Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Variational Integrators in Plasma Physics (PhD Thesis)

Profile image of Michael Kraus

Variational integrators are a special kind of geometric discretisation methods applicable to any system of differential equations that obeys a Lagrangian formulation. In this thesis, variational integrators are developed for several important models of plasma physics: guiding centre dynamics (particle dynamics), the Vlasov-Poisson system (kinetic theory), and ideal magnetohydrodynamics (plasma fluid theory). Special attention is given to physical conservation laws like conservation of energy and momentum. Most systems in plasma physics do not possess a Lagrangian formulation to which the variational integrator methodology is directly applicable. Therefore the theory is extended towards nonvariational differential equations by linking it to Ibragimov's theory of integrating factors and adjoint equations. It allows us to find a Lagrangian for all ordinary and partial differential equations and systems thereof. Consequently, the applicability of variational integrators is extended to a much larger family of systems than envisaged in the original theory. This approach allows for the application of Noether's theorem to analyse the conservation properties of the system, both at the continuous and the discrete level. In numerical examples, the conservation properties of the derived schemes are analysed. In case of guiding centre dynamics, momentum in the toroidal direction of a tokamak is preserved exactly. The particle energy exhibits an error, but the absolute value of this error stays constant during the entire simulation. Therefore numerical dissipation is absent. In case of the kinetic theory, the total number of particles, total linear momentum and total energy are preserved exactly, i.e., up to machine accuracy. In case of magnetohydrodynamics, the total energy, cross helicity and the divergence of the magnetic field are preserved up to machine precision.

Related Papers

Michael Kraus , Daniela Grasso

Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws are described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature. In the case of reduced magnetohydrodynamics with electron inertia effects, simulations of magnetic reconnection are performed and compared also with those of a pseudo-spectral code.

plasma physics phd thesis pdf

Alexandre Kats Kats

Computer Physics Communications

Gérard Chanteur

Physics of Plasmas

Philip S Morrison

Amitava Bhattacharjee

Physical review

eliezer oron

Giovanni Lapenta

We consider whether implicit simulation techniques canbe extended in time and space scales to magnetohydrodynamics without any change but the addition of collisions. Our goal is to couple fluid and kinetic models together for application to multi-scale problems. Within a simulation framework, transition from one model to the other would occur not by a change of algorithm, but by a change of parameters. This would greatly simplify the coupling. Along the way, we have found new ways to impose consistent boundary conditions for the field solver that result in charge and energy conservation, and establish that numerically-generated stochastic heating is the problem to overcome. For an MHD-like problem, collisions are clearly necessary to reduce the stochastic heating. Without collisions, the heating rate is unacceptable. With collisions, the heating rate is significantly reduced.

Physical Review E

RELATED PAPERS

LINK DOWNLOAD => https://lovingbook.club/BookLibrary-006301209X.html

Angela C. Whittaker

David Bebnowski

Marta Leandro da Mata

Fantahun Dereje

Decision Sciences

Douglas Augustine

Enthalpy : Jurnal Ilmiah Mahasiswa Teknik Mesin

Lukas Kano Mangalla

British Journal of Haematology

dafydd thomas

Stéfano Araujo

Michael OBADIA

Journal of Palliative Medicine

Susan Enguidanos

Asep Najmurrokhman

Matthieu Lauras

Lecture Notes in Computer Science

BICH TRAN THI

Jurnal Kelautan: Indonesian Journal of Marine Science and Technology

Baiq Hilda Astriana

Nicotine & Tobacco Research

Paula Iwamoto-Schaap

JNCI: Journal of the National Cancer Institute

Acta Geophysica

Nguyen Huong Giang (K17 HCM)

Annals of Microbiology

Abdul Hameed

Prince Ogbu

Rinda Aulia Utami , Sri Herwanto

Silas Michaelides

Literaturas brasileira e portuguesa: movimentos

Silvio Cesar Alves

Maryam Dahlawi

luca calenne

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Help | Advanced Search

Physics > Plasma Physics

Title: a geometric theory of waves and its applications to plasma physics.

Abstract: Waves play an essential role in many aspects of plasma science, such as plasma manipulation and diagnostics. Due to the complexity of the governing equations, approximate models are often necessary to describe wave dynamics. In this dissertation, waves are treated as geometric objects of a variational theory rather than formal solutions of specific PDEs. This approach simplifies calculations, highlights the underlying wave symmetries, and leads to improved modeling of wave dynamics. This thesis presents two breakthroughs that were obtained in the general theory of waves. The first main contribution is an extension and reformulation of geometrical optics (GO) as a first-principle Lagrangian theory that correctly describes polarization effects, such as polarization precession and the polarization-driven bending of ray trajectories, which appear as leading-order corrections to GO. The theory was applied to several systems of interest, such as relativistic spin-1/2 particles and radio-frequency waves in magnetized plasma. The second main contribution of this thesis is the development of a phase-space method to study basic properties of nonlinear wave--wave interactions. Specifically, I show that waves propagating in modulated media, both classical and quantum, can experience time-averaged refraction caused by effective ponderomotive forces on wave rays. This phenomenon is analogous to the ponderomotive effect encountered by charged particles in high-frequency electromagnetic fields. I also show that phase-space methods can be useful to study problems in the field of wave turbulence, such as the nonlinear interaction of high-frequency waves with large-scale structures. Overall, the results obtained can serve as a basis for future studies on more complex nonlinear wave--wave interactions, such as modulational instabilities in general wave ensembles or wave turbulence.

Submission history

Access paper:.

  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

Book cover

Particle Interactions in High-Temperature Plasmas

  • © 2017
  • Oliver James Pike 0

Blackett Laboratory, Department of Physics, Imperial College London, London, United Kingdom

You can also search for this author in PubMed   Google Scholar

  • Nominated as an outstanding PhD thesis by Imperial College London
  • An important contribution to plasma physics, both theoretically and in relation to collider design
  • Suggests a feasible scheme for observing the elusive Breit-Wheeler process
  • Includes supplementary material: sn.pub/extras

Part of the book series: Springer Theses (Springer Theses)

3279 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this book

  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (7 chapters)

Front matter, introduction.

Oliver James Pike

Theoretical Background

Dynamical friction in a relativistic plasma, transport processes in a relativistic plasma, numerical simulations of high-temperature plasmas, an experiment to observe the breit–wheeler process, conclusions, back matter.

  • Relativistic Plasma
  • Inertial Confinement Fusion
  • High-Energy Astrophysics
  • High-Energy Density Physics
  • High Power Laser
  • Laser Wakefield Acceleration
  • Electron-Positron Pair Production
  • Breit-Wheeler Process

About this book

This thesis makes two important contributions to plasma physics. The first is the extension of the seminal theoretical works of Spitzer and Braginskii, which describe the basics of particle interactions in plasma, to relativistic systems. Relativistic plasmas have long been studied in high-energy astrophysics and are becoming increasingly attainable in the laboratory. The second is the design of a new class of photon–photon collider, which is the first capable of detecting the Breit–Wheeler process. Though it offers the simplest way for light to be converted into matter, the process has never been detected in the 80 years since its theoretical prediction. The experimental scheme proposed here exploits the radiation used in inertial confinement fusion experiments and could in principle be implemented in one of several current-generation facilities.

Authors and Affiliations

Bibliographic information.

Book Title : Particle Interactions in High-Temperature Plasmas

Authors : Oliver James Pike

Series Title : Springer Theses

DOI : https://doi.org/10.1007/978-3-319-63447-0

Publisher : Springer Cham

eBook Packages : Physics and Astronomy , Physics and Astronomy (R0)

Copyright Information : Springer International Publishing AG 2017

Hardcover ISBN : 978-3-319-63446-3 Published: 05 September 2017

Softcover ISBN : 978-3-319-87558-3 Published: 11 August 2018

eBook ISBN : 978-3-319-63447-0 Published: 17 August 2017

Series ISSN : 2190-5053

Series E-ISSN : 2190-5061

Edition Number : 1

Number of Pages : XIX, 144

Number of Illustrations : 13 b/w illustrations, 18 illustrations in colour

Topics : Plasma Physics , Astrophysics and Astroparticles , Particle Acceleration and Detection, Beam Physics

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Published: 30 June 2022

Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

  • S. Mazzi   ORCID: orcid.org/0000-0001-6491-8759 1 , 2   nAff11 ,
  • J. Garcia   ORCID: orcid.org/0000-0003-0900-5564 2 ,
  • D. Zarzoso   ORCID: orcid.org/0000-0002-7220-8092 1 ,
  • Ye. O. Kazakov   ORCID: orcid.org/0000-0001-6316-5441 3 ,
  • J. Ongena   ORCID: orcid.org/0000-0001-7456-4739 3 ,
  • M. Dreval   ORCID: orcid.org/0000-0003-0482-0981 4 , 5 ,
  • M. Nocente   ORCID: orcid.org/0000-0003-0170-5275 6 , 7 ,
  • Ž. Štancar   ORCID: orcid.org/0000-0002-9608-280X 8 , 9 ,
  • G. Szepesi 9 ,
  • J. Eriksson   ORCID: orcid.org/0000-0002-0892-3358 10 ,
  • A. Sahlberg 10 ,
  • S. Benkadda   ORCID: orcid.org/0000-0002-0717-9125 1 &

JET Contributors

Nature Physics volume  18 ,  pages 776–782 ( 2022 ) Cite this article

4595 Accesses

35 Citations

7 Altmetric

Metrics details

  • Magnetically confined plasmas
  • Nonlinear phenomena
  • Nuclear fusion and fission

Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 print issues and online access

195,33 € per year

only 16,28 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

plasma physics phd thesis pdf

Similar content being viewed by others

plasma physics phd thesis pdf

Multi-scale turbulence simulation suggesting improvement of electron heated plasma confinement

Shinya Maeyama, Tomo-Hiko Watanabe, … Akihiro Ishizawa

plasma physics phd thesis pdf

How turbulence spreading improves power handling in quiescent high confinement fusion plasmas

Zeyu Li, Xi Chen, … George R. McKee

plasma physics phd thesis pdf

Transport barrier onset and edge turbulence shortfall in fusion plasmas

Guilhem Dif-Pradalier, Philippe Ghendrih, … Fabien Widmer

Data availability

The JET experimental data are stored in the Processed Pulse File system, which is a centralized data storage and retrieval system for data derived from raw measurements within the JET torus, and from other sources such as simulation programs. These data are fully available for EUROfusion Consortium members and can be accessed by non-members under request to EUROfusion. Numerical data that support the outcome of this study are available from the corresponding authors upon reasonable request.

Code availability

The research codes cited in the paper require prior detailed knowledge of the implemented physics models and are under continuous development. The corresponding authors can be contacted for any further information.

Ongena, J., Koch, R., Wolf, R. & Zohm, H. Magnetic-confinement fusion. Nat. Phys. 12 , 398–410 (2016).

Article   Google Scholar  

Litaudon, X. et al. Overview of the JET results in support to ITER. Nucl. Fusion 57 , 102001 (2017).

Article   ADS   Google Scholar  

Shimada, M. et al. Chapter 1: overview and summary. Nucl. Fusion 47 , S1–S17 (2007).

Doyle, E. J. et al. Chapter 2: plasma confinement and transport. Nucl. Fusion 47 , S18–S127 (2007).

Romanelli, F. Ion temperature-gradient-driven modes and anomalous ion transport in tokamaks. Phys. Fluids B 1 , 1018–1025 (1989).

Citrin, J. et al. Nonlinear stabilization of tokamak microturbulence by fast ions. Phys. Rev. Lett. 111 , 155001 (2013).

Garcia, J. et al. Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55 , 053007 (2015).

Di Siena, A., Görler, T., Doerk, H., Poli, E. & Bilato, R. Fast-ion stabilization of tokamak plasma turbulence. Nucl. Fusion 58 , 054002 (2018).

Di Siena, A. et al. Electromagnetic turbulence suppression by energetic particle driven modes. Nucl. Fusion 59 , 124001 (2019).

Fasoli, A. et al. Chapter 5: physics of energetic ions. Nucl. Fusion 47 , S264–S284 (2007).

Gorelenkov, N., Pinches, S. D. & Toi, K. Energetic particle physics in fusion research in preparation for burning plasma experiments. Nucl. Fusion 54 , 125001 (2014).

Todo, Y. Introduction to the interaction between energetic particles and Alfvén eigenmodes in toroidal plasmas. Rev. Mod. Plasma Phys. 3 , 1 (2019).

Heidbrink, W. W. & White, R. B. Mechanisms of energetic-particle transport in magnetically confined plasmas. Phys. Plasmas 27 , 030901 (2020).

