Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

106 17.1 An Overview of the Endocrine System

Learning objectives.

By the end of this section, you will be able to:

  • Distinguish the types of intercellular communication, their importance, mechanisms, and effects
  • Identify the major organs and tissues of the endocrine system and their location in the body

Communication is a process in which a sender transmits signals to one or more receivers to control and coordinate actions. In the human body, two major organ systems participate in relatively “long distance” communication: the nervous system and the endocrine system. Together, these two systems are primarily responsible for maintaining homeostasis in the body.

Neural and Endocrine Signaling

The nervous system uses two types of intercellular communication—electrical and chemical signaling—either by the direct action of an electrical potential, or in the latter case, through the action of chemical neurotransmitters such as serotonin or norepinephrine. Neurotransmitters act locally and rapidly. When an electrical signal in the form of an action potential arrives at the synaptic terminal, they diffuse across the synaptic cleft (the gap between a sending neuron and a receiving neuron or muscle cell). Once the neurotransmitters interact (bind) with receptors on the receiving (post-synaptic) cell, the receptor stimulation is transduced into a response such as continued electrical signaling or modification of cellular response. The target cell responds within milliseconds of receiving the chemical “message”; this response then ceases very quickly once the neural signaling ends. In this way, neural communication enables body functions that involve quick, brief actions, such as movement, sensation, and cognition.In contrast, the endocrine system uses just one method of communication: chemical signaling. These signals are sent by the endocrine organs, which secrete chemicals—the hormone —into the extracellular fluid. Hormones are transported primarily via the bloodstream throughout the body, where they bind to receptors on target cells, inducing a characteristic response. As a result, endocrine signaling requires more time than neural signaling to prompt a response in target cells, though the precise amount of time varies with different hormones. For example, the hormones released when you are confronted with a dangerous or frightening situation, called the fight-or-flight response, occur by the release of adrenal hormones—epinephrine and norepinephrine—within seconds. In contrast, it may take up to 48 hours for target cells to respond to certain reproductive hormones.

QR Code representing a URL

Visit this link to watch an animation of the events that occur when a hormone binds to a cell membrane receptor. What is the secondary messenger made by adenylyl cyclase during the activation of liver cells by epinephrine?

In addition, endocrine signaling is typically less specific than neural signaling. The same hormone may play a role in a variety of different physiological processes depending on the target cells involved. For example, the hormone oxytocin promotes uterine contractions in women in labor. It is also important in breastfeeding, and may be involved in the sexual response and in feelings of emotional attachment in both males and females.

In general, the nervous system involves quick responses to rapid changes in the external environment, and the endocrine system is usually slower acting—taking care of the internal environment of the body, maintaining homeostasis, and controlling reproduction ( Table 1 ). So how does the fight-or-flight response that was mentioned earlier happen so quickly if hormones are usually slower acting? It is because the two systems are connected. It is the fast action of the nervous system in response to the danger in the environment that stimulates the adrenal glands to secrete their hormones. As a result, the nervous system can cause rapid endocrine responses to keep up with sudden changes in both the external and internal environments when necessary.

Structures of the Endocrine System

The endocrine system consists of cells, tissues, and organs that secrete hormones as a primary or secondary function. The endocrine gland is the major player in this system. The primary function of these ductless glands is to secrete their hormones directly into the surrounding fluid. The interstitial fluid and the blood vessels then transport the hormones throughout the body. The endocrine system includes the pituitary, thyroid, parathyroid, adrenal, and pineal glands ( Figure 1 ). Some of these glands have both endocrine and non-endocrine functions. For example, the pancreas contains cells that function in digestion as well as cells that secrete the hormones insulin and glucagon, which regulate blood glucose levels. The hypothalamus, thymus, heart, kidneys, stomach, small intestine, liver, skin, female ovaries, and male testes are other organs that contain cells with endocrine function. Moreover, adipose tissue has long been known to produce hormones, and recent research has revealed that even bone tissue has endocrine functions.

This diagram shows the endocrine glands and cells that are located throughout the body. The endocrine system organs include the pineal gland and pituitary gland in the brain. The pituitary is located on the anterior side of the thalamus while the pineal gland is located on the posterior side of the thalamus. The thyroid gland is a butterfly-shaped gland that wraps around the trachea within the neck. Four small, disc-shaped parathyroid glands are embedded into the posterior side of the thyroid. The adrenal glands are located on top of the kidneys. The pancreas is located at the center of the abdomen. In females, the two ovaries are connected to the uterus by two long, curved, tubes in the pelvic region. In males, the two testes are located in the scrotum below the penis.

The ductless endocrine glands are not to be confused with the body’s exocrine system , whose glands release their secretions through ducts. Examples of exocrine glands include the sebaceous and sweat glands of the skin. As just noted, the pancreas also has an exocrine function: most of its cells secrete pancreatic juice through the pancreatic and accessory ducts to the lumen of the small intestine.

Other Types of Chemical Signaling

In endocrine signaling, hormones secreted into the extracellular fluid diffuse into the blood or lymph, and can then travel great distances throughout the body. In contrast, autocrine signaling takes place within the same cell. An autocrine (auto- = “self”) is a chemical that elicits a response in the same cell that secreted it. Interleukin-1, or IL-1, is a signaling molecule that plays an important role in inflammatory response. The cells that secrete IL-1 have receptors on their cell surface that bind these molecules, resulting in autocrine signaling.

Local intercellular communication is the province of the paracrine , also called a paracrine factor, which is a chemical that induces a response in neighboring cells. Although paracrines may enter the bloodstream, their concentration is generally too low to elicit a response from distant tissues. A familiar example to those with asthma is histamine, a paracrine that is released by immune cells in the bronchial tree. Histamine causes the smooth muscle cells of the bronchi to constrict, narrowing the airways. Another example is the neurotransmitters of the nervous system, which act only locally within the synaptic cleft.

