Heuristics: Definition, Examples, And How They Work

Benjamin Frimodig

Science Expert

B.A., History and Science, Harvard University

Ben Frimodig is a 2021 graduate of Harvard College, where he studied the History of Science.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, Ph.D., is a qualified psychology teacher with over 18 years experience of working in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

On This Page:

Every day our brains must process and respond to thousands of problems, both large and small, at a moment’s notice. It might even be overwhelming to consider the sheer volume of complex problems we regularly face in need of a quick solution.

While one might wish there was time to methodically and thoughtfully evaluate the fine details of our everyday tasks, the cognitive demands of daily life often make such processing logistically impossible.

Therefore, the brain must develop reliable shortcuts to keep up with the stimulus-rich environments we inhabit. Psychologists refer to these efficient problem-solving techniques as heuristics.

Heuristics decisions and mental thinking shortcut approach outline diagram. Everyday vs complex technique comparison list for judgments and fast, short term problem solving method vector

Heuristics can be thought of as general cognitive frameworks humans rely on regularly to reach a solution quickly.

For example, if a student needs to decide what subject she will study at university, her intuition will likely be drawn toward the path that she envisions as most satisfying, practical, and interesting.

She may also think back on her strengths and weaknesses in secondary school or perhaps even write out a pros and cons list to facilitate her choice.

It’s important to note that these heuristics broadly apply to everyday problems, produce sound solutions, and helps simplify otherwise complicated mental tasks. These are the three defining features of a heuristic.

While the concept of heuristics dates back to Ancient Greece (the term is derived from the Greek word for “to discover”), most of the information known today on the subject comes from prominent twentieth-century social scientists.

Herbert Simon’s study of a notion he called “bounded rationality” focused on decision-making under restrictive cognitive conditions, such as limited time and information.

This concept of optimizing an inherently imperfect analysis frames the contemporary study of heuristics and leads many to credit Simon as a foundational figure in the field.

Kahneman’s Theory of Decision Making

The immense contributions of psychologist Daniel Kahneman to our understanding of cognitive problem-solving deserve special attention.

As context for his theory, Kahneman put forward the estimate that an individual makes around 35,000 decisions each day! To reach these resolutions, the mind relies on either “fast” or “slow” thinking.

Kahneman

The fast thinking pathway (system 1) operates mostly unconsciously and aims to reach reliable decisions with as minimal cognitive strain as possible.

While system 1 relies on broad observations and quick evaluative techniques (heuristics!), system 2 (slow thinking) requires conscious, continuous attention to carefully assess the details of a given problem and logically reach a solution.

Given the sheer volume of daily decisions, it’s no surprise that around 98% of problem-solving uses system 1.

Thus, it is crucial that the human mind develops a toolbox of effective, efficient heuristics to support this fast-thinking pathway.

Heuristics vs. Algorithms

Those who’ve studied the psychology of decision-making might notice similarities between heuristics and algorithms. However, remember that these are two distinct modes of cognition.

Heuristics are methods or strategies which often lead to problem solutions but are not guaranteed to succeed.

They can be distinguished from algorithms, which are methods or procedures that will always produce a solution sooner or later.

An algorithm is a step-by-step procedure that can be reliably used to solve a specific problem. While the concept of an algorithm is most commonly used in reference to technology and mathematics, our brains rely on algorithms every day to resolve issues (Kahneman, 2011).

The important thing to remember is that algorithms are a set of mental instructions unique to specific situations, while heuristics are general rules of thumb that can help the mind process and overcome various obstacles.

For example, if you are thoughtfully reading every line of this article, you are using an algorithm.

On the other hand, if you are quickly skimming each section for important information or perhaps focusing only on sections you don’t already understand, you are using a heuristic!

Why Heuristics Are Used

Heuristics usually occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind at the same moment

When studying heuristics, keep in mind both the benefits and unavoidable drawbacks of their application. The ubiquity of these techniques in human society makes such weaknesses especially worthy of evaluation.

More specifically, in expediting decision-making processes, heuristics also predispose us to a number of cognitive biases .

A cognitive bias is an incorrect but pervasive judgment derived from an illogical pattern of cognition. In simple terms, a cognitive bias occurs when one internalizes a subjective perception as a reliable and objective truth.

Heuristics are reliable but imperfect; In the application of broad decision-making “shortcuts” to guide one’s response to specific situations, occasional errors are both inevitable and have the potential to catalyze persistent mistakes.

For example, consider the risks of faulty applications of the representative heuristic discussed above. While the technique encourages one to assign situations into broad categories based on superficial characteristics and one’s past experiences for the sake of cognitive expediency, such thinking is also the basis of stereotypes and discrimination.

In practice, these errors result in the disproportionate favoring of one group and/or the oppression of other groups within a given society.

Indeed, the most impactful research relating to heuristics often centers on the connection between them and systematic discrimination.

The tradeoff between thoughtful rationality and cognitive efficiency encompasses both the benefits and pitfalls of heuristics and represents a foundational concept in psychological research.

When learning about heuristics, keep in mind their relevance to all areas of human interaction. After all, the study of social psychology is intrinsically interdisciplinary.

Many of the most important studies on heuristics relate to flawed decision-making processes in high-stakes fields like law, medicine, and politics.

Researchers often draw on a distinct set of already established heuristics in their analysis. While dozens of unique heuristics have been observed, brief descriptions of those most central to the field are included below:

Availability Heuristic

The availability heuristic describes the tendency to make choices based on information that comes to mind readily.

For example, children of divorced parents are more likely to have pessimistic views towards marriage as adults.

Of important note, this heuristic can also involve assigning more importance to more recently learned information, largely due to the easier recall of such information.

Representativeness Heuristic

This technique allows one to quickly assign probabilities to and predict the outcome of new scenarios using psychological prototypes derived from past experiences.

For example, juries are less likely to convict individuals who are well-groomed and wearing formal attire (under the assumption that stylish, well-kempt individuals typically do not commit crimes).

This is one of the most studied heuristics by social psychologists for its relevance to the development of stereotypes.

Scarcity Heuristic

This method of decision-making is predicated on the perception of less abundant, rarer items as inherently more valuable than more abundant items.

We rely on the scarcity heuristic when we must make a fast selection with incomplete information. For example, a student deciding between two universities may be drawn toward the option with the lower acceptance rate, assuming that this exclusivity indicates a more desirable experience.

The concept of scarcity is central to behavioral economists’ study of consumer behavior (a field that evaluates economics through the lens of human psychology).

Trial and Error

This is the most basic and perhaps frequently cited heuristic. Trial and error can be used to solve a problem that possesses a discrete number of possible solutions and involves simply attempting each possible option until the correct solution is identified.

For example, if an individual was putting together a jigsaw puzzle, he or she would try multiple pieces until locating a proper fit.

This technique is commonly taught in introductory psychology courses due to its simple representation of the central purpose of heuristics: the use of reliable problem-solving frameworks to reduce cognitive load.

Anchoring and Adjustment Heuristic

Anchoring refers to the tendency to formulate expectations relating to new scenarios relative to an already ingrained piece of information.

 Anchoring Bias Example

Put simply, this anchoring one to form reasonable estimations around uncertainties. For example, if asked to estimate the number of days in a year on Mars, many people would first call to mind the fact the Earth’s year is 365 days (the “anchor”) and adjust accordingly.

This tendency can also help explain the observation that ingrained information often hinders the learning of new information, a concept known as retroactive inhibition.

Familiarity Heuristic

This technique can be used to guide actions in cognitively demanding situations by simply reverting to previous behaviors successfully utilized under similar circumstances.

The familiarity heuristic is most useful in unfamiliar, stressful environments.

For example, a job seeker might recall behavioral standards in other high-stakes situations from her past (perhaps an important presentation at university) to guide her behavior in a job interview.

Many psychologists interpret this technique as a slightly more specific variation of the availability heuristic.

How to Make Better Decisions

Heuristics are ingrained cognitive processes utilized by all humans and can lead to various biases.

Both of these statements are established facts. However, this does not mean that the biases that heuristics produce are unavoidable. As the wide-ranging impacts of such biases on societal institutions have become a popular research topic, psychologists have emphasized techniques for reaching more sound, thoughtful and fair decisions in our daily lives.

Ironically, many of these techniques are themselves heuristics!

To focus on the key details of a given problem, one might create a mental list of explicit goals and values. To clearly identify the impacts of choice, one should imagine its impacts one year in the future and from the perspective of all parties involved.

Most importantly, one must gain a mindful understanding of the problem-solving techniques used by our minds and the common mistakes that result. Mindfulness of these flawed yet persistent pathways allows one to quickly identify and remedy the biases (or otherwise flawed thinking) they tend to create!

Further Information

  • Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: an effort-reduction framework. Psychological bulletin, 134(2), 207.
  • Marewski, J. N., & Gigerenzer, G. (2012). Heuristic decision making in medicine. Dialogues in clinical neuroscience, 14(1), 77.
  • Del Campo, C., Pauser, S., Steiner, E., & Vetschera, R. (2016). Decision making styles and the use of heuristics in decision making. Journal of Business Economics, 86(4), 389-412.

What is a heuristic in psychology?

A heuristic in psychology is a mental shortcut or rule of thumb that simplifies decision-making and problem-solving. Heuristics often speed up the process of finding a satisfactory solution, but they can also lead to cognitive biases.

Bobadilla-Suarez, S., & Love, B. C. (2017, May 29). Fast or Frugal, but Not Both: Decision Heuristics Under Time Pressure. Journal of Experimental Psychology: Learning, Memory, and Cognition .

