Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Mapping the global geography of cybercrime with the World Cybercrime Index

Roles Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing – original draft

* E-mail: [email protected]

Affiliations Department of Sociology, University of Oxford, Oxford, United Kingdom, Canberra School of Professional Studies, University of New South Wales, Canberra, Australia

ORCID logo

Roles Conceptualization, Investigation, Methodology, Writing – original draft

Affiliations Department of Sociology, University of Oxford, Oxford, United Kingdom, Oxford School of Global and Area Studies, University of Oxford, Oxford, United Kingdom

Roles Formal analysis, Methodology, Writing – review & editing

Affiliations Department of Sociology, University of Oxford, Oxford, United Kingdom, Leverhulme Centre for Demographic Science, University of Oxford, Oxford, United Kingdom

Roles Funding acquisition, Methodology, Writing – review & editing

Affiliation Department of Software Systems and Cybersecurity, Faculty of IT, Monash University, Victoria, Australia

Roles Conceptualization, Funding acquisition, Methodology, Writing – review & editing

Affiliation Centre d’études européennes et de politique comparée, Sciences Po, Paris, France

  • Miranda Bruce, 
  • Jonathan Lusthaus, 
  • Ridhi Kashyap, 
  • Nigel Phair, 
  • Federico Varese

PLOS

  • Published: April 10, 2024
  • https://doi.org/10.1371/journal.pone.0297312
  • Peer Review
  • Reader Comments

Table 1

Cybercrime is a major challenge facing the world, with estimated costs ranging from the hundreds of millions to the trillions. Despite the threat it poses, cybercrime is somewhat an invisible phenomenon. In carrying out their virtual attacks, offenders often mask their physical locations by hiding behind online nicknames and technical protections. This means technical data are not well suited to establishing the true location of offenders and scholarly knowledge of cybercrime geography is limited. This paper proposes a solution: an expert survey. From March to October 2021 we invited leading experts in cybercrime intelligence/investigations from across the world to participate in an anonymized online survey on the geographical location of cybercrime offenders. The survey asked participants to consider five major categories of cybercrime, nominate the countries that they consider to be the most significant sources of each of these types of cybercrimes, and then rank each nominated country according to the impact, professionalism, and technical skill of its offenders. The outcome of the survey is the World Cybercrime Index, a global metric of cybercriminality organised around five types of cybercrime. The results indicate that a relatively small number of countries house the greatest cybercriminal threats. These findings partially remove the veil of anonymity around cybercriminal offenders, may aid law enforcement and policymakers in fighting this threat, and contribute to the study of cybercrime as a local phenomenon.

Citation: Bruce M, Lusthaus J, Kashyap R, Phair N, Varese F (2024) Mapping the global geography of cybercrime with the World Cybercrime Index. PLoS ONE 19(4): e0297312. https://doi.org/10.1371/journal.pone.0297312

Editor: Naeem Jan, Korea National University of Transportation, REPUBLIC OF KOREA

Received: October 11, 2023; Accepted: January 3, 2024; Published: April 10, 2024

Copyright: © 2024 Bruce et al. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The dataset and relevant documents have been uploaded to the Open Science Framework. Data can be accessed via the following URL: https://osf.io/5s72x/?view_only=ea7ee238f3084054a6433fbab43dc9fb .

Funding: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant agreement No. 101020598 – CRIMGOV, Federico Varese PI). FV received the award and is the Primary Investigator. The ERC did not play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Funder website: https://erc.europa.eu/faq-programme/h2020 .

Competing interests: The authors have declared that no competing interests exist.

Introduction

Although the geography of cybercrime attacks has been documented, the geography of cybercrime offenders–and the corresponding level of “cybercriminality” present within each country–is largely unknown. A number of scholars have noted that valid and reliable data on offender geography are sparse [ 1 – 4 ], and there are several significant obstacles to establishing a robust metric of cybercriminality by country. First, there are the general challenges associated with the study of any hidden population, for whom no sampling frame exists [ 5 , 6 ]. If cybercriminals themselves cannot be easily accessed or reliably surveyed, then cybercriminality must be measured through a proxy. This is the second major obstacle: deciding what kind of proxy data would produce the most valid measure of cybercriminality. While there is much technical data on cybercrime attacks, this data captures artefacts of the digital infrastructure or proxy (obfuscation) services used by cybercriminals, rather than their true physical location. Non-technical data, such as legal cases, can provide geographical attribution for a small number of cases, but the data are not representative of global cybercrime. In short, the question of how best to measure the geography of cybercriminal offenders is complex and unresolved.

There is tremendous value in developing a metric for cybercrime. Cybercrime is a major challenge facing the world, with the most sober cost estimates in the hundreds of millions [ 7 , 8 ], but with high-end estimates in the trillions [ 9 ]. By accurately identifying which countries are cybercrime hotspots, the public and private sectors could concentrate their resources on these hotspots and spend less time and funds on cybercrime countermeasures in countries where the problem is limited. Whichever strategies are deployed in the fight against cybercrime (see for example [ 10 – 12 ]), they should be targeted at countries that produce the largest cybercriminal threat [ 3 ]. A measure of cybercriminality would also enable other lines of scholarly inquiry. For instance, an index of cybercriminality by country would allow for a genuine dependent variable to be deployed in studies attempting to assess which national characteristics–such as educational attainment, Internet penetration, or GDP–are associated with cybercrime [ 4 , 13 ]. These associations could also be used to identify future cybercrime hubs so that early interventions could be made in at-risk countries before a serious cybercrime problem develops. Finally, this metric would speak directly to theoretical debates on the locality of cybercrime, and organized crime more generally [ 11 – 14 ]. The challenge we have accepted is to develop a metric that is both global and robust. The following sections respectively outline the background elements of this study, the methods, the results, and then discussion and limitations.

Profit-driven cybercrime, which is the focus of this paper/research, has been studied by both social scientists and computer scientists. It has been characterised by empirical contributions that have sought to illuminate the nature and organisation of cybercrime both online and offline [ 15 – 20 ]. But, as noted above, the geography of cybercrime has only been addressed by a handful of scholars, and they have identified a number of challenges connected to existing data. In a review of existing work in this area, Lusthaus et al. [ 2 ] identify two flaws in existing cybercrime metrics: 1) their ability to correctly attribute the location of cybercrime offenders; 2) beyond a handful of examples, their ability to compare the severity and scale of cybercrime between countries.

Building attribution into a cybercrime index is challenging. Often using technical data, cybersecurity firms, law enforcement agencies and international organisations regularly publish reports that identify the major sources of cyber attacks (see for example [ 21 – 24 ]). Some of these sources have been aggregated by scholars (see [ 20 , 25 – 29 ]). But the kind of technical data contained in these reports cannot accurately measure offender location. Kigerl [ 1 ] provides some illustrative remarks:

Where the cybercriminals live is not necessarily where the cyberattacks are coming from. An offender from Romania can control zombies in a botnet, mostly located in the United States, from which to send spam to countries all over the world, with links contained in them to phishing sites located in China. The cybercriminal’s reach is not limited by national borders (p. 473).

As cybercriminals often employ proxy services to hide their IP addresses, carry out attacks across national boundaries, collaborate with partners around the world, and can draw on infrastructure based in different countries, superficial measures do not capture the true geographical distribution of these offenders. Lusthaus et al. [ 2 ] conclude that attempts to produce an index of cybercrime by country using technical data suffer from a problem of validity. “If they are a measure of anything”, they argue, “they are a measure of cyber-attack geography”, not of the geography of offenders themselves (p. 452).

Non-technical data are far better suited to incorporating attribution. Court records, indictments and other investigatory materials speak more directly to the identification of offenders and provide more granular detail on their location. But while this type of data is well matched to micro-level analysis and case studies, there are fundamental questions about the representativeness of these small samples, even if collated. First, any sample would capture cases only where cybercriminals had been prosecuted, and would not include offenders that remain at large. Second, if the aim was to count the number of cybercrime prosecutions by country, this may reflect the seriousness with which various countries take cybercrime law enforcement or the resources they have to pursue it, rather than the actual level of cybercrime within each country (for a discussion see [ 30 , 31 ]). Given such concerns, legal data is also not an appropriate approach for such a research program.

Furthermore, to carry out serious study on this topic, a cybercrime metric should aim to include as many countries as possible, and the sample must allow for variation so that high and low cybercrime countries can be compared. If only a handful of widely known cybercrime hubs are studied, this will result in selection on the dependent variable. The obvious challenge in providing such a comparative scale is the lack of good quality data to devise it. As an illustration, in their literature review Hall et al. [ 10 ] identify the “dearth of robust data” on the geographical location of cybercriminals, which means they are only able to include six countries in their final analysis (p. 285. See also [ 4 , 32 , 33 ]).

Considering the weaknesses within both existing technical and legal data discussed above, Lusthaus et al. [ 2 ] argue for the use of an expert survey to establish a global metric of cybercriminality. Expert survey data “can be extrapolated and operationalised”, and “attribution can remain a key part of the survey, as long as the participants in the sample have an extensive knowledge of cybercriminals and their operations” (p. 453). Up to this point, no such study has been produced. Such a survey would need to be very carefully designed for the resulting data to be both reliable and valid. One criticism of past cybercrime research is that surveys were used whenever other data was not immediately available, and that they were not always designed with care (for a discussion see [ 34 ]).

In response to the preceding considerations, we designed an expert survey in 2020, refined it through focus groups, and deployed it throughout 2021. The survey asked participants to consider five major types of cybercrime– Technical products/services ; Attacks and extortion ; Data/identity theft ; Scams ; and Cashing out/money laundering –and nominate the countries that they consider to be the most significant sources of each of these cybercrime types. Participants then rated each nominated country according to the impact of the offenses produced there, and the professionalism and technical skill of the offenders based there. Using the expert responses, we generated scores for each type of cybercrime, which we then combined into an overall metric of cybercriminality by country: the World Cybercrime Index (WCI). The WCI achieves our initial goal to devise a valid measure of cybercrime hub location and significance, and is the first step in our broader aim to understand the local dimensions of cybercrime production across the world.

Participants

Identifying and recruiting cybercrime experts is challenging. Much like the hidden population of cybercriminals we were trying to study, cybercrime experts themselves are also something of a hidden population. Due to the nature of their work, professionals working in the field of cybercrime tend to be particularly wary of unsolicited communication. There is also the problem of determining who is a true cybercrime expert, and who is simply presenting themselves as one. We designed a multi-layered sampling method to address such challenges.

The heart of our strategy involved purposive sampling. For an index based entirely on expert opinion, ensuring the quality of these experts (and thereby the quality of our survey results) was of the utmost importance. We defined “expertise” as adult professionals who have been engaged in cybercrime intelligence, investigation, and/or attribution for a minimum of five years and had a reputation for excellence amongst their peers. Only currently- or recently-practicing intelligence officers and investigators were included in the participant pool. While participants could be from either the public or private sectors, we explicitly excluded professionals working in the field of cybercrime research who are not actively involved in tracking offenders, which includes writers and academics. In short, only experts with first-hand knowledge of cybercriminals are included in our sample. To ensure we had the leading experts from a wide range of backgrounds and geographical areas, we adopted two approaches for recruitment. We searched extensively through a range of online sources including social media (e.g. LinkedIn), corporate sites, news articles and cybercrime conference programs to identify individuals who met our inclusion criteria. We then faced a second challenge of having to find or discern contact information for these individuals.

Complementing this strategy, the authors also used their existing relationships with recognised cybercrime experts to recruit participants using the “snowball” method [ 35 ]. This both enhanced access and provided a mechanism for those we knew were bona fide experts to recommend other bona fide experts. The majority of our participants were recruited in this manner, either directly through our initial contacts or through a series of referrals that followed. But it is important to note that this snowball sampling fell under our broader purposive sampling strategy. That is, all the original “seeds” had to meet our inclusion criteria of being a top expert in the first instance. Any connections we were offered also had to meet our criteria or we would not invite them to participate. Another important aspect of this sampling strategy is that we did not rely on only one gatekeeper, but numerous, often unrelated, individuals who helped us with introductions. This approach reduced bias in the sample. It was particularly important to deploy a number of different “snowballs” to ensure that we included experts from each region of the world (Africa, Asia Pacific, Europe, North America and South America) and from a range of relevant professional backgrounds. We limited our sampling strategy to English speakers. The survey itself was likewise written in English. The use of English was partly driven by the resources available for this study, but the population of cybercrime experts is itself very global, with many attending international conferences and cooperating with colleagues from across the world. English is widely spoken within this community. While we expect the gains to be limited, future surveys will be translated into some additional languages (e.g. Spanish and Chinese) to accommodate any non-English speaking experts that we may not otherwise be able to reach.

Our survey design, detailed below, received ethics approval from the Human Research Advisory Panel (HREAP A) at the University of New South Wales in Australia, approval number HC200488, and the Research Ethics Committee of the Department of Sociology (DREC) at the University of Oxford in the United Kingdom, approval number SOC_R2_001_C1A_20_23. Participants were recruited in waves between 1 August 2020 and 30 September 2021. All participants provided consent to participate in the focus groups, pilot survey, and final survey.