Endocrinologist Endocrinology is a specialty in the field of medicine that focuses on the treatment of endocrine system disorders. Endocrinologists—medical doctors who specialize in this field—are experts in treating diseases associated with hormonal systems, ranging from thyroid disease to diabetes mellitus. Endocrine surgeons treat endocrine disease through the removal, or resection, of the affected endocrine gland.

Patients who are referred to endocrinologists may have signs and symptoms or blood test results that suggest excessive or impaired functioning of an endocrine gland or endocrine cells. The endocrinologist may order additional blood tests to determine whether the patient’s hormonal levels are abnormal, or they may stimulate or suppress the function of the suspect endocrine gland and then have blood taken for analysis. Treatment varies according to the diagnosis. Some endocrine disorders, such as type 2 diabetes, may respond to lifestyle changes such as modest weight loss, adoption of a healthy diet, and regular physical activity. Other disorders may require medication, such as hormone replacement, and routine monitoring by the endocrinologist. These include disorders of the pituitary gland that can affect growth and disorders of the thyroid gland that can result in a variety of metabolic problems.

Some patients experience health problems as a result of the normal decline in hormones that can accompany aging. These patients can consult with an endocrinologist to weigh the risks and benefits of hormone replacement therapy intended to boost their natural levels of reproductive hormones.

In addition to treating patients, endocrinologists may be involved in research to improve the understanding of endocrine system disorders and develop new treatments for these diseases.

Chapter Review

The endocrine system consists of cells, tissues, and organs that secrete hormones critical to homeostasis. The body coordinates its functions through two major types of communication: neural and endocrine. Neural communication includes both electrical and chemical signaling between neurons and target cells. Endocrine communication involves chemical signaling via the release of hormones into the extracellular fluid. From there, hormones diffuse into the bloodstream and may travel to distant body regions, where they elicit a response in target cells. Endocrine glands are ductless glands that secrete hormones. Many organs of the body with other primary functions—such as the heart, stomach, and kidneys—also have hormone-secreting cells.

Interactive Link Questions

Review questions.

1. Endocrine glands ________.

  • secrete hormones that travel through a duct to the target organs
  • release neurotransmitters into the synaptic cleft
  • secrete chemical messengers that travel in the bloodstream
  • include sebaceous glands and sweat glands

2. Chemical signaling that affects neighboring cells is called ________.

Critical Thinking Questions

1. Describe several main differences in the communication methods used by the endocrine system and the nervous system.

2. Compare and contrast endocrine and exocrine glands.

3. True or false: Neurotransmitters are a special class of paracrines. Explain your answer.

Answers for Review Questions

Answers for Critical Thinking Questions

  • The endocrine system uses chemical signals called hormones to convey information from one part of the body to a distant part of the body. Hormones are released from the endocrine cell into the extracellular environment, but then travel in the bloodstream to target tissues. This communication and response can take seconds to days. In contrast, neurons transmit electrical signals along their axons. At the axon terminal, the electrical signal prompts the release of a chemical signal called a neurotransmitter that carries the message across the synaptic cleft to elicit a response in the neighboring cell. This method of communication is nearly instantaneous, of very brief duration, and is highly specific.
  • Endocrine glands are ductless. They release their secretion into the surrounding fluid, from which it enters the bloodstream or lymph to travel to distant cells. Moreover, the secretions of endocrine glands are hormones. Exocrine glands release their secretions through a duct that delivers the secretion to the target location. Moreover, the secretions of exocrine glands are not hormones, but compounds that have an immediate physiologic function. For example, pancreatic juice contains enzymes that help digest food.
  • True. Neurotransmitters can be classified as paracrines because, upon their release from a neuron’s axon terminals, they travel across a microscopically small cleft to exert their effect on a nearby neuron or muscle cell.

Anatomy and Physiology Copyright © 1999-2016 by Rice University is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Feedback/errata, leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Logo for Open Educational Resources

17.11 Development and Aging of the Endocrine System

Learning objectives.

By the end of this section, you will be able to:

  • Describe the embryonic origins of the endocrine system
  • Discuss the effects of aging on the endocrine system

The endocrine system arises from all three embryonic germ layers. The endocrine glands that produce the steroid hormones, such as the gonads and adrenal cortex, arise from the mesoderm. In contrast, endocrine glands that arise from the endoderm and ectoderm produce the amine, peptide, and protein hormones. The pituitary gland arises from two distinct areas of the ectoderm: the anterior pituitary gland arises from the oral ectoderm, whereas the posterior pituitary gland arises from the neural ectoderm at the base of the hypothalamus. The pineal gland also arises from the ectoderm. The two structures of the adrenal glands arise from two different germ layers: the adrenal cortex from the mesoderm and the adrenal medulla from ectoderm neural cells. The endoderm gives rise to the thyroid and parathyroid glands, as well as the pancreas and the thymus.

As the body ages, changes occur that affect the endocrine system, sometimes altering the production, secretion, and catabolism of hormones. For example, the structure of the anterior pituitary gland changes as vascularization decreases and the connective tissue content increases with increasing age. This restructuring affects the gland’s hormone production. For example, the amount of human growth hormone that is produced declines with age, resulting in the reduced muscle mass commonly observed in the elderly.

The adrenal glands also undergo changes as the body ages; as fibrous tissue increases, the production of cortisol and aldosterone decreases. Interestingly, the production and secretion of epinephrine and norepinephrine remain normal throughout the aging process.

A well-known example of the aging process affecting an endocrine gland is menopause and the decline of ovarian function. With increasing age, the ovaries decrease in both size and weight and become progressively less sensitive to gonadotropins. This gradually causes a decrease in estrogen and progesterone levels, leading to menopause and the inability to reproduce. Low levels of estrogens and progesterone are also associated with some disease states, such as osteoporosis, atherosclerosis, and hyperlipidemia, or abnormal blood lipid levels.

