It’s based on the principle that 80% of problems are typically caused by 20% of the causes, making it a handy tool for identifying the most significant issues in a situation.

Using this analysis, you’re likely to direct your problem-solving efforts more effectively, tackling the root causes producing most of the problem’s impact.

21. Critical Thinking

Critical thinking refers to the ability to analyze facts to form a judgment objectively.

It involves logical, disciplined thinking that is clear, rational, open-minded, and informed by evidence.

For problem-solving, critical thinking helps evaluate options and decide the most effective solution. It ensures your decisions are grounded in reason and facts, and not biased or irrational assumptions.

Go Deeper: Critical Thinking Examples

22. Hypothesis Testing

Hypothesis testing usually involves formulating a claim, testing it against actual data, and deciding whether to accept or reject the claim based on the results.

In problem-solving, hypotheses often represent potential solutions. Hypothesis testing provides verification, giving a statistical basis for decision-making and problem resolution.

Usually, this will require research methods and a scientific approach to see whether the hypothesis stands up or not.

Go Deeper: Types of Hypothesis Testing

23. Cost-Benefit Analysis

A cost-benefit analysis (CBA) is a systematic process of weighing the pros and cons of different solutions in terms of their potential costs and benefits.

It allows you to measure the positive effects against the negatives and informs your problem-solving strategy.

By using CBA, you can identify which solution offers the greatest benefit for the least cost, significantly improving efficacy and efficiency in your problem-solving process.

Go Deeper: Cost-Benefit Analysis Examples

24. Simulation and Modeling

Simulations and models allow you to create a simplified replica of real-world systems to test outcomes under controlled conditions.

In problem-solving, you can broadly understand potential repercussions of different solutions before implementation.

It offers a cost-effective way to predict the impacts of your decisions, minimizing potential risks associated with various solutions.

25. Delphi Method

The Delphi Method is a structured communication technique used to gather expert opinions.

The method involves a group of experts who respond to questionnaires about a problem. The responses are aggregated and shared with the group, and the process repeats until a consensus is reached.

This method of problem solving can provide a diverse range of insights and solutions, shaped by the wisdom of a collective expert group.

26. Cross-functional Team Collaboration

Cross-functional team collaboration involves individuals from different departments or areas of expertise coming together to solve a common problem or achieve a shared goal.

When you bring diverse skills, knowledge, and perspectives to a problem, it can lead to a more comprehensive and innovative solution.

In problem-solving, this promotes communal thinking and ensures that solutions are inclusive and holistic, with various aspects of the problem being addressed.

27. Benchmarking

Benchmarking involves comparing one’s business processes and performance metrics to the best practices from other companies or industries.

In problem-solving, it allows you to identify gaps in your own processes, determine how others have solved similar problems, and apply those solutions that have proven to be successful.

It also allows you to compare yourself to the best (the benchmark) and assess where you’re not as good.

28. Pros-Cons Lists

A pro-con analysis aids in problem-solving by weighing the advantages (pros) and disadvantages (cons) of various possible solutions.

This simple but powerful tool helps in making a balanced, informed decision.

When confronted with a problem, a pro-con analysis can guide you through the decision-making process, ensuring all possible outcomes and implications are scrutinized before arriving at the optimal solution. Thus, it helps to make the problem-solving process both methodical and comprehensive.

29. 5 Whys Analysis

The 5 Whys Analysis involves repeatedly asking the question ‘why’ (around five times) to peel away the layers of an issue and discover the root cause of a problem.

As a problem-solving technique, it enables you to delve into details that you might otherwise overlook and offers a simple, yet powerful, approach to uncover the origin of a problem.

For example, if your task is to find out why a product isn’t selling your first answer might be: “because customers don’t want it”, then you ask why again – “they don’t want it because it doesn’t solve their problem”, then why again – “because the product is missing a certain feature” … and so on, until you get to the root “why”.

30. Gap Analysis

Gap analysis entails comparing current performance with potential or desired performance.

You’re identifying the ‘gaps’, or the differences, between where you are and where you want to be.

In terms of problem-solving, a Gap Analysis can help identify key areas for improvement and design a roadmap of how to get from the current state to the desired one.

31. Design Thinking

Design thinking is a problem-solving approach that involves empathy, experimentation, and iteration.

The process focuses on understanding user needs, challenging assumptions , and redefining problems from a user-centric perspective.

In problem-solving, design thinking uncovers innovative solutions that may not have been initially apparent and ensures the solution is tailored to the needs of those affected by the issue.

32. Analogical Thinking

Analogical thinking involves the transfer of information from a particular subject (the analogue or source) to another particular subject (the target).

In problem-solving, you’re drawing parallels between similar situations and applying the problem-solving techniques used in one situation to the other.

Thus, it allows you to apply proven strategies to new, but related problems.

33. Lateral Thinking

Lateral thinking requires looking at a situation or problem from a unique, sometimes abstract, often non-sequential viewpoint.

Unlike traditional logical thinking methods, lateral thinking encourages you to employ creative and out-of-the-box techniques.

In solving problems, this type of thinking boosts ingenuity and drives innovation, often leading to novel and effective solutions.

Go Deeper: Lateral Thinking Examples

34. Flowcharting

Flowcharting is the process of visually mapping a process or procedure.

This form of diagram can show every step of a system, process, or workflow, enabling an easy tracking of the progress.

As a problem-solving tool, flowcharts help identify bottlenecks or inefficiencies in a process, guiding improved strategies and providing clarity on task ownership and process outcomes.

35. Multivoting

Multivoting, or N/3 voting, is a method where participants reduce a large list of ideas to a prioritized shortlist by casting multiple votes.

This voting system elevates the most preferred options for further consideration and decision-making.

As a problem-solving technique, multivoting allows a group to narrow options and focus on the most promising solutions, ensuring more effective and democratic decision-making.

36. Force Field Analysis

Force Field Analysis is a decision-making technique that identifies the forces for and against change when contemplating a decision.

The ‘forces’ represent the differing factors that can drive or hinder change.

In problem-solving, Force Field Analysis allows you to understand the entirety of the context, favoring a balanced view over a one-sided perspective. A comprehensive view of all the forces at play can lead to better-informed problem-solving decisions.

TRIZ, which stands for “The Theory of Inventive Problem Solving,” is a problem-solving, analysis, and forecasting methodology.

It focuses on finding contradictions inherent in a scenario. Then, you work toward eliminating the contraditions through finding innovative solutions.

So, when you’re tackling a problem, TRIZ provides a disciplined, systematic approach that aims for ideal solutions and not just acceptable ones. Using TRIZ, you can leverage patterns of problem-solving that have proven effective in different cases, pivoting them to solve the problem at hand.

38. A3 Problem Solving

A3 Problem Solving, derived from Lean Management, is a structured method that uses a single sheet of A3-sized paper to document knowledge from a problem-solving process.

Named after the international paper size standard of A3 (or 11-inch by 17-inch paper), it succinctly records all key details of the problem-solving process from problem description to the root cause and corrective actions.

Used in problem-solving, this provides a straightforward and logical structure for addressing the problem, facilitating communication between team members, ensuring all critical details are included, and providing a record of decisions made.

39. Scenario Analysis

Scenario Analysis is all about predicting different possible future events depending upon your decision.

To do this, you look at each course of action and try to identify the most likely outcomes or scenarios down the track if you take that course of action.

This technique helps forecast the impacts of various strategies, playing each out to their (logical or potential) end. It’s a good strategy for project managers who need to keep a firm eye on the horizon at all times.

When solving problems, Scenario Analysis assists in preparing for uncertainties, making sure your solution remains viable, regardless of changes in circumstances.

How to Answer “Demonstrate Problem-Solving Skills” in an Interview

When asked to demonstrate your problem-solving skills in an interview, the STAR method often proves useful. STAR stands for Situation, Task, Action, and Result.

Situation: Begin by describing a specific circumstance or challenge you encountered. Make sure to provide enough detail to allow the interviewer a clear understanding. You should select an event that adequately showcases your problem-solving abilities.

For instance, “In my previous role as a project manager, we faced a significant issue when our key supplier abruptly went out of business.”

Task: Explain what your responsibilities were in that situation. This serves to provide context, allowing the interviewer to understand your role and the expectations placed upon you.

For instance, “It was my task to ensure the project remained on track despite this setback. Alternative suppliers needed to be found without sacrificing quality or significantly increasing costs.”

Action: Describe the steps you took to manage the problem. Highlight your problem-solving process. Mention any creative approaches or techniques that you used.

For instance, “I conducted thorough research to identify potential new suppliers. After creating a shortlist, I initiated contact, negotiated terms, assessed samples for quality and made a selection. I also worked closely with the team to re-adjust the project timeline.”

Result: Share the outcomes of your actions. How did the situation end? Did your actions lead to success? It’s particularly effective if you can quantify these results.

For instance, “As a result of my active problem solving, we were able to secure a new supplier whose costs were actually 10% cheaper and whose quality was comparable. We adjusted the project plan and managed to complete the project just two weeks later than originally planned, despite the major vendor setback.”

Remember, when you’re explaining your problem-solving skills to an interviewer, what they’re really interested in is your approach to handling difficulties, your creativity and persistence in seeking a resolution, and your ability to carry your solution through to fruition. Tailoring your story to highlight these aspects will help exemplify your problem-solving prowess.

Go Deeper: STAR Interview Method Examples

Benefits of Problem-Solving

Problem-solving is beneficial for the following reasons (among others):

  • It can help you to overcome challenges, roadblocks, and bottlenecks in your life.
  • It can save a company money.
  • It can help you to achieve clarity in your thinking.
  • It can make procedures more efficient and save time.
  • It can strengthen your decision-making capacities.
  • It can lead to better risk management.

Whether for a job interview or school, problem-solving helps you to become a better thinking, solve your problems more effectively, and achieve your goals. Build up your problem-solving frameworks (I presented over 40 in this piece for you!) and work on applying them in real-life situations.

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 17 Adversity Examples (And How to Overcome Them)

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

example for problem solving method

Problem Solving Techniques: Your Ultimate Guide with Examples

example for problem solving method

Problem-solving is an essential skill we all need in our personal and professional lives. Whether you're facing a complex issue at work or trying to resolve a conflict at home, knowing how to identify and solve problems effectively is invaluable. 

In this blog post, we'll explore various problem-solving techniques that can help you tackle challenges confidently and efficiently, accompanied by real-life examples.

How to Identify Problems?

Before diving into the techniques, let's briefly discuss identifying problems. Recognizing that a problem exists is often the first and most crucial step in the problem-solving process. Here are some tips for identifying problems:

Pay Attention to Signs

Look for signs of trouble or discrepancies in your surroundings, projects, or relationships. These can be indicators of underlying issues.

Example:  In a project management context, consistently missing deadlines or decreasing team morale could be signs of underlying problems.

Listen Actively

Be a good listener and encourage open communication with others. People often voice their concerns or frustrations, which can help you identify problems early on.

Example:  In a family setting, if a family member repeatedly expresses frustration with household chores, it might indicate a problem with task distribution or communication.

Data Analysis

Analyze data and performance metrics to detect anomalies or trends that signal problems.

Example:  A sales department's decline in monthly sales figures may signal a problem with the sales strategy or market conditions.

Self-Reflection

Regularly self-reflect on your experiences and challenges. This can help you identify personal issues that need attention.

Example:  If you consistently feel overwhelmed and stressed, it may indicate a problem with time management or work-life balance.

Now, let's explore various problem-solving techniques with real-life examples that can be applied depending on the nature and complexity of the problem.

Types of Problem-Solving Techniques

Lightning decision jam.

Technique:  Lightning Decision Jam is a rapid problem-solving technique involving gathering a diverse group of individuals to brainstorm solutions to a problem quickly. It's a great way to generate creative ideas and make quick decisions.

Example:  Imagine a software development team facing a critical bug in their application. They organize a Lightning Decision Jam, bringing developers, testers, and designers together. In just one hour, they generate innovative solutions and decide on a fix that gets the application up and running smoothly.

Technique:  The 5 Whys is a simple yet powerful technique that involves asking "Why?" repeatedly to get to the root cause of a problem. By addressing the underlying issues, you can prevent the problem from recurring.

Example:  In a manufacturing plant, there's a recurring issue of defective products. By asking "Why?" multiple times, the team discovers that the root cause is a malfunctioning machine that isn't properly maintained. They address this issue, reducing defects and improving product quality.

SWOT Analysis

Technique:  SWOT (Strengths, Weaknesses, Opportunities, Threats) Analysis is a structured approach to evaluating a situation. It helps you identify internal strengths and weaknesses and external opportunities and threats, enabling you to make informed decisions.

Example:  A small business owner conducts a SWOT analysis for their company. They identify that their strength lies in a loyal customer base, but a weakness is their limited online presence. Recognizing the opportunity in e-commerce, they decided to invest in building an online store to reach a broader audience.

Fishbone Analysis

Technique:  Also known as Ishikawa or Cause-and-Effect Analysis, this technique helps you visualize the potential causes of a problem. It's beneficial for exploring complex issues with multiple contributing factors.

Example:  In a hospital, the Fishbone Analysis is used to investigate increased patient falls. The analysis uncovers several causes, including inadequate staff training and slippery floors. By addressing these root causes, the hospital reduces patient falls significantly.

Problem Tree

Technique:  The Problem Tree technique visually represents a problem and its various branches, including causes and effects. This approach aids in understanding the problem's scope and interconnections.

Example:  An environmental organization uses a Problem Tree to address deforestation. They identify the root cause as illegal logging, which has cascading effects such as habitat destruction and climate change. This visualization helps them develop a comprehensive conservation strategy.

Brainstorming

Technique:  Brainstorming is a classic technique for generating various ideas and solutions. It encourages creative thinking and collaboration among team members.

Example:  A marketing team is brainstorming ideas for a new advertising campaign. By allowing team members to suggest concepts freely, they generate a list of innovative campaign ideas that resonate with their target audience.

Root-Cause Analysis

Technique:  Root-cause analysis aims to identify the fundamental cause of a problem. It involves in-depth investigation and is often used for critical issues or recurring problems.

Example:  In an IT department, recurring network outages disrupt operations. A root-cause analysis reveals that the outages are due to outdated network equipment. By replacing the equipment, the department eliminates the recurring problem.

Design Thinking

Technique:  Design Thinking is a human-centered approach to problem-solving that emphasizes empathy and iterative prototyping. It's beneficial for addressing complex, user-centric problems.

Example:  A nonprofit organization uses Design Thinking to improve the user experience of their website. They conduct interviews with users to understand their needs and pain points, leading to a website redesign that better serves their audience.

Six Thinking Hats

Technique:  Developed by Edward de Bono , the Six Thinking Hats method assigns different "hats" to participants, each representing a different perspective (e.g., logical thinking, emotions, creativity). This technique helps explore problems from various angles.

Example:  A corporate team applies the Six Thinking Hats method to evaluate a potential merger. They make a well-informed decision by systematically considering factors such as financial viability, employee morale, and customer impact.

Working Backwards

Technique:  Working Backwards is a technique often used in product development. It involves starting with the desired outcome and working backward to identify the steps required to achieve it.

Example:  A tech company wants to create a groundbreaking smartphone. They begin by envisioning the perfect user experience and then reverse-engineer the technology and features needed to make it a reality.

Trial & Error

Technique:  Sometimes, trial and error can be a valid problem-solving approach. It's especially useful when dealing with unfamiliar or novel problems.

Example:  A chef experimenting with a new recipe for a signature dish uses trial and error to refine the ingredients and cooking techniques until he achieves the desired taste and presentation.

Problem-solving is an essential skill that can be honed and improved over time. By familiarizing yourself with these problem-solving techniques and their real-life examples, you'll be better equipped to effectively address a wide range of challenges.

Remember that the choice of technique should depend on the specific problem you're facing. Whether it's a lightning-fast decision jam or a thorough root-cause analysis, having a diverse toolkit of problem-solving techniques at your disposal will empower you to tackle problems confidently and successfully.

So, the next time you encounter an issue, don't panic—apply the correct technique, and you'll be well on your way to finding a solution.

Shiva is a subject matter expert in communication, marketing, productivity, and learning systems. He has previously contributed to many blogs and newsletters, including Validated, Mental Models, HackerNoon, and several brands. You can find Shiva on  LinkedIn  or email him at shiva(at)routine.co.

example for problem solving method

Try Routine today

Sign up and get started for free.

example for problem solving method

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Additional menu

MindManager Blog

The 5 steps of the solving problem process

August 17, 2023 by MindManager Blog

Whether you run a business, manage a team, or work in an industry where change is the norm, it may feel like something is always going wrong. Thankfully, becoming proficient in the problem solving process can alleviate a great deal of the stress that business issues can create.

Understanding the right way to solve problems not only takes the guesswork out of how to deal with difficult, unexpected, or complex situations, it can lead to more effective long-term solutions.

In this article, we’ll walk you through the 5 steps of problem solving, and help you explore a few examples of problem solving scenarios where you can see the problem solving process in action before putting it to work.

Understanding the problem solving process

When something isn’t working, it’s important to understand what’s at the root of the problem so you can fix it and prevent it from happening again. That’s why resolving difficult or complex issues works best when you apply proven business problem solving tools and techniques – from soft skills, to software.