Zarzoso, D. et al. Impact of energetic-particle-driven geodesic acoustic modes on turbulence. Phys. Rev. Lett. 110 , 125002 (2013).

Cheng, C. Z. & Chance, M. S. Low- n shear Alfvén spectra in axisymmetric toroidal plasmas. Phys. Fluids 29 , 3695–3701 (1986).

Article   ADS   MATH   Google Scholar  

Fu, G. Y. & Van Dam, J. W. Excitation of the toroidicity-induced shear Alfvén eigenmode by fusion alpha particles in an ignited tokamak. Phys. Fluids B 1 , 1949–1952 (1989).

Pinches, S. D. et al. Energetic ions in ITER plasmas. Phys. Plasmas 22 , 021807 (2015).

Diamond, P. H., Itoh, S. I., Itoh, K. & Hahm, T. S. Zonal flows in plasmas – a review. Plasma Phys. Control. Fusion 47 , R35–R161 (2005).

Heimpel, M., Aurnou, J. & Wicht, J. Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438 , 193–196 (2005).

Todo, Y., Berk, H. L. & Breizman, B. N. Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation. Nucl. Fusion 50 , 084016 (2010).

Qiu, Z., Chen, L. & Zonca, F. Effects of energetic particles on zonal flow generation by toroidal Alfvén eigenmode. Phys. Plasmas 23 , 090702 (2016).

Chen, L. & Zonca, F. Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88 , 015008 (2016).

Breizman, B. N. & Sharapov, S. E. Major minority: energetic particles in fusion plasmas. Plasma Phys. Control. Fusion 53 , 054001 (2011).

Heidbrink, W. W. Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas. Phys. Plasmas 15 , 055501 (2008).

Kazakov, Y. O. et al. Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nat. Phys. 13 , 973–978 (2017).

Ongena, J. et al. Synergetic heating of D-NBI ions in the vicinity of the mode conversion layer in H–D plasmas in JET with the ITER like wall. EPJ Web Conf. 157 , 02006 (2017).

Nocente, M. et al. Generation and observation of fast deuterium ions and fusion-born alpha particles in JET D– 3 He plasmas with the 3-ion radio-frequency heating scenario. Nucl. Fusion 60 , 124006 (2020).

Kazakov, Y. O. et al. Physics and applications of three-ion ICRF scenarios for fusion research. Phys. Plasmas 28 , 020501 (2021).

Hawryluk, R. J. in Physics of Plasmas Close to Thermonuclear Conditions Vol. 1 (eds Coppi B. et al.) 19–46 (Pergamon Press, 1981).

Ongena, J., Voitsekhovitch, I., Evrard, M. & McCune, D. Numerical transport codes. Fusion Sci. Technol. 61 , 180–189 (2012).

Artaud, J. F. et al. The CRONOS suite of codes for integrated tokamak modelling. Nucl. Fusion 50 , 043001 (2010).

Garcia, J., Görler, T. & Jenko, F. Isotope and fast ions turbulence suppression effects: consequences for high- β ITER plasmas. Phys. Plasmas 25 , 055902 (2018).

Campbell, D. J. et al. Stabilization of sawteeth with additional heating in the JET tokamak. Phys. Rev. Lett. 60 , 2148–2151 (1988).

Graves, J. P. et al. Experimental verification of sawtooth control by energetic particles in ion cyclotron resonance heated JET tokamak plasmas. Nucl. Fusion 50 , 052002 (2010).

Gates, D. A., Gorelenkov, N. N. & White, R. B. Ion heating by fast-particle-induced Alfvén turbulence. Phys. Rev. Lett. 87 , 205003 (2001).

Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. Electron temperature gradient driven turbulence. Phys. Plasmas 7 , 1904–1910 (2000).

Citrin, J. et al. Electromagnetic stabilization of tokamak microturbulence in a high- β regime. Plasma Phys. Control. Fusion 57 , 014032 (2014).

Görler, T. et al. On the validation of gyrokinetic L-mode simulations. Fusion Sci. Technol. 69 , 537–545 (2016).

Mazzi, S. et al. Impact of fast ions on a trapped-electron-mode dominated plasma in a JT-60U hybrid scenario. Nucl. Fusion 60 , 046026 (2020).

Gorelenkov, N. N. et al. Anomalous electron transport due to multiple high frequency beam ion driven Alfvén eigenmodes. Nucl. Fusion 50 , 084012 (2010).

Crocker, N. A. et al. Three-wave interactions between fast-ion modes in the national spherical torus experiment. Phys. Rev. Lett. 97 , 045002 (2006).

Biglari, H., Diamond, P. H. & Terry, P. W. Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2 , 1–4 (1990).

Stix, T. H. Heating of toroidal plasmas by neutral injection. Plasma Phys. 14 , 367–384 (1972).

Brizard, A. J. & Hahm, T. S. Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 79 , 421–468 (2007).

Article   ADS   MathSciNet   MATH   Google Scholar  

Merz, F. Gyrokinetic Simulation of Multimode Plasma Turbulence . PhD thesis, Univ. Münster (2008).

Görler, T. Multiscale Effects in Plasma Microturbulence . PhD thesis, Univ. Ulm (2009).

Pankin, A., McCune, D., Andre, R., Bateman, G. & Kritz, A. The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library. Comp. Phys. Commun. 159 , 157–184 (2004).

Brambilla, M. Numerical simulation of ion cyclotron waves in tokamak plasmas. Plasma Phys. Control. Fusion 41 , 1–34 (1999).

Grierson, B. A. et al. Orchestrating TRANSP simulations for interpretative and predictive tokamak modeling with OMFIT. Fusion Sci. Technol. 74 , 101–115 (2018).

Download references

Acknowledgements

We thank M. Baruzzo and F. Nave for the preparation and execution of JET experiments discussed in this paper; E. de la Luna for support in detailing the experimental diagnostics of JET; A. Ho for assistance in processing the experimental data; T. Görler for providing essential advice to ensure the correct numerical setup for the GENE modelling reported in this paper; Y. Camenen, X. Garbet and A. Bierwage for fruitful discussions about the gyrokinetic analyses; G. Giruzzi for valuable suggestions on the article strategy. The simulations were performed on the IRENE Joliot-Curie HPC system, in the framework of the PRACE projects IONFAST and AFIETC, led by J. Garcia, and on the CINECA Marconi HPC within the project GENE4EP, led by D. Zarzoso. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement no. 633053. The views and opinions express herein do not necessarily reflect those of the European Commission. Part of the work by Ye. O. Kazakov and J.Ongena was also carried out in the framework of projects done for the ITER Scientist Fellow Network (ISFN).

Author information

Present address: Swiss Plasma Center, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Authors and Affiliations

Aix-Marseille University, CNRS, PIIM, UMR 7345, Marseille, France

S. Mazzi, D. Zarzoso, S. Benkadda, Y. Camenen, G. Giacometti, M. Koubiti, P. Manas, S. Mazzi, M. Muraglia, C. Pardanaud & D. Zarzoso

IRFM, CEA, Saint Paul Lez Durance, France

S. Mazzi, J. Garcia, J. Balbin, C. Bourdelle, H. Bufferand, G. Ciraolo, L. Colas, P. Devynck, D. Douai, R. Dumont, A. Dvornova, J. Garcia, J. C. Giacalone, M. Goniche, S. Hacquin, M. Hamed, P. Huynh, E. Joffrin, M. Kresina, X. Litaudon, F. Liu, T. Loarer, S. Mazzi, J. Morales, E. Nardon, C. Reux, S. Sridhar, P. Tamain, G. Urbanczyk & S. Vartanian

Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, Brussels, Belgium

Ye. O. Kazakov, J. Ongena, J. Buermans, K. Crombé, P. Dumortier, F. Durodié, S. Jachmich, Ye. O. Kazakov, A. Krivska, E. Lerche, A. Lyssoivan, H. Maier, M. Mayer, A. Messiaen, S. Moradi, J. Ongena, D. Van Eester & T. Wauters

Institute of Plasma Physics, National Science Center, Kharkiv Institute of Physics and Technology, Kharkiv, Ukraine

M. Dreval, M. Dreval, V. Korovin, V. Moiseenko, R. Pavlichenko, E. Sorokovoy & D. Sytnykov

V.N. Karazin Kharkiv National University, Kharkiv, Ukraine

M. Dreval & M. Dreval

University of Milano-Bicocca, Milan, Italy

M. Nocente, I. Casiraghi, G. Croci, A. Dal Molin, G. Gorini, Z. Hu, A. Milocco, M. Nocente & E. Panontin

Institute for Plasma Science and Technology, CNR, Milan, Italy

M. Nocente, E. Alessi, D. Brunetti, F. Causa, F. Ghezzi, L. Giacomelli, L. Laguardia, E. Lazzaro, P. Mantica, A. Mariani, A. Muraro, M. Nocente, S. Nowak, E. Perelli Cippo, G. Pintsuk, M. Rebai, D. Rigamonti, S. Schmuck, C. Sozzi, M. Tardocchi & A. Uccello