Survey design

The survey comprised three stages. First, we conducted three focus groups with seven experts in cybercrime intelligence/investigations to evaluate our initial assumptions, concepts, and framework. These experts were recruited because they had reputations as some of the very top experts in the field; they represented a range of backgrounds in terms of their own geographical locations and expertise across different types of cybercrime; and they spanned both the public and private sectors. In short, they offered a cross-section of the survey sample we aimed to recruit. These focus groups informed several refinements to the survey design and specific terms to make them better comprehensible to participants. Some of the key terms, such as “professionalism” and “impact”, were a direct result of this process. Second, some participants from the focus groups then completed a pilot version of the survey, alongside others who had not taken part in these focus groups, who could offer a fresh perspective. This allowed us to test technical components, survey questions, and user experience. The pilot participants provided useful feedback and prompted a further refinement of our approach. The final survey was released online in March 2021 and closed in October 2021. We implemented several elements to ensure data quality, including a series of preceding statements about time expectations, attention checks, and visual cues throughout the survey. These elements significantly increased the likelihood that our participants were both suitable and would provide full and thoughtful responses.

The introduction to the survey outlined the survey’s two main purposes: to identify which countries are the most significant sources of profit-driven cybercrime, and to determine how impactful the cybercrime is in these locations. Participants were reminded that state-based actors and offenders driven primarily by personal interests (for instance, cyberbullying or harassment) should be excluded from their consideration. We defined the “source” of cybercrime as the country where offenders are primarily based, rather than their nationality. To maintain a level of consistency, we made the decision to only include countries formally recognised by the United Nations. We initially developed seven categories of cybercrime to be included in the survey, based on existing research. But during the focus groups and pilot survey, our experts converged on five categories as the most significant cybercrime threats on a global scale:

  • Technical products/services (e.g. malware coding, botnet access, access to compromised systems, tool production).
  • Attacks and extortion (e.g. DDoS attacks, ransomware).
  • Data/identity theft (e.g. hacking, phishing, account compromises, credit card comprises).
  • Scams (e.g. advance fee fraud, business email compromise, online auction fraud).
  • Cashing out/money laundering (e.g. credit card fraud, money mules, illicit virtual currency platforms).

After being prompted with these descriptions and a series of images of world maps to ensure participants considered a wide range of regions/countries, participants were asked to nominate up to five countries that they believed were the most significant sources of each of these types of cybercrime. Countries could be listed in any order; participants were not instructed to rank them. Nominating countries was optional and participants were free to skip entire categories if they wished. Participants were then asked to rate each of the countries they nominated against three measures: how impactful the cybercrime is, how professional the cybercrime offenders are, and how technically skilled the cybercrime offenders are. Across each of these three measures, participants were asked to assign scores on a Likert-type scale between 1 (e.g. least professional) to 10 (e.g. most professional). Nominating and then rating countries was repeated for all five cybercrime categories.

This process, of nominating and then rating countries across each category, introduces a potential limitation in the survey design: the possibility of survey response fatigue. If a participant nominated the maximum number of countries across each cybercrime category– 25 countries–by the end of the survey they would have completed 75 Likert-type scales. The repetition of this task, paired with the consideration that it requires, has the potential to introduce respondent fatigue as the survey progresses, in the form of response attrition, an increase in careless responses, and/or increased likelihood of significantly higher/lower scores given. This is a common phenomenon in long-form surveys [ 36 ], and especially online surveys [ 37 , 38 ]. Jeong et al [ 39 ], for instance, found that questions asked near the end of a 2.5 hour survey were 10–64% more likely to be skipped than those at the beginning. We designed the survey carefully, refined with the aid of focus groups and a pilot, to ensure that only the most essential questions were asked. As such, the survey was not overly long (estimated to take 30 minutes). To accommodate any cognitive load, participants were allowed to complete the survey anytime within a two-week window. Their progress was saved after each session, which enabled participants to take breaks between completing each section (a suggestion made by Jeong et al [ 39 ]). Crucially, throughout survey recruitment, participants were informed that the survey is time-intensive and required significant attention. At the beginning of the survey, participants were instructed not to undertake the survey unless they could allocate 30 minutes to it. This approach pre-empted survey fatigue by discouraging those likely to lose interest from participating. This compounds the fact that only experts with a specific/strong interest in the subject matter of the survey were invited to participate. Survey fatigue is addressed further in the Discussion section, where we provide an analysis suggesting little evidence of participant fatigue.

In sum, we designed the survey to protect against various sources of bias and error, and there are encouraging signs that the effects of these issues in the data are limited (see Discussion ). Yet expert surveys are inherently prone to some types of bias and response issues; in the WCI, the issue of selection and self-selection within our pool of experts, as well as geo-political biases that may lead to systematic over- or under-scoring of certain countries, is something we considered closely. We discuss these issues in detail in the subsection on Limitations below.

research paper on cyber crime pdf

This “type” score is then multiplied by the proportion of experts who nominated that country. Within each cybercrime type, a country could be nominated a possible total of 92 times–once per participant. We then multiply this weighted score by ten to produce a continuous scale out of 100 (see Eq (2) ). This process prevents countries that received high scores, but a low number of nominations, from receiving artificially high rankings.

research paper on cyber crime pdf

The analyses for this paper were performed in R. All data and code have been made publicly available so that our analysis can be reproduced and extended.

We contacted 245 individuals to participate in the survey, of which 147 agreed and were sent invitation links to participate. Out of these 147, a total of 92 people completed the survey, giving us an overall response rate of 37.5%. Given the expert nature of the sample, this is a high response rate (for a detailed discussion see [ 40 ]), and one just below what Wu, Zhao, and Fils-Aime estimate of response rates for general online surveys in social science: 44% [ 41 ]. The survey collected information on the participants’ primary nationality and their current country of residence. Four participants chose not to identify their nationality. Overall, participants represented all five major geopolitical regions (Africa, the Asia-Pacific, Europe, North America and South America), both in nationality and residence, though the distribution was uneven and concentrated in particular regions/countries. There were 8 participants from Africa, 11 participants from the Asia Pacific, 27 from North America, and 39 from Europe. South America was the least represented region with only 3 participants. A full breakdown of participants’ nationality, residence, and areas of expertise is included in the Supporting Information document (see S1 Appendix ).

Table 1 shows the scores for the top fifteen countries of the WCI overall index. Each entry shows the country, along with the mean score (out of 10) averaged across the participants who nominated this country, for three categories: impact, professionalism, and technical skill. This is followed by each country’s WCI overall and WCI type scores. Countries are ordered by their WCI overall score. Each country’s highest WCI type scores are highlighted. Full indices that include all 197 UN-recognised countries can be found in S1 Indices .

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0297312.t001

Some initial patterns can be observed from this table, as well as the full indices in the supplementary document (see S1 Indices ). First, a small number of countries hold consistently high ranks for cybercrime. Six countries–China, Russia, Ukraine, the US, Romania, and Nigeria–appear in the top 10 of every WCI type index, including the WCI overall index. Aside from Romania, all appear in the top three at least once. While appearing in a different order, the first ten countries in the Technical products/services and Attacks and extortion indices are the same. Second, despite this small list of countries regularly appearing as cybercrime hubs, the survey results capture a broad geographical diversity. All five geopolitical regions are represented across each type. Overall, 97 distinct countries were nominated by at least one expert. This can be broken down into the cybercrime categories. Technical products/services includes 41 different countries; Attacks and extortion 43; Data/identity theft 51; Scams 49; and Cashing out/money laundering 63.

Some key findings emerge from these results, which are further illustrated by the following Figs 1 and 2 . First, cybercrime is not universally distributed. Certain countries are cybercrime hubs, while many others are not associated with cybercriminality in a serious way. Second, countries that are cybercrime hubs specialise in particular types of cybercrime. That is, despite a small number of countries being leading producers of cybercrime, there is meaningful variation between them both across categories, and in relation to scores for impact, professionalism and technical skill. Third, the results show a longer list of cybercrime-producing countries than are usually included in publications on the geography of cybercrime. As the survey captures leading producers of cybercrime, rather than just any country where cybercrime is present, this suggests that, even if a small number of countries are of serious concern, and close to 100 are of little concern at all, the remaining half are of at least moderate concern.

thumbnail

Base map and data from OpenStreetMap and OpenStreetMap Foundation.

https://doi.org/10.1371/journal.pone.0297312.g001

thumbnail

https://doi.org/10.1371/journal.pone.0297312.g002

To examine further the second finding concerning hub specialisation, we calculated an overall “Technicality score”–or “T-score”–for the top 15 countries of the WCI overall index. We assigned a value from 2 to -2 to each type of cybercrime to designate the level of technical complexity involved. Technical products/services is the most technically complex type (2), followed by Attacks and extortion (1), Data/identity theft (0), Scams (-1), and finally Cashing out and money laundering (-2), which has very low technical complexity. We then multiplied each country’s WCI score for each cybercrime type by its assigned value–for instance, a Scams WCI score of 5 would be multiplied by -1, with a final modified score of -5. As a final step, for each country, we added all of their modified WCI scores across all five categories together to generate the T-score. Fig 3 plots the top 15 WCI overall countries’ T-scores, ordering them by score. Countries with negative T-scores are highlighted in red, and countries with positive scores are in black.

thumbnail

Negative values correspond to lower technicality, positive values to higher technicality.

https://doi.org/10.1371/journal.pone.0297312.g003

The T-score is best suited to characterising a given hub’s specialisation. For instance, as the line graph makes clear, Russia and Ukraine are highly technical cybercrime hubs, whereas Nigerian cybercriminals are engaged in less technical forms of cybercrime. But for countries that lie close to the centre (0), the story is more complex. Some may specialise in cybercrime types with middling technical complexity (e.g. Data/identity theft ). Others may specialise in both high- and low-tech crimes. In this sample of countries, India (-6.02) somewhat specialises in Scams but is otherwise a balanced hub, whereas Romania (10.41) and the USA (-2.62) specialise in both technical and non-technical crimes, balancing their scores towards zero. In short, each country has a distinct profile, indicating a unique local dimension.

This paper introduces a global and robust metric of cybercriminality–the World Cybercrime Index. The WCI moves past previous technical measures of cyber attack geography to establish a more focused measure of the geography of cybercrime offenders. Elicited through an expert survey, the WCI shows that cybercrime is not universally distributed. The key theoretical contribution of this index is to illustrate that cybercrime, often seen as a fluid and global type of organized crime, actually has a strong local dimension (in keeping with broader arguments by some scholars, such as [ 14 , 42 ]).

While we took a number of steps to ensure our sample of experts was geographically representative, the sample is skewed towards some regions (such as Europe) and some countries (such as the US). This may simply reflect the high concentration of leading cybercrime experts in these locations. But it is also possible this distribution reflects other factors, including the authors’ own social networks; the concentration of cybercrime taskforces and organisations in particular countries; the visibility of different nations on networking platforms like LinkedIn; and also perhaps norms of enthusiasm or suspicion towards foreign research projects, both inside particular organisations and between nations.

To better understand what biases might have influenced the survey data, we analysed participant rating behaviours with a series of linear regressions. Numerical ratings were the response and different participant characteristics–country of nationality; country of residence; crime type expertise; and regional expertise–were the predictors. Our analysis found evidence (p < 0.05) that participants assigned higher ratings to the countr(ies) they either reside in or are citizens of, though this was not a strong or consistent result. For instance, regional experts did not consistently rate their region of expertise more highly than other regions. European and North American experts, for example, rated countries from these regions lower than countries from other regions. Our analysis of cybercrime type expertise showed even less systematic rating behaviour, with no regression yielding a statistically significant (p < 0.05) result. Small sample sizes across other known participant characteristics meant that further analyses of rating behaviour could not be performed. This applied to, for instance, whether residents and citizens of the top ten countries in the WCI nominated their own countries more or less often than other experts. On this point: 46% of participants nominated their own country at some point in the survey, but the majority (83%) of nominations were for a country different to the participant’s own country of residence or nationality. This suggested limited bias towards nominating one’s own country. Overall, these analyses point to an encouraging observation: while there is a slight home-country bias, this does not systematically result in higher rating behaviour. Longitudinal data from future surveys, as well as a larger participant pool, will better clarify what other biases may affect rating behaviour.

There is little evidence to suggest that survey fatigue affected our data. As the survey progressed, the heterogeneity of nominated countries across all experts increased, from 41 different countries nominated in the first category to 63 different countries nominated in the final category. If fatigue played a significant role in the results then we would expect this number to decrease, as participants were not required to nominate countries within a category and would have been motivated to nominate fewer countries to avoid extending their survey time. We further investigated the data for evidence of survey fatigue in two additional ways: by performing a Mann-Kendall/Sen’s slope trend test (MK/S) to determine whether scores skewed significantly upwards or downwards towards the end of the survey; and by compiling an intra-individual response variability (IRV) index to search for long strings of repeated scores at the end of the survey [ 43 ]. The MK/S test was marginally statistically significant (p<0.048), but the results indicated that scores trended downwards only minimally (-0.002 slope coefficient). Likewise, while the IRV index uncovered a small group of participants (n = 5) who repeatedly inserted the same score, this behaviour was not more likely to happen at the end of the survey (see S7 and S8 Tables in S1 Appendix ).