The problem solving process typically includes:

  • Pinpointing what’s broken by gathering data and consulting with team members.
  • Figuring out why it’s not working by mapping out and troubleshooting the problem.
  • Deciding on the most effective way to fix it by brainstorming and then implementing a solution.

While skills like active listening, collaboration, and leadership play an important role in problem solving, tools like visual mapping software make it easier to define and share problem solving objectives, play out various solutions, and even put the best fit to work.

Before you can take your first step toward solving a problem, you need to have a clear idea of what the issue is and the outcome you want to achieve by resolving it.

For example, if your company currently manufactures 50 widgets a day, but you’ve started processing orders for 75 widgets a day, you could simply say you have a production deficit.

However, the problem solving process will prove far more valuable if you define the start and end point by clarifying that production is running short by 25 widgets a day, and you need to increase daily production by 50%.

Once you know where you’re at and where you need to end up, these five steps will take you from Point A to Point B:

  • Figure out what’s causing the problem . You may need to gather knowledge and evaluate input from different documents, departments, and personnel to isolate the factors that are contributing to your problem. Knowledge visualization software like MindManager can help.
  • Come up with a few viable solutions . Since hitting on exactly the right solution – right away – can be tough, brainstorming with your team and mapping out various scenarios is the best way to move forward. If your first strategy doesn’t pan out, you’ll have others on tap you can turn to.
  • Choose the best option . Decision-making skills, and software that lets you lay out process relationships, priorities, and criteria, are invaluable for selecting the most promising solution. Whether it’s you or someone higher up making that choice, it should include weighing costs, time commitments, and any implementation hurdles.
  • Put your chosen solution to work . Before implementing your fix of choice, you should make key personnel aware of changes that might affect their daily workflow, and set up benchmarks that will make it easy to see if your solution is working.
  • Evaluate your outcome . Now comes the moment of truth: did the solution you implemented solve your problem? Do your benchmarks show you achieved the outcome you wanted? If so, congratulations! If not, you’ll need to tweak your solution to meet your problem solving goal.

In practice, you might not hit a home-run with every solution you execute. But the beauty of a repeatable process like problem solving is that you can carry out steps 4 and 5 again by drawing from the brainstorm options you documented during step 2.

Examples of problem solving scenarios

The best way to get a sense of how the problem solving process works before you try it for yourself is to work through some simple scenarios.

Here are three examples of how you can apply business problem solving techniques to common workplace challenges.

Scenario #1: Manufacturing

Building on our original manufacturing example, you determine that your company is consistently short producing 25 widgets a day and needs to increase daily production by 50%.

Since you’d like to gather data and input from both your manufacturing and sales order departments, you schedule a brainstorming session to discover the root cause of the shortage.

After examining four key production areas – machines, materials, methods, and management – you determine the cause of the problem: the material used to manufacture your widgets can only be fed into your equipment once the machinery warms up to a specific temperature for the day.

Your team comes up with three possible solutions.

  • Leave your machinery running 24 hours so it’s always at temperature.
  • Invest in equipment that heats up faster.
  • Find an alternate material for your widgets.

After weighing the expense of the first two solutions, and conducting some online research, you decide that switching to a comparable but less expensive material that can be worked at a lower temperature is your best option.

You implement your plan, monitor your widget quality and output over the following week, and declare your solution a success when daily production increases by 100%.

Scenario #2: Service Delivery

Business training is booming and you’ve had to onboard new staff over the past month. Now you learn that several clients have expressed concern about the quality of your recent training sessions.

After speaking with both clients and staff, you discover there are actually two distinct factors contributing to your quality problem:

  • The additional conference room you’ve leased to accommodate your expanding training sessions has terrible acoustics
  • The AV equipment you’ve purchased to accommodate your expanding workforce is on back-order – and your new hires have been making do without

You could look for a new conference room or re-schedule upcoming training sessions until after your new equipment arrives. But your team collaboratively determines that the best way to mitigate both issues at once is by temporarily renting the high-quality sound and visual system they need.

Using benchmarks that include several weeks of feedback from session attendees, and random session spot-checks you conduct personally, you conclude the solution has worked.

Scenario #3: Marketing

You’ve invested heavily in product marketing, but still can’t meet your sales goals. Specifically, you missed your revenue target by 30% last year and would like to meet that same target this year.

After collecting and examining reams of information from your sales and accounting departments, you sit down with your marketing team to figure out what’s hindering your success in the marketplace.

Determining that your product isn’t competitively priced, you map out two viable solutions.

  • Hire a third-party specialist to conduct a detailed market analysis.
  • Drop the price of your product to undercut competitors.

Since you’re in a hurry for results, you decide to immediately reduce the price of your product and market it accordingly.

When revenue figures for the following quarter show sales have declined even further – and marketing surveys show potential customers are doubting the quality of your product – you revert back to your original pricing, revisit your problem solving process, and implement the market analysis solution instead.

With the valuable information you gain, you finally arrive at just the right product price for your target market and sales begin to pick up. Although you miss your revenue target again this year, you meet it by the second quarter of the following year.

Kickstart your collaborative brainstorming sessions and  try MindManager for free today !

Ready to take the next step?

MindManager helps boost collaboration and productivity among remote and hybrid teams to achieve better results, faster.

example for problem solving method

Why choose MindManager?

MindManager® helps individuals, teams, and enterprises bring greater clarity and structure to plans, projects, and processes. It provides visual productivity tools and mind mapping software to help take you and your organization to where you want to be.

Explore MindManager

Learn more

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

A demo is the first step to transforming your business. Meet with us to develop a plan for attaining your goals.

Request a demo

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your Coach

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

For Business

For Individuals

10 Problem-solving strategies to turn challenges on their head

Understand Yourself Better:

Big 5 Personality Test

Find my Coach

Jump to section

What is an example of problem-solving?

What are the 5 steps to problem-solving, 10 effective problem-solving strategies, what skills do efficient problem solvers have, how to improve your problem-solving skills.

Problems come in all shapes and sizes — from workplace conflict to budget cuts.

Creative problem-solving is one of the most in-demand skills in all roles and industries. It can boost an organization’s human capital and give it a competitive edge. 

Problem-solving strategies are ways of approaching problems that can help you look beyond the obvious answers and find the best solution to your problem . 

Let’s take a look at a five-step problem-solving process and how to combine it with proven problem-solving strategies. This will give you the tools and skills to solve even your most complex problems.

Good problem-solving is an essential part of the decision-making process . To see what a problem-solving process might look like in real life, let’s take a common problem for SaaS brands — decreasing customer churn rates.

To solve this problem, the company must first identify it. In this case, the problem is that the churn rate is too high. 

Next, they need to identify the root causes of the problem. This could be anything from their customer service experience to their email marketing campaigns. If there are several problems, they will need a separate problem-solving process for each one. 

Let’s say the problem is with email marketing — they’re not nurturing existing customers. Now that they’ve identified the problem, they can start using problem-solving strategies to look for solutions. 

This might look like coming up with special offers, discounts, or bonuses for existing customers. They need to find ways to remind them to use their products and services while providing added value. This will encourage customers to keep paying their monthly subscriptions.

They might also want to add incentives, such as access to a premium service at no extra cost after 12 months of membership. They could publish blog posts that help their customers solve common problems and share them as an email newsletter.

The company should set targets and a time frame in which to achieve them. This will allow leaders to measure progress and identify which actions yield the best results.

team-meeting-problem-solving-strategies

Perhaps you’ve got a problem you need to tackle. Or maybe you want to be prepared the next time one arises. Either way, it’s a good idea to get familiar with the five steps of problem-solving. 

Use this step-by-step problem-solving method with the strategies in the following section to find possible solutions to your problem.

1. Identify the problem

The first step is to know which problem you need to solve. Then, you need to find the root cause of the problem. 

The best course of action is to gather as much data as possible, speak to the people involved, and separate facts from opinions. 

Once this is done, formulate a statement that describes the problem. Use rational persuasion to make sure your team agrees .

2. Break the problem down 

Identifying the problem allows you to see which steps need to be taken to solve it. 

First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage.

3. Generate potential solutions

At this stage, the aim isn’t to evaluate possible solutions but to generate as many ideas as possible. 

Encourage your team to use creative thinking and be patient — the best solution may not be the first or most obvious one.

Use one or more of the different strategies in the following section to help come up with solutions — the more creative, the better.

4. Evaluate the possible solutions

Once you’ve generated potential solutions, narrow them down to a shortlist. Then, evaluate the options on your shortlist. 

There are usually many factors to consider. So when evaluating a solution, ask yourself the following questions:

  • Will my team be on board with the proposition?
  • Does the solution align with organizational goals ?
  • Is the solution likely to achieve the desired outcomes?
  • Is the solution realistic and possible with current resources and constraints?
  • Will the solution solve the problem without causing additional unintended problems?

woman-helping-her-colleague-problem-solving-strategies

5. Implement and monitor the solutions

Once you’ve identified your solution and got buy-in from your team, it’s time to implement it. 

But the work doesn’t stop there. You need to monitor your solution to see whether it actually solves your problem. 

Request regular feedback from the team members involved and have a monitoring and evaluation plan in place to measure progress.

If the solution doesn’t achieve your desired results, start this step-by-step process again.

There are many different ways to approach problem-solving. Each is suitable for different types of problems. 

The most appropriate problem-solving techniques will depend on your specific problem. You may need to experiment with several strategies before you find a workable solution.

Here are 10 effective problem-solving strategies for you to try:

  • Use a solution that worked before
  • Brainstorming
  • Work backward
  • Use the Kipling method
  • Draw the problem
  • Use trial and error
  • Sleep on it
  • Get advice from your peers
  • Use the Pareto principle
  • Add successful solutions to your toolkit

Let’s break each of these down.

1. Use a solution that worked before

It might seem obvious, but if you’ve faced similar problems in the past, look back to what worked then. See if any of the solutions could apply to your current situation and, if so, replicate them.

2. Brainstorming

The more people you enlist to help solve the problem, the more potential solutions you can come up with.

Use different brainstorming techniques to workshop potential solutions with your team. They’ll likely bring something you haven’t thought of to the table.

3. Work backward

Working backward is a way to reverse engineer your problem. Imagine your problem has been solved, and make that the starting point.

Then, retrace your steps back to where you are now. This can help you see which course of action may be most effective.

4. Use the Kipling method

This is a method that poses six questions based on Rudyard Kipling’s poem, “ I Keep Six Honest Serving Men .” 

  • What is the problem?
  • Why is the problem important?
  • When did the problem arise, and when does it need to be solved?
  • How did the problem happen?
  • Where is the problem occurring?
  • Who does the problem affect?

Answering these questions can help you identify possible solutions.

5. Draw the problem

Sometimes it can be difficult to visualize all the components and moving parts of a problem and its solution. Drawing a diagram can help.

This technique is particularly helpful for solving process-related problems. For example, a product development team might want to decrease the time they take to fix bugs and create new iterations. Drawing the processes involved can help you see where improvements can be made.

woman-drawing-mind-map-problem-solving-strategies

6. Use trial-and-error

A trial-and-error approach can be useful when you have several possible solutions and want to test them to see which one works best.

7. Sleep on it

Finding the best solution to a problem is a process. Remember to take breaks and get enough rest . Sometimes, a walk around the block can bring inspiration, but you should sleep on it if possible.

A good night’s sleep helps us find creative solutions to problems. This is because when you sleep, your brain sorts through the day’s events and stores them as memories. This enables you to process your ideas at a subconscious level. 

If possible, give yourself a few days to develop and analyze possible solutions. You may find you have greater clarity after sleeping on it. Your mind will also be fresh, so you’ll be able to make better decisions.

8. Get advice from your peers

Getting input from a group of people can help you find solutions you may not have thought of on your own. 

For solo entrepreneurs or freelancers, this might look like hiring a coach or mentor or joining a mastermind group. 

For leaders , it might be consulting other members of the leadership team or working with a business coach .

It’s important to recognize you might not have all the skills, experience, or knowledge necessary to find a solution alone. 

9. Use the Pareto principle

The Pareto principle — also known as the 80/20 rule — can help you identify possible root causes and potential solutions for your problems.

Although it’s not a mathematical law, it’s a principle found throughout many aspects of business and life. For example, 20% of the sales reps in a company might close 80% of the sales. 

You may be able to narrow down the causes of your problem by applying the Pareto principle. This can also help you identify the most appropriate solutions.

10. Add successful solutions to your toolkit

Every situation is different, and the same solutions might not always work. But by keeping a record of successful problem-solving strategies, you can build up a solutions toolkit. 

These solutions may be applicable to future problems. Even if not, they may save you some of the time and work needed to come up with a new solution.

three-colleagues-looking-at-computer-problem-solving-strategies

Improving problem-solving skills is essential for professional development — both yours and your team’s. Here are some of the key skills of effective problem solvers:

  • Critical thinking and analytical skills
  • Communication skills , including active listening
  • Decision-making
  • Planning and prioritization
  • Emotional intelligence , including empathy and emotional regulation
  • Time management
  • Data analysis
  • Research skills
  • Project management

And they see problems as opportunities. Everyone is born with problem-solving skills. But accessing these abilities depends on how we view problems. Effective problem-solvers see problems as opportunities to learn and improve.

Ready to work on your problem-solving abilities? Get started with these seven tips.

1. Build your problem-solving skills

One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training , shadowing a mentor , or working with a coach .

2. Practice

Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life. 

Alternatively, imagine problematic scenarios that might arise at work and use problem-solving strategies to find hypothetical solutions.

3. Don’t try to find a solution right away

Often, the first solution you think of to solve a problem isn’t the most appropriate or effective.

Instead of thinking on the spot, give yourself time and use one or more of the problem-solving strategies above to activate your creative thinking. 

two-colleagues-talking-at-corporate-event-problem-solving-strategies

4. Ask for feedback

Receiving feedback is always important for learning and growth. Your perception of your problem-solving skills may be different from that of your colleagues. They can provide insights that help you improve. 

5. Learn new approaches and methodologies

There are entire books written about problem-solving methodologies if you want to take a deep dive into the subject. 

We recommend starting with “ Fixed — How to Perfect the Fine Art of Problem Solving ” by Amy E. Herman. 

6. Experiment

Tried-and-tested problem-solving techniques can be useful. However, they don’t teach you how to innovate and develop your own problem-solving approaches. 

Sometimes, an unconventional approach can lead to the development of a brilliant new idea or strategy. So don’t be afraid to suggest your most “out there” ideas.

7. Analyze the success of your competitors

Do you have competitors who have already solved the problem you’re facing? Look at what they did, and work backward to solve your own problem. 

For example, Netflix started in the 1990s as a DVD mail-rental company. Its main competitor at the time was Blockbuster. 

But when streaming became the norm in the early 2000s, both companies faced a crisis. Netflix innovated, unveiling its streaming service in 2007. 

If Blockbuster had followed Netflix’s example, it might have survived. Instead, it declared bankruptcy in 2010.

Use problem-solving strategies to uplevel your business

When facing a problem, it’s worth taking the time to find the right solution. 

Otherwise, we risk either running away from our problems or headlong into solutions. When we do this, we might miss out on other, better options.

Use the problem-solving strategies outlined above to find innovative solutions to your business’ most perplexing problems.

If you’re ready to take problem-solving to the next level, request a demo with BetterUp . Our expert coaches specialize in helping teams develop and implement strategies that work.

New call-to-action

Elizabeth Perry

Content Marketing Manager, ACC

8 creative solutions to your most challenging problems

What are metacognitive skills examples in everyday life, 5 problem-solving questions to prepare you for your next interview, what is lateral thinking 7 techniques to encourage creative ideas, 31 examples of problem solving performance review phrases, leadership activities that encourage employee engagement, learn what process mapping is and how to create one (+ examples), can dreams help you solve problems 6 ways to try, how much do distractions cost 8 effects of lack of focus, similar articles, the pareto principle: how the 80/20 rule can help you do more with less, thinking outside the box: 8 ways to become a creative problem solver, the importance of teamwork for agility at work, effective problem statements have these 5 components, contingency planning: 4 steps to prepare for the unexpected, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead
  • BetterUp Manage™
  • BetterUp Care™
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Life Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences

How to master the seven-step problem-solving process

In this episode of the McKinsey Podcast , Simon London speaks with Charles Conn, CEO of venture-capital firm Oxford Sciences Innovation, and McKinsey senior partner Hugo Sarrazin about the complexities of different problem-solving strategies.

Podcast transcript

Simon London: Hello, and welcome to this episode of the McKinsey Podcast , with me, Simon London. What’s the number-one skill you need to succeed professionally? Salesmanship, perhaps? Or a facility with statistics? Or maybe the ability to communicate crisply and clearly? Many would argue that at the very top of the list comes problem solving: that is, the ability to think through and come up with an optimal course of action to address any complex challenge—in business, in public policy, or indeed in life.

Looked at this way, it’s no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and also with Charles Conn. Charles is a former McKinsey partner, entrepreneur, executive, and coauthor of the book Bulletproof Problem Solving: The One Skill That Changes Everything [John Wiley & Sons, 2018].

Charles and Hugo, welcome to the podcast. Thank you for being here.

Hugo Sarrazin: Our pleasure.

Charles Conn: It’s terrific to be here.