Slovenian Fusion Association (SFA), Jožef Stefan Institute, Ljubljana, Slovenia

Culham Science Centre, UK Atomic Energy Authority, Abingdon, UK

Ž. Štancar, G. Szepesi, N. Abid, K. Abraham, O. Adabonyan, M. Afzal, M. Akhtar, M. Alderson-Martin, A. Aleksa, M. Ali, M. Allinson, B. Alper, I. Antoniou, L. C. Appel, C. Appelbee, S. Aria, W. Arter, A. Ash, D. Auld, Y. Austin, I. Balboa, C. Balshaw, N. Balshaw, J. Banks, Yu. F. Baranov, A. Barnard, M. Barnard, A. Barth, S. Barwell, P. S. Beaumont, D. Beckett, A. Begolli, M. Beldishevski, É. Belonohy, J. Benayas, J. Bentley, M. Berry, S. Bickerton, H. Bishop, J. Blackburn, P. Blatchford, A. Boboc, S. Boocock, A. Booth, J. Booth, M. Bowden, K. Boyd, S. C. Bradnam, A. Brett, M. Brix, K. Bromley, B. Brown, D. Brunetti, R. Buckingham, M. Buckley, A. Burgess, A. Busse, D. Butcher, P. Card, P. Carman, M. Carr, F. J. Casson, J. P. Catalan, C. D. Challis, B. Chamberlain, B. Chapman, D. Ciric, M. Clark, R. Clarkson, C. Clements, M. Cleverly, J. P. Coad, P. Coates, A. Cobalt, J. Collins, S. Collins, B. Conway, N. J. Conway, D. Coombs, P. Cooper, S. Cooper, G. Corrigan, P. Cox, S. Cramp, C. Crapper, D. Craven, R. Craven, D. Croft, T. Cronin, A. Cullen, H. Dabirikhah, E. Dale, P. Dalgliesh, S. Dalley, A. Davies, S. Davies, G. Davis, K. Dawson, S. Dawson, I. E. Day, K. Deakin, J. Deane, R. O. Dendy, T. Dickson, J. Dobrashian, S. Dorling, S. Dowson, G. Drummond, H. Dudding, R. Eastham, J. Edwards, A. Eichorn, H. El Haroun, C. Elsmore, S. Emery, G. Evans, S. Evans, D. Fagan, A. Farahani, I. Farquhar, R. Felton, J. Ferrand, J. Fessey, A. R. Field, A. Fil, N. Fil, P. Finburg, G. Fishpool, L. Fittill, M. Fitzgerald, J. Flanagan, K. Flinders, S. Foley, S. Forbes, M. Fortune, C. Fowler, M. Furseman, M. Gardener, L. Garzotti, D. Gear, S. Gee, R. George, S. N. Gerasimov, M. Gethins, Z. Ghani, C. Gibson, C. Giroud, R. Glen, J. Goff, A. Goodyear, S. Gore, N. Gotts, E. Gow, B. Graham, J. Griffiths, S. Griph, D. Grist, D. Guard, N. Gupta, C. Gurl, L. Hackett, S. Hall, S. A. Hall, S. Hallworth-Cook, C. J. Ham, C. Hamlyn-Harris, K. Hammond, E. Harford, J. R. Harrison, D. Harting, T. Haupt, J. Hawes, N. C. Hawkes, J. Hawkins, S. Hazael, S. Hazel, P. Heesterman, O. Hemming, S. S. Henderson, D. Hepple, G. Hermon, J. Hill, J. C. Hillesheim, C. Hogben, A. Hollingsworth, S. Hollis, M. Hook, D. Hopley, D. Horsley, A. Horton, L. Horvath, S. Hotchin, R. Howell, T. Huddleston, A. Hynes, D. Imrie, J. Ingleby, E. Ivings, T. Jackson, P. Jacquet, J. Jenaro Rodriguez, R. Johnson, J. Johnston, C. Jones, G. Jones, L. Jones, N. Jones, T. Jones, A. Joyce, M. Juvonen, J. Kaniewski, A. Kantor, D. Karkinsky, G. Kaveney, D. L. Keeling, R. Kelly, C. Kennedy, D. Kennedy, J. Kent, K. Khan, H.-T. Kim, D. B. King, R. King, D. Kinna, V. G. Kiptily, K. K. Kirov, G. Kneale, M. Knight, P. Knight, R. Knights, S. Knipe, F. Köchl, M. Kong, D. Kos, M. Kresina, N. Krishnan, A. Laing, N. Lam, B. Lane, C. Lane, K. D. Lawson, G. Learoyd, T. Leeson, X. Lefebvre, J. Lehmann, M. Lennholm, J. Lewis, E. Litherland-Smith, R. Lobel, P. J. Lomas, Z. Louka, T. Lowe, C. Lowry, S. Lubbad, R. Lucock, C. F. Maggi, M. Magness, S. Mahesan, J. Mailloux, S. Marsden, J. Marsh, R. Marshall, A. Martin, A. J. Martin, M. Maslov, G. F. Matthews, M.-L. Mayoral, R. McAdams, K. G. McClements, P. McCullen, D. C. McDonald, D. McGuckin, D. McHugh, G. McIntyre, R. McKean, J. McKehon, L. McNamee, A. McShee, A. Meakins, S. Medley, K. Meghani, A. G. Meigs, S. Menmuir, S. Merriman, P. Middleton, D. Middleton-Gear, F. Militello, A. Militello Asp, J. Milnes, C. Minghao, P. Monaghan, I. Monakhov, T. Moody, R. Mooney, R. B. Morales, L. Moreira, L. Morgan, J. Morris, K-M. Morrison, D. Moulton, T. Mrowetz, T. Mundy, N. Muthusonai, M. Naden, J. Naish, R. Naish, I. Nestoras, S. Ng, M. Nicassio, C. Noble, C. R. Nobs, D. Nodwell, R. Normanton, E. Nunn, J. O’Callaghan, T. Odupitan, H. J. C. Oliver, R. Olney, E. Organ, R. Otin, A. Owen, N. Pace, L. W. Packer, S. Paige, S. J. P. Pamela, V. V. Parail, J. Parisi, A. Parsloe, N. Parsons, A. Patel, E. Pawelec, A. Peacock, M. Pearce, K. Pepperell, D. Perry, N. Petrella, M. Peyman, N. Platt, S. Popovichev, M. Porton, C. Price, D. Price, M. Price, P. Prior, K. Purahoo, O. Putignano, M. Rainford, G. Ralph, S. Reynolds, M. L. Richiusa, S. Richyal, F. G. Rimini, C. M. Roach, R. Robins, S. Robinson, D. Robson, M. Romanelli, S. Romanelli, S. Rowe, D. Rowlands, S. Saarelma, R. Salmon, I. Sanders, D. Sandiford, R. Sarwar, I. Sarychev, G. Scott, M. Scott, D. Scraggs, S. Scully, M. Segato, M. Sertoli, S. E. Sharapov, A. Shaw, H. Sheikh, A. Shepherd, M. Short, S. A. Silburn, J. Silva, D. Simfukwe, J. Simpson, D. Sinclair, N. Skinner, J. Slater, N. Smith, P. Smith, J. Snell, T. Spelzini, D. Sprada, C. Srinivasan, G. Stables, Ž. Štancar, P. Staniec, M. Stead, A. Stephen, J. Stephens, P. Stevenson, M. Stojanov, S. Strikwerda, C. I. Stuart, W. Studholme, M. Subramani, H. J. Sun, G. Szepesi, B. Tabia, A. Tallargio, H. Tan, D. Taylor, E. Tholerus, J. Thomas, A. Thorman, A. Tipton, H. Todd, A. Tookey, I. Turner, M. Turner, M. Turnyanskiy, G. Tvalashvili, S. Tyrrell, A. Vadgama, D. Valcarcel, M. Valovič, Z. Vizvary, B. Wakeling, N. R. Walkden, M. Walker, R. Walker, N. Wang, S. Warder, R. Warren, J. Waterhouse, H. Wedderburn Maxwell, P. Welch, A. West, M. Wheatley, S. Wheeler, A. Whitehead, D. Whittaker, A. Widdowson, J. Wilkinson, J. C. Williams, D. Willoughby, I. Wilson, J. Wilson, T. Wilson, P. Wise, G. Withenshaw, A. Withycombe, D. Witts, R. Wood, C. Woodley, R. Woodley, B. Woods, J. Wright, T. Xu, I. Young, R. Young, J. Zacks, K.-D. Zastrow, Y. Zayachuk & I. Zoulias

Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

J. Eriksson, A. Sahlberg, E. Andersson Sundén, M. Cecconello, G. Ericsson, B. Eriksson, J. Eriksson, L. Hägg, A. Hjalmarsson, D. Primetzhofer, A. Sahlberg, H. Sjöstrand & M. Weiszflog

Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

P. Abreu, E. Alves, A. Batista, J. Bernardo, J. P. S. Bizarro, D. Borba, R. Calado, I. S. Carvalho, P. Carvalho, N. Catarino, R. Coelho, N. Cruz, A. Fernandes, H. Fernandes, D. R. Ferreira, J. Ferreira, A. Figueiredo, J. Figueiredo, L. Gil, R. Gomes, B. Gonçalves, R. B. Henriques, A. Mauriya, F. Nabais, M. F. F. Nave, I. Nedzelskiy, D. Nina, R. Pereira, T. Pereira, V. Plyusnin, P. Rodrigues, F. Salzedas, B. Santos, A. Silva, C. Silva, J. Sousa & W. Zwingmann

National Centre for Nuclear Research (NCBJ), Otwock-Świerk, Poland

P. Adrich, K. Koziol, J. Rzadkiewicz, R. Zagorski & I. Zychor

University of Helsinki, Helsinki, Finland

T. Ahlgren, J. Karhunen, A. Lahtinen, K. Nordlund, E. Safi, P. Sirén & L. Zakharov

VTT Technical Research Centre of Finland, Espoo, Finland

L. Aho-Mantila, M. Airila, A. Hakola, T. Kaltiaisenaho, A. Kirjasuo, J. Leppänen, J. Likonen, A. Salmi & T. Tala

National Institutes for Quantum and Radiological Science and Technology, Naka, Japan

N. Aiba, N. Asakura, A. Bierwage, D. Hamaguchi, T. Hayashi, A. B. Kukushkin, H. Kurotaki, M. Oyaizu & S. Sumida

Consorzio CREATE, Naples, Italy

R. Albanese, G. Ambrosino, R. Ambrosino, M. Ariola, A. Chiariello, V. Coccorese, G. De Tommasi, A. Formisano, R. Fresa, N. Isernia, V. P. Loschiavo, R. Martone, M. Mattei, F. Maviglia, F. Orsitto, A. Pironti, A. Quercia, G. Rubinacci, S. Ventre & F. Villone

Laboratorio Nacional de Fusión, CIEMAT, Madrid, Spain

D. Alegre, A. Baciero, E. de la Cal, D. Carralero, T. Estrada, J. M. Fontdecaba, D. Gadariya, E. Leon Gutierrez, U. Losada, E. de la Luna, N. Panadero, G. Rattá, E. R. Solano, J. Vega & R. Vila

NCSR ‘Demokritos’ 15310, Agia Paraskevi, Greece

S. Aleiferis, K. Mergia, I. Stamatelatos, P. Tsavalas & T. Vasilopoulou

ITER Organization, Saint Paul Lez Durance Cedex, France

P. Aleynikov, P. Andrew, R. Barnsley, M. Bassan, B. Bauvir, L. Bertalot, X. Bonnin, M. De Bock, G. De Temmerman, Ph. Duckworth, G. Ellwood, W. Helou, O. Hoenen, G. T. A. Huijsmans, S. Jachmich, M. Kempenaars, S. H. Kim, M. Kocan, V. Krasilnikov, U. Kruezi, M. Lehnen, F. Leipold, A. Loarte, M. Loughlin, T. Luce, Ph. Maquet, S. Maruyama, R. Michling, L. Moser, C. Penot, S. Pinches, R. Pitts, R. Reichle, M. Schneider, P. Shigin, A. Sirinelli, V. Udintsev, G. Vayakis, E. Veshchev, P. de Vries, M. Walsh, C. Watts & Y. Yang

Departamento de Ingeniería Energética, Universidad Nacional de Educación a Distancia, Madrid, Spain

J. Algualcil, G. Gervasini, R. Juarez & P. Sauwan

Dipartimento Fusione e Tecnologie per la Sicurezza Nucleare, ENEA C. R. Frascati, Frascati, Italy

B. M. Angelini, G. Artaserse, M. Baruzzo, P. Batistoni, F. Belli, P. Buratti, M. Cappelli, A. Cardinali, C. Castaldo, A. Colangeli, C. Di Troia, M. Falessi, D. Flammini, N. Fonnesu, M. Fontana, V. Fusco, E. Giovannozzi, S. Loreti, G. Mariano, D. Marocco, C. Mazzotta, F. Moro, F. Napoli, M. Pillon, C. Piron, M. T. Porfiri, G. Pucella, G. Ramogida, M. Riva, F. Romanelli, A. Santucci, N. Terranova, R. Villari, B. Viola, G. Vlad & M. Zerbini

Max-Planck-Institut für Plasmaphysik, Garching, Germany

C. Angioni, V. Artigues, M. Balden, V. K. Bandaru, M. Bernert, R. Bilato, G. Birkenmeier, V. Bobkov, N. Bonanomi, M. Cavedon, A. Chankin, D. Coster, P. David, A. Di Siena, M. Dunne, R. Dux, Th. Eich, E. Fable, M. Faitsch, S. Glöggler, T. Görler, H. Greuner, J. Hobirk, M. Hölzl, A. Kappatou, C. Kiefer, K. Krieger, T. Lunt, P. Manas, G. Meisl, R. Neu, J.-M. Noterdaeme, G. Papp, G. Pautasso, T. Pütterich, K. Schmid, P. A. Schneider, D. Silvagni, B. Tál, W. Tierens, U. von Toussaint, M. Weiland, M. Wischmeier, E. Wolfrum & W. Zhang

National Institute for Fusion Science, Toki, Japan

N. Ashikawa, S. Masuzaki, K. Tanaka, M. Tokitani & M. Yajima

MIT Plasma Science and Fusion Center, Cambridge, MA, USA

V. Aslanyan, N. Fil, M. Porkolab, P. Rodriguez-Fernandez, R. Sweeney, R. A. Tinguely & J. C. Wright

Grupo I2A2, Universidad Politécnica de Madrid, Madrid, Spain

M. Astrain, S. Esquembri, J. M. López & M. Ruiz

POB 49, Centre for Energy Research, Budapest, Hungary

O. Asztalos, G. Cseh, D. Dunai, G. Petravich, G. Pokol, D. Réfy, T. Szabolics, M. Vecsei & S. Zoletnik

Consorzio RFX, Padova, Italy

F. Auriemma, L. Balbinot, T. Bolzonella, D. Bonfiglio, L. Carraro, D. Fiorucci, R. Galvão, P. Innocente, R. Lorenzini, A. Murari, R. Paccagnella, L. Piron, I. Predebon, S. Spagnolo, D. Terranova, M. Valisa, N. Vianello & P. Vincenzi

University of Latvia, Riga, Latvia

L. Avotina, L. Baumane, D. Conka, S. Conroy, M. Halitovs, P. Kalnina, G. Kizane, E. Lagzdina, A. Lescinskis, E. Pajuste, T. E. Susts, A. S. Teimane, A. Vitins, R. J. Zabolockis & A. Zarins

Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy

E. Aymerich, B. Cannas, S. Carcangiu, A. Fanni & G. Sias

National Technical University of Athens, Athens, Greece

F. Bairaktaris, K. Hizanidis, V. Kazantzidis, Y. Kominis, A. Lazaros & A. Papadopoulos

Dipartimento di Ingegneria Elettrica Elettronica e Informatica, Università degli Studi di Catania, Catania, Italy