Testosterone levels also decline with age, a condition called andropause (or viropause); however, this decline is much less dramatic than the decline of estrogens in women, and much more gradual, rarely affecting sperm production until very old age. Although this means that males maintain their ability to father children for decades longer than females, the quantity, quality, and motility of their sperm is often reduced.

As the body ages, the thyroid gland produces less of the thyroid hormones, causing a gradual decrease in the basal metabolic rate. The lower metabolic rate reduces the production of body heat and increases levels of body fat. Parathyroid hormones, on the other hand, increase with age. This may be because of reduced dietary calcium levels, causing a compensatory increase in parathyroid hormone. However, increased parathyroid hormone levels combined with decreased levels of calcitonin (and estrogens in women) can lead to osteoporosis as PTH stimulates demineralization of bones to increase blood calcium levels. Notice that osteoporosis is common in both elderly males and females.

Increasing age also affects glucose metabolism, as blood glucose levels spike more rapidly and take longer to return to normal in the elderly. In addition, increasing glucose intolerance may occur because of a gradual decline in cellular insulin sensitivity. Almost 27 percent of Americans aged 65 and older have diabetes.

Chapter Review

The endocrine system originates from all three germ layers of the embryo, including the endoderm, ectoderm, and mesoderm. In general, different hormone classes arise from distinct germ layers. Aging affects the endocrine glands, potentially affecting hormone production and secretion, and can cause disease. The production of hormones, such as human growth hormone, cortisol, aldosterone, sex hormones, and the thyroid hormones, decreases with age.

Review Questions

Critical thinking questions.

1. Distinguish between the effects of menopause and andropause on fertility.

Answers for Critical Thinking Questions

  • Menopause occurs as the result of a progressive decline in the function of the ovaries, resulting in low estrogen and progesterone levels. Ovulation ceases, and postmenopausal woman can no longer conceive a child. In contrast, andropause is a much more gradual and subtle decline in testosterone levels and functioning. A man typically maintains fertility until very old age, although the quantity, quality, and motility of the sperm he produces may be reduced.

This work, Anatomy & Physiology, is adapted from Anatomy & Physiology by OpenStax , licensed under CC BY . This edition, with revised content and artwork, is licensed under CC BY-SA except where otherwise noted.

Images, from Anatomy & Physiology by OpenStax , are licensed under CC BY except where otherwise noted.

Access the original for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction .

Anatomy & Physiology Copyright © 2019 by Lindsay M. Biga, Staci Bronson, Sierra Dawson, Amy Harwell, Robin Hopkins, Joel Kaufmann, Mike LeMaster, Philip Matern, Katie Morrison-Graham, Kristen Oja, Devon Quick, Jon Runyeon, OSU OERU, and OpenStax is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License , except where otherwise noted.

16 The Endocrine System

[latexpage]

Learning Objectives

By the end of this section, you will be able to:

  • Identify the major glands of the endocrine system
  • Identify the hormones secreted by each gland
  • Describe each hormone’s role in regulating bodily functions

The endocrine system consists of a series of glands that produce chemical substances known as hormones ( [link] ). Like neurotransmitters, hormones are chemical messengers that must bind to a receptor in order to send their signal. However, unlike neurotransmitters, which are released in close proximity to cells with their receptors, hormones are secreted into the bloodstream and travel throughout the body, affecting any cells that contain receptors for them. Thus, whereas neurotransmitters’ effects are localized, the effects of hormones are widespread. Also, hormones are slower to take effect, and tend to be longer lasting.

A diagram of the human body illustrates the locations of the thymus, several parts within the brain (pineal gland, hypothalamus, thalamus, pituitary gland), several parts within the thyroid (cartilage, thyroid gland, parathyroid glands, trachea), the adrenal glands, pancreas, uterus, ovaries, and testes.

Hormones are involved in regulating all sorts of bodily functions, and they are ultimately controlled through interactions between the hypothalamus (in the central nervous system) and the pituitary gland (in the endocrine system). Imbalances in hormones are related to a number of disorders. This section explores some of the major glands that make up the endocrine system and the hormones secreted by these glands.

Major Glands

The pituitary gland descends from the hypothalamus at the base of the brain, and acts in close association with it. The pituitary is often referred to as the “master gland” because its messenger hormones control all the other glands in the endocrine system, although it mostly carries out instructions from the hypothalamus. In addition to messenger hormones, the pituitary also secretes growth hormone, endorphins for pain relief, and a number of key hormones that regulate fluid levels in the body.

Located in the neck, the thyroid gland releases hormones that regulate growth, metabolism, and appetite. In hyperthyroidism, or Grave’s disease, the thyroid secretes too much of the hormone thyroxine, causing agitation, bulging eyes, and weight loss. In hypothyroidism, reduced hormone levels cause sufferers to experience tiredness, and they often complain of feeling cold. Fortunately, thyroid disorders are often treatable with medications that help reestablish a balance in the hormones secreted by the thyroid.

The adrenal glands sit atop our kidneys and secrete hormones involved in the stress response, such as epinephrine (adrenaline) and norepinephrine (noradrenaline). The pancreas is an internal organ that secretes hormones that regulate blood sugar levels: insulin and glucagon. These pancreatic hormones are essential for maintaining stable levels of blood sugar throughout the day by lowering blood glucose levels (insulin) or raising them (glucagon). People who suffer from diabetes do not produce enough insulin; therefore, they must take medications that stimulate or replace insulin production, and they must closely control the amount of sugars and carbohydrates they consume.

The gonads secrete sexual hormones, which are important in reproduction, and mediate both sexual motivation and behavior. The female gonads are the ovaries; the male gonads are the testes. Ovaries secrete estrogens and progesterone, and the testes secrete androgens, such as testosterone.