Bowes, S. M., Ammirati, R. J., Costello, T. H., Basterfield, C., & Lilienfeld, S. O. (2020). Cognitive biases, heuristics, and logical fallacies in clinical practice: A brief field guide for practicing clinicians and supervisors. Professional Psychology: Research and Practice, 51 (5), 435–445.

Dietrich, C. (2010). “Decision Making: Factors that Influence Decision Making, Heuristics Used, and Decision Outcomes.” Inquiries Journal/Student Pulse, 2(02).

Groenewegen, A. (2021, September 1). Kahneman Fast and slow thinking: System 1 and 2 explained by Sue. SUE Behavioral Design. Retrieved March 26, 2022, from https://suebehaviouraldesign.com/kahneman-fast-slow-thinking/

Kahneman, D., Lovallo, D., & Sibony, O. (2011). Before you make that big decision .

Kahneman, D. (2011). Thinking, fast and slow . Macmillan.

Pratkanis, A. (1989). The cognitive representation of attitudes. In A. R. Pratkanis, S. J. Breckler, & A. G. Greenwald (Eds.), Attitude structure and function (pp. 71–98). Hillsdale, NJ: Erlbaum.

Simon, H.A., 1956. Rational choice and the structure of the environment. Psychological Review .

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases. Science, 185 (4157), 1124–1131.

Print Friendly, PDF & Email

Logo for TRU Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.2 Problem-Solving: Heuristics and Algorithms

Learning objectives.

  • Describe the differences between heuristics and algorithms in information processing.

When faced with a problem to solve, should you go with intuition or with more measured, logical reasoning? Obviously, we use both of these approaches. Some of the decisions we make are rapid, emotional, and automatic. Daniel Kahneman (2011) calls this “fast” thinking. By definition, fast thinking saves time. For example, you may quickly decide to buy something because it is on sale; your fast brain has perceived a bargain, and you go for it quickly. On the other hand, “slow” thinking requires more effort; applying this in the same scenario might cause us not to buy the item because we have reasoned that we don’t really need it, that it is still too expensive, and so on. Using slow and fast thinking does not guarantee good decision-making if they are employed at the wrong time. Sometimes it is not clear which is called for, because many decisions have a level of uncertainty built into them. In this section, we will explore some of the applications of these tendencies to think fast or slow.

We will look further into our thought processes, more specifically, into some of the problem-solving strategies that we use. Heuristics are information-processing strategies that are useful in many cases but may lead to errors when misapplied. A heuristic is a principle with broad application, essentially an educated guess about something. We use heuristics all the time, for example, when deciding what groceries to buy from the supermarket, when looking for a library book, when choosing the best route to drive through town to avoid traffic congestion, and so on. Heuristics can be thought of as aids to decision making; they allow us to reach a solution without a lot of cognitive effort or time.

The benefit of heuristics in helping us reach decisions fairly easily is also the potential downfall: the solution provided by the use of heuristics is not necessarily the best one. Let’s consider some of the most frequently applied, and misapplied, heuristics in the table below.

In many cases, we base our judgments on information that seems to represent, or match, what we expect will happen, while ignoring other potentially more relevant statistical information. When we do so, we are using the representativeness heuristic . Consider, for instance, the data presented in the table below. Let’s say that you went to a hospital, and you checked the records of the babies that were born on that given day. Which pattern of births do you think you are most likely to find?

Most people think that list B is more likely, probably because list B looks more random, and matches — or is “representative of” — our ideas about randomness, but statisticians know that any pattern of four girls and four boys is mathematically equally likely. Whether a boy or girl is born first has no bearing on what sex will be born second; these are independent events, each with a 50:50 chance of being a boy or a girl. The problem is that we have a schema of what randomness should be like, which does not always match what is mathematically the case. Similarly, people who see a flipped coin come up “heads” five times in a row will frequently predict, and perhaps even wager money, that “tails” will be next. This behaviour is known as the gambler’s fallacy . Mathematically, the gambler’s fallacy is an error: the likelihood of any single coin flip being “tails” is always 50%, regardless of how many times it has come up “heads” in the past.

The representativeness heuristic may explain why we judge people on the basis of appearance. Suppose you meet your new next-door neighbour, who drives a loud motorcycle, has many tattoos, wears leather, and has long hair. Later, you try to guess their occupation. What comes to mind most readily? Are they a teacher? Insurance salesman? IT specialist? Librarian? Drug dealer? The representativeness heuristic will lead you to compare your neighbour to the prototypes you have for these occupations and choose the one that they seem to represent the best. Thus, your judgment is affected by how much your neibour seems to resemble each of these groups. Sometimes these judgments are accurate, but they often fail because they do not account for base rates , which is the actual frequency with which these groups exist. In this case, the group with the lowest base rate is probably drug dealer.

Our judgments can also be influenced by how easy it is to retrieve a memory. The tendency to make judgments of the frequency or likelihood that an event occurs on the basis of the ease with which it can be retrieved from memory is known as the availability heuristic (MacLeod & Campbell, 1992; Tversky & Kahneman, 1973). Imagine, for instance, that I asked you to indicate whether there are more words in the English language that begin with the letter “R” or that have the letter “R” as the third letter. You would probably answer this question by trying to think of words that have each of the characteristics, thinking of all the words you know that begin with “R” and all that have “R” in the third position. Because it is much easier to retrieve words by their first letter than by their third, we may incorrectly guess that there are more words that begin with “R,” even though there are in fact more words that have “R” as the third letter.

The availability heuristic may explain why we tend to overestimate the likelihood of crimes or disasters; those that are reported widely in the news are more readily imaginable, and therefore, we tend to overestimate how often they occur. Things that we find easy to imagine, or to remember from watching the news, are estimated to occur frequently. Anything that gets a lot of news coverage is easy to imagine. Availability bias does not just affect our thinking. It can change behaviour. For example, homicides are usually widely reported in the news, leading people to make inaccurate assumptions about the frequency of murder. In Canada, the murder rate has dropped steadily since the 1970s (Statistics Canada, 2018), but this information tends not to be reported, leading people to overestimate the probability of being affected by violent crime. In another example, doctors who recently treated patients suffering from a particular condition were more likely to diagnose the condition in subsequent patients because they overestimated the prevalence of the condition (Poses & Anthony, 1991).

The anchoring and adjustment heuristic is another example of how fast thinking can lead to a decision that might not be optimal. Anchoring and adjustment is easily seen when we are faced with buying something that does not have a fixed price. For example, if you are interested in a used car, and the asking price is $10,000, what price do you think you might offer? Using $10,000 as an anchor, you are likely to adjust your offer from there, and perhaps offer $9000 or $9500. Never mind that $10,000 may not be a reasonable anchoring price. Anchoring and adjustment does not just happen when we’re buying something. It can also be used in any situation that calls for judgment under uncertainty, such as sentencing decisions in criminal cases (Bennett, 2014), and it applies to groups as well as individuals (Rutledge, 1993).

In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your previous baking experience and guessing at the number and amount of ingredients, baking time, and so on — or using an algorithm. The latter would require a recipe which would provide step-by-step instructions; the recipe is the algorithm. Unless you are an extremely accomplished baker, the algorithm should provide you with a better cake than using heuristics would. While heuristics offer a solution that might be correct, a correctly applied algorithm is guaranteed to provide a correct solution. Of course, not all problems can be solved by algorithms.

As with heuristics, the use of algorithmic processing interacts with behaviour and emotion. Understanding what strategy might provide the best solution requires knowledge and experience. As we will see in the next section, we are prone to a number of cognitive biases that persist despite knowledge and experience.

Key Takeaways

  • We use a variety of shortcuts in our information processing, such as the representativeness, availability, and anchoring and adjustment heuristics. These help us to make fast judgments but may lead to errors.
  • Algorithms are problem-solving strategies that are based on rules rather than guesses. Algorithms, if applied correctly, are far less likely to result in errors or incorrect solutions than heuristics. Algorithms are based on logic.

Bennett, M. W. (2014). Confronting cognitive ‘anchoring effect’ and ‘blind spot’ biases in federal sentencing: A modest solution for reforming and fundamental flaw. Journal of Criminal Law and Criminology , 104 (3), 489-534.

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.

MacLeod, C., & Campbell, L. (1992). Memory accessibility and probability judgments: An experimental evaluation of the availability heuristic.  Journal of Personality and Social Psychology, 63 (6), 890–902.

Poses, R. M., & Anthony, M. (1991). Availability, wishful thinking, and physicians’ diagnostic judgments for patients with suspected bacteremia.  Medical Decision Making,  11 , 159-68.

Rutledge, R. W. (1993). The effects of group decisions and group-shifts on use of the anchoring and adjustment heuristic. Social Behavior and Personality, 21 (3), 215-226.

Statistics Canada. (2018). Ho micide in Canada, 2017 . Retrieved from https://www150.statcan.gc.ca/n1/en/daily-quotidien/181121/dq181121a-eng.pdf

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability.  Cognitive Psychology, 5 , 207–232.

Psychology - 1st Canadian Edition Copyright © 2020 by Sally Walters is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

problem solving strategies heuristics

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

problem solving strategies heuristics

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size

problem solving strategies heuristics

Heuristic Problem Solving: A comprehensive guide with 5 Examples

What are heuristics, advantages of using heuristic problem solving, disadvantages of using heuristic problem solving, heuristic problem solving examples, frequently asked questions.