Simon London: Problem solving is a really interesting piece of terminology. It could mean so many different things. I have a son who’s a teenage climber. They talk about solving problems. Climbing is problem solving. Charles, when you talk about problem solving, what are you talking about?

Charles Conn: For me, problem solving is the answer to the question “What should I do?” It’s interesting when there’s uncertainty and complexity, and when it’s meaningful because there are consequences. Your son’s climbing is a perfect example. There are consequences, and it’s complicated, and there’s uncertainty—can he make that grab? I think we can apply that same frame almost at any level. You can think about questions like “What town would I like to live in?” or “Should I put solar panels on my roof?”

You might think that’s a funny thing to apply problem solving to, but in my mind it’s not fundamentally different from business problem solving, which answers the question “What should my strategy be?” Or problem solving at the policy level: “How do we combat climate change?” “Should I support the local school bond?” I think these are all part and parcel of the same type of question, “What should I do?”

I’m a big fan of structured problem solving. By following steps, we can more clearly understand what problem it is we’re solving, what are the components of the problem that we’re solving, which components are the most important ones for us to pay attention to, which analytic techniques we should apply to those, and how we can synthesize what we’ve learned back into a compelling story. That’s all it is, at its heart.

I think sometimes when people think about seven steps, they assume that there’s a rigidity to this. That’s not it at all. It’s actually to give you the scope for creativity, which often doesn’t exist when your problem solving is muddled.

Simon London: You were just talking about the seven-step process. That’s what’s written down in the book, but it’s a very McKinsey process as well. Without getting too deep into the weeds, let’s go through the steps, one by one. You were just talking about problem definition as being a particularly important thing to get right first. That’s the first step. Hugo, tell us about that.

Hugo Sarrazin: It is surprising how often people jump past this step and make a bunch of assumptions. The most powerful thing is to step back and ask the basic questions—“What are we trying to solve? What are the constraints that exist? What are the dependencies?” Let’s make those explicit and really push the thinking and defining. At McKinsey, we spend an enormous amount of time in writing that little statement, and the statement, if you’re a logic purist, is great. You debate. “Is it an ‘or’? Is it an ‘and’? What’s the action verb?” Because all these specific words help you get to the heart of what matters.

Want to subscribe to The McKinsey Podcast ?

Simon London: So this is a concise problem statement.

Hugo Sarrazin: Yeah. It’s not like “Can we grow in Japan?” That’s interesting, but it is “What, specifically, are we trying to uncover in the growth of a product in Japan? Or a segment in Japan? Or a channel in Japan?” When you spend an enormous amount of time, in the first meeting of the different stakeholders, debating this and having different people put forward what they think the problem definition is, you realize that people have completely different views of why they’re here. That, to me, is the most important step.

Charles Conn: I would agree with that. For me, the problem context is critical. When we understand “What are the forces acting upon your decision maker? How quickly is the answer needed? With what precision is the answer needed? Are there areas that are off limits or areas where we would particularly like to find our solution? Is the decision maker open to exploring other areas?” then you not only become more efficient, and move toward what we call the critical path in problem solving, but you also make it so much more likely that you’re not going to waste your time or your decision maker’s time.

How often do especially bright young people run off with half of the idea about what the problem is and start collecting data and start building models—only to discover that they’ve really gone off half-cocked.

Hugo Sarrazin: Yeah.

Charles Conn: And in the wrong direction.

Simon London: OK. So step one—and there is a real art and a structure to it—is define the problem. Step two, Charles?

Charles Conn: My favorite step is step two, which is to use logic trees to disaggregate the problem. Every problem we’re solving has some complexity and some uncertainty in it. The only way that we can really get our team working on the problem is to take the problem apart into logical pieces.

What we find, of course, is that the way to disaggregate the problem often gives you an insight into the answer to the problem quite quickly. I love to do two or three different cuts at it, each one giving a bit of a different insight into what might be going wrong. By doing sensible disaggregations, using logic trees, we can figure out which parts of the problem we should be looking at, and we can assign those different parts to team members.

Simon London: What’s a good example of a logic tree on a sort of ratable problem?

Charles Conn: Maybe the easiest one is the classic profit tree. Almost in every business that I would take a look at, I would start with a profit or return-on-assets tree. In its simplest form, you have the components of revenue, which are price and quantity, and the components of cost, which are cost and quantity. Each of those can be broken out. Cost can be broken into variable cost and fixed cost. The components of price can be broken into what your pricing scheme is. That simple tree often provides insight into what’s going on in a business or what the difference is between that business and the competitors.

If we add the leg, which is “What’s the asset base or investment element?”—so profit divided by assets—then we can ask the question “Is the business using its investments sensibly?” whether that’s in stores or in manufacturing or in transportation assets. I hope we can see just how simple this is, even though we’re describing it in words.

When I went to work with Gordon Moore at the Moore Foundation, the problem that he asked us to look at was “How can we save Pacific salmon?” Now, that sounds like an impossible question, but it was amenable to precisely the same type of disaggregation and allowed us to organize what became a 15-year effort to improve the likelihood of good outcomes for Pacific salmon.

Simon London: Now, is there a danger that your logic tree can be impossibly large? This, I think, brings us onto the third step in the process, which is that you have to prioritize.

Charles Conn: Absolutely. The third step, which we also emphasize, along with good problem definition, is rigorous prioritization—we ask the questions “How important is this lever or this branch of the tree in the overall outcome that we seek to achieve? How much can I move that lever?” Obviously, we try and focus our efforts on ones that have a big impact on the problem and the ones that we have the ability to change. With salmon, ocean conditions turned out to be a big lever, but not one that we could adjust. We focused our attention on fish habitats and fish-harvesting practices, which were big levers that we could affect.

People spend a lot of time arguing about branches that are either not important or that none of us can change. We see it in the public square. When we deal with questions at the policy level—“Should you support the death penalty?” “How do we affect climate change?” “How can we uncover the causes and address homelessness?”—it’s even more important that we’re focusing on levers that are big and movable.

Would you like to learn more about our Strategy & Corporate Finance Practice ?

Simon London: Let’s move swiftly on to step four. You’ve defined your problem, you disaggregate it, you prioritize where you want to analyze—what you want to really look at hard. Then you got to the work plan. Now, what does that mean in practice?

Hugo Sarrazin: Depending on what you’ve prioritized, there are many things you could do. It could be breaking the work among the team members so that people have a clear piece of the work to do. It could be defining the specific analyses that need to get done and executed, and being clear on time lines. There’s always a level-one answer, there’s a level-two answer, there’s a level-three answer. Without being too flippant, I can solve any problem during a good dinner with wine. It won’t have a whole lot of backing.

Simon London: Not going to have a lot of depth to it.

Hugo Sarrazin: No, but it may be useful as a starting point. If the stakes are not that high, that could be OK. If it’s really high stakes, you may need level three and have the whole model validated in three different ways. You need to find a work plan that reflects the level of precision, the time frame you have, and the stakeholders you need to bring along in the exercise.

Charles Conn: I love the way you’ve described that, because, again, some people think of problem solving as a linear thing, but of course what’s critical is that it’s iterative. As you say, you can solve the problem in one day or even one hour.

Charles Conn: We encourage our teams everywhere to do that. We call it the one-day answer or the one-hour answer. In work planning, we’re always iterating. Every time you see a 50-page work plan that stretches out to three months, you know it’s wrong. It will be outmoded very quickly by that learning process that you described. Iterative problem solving is a critical part of this. Sometimes, people think work planning sounds dull, but it isn’t. It’s how we know what’s expected of us and when we need to deliver it and how we’re progressing toward the answer. It’s also the place where we can deal with biases. Bias is a feature of every human decision-making process. If we design our team interactions intelligently, we can avoid the worst sort of biases.

Simon London: Here we’re talking about cognitive biases primarily, right? It’s not that I’m biased against you because of your accent or something. These are the cognitive biases that behavioral sciences have shown we all carry around, things like anchoring, overoptimism—these kinds of things.

Both: Yeah.

Charles Conn: Availability bias is the one that I’m always alert to. You think you’ve seen the problem before, and therefore what’s available is your previous conception of it—and we have to be most careful about that. In any human setting, we also have to be careful about biases that are based on hierarchies, sometimes called sunflower bias. I’m sure, Hugo, with your teams, you make sure that the youngest team members speak first. Not the oldest team members, because it’s easy for people to look at who’s senior and alter their own creative approaches.

Hugo Sarrazin: It’s helpful, at that moment—if someone is asserting a point of view—to ask the question “This was true in what context?” You’re trying to apply something that worked in one context to a different one. That can be deadly if the context has changed, and that’s why organizations struggle to change. You promote all these people because they did something that worked well in the past, and then there’s a disruption in the industry, and they keep doing what got them promoted even though the context has changed.

Simon London: Right. Right.

Hugo Sarrazin: So it’s the same thing in problem solving.

Charles Conn: And it’s why diversity in our teams is so important. It’s one of the best things about the world that we’re in now. We’re likely to have people from different socioeconomic, ethnic, and national backgrounds, each of whom sees problems from a slightly different perspective. It is therefore much more likely that the team will uncover a truly creative and clever approach to problem solving.

Simon London: Let’s move on to step five. You’ve done your work plan. Now you’ve actually got to do the analysis. The thing that strikes me here is that the range of tools that we have at our disposal now, of course, is just huge, particularly with advances in computation, advanced analytics. There’s so many things that you can apply here. Just talk about the analysis stage. How do you pick the right tools?

Charles Conn: For me, the most important thing is that we start with simple heuristics and explanatory statistics before we go off and use the big-gun tools. We need to understand the shape and scope of our problem before we start applying these massive and complex analytical approaches.

Simon London: Would you agree with that?

Hugo Sarrazin: I agree. I think there are so many wonderful heuristics. You need to start there before you go deep into the modeling exercise. There’s an interesting dynamic that’s happening, though. In some cases, for some types of problems, it is even better to set yourself up to maximize your learning. Your problem-solving methodology is test and learn, test and learn, test and learn, and iterate. That is a heuristic in itself, the A/B testing that is used in many parts of the world. So that’s a problem-solving methodology. It’s nothing different. It just uses technology and feedback loops in a fast way. The other one is exploratory data analysis. When you’re dealing with a large-scale problem, and there’s so much data, I can get to the heuristics that Charles was talking about through very clever visualization of data.

You test with your data. You need to set up an environment to do so, but don’t get caught up in neural-network modeling immediately. You’re testing, you’re checking—“Is the data right? Is it sound? Does it make sense?”—before you launch too far.

Simon London: You do hear these ideas—that if you have a big enough data set and enough algorithms, they’re going to find things that you just wouldn’t have spotted, find solutions that maybe you wouldn’t have thought of. Does machine learning sort of revolutionize the problem-solving process? Or are these actually just other tools in the toolbox for structured problem solving?

Charles Conn: It can be revolutionary. There are some areas in which the pattern recognition of large data sets and good algorithms can help us see things that we otherwise couldn’t see. But I do think it’s terribly important we don’t think that this particular technique is a substitute for superb problem solving, starting with good problem definition. Many people use machine learning without understanding algorithms that themselves can have biases built into them. Just as 20 years ago, when we were doing statistical analysis, we knew that we needed good model definition, we still need a good understanding of our algorithms and really good problem definition before we launch off into big data sets and unknown algorithms.

Simon London: Step six. You’ve done your analysis.

Charles Conn: I take six and seven together, and this is the place where young problem solvers often make a mistake. They’ve got their analysis, and they assume that’s the answer, and of course it isn’t the answer. The ability to synthesize the pieces that came out of the analysis and begin to weave those into a story that helps people answer the question “What should I do?” This is back to where we started. If we can’t synthesize, and we can’t tell a story, then our decision maker can’t find the answer to “What should I do?”

Simon London: But, again, these final steps are about motivating people to action, right?

Charles Conn: Yeah.

Simon London: I am slightly torn about the nomenclature of problem solving because it’s on paper, right? Until you motivate people to action, you actually haven’t solved anything.

Charles Conn: I love this question because I think decision-making theory, without a bias to action, is a waste of time. Everything in how I approach this is to help people take action that makes the world better.

Simon London: Hence, these are absolutely critical steps. If you don’t do this well, you’ve just got a bunch of analysis.

Charles Conn: We end up in exactly the same place where we started, which is people speaking across each other, past each other in the public square, rather than actually working together, shoulder to shoulder, to crack these important problems.

Simon London: In the real world, we have a lot of uncertainty—arguably, increasing uncertainty. How do good problem solvers deal with that?

Hugo Sarrazin: At every step of the process. In the problem definition, when you’re defining the context, you need to understand those sources of uncertainty and whether they’re important or not important. It becomes important in the definition of the tree.

You need to think carefully about the branches of the tree that are more certain and less certain as you define them. They don’t have equal weight just because they’ve got equal space on the page. Then, when you’re prioritizing, your prioritization approach may put more emphasis on things that have low probability but huge impact—or, vice versa, may put a lot of priority on things that are very likely and, hopefully, have a reasonable impact. You can introduce that along the way. When you come back to the synthesis, you just need to be nuanced about what you’re understanding, the likelihood.

Often, people lack humility in the way they make their recommendations: “This is the answer.” They’re very precise, and I think we would all be well-served to say, “This is a likely answer under the following sets of conditions” and then make the level of uncertainty clearer, if that is appropriate. It doesn’t mean you’re always in the gray zone; it doesn’t mean you don’t have a point of view. It just means that you can be explicit about the certainty of your answer when you make that recommendation.

Simon London: So it sounds like there is an underlying principle: “Acknowledge and embrace the uncertainty. Don’t pretend that it isn’t there. Be very clear about what the uncertainties are up front, and then build that into every step of the process.”

Hugo Sarrazin: Every step of the process.

Simon London: Yeah. We have just walked through a particular structured methodology for problem solving. But, of course, this is not the only structured methodology for problem solving. One that is also very well-known is design thinking, which comes at things very differently. So, Hugo, I know you have worked with a lot of designers. Just give us a very quick summary. Design thinking—what is it, and how does it relate?

Hugo Sarrazin: It starts with an incredible amount of empathy for the user and uses that to define the problem. It does pause and go out in the wild and spend an enormous amount of time seeing how people interact with objects, seeing the experience they’re getting, seeing the pain points or joy—and uses that to infer and define the problem.

Simon London: Problem definition, but out in the world.

Hugo Sarrazin: With an enormous amount of empathy. There’s a huge emphasis on empathy. Traditional, more classic problem solving is you define the problem based on an understanding of the situation. This one almost presupposes that we don’t know the problem until we go see it. The second thing is you need to come up with multiple scenarios or answers or ideas or concepts, and there’s a lot of divergent thinking initially. That’s slightly different, versus the prioritization, but not for long. Eventually, you need to kind of say, “OK, I’m going to converge again.” Then you go and you bring things back to the customer and get feedback and iterate. Then you rinse and repeat, rinse and repeat. There’s a lot of tactile building, along the way, of prototypes and things like that. It’s very iterative.

Simon London: So, Charles, are these complements or are these alternatives?

Charles Conn: I think they’re entirely complementary, and I think Hugo’s description is perfect. When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that’s very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use contrasting teams, so that we do have divergent thinking. The best teams allow divergent thinking to bump them off whatever their initial biases in problem solving are. For me, design thinking gives us a constant reminder of creativity, empathy, and the tactile nature of problem solving, but it’s absolutely complementary, not alternative.

Simon London: I think, in a world of cross-functional teams, an interesting question is do people with design-thinking backgrounds really work well together with classical problem solvers? How do you make that chemistry happen?

Hugo Sarrazin: Yeah, it is not easy when people have spent an enormous amount of time seeped in design thinking or user-centric design, whichever word you want to use. If the person who’s applying classic problem-solving methodology is very rigid and mechanical in the way they’re doing it, there could be an enormous amount of tension. If there’s not clarity in the role and not clarity in the process, I think having the two together can be, sometimes, problematic.

The second thing that happens often is that the artifacts the two methodologies try to gravitate toward can be different. Classic problem solving often gravitates toward a model; design thinking migrates toward a prototype. Rather than writing a big deck with all my supporting evidence, they’ll bring an example, a thing, and that feels different. Then you spend your time differently to achieve those two end products, so that’s another source of friction.

Now, I still think it can be an incredibly powerful thing to have the two—if there are the right people with the right mind-set, if there is a team that is explicit about the roles, if we’re clear about the kind of outcomes we are attempting to bring forward. There’s an enormous amount of collaborativeness and respect.

Simon London: But they have to respect each other’s methodology and be prepared to flex, maybe, a little bit, in how this process is going to work.

Hugo Sarrazin: Absolutely.

Simon London: The other area where, it strikes me, there could be a little bit of a different sort of friction is this whole concept of the day-one answer, which is what we were just talking about in classical problem solving. Now, you know that this is probably not going to be your final answer, but that’s how you begin to structure the problem. Whereas I would imagine your design thinkers—no, they’re going off to do their ethnographic research and get out into the field, potentially for a long time, before they come back with at least an initial hypothesis.