Although it is against Federal laws and many professional athletic associations (The National Football League, for example) have banned their use, anabolic steroid drugs continue to be used by amateur and professional athletes. The drugs are believed to enhance athletic performance. Anabolic steroid drugs mimic the effects of the body’s own steroid hormones, like testosterone and its derivatives. These drugs have the potential to provide a competitive edge by increasing muscle mass, strength, and endurance, although not all users may experience these results. Moreover, use of performance-enhancing drugs (PEDs) does not come without risks. Anabolic steroid use has been linked with a wide variety of potentially negative outcomes, ranging in severity from largely cosmetic (acne) to life threatening (heart attack). Furthermore, use of these substances can result in profound changes in mood and can increase aggressive behavior (National Institute on Drug Abuse, 2001).

Baseball player Alex Rodriguez (A-Rod) has been at the center of a media storm regarding his use of illegal PEDs. Rodriguez’s performance on the field was unparalleled while using the drugs; his success played a large role in negotiating a contract that made him the highest paid player in professional baseball. Although Rodriguez maintains that he has not used PEDs for the several years, he received a substantial suspension in 2013 that, if upheld, will cost him more than 20 million dollars in earnings (Gaines, 2013). What are your thoughts on athletes and doping? Why or why not should the use of PEDs be banned? What advice would you give an athlete who was considering using PEDs?

The glands of the endocrine system secrete hormones to regulate normal body functions. The hypothalamus serves as the interface between the nervous system and the endocrine system, and it controls the secretions of the pituitary. The pituitary serves as the master gland, controlling the secretions of all other glands. The thyroid secretes thyroxine, which is important for basic metabolic processes and growth; the adrenal glands secrete hormones involved in the stress response; the pancreas secretes hormones that regulate blood sugar levels; and the ovaries and testes produce sex hormones that regulate sexual motivation and behavior.

Review Questions

  • estrogen and progesterone
  • norepinephrine and epinephrine
  • thyroxine and oxytocin
  • glucagon and insulin

The ________ secretes messenger hormones that direct the function of the rest of the endocrine glands.

The ________ secretes hormones that regulate the body’s fluid levels.

Critical Thinking Questions

Hormone secretion is often regulated through a negative feedback mechanism, which means that once a hormone is secreted it will cause the hypothalamus and pituitary to shut down the production of signals necessary to secrete the hormone in the first place. Most oral contraceptives are made of small doses of estrogen and/or progesterone. Why would this be an effective means of contraception?

Chemical messengers are used in both the nervous system and the endocrine system. What properties do these two systems share? What properties are different? Which one would be faster? Which one would result in long-lasting changes?

Both systems involve chemical messengers that must interact with receptors in order to have an effect. The relative proximity of the release site and target tissue varies dramatically between the two systems. In neurotransmission, reuptake and enzymatic breakdown immediately clear the synapse. Metabolism of hormones must occur in the liver. Therefore, while neurotransmission is much more rapid in signaling information, hormonal signaling can persist for quite some time as the concentrations of the hormone in the bloodstream vary gradually over time.

Personal Application Questions

Given the negative health consequences associated with the use of anabolic steroids, what kinds of considerations might be involved in a person’s decision to use them?

Creative Commons License

Share This Book

  • Increase Font Size

The Endocrine System

Please log in to save materials. Log in

  • EPUB 3 Student View
  • PDF Student View
  • Thin Common Cartridge
  • Thin Common Cartridge Student View
  • SCORM Package
  • SCORM Package Student View
  • 1 - Introduction
  • 2 - An Overview of the Endocrine System
  • 3 - Hormones
  • 4 - The Pituitary Gland and Hypothalamus
  • 5 - The Thyroid Gland
  • 6 - The Parathyroid Glands
  • 7 - The Adrenal Glands
  • 8 - The Pineal Gland
  • 9 - Gonadal and Placental Hormones
  • 10 - The Endocrine Pancreas
  • 11 - Organs with Secondary Endocrine Functions
  • 12 - Development and Aging of the Endocrine System
  • 13 - Key Terms
  • 14 - Chapter Review
  • 15 - Interactive Link Questions
  • 16 - Review Questions
  • 17 - Critical Thinking Questions
  • View all as one page

Critical Thinking Questions

Describe several main differences in the communication methods used by the endocrine system and the nervous system.

Compare and contrast endocrine and exocrine glands.

True or false: Neurotransmitters are a special class of paracrines. Explain your answer.

Compare and contrast the signaling events involved with the second messengers cAMP and IP 3 .

Describe the mechanism of hormone response resulting from the binding of a hormone with an intracellular receptor.

Compare and contrast the anatomical relationship of the anterior and posterior lobes of the pituitary gland to the hypothalamus.

Name the target tissues for prolactin.

Explain why maternal iodine deficiency might lead to neurological impairment in the fetus.

Define hyperthyroidism and explain why one of its symptoms is weight loss.

Describe the role of negative feedback in the function of the parathyroid gland.

Explain why someone with a parathyroid gland tumor might develop kidney stones.

What are the three regions of the adrenal cortex and what hormones do they produce?

If innervation to the adrenal medulla were disrupted, what would be the physiological outcome?

Compare and contrast the short-term and long-term stress response.

Seasonal affective disorder (SAD) is a mood disorder characterized by, among other symptoms, increased appetite, sluggishness, and increased sleepiness. It occurs most commonly during the winter months, especially in regions with long winter nights. Propose a role for melatonin in SAD and a possible non-drug therapy.

Retinitis pigmentosa (RP) is a disease that causes deterioration of the retinas of the eyes. Describe the impact RP would have on melatonin levels.

Compare and contrast the role of estrogens and progesterone.

Describe the role of placental secretion of relaxin in preparation for childbirth.

What would be the physiological consequence of a disease that destroyed the beta cells of the pancreas?

Why is foot care extremely important for people with diabetes mellitus?

Summarize the role of GI tract hormones following a meal.

Compare and contrast the thymus gland in infancy and adulthood.