C. Barcellona, A. Buscarino, C. Corradino & L. Fortuna

Oak Ridge National Laboratory, Oak Ridge, TN, USA

L. Baylor, M. Beidler, T. Biewer, C. Collins, E. Delabie, D. Del-Castillo-Negrete, T. Gebhart, R. Grove, J. Herfindal, M. Kaufman, C. Klepper, B. Lomanowski, J. Lovell, S. Meitner, M. Parsons, G. Radulescu, D. Rasmussen, M. Reinke, J. Risner, D. Shiraki & D. Spong

EUROfusion Programme Management Unit, Culham Science Centre, Culham, UK

N. Bekris, D. Borba, A. Figueiredo, J. Figueiredo, S. Hacquin, L. D. Horton, S. Jachmich, H.-T. Kim, X. Litaudon, F. Liu, A. Murari & D. Rowlands

Karlsruhe Institute of Technology, Karlsruhe, Germany

N. Bekris, U. Fischer, A. Klix, D. Leichtle, S. Matejcik, P. Pereslavtsev & P. Raj

General Atomics, San Diego, CA, USA

E. Belli, C. Crystal, N. Eidietis, P. Gohil, C. Kim, M. Knolker, B. Lyons, J. McClenaghan, T. Osborne, P. Snyder & G. Staebler

Department of Physics, University of Basel, Basel, Switzerland

M. Ben Yaala, L. Marot, L. Moser & K. Soni

Fusion Plasma Physics, EECS, KTH Royal Institute of Technology, Stockholm, Sweden

H. Bergsåker, L. Frassinetti, R. Fridström, T. Johnson, S. Moon, H. Nyström, P. Petersson, M. Rubel, E. Stefanikova, P. Ström, E. Tholerus, P. Vallejos Olivares, A. Weckmann & Y. Zhou

Institut Jean Lamour, UMR 7198, CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy, France

H. Betar & D. Del Sarto

Teilinstitut Greifswald, Max-Planck-Institut für Plasmaphysik, Greifswald, Germany

M. Beurskens, P. Drewelow, S. Kwak, A. Pavone, J. Svensson & A. Zocco

Faculty of Marine Engineering, Maritime University of Szczecin, Szczecin, Poland

Institute of Nuclear Physics, Krakov, Poland

J. Bielecki, J. Dankowski, J. Mietelski, B. Obryk & A. Wojcik-Gargula

Institute of Plasma Physics of the CAS, Prague, Czech Republic

P. Bílková, P. Bohm, I. Borodkina, R. Dejarnac, I. Duran, O. Ficker, J. Horáček, M. Imríšek, F. Jaulmes, E. Macusova, T. Markovič, E. Matveeva, J. Mlynář, M. Peterka, M. Sos, J. Svoboda, M. Tomeš, D. Tskhakaya, P. Vondráček & V. Yanovskiy

Swiss Plasma Center (SPC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

P. Blanchard, A. Fasoli, F. Felici, D. Galassi, J. P. Graves, L. D. Horton, E. Lascas Neto, M. Machielsen, G. Marceca, A. Pau, P. Puglia, O. Sauter, U. Sheikh, C. Sommariva, D. Testa & H. Weisen

University of Wisconsin-Madison, Madison, WI, USA

Magnetic Sensor Laboratory, Lviv Polytechnic National University, Lviv, Ukraine

I. Bolshakova

Princeton Plasma Physics Laboratory, Princeton, NJ, USA

P. Bonofiglo, C. S. Chang, R. Goulding, B. Grierson, R. Hager, R. Maingi, M. Podesta, F. M. Poli, S. Shiraiwa, W. Tang & A. Teplukhina

Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung, TEC Partner, Jülich, Germany

D. Borodin, I. Borodkina, S. Brezinsek, J. W. Coenen, T. Dittmar, P. Drews, A. Eksaeva, S. Ertmer, M. Freisinger, Y. Gao, A. Huber, V. Huber, A. Kirschner, H. R. Koslowski, H. T. Lambertz, L. Li, Y. Li, Ch. Linsmeier, O. Marchuk, D. Matveev, Ph. Mertens, D. Reiser, J. Romazanov, F. Schluck, G. Sergienko, A. Terra, E. Wang, S. Wiesen, W. Yanling & M. Zlobinski

Inria, LJAD, Université Cote d’Azur, CNRS, Nice, France

C. Boulbe, B. Faugeras, B. Homan & B. N’Konga

Ruđer Bošković Institute, Zagreb, Croatia

I. Božičević Mihalić, T. Dunatov, S. Fazinić, G. Provatas, M. Rodriguez Ramos & T. Tadić

The National Institute for Optoelectronics, Magurele-Bucharest, Romania

Mechanics, SCI, KTH, Stockholm, Sweden

L. Brandt, M. Crialesi Esposito & N. Scapin

Fourth State Research, Austin, TX, USA

R. Bravanec

Institute for Fusion Studies, University of Texas at Austin, Austin, TX, USA

B. Breizman, D. R. Hatch, M. Kotschenreuther & H. J. C. Oliver

DEIM, University of Tuscia, Viterbo, Italy

G. Calabrò, S. Minucci & G. Rubino

Università di Roma Tor Vergata, Rome, Italy

L. Calacci, D. Carnevale, G. Ferrò, D. Frigione, S. Galeani, P. Gaudio, M. Gelfusa, M. Lungaroni, M. Marinelli, L. Martellucci, E. Milani, M. Passeri, E. Peluso, G. Prestopino, R. Rossi, C. Verona & G. Verona Rinati

Instituto de Física, Universidade de São Paulo, São Paulo, Brazil

G. Canal, W. Pires de Sá, A. Pires dos Reis & L. Ruchko

Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry, UK

B. Chapman, R. O. Dendy & B. McMillan

Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland

M. Chernyshova, P. Chmielewski, A. Chomiczewska, T. Czarski, T. Fornal, K. Gałązka, W. Gromelski, M. Gruca, I. Ivanova-Stanik, S. Jablonski, E. Kowalska-Strzęciwilk, E. Łaszyńska, K. Malinowski, C. Perez von Thun, V. Pericoli, M. Poradziński, G. Telesca & N. Wendler

Aalto University, Aalto, Finland

L. Chone, M. Groth, N. Horsten, J. Kilpeläinen, T. Kiviniemi, H. Kumpulainen, T. Kurki-Suonio, S. Leerink, R. Mäenpää, J. Simpson, S. K. Sipilä, V. Solokha, J. Varje & A. J. Virtanen

FOM Institute DIFFER, Eindhoven, the Netherlands

J. Citrin, A. Ho, M. Marin, C. J. Meekes, K. L. van de Plassche & G. Snoep

Warsaw University of Technology, Warsaw, Poland

Ł. Ciupinski & E. Fortuna-Zalesna

Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University, Belfast, UK

I. H. Coffey

The National Institute for Laser, Plasma and Radiation Physics, Magurele-Bucharest, Romania

T. Craciunescu, A. Croitoru, P. Dinca, M. Gherendi, I. Jepu, C. P. Lungu, I. Miron, D. Palade, O. G. Pompilian, C. Porosnicu, C. Ruset, F. Spineanu, M. Vlad & V. Zoita

Department of Applied Physics, Ghent University, Ghent, Belgium

K. Crombé & G. Verdoolaege

Jožef Stefan Institute, Slovenian Fusion Association (SFA), Ljubljana, Slovenia

A. Cufar, I. Kodeli, B. Kos, I. Lengar, V. Radulovic, L. Snoj, Ž. Štancar & A. Zohar

The National Institute for Cryogenics and Isotopic Technology, Râmnicu Vâlcea, Romania

M. Curuia & S. Soare

Dublin City University, Dublin, Ireland

A. Dempsey, R. Doyle, H. J. Leggate, D. Schwörer, A. Somers & M. M. Turner

University of California at San Diego, La Jolla, CA, USA

R. P. Doerner & E. Hollmann

EUROfusion Programme Management Unit, Garching, Germany

A. J. H. Donné, K. Gál, M.-L. Mayoral & M. Turnyanskiy

Departamento de Informática y Automática, Universidad Nacional de Educación a Distancia, Madrid, Spain

S. Dormido-Canto

York Plasma Institute, Department of Physics, University of York, York, UK

H. Dudding, K. J. Gibson, L. Horvath & B. Lipschultz

Department of Physics, Chalmers University of Technology, Gothenburg, Sweden

O. Embreus, T. Fülöp, K. Insulander Björk, I. Pusztai, E. Rachlew, K. Särkimäki & O. Vallhagen

Department of Space, Earth and Environment, Chalmers University of Technology, Gothenburg, Sweden

F. Eriksson, E. Fransson, A. Gillgren, H. Nordman, M. Oberparleiter, P. Strand & D. Yadikin

European Commission, Brussels, Belgium

L. G. Eriksson, M. Lennholm, C. Lowry, A. Peacock & A. C. C. Sips

University of Tennessee, Knoxville, TN, USA

A. L. Esquisabel

Universitat Politècnica de Catalunya, Barcelona, Spain

S. Futatani

Barcelona Supercomputing Center, Barcelona, Spain

D. Gallart & J. Manyer

Universidad de Sevilla, Seville, Spain

M. García-Muñoz, J. Rivero-Rodriguez & E. Viezzer

IUSTI, UMR 7343, Aix-Marseille University, CNRS, Marseille, France

Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, SAPIENZA Università di Roma, Rome, Italy

R. Gatto & V. K. Zotta

Institute for Nuclear Research, Kyiv, Ukraine

V. Goloborodko, Y. Kolesnichenko, B. Lepiavko, V. Lutsenko, M. Tyshchenko & Y. Yakovenko

Studiecentrum voor Kernenergie, Centre d’Etude de l’Energie Nucléaire, Mol, Belgium

A. Gusarov, W. Leysen & D. Terentyev

University of Toyama, Toyama, Japan

Y. Hatano & S. E. Lee

University of California, Irvine, Irvine, CA, USA

B. Heidbrink

Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark

H. Järleblad, V. Naulin, A. H. Nielsen, J. J. Rasmussen & M. Salewski

Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia

M. Klas, J. Orszagh, P. Papp, E. Suchkov & F. S. Zaitsev

University College Cork, Cork, Ireland

S. Knott & P. J. McCarthy

Institute of Physics, Opole University, Opole, Poland

Daegu University, Gyeongbuk, Republic of Korea

Department of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea

C. Lee, Y.-S. Na & J. Seo

Fusion for Energy Joint Undertaking, Barcelona, Spain

D. Leichtle

Arizona State University, Tempe, AZ, USA

Politecnico di Torino, Torino, Italy

R. Maggiora & D. Milanesio

ICREA and Barcelona Supercomputing Center, Barcelona, Spain

M. J. Mantsinen

Universidad Complutense de Madrid, Madrid, Spain

A. Manzanares

Istituto dei Sistemi Complessi, CNR and Dipartimento di Energia, Politecnico di Torino, Turin, Italy

C. Marchetto

Eindhoven University of Technology, Eindhoven, the Netherlands

C. J. Meekes

Purdue University, West Lafayette, IN, USA

G. Miloshevsky

Department of Material Science, Shimane University, Matsue, Japan

M. Miyamoto

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

College of William and Mary, Williamsburg, VA, USA

S. Mordijck

University of California, Oakland, CA, USA

D. Nishijima

University of Strathclyde, Glasgow, UK

M. O’Mullane

Kindai University, Osaka, Japan

Shizuoka University, Shizuoka, Japan

Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK

J. Parisi, F. Parra Diaz & J. Ruiz Ruiz

Columbia University, New York, NY, USA

C. Paz Soldan

Dipartimento di Fisica “G. Galilei”, Università degli Studi di Padova, Padova, Italy

University of Ioannina, Ioannina, Greece

G. Poulipoulis

Space and Plasma Physics, EECS, KTH Royal Institute of Technology, Stockholm, Sweden

S. Ratynskaia, E. Thoren, P. Tolias & L. Vignitchouk

Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

F. Salzedas

The University of Tokyo, Kashiwa, Japan

K. Shinohara

Lithuanian Energy Institute, Kaunas, Lithuania

G. Stankunas

HRS Fusion, West Orange, NJ, USA

H. R. Strauss

Ibaraki University Graduate School of Science and Engineering, Mito, Japan

Fusion@ÖAW, Österreichische Akademie der Wissenschaften (ÖAW), Technische Universität Wien, Wien, Austria