It is encouraging that there is at least some external validation for the WCI’s highest ranked countries. Steenbergen and Marks [ 44 ] recommend that data produced from expert judgements should “demonstrate convergent validity with other measures of [the topic]–that is, the experts should provide evaluations of the same […] phenomenon that other measurement instruments pick up.” (p. 359) Most studies of the global cybercrime geography are, as noted in the introduction, based on technical measures that cannot accurately establish the true physical location of offenders (for example [ 1 , 4 , 28 , 33 , 45 ]). Comparing our results to these studies would therefore be of little value, as the phenomena being measured differs: they are measuring attack infrastructure, whereas the WCI measures offender location. Instead, looking at in-depth qualitative cybercrime case studies would provide a better comparison, at least for the small number of higher ranked countries. Though few such studies into profit-driven cybercrime exist, and the number of countries included are limited, we can see that the top ranked countries in the WCI match the key cybercrime producing countries discussed in the qualitative literature (see for example [ 3 , 10 , 32 , 46 – 50 ]). Beyond this qualitative support, our sampling strategy–discussed in the Methods section above–is our most robust control for ensuring the validity of our data.

Along with contributing to theoretical debates on the (local) nature of organized crime [ 1 , 14 ], this index can also contribute to policy discussions. For instance, there is an ongoing debate as to the best approaches to take in cybercrime reduction, whether this involves improving cyber-law enforcement capacity [ 3 , 51 ], increasing legitimate job opportunities and access to youth programs for potential offenders [ 52 , 53 ], strengthening international agreements and law harmonization [ 54 – 56 ], developing more sophisticated and culturally-specific social engineering countermeasures [ 57 ], or reducing corruption [ 3 , 58 ]. As demonstrated by the geographical, economic, and political diversity of the top 15 countries (see Table 1 ), the likelihood that a single strategy will work in all cases is low. If cybercrime is driven by local factors, then mitigating it may require a localised approach that considers the different features of cybercrime in these contexts. But no matter what strategies are applied in the fight against cybercrime, they should be targeted at the countries that produce the most cybercrime, or at least produce the most impactful forms of it [ 3 ]. An index is a valuable resource for determining these countries and directing resources appropriately. Future research that explains what is driving cybercrime in these locations might also suggest more appropriate means for tackling the problem. Such an analysis could examine relevant correlates, such as corruption, law enforcement capacity, internet penetration, education levels and so on to inform/test a theoretically-driven model of what drives cybercrime production in some locations, but not others. It also might be possible to make a kind of prediction: to identify those nations that have not yet emerged as cybercrime hubs but may in the future. This would allow an early warning system of sorts for policymakers seeking to prevent cybercrime around the world.

Limitations

In addition to the points discussed above, the findings of the WCI should be considered in light of some remaining limitations. Firstly, as noted in the methods, our pool of experts was not as large or as globally representative as we had hoped. Achieving a significant response rate is a common issue across all surveys, and is especially difficult in those that employ the snowball technique [ 59 ] and also attempt to recruit experts [ 60 ]. However, ensuring that our survey data captures the most accurate picture of cybercrime activity is an essential aspect of the project, and the under-representation of experts from Africa and South America is noteworthy. More generally, our sample size (n = 92) is relatively small. Future iterations of the WCI survey should focus on recruiting a larger pool of experts, especially those from under-represented regions. However, this is a small and hard-to-reach population, which likely means the sample size will not grow significantly. While this limits statistical power, it is also a strength of the survey: by ensuring that we only recruit the top cybercrime experts in the world, the weight and validity of our data increases.

Secondly, though we developed our cybercrime types and measures with expert focus groups, the definitions used in the WCI will always be contestable. For instance, a small number of comments left at the end of the survey indicated that the Cashing out/money laundering category was unclear to some participants, who were unsure whether they should nominate the country in which these schemes are organised or the countries in which the actual cash out occurs. A small number of participants also commented that they were not sure whether the ‘impact’ of a country’s cybercrime output should be measured in terms of cost, social change, or some other metric. We limited any such uncertainties by running a series of focus groups to check that our categories were accurate to the cybercrime reality and comprehensible to practitioners in this area. We also ran a pilot version of the survey. The beginning of the survey described the WCI’s purpose and terms of reference, and participants were able to download a document that described the project’s methodology in further detail. Each time a participant was prompted to nominate countries as a significant source of a type of cybercrime, the type was re-defined and examples of offences under that type were provided. However, the examples were not exhaustive and the definitions were brief. This was done partly to avoid significantly lengthening the survey with detailed definitions and clarifications. We also wanted to avoid over-defining the cybercrime types so that any new techniques or attack types that emerged while the survey ran would be included in the data. Nonetheless, there will always remain some elasticity around participant interpretations of the survey.

Finally, although we restricted the WCI to profit-driven activity, the distinction between cybercrime that is financially-motivated, and cybercrime that is motivated by other interests, is sometimes blurred. Offenders who typically commit profit-driven offences may also engage in state-sponsored activities. Some of the countries with high rankings within the WCI may shelter profit-driven cybercriminals who are protected by corrupt state actors of various kinds, or who have other kinds of relationships with the state. Actors in these countries may operate under the (implicit or explicit) sanctioning of local police or government officials to engage in cybercrime. Thus while the WCI excludes state-based attacks, it may include profit-driven cybercriminals who are protected by states. Investigating the intersection between profit-driven cybercrime and the state is a strong focus in our ongoing and future research. If we continue to see evidence that these activities can overlap (see for example [ 32 , 61 – 63 ]), then any models explaining the drivers of cybercrime will need to address this increasingly important aspect of local cybercrime hubs.

This study makes use of an expert survey to better measure the geography of profit-driven cybercrime and presents the output of this effort: the World Cybercrime Index. This index, organised around five major categories of cybercrime, sheds light on the geographical concentrations of financially-motivated cybercrime offenders. The findings reveal that a select few countries pose the most significant cybercriminal threat. By illustrating that hubs often specialise in particular forms of cybercrime, the WCI also offers valuable insights into the local dimension of cybercrime. This study provides a foundation for devising a theoretically-driven model to explain why some countries produce more cybercrime than others. By contributing to a deeper understanding of cybercrime as a localised phenomenon, the WCI may help lift the veil of anonymity that protects cybercriminals and thereby enhance global efforts to combat this evolving threat.

Supporting information

S1 indices. wci indices..

Full indices for the WCI Overall and each WCI Type.

https://doi.org/10.1371/journal.pone.0297312.s001

S1 Appendix. Supporting information.

Details of respondent characteristics and analysis of rating behaviour.

https://doi.org/10.1371/journal.pone.0297312.s002

Acknowledgments

The data collection for this project was carried out as part of a partnership between the Department of Sociology, University of Oxford and UNSW Canberra Cyber. The analysis and writing phases received support from CRIMGOV. Fig 1 was generated using information from OpenStreetMap and OpenStreetMap Foundation, which is made available under the Open Database License.

  • View Article
  • Google Scholar
  • 2. Lusthaus J, Bruce M, Phair N. Mapping the geography of cybercrime: A review of indices of digital offending by country. 2020.
  • 4. McCombie S, Pieprzyk J, Watters P. Cybercrime Attribution: An Eastern European Case Study. Proceedings of the 7th Australian Digital Forensics Conference. Perth, Australia: secAU—Security Research Centre, Edith Cowan University; 2009. pp. 41–51. https://researchers.mq.edu.au/en/publications/cybercrime-attribution-an-eastern-european-case-study
  • 7. Anderson R, Barton C, Bohme R, Clayton R, van Eeten M, Levi M, et al. Measuring the cost of cybercrime. The Economics of Information Security and Privacy. Springer; 2013. pp. 265–300. https://link.springer.com/chapter/10.1007/978-3-642-39498-0_12
  • 8. Anderson R, Barton C, Bohme R, Clayton R, Ganan C, Grasso T, et al. Measuring the Changing Cost of Cybercrime. California, USA; 2017.
  • 9. Morgan S. 2022 Official Cybercrime Report. Cybersecurity Ventures; 2022. https://s3.ca-central-1.amazonaws.com/esentire-dot-com-assets/assets/resourcefiles/2022-Official-Cybercrime-Report.pdf
  • 12. Wall D. Cybercrime: The Transformation of Crime in the Information Age. Polity Press; 2007.
  • 14. Varese F. Mafias on the move: how organized crime conquers new territories. Princeton University Press; 2011.
  • 15. Dupont B. Skills and Trust: A Tour Inside the Hard Drives of Computer Hackers. Crime and networks. Routledge; 2013.
  • 16. Franklin J, Paxson V, Savage S. An Inquiry into the Nature and Causes of the Wealth of Internet Miscreants. Proceedings of the 2007 ACM Conference on Computer and Communications Security. Alexandria, Virginia, USA; 2007.
  • 17. Hutchings A, Clayton R. Configuring Zeus: A case study of online crime target selection and knowledge transmission. Scottsdale, AZ, USA: IEEE; 2017.
  • 20. Levesque F, Fernandez J, Somayaji A, Batchelder. National-level risk assessment: A multi-country study of malware infections. 2016. https://homeostasis.scs.carleton.ca/~soma/pubs/levesque-weis2016.pdf
  • 21. Crowdstrike. 2022 Global Threat Report. Crowdstrike; 2022. https://go.crowdstrike.com/crowdstrike/gtr
  • 22. EC3. Internet Organised Crime Threat Assessment (IOCTA) 2021. EC3; 2021. https://www.europol.europa.eu/publications-events/main-reports/internet-organised-crime-threat-assessment-iocta-2021
  • 23. ENISA. ENISA threat Landscape 2021. ENISA; 2021. https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
  • 24. Sophos. Sophos 2022 Threat Report. Sophos; 2022. https://www.sophos.com/ en-us/labs/security-threat-report
  • 25. van Eeten M, Bauer J, Asghari H, Tabatabaie S, Rand D. The Role of Internet Service Providers in Botnet Mitigation. An Empirical Analysis Based on Spam Data WEIS. 2010. van Eeten, Michel and Bauer, Johannes M. and Asghari, Hadi and Tabatabaie, Shirin and Rand, David, The Role of Internet Service Providers in Botnet Mitigation an Empirical Analysis Based on Spam Data (August 15, 2010). TPRC 2010, SSRN: https://ssrn.com/abstract=1989198
  • 26. He S, Lee GM, Quarterman JS, Whinston A. Cybersecurity Policies Design and Evaluation: Evidence from a Large-Scale Randomized Field Experiment. 2015. https://econinfosec.org/archive/weis2015/papers/WEIS_2015_he.pdf
  • 27. Snyder P, Kanich C. No Please, After You: Detecting Fraud in Affiliate Marketing Networks. 2015. https://econinfosec.org/archive/weis2015/papers/WEIS_2015_snyder.pdf
  • 29. Wang Q-H, Kim S-H. Cyber Attacks: Cross-Country Interdependence and Enforcement. 2009. http://weis09.infosecon.net/files/153/paper153.pdf
  • 32. Lusthaus J. Industry of Anonymity: Inside the Business of Cybercrime. Harvard University Press; 2018.
  • 33. Kshetri N. The Global Cybercrime Industry: Economic, Institutional and Strategic Perspectives. Berlin: Springer; 2010.
  • 36. Backor K, Golde S, Nie N. Estimating Survey Fatigue in Time Use Study. Washington, DC.; 2007. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=401f97f2d7c684b295486636d8a84c627eb33446
  • 42. Reuter P. Disorganized Crime: Illegal Markets and the Mafia. MIT Press; 1985.
  • PubMed/NCBI
  • 47. Sotande E. Transnational Organised Crime and Illicit Financial Flows: Nigeria, West Africa and the Global North. University of Leeds, School of Law. 2016. https://etheses.whiterose.ac.uk/15473/1/Emmanuel%20Sotande%20Thessis%20at%20the%20University%20of%20Leeds.%20viva%20corrected%20version%20%281%29.pdf
  • 48. Lusthaus J. Modelling cybercrime development: the case of Vietnam. The Human Factor of Cybercrime. Routledge; 2020. pp. 240–257.
  • 51. Lusthaus J. Electronic Ghosts. In: Democracy: A Journal of Ideas [Internet]. 2014. https://democracyjournal.org/author/jlusthaus/
  • 52. Brewer R, de Vel-Palumbo M, Hutchings A, Maimon D. Positive Diversions. Cybercrime Prevention. 2019. https://www.researchgate.net/publication/337297392_Positive_Diversions
  • 53. National Cyber Crime Unit / Prevent Team. Pathways Into Cyber Crime. National Crime Agency; 2017. https://www.nationalcrimeagency.gov.uk/who-we-are/publications/6-pathways-into-cyber-crime-1/file
  • 60. Christopoulos D. Peer Esteem Snowballing: A methodology for expert surveys. 2009. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=63ac9f6db0a2fa2e0ca08cd28961385f98ec21ec

Global cyber attack around the world with planet Earth viewed from space and internet network communication under cyberattack portrayed with red icons of an unlocked padlock.