Want better strategies? Become a bulletproof problem solver

Want better strategies? Become a bulletproof problem solver

Hugo Sarrazin: That is a great callout, and that’s another difference. Designers typically will like to soak into the situation and avoid converging too quickly. There’s optionality and exploring different options. There’s a strong belief that keeps the solution space wide enough that you can come up with more radical ideas. If there’s a large design team or many designers on the team, and you come on Friday and say, “What’s our week-one answer?” they’re going to struggle. They’re not going to be comfortable, naturally, to give that answer. It doesn’t mean they don’t have an answer; it’s just not where they are in their thinking process.

Simon London: I think we are, sadly, out of time for today. But Charles and Hugo, thank you so much.

Charles Conn: It was a pleasure to be here, Simon.

Hugo Sarrazin: It was a pleasure. Thank you.

Simon London: And thanks, as always, to you, our listeners, for tuning into this episode of the McKinsey Podcast . If you want to learn more about problem solving, you can find the book, Bulletproof Problem Solving: The One Skill That Changes Everything , online or order it through your local bookstore. To learn more about McKinsey, you can of course find us at McKinsey.com.

Charles Conn is CEO of Oxford Sciences Innovation and an alumnus of McKinsey’s Sydney office. Hugo Sarrazin is a senior partner in the Silicon Valley office, where Simon London, a member of McKinsey Publishing, is also based.

Explore a career with us

Related articles.

Want better strategies? Become a bulletproof problem solver

Strategy to beat the odds

firo13_frth

Five routes to more innovative problem solving

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

example for problem solving method

36 Problem-solving techniques, methods and tools

example for problem solving method

When it comes to solving problems, getting ideas is the easy part. 

But businesses often forget the other four stages of the problem-solving process that will allow them to find the best solution.

Instead of jumping straight to idea generation, your problem-solving framework should look like this:

  • Identify the problem
  • Reveal why it has occurred
  • Brainstorm ideas
  • Select the best solution

See how idea generation doesn’t appear until stage 3?!

In this extensive resource, we provide techniques, methodologies and tools to guide you through every stage of the problem-solving process.

Once you’ve finished reading, you’ll possess an extensive problem-solving arsenal that will enable you to overcome your biggest workplace challenges.

11 Problem-solving techniques for clarity and confidence

Before we dive into more comprehensive methodologies for solving problems, there are a few basic techniques you should know. 

The following techniques will set you up for a successful problem-solving session with your team, allowing you to take on your biggest challenges with clarity and confidence. ‍

1. Take a moment, take a breath

When a problem or challenge arises, it’s normal to act too quickly or rely on solutions that have worked well in the past. This is known as entrenched thinking.

But acting impulsively, without prior consideration or planning, can cause you to misunderstand the issue and overlook possible solutions to the problem.

Therefore, the first thing you should always do when you encounter a problem is: breathe in and out.

Take a step back and make a clear plan of action before you act. This will help you to take rational steps towards solving a problem. ‍

2. Ask questions to understand the full extent of the issue

Another common mistake people make when attempting to solve a problem is taking action before fully understanding the problem.

Before committing to a theory, ask enough questions to unearth the true root of the issue. 

Later in this article, we cover The 5 Why’s problem-solving methodology which you can use to easily identify the root of your problem. Give this a go at your next meeting and see how your initial understanding of a problem can often be wrong. ‍

3. Consider alternative perspectives

A common problem-solving issue is that of myopia—a narrow-minded view or perception of the problem. Myopia can occur when you’re too involved with the problem or your team isn’t diverse enough.

To give yourself the best chance of resolving a problem, gain insight from a wide range of sources. Collaborate with key stakeholders, customers and on-the-ground employees to learn how the problem affects them and whether they have found workarounds or solutions.

To paint the broadest picture, don’t limit your problem-solving team to a specific archetype. Try to include everyone, from the chief executive to the office janitor.

If you’re working with a small team, try the Flip It! problem-solving methodology to view the issue from a fresh angle. ‍

4. Make your office space conducive to problem-solving

The environment in which your host your brainstorming sessions should maximise creativity . When your team members trust each other and feel relaxed, they’re more likely to come up with innovative ideas and solutions to a problem.

Here are a few ways to get your employees’ creative juices flowing:

  • Play team-building games that maximise trust and build interpersonal relationships
  • Improve your team’s problem-solving skills with games that encourage critical thinking
  • Redesign the office with comfortable furniture and collaborative spaces
  • Boost job satisfaction by creating a positive work-life balance
  • Improve collaborative skills and learn to resolve conflicts

World Café is a problem-solving method that creates a casual environment conducive to creative thinking. 

Keep reading to learn more about how World Café can help your team solve complex organisational problems. ‍

5. Use problem-solving methodologies to guide the process

Because problem-solving is a creative process, it can be hard to keep it on track. As more ideas get banded around, conflicts can arise that derail the session.

That’s why problem-solving methodologies are so helpful. They offer you proven problem-solving frameworks to guide your group sessions and keep them on track.

The Six Thinking Hats problem-solving method is a popular technique that guides the process and helps your team analyse a problem from all angles.

We’re going to take a look at our favourite problem-solving methodologies in the next section of this article, XY Tried and tested problem-solving methodologies. ‍

6. Use analogies to solve complex problems

Sometimes, solving a different problem can help you uncover solutions to another problem! 

By stripping back a complex issue and framing it as a simplified analogy , you approach a problem from a different angle, enabling you to come up with alternative ideas.

After solving practice problems, your team might be more aptly equipped to solve real-world issues.

However, coming up with an analogy that reflects your issue can be difficult, so don’t worry if this technique doesn’t work for you.

The Speed Boat diagram is a visual tool that helps your employees view existing challenges as anchors holding back a boat which represents your end goals. By assigning a “weight” to each anchor, your team can prioritise which issues to tackle first. ‍

7. Establish clear constraints

Constraints make a big problem more approachable. 

Before you tackle a problem, establish clear boundaries and codes of conduct for the session. This allows your team to focus on the current issue without becoming distracted or veering off on a tangent.

In an article published in the Harvard Business Review, authors Oguz A. Acar, Murat Tarakci, and Daan van Knippenberg wrote, “Constraints … provide focus and a creative challenge that motivates people to search for and connect information from different sources to generate novel ideas for new products, services, or business processes.” (Why Constraints Are Good for Innovation, 2019)

Lightning Decision Jam is a prime example of how constraints can assist the creative process. Here, your team are given strict time constraints and isn’t permitted to discuss ideas until the end. ‍

8. Dislodge preconceived ideas

Humans are creatures of habit. 

We defer to strategies that have produced positive results in the past. This is typically beneficial because recalling our previous successes means we don’t need to constantly re-learn similar tasks.

But when it comes to problem-solving, this way of thinking can trip us up. We become fixated on a solution that worked in the past, but when this fails we’re dismayed and left wondering what to do next.

To resolve problems effectively, your employees need to escape the precincts of their imaginations. This helps to eliminate functional fixedness—the belief that an item serves only its predefined function.

Alternative Application is an icebreaker game that encourages employees to think outside the box by coming up with different uses for everyday objects. Try this at your next meeting or team-building event and watch your team tap into their creativity. ‍

9. Level the playing field

Having a diverse group of employees at your brainstorming sessions is a good idea, but there’s one problem: the extroverted members of your team will be more vocal than the introverts.

To ensure you’re gaining insight from every member of your team, you need to give your quieter employees equal opportunities to contribute by eliminating personality biases.

Read more: What icebreaker games and questions work best for introverts?

The obvious solution, then, is to “silence” the louder participants (it’s not as sinister as it sounds, promise)—all you have to do is ban your team from debating suggestions during the ideation process. 

The Lightning Decision Jam methodology gives your employees equal opportunities to contribute because much of the problem-solving process is carried out in silence. ‍

10. Take a break from the problem

Have you ever noticed how the best ideas seem to come when you’re not actively working on a problem? You may have spent hours slumped over your desk hashing out a solution, only for the “eureka!” moment to come when you’re walking your dog or taking a shower.

In James Webb Young’s book, A Technique for Producing Ideas , phase three of the process is “stepping away from the problem.” Young proclaims that after putting in the hard work, the information needs to ferment in the mind before any plausible ideas come to you.

So next time you’re in a meeting with your team trying to solve a problem, don’t panic if you don’t uncover groundbreaking ideas there and then. Allow everybody to mull over what they’ve learned, then reconvene at a later date.

The Creativity Dice methodology is a quick-fire brainstorming game that allows your team to incubate ideas while concentrating on another. ‍

11. Limit feedback sessions

The way your team delivers feedback at the end of a successful brainstorming session is critical. Left unsupervised, excessive feedback can undo all of your hard work.

Therefore, it’s wise to put a cap on the amount of feedback your team can provide. One great way of doing this is by using the One Breath Feedback technique.

By limiting your employees to one breath, they’re taught to be concise with their final comments. 

16 Tried and tested problem-solving methodologies

Problem-solving methodologies keep your brainstorming session on track and encourage your team to consider all angles of the issue.

Countless methods have wiggled their way into the world of business, each one with a unique strategy and end goal.

Here are 12 of our favourite problem-solving methodologies that will help you find the best-fit solution to your troubles. ‍

12. Six Thinking Hats

Six Thinking Hats is a methodical problem-solving framework that helps your group consider all possible problems, causes, solutions and repercussions by assigning a different coloured hat to each stage of the problem-solving process.

The roles of each hat are as follows:

  • Blue Hat (Control): This hat controls the session and dictates the order in which the hats will be worn. When wearing the Blue Hat, your group will observe possible solutions, draw conclusions and define a plan of action.
  • Green Hat (Idea Generation): The Green Hat signifies creativity. At this stage of the methodology, your team will focus their efforts on generating ideas, imagining solutions and considering alternatives.
  • Red Hat (Intuition and Feelings): It’s time for your employees to communicate their feelings. Here, your team listen to their guts and convey their emotional impulses without justification. 
  • Yellow Hat (Benefits and Values): What are the merits of each idea that has been put forward thus far? What positive impacts could they have?
  • Black or Grey Hat (Caution): What are the potential risks or shortcomings of each idea? What negative impacts could result from implicating each idea?
  • White Hat (Information and Data): While wearing The White Hat, your team must determine what information is needed and from where it can be obtained.

For Six Thinking Hats to work effectively, ensure your team acts within the confines of each role. 

While wearing The Yellow Hat, for example, your team should only discuss the positives . Any negative implications should be left for the Black or Grey hat.

Note: Feel free to alter the hat colours to align with your cultural context. ‍

13. Lightning Decision Jam (LDJ)

Lightning Decision Jam is a nine-stage problem-solving process designed to uncover a variety of perspectives while keeping the session on track.

The process starts by defining a general topic like the internal design process, interdepartmental communication, the sales funnel, etc.

Then, armed with pens and post-it notes, your team will work through the nine stages in the following order:

  • Write problems (7 minutes)
  • Present problems (4 minutes/person)
  • Select problems (6 minutes)
  • Reframe the problems (6 minutes)
  • Offer solutions (7 minutes)
  • Vote on solutions (10 minutes)
  • Prioritise solutions (30 seconds)
  • Decide what to execute (10 minutes)
  • Create task lists (5 minutes)

The philosophy behind LDJ is that of constraint. By limiting discussion, employees can focus on compiling ideas and coming to democratic decisions that benefit the company without being distracted or going off on a tangent. ‍

14. The 5 Why’s

Root Cause Analysis (RCA) is the process of unearthing a problem and finding the underlying cause. To help you through this process, you can use The 5 Why’s methodology.

The idea is to ask why you’re experiencing a problem, reframe the problem based on the answer, and then ask “ why?” again. If you do this five times , you should come pretty close to the root of your original challenge.

While this might not be a comprehensive end-to-end methodology, it certainly helps you to pin down your core challenges. ‍

15. World Café

If you’ve had enough of uninspiring corporate boardrooms, World Café is the solution. 

This problem-solving strategy facilitates casual conversations around given topics, enabling players to speak more openly about their grievances without the pressure of a large group.

Here’s how to do it:

  • Create a cosy cafe-style setting (try to have at least five or six chairs per table).
  • As a group, decide on a core problem and mark this as the session topic.
  • Divide your group into smaller teams by arranging five or six players at a table.
  • Assign each group a question that pertains to the session topic, or decide on one question for all groups to discuss at once.
  • Give the groups about 20 minutes to casually talk over each question.
  • Repeat this with about three or four different questions, making sure to write down key insights from each group.
  • Share the insights with the whole group.

World Café is a useful way of uncovering hidden causes and pitfalls by having multiple simultaneous conversations about a given topic. ‍

16. Discovery and Action Dialogue (DAD)

Discovery and Actions Dialogues are a collaborative method for employees to share and adopt personal behaviours in response to a problem. 

This crowdsourcing approach provides insight into how a problem affects individuals throughout your company and whether some are better equipped than others.

A DAD session is guided by a facilitator who asks seven open-ended questions in succession. Each person is given equal time to participate while a recorder takes down notes and valuable insights. 

This is a particularly effective method for uncovering preexisting ideas, behaviours and solutions from the people who face problems daily. ‍

17. Design Sprint 2.0

The Design Sprint 2.0 model by Jake Knapp helps your team to focus on finding, developing measuring a solution within four days . Because theorising is all well and good, but sometimes you can learn more by getting an idea off the ground and observing how it plays out in the real world.

Here’s the basic problem-solving framework:

  • Day 1: Map out or sketch possible solutions
  • Day 2: Choose the best solutions and storyboard your strategy going forward
  • Day 3: Create a living, breathing prototype
  • Day 4: Test and record how it performs in the real world

This technique is great for testing the viability of new products or expanding and fixing the features of an existing product. ‍

18. Open Space Technology

Open Space Technology is a method for large groups to create a problem-solving agenda around a central theme. It works best when your group is comprised of subject-matter experts and experienced individuals with a sufficient stake in the problem.

Open Space Technology works like this:

  • Establish a core theme for your team to centralise their efforts.
  • Ask the participants to consider their approach and write it on a post-it note.
  • Everybody writes a time and place for discussion on their note and sticks it to the wall.
  • The group is then invited to join the sessions that most interest them.
  • Everybody joins and contributes to their chosen sessions
  • Any significant insights and outcomes are recorded and presented to the group.

This methodology grants autonomy to your team and encourages them to take ownership of the problem-solving process. ‍

19. Round-Robin Brainstorming Technique

While not an end-to-end problem-solving methodology, the Round-Robin Brainstorming Technique is an effective way of squeezing every last ounce of creativity from your ideation sessions.

Here’s how it works:

  • Decide on a problem that needs to be solved
  • Sitting in a circle, give each employee a chance to offer an idea
  • Have somebody write down each idea as they come up
  • Participants can pass if they don’t have anything to contribute
  • The brainstorming session ends once everybody has passed

Once you’ve compiled a long list of ideas, it’s up to you how you move forward. You could, for example, borrow techniques from other methodologies, such as the “vote on solutions” phase of the Lightning Decision Jam. ‍

20. Failure Modes and Effects Analysis (FMEA)

Failure Modes and Effects Analysis is a method for preventing and mitigating problems within your business processes.

This technique starts by examining the process in question and asking, “What could go wrong?” From here, your team starts to brainstorm a list of potential failures.

Then, going through the list one by one, ask your participants, “Why would this failure happen?” 

Once you’ve answered this question for each list item, ask yourselves, “What would the consequences be of this failure?”

This proactive method focuses on prevention rather than treatment. Instead of waiting for a problem to occur and reacting, you’re actively searching for future shortcomings. ‍

21. Flip It!

The Flip It! Methodology teaches your team to view their concerns in a different light and frame them instead as catalysts for positive change.

The game works like this:

  • Select a topic your employees are likely to be concerned about, like market demand for your product or friction between departments.
  • Give each participant a pile of sticky notes and ask them to write down all their fears about the topic.
  • Take the fears and stick them to an area of the wall marked “fears.”
  • Then, encourage your team to look at these fears and ask them to reframe them as “hope” by writing new statements on different sticky notes.
  • Take these “hope” statements and stick them to an area of the wall marked “hope.”
  • Discuss the statements, then ask them to vote on the areas they feel they can start to take action on. They can do this by drawing a dot on the corner of the sticky note.
  • Move the notes with the most votes to a new area of the wall marked “traction.”
  • Discuss the most popular statements as a group and brainstorm actionable items related to each.
  • Write down the actions that need to be made and discuss them again as a group.

This brainstorming approach teaches your employees the danger of engrained thinking and helps them to reframe their fears as opportunities. ‍

22. The Creativity Dice

The Creativity Dice teaches your team to incubate ideas as they focus on different aspects of a problem. As we mentioned earlier in the article, giving ideas time to mature can be a highly effective problem-solving strategy. Here’s how the game works:

Choose a topic to focus on, It can be as specific or open-ended as you like. Write this down as a word or sentence. Roll the die, start a timer of three minutes and start writing down ideas within the confines of what that number resembles. The roles of each number are as follows:

  • Specification: Write down goals you want to achieve.
  • Investigation: Write down existing factual information you know about the topic.
  • Ideation: Write down creative or practical ideas related to the topic.
  • Incubation: Do something else unrelated to the problem.
  • Iteration: Look at what you’ve already written and come up with related ideas (roll again if you didn’t write anything yet). ‍
  • Integration: Look at everything you have written and try to create something cohesive from your ideas like a potential new product or actionable next step.