D. Tskhakaya

You can also search for this author in PubMed   Google Scholar

  • , K. Abraham
  • , O. Adabonyan
  • , P. Adrich
  • , T. Ahlgren
  • , L. Aho-Mantila
  • , M. Airila
  • , M. Akhtar
  • , R. Albanese
  • , M. Alderson-Martin
  • , D. Alegre
  • , S. Aleiferis
  • , A. Aleksa
  • , E. Alessi
  • , P. Aleynikov
  • , J. Algualcil
  • , M. Allinson
  • , G. Ambrosino
  • , R. Ambrosino
  • , E. Andersson Sundén
  • , P. Andrew
  • , B. M. Angelini
  • , C. Angioni
  • , I. Antoniou
  • , L. C. Appel
  • , C. Appelbee
  • , M. Ariola
  • , G. Artaserse
  • , V. Artigues
  • , N. Asakura
  • , N. Ashikawa
  • , V. Aslanyan
  • , M. Astrain
  • , O. Asztalos
  • , F. Auriemma
  • , Y. Austin
  • , L. Avotina
  • , E. Aymerich
  • , A. Baciero
  • , F. Bairaktaris
  • , J. Balbin
  • , L. Balbinot
  • , I. Balboa
  • , M. Balden
  • , C. Balshaw
  • , N. Balshaw
  • , V. K. Bandaru
  • , Yu. F. Baranov
  • , C. Barcellona
  • , A. Barnard
  • , M. Barnard
  • , R. Barnsley
  • , M. Baruzzo
  • , S. Barwell
  • , M. Bassan
  • , A. Batista
  • , P. Batistoni
  • , L. Baumane
  • , B. Bauvir
  • , L. Baylor
  • , P. S. Beaumont
  • , D. Beckett
  • , A. Begolli
  • , M. Beidler
  • , N. Bekris
  • , M. Beldishevski
  • , É. Belonohy
  • , M. Ben Yaala
  • , J. Benayas
  • , J. Bentley
  • , H. Bergsåker
  • , J. Bernardo
  • , M. Bernert
  • , L. Bertalot
  • , M. Beurskens
  • , S. Bickerton
  • , J. Bielecki
  • , A. Bierwage
  • , T. Biewer
  • , R. Bilato
  • , P. Bílková
  • , G. Birkenmeier
  • , H. Bishop
  • , J. P. S. Bizarro
  • , J. Blackburn
  • , P. Blanchard
  • , P. Blatchford
  • , V. Bobkov
  • , I. Bolshakova
  • , T. Bolzonella
  • , N. Bonanomi
  • , D. Bonfiglio
  • , X. Bonnin
  • , P. Bonofiglo
  • , S. Boocock
  • , D. Borodin
  • , I. Borodkina
  • , C. Boulbe
  • , C. Bourdelle
  • , M. Bowden
  • , I. Božičević Mihalić
  • , S. C. Bradnam
  • , L. Brandt
  • , R. Bravanec
  • , B. Breizman
  • , S. Brezinsek
  • , K. Bromley
  • , D. Brunetti
  • , R. Buckingham
  • , M. Buckley
  • , J. Buermans
  • , H. Bufferand
  • , P. Buratti
  • , A. Burgess
  • , A. Buscarino
  • , D. Butcher
  • , E. de la Cal
  • , G. Calabrò
  • , L. Calacci
  • , R. Calado
  • , Y. Camenen
  • , B. Cannas
  • , M. Cappelli
  • , S. Carcangiu
  • , A. Cardinali
  • , P. Carman
  • , D. Carnevale
  • , D. Carralero
  • , L. Carraro
  • , I. S. Carvalho
  • , P. Carvalho
  • , I. Casiraghi
  • , F. J. Casson
  • , C. Castaldo
  • , J. P. Catalan
  • , N. Catarino
  • , M. Cavedon
  • , M. Cecconello
  • , C. D. Challis
  • , B. Chamberlain
  • , C. S. Chang
  • , A. Chankin
  • , B. Chapman
  • , M. Chernyshova
  • , A. Chiariello
  • , P. Chmielewski
  • , A. Chomiczewska
  • , G. Ciraolo
  • , J. Citrin
  • , Ł. Ciupinski
  • , R. Clarkson
  • , C. Clements
  • , M. Cleverly
  • , J. P. Coad
  • , P. Coates
  • , A. Cobalt
  • , V. Coccorese
  • , R. Coelho
  • , J. W. Coenen
  • , I. H. Coffey
  • , A. Colangeli
  • , C. Collins
  • , J. Collins
  • , S. Collins
  • , S. Conroy
  • , B. Conway
  • , N. J. Conway
  • , D. Coombs
  • , P. Cooper
  • , S. Cooper
  • , C. Corradino
  • , G. Corrigan
  • , D. Coster
  • , T. Craciunescu
  • , C. Crapper
  • , D. Craven
  • , R. Craven
  • , M. Crialesi Esposito
  • , A. Croitoru
  • , K. Crombé
  • , T. Cronin
  • , C. Crystal
  • , A. Cullen
  • , M. Curuia
  • , T. Czarski
  • , H. Dabirikhah
  • , A. Dal Molin
  • , P. Dalgliesh
  • , S. Dalley
  • , J. Dankowski
  • , A. Davies
  • , S. Davies
  • , K. Dawson
  • , S. Dawson
  • , I. E. Day
  • , M. De Bock
  • , G. De Temmerman
  • , G. De Tommasi
  • , K. Deakin
  • , R. Dejarnac
  • , D. Del Sarto
  • , E. Delabie
  • , D. Del-Castillo-Negrete
  • , A. Dempsey
  • , R. O. Dendy
  • , P. Devynck
  • , A. Di Siena
  • , C. Di Troia
  • , T. Dickson
  • , T. Dittmar
  • , J. Dobrashian
  • , R. P. Doerner
  • , A. J. H. Donné
  • , S. Dorling
  • , S. Dormido-Canto
  • , S. Dowson
  • , M. Dreval
  • , P. Drewelow
  • , G. Drummond
  • , Ph. Duckworth
  • , H. Dudding
  • , R. Dumont
  • , P. Dumortier
  • , T. Dunatov
  • , F. Durodié
  • , A. Dvornova
  • , R. Eastham
  • , J. Edwards
  • , A. Eichorn
  • , N. Eidietis
  • , A. Eksaeva
  • , H. El Haroun
  • , G. Ellwood
  • , C. Elsmore
  • , O. Embreus
  • , G. Ericsson
  • , B. Eriksson
  • , F. Eriksson
  • , J. Eriksson
  • , L. G. Eriksson
  • , S. Ertmer
  • , S. Esquembri
  • , A. L. Esquisabel
  • , T. Estrada
  • , M. Faitsch
  • , M. Falessi
  • , A. Farahani
  • , I. Farquhar
  • , A. Fasoli
  • , B. Faugeras
  • , S. Fazinić
  • , F. Felici
  • , R. Felton
  • , A. Fernandes
  • , H. Fernandes
  • , J. Ferrand
  • , D. R. Ferreira
  • , J. Ferreira
  • , J. Fessey
  • , O. Ficker
  • , A. R. Field
  • , A. Figueiredo
  • , J. Figueiredo
  • , P. Finburg
  • , D. Fiorucci
  • , U. Fischer
  • , G. Fishpool
  • , L. Fittill
  • , M. Fitzgerald
  • , D. Flammini
  • , J. Flanagan
  • , K. Flinders
  • , N. Fonnesu
  • , M. Fontana
  • , J. M. Fontdecaba
  • , S. Forbes
  • , A. Formisano
  • , T. Fornal
  • , L. Fortuna
  • , E. Fortuna-Zalesna
  • , M. Fortune
  • , C. Fowler
  • , E. Fransson
  • , L. Frassinetti
  • , M. Freisinger
  • , R. Fridström
  • , D. Frigione
  • , M. Furseman
  • , S. Futatani
  • , D. Gadariya
  • , D. Galassi
  • , K. Gałązka
  • , S. Galeani
  • , D. Gallart
  • , R. Galvão
  • , J. Garcia
  • , M. García-Muñoz
  • , M. Gardener
  • , L. Garzotti
  • , J. Gaspar
  • , P. Gaudio
  • , T. Gebhart
  • , M. Gelfusa
  • , R. George
  • , S. N. Gerasimov
  • , G. Gervasini
  • , M. Gethins
  • , M. Gherendi
  • , F. Ghezzi
  • , J. C. Giacalone
  • , L. Giacomelli
  • , G. Giacometti
  • , C. Gibson
  • , K. J. Gibson
  • , A. Gillgren
  • , E. Giovannozzi
  • , C. Giroud
  • , S. Glöggler
  • , V. Goloborodko
  • , B. Gonçalves
  • , M. Goniche
  • , A. Goodyear
  • , G. Gorini
  • , T. Görler
  • , R. Goulding
  • , B. Graham
  • , J. P. Graves
  • , H. Greuner
  • , B. Grierson
  • , J. Griffiths
  • , W. Gromelski
  • , A. Gusarov
  • , L. Hackett
  • , S. Hacquin
  • , A. Hakola
  • , M. Halitovs
  • , S. A. Hall
  • , S. Hallworth-Cook
  • , C. J. Ham
  • , D. Hamaguchi
  • , C. Hamlyn-Harris
  • , K. Hammond
  • , E. Harford
  • , J. R. Harrison
  • , D. Harting
  • , Y. Hatano
  • , D. R. Hatch
  • , N. C. Hawkes
  • , J. Hawkins
  • , T. Hayashi
  • , S. Hazael
  • , P. Heesterman
  • , B. Heidbrink
  • , O. Hemming
  • , S. S. Henderson
  • , R. B. Henriques
  • , D. Hepple
  • , J. Herfindal
  • , G. Hermon
  • , J. C. Hillesheim
  • , K. Hizanidis
  • , A. Hjalmarsson
  • , J. Hobirk
  • , O. Hoenen
  • , C. Hogben
  • , A. Hollingsworth
  • , S. Hollis
  • , E. Hollmann
  • , D. Hopley
  • , J. Horáček
  • , D. Horsley
  • , N. Horsten
  • , A. Horton
  • , L. D. Horton
  • , L. Horvath
  • , S. Hotchin
  • , R. Howell
  • , T. Huddleston
  • , G. T. A. Huijsmans
  • , M. Imríšek
  • , J. Ingleby
  • , P. Innocente
  • , K. Insulander Björk
  • , N. Isernia
  • , I. Ivanova-Stanik
  • , E. Ivings
  • , S. Jablonski
  • , S. Jachmich
  • , T. Jackson
  • , P. Jacquet
  • , H. Järleblad
  • , F. Jaulmes
  • , J. Jenaro Rodriguez
  • , E. Joffrin
  • , R. Johnson
  • , T. Johnson
  • , J. Johnston
  • , R. Juarez
  • , M. Juvonen
  • , P. Kalnina
  • , T. Kaltiaisenaho
  • , J. Kaniewski
  • , A. Kantor
  • , A. Kappatou
  • , J. Karhunen
  • , D. Karkinsky
  • , M. Kaufman
  • , G. Kaveney
  • , Ye. O. Kazakov
  • , V. Kazantzidis
  • , D. L. Keeling
  • , M. Kempenaars
  • , C. Kennedy
  • , D. Kennedy
  • , C. Kiefer
  • , J. Kilpeläinen
  • , H.-T. Kim
  • , S. H. Kim
  • , D. B. King
  • , V. G. Kiptily
  • , A. Kirjasuo
  • , K. K. Kirov
  • , A. Kirschner
  • , T. Kiviniemi
  • , G. Kizane
  • , C. Klepper
  • , G. Kneale
  • , M. Knight
  • , P. Knight
  • , R. Knights
  • , M. Knolker
  • , I. Kodeli
  • , Y. Kolesnichenko
  • , Y. Kominis
  • , V. Korovin
  • , H. R. Koslowski
  • , M. Kotschenreuther
  • , M. Koubiti
  • , E. Kowalska-Strzęciwilk
  • , K. Koziol
  • , V. Krasilnikov
  • , M. Kresina
  • , K. Krieger
  • , N. Krishnan
  • , A. Krivska
  • , U. Kruezi
  • , I. Książek
  • , A. B. Kukushkin
  • , H. Kumpulainen
  • , T. Kurki-Suonio
  • , H. Kurotaki
  • , O. J. Kwon
  • , L. Laguardia
  • , E. Lagzdina
  • , A. Lahtinen
  • , H. T. Lambertz
  • , E. Lascas Neto
  • , E. Łaszyńska
  • , K. D. Lawson
  • , A. Lazaros
  • , E. Lazzaro
  • , G. Learoyd
  • , S. E. Lee
  • , S. Leerink
  • , T. Leeson