World-first “Cybercrime Index” ranks countries by cybercrime threat level

Following three years of intensive research, an international team of researchers have compiled the first ever ‘World Cybercrime Index’, which identifies the globe’s key cybercrime hotspots by ranking the most significant sources of cybercrime at a national level.

The Index, published today in the journal PLOS ONE , shows that a relatively small number of countries house the greatest cybercriminal threat. Russia tops the list, followed by Ukraine, China, the USA, Nigeria, and Romania. The UK comes in at number eight.

A white woman with long brown hair standing in front of a hedge. A white man wearing a check shirt standing in front of a bookcase.

‘The research that underpins the Index will help remove the veil of anonymity around cybercriminal offenders, and we hope that it will aid the fight against the growing threat of profit-driven cybercrime,’ Dr Bruce said.

‘We now have a deeper understanding of the geography of cybercrime, and how different countries specialise in different types of cybercrime.’

‘By continuing to collect this data, we’ll be able to monitor the emergence of any new hotspots and it is possible early interventions could be made in at-risk countries before a serious cybercrime problem even develops.’

The data that underpins the Index was gathered through a survey of 92 leading cybercrime experts from around the world who are involved in cybercrime intelligence gathering and investigations. The survey asked the experts to consider five major categories of cybercrime*, nominate the countries that they consider to be the most significant sources of each of these types of cybercrime, and then rank each country according to the impact, professionalism, and technical skill of its cybercriminals.

List of countries with their World Cybercrime Index score. The top ten countries are Russia, Ukraine, China, the US, Nigeria, Romania, North Korea, UK, Brazil and India.

Co-author Associate Professor Jonathan Lusthaus , from the University of Oxford’s Department of Sociology and Oxford School of Global and Area Studies, said cybercrime has largely been an invisible phenomenon because offenders often mask their physical locations by hiding behind fake profiles and technical protections.

'Due to the illicit and anonymous nature of their activities, cybercriminals cannot be easily accessed or reliably surveyed. They are actively hiding. If you try to use technical data to map their location, you will also fail, as cybercriminals bounce their attacks around internet infrastructure across the world. The best means we have to draw a picture of where these offenders are actually located is to survey those whose job it is to track these people,' Dr Lusthaus said.

Figuring out why some countries are cybercrime hotspots, and others aren't, is the next stage of the research. There are existing theories about why some countries have become hubs of cybercriminal activity - for example, that a technically skilled workforce with few employment opportunities may turn to illicit activity to make ends meet - which we'll be able to test against our global data set. Dr Miranda Bruce  Department of Sociology, University of Oxford and UNSW Canberra   

Co-author of the study, Professor Federico Varese from Sciences Po in France, said the World Cybercrime Index is the first step in a broader aim to understand the local dimensions of cybercrime production across the world.

‘We are hoping to expand the study so that we can determine whether national characteristics like educational attainment, internet penetration, GDP, or levels of corruption are associated with cybercrime. Many people think that cybercrime is global and fluid, but this study supports the view that, much like forms of organised crime, it is embedded within particular contexts,’ Professor Varese said.

The World Cybercrime Index has been developed as a joint partnership between the University of Oxford and UNSW and has also been funded by CRIMGOV , a European Union-supported project based at the University of Oxford and Sciences Po. The other co-authors of the study include Professor Ridhi Kashyap from the University of Oxford and Professor Nigel Phair from Monash University.

The study ‘Mapping the global geography of cybercrime with the World Cybercrime Index’ has been published in the journal PLOS ONE .

*The five major categories of cybercrime assessed by the study were:

1.   Technical products/services (e.g. malware coding, botnet access, access to compromised systems, tool production).

2.   Attacks and extortion (e.g. denial-of-service attacks, ransomware).

3.   Data/identity theft (e.g. hacking, phishing, account compromises, credit card comprises).

4.   Scams (e.g. advance fee fraud, business email compromise, online auction fraud).

5.   Cashing out/money laundering (e.g. credit card fraud, money mules, illicit virtual currency platforms).

Subscribe to News

DISCOVER MORE

  • Support Oxford's research
  • Partner with Oxford on research
  • Study at Oxford
  • Research jobs at Oxford

You can view all news or browse by category

Advertisement

Advertisement

Cybercrime and Artificial Intelligence. An overview of the work of international organizations on criminal justice and the international applicable instruments

  • Open access
  • Published: 22 February 2022
  • Volume 23 , pages 109–126, ( 2022 )

Cite this article

You have full access to this open access article

  • Cristos Velasco 1 , 2 , 3  

14k Accesses

8 Citations

5 Altmetric

Explore all metrics

The purpose of this paper is to assess whether current international instruments to counter cybercrime may apply in the context of Artificial Intelligence (AI) technologies and to provide a short analysis of the ongoing policy initiatives of international organizations that would have a relevant impact in the law-making process in the field of cybercrime in the near future. This paper discusses the implications that AI policy making would bring to the administration of the criminal justice system to specifically counter cybercrimes. Current trends and uses of AI systems and applications to commit harmful and illegal conduct are analysed including deep fakes. The paper finalizes with a conclusion that offers an alternative to create effective policy responses to counter cybercrime committed through AI systems.

Similar content being viewed by others

research paper on cyber crime pdf

Cyber risk and cybersecurity: a systematic review of data availability

Frank Cremer, Barry Sheehan, … Stefan Materne

research paper on cyber crime pdf

AI-Driven Cybersecurity: An Overview, Security Intelligence Modeling and Research Directions

Iqbal H. Sarker, Md Hasan Furhad & Raza Nowrozy

research paper on cyber crime pdf

Cyber Security Threats and Vulnerabilities: A Systematic Mapping Study

Mamoona Humayun, Mahmood Niazi, … Sajjad Mahmood

Avoid common mistakes on your manuscript.

1 Introduction

Undoubtedly, AI has brought enormous benefits and advantages to humanity in the last decade and this trend will likely continue in coming years since AI is gradually becoming part of the digital services that we use in our daily lives. Many governments around the world are considering the deployment of AI systems and applications to help them achieve their activities and more concretely to facilitate the identification and prediction of crime. Footnote 1 Further, national security and intelligence agencies have also realized the potential of AI technologies to support and achieve national and public security objectives.

There are significant developments of AI technologies like the use of facial recognition in the criminal justice realm, the use of drones, lethal autonomous weapons and self-driving vehicles that when not properly configured or managed without proper oversight mechanisms in place have the potential to be used for disruptive purposes and harm individual’s rights and freedoms.

Currently, there is an ongoing discussion in international policy and legislative circles on the revision and improvement of the liability framework and threshold concerning AI systems and technologies, Footnote 2 although due to the complexity of the topic and the different legal approaches around the world concerning civil liability, there will probably not be a consensus on a harmonized and uniformed response, at least not in the near future.

Further, AI and machine learning have the potential and offer the possibility to detect and respond to cyberattacks targeted to critical infrastructure sectors including water, energy and electricity supplies, as well as the correct management of cybersecurity solutions to help reduce and mitigate security risks. Footnote 3 However, many complex challenges remain particularly for small and medium enterprises which continue to rely on limited budgets to improve their cybersecurity capabilities.

Due to the COVID-19 pandemic, a large part of the world’s connected population was confined. This situation made companies and individuals more dependent on the use of systems, technologies and applications based on AI to conduct their activities, including remote work, distance learning, online payments or simply having access to more entertainment options like streaming and video on demand services. Unfortunately, this situation also led organized criminal groups to reconsider and re-organized their criminal activities in order to specifically target a number of stakeholders, including international organizations, Footnote 4 research and health sector entities, Footnote 5 supply chain companies Footnote 6 and individuals. We have witnessed that organized criminal groups have largely improve their CasS (crime as a service) capabilities and turn their activities into higher financial profits with very small possibilities of being traced by law enforcement and brought to justice.

Through the use of AI technologies, cybercriminals have not only found a novel vehicle to leverage their unlawful activities, but particularly new opportunities to design and conduct attacks against governments, enterprises and individuals. Although, there is no sufficient evidence that criminal groups have a strong technical expertise in the management and manipulation of AI and machine learning systems for criminal purposes, it is true that said groups have realized its enormous potential for criminal and disruptive purposes. Footnote 7 Further, organized criminal groups currently recruit and bring technical skilled hackers into their files to manipulate, exploit and abuse computer systems and to perpetrate attacks and conduct criminal activities 24/7 from practically anywhere in the world. Footnote 8

2 Current cybercrime trends

Current trends and statistics show that cybercriminals are relying more on the use of IoT to write and distribute malware and target ransomware attacks which are largely enhanced through AI technologies. Footnote 9 This trend will likely continue as it is expected that more than 2.5 million devices will be fully connected online in the next 5 years including industrial devices and critical infrastructure operators which will make companies and consumers more vulnerable to cyberattacks. Footnote 10

Furthermore, the discussion on bias and discrimination Footnote 11 are also relevant debated aspects on AI policy in many international and policy making circles. Footnote 12 The widespread use of technologies based on facial recognition systems, Footnote 13 deserves further attention in the international policy arena because even when facial recognition may be very appealing for some governments to enhance aspects of public security and safety to prioritize national security activities, including terrorist activities, this technology may as well raises relevant and polemic issues concerning the protection of fundamental rights, including privacy and data protection under existing international treaties and conventions, topics that are currently being discussed in relevant international fora including the Council of Europe, the European Commission, the European Parliament Footnote 14 and the OECD.

There is an ongoing global trend to promote misinformation with the support of AI technologies known as ‘bots’. Footnote 15 Bots are mainly used to spread fake news and content throughout the internet and social networks and have the chilling effect of disinforming and misleading the population, particularly younger generations who cannot easily differentiate between legitimate sources of information and fake news. Further, the use of ‘bots’ have the potential to erode trust and question the credibility of the media and destabilize democratic and government institutions.

Although AI holds the prospect to enhance the analysis of big amounts of data to avoid the spread of misinformation in social networks, Footnote 16 humans still face the challenge to check and verify the credibility of the sources, an activity which is usually conducted by content moderators of technology companies and media outlets without specific links to government spheres, a situation that has led relevant policy making institutions like the European Commission to implement comprehensive and broad sets of action to tackle the spread and impact of online misinformation. Footnote 17

Another trend and technology widely used across many industries are deep fakes. Footnote 18

The abuse and misuse of deepfakes has become a major concern in national politics Footnote 19 and among law enforcement circles. Footnote 20 Deepfakes have been used to impersonate politicians, Footnote 21 celebrities and CEO’s of companies which may be used in combination with social engineering techniques and system automatization to perpetrate fraudulent criminal activities and cyberattacks. The use of deep fake technologies for malicious purposes is expanding rapidly and is currently being exploited by cybercriminals on a global scale. For example, in 2019, cybercriminals used AI voice generating software to impersonate the voice of a Chief Executive of an energy company based in the United Kingdom and were able to obtain $243,000 and distribute the transfers of the funds to bank accounts located in Mexico and other countries. Footnote 22

Another relevant case occurred in January 2020 where criminals used deep voice technology to simulate the voice of the director of a transnational company. Through various calls with the branch manager of a bank based in the United Arab Emirates, criminals were able to steal $35 million that were deposited into several bank accounts, making the branch manager of the bank believe that the funds will be used for the acquisition of another company. Footnote 23

The spoofing of voices and videos through deep fakes raise relevant and complex legal challenges for the investigation and prosecution of these crimes. First and foremost, many law enforcement authorities around the world do not yet have full capabilities and trained experts to secure evidence across borders, and often times the lack of legal frameworks particularly procedural measures in criminal law to order the preservation of digital evidence and investigate cybercrime represents another major obstacle. Second, since most of these attacks are usually orchestrated by well organized criminal groups located in different jurisdictions, there is the clear need for international cooperation, and in particular a close collaboration with global services providers to secure subscriber and traffic data, as well as to conduct more expedited investigations and law enforcement actions with other countries through the deployment of joint investigation teams in order to be able to trace and locate the suspects and follow the final destination of illicit funds. Footnote 24 Cross-border cybercrime investigations are complex, lengthy, and do not always necessarily result in convictions of the perpetrators.