  • Speed: Heuristics are designed to find solutions quickly, saving time in problem solving tasks. Rather than spending a lot of time analyzing every possible solution, heuristics help to narrow down the options and focus on the most promising ones.
  • Flexibility: Heuristics are not rigid, step-by-step procedures. They allow for flexibility and creativity in problem solving, leading to innovative solutions. They encourage thinking outside the box and can generate unexpected and valuable ideas.
  • Simplicity: Heuristics are often easy to understand and apply, making them accessible to anyone regardless of their expertise or background. They don’t require specialized knowledge or training, which means they can be used in various contexts and by different people.
  • Cost-effective: Because heuristics are simple and efficient, they can save time, money, and effort in finding solutions. They also don’t require expensive software or equipment, making them a cost-effective approach to problem solving.
  • Real-world applicability: Heuristics are often based on practical experience and knowledge, making them relevant to real-world situations. They can help solve complex, messy, or ill-defined problems where other problem solving methods may not be practical.
  • Potential for errors: Heuristic problem solving relies on generalizations and assumptions, which may lead to errors or incorrect conclusions. This is especially true if the heuristic is not based on a solid understanding of the problem or the underlying principles.
  • Limited scope: Heuristic problem solving may only consider a limited number of potential solutions and may not identify the most optimal or effective solution.
  • Lack of creativity: Heuristic problem solving may rely on pre-existing solutions or approaches, limiting creativity and innovation in problem-solving.
  • Over-reliance: Heuristic problem solving may lead to over-reliance on a specific approach or heuristic, which can be problematic if the heuristic is flawed or ineffective.
  • Lack of transparency: Heuristic problem solving may not be transparent or explainable, as the decision-making process may not be explicitly articulated or understood.
  • Trial and error: This heuristic involves trying different solutions to a problem and learning from mistakes until a successful solution is found. A software developer encountering a bug in their code may try other solutions and test each one until they find the one that solves the issue.
  • Working backward: This heuristic involves starting at the goal and then figuring out what steps are needed to reach that goal. For example, a project manager may begin by setting a project deadline and then work backward to determine the necessary steps and deadlines for each team member to ensure the project is completed on time.
  • Breaking a problem into smaller parts: This heuristic involves breaking down a complex problem into smaller, more manageable pieces that can be tackled individually. For example, an HR manager tasked with implementing a new employee benefits program may break the project into smaller parts, such as researching options, getting quotes from vendors, and communicating the unique benefits to employees.
  • Using analogies: This heuristic involves finding similarities between a current problem and a similar problem that has been solved before and using the solution to the previous issue to help solve the current one. For example, a salesperson struggling to close a deal may use an analogy to a successful sales pitch they made to help guide their approach to the current pitch.
  • Simplifying the problem: This heuristic involves simplifying a complex problem by ignoring details that are not necessary for solving it. This allows the problem solver to focus on the most critical aspects of the problem. For example, a customer service representative dealing with a complex issue may simplify it by breaking it down into smaller components and addressing them individually rather than simultaneously trying to solve the entire problem.

Test your problem-solving skills for free in just a few minutes.

The free problem-solving skills for managers and team leaders helps you understand mistakes that hold you back.

What are the three types of heuristics?

What are the four stages of heuristics in problem solving.

Other Related Blogs

conflict mediation

Top 15 Tips for Effective Conflict Mediation at Work

Top 10 games for negotiation skills to make you a better leader, manager effectiveness: a complete guide for managers in 2023, 5 proven ways managers can build collaboration in a team.

problem solving strategies heuristics

  • Memberships

Heuristic Method

heuristic method polya toolshero

Heuristic Method: this article explains the concept of the Heuristic Method , developed by George Pólya in a practical way. After reading it, you will understand the basics of this powerful Problem Solving tool.

What is the Heuristic Method?

A heuristic method is an approach to finding a solution to a problem that originates from the ancient Greek word ‘eurisko’, meaning to ‘find’, ‘search’ or ‘discover’. It is about using a practical method that doesn’t necessarily need to be perfect. Heuristic methods speed up the process of reaching a satisfactory solution.

Previous experiences with comparable problems are used that can concern problem situations for people, machines or abstract issues. One of the founders of heuristics is the Hungarian mathematician György (George) Pólya , who published a book about the subject in 1945 called ‘How to Solve It’. He used four principles that form the basis for problem solving.

Free Toolshero ebook

Heuristic method: Four principles

Pólya describes the following four principles in his book:

  • try to understand the problem
  • make a plan
  • carry out this plan
  • evaluate and adapt

Heuristic Method Principles George Ploya - toolshero

If this sequence doesn’t lead to the right solution, Pólya advises to first look for a simpler problem.

A solution may potentially be found by first looking at a similar problem that was possible to solve. With this experience, it’s possible to look at the current problem in another way.

First principle of the heuristic method: understand the problem

It’s more difficult than it seems, because it seems obvious. In truth, people are hindered when it comes to finding an initially suitable approach to the problem.

It can help to draw the problem and to look at it from another angle. What is the problem, what is happening, can the problem be explained in other words, is there enough information available, etc. Such questions can help with the first evaluation of a problem issue.

Second principle of the heuristic method: make a plan

There are many ways to solve problems. This section is about choosing the right strategy that best fits the problem at hand. The reversed ‘working backwards’ can help with this; people assume to have a solution and use this as a starting point to work towards the problem.

It can also be useful to make an overview of the possibilities, delete some of them immediately, work with comparisons, or to apply symmetry. Creativity comes into play here and will improve the ability to judge.

Third principle of the heuristic method: carry out the plan

Once a strategy has been chosen, the plan can quickly be implemented. However, it is important to pay attention to time and be patient, because the solution will not simply appear.

If the plan doesn’t go anywhere, the advice is to throw it overboard and find a new way.

Fourth principle of the heuristic method: evaluate and adapt

Take the time to carefully consider and reflect upon the work that’s already been done. The things that are going well should be maintained, those leading to a lesser solution, should be adjusted. Some things simply work, while others simply don’t.

There are many different heuristic methods, which Pólya also used. The most well-known heuristics are found below:

1. Dividing technique

The original problem is divided into smaller sub-problems that can be solved more easily. These sub-problems can be linked to each other and combined, which will eventually lead to the solving of the original problem.

2. Inductive method

This involves a problem that has already been solved, but is smaller than the original problem. Generalisation can be derived from the previously solved problem, which can help in solving the bigger, original problem.

3. Reduction method

Because problems are often larger than assumed and deal with different causes and factors, this method sets limits for the problem in advance. This reduces the leeway of the original problem, making it easier to solve.

4. Constructive method

This is about working on the problem step by step. The smallest solution is seen as a victory and from that point consecutive steps are taken. This way, the best choices keep being made, which will eventually lead to a successful end result.

5. Local search method

This is about the search for the most attainable solution to the problem. This solution is improved along the way. This method ends when improvement is no longer possible.

Exact solutions versus the heuristic method

The heuristic approach is a mathmatical method with which proof of a good solution to a problem is delivered. There is a large number of different problems that could use good solutions. When the processing speed is equally as important as the obtained solution, we speak of a heuristic method.

The Heuristic Method only tries to find a good, but not necessarily optimal, solution. This is what differentiates heuristics from exact solution methods, which are about finding the optimal solution to a problem. However, that’s very time consuming, which is why a heuristic method may prove preferable. This is much quicker and more flexible than an exact method, but does have to satisfy a number of criteria.

Join the Toolshero community

It’s Your Turn

What do you think? Is the Heuristic Method applicable in your personal or professional environment? Do you recognize the practical explanation or do you have more suggestions? What are your success factors for solving problems

Share your experience and knowledge in the comments box below.

More information

  • Groner, R., Groner, M., & Bischof, W. F. (2014). Methods of heuristics . Routledge .
  • Newell, A. (1983). The heuristic of George Polya and its relation to artificial intelligence . Methods of heuristics, 195-243.
  • Polya, G. (2014, 1945). How to solve it: A new aspect of mathematical method . Princeton university press .

How to cite this article: Mulder, P. (2018). Heuristic Method . Retrieved [insert date] from ToolsHero: https://www.toolshero.com/problem-solving/heuristic-method/

Add a link to this page on your website: <a href=”https://www.toolshero.com/problem-solving/heuristic-method/”>ToolsHero: Heuristic Method</a>

Published on: 29/05/2018 | Last update: 04/03/2022

Did you find this article interesting?

Your rating is more than welcome or share this article via Social media!

Average rating 4.6 / 5. Vote count: 13

No votes so far! Be the first to rate this post.

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

Patty Mulder

Patty Mulder

Patty Mulder is an Dutch expert on Management Skills, Personal Effectiveness and Business Communication. She is also a Content writer, Business Coach and Company Trainer and lives in the Netherlands (Europe). Note: all her articles are written in Dutch and we translated her articles to English!

ALSO INTERESTING

systematic inventive thinking sit method toolshero

Systematic Inventive Thinking (SIT)

Catwoe Analysis - toolshero

CATWOE Analysis: theory and example

Means End Analysis MEA - toolshero

Means End Analysis: the basics and example

Leave a reply cancel reply.

You must be logged in to post a comment.

BOOST YOUR SKILLS

Toolshero supports people worldwide ( 10+ million visitors from 100+ countries ) to empower themselves through an easily accessible and high-quality learning platform for personal and professional development.

By making access to scientific knowledge simple and affordable, self-development becomes attainable for everyone, including you! Join our learning platform and boost your skills with Toolshero.

problem solving strategies heuristics

POPULAR TOPICS

  • Change Management
  • Marketing Theories
  • Problem Solving Theories
  • Psychology Theories

ABOUT TOOLSHERO

  • Free Toolshero e-book
  • Memberships & Pricing

Book cover

Encyclopedia of the Sciences of Learning pp 1421–1424 Cite as

Heuristics and Problem Solving

  • Erik De Corte 2 ,
  • Lieven Verschaffel 2 &
  • Wim Van Dooren 2  
  • Reference work entry

532 Accesses

3 Citations

Definitions

In a general sense heuristics are guidelines or methods for problem solving. Therefore, we will first define problem solving before presenting a specific definition of heuristics.