  • , X. Lefebvre
  • , H. J. Leggate
  • , J. Lehmann
  • , M. Lehnen
  • , D. Leichtle
  • , F. Leipold
  • , I. Lengar
  • , M. Lennholm
  • , E. Leon Gutierrez
  • , B. Lepiavko
  • , J. Leppänen
  • , E. Lerche
  • , A. Lescinskis
  • , W. Leysen
  • , J. Likonen
  • , Ch. Linsmeier
  • , B. Lipschultz
  • , X. Litaudon
  • , E. Litherland-Smith
  • , T. Loarer
  • , A. Loarte
  • , B. Lomanowski
  • , P. J. Lomas
  • , J. M. López
  • , R. Lorenzini
  • , S. Loreti
  • , U. Losada
  • , V. P. Loschiavo
  • , M. Loughlin
  • , J. Lovell
  • , S. Lubbad
  • , R. Lucock
  • , E. de la Luna
  • , M. Lungaroni
  • , C. P. Lungu
  • , V. Lutsenko
  • , A. Lyssoivan
  • , M. Machielsen
  • , E. Macusova
  • , R. Mäenpää
  • , C. F. Maggi
  • , R. Maggiora
  • , M. Magness
  • , S. Mahesan
  • , J. Mailloux
  • , R. Maingi
  • , K. Malinowski
  • , P. Mantica
  • , M. J. Mantsinen
  • , J. Manyer
  • , A. Manzanares
  • , Ph. Maquet
  • , G. Marceca
  • , C. Marchetto
  • , O. Marchuk
  • , A. Mariani
  • , G. Mariano
  • , M. Marinelli
  • , T. Markovič
  • , D. Marocco
  • , S. Marsden
  • , R. Marshall
  • , L. Martellucci
  • , A. Martin
  • , A. J. Martin
  • , R. Martone
  • , S. Maruyama
  • , M. Maslov
  • , S. Masuzaki
  • , S. Matejcik
  • , M. Mattei
  • , G. F. Matthews
  • , D. Matveev
  • , E. Matveeva
  • , A. Mauriya
  • , F. Maviglia
  • , M.-L. Mayoral
  • , C. Mazzotta
  • , R. McAdams
  • , P. J. McCarthy
  • , K. G. McClements
  • , J. McClenaghan
  • , P. McCullen
  • , D. C. McDonald
  • , D. McGuckin
  • , D. McHugh
  • , G. McIntyre
  • , R. McKean
  • , J. McKehon
  • , B. McMillan
  • , L. McNamee
  • , A. McShee
  • , A. Meakins
  • , S. Medley
  • , C. J. Meekes
  • , K. Meghani
  • , A. G. Meigs
  • , S. Meitner
  • , S. Menmuir
  • , K. Mergia
  • , S. Merriman
  • , Ph. Mertens
  • , A. Messiaen
  • , R. Michling
  • , P. Middleton
  • , D. Middleton-Gear
  • , J. Mietelski
  • , D. Milanesio
  • , E. Milani
  • , F. Militello
  • , A. Militello Asp
  • , J. Milnes
  • , A. Milocco
  • , G. Miloshevsky
  • , C. Minghao
  • , S. Minucci
  • , M. Miyamoto
  • , J. Mlynář
  • , V. Moiseenko
  • , P. Monaghan
  • , I. Monakhov
  • , R. Mooney
  • , S. Moradi
  • , J. Morales
  • , R. B. Morales
  • , S. Mordijck
  • , L. Moreira
  • , L. Morgan
  • , J. Morris
  • , K-M. Morrison
  • , D. Moulton
  • , T. Mrowetz
  • , M. Muraglia
  • , A. Murari
  • , A. Muraro
  • , N. Muthusonai
  • , B. N’Konga
  • , F. Nabais
  • , F. Napoli
  • , E. Nardon
  • , V. Naulin
  • , M. F. F. Nave
  • , I. Nedzelskiy
  • , I. Nestoras
  • , M. Nicassio
  • , A. H. Nielsen
  • , D. Nishijima
  • , C. R. Nobs
  • , M. Nocente
  • , D. Nodwell
  • , K. Nordlund
  • , H. Nordman
  • , R. Normanton
  • , J.-M. Noterdaeme
  • , H. Nyström
  • , M. Oberparleiter
  • , J. O’Callaghan
  • , T. Odupitan
  • , H. J. C. Oliver
  • , M. O’Mullane
  • , J. Ongena
  • , F. Orsitto
  • , J. Orszagh
  • , T. Osborne
  • , T. Otsuka
  • , M. Oyaizu
  • , R. Paccagnella
  • , L. W. Packer
  • , E. Pajuste
  • , D. Palade
  • , S. J. P. Pamela
  • , N. Panadero
  • , E. Panontin
  • , A. Papadopoulos
  • , V. V. Parail
  • , C. Pardanaud
  • , J. Parisi
  • , F. Parra Diaz
  • , A. Parsloe
  • , M. Parsons
  • , N. Parsons
  • , M. Passeri
  • , G. Pautasso
  • , R. Pavlichenko
  • , A. Pavone
  • , E. Pawelec
  • , C. Paz Soldan
  • , A. Peacock
  • , M. Pearce
  • , E. Peluso
  • , K. Pepperell
  • , R. Pereira
  • , T. Pereira
  • , E. Perelli Cippo
  • , P. Pereslavtsev
  • , C. Perez von Thun
  • , V. Pericoli
  • , M. Peterka
  • , P. Petersson
  • , G. Petravich
  • , N. Petrella
  • , M. Peyman
  • , M. Pillon
  • , S. Pinches
  • , G. Pintsuk
  • , W. Pires de Sá
  • , A. Pires dos Reis
  • , A. Pironti
  • , K. L. van de Plassche
  • , V. Plyusnin
  • , M. Podesta
  • , F. M. Poli
  • , O. G. Pompilian
  • , S. Popovichev
  • , M. Poradziński
  • , M. T. Porfiri
  • , M. Porkolab
  • , C. Porosnicu
  • , M. Porton
  • , G. Poulipoulis
  • , I. Predebon
  • , G. Prestopino
  • , D. Primetzhofer
  • , G. Provatas
  • , G. Pucella
  • , P. Puglia
  • , K. Purahoo
  • , I. Pusztai
  • , O. Putignano
  • , T. Pütterich
  • , A. Quercia
  • , E. Rachlew
  • , G. Radulescu
  • , V. Radulovic
  • , M. Rainford
  • , G. Ramogida
  • , D. Rasmussen
  • , J. J. Rasmussen
  • , S. Ratynskaia
  • , R. Reichle
  • , M. Reinke
  • , D. Reiser
  • , S. Reynolds
  • , M. L. Richiusa
  • , S. Richyal
  • , D. Rigamonti
  • , F. G. Rimini
  • , J. Risner
  • , J. Rivero-Rodriguez
  • , C. M. Roach
  • , R. Robins
  • , S. Robinson
  • , D. Robson
  • , P. Rodrigues
  • , M. Rodriguez Ramos
  • , P. Rodriguez-Fernandez
  • , F. Romanelli
  • , M. Romanelli
  • , S. Romanelli
  • , J. Romazanov
  • , D. Rowlands
  • , G. Rubinacci
  • , G. Rubino
  • , L. Ruchko
  • , J. Ruiz Ruiz
  • , J. Rzadkiewicz
  • , S. Saarelma
  • , A. Sahlberg
  • , M. Salewski
  • , R. Salmon
  • , F. Salzedas
  • , I. Sanders
  • , D. Sandiford
  • , B. Santos
  • , A. Santucci
  • , K. Särkimäki
  • , R. Sarwar
  • , I. Sarychev
  • , O. Sauter
  • , P. Sauwan
  • , N. Scapin
  • , F. Schluck
  • , K. Schmid
  • , S. Schmuck
  • , M. Schneider
  • , P. A. Schneider
  • , D. Schwörer
  • , D. Scraggs
  • , S. Scully
  • , M. Segato
  • , G. Sergienko
  • , M. Sertoli
  • , S. E. Sharapov
  • , H. Sheikh
  • , U. Sheikh
  • , A. Shepherd
  • , P. Shigin
  • , K. Shinohara
  • , S. Shiraiwa
  • , D. Shiraki
  • , S. A. Silburn
  • , D. Silvagni
  • , D. Simfukwe
  • , J. Simpson
  • , D. Sinclair
  • , S. K. Sipilä
  • , A. C. C. Sips
  • , A. Sirinelli
  • , H. Sjöstrand
  • , N. Skinner
  • , J. Slater
  • , P. Snyder
  • , E. R. Solano
  • , V. Solokha
  • , A. Somers
  • , C. Sommariva
  • , E. Sorokovoy
  • , S. Spagnolo
  • , T. Spelzini
  • , F. Spineanu
  • , D. Sprada
  • , S. Sridhar
  • , C. Srinivasan
  • , G. Stables
  • , G. Staebler
  • , I. Stamatelatos
  • , Ž. Štancar
  • , P. Staniec
  • , G. Stankunas
  • , E. Stefanikova
  • , A. Stephen
  • , J. Stephens
  • , P. Stevenson
  • , M. Stojanov
  • , P. Strand
  • , H. R. Strauss
  • , S. Strikwerda
  • , C. I. Stuart
  • , W. Studholme
  • , M. Subramani
  • , E. Suchkov
  • , S. Sumida
  • , H. J. Sun
  • , T. E. Susts
  • , J. Svensson
  • , J. Svoboda
  • , R. Sweeney
  • , D. Sytnykov
  • , T. Szabolics
  • , G. Szepesi
  • , A. Tallargio
  • , P. Tamain
  • , K. Tanaka
  • , M. Tardocchi
  • , D. Taylor
  • , A. S. Teimane
  • , G. Telesca
  • , A. Teplukhina
  • , D. Terentyev
  • , D. Terranova
  • , N. Terranova
  • , E. Tholerus
  • , J. Thomas
  • , E. Thoren
  • , A. Thorman
  • , W. Tierens
  • , R. A. Tinguely
  • , A. Tipton
  • , M. Tokitani
  • , P. Tolias
  • , A. Tookey
  • , Y. Torikai
  • , U. von Toussaint
  • , P. Tsavalas
  • , D. Tskhakaya
  • , I. Turner
  • , M. Turner
  • , M. M. Turner
  • , M. Turnyanskiy
  • , G. Tvalashvili
  • , S. Tyrrell
  • , M. Tyshchenko
  • , A. Uccello
  • , V. Udintsev
  • , G. Urbanczyk
  • , A. Vadgama
  • , D. Valcarcel
  • , M. Valisa
  • , P. Vallejos Olivares
  • , O. Vallhagen
  • , M. Valovič
  • , D. Van Eester
  • , S. Vartanian
  • , T. Vasilopoulou
  • , G. Vayakis
  • , M. Vecsei
  • , S. Ventre
  • , G. Verdoolaege
  • , C. Verona
  • , G. Verona Rinati
  • , E. Veshchev
  • , N. Vianello
  • , E. Viezzer
  • , L. Vignitchouk
  • , R. Villari
  • , F. Villone
  • , P. Vincenzi
  • , A. J. Virtanen
  • , A. Vitins
  • , Z. Vizvary
  • , P. Vondráček
  • , P. de Vries
  • , B. Wakeling
  • , N. R. Walkden
  • , M. Walker
  • , R. Walker
  • , S. Warder
  • , R. Warren
  • , J. Waterhouse
  • , T. Wauters
  • , A. Weckmann
  • , H. Wedderburn Maxwell
  • , M. Weiland
  • , H. Weisen
  • , M. Weiszflog
  • , N. Wendler
  • , M. Wheatley
  • , S. Wheeler
  • , A. Whitehead
  • , D. Whittaker
  • , A. Widdowson
  • , S. Wiesen
  • , J. Wilkinson
  • , J. C. Williams
  • , D. Willoughby
  • , I. Wilson
  • , J. Wilson
  • , T. Wilson
  • , M. Wischmeier
  • , G. Withenshaw
  • , A. Withycombe
  • , A. Wojcik-Gargula
  • , E. Wolfrum
  • , C. Woodley
  • , R. Woodley
  • , J. Wright
  • , J. C. Wright
  • , D. Yadikin
  • , M. Yajima
  • , Y. Yakovenko
  • , W. Yanling
  • , V. Yanovskiy
  • , R. J. Zabolockis
  • , R. Zagorski
  • , F. S. Zaitsev
  • , L. Zakharov
  • , A. Zarins
  • , D. Zarzoso
  • , K.-D. Zastrow
  • , Y. Zayachuk
  • , M. Zerbini
  • , M. Zlobinski
  • , S. Zoletnik
  • , V. K. Zotta
  • , I. Zoulias
  • , W. Zwingmann
  •  & I. Zychor