Distinguish between the effects of menopause and andropause on fertility.

17.11 Development and Aging of the Endocrine System

Learning objectives.

By the end of this section, you will be able to:

  • Describe the embryonic origins of the endocrine system
  • Discuss the effects of aging on the endocrine system

The endocrine system arises from all three embryonic germ layers. The endocrine glands that produce the steroid hormones, such as the gonads and adrenal cortex, arise from the mesoderm. In contrast, endocrine glands that arise from the endoderm and ectoderm produce the amine, peptide, and protein hormones. The pituitary gland arises from two distinct areas of the ectoderm: the anterior pituitary gland arises from the oral ectoderm, whereas the posterior pituitary gland arises from the neural ectoderm at the base of the hypothalamus. The pineal gland also arises from the ectoderm. The two structures of the adrenal glands arise from two different germ layers: the adrenal cortex from the mesoderm and the adrenal medulla from ectoderm neural cells. The endoderm gives rise to the thyroid and parathyroid glands, as well as the pancreas and the thymus.

As the body ages, changes occur that affect the endocrine system, sometimes altering the production, secretion, and catabolism of hormones. For example, the structure of the anterior pituitary gland changes as vascularization decreases and the connective tissue content increases with increasing age. This restructuring affects the gland’s hormone production. For example, the amount of human growth hormone that is produced declines with age, resulting in the reduced muscle mass commonly observed in the elderly.

The adrenal glands also undergo changes as the body ages; as fibrous tissue increases, the production of cortisol and aldosterone decreases. Interestingly, the production and secretion of epinephrine and norepinephrine remain normal throughout the aging process.

A well-known example of the aging process affecting an endocrine gland is menopause and the decline of ovarian function. With increasing age, the ovaries decrease in both size and weight and become progressively less sensitive to gonadotropins. This gradually causes a decrease in estrogen and progesterone levels, leading to menopause and the inability to reproduce. Low levels of estrogens and progesterone are also associated with some disease states, such as osteoporosis, atherosclerosis, and hyperlipidemia, or abnormal blood lipid levels.

Testosterone levels also decline with age, a condition called andropause (or viropause); however, this decline is much less dramatic than the decline of estrogens, and much more gradual, rarely affecting sperm production until very old age. Although this means that males maintain their ability to produce offspring for decades longer than females, the quantity, quality, and motility of their sperm is often reduced.

As the body ages, the thyroid gland produces less of the thyroid hormones, causing a gradual decrease in the basal metabolic rate. The lower metabolic rate reduces the production of body heat and increases levels of body fat. Parathyroid hormones, on the other hand, increase with age. This may be because of reduced dietary calcium levels, causing a compensatory increase in parathyroid hormone. However, increased parathyroid hormone levels combined with decreased levels of calcitonin (and estrogens in females) can lead to osteoporosis as PTH stimulates demineralization of bones to increase blood calcium levels. Notice that osteoporosis is common in all elderly people regardless of sex.

Increasing age also affects glucose metabolism, as blood glucose levels spike more rapidly and take longer to return to normal in the elderly. In addition, increasing glucose intolerance may occur because of a gradual decline in cellular insulin sensitivity. Almost 27 percent of Americans aged 65 and older have diabetes.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/anatomy-and-physiology-2e/pages/1-introduction
  • Authors: J. Gordon Betts, Kelly A. Young, James A. Wise, Eddie Johnson, Brandon Poe, Dean H. Kruse, Oksana Korol, Jody E. Johnson, Mark Womble, Peter DeSaix
  • Publisher/website: OpenStax
  • Book title: Anatomy and Physiology 2e
  • Publication date: Apr 20, 2022
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/anatomy-and-physiology-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/anatomy-and-physiology-2e/pages/17-11-development-and-aging-of-the-endocrine-system

© Dec 19, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Medicine LibreTexts

Chapter 17: The Endocrine System

  • Last updated
  • Save as PDF
  • Page ID 68874

In order to survive, animals must constantly adapt to changes in the environment. The nervous and endocrine systems both work together to bring about this adaptation. In general the nervous system responds rapidly to short-term changes by sending electrical impulses along nerves and the endocrine system brings about longer-term adaptations by sending out chemical messengers called hormones into the blood stream.