Further, cyberattacks based on AI systems is a growing trend identified by the European Cybercrime Centre (EC3) of EUROPOL in its Internet Crime Threat Assessment Report 2020 . According to the EC3, the risks concerning the use of AI for criminal purposes need to be well understood in order to protect society against malicious actors. According to the EC3, “through AI, criminals may facilitate and improve their attacks by maximizing their opportunities for profit in a shorter period of time and create more innovative criminal business models, while reducing the possibility of being traced and identified by criminal justice authorities”. Footnote 25

Further, the EC3 of EUROPOL recommends the development of further knowledge regarding the potential use of AI by criminals with a view to better anticipating possible malicious and criminal activities facilitated by AI, as well as to prevent, respond to, or mitigate the effects of such attacks in a more proactive manner and in close cooperation with industry and academia. Footnote 26

3 Strategic partnerships

Due to the complexities that the misuse and abuse of AI systems for criminal purposes entail for law enforcement agencies, key stakeholders are trying to promote the development of strategic partnerships between law enforcement, international organizations and the private sector to counter more effectively against the misuse and abuse of AI technologies for criminal purposes. For example, in November 2020, Trend Micro Research, the EC3 of EUROPOL and the Centre for Artificial Intelligence and Robotics of the UN Interregional Crime and Justice Research Institute (UNICRI) published the report: Malicious Uses and Abuses of Artificial Intelligence . Footnote 27 This report contains an in-depth technical analysis of present and future malicious uses and abuses of AI and related technologies that drew from the outcomes of a workshop organized by EUROPOL, Trend Micro and UNICRI in March 2020. The report highlights relevant technical findings and contains examples of AI capabilities divided into “malicious AI uses” and “malicious AI abuses”. The report also sets forth future scenarios in areas like AI supported ransomware, AI detection systems, and developed a case study on deepfakes highlighting the development of major policies to counter it, as well as recommendations and considerations for further and future research. Footnote 28

Strategic initiatives and more partnerships like the one mentioned above are further needed in the field of AI and cybercrime to ensure that relevant stakeholders particularly law enforcement authorities and the judiciary understand the complexities and dimensions of AI systems and start developing cooperation partnerships that may help to identify and locate perpetrators that misuse and abuse AI systems with the support of the private sector. The task is complex and needs to be achieved with the support of the technical and business community, otherwise isolated investigative and law enforcement efforts against criminals making use of AI systems will not likely succeed.

AI policy has been at the core of the discussions only in recent years. At the regional level, the European Commission has recently published a regulation proposal known as the Digital Services Act Footnote 29 though this proposal has just recently been opened for consultation and it will take a few years until it is finally approved.

On April 21, 20021, the European Commission published its awaited Regulation proposal for Artificial Intelligence Systems . Footnote 30 The proposal contains broad and strict rules and obligations before AI services can be put into the European market based on the assessment of different levels of risks. The regulation proposal of the European Commission also contains express prohibitions of AI practices that may contravene EU values and violate fundamental rights of citizens, and it establishes the European Artificial Intelligence Board (EIAB) as the official body that will supervise the application and enforcement of the regulation across the EU. Footnote 31

The prospect of developing a new international convention that will regulate relevant aspects concerning the impact and development of AI systems and the intersection with the protection of fundamental rights has been proposed by the Ad-Hoc Committee on Artificial Intelligence of the Council of Europe, better known as ‘CAHAI’. The work of CAHAI will be analysed in section 5.1 of this paper.

4 International instruments to counter cybercrime

At the international level, there are a number of international and regional instruments that are used to investigate “cyber dependent crime”, “cyber enabled crime” and “computer supported crime”. Footnote 32 This paper will only focus on the analysis of three major instruments of the Council of Europe which are applicable to criminal conduct and activities concerning the use of computer and information systems, the exploitation and abuse of children and violence against women committed through information and computer systems:

The Convention on Cybercrime better known as the ‘the Budapest Convention’ ;

The Convention on Protection of Children against Sexual Exploitation and Sexual Abuse, better known as ‘the Lanzarote Convention’ ; and

The Convention on preventing and combating violence against women and domestic violence better known as the ‘the Istanbul Convention’ .

4.1 The Budapest Convention

The Council of Europe’s Budapest Convention on Cybercrime is the only international treaty that criminalizes conducts and typologies committed through computer and information systems. This instrument contains substantive and procedural provisions for the investigation, execution and adjudication of crimes committed through computer systems and information technologies. Footnote 33 The Budapest Convention is mainly used as a vehicle for international cooperation to investigate and prosecute cybercrime among the now 66 State Parties, which includes many countries outside Europe. Footnote 34

The Cybercrime Convention Committee (T-CY) which is formed by State Parties, country observers invited to accede to the Budapest Convention and ad-hoc participants is the entity responsible inter alia for conducting assessments of the implementation of the provisions of the Budapest Convention, as well as the adoption of opinions and recommendations regarding the interpretation and implementation of its main provisions. Footnote 35

During the 2021 Octopus Conference on Cooperation against Cybercrime in November 2021 that marked the 20th anniversary of the Budapest Convention, the organizers announced that the Committee of Ministers of the Council of Europe approved the adoption of the Second Additional Protocol to the Budapest Convention on enhanced cooperation and the disclosure of electronic evidence as originally adopted by 24 the Plenary Session of the T-CY Committee in May 2021. The text of the Second Additional Protocol will be officially opened for signature among State parties to the Budapest Convention in the summer of 2022. Footnote 36

The Second Additional Protocol to the Budapest Convention on enhanced cooperation and the disclosure of electronic evidence regulates inter alia how the information and electronic evidence - including subscriber information, traffic data and content data - may be ordered and preserved in criminal investigations among State Parties to the Budapest Convention. It provides a legal basis for disclosure of information concerning the registration of domain names from domain name registries and registrars and other key aspects concerning cross-border investigations including mutual legal assistance procedures, direct cooperation with service providers, disclosure of data in emergency situations, protection of safeguards for transborder access to data and joint investigation teams. Footnote 37

Although, the T-CY Committee has not yet fully explored how the Budapest Convention and its first additional protocol on xenophobia and racism may be applicable in the context of technologies and systems based on AI, it is worth mentioning that the Budapest Convention was drafted with broad consideration of the principle of technological neutrality precisely because the original drafters of this instrument anticipated how the threat landscape for cybercrime would likely evolve and change in the future. Footnote 38

The Budapest Convention contains only a minimum of definitions; however, this instrument criminalizes a number of conducts and typifies many offenses concerning computer and content related crimes that may as well be applicable to crimes committed through the use of AI systems.

During the 2018 Octopus Conference on Cooperation against Cybercrime, the Directorate General of Human Rights and Rule of Law of the Council of Europe convened a panel on AI and Cybercrime Footnote 39 where representatives of the CoE presented its early activities and findings on AI policy. Footnote 40 Although the panel presentations were more descriptive concerning the technical terminology used in the field AI at that time, some speakers highlighted and discussed some of the challenges that AI poses to law enforcement authorities like for instance the criminalization of video and document forgery and how authorities could advance the challenge to obtain and preserve electronic evidence in court. Footnote 41

The 2021 Octopus Conference on Cooperation against Cybercrime held fully online from 16-18 November 2021 due to the COVID-19 situation, held a panel on “Artificial Intelligence, cybercrime and electronic evidence”. Footnote 42 This panel discussed complex questions concerning criminal liability and trustworthiness of evidence of AI systems in auditing and driving automation and assistance; and other relevant aspects concerning harms and threats of misinformation and disinformation developed by AI systems and effective responses, countermeasures and technical solutions from the private sector.

AI and cybercrime are relevant aspects that need further analysis and detailed discussions among the TC-Y and State Parties to the Budapest Convention, particularly since there has been an increase of cases concerning the misuse of AI technologies by cybercriminals and as vehicles to launch cyberattacks and commit criminal offenses against individuals in the cyberspace. Questions such as who will bear the responsibility for a conduct committed through the use of algorithms and machine learning and the liability threshold among State Parties need further discussion and clarification since the regulation of criminal liability differs significantly among the legal systems of many countries, as well as to explore the development of strategic partnerships in other regions of the world to counter attacks based on AI systems.

4.2 The Lanzarote Convention

The Council of Europe Lanzarote Convention is an international treaty that contains substantive legal measures for the protection of children from sexual violence including sexual exploitation and abuse of children online. Footnote 43 This convention harmonizes minimum legal conducts at the domestic level to combat crimes against children and provide measures for international cooperation to counter the sexual exploitation of children. The Lanzarote Convention requires the current 48 State Parties to offer a holistic response to sexual violence against children through the “4Ps approach”: Prevention, Protection, Prosecution and Promotion of national and international cooperation. Footnote 44 The monitoring and implementation body of the Lanzarote Convention is conducted by the Committee of the Parties, also known as the ‘Lanzarote Committee’ . This committee is formed by State Parties and it is primarily responsible for monitoring how State Parties put legislation, policies and countermeasures into practice, including organizing capacity building activities to exchange information and best practices concerning the implementation of the Lanzarote Convention across State Parties. Footnote 45

Like, the TC-Y, the ‘Lanzarote Committee’ has not yet fully explored how the substantive and procedural criminal law provisions of the Lanzarote Convention may apply in the context of the use of AI systems for criminal related purposes, a situation that needs to be further discussed among State Parties in order to not only share and diffuse knowledge on current trends among State Parties of that treaty, but to also help identify illicit conducts and abuse and exploitation of children through AI systems, as well as an analysis of positive uses of AI technologies for the prevention of crimes concerning the protection of children online.

4.3 The Istanbul Convention

The Istanbul Convention is another treaty of the Council of Europe the main purpose of which is to protect women against all forms of violence and to counter and eliminate all forms of violence against women including aspects of domestic violence. Footnote 46 The Istanbul Convention consists of four main pillars: (i) prevention, (ii) protection of victims, (iii) prosecution of offenders, and (iv) implementation of comprehensive and coordinated policies to combat violence against women at all levels of government. The Istanbul Convention establishes an independent group of experts known as the GREVIO (Group of Experts on Action against Violence against Women and Domestic Violence). The GREVIO is responsible for monitoring the effective implementation of the provisions of the Istanbul Convention by the now 34 States Parties. Footnote 47

The Istanbul Convention does not specifically contain specific provisions in the context of violence committed through the use of information technologies, however the GREVIO is currently analysing approaches to extend the application of the commission of illegal conducts through the use of computer and information systems within the national legal framework of State Parties. Footnote 48 The GREVIO adopted during its twenty-fifth meeting on 20 October 2021, a General Recommendation on the Digital Dimension of Violence against Women . Footnote 49 The Recommendation addresses inter alia the application of the general provisions of the Istanbul Convention in relation to conducts and crime typologies committed against women in cyberspace and proposes specific actions to take, based on the four pillars of the Istanbul Convention: prevention, protection, prosecution and coordinated policies.

As part of promoting the scope of the adopted General Recommendation, the GREVIO held a conference in Strasbourg in November 24, 2021 that featured a keynote address of the Commissioner of Human Rights of the Council of Europe and presentations of the President of the GREVIO and the Chair of the Committee of the Parties to the Istanbul Convention followed by a panel discussion with representatives of EU member states, internet industry and civil society. Footnote 50 Among the relevant points made during the panel discussions were how the recommendation may help to advance legal and policy developments, attention of victims of current forms of cyberviolence, further international cooperation and to contribute to the general understanding of the scope of the provisions of the Istanbul Convention and other key instruments of the Council of Europe including the Budapest Convention and the Lanzarote Convention in relation to digital violence against women. Footnote 51

The Cybercrime Convention Committee (T-CY) issued a comprehensive report titled Mapping Study on Cyberviolence with recommendations adopted by the TC-Y on 9 July, 2018. Footnote 52

The mapping study developed a working definition on “cyberviolence” Footnote 53 and described how the different forms of cyberviolence may be classified and criminalized under the Budapest-, Lanzarote- and Istanbul Conventions. According to the mapping study “not all forms of violence are equally severe and not all of them necessarily require a criminal law solution but could be addressed with a combination of preventive, educational, protective and other measures” . The main conclusions of the Cybercrime Convention Committee (T-CY) in the Mapping Study on Cyberviolence were:

the Budapest Convention and its additional Protocol on Racism and Xenophobia covers and address some types of cyberviolence;

the procedural powers and the provisions on international cooperation of the Budapest Convention will help to support the investigation of cyberviolence and the secure and preservation of digital evidence; and

the Budapest, the Istanbul and Lanzarote conventions complement each other and should promote synergies. These synergies may include raising further awareness and capacity building activities among Parties to said treaties; encourage parties to the Lanzarote and Istanbul Conventions to introduce the procedural powers contained in the Budapest Convention ( Arts. 16-21 ) into domestic law and consider becoming parties to the Budapest Convention to facilitate international cooperation on electronic evidence in relation to crimes related to cyberviolence; encourage parties to the Budapest Convention to implement the provisions on psychological violence, stalking and sexual harassment of the Istanbul Convention, as well as the provisions on sexual exploitation and abuse of children online of the Lanzarote Convention, among others . Footnote 54

Cyberviolence and crimes concerning the abuse and exploitation of children online require strategic cooperation of different stakeholders. Other key institutions at the regional level like the European Commission have also explored paths on how AI systems may help to identify, categorise and remove child sexual abuse images and to minimise the exposure of human investigators to distressing images and the importance of the role of internet hotlines in facilitation the reporting process. Footnote 55

5 Ongoing work of international organizations

5.1 council of europe cahai.