Problem Solving

In contrast to a routine task, a problem is a situation in which a person is trying to attain a goal but does not dispose of a ready-made solution or solution method. Problem solving involves then “cognitive processing directed at transforming the given situation into a goal situation when no obvious method of solution is available” (Mayer and Wittrock 2006 , p. 287). An implication is that a task can be a problem for one person, but not for someone else. For instance, the task “divide 120 marbles equally among 8 children” may be a problem for beginning elementary school children, but not for people who master the algorithm for long division, or know how to use a calculator.

The term “heuristic” originates from the Greek word heuriskein which means “to find.” Heuristics ...

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

De Corte, E., Verschaffel, L., & Op’t Eynde, P. (2000). Self-regulation: a characteristic and a goal of mathematics education. In M. Boekaerts, P. R. Pintrich, & M. Zeidner (Eds.), Handbook of self-regulation (pp. 687–726). San Diego, CA: Academic.

Google Scholar  

De Corte, E., Verschaffel, L., & Masui, C. (2004). The CLIA-model: a framework for designing powerful learning environments for thinking and problem solving. European Journal of Psychology of Education, 19 , 365–384.

Article   Google Scholar  

Dignath, C., & Büttner, G. (2008). Components of fostering self-regulated learning among students. a meta-analysis on intervention studies at primary and secondary school level. Metacognition and Learning, 3 , 231–264.

Groner, R., Groner, M., & Bischof, W. F. (Eds.). (1983). Methods of heuristics . Hillsdale, NJ: Erlbaum.

Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (pp. 287–303). New York: Macmillan.

Polya, G. (1945). How to solve it . Princeton, NJ: Princeton University Press.

Schoenfeld, A. H. (1985). Mathematical problem solving . New York: Academic.

Download references

Author information

Authors and affiliations.

Department of Education, Center for Instructional Psychology and Technology (CIP&T), Katholieke Universiteit Leuven, Dekenstraat 2, P.O. box 3773, B-3000, Leuven, Belgium

Dr. Erik De Corte, Prof. Dr. Lieven Verschaffel & Wim Van Dooren

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Erik De Corte .

Editor information

Editors and affiliations.

Faculty of Economics and Behavioral Sciences, Department of Education, University of Freiburg, 79085, Freiburg, Germany

Norbert M. Seel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry.

De Corte, E., Verschaffel, L., Van Dooren, W. (2012). Heuristics and Problem Solving. In: Seel, N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_420

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1428-6_420

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4419-1427-9

Online ISBN : 978-1-4419-1428-6

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • 7.3 Problem Solving
  • Introduction
  • 1.1 What Is Psychology?
  • 1.2 History of Psychology
  • 1.3 Contemporary Psychology
  • 1.4 Careers in Psychology
  • Review Questions
  • Critical Thinking Questions
  • Personal Application Questions
  • 2.1 Why Is Research Important?
  • 2.2 Approaches to Research
  • 2.3 Analyzing Findings
  • 3.1 Human Genetics
  • 3.2 Cells of the Nervous System
  • 3.3 Parts of the Nervous System
  • 3.4 The Brain and Spinal Cord
  • 3.5 The Endocrine System
  • 4.1 What Is Consciousness?
  • 4.2 Sleep and Why We Sleep
  • 4.3 Stages of Sleep
  • 4.4 Sleep Problems and Disorders
  • 4.5 Substance Use and Abuse
  • 4.6 Other States of Consciousness
  • 5.1 Sensation versus Perception
  • 5.2 Waves and Wavelengths
  • 5.4 Hearing
  • 5.5 The Other Senses
  • 5.6 Gestalt Principles of Perception
  • 6.1 What Is Learning?
  • 6.2 Classical Conditioning
  • 6.3 Operant Conditioning
  • 6.4 Observational Learning (Modeling)
  • 7.1 What Is Cognition?
  • 7.2 Language
  • 7.4 What Are Intelligence and Creativity?
  • 7.5 Measures of Intelligence
  • 7.6 The Source of Intelligence
  • 8.1 How Memory Functions
  • 8.2 Parts of the Brain Involved with Memory
  • 8.3 Problems with Memory
  • 8.4 Ways to Enhance Memory
  • 9.1 What Is Lifespan Development?
  • 9.2 Lifespan Theories
  • 9.3 Stages of Development
  • 9.4 Death and Dying
  • 10.1 Motivation
  • 10.2 Hunger and Eating
  • 10.3 Sexual Behavior, Sexuality, and Gender Identity
  • 10.4 Emotion
  • 11.1 What Is Personality?
  • 11.2 Freud and the Psychodynamic Perspective
  • 11.3 Neo-Freudians: Adler, Erikson, Jung, and Horney
  • 11.4 Learning Approaches
  • 11.5 Humanistic Approaches
  • 11.6 Biological Approaches
  • 11.7 Trait Theorists
  • 11.8 Cultural Understandings of Personality
  • 11.9 Personality Assessment
  • 12.1 What Is Social Psychology?
  • 12.2 Self-presentation
  • 12.3 Attitudes and Persuasion
  • 12.4 Conformity, Compliance, and Obedience
  • 12.5 Prejudice and Discrimination
  • 12.6 Aggression
  • 12.7 Prosocial Behavior
  • 13.1 What Is Industrial and Organizational Psychology?
  • 13.2 Industrial Psychology: Selecting and Evaluating Employees
  • 13.3 Organizational Psychology: The Social Dimension of Work
  • 13.4 Human Factors Psychology and Workplace Design
  • 14.1 What Is Stress?
  • 14.2 Stressors
  • 14.3 Stress and Illness
  • 14.4 Regulation of Stress
  • 14.5 The Pursuit of Happiness
  • 15.1 What Are Psychological Disorders?
  • 15.2 Diagnosing and Classifying Psychological Disorders
  • 15.3 Perspectives on Psychological Disorders
  • 15.4 Anxiety Disorders
  • 15.5 Obsessive-Compulsive and Related Disorders
  • 15.6 Posttraumatic Stress Disorder
  • 15.7 Mood and Related Disorders
  • 15.8 Schizophrenia
  • 15.9 Dissociative Disorders
  • 15.10 Disorders in Childhood
  • 15.11 Personality Disorders
  • 16.1 Mental Health Treatment: Past and Present
  • 16.2 Types of Treatment
  • 16.3 Treatment Modalities
  • 16.4 Substance-Related and Addictive Disorders: A Special Case
  • 16.5 The Sociocultural Model and Therapy Utilization

Learning Objectives

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving and decision making

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( Table 7.2 ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connection

Solving puzzles.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( Figure 7.7 ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

Here is another popular type of puzzle ( Figure 7.8 ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Take a look at the “Puzzling Scales” logic puzzle below ( Figure 7.9 ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

Pitfalls to Problem Solving

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but they just need to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. Duncker (1945) conducted foundational research on functional fixedness. He created an experiment in which participants were given a candle, a book of matches, and a box of thumbtacks. They were instructed to use those items to attach the candle to the wall so that it did not drip wax onto the table below. Participants had to use functional fixedness to overcome the problem ( Figure 7.10 ). During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

Link to Learning

Check out this Apollo 13 scene about NASA engineers overcoming functional fixedness to learn more.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in Table 7.3 .

Watch this teacher-made music video about cognitive biases to learn more.

Were you able to determine how many marbles are needed to balance the scales in Figure 7.9 ? You need nine. Were you able to solve the problems in Figure 7.7 and Figure 7.8 ? Here are the answers ( Figure 7.11 ).

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Authors: Rose M. Spielman, William J. Jenkins, Marilyn D. Lovett
  • Publisher/website: OpenStax
  • Book title: Psychology 2e
  • Publication date: Apr 22, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/psychology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/psychology-2e/pages/7-3-problem-solving

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Home Blog Business Using Heuristic Problem-Solving Methods for Effective Decision-Making

Using Heuristic Problem-Solving Methods for Effective Decision-Making

Using Heuristic Problem Solving Methods for Effective Decision-Making

Problem-solving capability and effective decision making are two of the most prized capabilities of any leader. However, one cannot expect these traits to be simply present by default in an individual, as both require extensive analysis of the root cause of issues and to know what to look for when anticipating a gain. In a previous article, we brought you  5 Problem-Solving Strategies to Become a Better Problem Solver . This time we have something that can help you dig deep to resolve problems, i.e. using heuristic problem-solving methods for effective decision-making.

What are Heuristics?

Heuristics are essentially problem-solving tools that can be used for solving non-routine and challenging problems. A heuristic method is a practical approach for a short-term goal, such as solving a problem. The approach might not be perfect but can help find a quick solution to help move towards a reasonable way to resolve a problem.

Example: A computer that is to be used for an event to allow presenters to play PowerPoint presentations via a projector malfunctions due to an operating system problem. In such a case a system administrator might quickly refresh the system using a backup to make it functional for the event. Once the event concludes the system administrator can run detailed diagnostic tests to see if there are any further underlying problems that need to be resolved.

In this example, restoring the system using a backup was a short-term solution to solve the immediate problem, i.e. to make the system functional for the event that was to start in a few hours. There are a number of heuristic methods that can lead to such a decision to resolve a problem. These are explained in more detail in the sections below.

Examples of Heuristic Methods Used for Challenging and Non-Routine Problems

Heuristic methods can help ease the cognitive load by making it easy to process decisions. These include various basic methods that aren’t rooted in any theory per se but rather rely on past experiences and common sense. Using heuristics one can, therefore, resolve challenging and non-routine problems. Let’s take a look at some examples.