  • 17.1: Introduction You may never have thought of it this way, but when you send a text message to two friends to meet you at the dining hall at six, you’re sending digital signals that (you hope) will affect their behavior—even though they are some distance away. Similarly, certain cells send chemical signals to other cells in the body that influence their behavior. This long-distance intercellular communication, coordination, and control is critical for homeostasis, and it is the function of the endocrine system.
  • 17.2: An Overview of the Endocrine System Communication is a process in which a sender transmits signals to one or more receivers to control and coordinate actions. In the human body, two major organ systems participate in relatively “long distance” communication: the nervous system and the endocrine system. Together, these two systems are primarily responsible for maintaining homeostasis in the body.
  • 17.3: Hormones Although a given hormone may travel throughout the body in the bloodstream, it will affect the activity only of its target cells; that is, cells with receptors for that particular hormone. Once the hormone binds to the receptor, a chain of events is initiated that leads to the target cell’s response. Hormones play a critical role in the regulation of physiological processes because of the target cell responses they regulate.
  • 17.4: The Pituitary Gland and Hypothalamus The hypothalamus–pituitary complex can be thought of as the “command center” of the endocrine system. This complex secretes several hormones that directly produce responses in target tissues, as well as hormones that regulate the synthesis and secretion of hormones of other glands. In addition, the hypothalamus–pituitary complex coordinates the messages of the endocrine and nervous systems.
  • 17.5: The Thyroid Gland A butterfly-shaped organ, the thyroid gland is located anterior to the trachea, just inferior to the larynx. The medial region, called the isthmus, is flanked by wing-shaped left and right lobes. Each of the thyroid lobes are embedded with parathyroid glands, primarily on their posterior surfaces. The tissue of the thyroid gland is composed mostly of thyroid follicles. The follicles are made up of a central cavity filled with a sticky fluid called colloid.
  • 17.6: The Parathyroid Glands The parathyroid glands are tiny, round structures usually found embedded in the posterior surface of the thyroid gland. A thick connective tissue capsule separates the glands from the thyroid tissue. Most people have four parathyroid glands, but occasionally there are more in tissues of the neck or chest. The function of one type of parathyroid cells, the oxyphil cells, is not clear. The primary functional cells of the parathyroid glands are the chief cells.
  • 17.7: The Adrenal Glands The adrenal glands are wedges of glandular and neuroendocrine tissue adhering to the top of the kidneys by a fibrous capsule. The adrenal glands have a rich blood supply and experience one of the highest rates of blood flow in the body. They are served by several arteries branching off the aorta, including the suprarenal and renal arteries. Blood flows to each adrenal gland at the adrenal cortex and then drains into the adrenal medulla.
  • 17.8: The Pineal Gland Recall that the hypothalamus, part of the diencephalon of the brain, sits inferior and somewhat anterior to the thalamus. Inferior but somewhat posterior to the thalamus is the pineal gland, a tiny endocrine gland whose functions are not entirely clear. The pinealocyte cells that make up the pineal gland are known to produce and secrete the amine hormone melatonin, which is derived from serotonin.
  • 17.9: Gonadal and Placental Hormones This section briefly discusses the hormonal role of the gonads—the male testes and female ovaries—which produce the sex cells (sperm and ova) and secrete the gonadal hormones. The roles of the gonadotropins released from the anterior pituitary (FSH and LH) were discussed earlier.
  • 17.10: The Endocrine Pancreas The pancreas is a long, slender organ, most of which is located posterior to the bottom half of the stomach. Although it is primarily an exocrine gland, secreting a variety of digestive enzymes, the pancreas has an endocrine function. Its pancreatic islets—clusters of cells formerly known as the islets of Langerhans—secrete the hormones glucagon, insulin, somatostatin, and pancreatic polypeptide.
  • 17.11: Organs with Secondary Endocrine Functions In your study of anatomy and physiology, you have already encountered a few of the many organs of the body that have secondary endocrine functions. Here, you will learn about the hormone-producing activities of the heart, gastrointestinal tract, kidneys, skeleton, adipose tissue, skin, and thymus.
  • 17.12: Development and Aging of the Endocrine System The endocrine system arises from all three embryonic germ layers. The endocrine glands that produce the steroid hormones, such as the gonads and adrenal cortex, arise from the mesoderm. In contrast, endocrine glands that arise from the endoderm and ectoderm produce the amine, peptide, and protein hormones. The pituitary gland arises from two distinct areas of the ectoderm: the anterior pituitary gland arises from the oral ectoderm, whereas the posterior pituitary gland arises from the neural ect
  • 17.13: Key Terms
  • 17.14: Chapter Review
  • 17.15: Interactive Link Questions
  • 17.16: Review Questions
  • 17.17: Critical Thinking Questions

23 3.5. The Endocrine System

A diagram of the human body illustrates the locations of the thymus, several parts within the brain (pineal gland, hypothalamus, thalamus, pituitary gland), several parts within the thyroid (cartilage, thyroid gland, parathyroid glands, trachea), the adrenal glands, pancreas, uterus, ovaries, and testes.

The endocrine system consists of a network of glands that produce chemical substances known as hormones ( Figure 3.3 4 ). Like neurotransmitters, hormones are chemical messengers that must bind to a receptor in order to have an effect. However, unlike neurotransmitters, which are released in close proximity to the receptors they affect, hormones are secreted into the bloodstream and travel widely throughout the body. Thus, whereas neurotransmitters’ effects are localized, the effects of hormones are widespread. Also, hormones are slower to take effect, and tend to be longer lasting.

Hormones are involved in regulating all sorts of bodily functions, and they are controlled by the hypothalamus (in the central nervous system) through its action on the pituitary gland (in the endocrine system). Imbalances in hormones are related to a number of disorders, including diabetes, obesity, infertility, thyroid disease, insomnia, and even acne! This section explores some of the major glands that make up the endocrine system and the hormones secreted by these glands ( Table 3.2 ).

Table 3.2 . Major Endocrine Glands and Associated Hormone Functions

Major Glands

The pituitary gland is located at the base of the brain, and receives messages from the hypothalamus. The pituitary is often referred to as the “master gland” because its messenger hormones control all the other glands in the endocrine system. In addition to messenger hormones, the pituitary also secretes growth hormone, endorphins for pain relief, and a number of key hormones that regulate fluid levels in the body.

The thyroid gland is located in the neck and releases hormones that regulate growth, metabolism, and appetite. In hyperthyroidism, or Grave’s disease, the thyroid secretes too much of the hormone thyroxine, causing feelings of agitation, bulging eyes, and weight loss. In hypothyroidism, reduced hormone levels cause people with this condition to experience tiredness, weight gain, and they often complain of feeling cold. Fortunately, thyroid disorders are often treatable with medications that help reestablish a balance in the thyroid hormones.

The adrenal glands sit on top of our kidneys and secrete hormones involved in the stress response, such as epinephrine (adrenaline) and norepinephrine (noradrenaline). The pancreas is an internal organ that secretes two hormones, insulin and glucagon, which regulate blood sugar levels. These pancreatic hormones are essential for maintaining stable levels of blood sugar throughout the day by lowering blood glucose levels (insulin) when levels are too high or raising them when they are too low (glucagon). People who suffer from diabetes do not produce enough insulin; therefore, they must take medications that stimulate or replace insulin production, and they must closely control the amount of sugars and carbohydrates they consume.

The gonads secrete sexual hormones, which are important in reproduction, and mediate both sexual motivation and behavior. The female gonads are the ovaries; the male gonads are the testes. Ovaries secrete estrogens and progesterone, and the testes secrete androgens, such as testosterone.