The Ad-Hoc Committee on Artificial Intelligence of the Council of Europe (CAHAI) Footnote 56 was established by the Committee of Ministers during its 1353rd meeting on 11 September 2019. Footnote 57 The specific task of CAHAI is “to complete the feasibility study and produce the potential elements on the basis of broad multi-stakeholder consultations, of a legal framework for the development, design and application of artificial intelligence, based on the Council of Europe’s standards on human rights, democracy and the rule of law.”

The work of CAHAI is relevant because it sets forth a multi-stakeholder group where global experts may provide their views on the development of policies on AI, to forward meaningful proposals to ensure the application of international treaties and technical standards on AI and submit proposals for the creation of a future legal instrument that will regulate AI while ensuring the protection of fundamental rights, rule of law and democracy principles contained in relevant instruments of the Council of Europe, like Convention 108+, the Budapest, Lanzarote and Istanbul Conventions, among others. Footnote 58

The work of CAHAI will impact the 47 members states and country observers of the Council of Europe, particularly state institutions including national parliamentarians and policy makers who are responsible for the implementation of international treaties into their national legal frameworks. Therefore, the inclusion and participation of relevant stakeholders from different nations will play a decisive role in the future implementation of a global treaty on AI in the coming years.

5.2 European Parliament

The European Parliament (EP) is perhaps the most proactive legislative and policy making institution worldwide. The European Parliament has a Centre for Artificial Intelligence known as (C4AI) that was established in December 2019. Footnote 59 The EP has Committees that analyse the impact of policy related aspects of AI in many different areas including cybersecurity, defence, predictive policing and criminal justice. The most active committee is the Special Committee on Artificial Intelligence in a Digital Age (AIDA Committee) Footnote 60 that has organized many hearings and workshops with different experts and stakeholders on AI from different regions of the world to hear views and opinions on the Regulation proposal for Artificial Intelligence Systems . Footnote 61

According to the President of the AIDA Committee, “the use of AI in law enforcement is a political decision and not a technical one, our duty is to apply the political worldview to determine what are the allowed uses of AI and under which conditions” . Footnote 62

As a result of the existing dangers and risks posed by the use of AI systems across Europe, the European Parliament adopted a resolution on 6 October 2021 that calls for a permanent ban on AI systems which allow for the use of automated recognition of individuals by law enforcement in public spaces. Further, the resolution calls for a moratorium on the deployment of facial recognition systems for law enforcement purposes and a ban on predictive policing based on behavioural data and social scoring in order to ensure the protection of fundamental rights of European citizens. Footnote 63

The Committee on Civil Liberties, Justice and Home Affairs of the European Parliament has also conducted relevant work on AI and criminal justice. On February 20, 2020, said committee conducted a public hearing on “Artificial Intelligence in Criminal Law and its use by the Police and Judicial Authorities” where relevant opinions and recommendations of experts and international organizations were discussed and presented. Footnote 64

Further, the AIDA Committee of the European Parliament held a two-day public hearing with the AFET Committee on March 1 st and 4 th 2021. The first hearing was on “AI Diplomacy and Governance in a Global Setting: Toward Regulatory Convergence”, and the second hearing on “AI, Cybersecurity and Defence”. Footnote 65 Many relevant aspects of AI policy were mentioned during the hearings, including the support of a transatlantic dialogue and cooperation on AI, the development of ethical frameworks and standards, the development of a shared system of norms, respect of fundamental rights, diplomacy and capacity building among others. Although, there was mention on the importance of AI for cybersecurity in the defence realm and how AI might be helpful to mitigate cyberattacks and protect critical infrastructure, there was no specific mention on how the current international treaties on cybercrime and national legal frameworks may coexist with a future treaty on AI to counter cybercrime more effectively.

The dialogue and engagement of the different committees of the European Parliament on AI policy is key for the future implementation of policies in the criminal justice area concerning the use and deployment of AI systems and applications. The European Parliament should continue to promote further dialogues and activities with other international organizations like the Council of Europe and the OECD, as well as with national parliamentarians around the world to help them understand the dimensions and implications of creating regulations and policies on AI to specifically counter cybercrime.

5.3 The UN Interregional Crime and Justice Research Institute (UNICRI) Centre for Artificial Intelligence and Robotics

The Centre for Artificial Intelligence and Robotics of the United Nations Interregional Crime and Justice Research Institute (UNICRI), a research arm of the United Nations is very active in the organization of workshops and information and reports to demystify the world of robotics and AI and to facilitate an in-depth understanding of the crimes and threats conducted through AI systems among law enforcement officers, policy makers, practitioners, academia and civil society. UNICRI and INTERPOL drafted the report “ Artificial Intelligence and Robotics for Law Enforcement” Footnote 66 in 2019 that draws upon the discussions of a workshop held in Singapore in July 2018. Among the main findings of UNICRI and INTERPOL’s report are:

“AI and Robotics are new concepts for law enforcement and there are expertise gaps that should be filled to avoid law enforcement falling behind.” “Some countries have explored further than others and a variety of AI techniques are materializing according to different law enforcement authorities. There is, however, a need for greater international coordination on this issue.”

The mandate of the Centre for Artificial Intelligence and Robotics of UNICRI is quite broad. It covers policy related aspects of AI in the field of criminal justice including areas such as cybersecurity, autonomous weapons, self-driving vehicles and autonomous patrol systems. UNCRI organizes every year the Global Meeting on Artificial Intelligence for Law Enforcement , an event that discusses relevant developments on AI with experts and stakeholders from different sectors and countries to enhance and improve the capabilities for law enforcement authorities and the criminal justice system in the use and deployment of AI technologies. Footnote 67

The Centre for Artificial Intelligence and Robotics of UNICRI is currently working with a group of experts from INTERPOL, the European Commission and other relevant institutions and stakeholders in the development of a Toolkit for Responsible AI Innovation in Law Enforcement . The toolkit will provide and facilitate practical guidance for law enforcement agencies around the world on the use of AI in a trustworthy, lawful and responsible manner. The toolkit addresses practical insights, use cases, principles, recommendations, best practices and resources which will help to support law enforcement agencies around the world to use AI technologies and applications. Footnote 68

6 Conclusion

The use of AI systems across different sectors is an ongoing trend, and this includes authorities of the criminal justice system which have realized the benefits and advantages of using this technology. National law enforcement authorities involved in the investigation of cybercrime are not yet fully prepared to deal with the technical and legal dimensions of AI when used for disruptive or malicious purposes. Further, there is no yet sufficient evidence to justify whether law enforcement authorities around the world are well equipped and trained to gather cross-border evidence to conduct national investigations where an AI system was involved in the commission or perpetration of an illicit conduct.

Second, the coordination and cooperation with service providers and companies that manage and operate AI systems and services is crucial to help determine its abuse and misuse by perpetrators. However, these tasks bring a number of technical and legal challenges, since most AI systems rely on an internet connection to function where oftentimes subscriber and traffic data is needed to conduct an investigation. Therefore, global service providers will also have an important role to play in the possible identification and location of cybercriminals, a situation that needs well-coordinated efforts, measures and responses based on international treaties and national laws between law enforcement authorities and private sector entities. The need for further strategic partnerships to counter cybercrime is more important than ever.

The future work of international organizations like UNICRI, the Council of Europe through CAHAI and the T-CY Committee of the Budapest Convention will be very relevant for policy makers and law enforcement authorities for the correct guidance in the implementation of future national policies on AI. The CAHAI may fill up the missing discussions in international fora concerning AI to specifically counter cybercrime based on the current standards of the Council of Europe like the Budapest Convention, the Lanzarote Convention and the Istanbul Convention, as well as the emerging practices of members states to specifically counter cyber enable crimes.

The creation of national taskforces on cybercrime (composed of law enforcement authorities, representatives of the judiciary, AI technology developers and global service providers) may serve as a relevant vehicle to coordinate and tackle illicit conducts concerning the misuse and abuse of AI technologies. These taskforces may be articulated in the context of the national strategies on AI and should be linked to the tasks of the criminal justice authorities to specifically counter cybercrime.

Burgess, Matt, “Police built an AI to predict violent crime. It was seriously flawed”, WIRED, August 6, 2020, available at: https://www.wired.co.uk/article/police-violence-prediction-ndas .

European Commission, “Liability for Artificial Intelligence and other emerging digital technologies”, Report from the Experts Group on Liability and New Technologies-New Technologies Formation, European Union 2019, available at: https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence . See also: European Parliament Research Service (EPRS), “The European added value of a common EU approach to liability rules and insurance for connected and autonomous vehicles” Study published by the European Added Value Unit, February 2018, available at: https://www.europarl.europa.eu/RegData/etudes/STUD/2018/615635/EPRS_STU(2018)615635_EN.pdf .

MIT Technology Review, “Transforming the Energy Industry with AI”, January 21, 2021, available at: https://www.technologyreview.com/2021/01/21/1016460/transforming-the-energy-industry-with-ai/ .

World Health Organization (WHO), “WHO reports fivefold increase in cyberattacks, urges vigilance”, April 23, 2020, available at: https://www.who.int/news/item/23-04-2020-who-reports-fivefold-increase-in-cyber-attacks-urges-vigilance .

The New York Times, “Cyber Attack Suspected in German Woman’s Death”, September 18, 2020, available at: https://www.nytimes.com/2020/09/18/world/europe/cyber-attack-germany-ransomeware-death.html .

Supply Chain, “Lessons Learned from the Vaccine Supply Chain Attack”, January 16, 2021, available at: https://www.supplychaindigital.com/supply-chain-risk-management/lessons-learned-vaccine-supply-chain-attack .

Prakarsh and Riya Khanna, “Artificial Intelligence and Cybercrime- A curate’s Egg”, Medium, June 14, 2020, available at: https://medium.com/the-%C3%B3pinion/artificial-intelligence-and-cybercrime-a-curates-egg-2dbaee833be1 .

INTSIGHTS, “The Dark Side of Latin America: Cryptocurrency, Cartels, Carding and the Rise of Cybercrime”, p.6, available at: https://wow.intsights.com/rs/071-ZWD-900/images/Dark%20Side%20of%20Latin%20America.pdf . See also, “The Next, El Chapo is Coming for your Smartphone”, June 26, 2020, available at: https://www.ozy.com/the-new-and-the-next/the-next-el-chapo-might-strike-your-smartphone-and-bank/273903/ .

Malwarebytes Lab, “When Artificial Intelligence goes awry: separating science fiction from fact”, without publication date, available at: https://resources.malwarebytes.com/files/2019/06/Labs-Report-AI-gone-awry.pdf .

SIEMENS Energy, “Managed Detection and Response Service”, 2020, available at: https://assets.siemens-energy.com/siemens/assets/api/uuid:a95b9cd3-9f4d-4a54-8c43-77fbdb6f418f/mdr-white-paper-double-sided-200930.pdf .

POLITICO, “Automated racism: How tech can entrench bias”, March 2, 2021, available at: https://www.politico.eu/article/automated-racism-how-tech-can-entrench-bias/ .

For a discussion on discrimination caused by algorithmic decision making on AI, see ZUIDERVEEN BORGESIUS, Frederik, “Discrimination, Artificial Intelligence and Algorithmic decision making”. Paper published by the Directorate General of Democracy of the Council of Europe, 2018, available at: https://rm.coe.int/discrimination-artificial-intelligence-and-algorithmic-decision-making/1680925d73 .

See the Special Report on Facial Recognition of the Center for AI and Digital Policy (CAIDP) that contains a summary of key references on this topic contained in the 2020 Report on Artificial Intelligence and Democratic Values / The AI Social Contract Index 2020 prepared by CAIDP, December 2020, available at: https://caidp.dukakis.org/aisci-2020/ .

In October 2021, the European Parliament adopted a resolution to ban the use facial recognition technologies in public spaces by law enforcement authorities to ensure the protection of fundamental rights. See European Parliament, “Use of Artificial Intelligence by the police: MEPs oppose mass surveillance”. LIBE Plenary Session press release, October 6, 2021, available at: https://www.europarl.europa.eu/news/en/press-room/20210930IPR13925/use-of-artificial-intelligence-by-the-police-meps-oppose-mass-surveillance .

BBC, “What are ‘bots’ and how can they spread fake news, available at: https://www.bbc.co.uk/bitesize/articles/zjhg47h .

FORBES, “Fake News is Rampant, Here is How Artificial Intelligence Can Help” , January 21, 2021, available at: https://www.forbes.com/sites/bernardmarr/2021/01/25/fake-news-is-rampant-here-is-how-artificial-intelligence-can-help/?sh=17a6616e48e4 .

European Commission, “Tackling online disinformation”, 18 January 2021, available at: https://ec.europa.eu/digital-single-market/en/tackling-online-disinformation . For a general review of policy implications in the UK concerning the use of AI and content moderation, see Cambridge Consultants, “Use of AI in Online Content Moderation” . 2019 Report produced on behalf of OFCOM, available at: https://www.ofcom.org.uk/__data/assets/pdf_file/0028/157249/cambridge-consultants-ai-content-moderation.pdf .