A Rule of Thumb

This includes using a method based on practical experience. A rule of thumb can be applied to find a short-term solution to a problem to quickly resolve an issue during a situation where one might be pressed for time.

Example: In the case of the operating system failure mentioned earlier, we assume that the PC on which PowerPoint presentations are to be run by presenters during an event is getting stuck on the start screen. Considering that the event is about to start in 2 hours, it is not practical for the system administrator to reinstall the operating system and all associated applications, hotfixes and updates, as it might take several hours. Using a rule of thumb, he might try to use various tried and tested methods, such as trying to use a system restore point to restore the PC without deleting essential files or to use a backup to restore the PC to an earlier environment.

An Educated Guess

An educated guess or guess and check can help resolve a problem by using knowledge and experience. Based on your knowledge of a subject, you can make an educated guess to resolve a problem.

Example: In the example of the malfunctioning PC, the system administrator will have to make an educated guess regarding the best possible way to resolve the problem. The educated guess, in this case, can be to restore the system to a backup instead of using system restore, both of which might take a similar amount of time; however, the former is likely to work better as a quick fix based on past experience and knowledge of the system administrator.

Trial and Error

This is another heuristic method to problem-solving where one might try various things that are expected to work until a solution is achieved.

Example: The system administrator might try various techniques to fix the PC using trial and error. He might start with checking if the system is accessible in safe mode. And if so, does removing a newly installed software or update solve the problem? If he can’t access the system at all, he might proceed with restoring it from a backup. If that too fails, he might need to quickly opt for a wipe and load installation and only install PowerPoint to ensure that at least presenters can run presentations on the PC. In this case he can perform other required software installations after the event.

An Intuitive Judgment

Intuitive judgment does not result from a rational analysis of a situation or based on reasoning. It is more of a feeling one has which may or may not lead to the desired outcome. Sometimes, intuitive judgement can help resolve problems. Perhaps the most rational way to describe an intuition is that it is some type of calculation at the subconscious level, where you can’t put your finger on the reason why you think something might be the way it is.

Example: The system administrator might have a feeling that the PC is not working because the hard drive has failed. This might be an intuitive judgment without hard evidence. He might quickly replace the hard drive to resolve the problem. Later, after he runs diagnostics on the old hard drive, he might realize that it was indeed that hard drive that was faulty and trying to fix it would have been a waste of time. In this case, he might be able to solve a problem using intuitive judgment.

Stereotyping

A stereotype is an opinion which is judgmental rather than rational. Certain types of possessions for example create a stereotype of social status. A person who wears an expensive watch might be deemed rich, although he might simply have received it as a gift from someone, instead of being rich himself.

Example: A certain company might have developed a bad reputation of developing faulty hard drives. If the systems administrator sees the name of that company on the hard drive when opening the faulty PC, he might think that the hard drive is faulty based on stereotyping and decide to replace it.

Profiling is used to systematically analyze data to understand its dynamics. Profiling as a heuristic method for problem-solving might entail analyzing data to understand and resolve a problem or to look for patterns, just like a root cause analysis .

Example: To solve the issue of the faulty PC, a system administrator might look for similar patterns which might have led to the problem. He might search online for solutions via online forums to understand what might have caused the issue. He might also look at the information associated with recently installed software and updates to see if something conflicted with the operating system. During the profiling process, he might realize that software he installed yesterday before shutting down the PC is the cause of the problem, since similar issues have been reported by other users. He might try to remove the software using Safe Mode or by removing its files by running the computer from a bootable disc drive.

Common Sense

Common sense is the use of practical judgment to understand something. The use of common sense is also a heuristic method used for problem-solving.

Example: When dealing with a faulty PC the system administrator sees smoke coming out of the PC. In this case, it is common sense that a hardware component is faulty. He shuts down the PC, removes the power cord and investigates the issue further based on common sense. This is because keeping the system linked to a power socket amidst smoke emitting from the PC can only make things worse. It is common sense to turn off everything and take the necessary precautions to investigate the issue further.

How are Heuristic Methods Used in Decision-Making?

There are a number of formal and informal models of heuristics used for decision making. Let’s take a look at a few of the formal models of heuristics used for decision making.

Formal Models of Heuristics

Fast-and-frugal tree.

A fast-and-frugal tree is a classification or decision tree. It is a graphical form that helps make decisions. For example, a fast-and-frugal tree might help doctors determine if a patient should be sent to a regular ward or for an emergency procedure. fast-and-frugal trees are methods for making decisions based on hierarchical models, where one has to make a decision based on little information.

Fluency Heuristic

In psychology, fluency heuristic implies an object that can be easily processed and deemed to have a higher value, even if it is not logical to assume this. Understanding the application of fluency heuristic can help make better decisions in a variety of fields. Fluency heuristic is more like sunk cost fallacy .

For example, a designer might design a user interface that is easier for users to process, with fewer buttons and easily labeled options. This can help them think fast, work quicker and improve productivity. Similarly, the concept might be used in marketing to sell products using effective marketing techniques. Even if two products are identical, a consumer might pick one over the other based on fluency heuristic. The consumer might deem the product to be better for his needs, even if it is the same as the other one.

Gaze Heuristic

Assume that you aim to catch a ball. Based on your judgment you would leap to catch the ball. If you were to leave yourself to instinct, you will end up at the same spot to catch the ball at a spot you would predict it to fall. This is essentially gaze heuristic. The concept of gaze heuristic is thought to be applied for simple situations and its applications are somewhat limited.

Recognition Heuristic

If there are two objects, one recognizable and the one isn’t, the person is likely to deem the former to be of greater value. A simple example of recognition heuristic is branding. People get used to brand logos, assuming them to be of high quality. This helps brands to sell multiple products using recognition heuristic. So, if you are looking to buy an air conditioner and come across two products, A and B, where A is a brand you know and B is a new company you don’t recognize, you might opt for A. Even if B is of better quality, you might simply trust A because you have been buying electronics from the brand for many years and they have been of good quality.

Satisficing

Satisficing entails looking for alternatives until an acceptable threshold can be ensured. Satisficing in decision making implies selecting an option which meets most needs or the first option which can meet a need, even if it is not the optimal solution. For example, when choosing between early retirement or continuing service for 2 or 3 more years, one might opt for early retirement assuming that it would meet the individual’s needs.

Similarity Heuristic

Similarity heuristic is judgment based on which is deemed similar, if something reminds someone of good or bad days, something similar might be considered the same. Similarity heuristics is often used by brands to remind people of something that they might have sentimental value for.

Someone might buy a limited-edition bottle of perfume that is being sold in a packaging style that was replaced 20 years ago. Assuming that sales were great in those days, the company might sell such limited-edition perfume bottles in the hope of boosting sales. Consumers might buy them simply because they remind them of the ‘good old days’, even though the product inside might not even be of the same but rather similar to what it used to be. Many consumers claim to buy these types of products claiming that it reminds them of a fond memory, such as their youth, marriage or  first job, when they used the product back in the day.

Final Words

Heuristics play a key role in decision making and affect the way we make decisions. Understanding heuristics can not only help resolve problems but also understand biases that affect effective decision making. A business decision or one that affects one’s health, life, or well-being cannot rely merely on a hunch. Understanding heuristics and applying them effectively can therefore help make the best possible decisions. Heuristic methods are not only used in different professions and personal decision making but are also used in artificial intelligence and programming.

Modern anti-virus software for instance uses heuristic methods to dig out the most elusive malware. The same rule can be essentially applied to decision making, by effectively using heuristics to resolve problems and to make decisions based on better judgment.

problem solving strategies heuristics

Like this article? Please share

Common Sense, Decision Making, Educated Guess, Heuristics, Judgment, Problem Solving, Profiling, Rule of Thumb, Stereotyping, Trial and Error Filed under Business

Related Articles

The OODA Loop Decision-Making Model and How to Use it for Presentations

Filed under Business • January 16th, 2024

The OODA Loop Decision-Making Model and How to Use it for Presentations

OODA Loop is a model that supports people and companies when defining important decisions in teams or individuals. See here how to apply it in presentation slide design.

SCAMPER Technique & Ideation Method (Quick Guide for Interactive Presentations)

Filed under Business • October 5th, 2023

SCAMPER Technique & Ideation Method (Quick Guide for Interactive Presentations)

SCAMPER is a technique that provides a structured approach towards thinking outside the box. In this article, we explore how this technique can be used.

How to Write a Problem Statement: Hands-On Guide With Examples

Filed under Business • October 2nd, 2023

How to Write a Problem Statement: Hands-On Guide With Examples

A well-written problem statement defines the stage for successful solution development and garnering support from stakeholders. Helpful tips here.

Leave a Reply

problem solving strategies heuristics

Logo for British Columbia/Yukon Open Authoring Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

39 8.2 Problem-Solving: Heuristics and Algorithms

Learning objectives.

  • Describe the differences between heuristics and algorithms in information processing.

When faced with a problem to solve, should you go with intuition or with more measured, logical reasoning? Obviously, we use both of these approaches. Some of the decisions we make are rapid, emotional, and automatic. Daniel Kahneman (2011) calls this “fast” thinking. By definition, fast thinking saves time. For example, you may quickly decide to buy something because it is on sale; your fast brain has perceived a bargain, and you go for it quickly. On the other hand, “slow” thinking requires more effort; applying this in the same scenario might cause us not to buy the item because we have reasoned that we don’t really need it, that it is still too expensive, and so on. Using slow and fast thinking does not guarantee good decision-making if they are employed at the wrong time. Sometimes it is not clear which is called for, because many decisions have a level of uncertainty built into them. In this section, we will explore some of the applications of these tendencies to think fast or slow.