Once you’ve finished the activity, review your findings and decide what you want to take with you. ‍

23. SWOT Analysis

The SWOT Analysis is a long-standing method for analysing the current state of your business and considering how this affects the desired end state.

The basic idea is this:

  • Before the meeting, come up with a “Desired end state” and draw a picture that represents this on a flipchart or whiteboard.
  • Divide a large piece of paper into quadrants marked “Strengths”, “Weaknesses”, “Opportunities” and “Threats.”
  • Starting with “Strengths”, work through the quadrants, coming up with ideas that relate to the desired end state.
  • Ask your team to vote for the statements or ideas of each category that they feel are most relevant to the desired end state.
  • As a group, discuss the implications that these statements have on the desired end state. Spark debate by asking thought-provoking and open-ended questions.

The SWOT Analysis is an intuitive method for understanding which parts of your business could be affecting your long-term goals. ‍

24. The Journalistic Six

When learning to cover every aspect of a story, journalists are taught to ask themselves six essential questions:  

Now, this approach has been adopted by organisations to help understand every angle of a problem. All you need is a clear focus question, then you can start working through the six questions with your team until you have a 360-degree view of what has, can and needs to be done. ‍

25. Gamestorming

Gamestorming is a one-stop creative-thinking framework that uses various games to help your team come up with innovative ideas.

Originally published as a book 10 years ago, Gamestorming contained a selection of creative games used by Silicon Valley’s top-performing businesses to develop groundbreaking products and services.

This collection of resources, plucked from the minds of founders and CEOs like Jeff Bezos and Steve Jobs, allows you to tap into the potentially genius ideas lying dormant in the minds of your employees. ‍

26. Four-Step Sketch

The Four-Step Sketch is a visual brainstorming that provides an alternative to traditional discussion-based ideation techniques .

This methodology requires prior discussion to clarify the purpose of the activity. Imagine you’re on a startup retreat , for example, and your team is taking part in a design sprint or hackathon.

Once you’ve brainstormed a list of ideas with your team, participants can look at the suggestions and take down any relevant notes. They then take these notes and turn them into rough sketches that resemble the idea.

Then, as a warm-up, give each participant eight minutes to produce eight alternative sketches (eight minutes per sketch) of the idea. These ideas are not to be shared with the group.

Finally, participants create new sketches based on their favourite ideas and share them with the group. The group can then vote on the ideas they think offer the best solution. ‍

27. 15% Solutions

15% Solutions is a problem-solving strategy for motivating and inspiring your employees. By encouraging your team to gain small victories, you pave the way for bigger changes.

First, ask your participants to think about things they can personally do within the confines of their role.

Then, arrange your team into small groups of three to four and give them time to share their ideas and consult with each other.

This simple problem-solving process removes negativity and powerlessness and teaches your team to take responsibility for change. 

9 Problem-solving tools for gathering and selecting ideas

Problem-solving tools support your meeting with easy-to-use graphs, visualisations and techniques.  

By implementing a problem-solving tool, you break the cycle of mundane verbal discussion, enabling you to maintain engagement throughout the session. ‍

28. Fishbone Diagram

The Fishbone Diagram (otherwise known as the Ishikawa Diagram or Cause and Effect Diagram), is a tool for identifying the leading causes of a problem. You can then consolidate these causes into a comprehensive “Problem Statement.”

The term “Fishbone Diagram” is derived from the diagram’s structure. The problem itself forms the tail, possible causes radiate from the sides to form the fish skeleton while the final “Problem Statement” appears as the “head” of the fish.

Example: A fast-food chain is investigating the declining quality of their food. As the team brainstorms potential causes, they come up with reasons like “poorly trained personnel”, “lack of quality control”, and “incorrect quantity of spices.” Together with other causes, the group summarises that these problems lead to “bad burgers.” They write this as the Problem Statement and set about eliminating the main contributing factors. ‍

29. The Problem Tree

A Problem Tree is a useful tool for assessing the importance or relevance of challenges concerning the core topic. If you’re launching a new product, for example, gather your team and brainstorm the current issues, roadblocks and bottlenecks that are hindering the process.

Then, work together to decide which of these are most pressing. Place the most relevant issues closer to the core topic and less relevant issues farther away. ‍

30. SQUID Diagram

The Squid Diagram is an easy-to-use tool that charts the progress of ideas and business developments as they unfold. Your SQUID Diagram can remain on a wall for your team to add to over time.

  • Write down a core theme on a sticky note such as “customer service” or “Innovation”—this will be the “head” of your SQUID.
  • Hand two sets of different coloured sticky notes to your participants and choose one colour to represent “questions” and the other to represent “answers.”
  • Ask your team to write down questions pertaining to the success of the main topic. In the case of “Innovation,” your team might write things like “How can we improve collaboration between key stakeholders?”
  • Then, using the other coloured sticky notes, ask your team to write down possible answers to these questions. In the example above, this might be “Invest in open innovation software.”
  • Over time, you’ll develop a spawling SQUID Diagram that reflects the creative problem-solving process. ‍

31. The Speed Boat

The Speed Boat Diagram is a visual metaphor used to help your team identify and solve problems in the way of your goals.

Here’s how it works: 

  • Draw a picture of a boat and name it after the core objective.
  • With your team, brainstorm things that are slowing progress and draw each one as an anchor beneath the boat.
  • Discuss possible solutions to each problem on the diagram.

This is an easy-to-use tool that sparks creative solutions. If you like, your team can assign a “weight” to each anchor which determines the impact each problem has on the end goal. ‍

32. The LEGO Challenge

LEGO is an excellent creative-thinking and problem-solving tool used regularly by event facilitators to help teams overcome challenges. 

In our article 5 and 10-minute Team-Building Activities , we introduce Sneak a Peek —a collaborative team-building game that develops communication and leadership skills. ‍

33. The Three W’s: What? So What? Now What?

Teams aren’t always aligned when it comes to their understanding of a problem. While the problem remains the same for everyone, they might have differing opinions as to how it occurred at the implications it had.

Asking “ What? So What? Now What?” Helps you to understand different perspectives around a problem.

It goes like this:

  • Alone or in small groups, ask your employees to consider and write What happened. This should take between five and 10 minutes.
  • Then ask So What? What occurred because of this? Why was what happened important? What might happen if this issue is left unresolved?
  • Finally, ask your team Now What? What might be a solution to the problem? What actions do you need to take to avoid this happening again?

This approach helps your team understand how problems affect individuals in different ways and uncovers a variety of ways to overcome them. ‍

34. Now-How-Wow Matrix

Gathering ideas is easy—but selecting the best ones? That’s a different story. 

If you’ve got a bunch of ideas, try the Now-How-Wow Matrix to help you identify which ones you should implement now and which ones should wait until later.

Simply draw a two-axis graph with “implementation difficulty” on the Y axis and “idea originality” on the X axis. Divide this graph into quadrants and write “Now!” in the bottom left panel, “Wow!” in the bottom right panel, and “How?” in the top right panel. You can leave the top left panel blank.

Then, take your ideas and plot them on the graph depending on their implementation difficulty and level of originality.

By the end, you’ll have a clearer picture of which ideas to ignore, which ones to implement now, and which ones to add to the pipeline for the future. ‍

35. Impact-Effort Matrix

The Impact-Effort Matrix is a variation of the Now-How-Wow Matrix where the Y axis is marked “Impact” and the X axis is marked “Effort.”

Then, divide the graph into quadrants and plot your ideas. 

  • Top left section = Excellent, implement immediately
  • Top right section = Risky, but worth a try
  • Bottom left section = Low risk, but potentially ineffective
  • Bottom right section = Bad idea, ignore

The Impact-Effort Matrix is a simple way for your team to weigh the benefits of an idea against the amount of investment required. ‍

36. Dot Voting

Once you’ve gathered a substantial list of ideas from your employees, you need to sort the good from the bad. 

Dot voting is a simple tool used by problem-solving facilitators as a fast and effective way for large groups to vote on their favourite ideas . You’ll have seen this method used in problem-solving methods like Flip It! and Lightning Decision Jam .

  • Participants write their ideas on sticky notes and stick them to the wall or a flipchart.
  • When asked, participants draw a small dot on the corner of the idea they like the most.
  • Participants can be given as many votes as necessary.
  • When voting ends, arrange the notes from “most popular” to “least popular.”

This provides an easy-to-use visual representation of the best and worst ideas put forward by your team.

Give your problems the attention they deserve at an offsite retreat

While working from home or at the office, your team is often too caught up in daily tasks to take on complex problems. 

By escaping the office and uniting at an offsite location, you can craft a purposeful agenda of team-building activities and problem-solving sessions. This special time away from the office can prove invaluable when it comes to keeping your business on track.

If you have problems that need fixing (who doesn’t?), reach out to Surf Office and let us put together a fully-customised offsite retreat for you.

example for problem solving method

free course

How to plan your first company retreat

free course partners logos

Retreat Budget Spreadsheet

Are you organising a company retreat and want to make sure you have all the costs under the control?

Get a copy of our free Budget Calculator spreadsheet.

Essential duties for team building leaders

Essential duties for team building leaders

Why is team collaboration so important?

Why is team collaboration so important?

17 Team building methods for empathetic leaders

17 Team building methods for empathetic leaders

Hybrid vs remote: What’s the best option for your company?

Hybrid vs remote: What’s the best option for your company?

9 Areas of the team-building process you need to consider

9 Areas of the team-building process you need to consider

Organize your next company retreat with surf office, 💌 join 15,000+ managers receiving insights on building company culture that people love., stay in touch, work with us.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Overview of the Problem-Solving Mental Process

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

example for problem solving method

Rachel Goldman, PhD FTOS, is a licensed psychologist, clinical assistant professor, speaker, wellness expert specializing in eating behaviors, stress management, and health behavior change.

example for problem solving method

  • Identify the Problem
  • Define the Problem
  • Form a Strategy
  • Organize Information
  • Allocate Resources
  • Monitor Progress
  • Evaluate the Results

Frequently Asked Questions

Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue.

The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. In other instances, creativity and insight are the best options.

It is not necessary to follow problem-solving steps sequentially, It is common to skip steps or even go back through steps multiple times until the desired solution is reached.

In order to correctly solve a problem, it is often important to follow a series of steps. Researchers sometimes refer to this as the problem-solving cycle. While this cycle is portrayed sequentially, people rarely follow a rigid series of steps to find a solution.

The following steps include developing strategies and organizing knowledge.

1. Identifying the Problem

While it may seem like an obvious step, identifying the problem is not always as simple as it sounds. In some cases, people might mistakenly identify the wrong source of a problem, which will make attempts to solve it inefficient or even useless.

Some strategies that you might use to figure out the source of a problem include :

  • Asking questions about the problem
  • Breaking the problem down into smaller pieces
  • Looking at the problem from different perspectives
  • Conducting research to figure out what relationships exist between different variables

2. Defining the Problem

After the problem has been identified, it is important to fully define the problem so that it can be solved. You can define a problem by operationally defining each aspect of the problem and setting goals for what aspects of the problem you will address

At this point, you should focus on figuring out which aspects of the problems are facts and which are opinions. State the problem clearly and identify the scope of the solution.

3. Forming a Strategy

After the problem has been identified, it is time to start brainstorming potential solutions. This step usually involves generating as many ideas as possible without judging their quality. Once several possibilities have been generated, they can be evaluated and narrowed down.

The next step is to develop a strategy to solve the problem. The approach used will vary depending upon the situation and the individual's unique preferences. Common problem-solving strategies include heuristics and algorithms.

  • Heuristics are mental shortcuts that are often based on solutions that have worked in the past. They can work well if the problem is similar to something you have encountered before and are often the best choice if you need a fast solution.
  • Algorithms are step-by-step strategies that are guaranteed to produce a correct result. While this approach is great for accuracy, it can also consume time and resources.

Heuristics are often best used when time is of the essence, while algorithms are a better choice when a decision needs to be as accurate as possible.

4. Organizing Information

Before coming up with a solution, you need to first organize the available information. What do you know about the problem? What do you not know? The more information that is available the better prepared you will be to come up with an accurate solution.

When approaching a problem, it is important to make sure that you have all the data you need. Making a decision without adequate information can lead to biased or inaccurate results.

5. Allocating Resources

Of course, we don't always have unlimited money, time, and other resources to solve a problem. Before you begin to solve a problem, you need to determine how high priority it is.

If it is an important problem, it is probably worth allocating more resources to solving it. If, however, it is a fairly unimportant problem, then you do not want to spend too much of your available resources on coming up with a solution.

At this stage, it is important to consider all of the factors that might affect the problem at hand. This includes looking at the available resources, deadlines that need to be met, and any possible risks involved in each solution. After careful evaluation, a decision can be made about which solution to pursue.

6. Monitoring Progress

After selecting a problem-solving strategy, it is time to put the plan into action and see if it works. This step might involve trying out different solutions to see which one is the most effective.

It is also important to monitor the situation after implementing a solution to ensure that the problem has been solved and that no new problems have arisen as a result of the proposed solution.

Effective problem-solvers tend to monitor their progress as they work towards a solution. If they are not making good progress toward reaching their goal, they will reevaluate their approach or look for new strategies .

7. Evaluating the Results

After a solution has been reached, it is important to evaluate the results to determine if it is the best possible solution to the problem. This evaluation might be immediate, such as checking the results of a math problem to ensure the answer is correct, or it can be delayed, such as evaluating the success of a therapy program after several months of treatment.

Once a problem has been solved, it is important to take some time to reflect on the process that was used and evaluate the results. This will help you to improve your problem-solving skills and become more efficient at solving future problems.

A Word From Verywell​

It is important to remember that there are many different problem-solving processes with different steps, and this is just one example. Problem-solving in real-world situations requires a great deal of resourcefulness, flexibility, resilience, and continuous interaction with the environment.

Get Advice From The Verywell Mind Podcast

Hosted by therapist Amy Morin, LCSW, this episode of The Verywell Mind Podcast shares how you can stop dwelling in a negative mindset.

Follow Now : Apple Podcasts / Spotify / Google Podcasts

You can become a better problem solving by:

  • Practicing brainstorming and coming up with multiple potential solutions to problems
  • Being open-minded and considering all possible options before making a decision
  • Breaking down problems into smaller, more manageable pieces
  • Asking for help when needed
  • Researching different problem-solving techniques and trying out new ones
  • Learning from mistakes and using them as opportunities to grow

It's important to communicate openly and honestly with your partner about what's going on. Try to see things from their perspective as well as your own. Work together to find a resolution that works for both of you. Be willing to compromise and accept that there may not be a perfect solution.

Take breaks if things are getting too heated, and come back to the problem when you feel calm and collected. Don't try to fix every problem on your own—consider asking a therapist or counselor for help and insight.

If you've tried everything and there doesn't seem to be a way to fix the problem, you may have to learn to accept it. This can be difficult, but try to focus on the positive aspects of your life and remember that every situation is temporary. Don't dwell on what's going wrong—instead, think about what's going right. Find support by talking to friends or family. Seek professional help if you're having trouble coping.

Davidson JE, Sternberg RJ, editors.  The Psychology of Problem Solving .  Cambridge University Press; 2003. doi:10.1017/CBO9780511615771

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. Published 2018 Jun 26. doi:10.3389/fnhum.2018.00261

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

lls-logo-main

  • A Step-by-Step Guide to A3 Problem Solving Methodology

A3 Problem Solving - A Step by Step Guide - Feature Image - Learnleansigma

  • Learn Lean Sigma
  • Problem Solving

Problem-solving is an important component of any business or organization. It entails identifying, analyzing, and resolving problems in order to improve processes, drive results, and foster a culture of continuous improvement. A3 Problem solving is one of the most effective problem-solving methodologies.

A3 Problem solving is a structured and systematic approach to problem-solving that originated with the lean manufacturing methodology. It visualizes the problem-solving process using a one-page document known as an A3 report. The A3 report provides an overview of the problem, data analysis, root causes, solutions, and results in a clear and concise manner.

A3 Problem Solving has numerous advantages, including improved communication, better decision-making, increased efficiency, and reduced waste. It is a powerful tool for businesses of all sizes and industries, and it is especially useful for solving complex and multi-faceted problems.

In this blog post, we will walk you through the A3 Problem Solving methodology step by step. Whether you are new to A3 Problem Solving or simply want to improve your skills, this guide will help you understand and apply the process in your workplace.

Table of Contents

What is a3 problem solving.

A3 Problem Solving is a structured and systematic approach to problem-solving that makes use of a one-page document called an A3 report to visually represent the process. The A3 report provides an overview of the problem, data analysis, root causes, solutions, and results in a clear and concise manner. The method was created within the framework of the Lean manufacturing methodology and is based on the principles of continuous improvement and visual management.

A3 Problem Solving Template

Looking for a A3 Problem solving template? Click here

Origin and History of A3 Problem Solving

A3 Problem Solving was developed by Toyota Motor Corporation and was first used in the manufacture of automobiles. The term “A3” refers to the size of the paper used to create the report, which is an ISO standard known as “A3”. The goal of the A3 report is to provide a visual representation of the problem-solving process that all members of the organisation can easily understand and share. A3 Problem Solving has been adopted by organisations in a variety of industries over the years, and it has become a widely used and recognised method for problem-solving.