Deepfakes are based on AI deep learning algorithms, an area of machine learning that applies neural net simulation to massive data sets to create fakes videos of real people. Deepfakes are trained algorithms that allows the recognition of data patterns, as well as human facial movement and expressions and can match voices that can imitate the real voice and gestures of an individual. See: European Parliamentary Research Service, “What if deepfakes made us doubt everything we see and hear (Science and Technology podcast], available at: https://epthinktank.eu/2021/09/08/what-if-deepfakes-made-us-doubt-everything-we-see-and-hear/ . Like, many technologies, deepfakes can be used as a tool for criminal related purposes such as fraud, extortion, psychological violence and discrimination against women and minors, see: MIT Technology Review, “A deepfake bot is being used to “undress” underage girls”, October 20, 2020, available at: https://bit.ly/3qj1qWx .

For specific information regarding the work of the US government to counter the use of deepfakes, see CNN, “ Inside the Pentagon’s race against deepfake videos” , available at: https://bit.ly/38aEqCS https://edition.cnn.com/interactive/2019/01/business/pentagons-race-against-deepfakes/ .

EURACTIV, “EU police recommend new online ‘screening tech’ to catch deepfakes”, November 20, 2020, available at: https://www.euractiv.com/section/digital/news/eu-police-recommend-new-online-screening-tech-to-catch-deepfakes/ .

The Verge, “Watch Jordan Peele use AI to make Barack Obama deliver a PSA about fake news”, April 17, 2018, available at: https://www.theverge.com/tldr/2018/4/17/17247334/ai-fake-news-video-barack-obama-jordan-peele-buzzfeed .

Wall Street Journal, “Fraudsters Use AI to Mimic CEO’s Voice in Unusual Cybercrime Case”, August 30, 2019, available at: https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402 .

GIZMODO, “Bank Robbers in the Middle East Reportedly ‘Cloned’ Someone’s Voice to Assist with $35 Million Heist”, October 14, 2021, available at: https://gizmodo.com/bank-robbers-in-the-middle-east-reportedly-cloned-someo-1847863805 .

The EC3 of Europol has developed good capacities and practice with other countries in the deployment of joint investigation teams to counter organized crime, including cybercrime. See the section on Join Investigation Team of Europol at: https://www.europol.europa.eu/activities-services/joint-investigation-teams .

INTERPOL (EC3), “Internet Crime Assessment Report 2020” (IOCTA 2020 Report), p. 18, available at: https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2020 . The Internet Crime Assessment Report 2021 (IOCTA 2021 Report) was published on 11 November 2021. The report of this year does not actually make any novel references to misuse and abuse of AI systems for criminal purposes, available at: https://www.europol.europa.eu/activities-services/main-reports/internet-organised-crime-threat-assessment-iocta-2021 .

IOCTA 2020 Report, Op. cit . note 25, p. 18.

Trend Micro Research, EUROPOL EC3 and UN Interregional Crime and Justice Research Institute (UNICRI), Malicious Uses and Abuses of Artificial Intelligence , 19 November 2020, available at: https://www.europol.europa.eu/publications-documents/malicious-uses-and-abuses-of-artificial-intelligence .

This report was also presented in a workshop on cybercrime, e-evidence and artificial intelligence during the 2021 Octopus Conference on Cooperation against Cybercrime organized by the Council of Europe on November 17, 2021 where the representatives of each organization highlighted the main aspects and features of the report, including current trends and concrete examples of misuse of AI technologies. The presentation is available at: https://rm.coe.int/edoc-1193149-v1-coe-ai-ppt/1680a4892f . The Digital Services Act establishes new rules and requirements for intermediary service providers which includes hosting providers and online platforms. This regulation covers inter alia rules on liability for online intermediary service platforms, establishes internal complaint handling systems and implement measures against online legal content. The Digital Services Act is currently a draft proposal under discussion between the European Parliament and the Council of the EU and it may take some years until it is finally approved, available at: https://digital-strategy.ec.europa.eu/en/policies/digital-services-act-package .

See Proposal for a Regulation of the European Parliament and the Council laying down harmonized rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts, Brussels 21.4.2021, available at: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206&from=EN .

See: European Commission, “Europe fit for the Digital Age: Commission proposes new rules and actions for excellence and trust in Artificial Intelligence”, Brussels, April 21, 2021, available at: https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682 . See also the website of the European Commission that explains the approach of the EC on AI and the relevant milestones in this area, available at: https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence .

Among those instruments are: (i) The United Convention against Organized Crime and its Protocols ( Palermo Convention ); (ii) The Council of Europe Convention on Cybercrime ( Budapest Convention ) and its Additional Protocol concerning the criminalisation of acts of a racist and xenophobic nature committed through computer systems; (iii) The Council of Europe Convention on Protection of Children against Sexual Exploitation and Sexual Abuse ( Lanzarote Convention ); (iv) The African Union Convention on Cyber Security and Personal Data Protection ( Malabo Convention ); (v) Directive 2013/40/UE on attacks against information systems; (vi) Directive 2011/92/UE on combating the sexual abuse and exploitation of children and child pornography, among others.

The Budapest Convention requires that Party States amend their substantive and procedural criminal legislation to make it consistent with the substantive and procedural criminal law provisions of that treaty. Considering that cybercrime has a transnational dimension, the Budapest Convention also requires that countries implement international cooperation measures either to supplement or complement the existing ones, particularly when a country does not have mutual assistance and cooperation treaties in criminal matters in place, as well as to equip investigative and law enforcement authorities with the necessary tools and procedural mechanisms to conduct cybercrime investigations including measures concerning: (i) expedited preservation of stored computer data, (ii) disclosure of preserved traffic data, (iii) mutual assistance measures regarding access to stored computer data, (iv) trans-border access to stored computer data, (v) mutual assistance regarding real-time collection of traffic data, (vi) mutual assistance regarding the interception of content data, and the (vii) creation of a network or point of contact 24/7 to centralize investigations and procedures related to requests for data and mutual assistance concerning cybercrime investigations with other 27/7 points of contact.

See the Budapest Convention Chart of Signatures and Ratifications at: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/185/signatures?p_auth=yUQgCmNc .

Cybercrime Convention Committee, “T-CY Rules of Procedure. As revised by T-CY on 16 October 2020”, Strasbourg, 16 October 2020, available at: https://rm.coe.int/t-cy-rules-of-procedure/1680a00f34 .

Council of Europe, “Second Additional Protocol to the Budapest Convention adopted by the Committee of Ministers of the Council of Europe”, Strasbourg, 17 November 2021, available at: https://www.coe.int/en/web/cybercrime/-/second-additional-protocol-to-the-cybercrime-convention-adopted-by-the-committee-of-ministers-of-the-council-of-europe .

See the text of the Explanatory Report of the Second Additional Protocol to the Budapest Convention drafted by Cybercrime Convention Committee (T-CY) at: https://search.coe.int/cm/pages/result_details.aspx?objectid=0900001680a48e4b .

See the Explanatory Report to the Convention on Cybercrime at: https://rm.coe.int/CoERMPublicCommonSearchServices/DisplayDCTMContent?documentId=09000016800cce5b .

The Conference program of the 2018 Octopus conference on cooperation against cybercrime is available at: https://rm.coe.int/3021-90-octo18-prog/16808c2b04 .

See: Activities of the Council of Europe on Artificial Intelligence (AI), 9 May, 2018, available at: https://rm.coe.int/cdmsi-2018-misc8-list-ai-projects-9may2018/16808b4eac .

See the presentations of this panel at the Plenary Closing session of the 2018 Octopus Conference, available at: https://www.coe.int/en/web/cybercrime/resources-octopus-2018 .

The presentation and materials of this panel are available at: https://www.coe.int/en/web/cybercrime/workshop-cybercrime-e-evidence-and-artificial-intelligence .

The Lanzarote Convention entered in force on 1 July 2010, available at: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/201/signatures . Among the conducts that the Lanzarote Convention requires Sates parties to criminalize are: (i) Child sexual abuse; (ii) sexual exploitation through prostitution; (iii) child sexual abuse material; (iv) exploitation of a child in sexual performances; (v) corruption of children, and (vi) solicitation of children for sexual purposes.

See the Booklet of the Lanzarote Convention, available at: https://rm.coe.int/lanzarote-convention-a-global-tool-to-protect-children-from-sexual-vio/16809fed1d .

The Rules of procedure, adopted documents, activity reports and the Meetings of the ‘Lanzarote Committee’ are available at: https://www.coe.int/en/web/children/lanzarote-committee#{%2212441908%22:[] .

The Istanbul Convention entered into force on 1 August 2014 and it has been ratified by 34 countries. See the chart of signatures and ratifications at: https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/210/signatures?p_auth=OwhAGtPd .

The Rules of procedure and adopted documents of the GREVIO are available at: https://www.coe.int/en/web/istanbul-convention/grevio .

See the presentations of the webinar, “Cyberviolence against Women” organized by the CyberEast Project of the Council of Europe, 12 November, 2020, available at: https://www.coe.int/en/web/cybercrime/cyberviolence-against-women .

The Text of the GREVIO General Recommendation No. 1 on the digital dimension of violence against women adopted on 20 October 2021 is available at: https://rm.coe.int/grevio-rec-no-on-digital-violence-against-women/1680a49147 .

Council of Europe, “Launch Event: Combating violence against women in a digital age-utilizing the Istanbul Convention”, 24 November 2021, available at: https://www.coe.int/en/web/istanbul-convention/launching-event-of-grevio-s-first-general-recommendation-on-the-digital-dimension-of-violence-against-women .

Council of Europe Media Release, “New Council of Europe Recommendation tackles the ‘digital dimension” of violence against women and girls”, Strasbourg, 24 November, 2021, available at: https://search.coe.int/directorate_of_communications/Pages/result_details.aspx?ObjectId=0900001680a4a67b .

Council of Europe Cybercrime Convention Committee (TC-Y), “Mapping Study on Cybercrime” with recommendations adopted by the TC-Y on 9 July 2018, available at: https://rm.coe.int/t-cy-2017-10-cbg-study-provisional/16808c4914 .

The definition is an adaptation of the definition of violence against women contained in Art. 3 of the Istanbul Convention to the cyber context as follows: “ Cyberviolence is the use of computer systems to cause, facilitate, or threaten violence against individuals that results in, or is likely to result in, physical, sexual, psychological or economic harm or suffering and may include the exploitation of the individual’s circumstances, characteristics or vulnerabilities” .

“Mapping Study on Cybercrime”, Op. cit . note 52, pp. 42-43.

European Commission, “Exploring potential of AI in fight against child online abuse”, Event report 11 June 2020, available at: https://ec.europa.eu/digital-single-market/en/news/exploring-potential-ai-fight-against-child-online-abuse .

CAHAI’s composition consist of three main groups composed of up to 20 experts appointed by Members States, as well as observers and participants. The mandate of the Policy Development Group (CAHAI-PDG) is the development of the feasibility study of a legal framework on artificial intelligence applications, building upon the mapping work already undertaken by the CAHAI and to prepare key findings and proposals on policy and other measures, to ensure that international standards and international legal instruments in this area are up-to-date and effective and prepare proposals for a specific legal instrument regulating artificial intelligence. The Consultation and Outreach Group (CAHAI-COG) is responsible for taking stock of the analysis undertaken by the Secretariat of responses to online consultations and analysis of ongoing developments and reports which are directly relevant for CAHAI’s working groups’ tasks. The Legal Frameworks Group (CAHAI-LFG) is responsible for the preparation of key findings and proposals on possible elements and provisions of a legal framework with a view to draft legal instruments, for consideration and approval by the CAHAI, taking into account the scope of existing legal instruments applicable to artificial intelligence and policy options set out in the feasibility study approved by the CAHAI. Further info on the composition of CAHAI working groups, the plenary meetings and the documents issued by the three working groups is available at: https://www.coe.int/en/web/artificial-intelligence/cahai .

The terms of reference of CAHAI are available at: https://search.coe.int/cm/Pages/result_details.aspx?ObjectId=09000016809737a1 .

The Final Virtual Plenary Meeting of CAHAI from 30.11.2021 to 02.12.2021 will facilitate meaningful discussions towards the adoption of a document outlining the possible elements of a legal framework on AI, which may include binding and non-binding standards based on the Council of Europe’s standards on human rights, democracy and rule of law. See Council of Europe, “The CAHAI to hold its final meeting”, Strasbourg, 24 November 2021, available at: https://www.coe.int/en/web/artificial-intelligence/-/cahai-to-hold-its-final-meeting .

European Parliament, “STOA Centre for Artificial Intelligence (C4AI)”. The C4AI produces studies, organises public events and acts as a platform for dialogue and information exchange and coordinate its efforts and influence global AI standard-setting, available at: https://www.europarl.europa.eu/stoa/en/centre-for-AI .

The AIDA Committee website is available at: https://www.europarl.europa.eu/committees/en/aida/home/highlights .

See supra note 30.

See Dragos Tudorache Plenary Speech on Artificial Intelligence of 4 October 2021, available at: https://www.youtube.com/watch?v=V9y5gt39AD0 .