We will look further into our thought processes, more specifically, into some of the problem-solving strategies that we use. Heuristics are information-processing strategies that are useful in many cases but may lead to errors when misapplied. A heuristic is a principle with broad application, essentially an educated guess about something. We use heuristics all the time, for example, when deciding what groceries to buy from the supermarket, when looking for a library book, when choosing the best route to drive through town to avoid traffic congestion, and so on. Heuristics can be thought of as aids to decision making; they allow us to reach a solution without a lot of cognitive effort or time.

The benefit of heuristics in helping us reach decisions fairly easily is also the potential downfall: the solution provided by the use of heuristics is not necessarily the best one. Let’s consider some of the most frequently applied, and misapplied, heuristics in the table below.

In many cases, we base our judgments on information that seems to represent, or match, what we expect will happen, while ignoring other potentially more relevant statistical information. When we do so, we are using the representativeness heuristic . Consider, for instance, the data presented in the table below. Let’s say that you went to a hospital, and you checked the records of the babies that were born on that given day. Which pattern of births do you think you are most likely to find?

Most people think that list B is more likely, probably because list B looks more random, and matches — or is “representative of” — our ideas about randomness, but statisticians know that any pattern of four girls and four boys is mathematically equally likely. Whether a boy or girl is born first has no bearing on what sex will be born second; these are independent events, each with a 50:50 chance of being a boy or a girl. The problem is that we have a schema of what randomness should be like, which does not always match what is mathematically the case. Similarly, people who see a flipped coin come up “heads” five times in a row will frequently predict, and perhaps even wager money, that “tails” will be next. This behaviour is known as the gambler’s fallacy . Mathematically, the gambler’s fallacy is an error: the likelihood of any single coin flip being “tails” is always 50%, regardless of how many times it has come up “heads” in the past.

The representativeness heuristic may explain why we judge people on the basis of appearance. Suppose you meet your new next-door neighbour, who drives a loud motorcycle, has many tattoos, wears leather, and has long hair. Later, you try to guess their occupation. What comes to mind most readily? Are they a teacher? Insurance salesman? IT specialist? Librarian? Drug dealer? The representativeness heuristic will lead you to compare your neighbour to the prototypes you have for these occupations and choose the one that they seem to represent the best. Thus, your judgment is affected by how much your neibour seems to resemble each of these groups. Sometimes these judgments are accurate, but they often fail because they do not account for base rates , which is the actual frequency with which these groups exist. In this case, the group with the lowest base rate is probably drug dealer.

Our judgments can also be influenced by how easy it is to retrieve a memory. The tendency to make judgments of the frequency or likelihood that an event occurs on the basis of the ease with which it can be retrieved from memory is known as the availability heuristic (MacLeod & Campbell, 1992; Tversky & Kahneman, 1973). Imagine, for instance, that I asked you to indicate whether there are more words in the English language that begin with the letter “R” or that have the letter “R” as the third letter. You would probably answer this question by trying to think of words that have each of the characteristics, thinking of all the words you know that begin with “R” and all that have “R” in the third position. Because it is much easier to retrieve words by their first letter than by their third, we may incorrectly guess that there are more words that begin with “R,” even though there are in fact more words that have “R” as the third letter.

The availability heuristic may explain why we tend to overestimate the likelihood of crimes or disasters; those that are reported widely in the news are more readily imaginable, and therefore, we tend to overestimate how often they occur. Things that we find easy to imagine, or to remember from watching the news, are estimated to occur frequently. Anything that gets a lot of news coverage is easy to imagine. Availability bias does not just affect our thinking. It can change behaviour. For example, homicides are usually widely reported in the news, leading people to make inaccurate assumptions about the frequency of murder. In Canada, the murder rate has dropped steadily since the 1970s (Statistics Canada, 2018), but this information tends not to be reported, leading people to overestimate the probability of being affected by violent crime. In another example, doctors who recently treated patients suffering from a particular condition were more likely to diagnose the condition in subsequent patients because they overestimated the prevalence of the condition (Poses & Anthony, 1991).

The anchoring and adjustment heuristic is another example of how fast thinking can lead to a decision that might not be optimal. Anchoring and adjustment is easily seen when we are faced with buying something that does not have a fixed price. For example, if you are interested in a used car, and the asking price is $10,000, what price do you think you might offer? Using $10,000 as an anchor, you are likely to adjust your offer from there, and perhaps offer $9000 or $9500. Never mind that $10,000 may not be a reasonable anchoring price. Anchoring and adjustment does not just happen when we’re buying something. It can also be used in any situation that calls for judgment under uncertainty, such as sentencing decisions in criminal cases (Bennett, 2014), and it applies to groups as well as individuals (Rutledge, 1993).

In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your previous baking experience and guessing at the number and amount of ingredients, baking time, and so on — or using an algorithm. The latter would require a recipe which would provide step-by-step instructions; the recipe is the algorithm. Unless you are an extremely accomplished baker, the algorithm should provide you with a better cake than using heuristics would. While heuristics offer a solution that might be correct, a correctly applied algorithm is guaranteed to provide a correct solution. Of course, not all problems can be solved by algorithms.

As with heuristics, the use of algorithmic processing interacts with behaviour and emotion. Understanding what strategy might provide the best solution requires knowledge and experience. As we will see in the next section, we are prone to a number of cognitive biases that persist despite knowledge and experience.

Key Takeaways

  • We use a variety of shortcuts in our information processing, such as the representativeness, availability, and anchoring and adjustment heuristics. These help us to make fast judgments but may lead to errors.
  • Algorithms are problem-solving strategies that are based on rules rather than guesses. Algorithms, if applied correctly, are far less likely to result in errors or incorrect solutions than heuristics. Algorithms are based on logic.

Bennett, M. W. (2014). Confronting cognitive ‘anchoring effect’ and ‘blind spot’ biases in federal sentencing: A modest solution for reforming and fundamental flaw. Journal of Criminal Law and Criminology , 104 (3), 489-534.

Kahneman, D. (2011). Thinking, fast and slow. New York, NY: Farrar, Straus and Giroux.

MacLeod, C., & Campbell, L. (1992). Memory accessibility and probability judgments: An experimental evaluation of the availability heuristic.  Journal of Personality and Social Psychology, 63 (6), 890–902.

Poses, R. M., & Anthony, M. (1991). Availability, wishful thinking, and physicians’ diagnostic judgments for patients with suspected bacteremia.  Medical Decision Making,  11 , 159-68.

Rutledge, R. W. (1993). The effects of group decisions and group-shifts on use of the anchoring and adjustment heuristic. Social Behavior and Personality, 21 (3), 215-226.

Statistics Canada. (2018). Ho micide in Canada, 2017 . Retrieved from https://www150.statcan.gc.ca/n1/en/daily-quotidien/181121/dq181121a-eng.pdf

Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability.  Cognitive Psychology, 5 , 207–232.

Psychology - 1st Canadian Edition by Sally Walters is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Some Helpful Problem-Solving Heuristics

A  heuristic  is a thinking strategy, something that can be used to tease out further information about a problem and thus help you figure out what to do when you don’t know what to do. Here are 25 heuristics that can be useful in solving problems. They help you monitor your thought processes, to step back and watch yourself at work, and thus keep your cool in a challenging situation.

  • Ask somebody else  how to do the problem. This strategy is probably the most used world-wide, though it is not one we encourage our students to use, at least not initially.
  • Guess and try  (guess, check, and revise). Your first guess might be right! But incorrect guesses can often suggest a direction toward a solution. (N.B. A spreadsheet is a powerful aid in guessing and trying. Set up the relationships and plug in a number to see if you get what you want. If you don’t, it is easy to try another number. And another.)
  • Restate the problem  using words that make sense to you. One way to do this is to explain the problem to someone else. Often this is all it takes for the light to dawn.
  • Organize information  into a table or chart. Having it laid out clearly in front of you frees up your mind for thinking. And perhaps you can use the organized data to generate more information.
  • Draw a picture  of the problem. Translate problem information into pictures, diagrams, sketches, glyphs, arrows, or some other kind of representation.
  • Make a model  of the problem. The model might be a physical or mental model, perhaps using a computer. You might vary the problem information to see whether and how the model may be affected.
  • Look for patterns , any kind of patterns: number patterns, verbal patterns, spatial/visual patterns, patterns in time, patterns in sound. (Some people define mathematics as the science of patterns.)
  • Act out the problem , if it is stated in a narrative form. Acting it out can have the same effect as drawing a picture. What’s more, acting out the problem might disclose incorrect assumptions you are making.
  • Invent notation . Name things in the problem (known or unknown) using words or symbols, including relationships between problem components.
  • Write equations . An equation is simply the same thing named two different ways.
  • Check all possibilities  in a systematic way. A table or chart may help you to be systematic.
  • Work backwards  from the end condition to the beginning condition. Working backwards is particularly helpful when letting a variable (letter) represent an unknown.
  • Identify subgoals  in the problem. Break up the problem into a sequence of smaller problems (“If I knew this, then I could get that”).
  • Simplify the problem . Use easier or smaller numbers, or look at extreme cases (e.g., use the minimum or maximum value of one of the varying quantities).
  • Restate the problem again . After working on the problem for a time, back off a bit and put it into your own words in still a different way, since now you know more about it.
  • Change your point of view . Use your imagination to change the way you are looking at the problem. Turn it upside down, or pull it inside out.
  • Check for hidden assumptions  you may be making (you might be making the problem harder than it really is). These assumptions are often found by changing the given numbers or conditions and looking to see what happens.
  • Identify needed and given information clearly . You may not need to find everything you think you need to find, for instance.
  • Make up your own technique . It is your mind, after all; use mental actions that make sense to you. The key is to do something that engages you with the problem.
  • Try combinations of the above heuristics .