Contributions

The reported JET experiments were designed and coordinated by Ye. O. Kazakov, M. Nocente, J. Garcia and J. Ongena; S. Mazzi, J. Garcia, D. Zarzoso and S. Benkadda performed gyrokinetic modelling and subsequent analysis, including additional simulations requested by the reviewers. Input data for gyrokinetic modelling were provided by Ž. Štancar, G. Szepesi and M. Dreval. Ž. Štancar performed TRANSP modelling. J. Garcia performed power balance analysis and CRONOS simulations. M. Dreval provided analysis of the TAE radial location and the correlation reflectometer data. The bispectral analyses were performed by S. Mazzi and D. Zarzoso, J. Eriksson and A. Sahlberg provided neutron measurements data from TOFOR. The original manuscript was written by S. Mazzi, J. Garcia, D. Zarzoso, Ye. O. Kazakov and J. Ongena with feedback from all the authors. Major revisions of this manuscript were undertaken by Ye. O. Kazakov, J. Ongena, J. Garcia and S. Mazzi.

Corresponding authors

Correspondence to S. Mazzi or J. Garcia .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Physics thanks Neal Crocker, Chris Holland and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figs. 1–7 with accompanying text.

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Mazzi, S., Garcia, J., Zarzoso, D. et al. Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. Nat. Phys. 18 , 776–782 (2022). https://doi.org/10.1038/s41567-022-01626-8

Download citation

Received : 30 October 2020

Accepted : 04 May 2022

Published : 30 June 2022

Issue Date : July 2022

DOI : https://doi.org/10.1038/s41567-022-01626-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Tailoring tokamak error fields to control plasma instabilities and transport.

  • SeongMoo Yang
  • Jong-Kyu Park

Nature Communications (2024)

Periodic orbits in chaotic systems simulated at low precision

  • Milan Klöwer
  • Peter V. Coveney
  • Tim N. Palmer

Scientific Reports (2023)

Gyrokinetic theory of toroidal Alfvén eigenmode saturation via nonlinear wave–wave coupling

  • Zhiyong Qiu
  • Fulvio Zonca

Reviews of Modern Plasma Physics (2023)

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

plasma physics phd thesis pdf

PhD thesis work at the Max Planck Institute for Plasma Physics (IPP) in Garching or in Greifswald is offered in conjunction with various universities. From 2010 until 2020 a total of 154 PhD theses were done at IPP.  

Scientific work is conducted at IPP in Garching or Greifswald and is supervised by IPP staff. At universities, particularly Aachen/Jena (RWTH/FSU), Augsburg, Bayreuth, Berlin (TU), Greifswald, Karlsruhe, München (LMU, TU) and Ulm as well as in Gent (Belgium), DTU (Danmarks Tekniske Universitet), Vienna (Austria), KAIST (Korea Advanced Institute of Science and Technology) and  University of Science and Technology of China, PhD students are represented by lecturers or professors who are affiliated to or work closely with IPP.

PhD students participate at IPP in interdisciplinary teamwork and are involved in cooperation projects on the national, European and international levels. The graduates work in groups engaged in different areas of research. Within each group they are supervised by tutors who, as required, also arrange contacts with other institutes. Besides being provided with regular seminars and colloquia, they are also given support to attend national and international conferences. A number of staff members of IPP or partners in collaboration are lecturers or professors at universities or polytechnics and can provide information on organisation relating to these.

  • The International Helmholtz Graduate School for Plasma Physics , organised by IPP together with Technical University Munich and Ernst-Moritz-Arndt-University Greifswald offers a PhD course in plasma physics and fusion research in Garching and Greifswald.
  • IPP at Garching and Greifswald is one of the partners of the new "International Doctoral College in Fusion Science and Engineering" ( Fusion DC ) under the auspices of Erasmus Mundus, the European programme to promote training schemes.
  • IPP is a Member of the European Fusion Education Network ( FUSENET ) for coordinating training in fusion research and technology throughout Europe.
  • IPP is one of the founders of the Munich School for Data Science ( MUDS ). The aim of MuDS is to combine training in Data Science with training in application domain areas, namely plasma physics, biomedicine, robotics and earth observation, to educate the next generation of data scientists.

PhD contracts are limited to three years (see contract conditions of IPP). PhDNet of the Max Planck Society The PhDNet is the voice of and for PhD students of the Max Planck Society (MPG). The PhDNet represents PhD students' interests and communicates PhD-student related issues to the President of the Max Planck Society and other MPG-officials. Current concerns are, for example, quality of supervision, the contract situation and scientific exchange. More information under www.phdnet.mpg.de

Department of Physics

Physics phd theses.

For more recent theses see:

Alphabetical listing

Listing by year

  • ALPHABETICAL by AUTHOR
  • CHRONOLOGICAL

W&M ScholarWorks

Home > Arts and Sciences > Physics > PHYSICSETD

Physics Theses, Dissertations, and Masters Projects

Theses/dissertations from 2023 2023.

Ab Initio Computations Of Structural Properties In Solids By Auxiliary Field Quantum Monte Carlo , Siyuan Chen

Constraining Of The Minerνa Medium Energy Neutrino Flux Using Neutrino-Electron Scattering , Luis Zazueta

Experimental Studies Of Neutral Particles And The Isotope Effect In The Edge Of Tokamak Plasmas , Ryan Chaban

From The Hubbard Model To Coulomb Interactions: Quantum Monte Carlo Computations In Strongly Correlated Systems , Zhi-Yu Xiao

Theses/Dissertations from 2022 2022

Broadband Infrared Microspectroscopy and Nanospectroscopy of Local Material Properties: Experiment and Modeling , Patrick McArdle

Edge Fueling And Neutral Density Studies Of The Alcator C-Mod Tokamak Using The Solps-Iter Code , Richard M. Reksoatmodjo

Electronic Transport In Topological Superconducting Heterostructures , Joseph Jude Cuozzo

Inclusive and Inelastic Scattering in Neutrino-Nucleus Interactions , Amy Filkins

Investigation Of Stripes, Spin Density Waves And Superconductivity In The Ground State Of The Two-Dimensional Hubbard Model , Hao Xu

Partial Wave Analysis Of Strange Mesons Decaying To K + Π − Π + In The Reaction Γp → K + Π + Π − Λ(1520) And The Commissioning Of The Gluex Dirc Detector , Andrew Hurley

Partial Wave Analysis of the ωπ− Final State Photoproduced at GlueX , Amy Schertz

Quantum Sensing For Low-Light Imaging , Savannah Cuozzo

Radiative Width of K*(892) from Lattice Quantum Chromodynamics , Archana Radhakrishnan

Theses/Dissertations from 2021 2021

AC & DC Zeeman Interferometric Sensing With Ultracold Trapped Atoms On A Chip , Shuangli Du

Calculation Of Gluon Pdf In The Nucleon Using Pseudo-Pdf Formalism With Wilson Flow Technique In LQCD , Md Tanjib Atique Khan

Dihadron Beam Spin Asymmetries On An Unpolarized Hydrogen Target With Clas12 , Timothy Barton Hayward

Excited J-- Resonances In Meson-Meson Scattering From Lattice Qcd , Christopher Johnson

Forward & Off-Forward Parton Distributions From Lattice Qcd , Colin Paul Egerer

Light-Matter Interactions In Quasi-Two-Dimensional Geometries , David James Lahneman

Proton Spin Structure from Simultaneous Monte Carlo Global QCD Analysis , Yiyu Zhou

Radiofrequency Ac Zeeman Trapping For Neutral Atoms , Andrew Peter Rotunno

Theses/Dissertations from 2020 2020

A First-Principles Study of the Nature of the Insulating Gap in VO2 , Christopher Hendriks

Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study , Adam Chiciak

Development Of Quantum Information Tools Based On Multi-Photon Raman Processes In Rb Vapor , Nikunjkumar Prajapati

Experiments And Theory On Dynamical Hamiltononian Monodromy , Matthew Perry Nerem

Growth Engineering And Characterization Of Vanadium Dioxide Films For Ultraviolet Detection , Jason Andrew Creeden

Insulator To Metal Transition Dynamics Of Vanadium Dioxide Thin Films , Scott Madaras

Quantitative Analysis Of EKG And Blood Pressure Waveforms , Denise Erin McKaig

Study Of Scalar Extensions For Physics Beyond The Standard Model , Marco Antonio Merchand Medina

Theses/Dissertations from 2019 2019

Beyond the Standard Model: Flavor Symmetry, Nonperturbative Unification, Quantum Gravity, and Dark Matter , Shikha Chaurasia

Electronic Properties of Two-Dimensional Van Der Waals Systems , Yohanes Satrio Gani

Extraction and Parametrization of Isobaric Trinucleon Elastic Cross Sections and Form Factors , Scott Kevin Barcus

Interfacial Forces of 2D Materials at the Oil–Water Interface , William Winsor Dickinson

Scattering a Bose-Einstein Condensate Off a Modulated Barrier , Andrew James Pyle

Topics in Proton Structure: BSM Answers to its Radius Puzzle and Lattice Subtleties within its Momentum Distribution , Michael Chaim Freid

Theses/Dissertations from 2018 2018

A Measurement of Nuclear Effects in Deep Inelastic Scattering in Neutrino-Nucleus Interactions , Anne Norrick

Applications of Lattice Qcd to Hadronic Cp Violation , David Brantley

Charge Dynamics in the Metallic and Superconducting States of the Electron-Doped 122-Type Iron Arsenides , Zhen Xing

Dynamics of Systems With Hamiltonian Monodromy , Daniel Salmon

Exotic Phases in Attractive Fermions: Charge Order, Pairing, and Topological Signatures , Peter Rosenberg

Extensions of the Standard Model Higgs Sector , Richard Keith Thrasher

First Measurements of the Parity-Violating and Beam-Normal Single-Spin Asymmetries in Elastic Electron-Aluminum Scattering , Kurtis David Bartlett

Lattice Qcd for Neutrinoless Double Beta Decay: Short Range Operator Contributions , Henry Jose Monge Camacho

Probe of Electroweak Interference Effects in Non-Resonant Inelastic Electron-Proton Scattering , James Franklyn Dowd

Proton Spin Structure from Monte Carlo Global Qcd Analyses , Jacob Ethier

Searching for A Dark Photon in the Hps Experiment , Sebouh Jacob Paul

Theses/Dissertations from 2017 2017

A global normal form for two-dimensional mode conversion , David Gregory Johnston

Computational Methods of Lattice Boltzmann Mhd , Christopher Robert Flint

Computational Studies of Strongly Correlated Quantum Matter , Hao Shi

Determination of the Kinematics of the Qweak Experiment and Investigation of an Atomic Hydrogen Møller Polarimeter , Valerie Marie Gray

Disconnected Diagrams in Lattice Qcd , Arjun Singh Gambhir

Formulating Schwinger-Dyson Equations for Qed Propagators in Minkowski Space , Shaoyang Jia

Highly-Correlated Electron Behavior in Niobium and Niobium Compound Thin Films , Melissa R. Beebe

Infrared Spectroscopy and Nano-Imaging of La0.67Sr0.33Mno3 Films , Peng Xu

Investigation of Local Structures in Cation-Ordered Microwave Dielectric a Solid-State Nmr and First Principle Calculation Study , Rony Gustam Kalfarisi

Measurement of the Elastic Ep Cross Section at Q2 = 0.66, 1.10, 1.51 and 1.65 Gev2 , YANG WANG

Modeling The Gross-Pitaevskii Equation using The Quantum Lattice Gas Method , Armen M. Oganesov

Optical Control of Multi-Photon Coherent Interactions in Rubidium Atoms , Gleb Vladimirovich Romanov

Plasmonic Approaches and Photoemission: Ag-Based Photocathodes , Zhaozhu Li

Quantum and Classical Manifestation of Hamiltonian Monodromy , Chen Chen

Shining Light on The Phase Transitions of Vanadium Dioxide , Tyler J. Huffman

Superconducting Thin Films for The Enhancement of Superconducting Radio Frequency Accelerator Cavities , Matthew Burton

Theses/Dissertations from 2016 2016

Ac Zeeman Force with Ultracold Atoms , Charles Fancher

A Measurement of the Parity-Violating Asymmetry in Aluminum and its Contribution to A Measurement of the Proton's Weak Charge , Joshua Allen Magee

An improved measurement of the Muon Neutrino charged current Quasi-Elastic cross-section on Hydrocarbon at Minerva , Dun Zhang

Applications of High Energy Theory to Superconductivity and Cosmic Inflation , Zhen Wang

A Precision Measurement of the Weak Charge of Proton at Low Q^2: Kinematics and Tracking , Siyuan Yang