Key Principles of A3 Problem Solving

The following are the key principles of A3 Problem Solving:

  • Define the problem clearly and concisely
  • Gather and analyze data to gain a deep understanding of the problem
  • Identify the root causes of the problem
  • Develop and implement effective solutions
  • Evaluate results and continuously improve

These principles serve as the foundation of the A3 Problem Solving methodology and are intended to assist organisations in continuously improving and achieving their objectives. Organizations can effectively solve problems, identify areas for improvement, and drive results by adhering to these principles.

Step 1: Define the Problem

Importance of clearly defining the problem.

The first step in the A3 Problem Solving process is critical because it lays the groundwork for the remaining steps. To define the problem clearly and accurately, you must first understand the problem and identify the underlying root cause. This step is critical because if the problem is not correctly defined, the rest of the process will be based on incorrect information, and the solution developed may not address the issue effectively.

The significance of defining the problem clearly cannot be overstated. It aids in the collection and analysis of relevant data, which is critical for developing effective solutions. When the problem is clearly defined, the data gathered is more relevant and targeted, resulting in a more comprehensive understanding of the issue. This will enable the development of solutions that are more likely to be effective because they are founded on a thorough and accurate understanding of the problem.

However, if the problem is not clearly defined, the data gathered may be irrelevant or incorrect, resulting in incorrect conclusions and ineffective solutions. Furthermore, the process of collecting and analysing data can become time-consuming and inefficient, resulting in resource waste. Furthermore, if the problem is not accurately defined, the solutions developed may fail to address the root cause of the problem, resulting in ongoing issues and a lack of improvement.

Techniques for Defining the Problem

The first step in the A3 Problem Solving process is to clearly and accurately define the problem. This is an important step because a clearly defined problem will help to ensure that the appropriate data is collected and solutions are developed. If the problem is not clearly defined, incorrect data may be collected, solutions that do not address the root cause of the problem, and time and resources may be wasted.

A problem can be defined using a variety of techniques, including brainstorming , root cause analysis , process mapping , and Ishikawa diagrams . Each of these techniques has its own advantages and disadvantages and can be used in a variety of situations depending on the nature of the problem.

Best Practice for Defining the Problem

In addition to brainstorming, root cause analysis, process mapping, and Ishikawa diagram s, best practices should be followed when defining a problem in A3 Problem Solving. Among these best practices are:

  • Define the issue in a specific and quantifiable way: It is critical to be specific and concise when defining the problem, as well as to quantify the problem in terms of its impact. This will help to ensure that all stakeholders understand the problem and that data collection is focused on the right areas.
  • Focus on the problem’s root cause: The A3 Problem Solving methodology is intended to assist organisations in identifying and addressing the root cause of a problem, rather than just the symptoms. Organizations can ensure that their solutions are effective and long-lasting by focusing on the root cause of the problem.
  • Ascertain that all stakeholders agree on the problem’s definition: All stakeholders must agree on the definition of the problem for the A3 Problem Solving process to be effective. This ensures that everyone is working towards the same goal and that the solutions developed are relevant and appropriate.
  • Consider the problem’s impact on the organisation and its stakeholders: It is critical to consider the impact of the problem on the organisation and its stakeholders when defining it. This will assist in ensuring that the appropriate data is gathered and that the solutions developed are relevant and appropriate.

Organizations can ensure that their problem is defined in a way that allows for effective data collection, analysis, and solution development by following these best practices. This will aid in the development of appropriate solutions and the effective resolution of the problem, resulting in improvements in the organization’s processes and outcomes.

Step 2: Gather Data

Gathering data in a3 problem solving.

Data collection is an important step in the A3 Problem Solving process because it allows organisations to gain a thorough understanding of the problem they are attempting to solve. This step entails gathering pertinent information about the problem, such as data on its origin, impact, and any related factors. This information is then used to help identify root causes and develop effective solutions.

One of the most important advantages of data collection in A3 Problem Solving is that it allows organisations to identify patterns and trends in data, which can be useful in determining the root cause of the problem. This information can then be used to create effective solutions that address the problem’s root cause rather than just its symptoms.

In A3 Problem Solving, data collection is a collaborative effort involving all stakeholders, including those directly impacted by the problem and those with relevant expertise or experience. Stakeholders can ensure that all relevant information is collected and that the data is accurate and complete by working together.

Overall, data collection is an important step in the A3 Problem Solving process because it serves as the foundation for effective problem-solving. Organizations can gain a deep understanding of the problem they are attempting to solve and develop effective solutions that address its root cause by collecting and analysing relevant data.

Data Collection Methods

In A3 Problem Solving, several data collection methods are available, including:

  • Observations
  • Process diagrams

The best data collection method will be determined by the problem being solved and the type of data required. To gain a complete understanding of the problem, it is critical to use multiple data collection methods.

Tools for Data Analysis and Visualization

Once the data has been collected, it must be analysed and visualised in order to gain insights into the problem. This process can be aided by the following tools:

  • Excel Spreadsheets
  • Flow diagrams
  • Pareto diagrams
  • Scatter Plots
  • Control diagrams

Histogram

These tools can assist in organising data and making it easier to understand. They can also be used to generate visual representations of data, such as graphs and charts, to communicate the findings to others.

Finally, the data collection and analysis step is an important part of the A3 Problem Solving process. Organizations can gain a better understanding of the problem and develop effective solutions by collecting and analysing relevant data.

Step 3: Identify Root Causes

Identifying the root causes of the problem is the third step in the A3 Problem Solving process. This step is critical because it assists organisations in understanding the root causes of a problem rather than just its symptoms. Once the underlying cause of the problem is identified, it can be addressed more effectively, leading to more long-term solutions.

Overview of the Root Cause Analysis Process

The process of determining the underlying causes of a problem is known as root cause analysis. This process can assist organisations in determining why a problem is occurring and what can be done to prevent it from recurring in the future. The goal of root cause analysis is to identify the underlying cause of a problem rather than just its symptoms, allowing it to be addressed more effectively.

To understand Root cause analysis in more detail check out RCA in our Lean Six Sigma Yellow Belt Course Root Cause Analysis section

Techniques for Identifying Root Causes

There are several techniques for determining the root causes of a problem, including:

  • Brainstorming
  • Ishikawa diagrams (also known as fishbone diagrams)
  • Root Cause Tree Analysis

These methods can be used to investigate the issue in-depth and identify potential root causes. Organizations can gain a deeper understanding of the problem and identify the underlying causes that must be addressed by using these techniques.

Best Practices for Conducting Root Cause Analysis

It is critical to follow these best practices when conducting root cause analysis in A3 Problem Solving:

  • Make certain that all stakeholders participate in the root cause analysis process.
  • Concentrate on determining the root cause of the problem rather than just its symptoms.
  • Take into account all potential root causes, not just the most obvious ones.
  • To identify root causes, use a systematic approach, such as the 5 Whys or root cause tree analysis.

Organizations can ensure that root cause analysis is carried out effectively and that the root cause of the problem is identified by adhering to these best practises. This will aid in the development of appropriate solutions and the effective resolution of the problem.

Step 4: Develop Solutions

Developing solutions is the fourth step in the A3 Problem Solving process. This entails generating ideas and options for dealing with the problem, followed by selecting the best solution. The goal is to develop a solution that addresses the root cause of the problem and prevents it from recurring.

Solution Development in A3 Problem Solving

A3 solution development Problem solving is an iterative process in which options are generated and evaluated. The data gathered in the previous steps, as well as the insights and understanding gained from the root cause analysis, guide this process. The solution should be based on a thorough understanding of the problem and address the underlying cause.

Techniques for Developing Solutions

There are several techniques that can be used to develop solutions in A3 Problem Solving, including:

  • Brainwriting
  • Solution matrix
  • Multi voting
  • Force field analysis

These techniques can help to generate a range of options and to select the best solution.

Best Practice for Developing Solutions

It is critical to follow the following best practices when developing solutions in A3 Problem Solving:

  • Participate in the solution development process with all stakeholders.
  • Make certain that the solution addresses the underlying cause of the problem.
  • Make certain that the solution is feasible and achievable.
  • Consider the solution’s impact on the organisation and its stakeholders.

Organizations can ensure that the solutions they develop are effective and sustainable by adhering to these best practises. This will help to ensure that the problem is addressed effectively and that it does not reoccur.

Step 5: Implement Solutions

The final and most important step in the A3 Problem Solving methodology is solution implementation. This is the stage at which the identified and developed solutions are put into action to address the problem. This step’s goal is to ensure that the solutions are effective, efficient, and long-lasting.

The implementation Process

The implementation process entails putting the solutions developed in the previous step into action. This could include changes to processes, procedures, and systems, as well as employee training and education. To ensure that the solutions are effective, the implementation process should be well-planned and meticulously executed.

Techniques for Implementing Solutions

A3 Problem Solving solutions can be implemented using a variety of techniques, including:

  • Piloting the solution on a small scale before broadening its application
  • Participating in the implementation process with all relevant stakeholders
  • ensuring that the solution is in line with the goals and objectives of the organisation
  • Monitoring the solution to determine its effectiveness and make any necessary changes

Best Practice for Implementing Solutions

It is critical to follow these best practices when implementing solutions in A3 Problem Solving:

Make certain that all relevant stakeholders are involved and supportive of the solution. Have a clear implementation plan that outlines the steps, timeline, and resources required. Continuously monitor and evaluate the solution to determine its efficacy and make any necessary changes. Encourage all stakeholders to communicate and collaborate openly. Organizations can ensure that solutions are effectively implemented and problems are effectively addressed by adhering to these best practices. The ultimate goal is to find a long-term solution to the problem and improve the organization’s overall performance.

In conclusion, A3 Problem Solving is a comprehensive and structured methodology for problem-solving that can be applied in various industries and organisations. The A3 Problem Solving process’s five steps – Define the Problem, Gather Data, Identify Root Causes, Develop Solutions, and Implement Solutions – provide a road map for effectively addressing problems and making long-term improvements.

Organizations can improve their problem-solving skills and achieve better results by following the key principles, techniques, and best practices outlined in this guide. As a result, both the organisation and its stakeholders will benefit from increased efficiency, effectiveness, and satisfaction. So, whether you’re an experienced problem solver or just getting started, consider incorporating the A3 Problem Solving methodology into your work and start reaping the benefits right away.

Daniel Croft

Daniel Croft

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

Practice Exams-Sidebar

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

The Evolution of 8D Problem-Solving: From Basics to Excellence

In a world where efficiency and effectiveness are more than just buzzwords, the need for…

8D: Tools and Techniques

Are you grappling with recurring problems in your organization and searching for a structured way…

How to Select the Right Lean Six Sigma Projects: A Comprehensive Guide

Going on a Lean Six Sigma journey is an invigorating experience filled with opportunities for…

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

Module 1: Problem Solving Strategies

  • Last updated
  • Save as PDF
  • Page ID 10352

Unlike exercises, there is never a simple recipe for solving a problem. You can get better and better at solving problems, both by building up your background knowledge and by simply practicing. As you solve more problems (and learn how other people solved them), you learn strategies and techniques that can be useful. But no single strategy works every time.

Pólya’s How to Solve It

George Pólya was a great champion in the field of teaching effective problem solving skills. He was born in Hungary in 1887, received his Ph.D. at the University of Budapest, and was a professor at Stanford University (among other universities). He wrote many mathematical papers along with three books, most famously, “How to Solve it.” Pólya died at the age 98 in 1985.1

1. Image of Pólya by Thane Plambeck from Palo Alto, California (Flickr) [CC BY

Screen Shot 2018-08-30 at 4.43.05 PM.png

In 1945, Pólya published the short book How to Solve It , which gave a four-step method for solving mathematical problems:

First, you have to understand the problem.

After understanding, then make a plan.

Carry out the plan.

Look back on your work. How could it be better?

This is all well and good, but how do you actually do these steps?!?! Steps 1. and 2. are particularly mysterious! How do you “make a plan?” That is where you need some tools in your toolbox, and some experience to draw upon.

Much has been written since 1945 to explain these steps in more detail, but the truth is that they are more art than science. This is where math becomes a creative endeavor (and where it becomes so much fun). We will articulate some useful problem solving strategies, but no such list will ever be complete. This is really just a start to help you on your way. The best way to become a skilled problem solver is to learn the background material well, and then to solve a lot of problems!

Problem Solving Strategy 1 (Guess and Test)

Make a guess and test to see if it satisfies the demands of the problem. If it doesn't, alter the guess appropriately and check again. Keep doing this until you find a solution.

Mr. Jones has a total of 25 chickens and cows on his farm. How many of each does he have if all together there are 76 feet?

Step 1: Understanding the problem

We are given in the problem that there are 25 chickens and cows.

All together there are 76 feet.

Chickens have 2 feet and cows have 4 feet.

We are trying to determine how many cows and how many chickens Mr. Jones has on his farm.

Step 2: Devise a plan

Going to use Guess and test along with making a tab

Many times the strategy below is used with guess and test.

Make a table and look for a pattern:

Procedure: Make a table reflecting the data in the problem. If done in an orderly way, such a table will often reveal patterns and relationships that suggest how the problem can be solved.

Step 3: Carry out the plan:

Notice we are going in the wrong direction! The total number of feet is decreasing!

Better! The total number of feet are increasing!

Step 4: Looking back:

Check: 12 + 13 = 25 heads

24 + 52 = 76 feet.

We have found the solution to this problem. I could use this strategy when there are a limited number of possible answers and when two items are the same but they have one characteristic that is different.

Videos to watch:

1. Click on this link to see an example of “Guess and Test”

http://www.mathstories.com/strategies.htm

2. Click on this link to see another example of Guess and Test.

http://www.mathinaction.org/problem-solving-strategies.html

Check in question 1:

clipboard_e6298bbd7c7f66d9eb9affcd33892ef0d.png

Place the digits 8, 10, 11, 12, and 13 in the circles to make the sums across and vertically equal 31. (5 points)

Check in question 2:

Old McDonald has 250 chickens and goats in the barnyard. Altogether there are 760 feet . How many of each animal does he have? Make sure you use Polya’s 4 problem solving steps. (12 points)

Problem Solving Strategy 2 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric thinking visually can help!

Videos to watch demonstrating how to use "Draw a Picture".

1. Click on this link to see an example of “Draw a Picture”

2. Click on this link to see another example of Draw a Picture.

Problem Solving Strategy 3 ( Using a variable to find the sum of a sequence.)

Gauss's strategy for sequences.

last term = fixed number ( n -1) + first term

The fix number is the the amount each term is increasing or decreasing by. "n" is the number of terms you have. You can use this formula to find the last term in the sequence or the number of terms you have in a sequence.

Ex: 2, 5, 8, ... Find the 200th term.

Last term = 3(200-1) +2

Last term is 599.

To find the sum of a sequence: sum = [(first term + last term) (number of terms)]/ 2

Sum = (2 + 599) (200) then divide by 2

Sum = 60,100

Check in question 3: (10 points)

Find the 320 th term of 7, 10, 13, 16 …

Then find the sum of the first 320 terms.

Problem Solving Strategy 4 (Working Backwards)

This is considered a strategy in many schools. If you are given an answer, and the steps that were taken to arrive at that answer, you should be able to determine the starting point.

Videos to watch demonstrating of “Working Backwards”

https://www.youtube.com/watch?v=5FFWTsMEeJw

Karen is thinking of a number. If you double it, and subtract 7, you obtain 11. What is Karen’s number?

1. We start with 11 and work backwards.

2. The opposite of subtraction is addition. We will add 7 to 11. We are now at 18.

3. The opposite of doubling something is dividing by 2. 18/2 = 9

4. This should be our answer. Looking back:

9 x 2 = 18 -7 = 11

5. We have the right answer.

Check in question 4:

Christina is thinking of a number.

If you multiply her number by 93, add 6, and divide by 3, you obtain 436. What is her number? Solve this problem by working backwards. (5 points)

Problem Solving Strategy 5 (Looking for a Pattern)

Definition: A sequence is a pattern involving an ordered arrangement of numbers.

We first need to find a pattern.

Ask yourself as you search for a pattern – are the numbers growing steadily larger? Steadily smaller? How is each number related?

Example 1: 1, 4, 7, 10, 13…

Find the next 2 numbers. The pattern is each number is increasing by 3. The next two numbers would be 16 and 19.

Example 2: 1, 4, 9, 16 … find the next 2 numbers. It looks like each successive number is increase by the next odd number. 1 + 3 = 4.

So the next number would be

25 + 11 = 36

Example 3: 10, 7, 4, 1, -2… find the next 2 numbers.

In this sequence, the numbers are decreasing by 3. So the next 2 numbers would be -2 -3 = -5

-5 – 3 = -8

Example 4: 1, 2, 4, 8 … find the next two numbers.

This example is a little bit harder. The numbers are increasing but not by a constant. Maybe a factor?

So each number is being multiplied by 2.

16 x 2 = 32

1. Click on this link to see an example of “Looking for a Pattern”

2. Click on this link to see another example of Looking for a Pattern.

Problem Solving Strategy 6 (Make a List)

Example 1 : Can perfect squares end in a 2 or a 3?

List all the squares of the numbers 1 to 20.

1 4 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400.

Now look at the number in the ones digits. Notice they are 0, 1, 4, 5, 6, or 9. Notice none of the perfect squares end in 2, 3, 7, or 8. This list suggests that perfect squares cannot end in a 2, 3, 7 or 8.