European Parliament News, “Use of artificial intelligence by the police: MEPs oppose mass surveillance”. Press release of the Plenary Session, October 6, 2021, available at: https://www.europarl.europa.eu/news/en/press-room/20210930IPR13925/use-of-artificial-intelligence-by-the-police-meps-oppose-mass-surveillance and Eurocadres, “European Parliament adopts resolution on the use of AI in law enforcement”, October 6, 2021, available at: https://www.eurocadres.eu/news/european-parliament-adopts-resolution-on-the-use-of-ai-in-law-enforcement/ .

European Parliament. “MEPs to look into Artificial Intelligence in criminal law on Thursday”, February 18, 2020, available at: https://www.europarl.europa.eu/news/en/press-room/20200217IPR72718/meps-to-look-into-artificial-intelligence-in-criminal-law-on-thursday .

European Parliament, Special Committee on Artificial Intelligence in a Digital Age (AIDA), “Joint hearing on the external policy dimension of AI”, March 1 st and 4 th 2021, available at: https://www.europarl.europa.eu/meetdocs/2014_2019/plmrep/COMMITTEES/AIDA/DV/2021/03-01/Final_Programme_externalpolicydimensionofAI_V26FEB_EN.pdf .

UNICRI and INTERPOL, “ Artificial Intelligence and Robotics for Law Enforcement” , 2019, available at: https://issuu.com/unicri/docs/artificial_intelligence_robotics_la/4?ff .

UNCRI, “2 nd INTERPOL, UNICRI Global Meeting on Artificial Intelligence for Law Enforcement”, Singapore, July 3, 2019, available at: http://www.unicri.it/news/article/ai_unicri_interpol_law_enforcement .

UNICRI, “The European Commission provides support to UNICRI for the Development of the Toolkit for Responsible AI Innovation in Law Enforcement”, The Hague, Monday November 1, 2021, available at: http://www.unicri.it/index.php/News/EC-UNICRI-agreement-toolkit-responsible-AI .

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and affiliations.

Center for AI and Digital Policy (CAIDP), Washington (DC), USA

Cristos Velasco

DHBW Cooperative State University in Mannheim and Stuttgart, Stuttgart, Germany

Mexico City, Mexico

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Cristos Velasco .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. Velasco is Research Fellow and Outreach Committee Board Member of the Center for AI and Digital Policy (CAIDP), also Law Lecturer on “Information Technology Law” and “International Business Law & International Organizations” at the DHBW Cooperative State University in Mannheim and Stuttgart.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Velasco, C. Cybercrime and Artificial Intelligence. An overview of the work of international organizations on criminal justice and the international applicable instruments. ERA Forum 23 , 109–126 (2022). https://doi.org/10.1007/s12027-022-00702-z

Download citation

Accepted : 24 January 2022

Published : 22 February 2022

Issue Date : May 2022

DOI : https://doi.org/10.1007/s12027-022-00702-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Budapest Convention
  • Criminal justice
  • Istanbul Convention
  • Law enforcement
  • Lanzarote Convention
  • Find a journal
  • Publish with us
  • Track your research

The Economic Times

The Economic Times daily newspaper is available online now.

Banks moot syncing systems with mha’s cybercrime portal.

Whatsapp Follow Channel

In what could pave the way for a faster freeze on fraudsters’ accounts in case of a cyberattack, banks have proposed an integration of their systems with the National Cybercrime Reporting Portal (NCRP), an arm of the ministry of home affairs.

Banks Moot Syncing Systems with MHA’s Cybercrime Portal

Elections with ET#

Lok Sabha Elections 2024: Tune in for all updates

Banks Moot Syncing Systems with MHA’s Cybercrime Portal

How this oil & gas stock found its roar back after years of silence

What makes foreign investors jittery about the Mauritius route suddenly?:Image

What makes foreign investors jittery about the Mauritius route suddenly?

This credit fund’s unconventional bet gave investors 20% return.:Image

This credit fund’s unconventional bet gave investors 20% return.

Google 1-startups 0: This INR2,000 crore ad war is set for a new twist:Image

Google 1-startups 0: This INR2,000 crore ad war is set for a new twist

Why Indians would rather eat restaurant food than buy ready-to-cook:Image

Why Indians would rather eat restaurant food than buy ready-to-cook

Cement stocks that should look solid in your portfolio:Image

Cement stocks that should look solid in your portfolio

The Economic Times

Find this comment offensive?

Choose your reason below and click on the Report button. This will alert our moderators to take action

Reason for reporting:

Your Reason has been Reported to the admin.

avatar

To post this comment you must

Log In/Connect with:

Fill in your details:

Will be displayed

Will not be displayed

Share this Comment:

Uh-oh this is an exclusive story available for selected readers only..

Worry not. You’re just a step away.

research paper on cyber crime pdf

Prime Account Detected!

It seems like you're already an ETPrime member with

Login using your ET Prime credentials to enjoy all member benefits

Log out of your current logged-in account and log in again using your ET Prime credentials to enjoy all member benefits.

research paper on cyber crime pdf

You’re reading this story from ET newspaper.

Unlock epaper & other members-only benefits with etprime., new financial year offer: flat 20% off, enjoy reading for special offer, your current plan does not offer access to newspaper articles, upgrade to unlock complete access to exclusive stories, epaper & all market tools..

research paper on cyber crime pdf

Exclusive Economic Times Stories, Editorials & Expert opinion across 20+ sectors

Stock analysis. Market Research. Industry Trends on 4000+ Stocks

​Get 1 Year Complimentary Subscription of TOI+ worth Rs.799/-​

Stories you might be interested in

IMAGES

  1. (PDF) A Study on the Cyber-Crime and Cyber Criminals: A Global Problem

    research paper on cyber crime pdf

  2. (PDF) Cyber Criminology: Exploring Internet Crimes and Criminal

    research paper on cyber crime pdf

  3. ⇉Effects Of Cyber Crime On The Social Media Essay Essay Example

    research paper on cyber crime pdf

  4. (PDF) Introduction to Cyber Crime

    research paper on cyber crime pdf

  5. (PDF) Cyber Crimes- Challenges & Solutions

    research paper on cyber crime pdf

  6. Apa Itu Cyber Crime

    research paper on cyber crime pdf

VIDEO

  1. Introduction to Cyber Crimes, Emerging Trends and Application of Digital Forensic Fraud Accountant

  2. Cyber Crime Ppt Presentation Seminar

  3. Cyber Crime Vs Conventional Crime|Cyber Crimes & Laws|DU

  4. CLE- Cyber Law and Ethics-TE CSE-IT- Introduction to Cyber Crime

  5. All about Cyber Security in 10 mins

  6. Cyber crime analysis || Cyber security || Cyber fraud || Cyber crime

COMMENTS

  1. (PDF) Cyber Crime: Rise, Evolution and Prevention

    Cyber_Crime_Research_Report[1][1] (1).pdf. Content uploaded by Samreena ... The paper presents the result of a survey conducted and provides the recommendations for improving general awareness of ...

  2. PDF Cybercrime and Cybercriminals: A Comprehensive Study

    By means of this detailed study, this paper tackles the issue first describing and discussing former different criteria of classification in the field and secondly, providing a broad list of definitions and an analysis of the cybercrime practices. A conceptual taxonomy of cybercrime is introduced and described. The proposal of a

  3. Introduction: new directions in cybercrime research

    Dr. Tamar Berenblum is the research director of the The Federmann Cyber Security Center - Cyber Law Program, Faculty of Law, the Hebrew University of Jerusalem, Israel, and the co-chair of the European Society of Criminology (ESC) Working Group on Cybercrime. Tamar is also a Post-Doc Research Fellow at the Netherlands Institute for the Study of Crime and Law Enforcement (NSCR), Netherlands ...

  4. Cybercrime: Victimization, Perpetration, and Techniques

    The third paper bridges research on cybercrime victimization and cybercrime perpetration and provides a glimpse at the state of knowledge about a specific form of cyberviolence. Catherine Marcum and George Higgins conduct a systematic review of literature investigating both offending and victimization of cyberstalking, cyberdating abuse, and ...

  5. Cyber risk and cybersecurity: a systematic review of data ...

    Cybercrime is estimated to have cost the global economy just under USD 1 trillion in 2020, indicating an increase of more than 50% since 2018. With the average cyber insurance claim rising from USD 145,000 in 2019 to USD 359,000 in 2020, there is a growing necessity for better cyber information sources, standardised databases, mandatory reporting and public awareness. This research analyses ...

  6. PDF Cyber Crime Investigation: Landscape, Challenges, and Future Research

    information gaps. If investigators are able to gain a complete picture of a crime, then they will be able to take action against the criminal or potentially stop a future crime from occurring. This paper utilizes the basic research and survey methodologies by leveraging exist-ing research, synthesizing the material, and compiling information.

  7. Researching Cybercrimes: Methodologies, Ethics, and Critical ...

    Reviews. "In Researching Cybercrimes: Methodologies, Ethics, and Critical Approaches Lavorgna and Holt bring together a wealth of expertise addressing the challenges and opportunities for conducting criminological research in a digital society. This collection is an invaluable resource for both early and established scholars of cybercrime, or ...

  8. Broadening our understanding of cybercrime and its evolution

    Recent empirical studies suggest that the experience of cybercrime victims is more aligned with the negative impacts felt by victims of conventional crimes and include psychological, emotional, physical and financial consequences that undermine their long-term well-being (Button et al. 2021; Cross and Lee 2022; Notté, Leukfeldt, and Malsch 2021 ).

  9. A Comprehensive Framework for Cyber Behavioral Analysis Based on a

    Cybercrime presents a significant threat to global society. With the number of cybercrimes increasing year after year and the financial losses escalating, law enforcement must advance its capacity to identify cybercriminals, collect probative evidence, and bring cybercriminals before the courts. Arguably to date, the approach to combatting cybercrime has been technologically centric (e.g ...

  10. Mapping the global geography of cybercrime with the World Cybercrime

    This paper introduces a global and robust metric of cybercriminality-the World Cybercrime Index. The WCI moves past previous technical measures of cyber attack geography to establish a more focused measure of the geography of cybercrime offenders. Elicited through an expert survey, the WCI shows that cybercrime is not universally distributed.

  11. PDF Investigating and Prosecuting Cyber Crime: Forensic Dependencies and

    This paper proposes a practical definition of cyber crime, which is linked to the impact of technology on modes of criminal offending. Victimology and impediments to cyber crime reporting are outlined. The common law model of criminal justice is surveyed, with a focus on the effect of both law and technology on policing cyber crime globally.

  12. Research trends in cybercrime victimization during 2010-2020: a

    Research on cybercrime victimization is relatively diversified; however, no bibliometric study has been found to introduce the panorama of this subject. The current study aims to address this research gap by performing a bibliometric analysis of 387 Social Science Citation Index articles relevant to cybercrime victimization from Web of Science database during the period of 2010-2020. The ...

  13. PDF Cyber Crime in India: An Empirical Study

    Cybercrime is basically an illegal act that leads to criminal activity. Cyber security, a mechanism by which information about computers and equipment is protected from unauthorized and illegal access. This document illustrates and focuses on cybercrime, its impact on society, the types of threats and cyber security.

  14. PDF A Comprehensive Analysis of Cyber Crime and its Impact on Women in India

    This research paper aims to shed light on the various forms of cyber-crime affecting women in India by conducting an in-depth analysis of its prevalence, causes, and the consequences for victims. Understanding Cyber Crime: Cyber-crime encompasses a broad spectrum of illegal activities committed using digital platforms, such as the

  15. PDF Cyber Crime in India a Critical Study in Modern Perspective

    The purpose of this research is to look at some of the elements, effects, and prospects of cyber technology, with a focus on the threat that cybercrime poses to India. Efforts have been undertaken to examine

  16. World-first "Cybercrime Index" ranks countries by cybercrime threat

    World-first "Cybercrime Index" ranks countries by cybercrime threat level. Following three years of intensive research, an international team of researchers have compiled the first ever 'World Cybercrime Index', which identifies the globe's key cybercrime hotspots by ranking the most significant sources of cybercrime at a national level.

  17. Cybercrime and Artificial Intelligence. An overview of the work of

    The purpose of this paper is to assess whether current international instruments to counter cybercrime may apply in the context of Artificial Intelligence (AI) technologies and to provide a short analysis of the ongoing policy initiatives of international organizations that would have a relevant impact in the law-making process in the field of cybercrime in the near future. This paper ...

  18. PDF A Study on Awareness About Cyber- Crime Among College Students

    1. To study the concept of cyber-crime. 2. To examine the level of awareness towards maintaining cyber-crime. 3. To study the positive and negative impact of cyber-crime. 4. To learn and understand cyber-crime laws. 5. To understand the purpose of security in cyber-crime. Scope of the Study:

  19. Banks Moot Syncing Systems with MHA's Cybercrime Portal

    I4C, or Indian Cybercrime Coordination Centre, an MHA initiative, focuses on tackling issues related to cybercrime and improving coordination between law enforcement agencies (LEAs) and institutions like banks. NCRP is a vertical under I4C. API, or 'application programming interface' allows two applications or systems to talk to each other ...