Athletes and Anabolic Steroids

Although it is against Federal laws and many professional athletic associations (The National Football League, for example) have banned their use, anabolic steroid drugs continue to be used by amateur and professional athletes. Anabolic steroid drugs mimic the effects of the body’s own steroid hormones, like testosterone and its derivatives. These drugs have the potential to provide a competitive edge by increasing muscle mass, strength, and endurance, although not all users experience these results. Moreover, use of performance-enhancing drugs (PEDs) does not come without risks. Anabolic steroid use has been linked with a wide variety of potentially negative outcomes, ranging in severity from largely cosmetic (acne) to life threatening (heart attack). Furthermore, use of these substances can result in profound changes in mood and can increase aggressive behavior (National Institute on Drug Abuse, 2001).

Baseball player Alex Rodriguez (A-Rod) spent the latter part of his playing career at the center of a media storm regarding his use of illegal PEDs. Rodriguez excelled while using the drugs; his success played a large role in negotiating a contract that made him the highest paid player in professional baseball. A subsequent scandal and suspension tarnished his reputation and, according to a statement he made once retired, cost him over $40 million (Gaines, 2013). Even lower-profile athletes, particularly in cycling (e.g., US Lance Armstrong who had several Tour de France trophies revoked) and Olympic sports, have been revealed as steroid users. What are your thoughts on athletes and doping? Why or why not should the use of PEDs be banned? What advice would you give an athlete who was considering using PEDs?

Introduction to Psychology (A critical approach) Copyright © 2021 by Rose M. Spielman; Kathryn Dumper; William Jenkins; Arlene Lacombe; Marilyn Lovett; and Marion Perlmutter is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

7.5.11: Critical Thinking Questions

  • Last updated
  • Save as PDF
  • Page ID 98251

Although there are many different hormones in the human body, they can be divided into three classes based on their chemical structure. What are these classes and what is one factor that distinguishes them?

Where is insulin stored, and why would it be released?

Glucagon is the peptide hormone that signals for the body to release glucose into the bloodstream. How does glucagon contribute to maintaining homeostasis throughout the body? What other hormones are involved in regulating the blood glucose cycle?

Name two important functions of hormone receptors.

How can hormones mediate changes?

Why is cAMP-mediated signal amplification not required in steroid hormone signaling? Describe how steroid signaling is amplified instead.

Name and describe a function of one hormone produced by the anterior pituitary and one hormone produced by the posterior pituitary.

Describe one direct action of growth hormone (GH).

Researchers have recently demonstrated that stressed people are more susceptible to contracting the common cold than people who are not stressed. What kind of stress must the infected patients be experiencing, and why does it make them more susceptible to the virus?

How is hormone production and release primarily controlled?

Compare and contrast hormonal and humoral stimuli.

Oral contraceptive pills work by delivering daily synthetic progestins to an ovary-based reproductive system. Describe why this is an effective method of birth control.

What does aldosterone regulate, and how is it stimulated?

The adrenal medulla contains two types of secretory cells, what are they and what are their functions?

How would damage to the posterior pituitary gland affect the production and release of ADH and inhibiting hormones?

IMAGES

  1. PPT

    chapter 11 endocrine system critical thinking

  2. Chapter 11

    chapter 11 endocrine system critical thinking

  3. Endocrine system

    chapter 11 endocrine system critical thinking

  4. PPT

    chapter 11 endocrine system critical thinking

  5. SOLUTION: What is main function of endocrine system.What is parts and

    chapter 11 endocrine system critical thinking

  6. [Solved] Unit 8: Endocrine System The Endocrine System Notes I

    chapter 11 endocrine system critical thinking

VIDEO

  1. 10th Biology Guess2024 #students #education #10thExamsGuess

  2. VR Accessibility Overview

  3. 46 Endocrine System Pharmacology Lecture 6 Pancreatic Hormones

  4. Chapter 17

  5. Chapter 11 Endocrine System

  6. Week 11 Endocrine System

COMMENTS

  1. Ch. 11: Review Questions and Critical Thinking Flashcards

    Ch. 11: Review Questions and Critical Thinking. 1) Differentiate between endocrine and exocrine glands. Click the card to flip 👆. -Endocrine: ductless glands; secrete hormones into intercellular spaces; diffused directly into blood and are carried throughout the body. -Exocrine: secrete their products into ducts that empty onto a surface or ...

  2. 17.1 An Overview of the Endocrine System

    Chapter 11. The Muscular System. 11.0 Introduction. 11.1 Describe the roles of agonists, antagonists and synergists ... Answers for Critical Thinking Questions. The endocrine system uses chemical signals called hormones to convey information from one part of the body to a distant part of the body. Hormones are released from the endocrine cell ...

  3. 17.1 An Overview of the Endocrine System

    The endocrine gland is the major player in this system. The primary function of these ductless glands is to secrete their hormones directly into the surrounding fluid. The interstitial fluid and the blood vessels then transport the hormones throughout the body. The endocrine system includes the pituitary, thyroid, parathyroid, adrenal, and ...

  4. Ch. 17 Critical Thinking Questions

    True or false: Neurotransmitters are a special class of paracrines. Explain your answer. 41. Compare and contrast the signaling events involved with the second messengers cAMP and IP 3. 42. Describe the mechanism of hormone response resulting from the binding of a hormone with an intracellular receptor. 43.

  5. Chapter 11: Care of the Patient with an Endocrine Disorder

    Pg. 540. hunger and a trembling sensation. The nurse discovers the type 1 diabetic (IDDM) patient drowsy and tremulous, the skin is cool and moist, and the respirations are 32 and shallow. These are signs of: Pg. 540, Table 11-6. hypoglycemic reaction; give 6 oz of orange juice.