Compton Scattering Polarimetry for The Determination of the Proton’S Weak Charge Through Measurements of the Parity-Violating Asymmetry of 1H(E,e')P , Juan Carlos Cornejo

Disorder Effects in Dirac Heterostructures , Martin Alexander Rodriguez-Vega

Electron Neutrino Appearance in the Nova Experiment , Ji Liu

Experimental Apparatus for Quantum Pumping with a Bose-Einstein Condensate. , Megan K. Ivory

Investigating Proton Spin Structure: A Measurement of G_2^p at Low Q^2 , Melissa Ann Cummings

Neutrino Flux Prediction for The Numi Beamline , Leonidas Aliaga Soplin

Quantitative Analysis of Periodic Breathing and Very Long Apnea in Preterm Infants. , Mary A. Mohr

Resolution Limits of Time-of-Flight Mass Spectrometry with Pulsed Source , Guangzhi Qu

Solving Problems of the Standard Model through Scale Invariance, Dark Matter, Inflation and Flavor Symmetry , Raymundo Alberto Ramos

Study of Spatial Structure of Squeezed Vacuum Field , Mi Zhang

Study of Variations of the Dynamics of the Metal-Insulator Transition of Thin Films of Vanadium Dioxide with An Ultra-Fast Laser , Elizabeth Lee Radue

Thin Film Approaches to The Srf Cavity Problem: Fabrication and Characterization of Superconducting Thin Films , Douglas Beringer

Turbulent Particle Transport in H-Mode Plasmas on Diii-D , Xin Wang

Theses/Dissertations from 2015 2015

Ballistic atom pumps , Tommy Byrd

Determination of the Proton's Weak Charge via Parity Violating e-p Scattering. , Joshua Russell Hoskins

Electronic properties of chiral two-dimensional materials , Christopher Lawrence Charles Triola

Heavy flavor interactions and spectroscopy from lattice quantum chromodynamics , Zachary S. Brown

Some properties of meson excited states from lattice QCD , Ekaterina V. Mastropas

Sterile Neutrino Search with MINOS. , Alena V. Devan

Ultracold rubidium and potassium system for atom chip-based microwave and RF potentials , Austin R. Ziltz

Theses/Dissertations from 2014 2014

Enhancement of MS Signal Processing for Improved Cancer Biomarker Discovery , Qian Si

Whispering-gallery mode resonators for nonlinear and quantum optical applications , Matthew Thomas Simons

Theses/Dissertations from 2013 2013

Applications of Holographic Dualities , Dylan Judd Albrecht

A search for a new gauge boson , Eric Lyle Jensen

Experimental Generation and Manipulation of Quantum Squeezed Vacuum via Polarization Self-Rotation in Rb Vapor , Travis Scott Horrom

Low Energy Tests of the Standard Model , Benjamin Carl Rislow

Magnetic Order and Dimensional Crossover in Optical Lattices with Repulsive Interaction , Jie Xu

Multi-meson systems from Lattice Quantum Chromodynamics , Zhifeng Shi

Theses/Dissertations from 2012 2012

Dark matter in the heavens and at colliders: Models and constraints , Reinard Primulando

Measurement of Single and Double Spin Asymmetries in p(e, e' pi(+/-,0))X Semi-Inclusive Deep-Inelastic Scattering , Sucheta Shrikant Jawalkar

NMR study of paramagnetic nano-checkerboard superlattices , Christopher andrew Maher

Parity-violating asymmetry in the nucleon to delta transition: A Study of Inelastic Electron Scattering in the G0 Experiment , Carissa Lee Capuano

Studies of polarized and unpolarized helium -3 in the presence of alkali vapor , Kelly Anita Kluttz

  • Collections
  • Disciplines

Advanced Search

  • Notify me via email or RSS

Author Corner

  • Physics departmenal website

About Scholarworks

  • Honors Theses
  • W&M Libraries
  • VIMS Hargis Library
  • W&M Law School Repository
  • Research Guides

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

IMAGES

  1. (PDF) Variational Integrators in Plasma Physics (PhD Thesis)

    plasma physics phd thesis pdf

  2. Introduction to Plasma Physics and Controlled Fusion Third Edition PDF

    plasma physics phd thesis pdf

  3. Plasma Physics for Astrophysics

    plasma physics phd thesis pdf

  4. Plasma physics: Free Thesis Samples and Examples

    plasma physics phd thesis pdf

  5. Plasma physics: Free Thesis Samples and Examples

    plasma physics phd thesis pdf

  6. (PDF) Plasma Physics

    plasma physics phd thesis pdf

VIDEO

  1. Propagation of Em waves through Plasma or ionised gas // Electrical Conductivity, refractive index

  2. Plasma outflow from plasmasphere to magnetosphere

  3. Plasma: Physics of Pyre (6231)

  4. Plasma: Physics of Pyre (6188)

  5. Plasma Physics

  6. Plasma physics -17, single fluid M. H. D. Equations and plasma resistivity

COMMENTS

  1. Graduate Theses

    Advisor (s) Montgomery, David C. (Physics) Topics in non-linear plane wave motion in a classical ionized gas. L. Spitzer, Jr. Princeton Plasma Physics Laboratory · P.O. Box 451 · Princeton, NJ 08540. Recent theses since 2012 are made available electronically at DataSpace. Theses from 2011 and earlier are available at ProQuest Library.

  2. [1808.05983] Plasma Physics in Strong Field Regimes

    Princeton PhD thesis September 2018. Department of Astrophysical Sciences, Program in Plasma Physics. 391 pages, 41 figures, 2 tables. The official version is freely available online through ProQuest Dissertations & Theses Global: Subjects: Plasma Physics (physics.plasm-ph) Cite as: arXiv:1808.05983 [physics.plasm-ph]

  3. (PDF) Electron Acceleration and Radiation Generation ...

    Thesis for: PhD; Authors: Jinpu Lin ... Download full-text PDF Download full-text PDF Read full-text. ... 1.1 Strong field physics regimes classified by laser-plasma conditions. Adapted. from ...

  4. Variational Integrators in Plasma Physics (PhD Thesis)

    In this thesis, variational integrators are developed for several important models of plasma physics: guiding centre dynamics (particle dynamics), the Vlasov-Poisson system (kinetic theory), and ideal magnetohydrodynamics (plasma fluid theory). Special attention is given to physical conservation laws like conservation of energy and momentum.

  5. PDF Study of Wave Propagation and Potential Structures in An Expanding

    experimental techniques and ended in nice physics. I would also like to thank Dr. Joydeep Ghosh for encouragement in the rough periods of my thesis and also for fruitful physics discussions. Thanks are due to Prof. Yogesh Saxena for constant encouragement and constructive criticism which gave favorable direction to this thesis.

  6. PDF Plasma Propulsion Research in Academia

    These topics are cross-cutting, extending beyond EP to other plasma fields ranging from materials processing to space plasma physics. The work on these topics similarly has a far-reaching educational impact, helping train the next-generation of researchers in both aerospace engineering and plasma physics.

  7. A geometric theory of waves and its applications to plasma physics

    Download PDF Abstract: Waves play an essential role in many aspects of plasma science, such as plasma manipulation and diagnostics. Due to the complexity of the governing equations, approximate models are often necessary to describe wave dynamics. In this dissertation, waves are treated as geometric objects of a variational theory rather than formal solutions of specific PDEs.

  8. PDF Physics and Computational Simulations of Plasma Burn-through for

    Effects on plasma burn-through in JET, Journal of Nuclear Materials, 438, S1271-S1274 (2013) • Included in chapter 5 in this thesis. 3. Hyun-Tae Kim, A.C.C. Sips, and EFDA-JET contributors, Physics of plasma burn-through and DYON simulations for the ITER-like wall, Nuclear Fusion, 53 083024 (2013) • Included in chapters 4, 5, and 6 in this ...

  9. Particle Interactions in High-Temperature Plasmas

    Nominated as an outstanding PhD thesis by Imperial College London; An important contribution to plasma physics, both theoretically and in relation to collider design; Suggests a feasible scheme for observing the elusive Breit-Wheeler process; Includes supplementary material: sn.pub/extras

  10. PDF Institute for Plasma Research, Gandhinagar

    PERTURBATION STUDIES IN A PLASMA CONFINED BY MULTI-POLE LINE-CUSP MAGNETIC FIELD By MEENAKSHEE SHARMA PHYS06201304002 Institute for Plasma Research, Gandhinagar A thesis submitted to the Board of Studies in Physical Sciences In partial fulfillment of requirements for the Degree of DOCTOR OF PHILOSOPHY of HOMI BHABHA NATIONAL INSTITUTE

  11. Enhanced performance in fusion plasmas through turbulence ...

    Download PDF. Similar content being viewed by others ... Merz, F. Gyrokinetic Simulation of Multimode Plasma Turbulence. PhD thesis, Univ. Münster (2008). Görler, ... Fusion Plasma Physics, EECS ...

  12. Swiss Plasma Center ‐ EPFL

    EPFL's Swiss Plasma Center is one of the world leaders in fusion research. Fusion is based on the principle that powers the Sun. It has the potential to provide everyone with an abundant, safe and clean source of energy. Through a rich program of research, linked to different levels of training, we are working to deepen our understanding of ...

  13. Phd theses

    Phd theses. PhD thesis work at the Max Planck Institute for Plasma Physics (IPP) in Garching or in Greifswald is offered in conjunction with various universities. From 2010 until 2020 a total of 154 PhD theses were done at IPP. Scientific work is conducted at IPP in Garching or Greifswald and is supervised by IPP staff.

  14. Physics PhD Theses

    Physics PhD Theses. Publications. Physics PhD Theses. 2010. 2000 to 2009. 1990 to 1999. 1980 to 1989. 1970 to 1979.

  15. PDF Principles of Plasma Physics for Engineers and Scientists

    This new book provides an excellent summary of the basic processes occurring in plasmas together with a comprehensive introduction to the mathematical formulation of fluid (MHD) and kinetic theory. It provides an excellent introduction to the subject suitable for senior undergraduate students or entry-level graduate students. Richard M. Thorne ...

  16. PDF Introduction to Plasma Physics

    Fig. 1: Debye shielding of charged spheres immersed in a plasma. First of all, we need to know how fast the electrons and ions actually move. For equal ion and electron temperatures ( Te= Ti), we have 1 2 mev. 2 e= 1 2 miv. 2 i= 3 2 kBTe: (2) 2 P. GIBBON. 52. Therefore, for a hydrogen plasma, where Z = A = 1 , vi. ve.

  17. PDF Plasma Physics Applied, 2006: 73-110 ISBN: 81-7895-230-0 5 Dusty

    The Bragg condition related the wavelength of the electromagnetic radiation, λ to the distance, d between planes in the crystalline array: λ = 2d sinθ. For example, for a wave at 3 THz, λ = 100 μm, and with θ = π/2, the Bragg condition requires a d = 50 μm. Lattice spacings on this order is typical for a dust crystal.

  18. LIST OF THESIS

    non-linear processes in plasma, gujarat university (download pdf file) 1984: 533.951.8(043.2) iye b-3538: plasma physics, nonlinear phenomena, plasma diagnostics, plasma double layers, thesis ... electromagnetism; electromagnetic propagation; plasma physics; thesis: prof. a. sen: yadav, vipin k. studies on ecr produced plasmas gujarat ...

  19. PDF Applied Physics PhD Thesis

    Figure 3.2 Snapshots of (a) the initial configuration of white and black particles, and at (b) t * = 59 and (c) t * = 250 , projected to the xz (left) and yz planes (right). The arrows indicate the shear flow direction. Snapshots of a system with solid volume fraction φ = 0.565 and shear rate γ 4 s −. 1.

  20. PhD. Theses

    PhD. Theses 2024 Nicholas Quirk Transport Experiments on Topological and Strongly Correlated Conductors Leander Thiele Getting ready for new Data: Approaches to some Challenges in Cosmology View past theses (2011 to present) in the Dataspace Catalog of Ph.D Theses in the Department of Physics View past theses (1996 to present) in the ProQuest Da...

  21. Physics Theses, Dissertations, and Masters Projects

    Theses/Dissertations from 2020. PDF. A First-Principles Study of the Nature of the Insulating Gap in VO2, Christopher Hendriks. PDF. Competing And Cooperating Orders In The Three-Band Hubbard Model: A Comprehensive Quantum Monte Carlo And Generalized Hartree-Fock Study, Adam Chiciak. PDF.

  22. (PDF) Thesis for PhD in Physics

    The main and final part of this thesis has the objective of implementing the AFM-assisted nanoindentation technique for the study of interesting physical phenomena in different nanostructured ...