These heuristics can be readily pointed out to students as they engage problems in the classroom. However, real-world problems are often confronted many times over or on increasingly complex levels. For those kinds of problems, George Polya, the father of modern problem-solving heuristics, identified a fifth class (E) of looking-back heuristics. We include these here for completeness, but also with the teaching caveat that solutions often improve and insights grow deeper after the initial pressure to produce a solution has been resolved. Subsequent considerations of a problem situation are invariably deeper than the first attempt.

  • Check your solution . Substitute your answer or results back into the problem. Are all of the conditions satisfied?
  • Find another solution . There may be more than one answer. Make sure you have them all.
  • Solve the problem a different way . Your first solution will seldom be the best solution. Now that the pressure is off, you may readily find other ways to solve the problem.
  • Solve a related problem . Steve Brown and Marion Walter in their book,  The Art of Problem Posing , suggest the “What if not?” technique. What if the train goes at a different speed? What if there are 8 children, instead of 9? What if . . .? Fascinating discoveries can be made in this way, leading to:
  • Generalize the solution . Can you glean from your solution how it can be made to fit a whole class of related situations? Can you prove your result?

Logo for UH Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Thinking and Intelligence

Problem Solving

OpenStaxCollege

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

PROBLEM-SOLVING STRATEGIES

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them ( [link] ). For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below ( [link] ) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Here is another popular type of puzzle ( [link] ) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Take a look at the “Puzzling Scales” logic puzzle below ( [link] ). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

PITFALLS TO PROBLEM SOLVING

Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

problem solving strategies heuristics

Check out this Apollo 13 scene where the group of NASA engineers are given the task of overcoming functional fixedness.

Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in [link] .

Please visit this site to see a clever music video that a high school teacher made to explain these and other cognitive biases to his AP psychology students.

Were you able to determine how many marbles are needed to balance the scales in [link] ? You need nine. Were you able to solve the problems in [link] and [link] ? Here are the answers ( [link] ).

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1:  blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

Review Questions

A specific formula for solving a problem is called ________.

  • an algorithm
  • a heuristic
  • a mental set
  • trial and error

A mental shortcut in the form of a general problem-solving framework is called ________.

Which type of bias involves becoming fixated on a single trait of a problem?

  • anchoring bias
  • confirmation bias
  • representative bias
  • availability bias

Which type of bias involves relying on a false stereotype to make a decision?

Critical Thinking Questions

What is functional fixedness and how can overcoming it help you solve problems?

Functional fixedness occurs when you cannot see a use for an object other than the use for which it was intended. For example, if you need something to hold up a tarp in the rain, but only have a pitchfork, you must overcome your expectation that a pitchfork can only be used for garden chores before you realize that you could stick it in the ground and drape the tarp on top of it to hold it up.

How does an algorithm save you time and energy when solving a problem?

An algorithm is a proven formula for achieving a desired outcome. It saves time because if you follow it exactly, you will solve the problem without having to figure out how to solve the problem. It is a bit like not reinventing the wheel.

Personal Application Question

Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

Problem Solving Copyright © 2014 by OpenStaxCollege is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

problem solving strategies heuristics

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

problem solving strategies heuristics

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

4 Main problem-solving strategies

problem solving

In Psychology, you get to read about a ton of therapies. It’s mind-boggling how different theorists have looked at human nature differently and have come up with different, often somewhat contradictory, theoretical approaches.

Yet, you can’t deny the kernel of truth that’s there in all of them. All therapies, despite being different, have one thing in common- they all aim to solve people’s problems. They all aim to equip people with problem-solving strategies to help them deal with their life problems.

Problem-solving is really at the core of everything we do. Throughout our lives, we’re constantly trying to solve one problem or another. When we can’t, all sorts of psychological problems take hold. Getting good at solving problems is a fundamental life skill.

Problem-solving stages

What problem-solving does is take you from an initial state (A) where a problem exists to a final or goal state (B), where the problem no longer exists.

To move from A to B, you need to perform some actions called operators. Engaging in the right operators moves you from A to B. So, the stages of problem-solving are:

  • Initial state

The problem itself can either be well-defined or ill-defined. A well-defined problem is one where you can clearly see where you are (A), where you want to go (B), and what you need to do to get there (engaging the right operators).

For example, feeling hungry and wanting to eat can be seen as a problem, albeit a simple one for many. Your initial state is hunger (A) and your final state is satisfaction or no hunger (B). Going to the kitchen and finding something to eat is using the right operator.

In contrast, ill-defined or complex problems are those where one or more of the three problem solving stages aren’t clear. For example, if your goal is to bring about world peace, what is it exactly that you want to do?

It’s been rightly said that a problem well-defined is a problem half-solved. Whenever you face an ill-defined problem, the first thing you need to do is get clear about all the three stages.

Often, people will have a decent idea of where they are (A) and where they want to be (B). What they usually get stuck on is finding the right operators.

Initial theory in problem-solving

When people first attempt to solve a problem, i.e. when they first engage their operators, they often have an initial theory of solving the problem. As I mentioned in my article on overcoming challenges for complex problems, this initial theory is often wrong.

But, at the time, it’s usually the result of the best information the individual can gather about the problem. When this initial theory fails, the problem-solver gets more data, and he refines the theory. Eventually, he finds an actual theory i.e. a theory that works. This finally allows him to engage the right operators to move from A to B.

Problem-solving strategies

These are operators that a problem solver tries to move from A to B. There are several problem-solving strategies but the main ones are:

  • Trial and error

1. Algorithms

When you follow a step-by-step procedure to solve a problem or reach a goal, you’re using an algorithm. If you follow the steps exactly, you’re guaranteed to find the solution. The drawback of this strategy is that it can get cumbersome and time-consuming for large problems.

Say I hand you a 200-page book and ask you to read out to me what’s written on page 100. If you start from page 1 and keep turning the pages, you’ll eventually reach page 100. There’s no question about it. But the process is time-consuming. So instead you use what’s called a heuristic.

2. Heuristics

Heuristics are rules of thumb that people use to simplify problems. They’re often based on memories from past experiences. They cut down the number of steps needed to solve a problem, but they don’t always guarantee a solution. Heuristics save us time and effort if they work.

You know that page 100 lies in the middle of the book. Instead of starting from page one, you try to open the book in the middle. Of course, you may not hit page 100, but you can get really close with just a couple of tries.

If you open page 90, for instance, you can then algorithmically move from 90 to 100. Thus, you can use a combination of heuristics and algorithms to solve the problem. In real life, we often solve problems like this.

When police are looking for suspects in an investigation, they try to narrow down the problem similarly. Knowing the suspect is 6 feet tall isn’t enough, as there could be thousands of people out there with that height.

Knowing the suspect is 6 feet tall, male, wears glasses, and has blond hair narrows down the problem significantly.

3. Trial and error

When you have an initial theory to solve a problem, you try it out. If you fail, you refine or change your theory and try again. This is the trial-and-error process of solving problems. Behavioral and cognitive trial and error often go hand in hand, but for many problems, we start with behavioural trial and error until we’re forced to think.

Say you’re in a maze, trying to find your way out. You try one route without giving it much thought and you find it leads to nowhere. Then you try another route and fail again. This is behavioural trial and error because you aren’t putting any thought into your trials. You’re just throwing things at the wall to see what sticks.

This isn’t an ideal strategy but can be useful in situations where it’s impossible to get any information about the problem without doing some trials.

Then, when you have enough information about the problem, you shuffle that information in your mind to find a solution. This is cognitive trial and error or analytical thinking. Behavioral trial and error can take a lot of time, so using cognitive trial and error as much as possible is advisable. You got to sharpen your axe before you cut the tree.

When solving complex problems, people get frustrated after having tried several operators that didn’t work. They abandon their problem and go on with their routine activities. Suddenly, they get a flash of insight that makes them confident they can now solve the problem.

I’ve done an entire article on the underlying mechanics of insight . Long story short, when you take a step back from your problem, it helps you see things in a new light. You make use of associations that were previously unavailable to you.

You get more puzzle pieces to work with and this increases the odds of you finding a path from A to B, i.e. finding operators that work.

Pilot problem-solving

No matter what problem-solving strategy you employ, it’s all about finding out what works. Your actual theory tells you what operators will take you from A to B. Complex problems don’t reveal their actual theories easily solely because they are complex.

Therefore, the first step to solving a complex problem is getting as clear as you can about what you’re trying to accomplish- collecting as much information as you can about the problem.

This gives you enough raw materials to formulate an initial theory. We want our initial theory to be as close to an actual theory as possible. This saves time and resources.

Solving a complex problem can mean investing a lot of resources. Therefore, it is recommended you verify your initial theory if you can. I call this pilot problem-solving.

Before businesses invest in making a product, they sometimes distribute free versions to a small sample of potential customers to ensure their target audience will be receptive to the product.

Before making a series of TV episodes, TV show producers often release pilot episodes to figure out whether the show can take off.

Before conducting a large study, researchers do a pilot study to survey a small sample of the population to determine if the study is worth carrying out.

The same ‘testing the waters’ approach needs to be applied to solving any complex problem you might be facing. Is your problem worth investing a lot of resources in? In management, we’re constantly taught about Return On Investment (ROI). The ROI should justify the investment.