How many different amounts of money can you have in your pocket if you have only three coins including only dimes and quarters?

Quarter’s dimes

0 3 30 cents

1 2 45 cents

2 1 60 cents

3 0 75 cents

Videos demonstrating "Make a List"

Check in question 5:

How many ways can you make change for 23 cents using only pennies, nickels, and dimes? (10 points)

Problem Solving Strategy 7 (Solve a Simpler Problem)

Geometric Sequences:

How would we find the nth term?

Solve a simpler problem:

1, 3, 9, 27.

1. To get from 1 to 3 what did we do?

2. To get from 3 to 9 what did we do?

Let’s set up a table:

Term Number what did we do

example for problem solving method

Looking back: How would you find the nth term?

example for problem solving method

Find the 10 th term of the above sequence.

Let L = the tenth term

example for problem solving method

Problem Solving Strategy 8 (Process of Elimination)

This strategy can be used when there is only one possible solution.

I’m thinking of a number.

The number is odd.

It is more than 1 but less than 100.

It is greater than 20.

It is less than 5 times 7.

The sum of the digits is 7.

It is evenly divisible by 5.

a. We know it is an odd number between 1 and 100.

b. It is greater than 20 but less than 35

21, 23, 25, 27, 29, 31, 33, 35. These are the possibilities.

c. The sum of the digits is 7

21 (2+1=3) No 23 (2+3 = 5) No 25 (2 + 5= 7) Yes Using the same process we see there are no other numbers that meet this criteria. Also we notice 25 is divisible by 5. By using the strategy elimination, we have found our answer.

Check in question 6: (8 points)

Jose is thinking of a number.

The number is not odd.

The sum of the digits is divisible by 2.

The number is a multiple of 11.

It is greater than 5 times 4.

It is a multiple of 6

It is less than 7 times 8 +23

What is the number?

Click on this link for a quick review of the problem solving strategies.

https://garyhall.org.uk/maths-problem-solving-strategies.html

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

example for problem solving method

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

example for problem solving method

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • What Is a Fishbone Diagram? | Templates & Examples

What Is a Fishbone Diagram? | Templates & Examples

Published on January 2, 2023 by Tegan George . Revised on January 29, 2024.

A fishbone diagram is a problem-solving approach that uses a fish-shaped diagram to model possible root causes of problems and troubleshoot possible solutions. It is also called an Ishikawa diagram, after its creator, Kaoru Ishikawa, as well as a herringbone diagram or cause-and-effect diagram.

Fishbone diagrams are often used in root cause analysis , to troubleshoot issues in quality management or product development. They are also used in the fields of nursing and healthcare, or as a brainstorming and mind-mapping technique many students find helpful.

Table of contents

How to make a fishbone diagram, fishbone diagram templates, fishbone diagram examples, advantages and disadvantages of fishbone diagrams, other interesting articles, frequently asked questions about fishbone diagrams.

A fishbone diagram is easy to draw, or you can use a template for an online version.

  • Your fishbone diagram starts out with an issue or problem. This is the “head” of the fish, summarized in a few words or a small phrase.
  • Next, draw a long arrow, which serves as the fish’s backbone.
  • From here, you’ll draw the first “bones” directly from the backbone, in the shape of small diagonal lines going right-to-left. These represent the most likely or overarching causes of your problem.
  • Branching off from each of these first bones, create smaller bones containing contributing information and necessary detail.
  • When finished, your fishbone diagram should give you a wide-view idea of what the root causes of the issue you’re facing could be, allowing you to rank them or choose which could be most plausible.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

There are no built-in fishbone diagram templates in Microsoft programs, but we’ve made a few free ones for you to use that you can download below. Alternatively, you can make one yourself using the following steps:

  • In a fresh document, go to Insert > Shapes
  • Draw a long arrow from left to right, and add a text box on the right-hand side. These serve as the backbone and the head of the fish.
  • Next, add lines jutting diagonally from the backbone. These serve as the ribs, or the contributing factors to the main problem.
  • Next, add horizontal lines jutting from each central line. These serve as the potential causes of the problem.

Lastly, add text boxes to label each function.

You can try your hand at filling one in yourself using the various blank fishbone diagram templates below, in the following formats:

Fishbone diagram template Excel

Download our free Excel template below!

fishbone-template-excel

Fishbone diagram template Word

Download our free Word template below!

fishbone-template-word

Fishbone diagram template PowerPoint

Download our free PowerPoint template below!

fishbone-template-powerpoint

Fishbone diagrams are used in a variety of settings, both academic and professional. They are particularly popular in healthcare settings, particularly nursing, or in group brainstorm study sessions. In the business world, they are an often-used tool for quality assurance or human resources professionals.

Fishbone diagram example #1: Climate change

Let’s start with an everyday example: what are the main causes of climate change?

Fishbone Diagram example

Fishbone diagram example #2: Healthcare and nursing

Fishbone diagrams are often used in nursing and healthcare to diagnose patients with unclear symptoms, or to streamline processes or fix ongoing problems. For example: why have surveys shown a decrease in patient satisfaction?

Fishbone Diagram example

Fishbone diagram example #3: Quality assurance

QA professionals also use fishbone diagrams to troubleshoot usability issues, such as: why is the website down?

Fishbone Diagram example

Fishbone diagram example #4: HR

Lastly, an HR example: why are employees leaving the company?

Fishbone Diagram example

Fishbone diagrams come with advantages and disadvantages.

  • Great tool for brainstorming and mind-mapping, either individually or in a group project.
  • Can help identify causal relationships and clarify relationships between variables .
  • Constant iteration of “why” questions really drills down to root problems and elegantly simplifies even complex issues.

Disadvantages

  • Can lead to incorrect or inconsistent conclusions if the wrong assumptions are made about root causes or the wrong variables are prioritized.
  • Fishbone diagrams are best suited to short phrases or simple ideas—they can get cluttered and confusing easily.
  • Best used in the exploratory research phase, since they cannot provide true answers, only suggestions.

Prevent plagiarism. Run a free check.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Fishbone diagrams have a few different names that are used interchangeably, including herringbone diagram, cause-and-effect diagram, and Ishikawa diagram.

These are all ways to refer to the same thing– a problem-solving approach that uses a fish-shaped diagram to model possible root causes of problems and troubleshoot solutions.

Fishbone diagrams (also called herringbone diagrams, cause-and-effect diagrams, and Ishikawa diagrams) are most popular in fields of quality management. They are also commonly used in nursing and healthcare, or as a brainstorming technique for students.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

George, T. (2024, January 29). What Is a Fishbone Diagram? | Templates & Examples. Scribbr. Retrieved March 4, 2024, from https://www.scribbr.com/research-process/fishbone-diagram/

Is this article helpful?

Tegan George

Tegan George

Other students also liked, how to define a research problem | ideas & examples, data collection | definition, methods & examples, exploratory research | definition, guide, & examples, what is your plagiarism score.

loading

How it works

For Business

Join Mind Tools

Article • 11 min read

Getting to the Root of a Problem Quickly

By the Mind Tools Content Team

5 Whys Root-Cause Analysis

Have you ever had a problem that refused to go away? No matter what you did, sooner or later it would return, perhaps in another form.

Stubborn or recurrent problems are often symptoms of deeper issues. "Quick fixes" may seem convenient, but they often solve only the surface issues and waste resources that could otherwise be used to tackle the real cause.

In this article and in the video, below, we look at the 5 Whys technique (sometimes known as 5Y). This is a simple but powerful tool for cutting quickly through the outward symptoms of a problem to reveal its underlying causes – so that you can deal with it once and for all.

Origins of the 5 Whys Technique

Sakichi Toyoda, the Japanese industrialist, inventor, and founder of Toyota Industries, developed the 5 Whys technique in the 1930s. It became popular in the 1970s, and Toyota still uses it to solve problems today.

Toyota has a "go and see" philosophy. This means that its decision making is based on an in-depth understanding of what's actually happening on the shop floor , rather than on what someone in a boardroom thinks might be happening.

The 5 Whys technique is true to this tradition, and it is most effective when the answers come from people who have hands-on experience of the process or problem in question.

The method is remarkably simple: when a problem occurs, you drill down to its root cause by asking "Why?" five times. Then, when a counter-measure becomes apparent, you follow it through to prevent the issue from recurring.

The 5 Whys uses "counter-measures," rather than "solutions." A counter-measure is an action or set of actions that seeks to prevent the problem from arising again, while a solution may just seek to deal with the symptom. As such, counter-measures are more robust, and will more likely prevent the problem from recurring.

When to Use a 5 Whys Analysis

You can use 5 Whys for troubleshooting, quality improvement, and problem solving, but it is most effective when used to resolve simple or moderately difficult problems.

It may not be suitable if you need to tackle a complex or critical problem. This is because 5 Whys can lead you to pursue a single track, or a limited number of tracks, of inquiry when, in fact, there could be multiple causes. In cases like these, a wider-ranging method such as Cause and Effect Analysis or Failure Mode and Effects Analysis may b e more effective.

This simple 5 Whys technique, however, can often direct you quickly to the root cause of a problem. So, whenever a system or process isn't working properly, give it a try before you embark on a more in-depth approach – and certainly before you attempt to develop a solution.

The tool's simplicity gives it great flexibility, too, and 5 Whys combines well with other methods and techniques, such as Root Cause Analysis . It is often associated with Lean Manufacturing , where it is used to identify and eliminate wasteful practices. It is also used in the analysis phase of the Six Sigma quality improvement methodology.

How to Use the 5 Whys

The model follows a very simple seven-step process: [1]

1. Assemble a Team

Gather together people who are familiar with the specifics of the problem, and with the process that you're trying to fix. Include someone to act as a facilitator , who can keep the team focused on identifying effective counter-measures.

2. Define the Problem

If you can, observe the problem in action. Discuss it with your team and write a brief, clear problem statement that you all agree on. For example, "Team A isn't meeting its response time targets" or "Software release B resulted in too many rollback failures."

Then, write your statement on a whiteboard or sticky note, leaving enough space around it to add your answers to the repeated question, "Why?"

3. Ask the First "Why?"

Ask your team why the problem is occurring. (For example, "Why isn't Team A meeting its response time targets?")

Asking "Why?" sounds simple, but answering it requires serious thought. Search for answers that are grounded in fact: they must be accounts of things that have actually happened, not guesses at what might have happened.

This prevents 5 Whys from becoming just a process of deductive reasoning, which can generate a large number of possible causes and, sometimes, create more confusion as you chase down hypothetical problems.

Your team members may come up with one obvious reason why, or several plausible ones. Record their answers as succinct phrases, rather than as single words or lengthy statements, and write them below (or beside) your problem statement. For example, saying "volume of calls is too high" is better than a vague "overloaded."

4. Ask "Why?" Four More Times

For each of the answers that you generated in Step 3, ask four further "whys" in succession. Each time, frame the question in response to the answer you've just recorded.

What Is a 5 Whys Template?

The diagram, below, shows an example of 5 Whys in action, following a single lane of inquiry.

Figure 1: 5 Whys Example (Single Lane)

example for problem solving method

The 5 Whys method also allows you to follow multiple lanes of inquiry. An example of this is shown in Figure 2, below.

In our example, asking "Why was the delivery late?" produces a second answer (Reason 2). Asking "Why?" for that answer reveals a single reason (Reason 1), which you can address with a counter-measure.

Similarly, asking "Why did the job take longer than expected?" has a second answer (Reason 2), and asking "Why?" at this point reveals a single reason (Reason 1). Another "Why?" here identifies two possibilities (Reasons 1 and 2) before a possible counter-measure becomes evident.

There is also a second reason for "Why we ran out of printer ink" (Reason 2), and a single answer for the next "Why?" (Reason 1), which can then be addressed with a counter-measure.

Figure 2: 5 Whys Example (Multiple Lanes)

example for problem solving method

Step 5. Know When to Stop

You'll know that you've revealed the root cause of the problem when asking "why" produces no more useful responses, and you can go no further. An appropriate counter-measure or process change should then become evident. (As we said earlier, if you're not sure that you've uncovered the real root cause, consider using a more in-depth problem-solving technique like Cause and Effect Analysis , Root-Cause Analysis , or FMEA .)

If you identified more than one reason in Step 3, repeat this process for each of the different branches of your analysis until you reach a root cause for each one.

6. Address the Root Cause(s)

7. monitor your measures.

Keep a close watch on how effectively your counter-measures eliminate or minimize the initial problem. You may need to amend them, or replace them entirely. If this happens, it's a good idea to repeat the 5 Whys process to ensure that you've identified the correct root cause.

Appreciation

A similar question-based approach known as "appreciation" can help you to uncover factors in a situation that you might otherwise miss.

It was originally developed by the military to assist commanders in gaining a comprehensive understanding of any fact, problem or situation. But you can also apply it in the workplace.

Starting with a fact, you first ask the question, "So what?" – in other words, what are the implications of that fact? Why is this fact important?

You then continue asking that question until you've drawn all possible conclusions from it.

The major difference between this and the 5 Whys technique is that appreciation is often used to get the most information out of a simple fact or statement, while 5 Whys is designed to drill down to the root of a problem.

Tips for Using the 5 Whys Technique

  • Try to move quickly from one question to the next. That way, you'll have the full picture before you jump to any conclusions.
  • The "5" in 5 Whys is really just a " rule of thumb ." In some cases, you may need to ask "Why?" a few more times before you get to the root of the problem. In other cases, you may reach this point before you ask your fifth "Why?" If you do, make sure that you haven't stopped too soon, and that you're not simply accepting "knee-jerk" responses.
  • Know when to stop! The important point is to stop asking "Why?" when you stop producing useful responses.

Frequently Asked Questions About 5 Whys

1. what is the 5 whys technique.

The 5 Whys Technique is a problem-solving method involving repeatedly asking "why?" It's a way of quickly getting to the root cause of a situation.

2. Who Invented 5 Whys?

5 whys infographic.

See our infographic on the 5 Whys and use it to get to the root of your problems!

example for problem solving method

Bear in mind that appreciation can restrict you to one line of thinking. For instance, once you've answered your first "So what?" question, you might follow a single line of inquiry to its conclusion. To avoid this, repeat the appreciation process several times over to make sure that you've covered all bases.

The 5 Whys strategy is a simple, effective tool for uncovering the root of a problem. You can use it in troubleshooting, problem-solving, and quality-improvement initiatives.

Start with a problem and ask why it is occurring. Make sure that your answer is grounded in fact, and then ask the question again. Continue the process until you reach the root cause of the problem, and you can identify a counter-measure that will prevent it from recurring.

Bear in mind that this questioning process is best suited to simple or moderately difficult problems. Complex problems may benefit from a more detailed approach, although using 5 Whys will still give you useful insights.

[1] Pojasek, R. (2000). 'Asking "Why?" Five Times,' Environmental Quality Management , Volume 10, Issue 1, 79–84. Available here . [Accessed July 1, 2022.]

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

Using root cause analysis.

Find the Root of Your Problems

Root Cause Analysis

Tracing a Problem to Its Origins

Add comment

Comments (0)

Be the first to comment!

example for problem solving method

Introducing Mind Tools for Business

Mind Tools for Business is a comprehensive library of award-winning performance and management support resources.

Whether you want to increase engagement, upskill teams, or complement your existing workplace programs – this is content designed to achieve impactful results.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Most Popular

Newest Releases

Article azm954y

How to Negotiate a Job Offer

Article adnb7ul

Overwhelmed at Work

Mind Tools Store

About Mind Tools Content

Discover something new today

Inclusive leadership.

Embracing diversity for organizational success

Cross-Team Collaboration in the Hybrid Workplace

Making hybrid teams inclusive, cohesive and productive

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Top tips for good mental health.

Tips on Preventing Mental Ill Health and What to Do If You or Someone Else Falls Ill

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Lean Six Sigma, ISO, APQP, PPAP, FMEA, 5S Kaizen, 7 QC Tools

Problem Solving Methods | Steps, Process, Examples

Problem Solving Methods  Steps, Process, Examples

What is problem-solving?

Join Industrial Knowledge WhatsApp Group for Daily Updates

What is the problem-solving approach?

What is problem solving skills, what are the 5 steps in problem-solving methods.

  • Find out the Solution
  • Implement the Solution
  • Monitoring, Analysis, and Evaluation of Solution

Types of Problem Solving:

  • Corrective Action
  • Preventive Action

Problem Solving Methods:

  • PDCA - Cycle
  • DMAIC Method

[1] PDCA - Cycle:

PDCA Cycle Methodology

[2] DMAIC Method:

DMAIC Methodology

[3] 8D Method:

8D Methodology

  • Create a Team & Collect Information
  • Describe the_Problem
  • Interim Containment Actions
  • Root Cause Analysis
  • Define the possible corrective actions
  • Implement corrective actions
  • Define actions to avoid recurrence
  • Congratulate the Team

[4] A3 Method:

  • Clarify the issue
  • Break down the issue
  • Set the Target
  • Analyze the root cause
  • Develop countermeasure
  • See Countermeasure
  • Evaluate results & Processes
  • Standardize Success

Comparison of Various Methods:

Comparison of Various Problem Solving Methods

Related Posts

49 comments.

example for problem solving method

Great article. I would add a 5th type of solution as it is a key element of reducing the impact of the issue - that being containment. Whilst it is by no means the long term solution but may take the form of short-term interim solutions with a minimum additional spend or resource required - such as a quality wall or reinspection and rework of potentially affected items.

example for problem solving method

Thank you for your valuable input

well explained.love it

Please add 3L5Y tool which is also majorly used for problem resolution .