  6. 106 17.1 An Overview of the Endocrine System

    Chapter 11. The Muscular System. 72. Introduction. 73. 11.1 Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems. ... Answers for Critical Thinking Questions. The endocrine system uses chemical signals called hormones to convey information from one part of the body to a distant part of the body. Hormones are ...

  7. Challenging endocrinology students with a critical-thinking workbook

    The event sequencing activities are grounded in theories on critical thinking and teaching biological complexity to engage students in critical thinking and learn endocrine content. Endocrine systems fulfill many of the characteristics that describe complex systems, such as having many interacting agents, positive and negative feedback, showing ...

  8. Chapter 11

    Anatomy & Physiology - Chapter 11 - The Endocrine System: New Words. Flashcards. Learn. Test. Match. Flashcards. Learn. Test. Match. Created by. sherrye. Terms in this set (59) adenohypophysis. ... Endocrine System Study Guide- A&P. 91 terms. amanda_crosby4. Sets found in the same folder. Blood Flow Through Heart. 16 terms. smmiller1. Back and ...

  9. 17.11 Development and Aging of the Endocrine System

    The endocrine system originates from all three germ layers of the embryo, including the endoderm, ectoderm, and mesoderm. In general, different hormone classes arise from distinct germ layers. Aging affects the endocrine glands, potentially affecting hormone production and secretion, and can cause disease. The production of hormones, such as ...

  10. Chapter 11: Care of the Patient With Endocrine Disorder

    Diet should be foods high in calcium such as low fat dairy products, dark green vegetables, soybeans, tofu, and canned fish with the bone included. 1200 mg/day of calcium. Diet should also be low in phosphorus such as soy milk, white rice, jam, honey, lemon-lime soda, cucumbers, lettuce, peppers, tomatoes.

  11. 17.17: Critical Thinking Questions

    17.17: Critical Thinking Questions. 38. Describe several main differences in the communication methods used by the endocrine system and the nervous system. 39. Compare and contrast endocrine and exocrine glands. 40. True or false: Neurotransmitters are a special class of paracrines. Explain your answer.

  12. 9.2: An Overview of the Endocrine System

    Figure 9.2.1 9.2. 1: Endocrine system. Endocrine glands and cells are located throughout the body and play an important role in homeostasis. The ductless endocrine glands are not to be confused with the body's exocrine system, whose glands release their secretions through ducts. Examples of exocrine glands include the sebaceous and sweat ...

  13. The Endocrine System

    The endocrine system consists of a series of glands that produce chemical substances known as hormones ().Like neurotransmitters, hormones are chemical messengers that must bind to a receptor in order to send their signal. However, unlike neurotransmitters, which are released in close proximity to cells with their receptors, hormones are secreted into the bloodstream and travel throughout the ...

  14. 3.3: An Overview of the Endocrine System

    Critical Thinking Questions. Describe several main differences in the communication methods used by the endocrine system and the nervous system. Compare and contrast endocrine and exocrine glands. True or false: Neurotransmitters are a special class of paracrines. Explain your answer. [reveal-answer q="503902″]Show Answers[/reveal-answer]

  15. 3.5. The Endocrine System

    3.5. The Endocrine System Figure 3.34. The major glands of the endocrine system. The endocrine system consists of a network of glands that produce chemical substances known as hormones (Figure 3.3 4).Like neurotransmitters, hormones are chemical messengers that must bind to a receptor in order to have an effect.

  16. 17.11: Development and Aging of the Endocrine System

    The endocrine system arises from all three embryonic germ layers. The endocrine glands that produce the steroid hormones, such as the gonads and adrenal cortex, arise from the mesoderm. In contrast, endocrine glands that arise from the endoderm and ectoderm produce the amine, peptide, and protein hormones. The pituitary gland arises from two ...

  17. Ch. 17 Chapter Review

    17.1 An Overview of the Endocrine System. The endocrine system consists of cells, tissues, and organs that secrete hormones critical to homeostasis. The body coordinates its functions through two major types of communication: neural and endocrine. Neural communication includes both electrical and chemical signaling between neurons and target cells.

  18. Anatomy and Physiology, Regulation, Integration, and Control, The

    11 - Organs with Secondary Endocrine Functions 12 - Development and Aging of the Endocrine System ... Critical Thinking Questions. 38. Describe several main differences in the communication methods used by the endocrine system and the nervous system. 39. Compare and contrast endocrine and exocrine glands. 40.

  19. 17.11 Development and Aging of the Endocrine System

    The endocrine system arises from all three embryonic germ layers. The endocrine glands that produce the steroid hormones, such as the gonads and adrenal cortex, arise from the mesoderm. In contrast, endocrine glands that arise from the endoderm and ectoderm produce the amine, peptide, and protein hormones. The pituitary gland arises from two ...

  20. Chapter 17: The Endocrine System

    17.17: Critical Thinking Questions This page titled Chapter 17: The Endocrine System is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by OpenStax via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

  21. 3.5. The Endocrine System

    The Endocrine System - Introduction to Psychology (A critical approach) 23 3.5. The Endocrine System. Figure 3.34. The major glands of the endocrine system. The endocrine system consists of a network of glands that produce chemical substances known as hormones ( Figure 3.34 ). Like neurotransmitters, hormones are chemical messengers that must ...

  22. Structure and Function: Chapter 11 Flashcards

    Structure and Function: Chapter 11. Compare the effects of the nervous system and the endocrine system in controlling the body. Click the card to flip 👆. They both work to keep the body alive and keep homeostasis. However the nervous system uses nerves and the endocrine system uses hormones to tell the body what to do. Click the card to flip ...

  23. 7.5.11: Critical Thinking Questions

    26. Why is cAMP-mediated signal amplification not required in steroid hormone signaling? Describe how steroid signaling is amplified instead. 27. Name and describe a function of one hormone produced by the anterior pituitary and one hormone produced by the posterior pituitary. 28.