If the answer is yes, go ahead and formulate your initial theory based on extensive research. Find a way to verify your initial theory. You need this reassurance that you’re going in the right direction, especially for complex problems that take a long time to solve.

memories of murder movie scene

Getting your causal thinking right

Problem solving boils down to getting your causal thinking right. Finding solutions is all about finding out what works, i.e. finding operators that take you from A to B. To succeed, you need to be confident in your initial theory (If I do X and Y, they’ll lead me to B). You need to be sure that doing X and Y will lead you to B- doing X and Y will cause B.

All obstacles to problem-solving or goal-accomplishing are rooted in faulty causal thinking leading to not engaging the right operators. When your causal thinking is on point, you’ll have no problem engaging the right operators.

As you can imagine, for complex problems, getting our causal thinking right isn’t easy. That’s why we need to formulate an initial theory and refine it over time.

I like to think of problem-solving as the ability to project the present into the past or into the future. When you’re solving problems, you’re basically looking at your present situation and asking yourself two questions:

“What caused this?” (Projecting present into the past)

“What will this cause?” (Projecting present into the future)

The first question is more relevant to problem-solving and the second to goal-accomplishing.

If you find yourself in a mess , you need to answer the “What caused this?” question correctly. For the operators you’re currently engaging to reach your goal, ask yourself, “What will this cause?” If you think they cannot cause B, it’s time to refine your initial theory.

hanan parvez

Hi, I’m Hanan Parvez (MBA, MA Psychology). My work has been featured in Forbes , Business Insider , Reader’s Digest , and Entrepreneur . When I’m not thinking about human behavior, I… No wait! I’m always thinking about human behavior!

Thinking and Intelligence

Solving problems, learning objectives.

  • Describe problem solving strategies, including algorithms and heuristics

People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

Problem-Solving Strategies

When you are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them. For example, a well-known strategy is trial and error . The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

You can view the transcript for “Can you solve “Einstein’s Riddle”? – Dan Van der Vieren” here (opens in new window) .

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Everyday Connections: Solving Puzzles

Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (Figure 1) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

A four column by four row Sudoku puzzle is shown. The top left cell contains the number 3. The top right cell contains the number 2. The bottom right cell contains the number 1. The bottom left cell contains the number 4. The cell at the intersection of the second row and the second column contains the number 4. The cell to the right of that contains the number 1. The cell below the cell containing the number 1 contains the number 2. The cell to the left of the cell containing the number 2 contains the number 3.

Figure 1 . How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

Here is another popular type of puzzle that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

A square shaped outline contains three rows and three columns of dots with equal space between them.

Figure 2 . Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

Take a look at the “Puzzling Scales” logic puzzle below (Figure 3). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

Figure 3 . The puzzle reads, “Since the scales now balance…and balance when arranged this way, then how many marbles will it require to balance with that top?

Were you able to determine how many marbles are needed to balance the scales in the Puzzling Scales? You need nine. Were you able to solve the other problems above? Here are the answers:

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

Contribute!

Improve this page Learn More

  • Modification and adaptation. Provided by : Lumen Learning. License : CC BY: Attribution
  • Problem-Solving. Authored by : OpenStax College. Located at : https://openstax.org/books/psychology-2e/pages/7-3-problem-solving . License : CC BY: Attribution . License Terms : Download for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • Can you solve Einsteinu2019s Riddle? . Authored by : Dan Van der Vieren. Provided by : Ted-Ed. Located at : https://www.youtube.com/watch?v=1rDVz_Fb6HQ&index=3&list=PLUmyCeox8XCwB8FrEfDQtQZmCc2qYMS5a . License : Other . License Terms : Standard YouTube License

Footer Logo Lumen Waymaker

IMAGES

  1. Problem-Solving Strategies: Definition and 5 Techniques to Try

    problem solving strategies heuristics

  2. Heuristics

    problem solving strategies heuristics

  3. Heuristics decisions and mental thinking shortcut approach outline

    problem solving strategies heuristics

  4. The Five Stages of Problem Solving Heuristic.

    problem solving strategies heuristics

  5. 22 Heuristics Examples (The Types of Heuristics)

    problem solving strategies heuristics

  6. Introduction to Problem Solving Skills

    problem solving strategies heuristics

VIDEO

  1. Problem Solver

  2. PROBLEM SOLVERS

  3. M.A. Psychology IGNOU Describe the various types of intelligence tests.Explain algorithms and heuri

  4. 121. Best Time to Buy and Sell Stock || NEETCODE 150

  5. Best way to solve your problems? Understand and study their source!

  6. Cool Logic problem

COMMENTS

  1. Heuristics: Definition, Examples, and How They Work

    View All. Heuristics are mental shortcuts that allow people to solve problems and make judgments quickly and efficiently. These rule-of-thumb strategies shorten decision-making time and allow people to function without constantly stopping to think about their next course of action. However, there are both benefits and drawbacks of heuristics.

  2. Problem-Solving Strategies: Definition and 5 Techniques to Try

    Heuristics are problem-solving strategies or frameworks people use to quickly find an approximate solution. It may not be the optimal solution, but it's faster than finding the perfect ...

  3. Heuristics In Psychology: Definition & Examples

    Psychologists refer to these efficient problem-solving techniques as heuristics. A heuristic in psychology is a mental shortcut or rule of thumb that simplifies decision-making and problem-solving. Heuristics often speed up the process of finding a satisfactory solution, but they can also lead to cognitive biases.

  4. 8.2 Problem-Solving: Heuristics and Algorithms

    Algorithms. In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your ...

  5. 7.3 Problem-Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.

  6. Heuristic Problem Solving: A comprehensive guide with 5 Examples

    The four stages of heuristics in problem solving are as follows: 1. Understanding the problem: Identifying and defining the problem is the first step in the problem-solving process. 2. Generating solutions: The second step is to generate as many solutions as possible.

  7. Heuristic Method definition, steps and principles

    A heuristic method is an approach to finding a solution to a problem that originates from the ancient Greek word 'eurisko', meaning to 'find', 'search' or 'discover'. It is about using a practical method that doesn't necessarily need to be perfect. Heuristic methods speed up the process of reaching a satisfactory solution.

  8. Heuristics and Problem Solving

    Heuristics are thinking or search strategies for problem solving that can help a problem solver in transforming the initial problematic situation progressively into a routine task for which he or she has the appropriate knowledge and skills to attain the intended goals, namely, the solution of the problem.

  9. 7.3 Problem Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems.

  10. The Problem-Solving Process

    The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything they can about the issue and then using factual knowledge to come up with a solution. ... Common problem-solving strategies include heuristics and algorithms. Heuristics are mental shortcuts that are often ...

  11. Using Heuristic Problem-Solving Methods for Effective ...

    Heuristics are essentially problem-solving tools that can be used for solving non-routine and challenging problems. In this article, we review heuristic method as a practical approach for a short-term goal, such as solving a problem. ... In a previous article, we brought you 5 Problem-Solving Strategies to Become a Better Problem Solver. This ...

  12. Heuristics and biases: The science of decision-making

    A heuristic is a word from the Greek meaning 'to discover'. It is an approach to problem-solving that takes one's personal experience into account. Heuristics provide strategies to scrutinize a limited number of signals and/or alternative choices in decision-making. Heuristics diminish the work of retrieving and storing information in ...

  13. 8.2 Problem-Solving: Heuristics and Algorithms

    In contrast to heuristics, which can be thought of as problem-solving strategies based on educated guesses, algorithms are problem-solving strategies that use rules. Algorithms are generally a logical set of steps that, if applied correctly, should be accurate. For example, you could make a cake using heuristics — relying on your previous ...

  14. Some Helpful Problem-Solving Heuristics

    A heuristic is a thinking strategy, something that can be used to tease out further information about a problem and thus help you figure out what to do when you don't know what to do.Here are 25 heuristics that can be useful in solving problems. They help you monitor your thought processes, to step back and watch yourself at work, and thus keep your cool in a challenging situation.

  15. (PDF) Heuristics and Problem Solving

    Thus, a combination of methods (strategies) rather than one specific method [69] (e.g., heuristics, problem solving, group discussions, giving frequent exercises, etc.) can be applied to minimize ...

  16. Problem Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems.

  17. PDF Strategies, Heuristics and Biases in Complex Problem Solving

    Keywords: Problem solving; strategies; heuristics; biases; means-ends analysis; cognition. Introduction Problem solving is an important mental activity, and a classic research area in cognitive psychology. Problem solving has received less attention recently, and is still largely dominated by the information processing ...

  18. Thought

    A problem-solving heuristic is an informal, intuitive, speculative procedure that leads to a solution in some cases but not in others. The fact that the outcome of applying a heuristic is unpredictable means that the strategy can be either more or less effective than using an algorithm.

  19. PDF Problem Solving Heuristics

    Problem Solving Heuristics SFBA ARML { 1 May 2010 How do people approach a problem that they don't know how to solve? There are a few heuristic strategies when looking for a method to attack a problem. For more information, see P olya's classic book How to Solve It. Before you begin: Be con dent. Believe in yourself. Be creative. Be persistent.

  20. Problem Solving

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems.

  21. Problem-Solving Strategies and Obstacles

    Problem-solving involves taking certain steps and using psychological strategies. Learn problem-solving techniques and how to overcome obstacles to solving problems. ... A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective ...

  22. 4 Main problem-solving strategies

    All therapies aim to equip people with problem-solving strategies to help them deal with their life problems. Problem-solving is really at the core of ... Heuristics; Trial and error; Insight; 1. Algorithms. When you follow a step-by-step procedure to solve a problem or reach a goal, you're using an algorithm. If you follow the steps exactly ...

  23. Solving Problems

    A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A "rule of thumb" is an example of a heuristic.