Thanks for your suggestion we will do needful.

3L5Y helps in deep 5why analysis: specific - detection - systemic [[email protected]]

Great page!, please add 3L5Y tool. actualy is majorly used in manufacturing process

Thank you for your feedback we will work on that.

Nicely explained. Easy to understand

Thanks for your kind word!!!

Very useful and well explained information, only one detail, is Deming Cycle like his creator William Edwards Deming. I love your site!

Thanks for your feedback and kind words!!!

Great post. Its very important for learning.

Thanks for your kind feedback

Hi Nikunj, Where do you get these Materials please? Really these are easy to understand and you are doing a great job.hatsoff to you.

Thanks for your kind words!!!

Hi Nikunj Where do you get these materials please ? These are easy to understand, you are doing really great job. Keep it up.

Any chance to provide your pdf google cloud library?

As of now we are working on that we will share further details

Dear Sir, It is great work you are doing especially for young Engineers, who strive to have strong industrial foundation in the beginning. Also, this is helping in great extent for individuals who strive to train their down the line team. This is great initiative from your side in line with "Atmanirbar". Wishing you and your entire Team Happy New Year, young India expects further more from you.

Thank you very mech for your kind words for us. This energy motivates to our team. Once again thank you very much for your time and sharing valuable feedback!!!

This is very helpful information, through this our industrial knowledge is increasing and specially for who loves to provide precised output for customer satisfaction.

Thank you very much for your kind words!!!

Very Good work Nikunj, keep it up. Very helpful and simple presentations

Thanks for your kind words and happy learning!!!

Thanks so much for your sharing and it is valuable to us much more. We show our gratitude if you have pdf file and can share. We just want to save in computer and read your meaning lessons. Thank you

Great Job.!! Thanks for sharing

You are most welcome and Happy Learning!!!

Very useful information

PDCA is also called Deming Cycle - not Daming Cycle as mentioned above, please correct it - improvement model was first introduced to Dr. Deming by his mentor, Walter Shewhart of the famous Bell Laboratories in New York

Thank you very much for your observation and improve our content. We have updated the same.

What great article for businesses

Thanks for your kind word.

Thank you, great article!

You are most welcome!!

There are some similarities between 3A vs 8D, could you give me some tips to use 2 these kinds of problem solving 3A vs 8D

Sure we will definitely help you.

I love it! Great stuff!!

Thanks and Happy Learning.

I can not adding what's up group.

You can join from your mobile and open link with whatsapp still you are facing any difficulty then mail us at: [email protected]

Post a Comment

Contact form.

A Physics-Informed Neural Network model combined Pell–Lucas polynomials for solving the Lane–Emden type equation

  • Regular Article
  • Published: 06 March 2024
  • Volume 139 , article number  223 , ( 2024 )

Cite this article

  • Zhoushun Zheng 1 ,
  • Haolan Yuan 1 &
  • Jilong He   ORCID: orcid.org/0000-0002-2567-6555 1  

Aiming at the Lane–Emden type differential equations owing singular initial value problem, an improved Physics-Informed Neural Network method based on Pell–Lucas polynomials is proposed. The method adopts feedforward neural network model and error back propagation principle. The analytical and numerical solutions of linear homogeneous, linear non-homogeneous, and nonlinear homogeneous Lane–Emden equations are compared with the approximate solutions of Chebyshev neural network proposed by Mall. Numerical examples show that the proposed method has high accuracy, which proves the effectiveness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Russian Federation)

Instant access to the full article PDF.

Rent this article via DeepDyve

Institutional subscriptions

example for problem solving method

Data Availability Statement

The data sets generated or analyzed during the current study are available from the corresponding author upon reasonable request.

H.J. Lane, On the theoretical temperature of the sun, under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known to terrestrial experiment. Am. J. Sci. 2 (148), 57–74 (1870)

Article   Google Scholar  

H. T. Davis, Introduction to nonlinear differential and integral equations, US Atomic Energy Commission (1960)

S. Chandrasekhar, An introduction to the study of stellar structure, Vol. 2, Courier Corporation (1957)

R. Emden, Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme, B. Teubner (1907)

R.H. Fowler, Further studies of Emden’s and similar differential equations. Q. J. Math. 1 , 259–288 (1931)

R.H. Fowler, The form near infinity of real, continuous solutions of a certain differential equation of the second order. Quart. J. Math 45 (1914), 289–350 (1914)

Google Scholar  

S. Liao, A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142 (1), 1–16 (2003)

Article   MathSciNet   Google Scholar  

J.H. He, Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 178 (3–4), 257–262 (1999)

M. Chowdhury, I. Hashim, Solutions of a class of singular second-order IVPs by homotopy-perturbation method. Phys. Lett. A 365 (5–6), 439–447 (2007)

Article   MathSciNet   CAS   Google Scholar  

J.I. Ramos, Series approach to the Lane-Emden equation and comparison with the homotopy perturbation method. Chaos, Solitons Fractals 38 (2), 400–408 (2008)

M. Dehghan, F. Shakeri, Approximate solution of a differential equation arising in astrophysics using the variational iteration method. New Astron. 13 (1), 53–59 (2008)

K. Govinder, P.G. Leach, Integrability analysis of the Emden-Fowler equation. J. Nonlinear Math. Phys. 14 (3), 443–461 (2007)

O.P. Singh, R.K. Pandey, V.K. Singh, An analytic algorithm of Lane-Emden type equations arising in astrophysics using modified homotopy analysis method. Comput. Phys. Commun. 180 (7), 1116–1124 (2009)

H. Demir, İÇ. Süngü, Numerical solution of a class of nonlinear Emden-Fowler equations by using differential transform method. Cankaya Univ. J. Sci. Eng. 12 (2), 75–82 (2009)

S. Mall, S. Chakraverty, Chebyshev neural network based model for solving Lane-Emden type equations. Appl. Math. Comput. 247 (85), 100–114 (2014)

MathSciNet   Google Scholar  

S. Mall, S. Chakraverty, Application of Legendre neural network for solving ordinary differential equations. Appl. Soft Comput. 43 (69), 347–356 (2016)

A. Malek, R.S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural network-optimization method. Appl. Math. Comput. 183 (1), 260–271 (2006)

H.S. Yazdi, M. Pakdaman, H. Modaghegh, Unsupervised kernel least mean square algorithm for solving ordinary differential equations. Neurocomputing 74 (12–13), 2062–2071 (2011)

S. Mall, S. Chakraverty, Regression-based neural network training for the solution of ordinary differential equations. Int. J. Math. Model. Numer. Optim. 4 (2), 136–149 (2013)

L. Lu, X. Meng, Z. Mao, G.E. Karniadakis, DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63 (1), 208–228 (2021)

F. Cao, F. Gao, X. Guo, D. Yuan, Physics-informed neural networks with parameter asymptotic strategy for learning singularly perturbed convection-dominated problem. Comput. Math. Appl. 150 , 229–242 (2023)

M. De Florio, E. Schiassi, F. Calabrò, R. Furfaro, Physics-informed neural networks for 2nd order odes with sharp gradients. J. Comput. Appl. Math. 436 , 115396 (2024)

S. Mall, S. Chakraverty, Application of legendre neural network for solving ordinary differential equations. Appl. Soft Comput. 43 , 347–356 (2016)

A.H. Hadian-Rasanan, D. Rahmati, S. Gorgin, K. Parand, A single layer fractional orthogonal neural network for solving various types of Lane-Emden equation. New Astron. 75 , 101307 (2020)

J. He, Z. Zheng, C. Du, A new constructing rational functions method for solving lane- emden type equations. Neural Process. Lett. 55 (2), 1889–1918 (2023)

J. Mason, D. C. Handscomb, Chebyshev polynomials (2003)

Ş Yüzbaşi, G. Yildirim, Pell-Lucas collocation method to solve second-order nonlinear Lane-Emden type pantograph differential equations. Fundam. Contemp. Math. Sci. 3 (1), 75–97 (2022)

A. Horadam, J. Mahon, Pell and Pell-Lucas polynomials. Fibonacci Quart 23 (1), 7–20 (1985)

R. Mattey, S. Ghosh, A novel sequential method to train physics informed neural networks for Allen-Cahn and Cahn-Hilliard equations. Comput. Methods Appl. Mech. Eng. 390 , 114474 (2022)

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the thirteenth international conference on artificial intelligence and statistics, in JMLR Workshop and Conference Proceedings, pp. 249–256 (2010)

S. Ruder, An overview of gradient descent optimization algorithms, arXiv preprint arXiv:1609.04747 (2016)

Klassen, Pao, Chen, Characteristics of the functional link net: a higher order delta rule net, in: IEEE 1988 International Conference on Neural Networks, IEEE, pp. 507–513 (1988)

S. Dehuri, S.-B. Cho, A comprehensive survey on functional link neural networks and an adaptive pso-bp learning for cflnn. Neural Comput. Appl. 19 , 187–205 (2010)

I.E. Lagaris, A. Likas, Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9 (5), 987–1000 (1998)

Article   CAS   PubMed   Google Scholar  

I.E. Lagaris, A. Likas, D.I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9 (5), 987–1000 (1998)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China( Grant No. 51974377), the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No. CX20230373), and the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2023ZZTS0382 and Grant No. 2023ZZTS0304 ).

Author information

Authors and affiliations.

School of Mathematics and Statistics, Central South University, Changsha, 410083, Hunan, People’s Republic of China

Zhoushun Zheng, Haolan Yuan & Jilong He

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Jilong He .

Ethics declarations

Conflict of interest.

All authors have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Zheng, Z., Yuan, H. & He, J. A Physics-Informed Neural Network model combined Pell–Lucas polynomials for solving the Lane–Emden type equation. Eur. Phys. J. Plus 139 , 223 (2024). https://doi.org/10.1140/epjp/s13360-024-04999-2

Download citation

Received : 05 June 2023

Accepted : 29 January 2024

Published : 06 March 2024

DOI : https://doi.org/10.1140/epjp/s13360-024-04999-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    example for problem solving method

  2. The 5 Steps of Problem Solving

    example for problem solving method

  3. 7 Step Problem Solving Process

    example for problem solving method

  4. 5 step problem solving method

    example for problem solving method

  5. 7 Steps to Improve Your Problem Solving Skills

    example for problem solving method

  6. 7 steps to master problem solving methodology

    example for problem solving method

VIDEO

  1. problem solving

  2. 5 Powerful Problem Solving Techniques

  3. Teaching Methods

  4. Definition

  5. Problem solving Method in Science

  6. PROBLEM SOLVING METHOD IN ENGLISH TEACHING

COMMENTS

  1. 26 Good Examples of Problem Solving (Interview Answers)

    Examples of Problem Solving Scenarios in the Workplace. Correcting a mistake at work, whether it was made by you or someone else. Overcoming a delay at work through problem solving and communication. Resolving an issue with a difficult or upset customer. Overcoming issues related to a limited budget, and still delivering good work through the ...

  2. 35 problem-solving techniques and methods for solving complex problems

    Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges, ... Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It's a great example of a root cause analysis method that is simple for everyone on a team to get their head around.

  3. 39 Best Problem-Solving Examples (2024)

    A3 Problem Solving, derived from Lean Management, is a structured method that uses a single sheet of A3-sized paper to document knowledge from a problem-solving process. Named after the international paper size standard of A3 (or 11-inch by 17-inch paper), it succinctly records all key details of the problem-solving process from problem ...

  4. PDF THIRTEEN PROBLEM-SOLVING MODELS

    The Six-Step method provides a focused procedure for the problem solving (PS) group. It ensures consistency, as everyone understands the approach to be used. By using data, it helps eliminate bias and preconceptions, leading to greater objectivity. It helps to remove divisions and encourages collaborative working.

  5. The easy 4 step problem-solving process (+ examples)

    Consider the problem-solving steps applied in the following example. I know that I want to say "I don't eat eggs" to my Mexican waiter. That's the problem. I don't know how to say that, but last night I told my date "No bebo alcohol" ("I don't drink alcohol"). I also know the infinitive for "eat" in Spanish (comer).

  6. Problem Solving Techniques: Your Ultimate Guide with Examples

    Technique: Lightning Decision Jam is a rapid problem-solving technique involving gathering a diverse group of individuals to brainstorm solutions to a problem quickly. It's a great way to generate creative ideas and make quick decisions. Example: Imagine a software development team facing a critical bug in their application.

  7. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  8. What are the 5 steps of problem solving? Your guide with examples

    The problem solving process typically includes: Pinpointing what's broken by gathering data and consulting with team members. Figuring out why it's not working by mapping out and troubleshooting the problem. Deciding on the most effective way to fix it by brainstorming and then implementing a solution. While skills like active listening ...

  9. 10 Problem-solving strategies to turn challenges on their head

    2. Break the problem down. Identifying the problem allows you to see which steps need to be taken to solve it. First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage. 3.

  10. How to master the seven-step problem-solving process

    Looked at this way, it's no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and ...

  11. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  12. 36 Problem-solving techniques, methods and tools

    The Six Thinking Hats problem-solving method is a popular technique that guides the process and helps your team analyse a problem from all angles. ... Example: A fast-food chain is investigating the declining quality of their food. As the team brainstorms potential causes, they come up with reasons like "poorly trained personnel", "lack ...

  13. 14 Effective Problem-Solving Strategies

    Here are some examples of problem-solving strategies you can practice using to see which works best for you in different situations: 1. Define the problem ... The Kipling Method, named after Rudyard Kipling's poem "I Keep Six Honest Serving Men," is a popular system used to define problems. It highlights six important questions you can ask the ...

  14. The Problem-Solving Process

    Allocate Resources. Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off ...

  15. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  16. A Step-by-Step Guide to A3 Problem Solving Methodology

    The following are the key principles of A3 Problem Solving: Define the problem clearly and concisely. Gather and analyze data to gain a deep understanding of the problem. Identify the root causes of the problem. Develop and implement effective solutions.

  17. 12 Approaches To Problem-Solving for Every Situation

    Here are the seven steps of the rational approach: Define the problem. Identify possible causes. Brainstorm options to solve the problem. Select an option. Create an implementation plan. Execute the plan and monitor the results. Evaluate the solution. Read more: Effective Problem Solving Steps in the Workplace.

  18. Module 1: Problem Solving Strategies

    In 1945, Pólya published the short book How to Solve It, which gave a four-step method for solving mathematical problems: First, you have to understand the problem. ... Problem Solving Strategy 3 (Using a variable to find the sum of a sequence.) ... Problem Solving Strategy 6 (Make a List) Example 1: Can perfect squares end in a 2 or a 3?

  19. 7.3 Problem-Solving

    Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation. A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below).

  20. What Is a Fishbone Diagram?

    A fishbone diagram is a problem-solving approach that uses a fish-shaped diagram to model possible root causes of problems and troubleshoot possible solutions. It is also called an Ishikawa diagram, after its creator, Kaoru Ishikawa, as well as a herringbone diagram or cause-and-effect diagram. Fishbone diagrams are often used in root cause ...

  21. 7 Problem-Solving Skills That Can Help You Be a More ...

    Although problem-solving is a skill in its own right, a subset of seven skills can help make the process of problem-solving easier. These include analysis, communication, emotional intelligence, resilience, creativity, adaptability, and teamwork. 1. Analysis. As a manager, you'll solve each problem by assessing the situation first.

  22. 5 Whys

    The 5 Whys strategy is a simple, effective tool for uncovering the root of a problem. You can use it in troubleshooting, problem-solving, and quality-improvement initiatives. Start with a problem and ask why it is occurring. Make sure that your answer is grounded in fact, and then ask the question again. Continue the process until you reach the ...

  23. Problem Solving Methods

    Problem Solving Method is a method used to solve the problem. A Problem is an undesirable event or gap between what is expected & what is achieved ... Problem Solving Methods | Steps, Process, Examples. SWOT Analysis | PDF | Example and Free Templates. Categories. 7 QC Tools (8) Control Chart (3) Difference (9) FMEA (3) General (12) IATF 16949 ...

  24. Best Training Methods for Problem-Solving Roles

    Problem-solving skills can be classified into different types, depending on the nature and context of the problem. For example, some problems are well-defined and have clear rules and procedures ...

  25. Behavior Analysis of the New PSO-CGSA Algorithm in Solving the Combined

    Bearing in mind that multiple-problem analysis does not favor one algorithm, we applied the PROMETEE/GAIA MCDM method to select the most suitable algorithm for simultaneously solving all variants of the CEED problem. Using this method, we ranked the tested algorithms based on their performance measures obtained when solving individual variants.

  26. A Physics-Informed Neural Network model combined Pell ...

    Solving the problem of initial values of differential equations with singular behavior in astrophysics is a huge challenge. In particular, the practical application of the solution of the Lane-Emden type equation, which has a singularity at \(x = 0\), cannot be underestimated.. In recent years, for the analytical solution of the Lane-Emden type equation, many traditional methods based on ...