U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Am Med Inform Assoc
  • v.13(1); Jan-Feb 2006

The Use and Interpretation of Quasi-Experimental Studies in Medical Informatics

Associated data.

Quasi-experimental study designs, often described as nonrandomized, pre-post intervention studies, are common in the medical informatics literature. Yet little has been written about the benefits and limitations of the quasi-experimental approach as applied to informatics studies. This paper outlines a relative hierarchy and nomenclature of quasi-experimental study designs that is applicable to medical informatics intervention studies. In addition, the authors performed a systematic review of two medical informatics journals, the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI), to determine the number of quasi-experimental studies published and how the studies are classified on the above-mentioned relative hierarchy. They hope that future medical informatics studies will implement higher level quasi-experimental study designs that yield more convincing evidence for causal links between medical informatics interventions and outcomes.

Quasi-experimental studies encompass a broad range of nonrandomized intervention studies. These designs are frequently used when it is not logistically feasible or ethical to conduct a randomized controlled trial. Examples of quasi-experimental studies follow. As one example of a quasi-experimental study, a hospital introduces a new order-entry system and wishes to study the impact of this intervention on the number of medication-related adverse events before and after the intervention. As another example, an informatics technology group is introducing a pharmacy order-entry system aimed at decreasing pharmacy costs. The intervention is implemented and pharmacy costs before and after the intervention are measured.

In medical informatics, the quasi-experimental, sometimes called the pre-post intervention, design often is used to evaluate the benefits of specific interventions. The increasing capacity of health care institutions to collect routine clinical data has led to the growing use of quasi-experimental study designs in the field of medical informatics as well as in other medical disciplines. However, little is written about these study designs in the medical literature or in traditional epidemiology textbooks. 1 , 2 , 3 In contrast, the social sciences literature is replete with examples of ways to implement and improve quasi-experimental studies. 4 , 5 , 6

In this paper, we review the different pretest-posttest quasi-experimental study designs, their nomenclature, and the relative hierarchy of these designs with respect to their ability to establish causal associations between an intervention and an outcome. The example of a pharmacy order-entry system aimed at decreasing pharmacy costs will be used throughout this article to illustrate the different quasi-experimental designs. We discuss limitations of quasi-experimental designs and offer methods to improve them. We also perform a systematic review of four years of publications from two informatics journals to determine the number of quasi-experimental studies, classify these studies into their application domains, determine whether the potential limitations of quasi-experimental studies were acknowledged by the authors, and place these studies into the above-mentioned relative hierarchy.

The authors reviewed articles and book chapters on the design of quasi-experimental studies. 4 , 5 , 6 , 7 , 8 , 9 , 10 Most of the reviewed articles referenced two textbooks that were then reviewed in depth. 4 , 6

Key advantages and disadvantages of quasi-experimental studies, as they pertain to the study of medical informatics, were identified. The potential methodological flaws of quasi-experimental medical informatics studies, which have the potential to introduce bias, were also identified. In addition, a summary table outlining a relative hierarchy and nomenclature of quasi-experimental study designs is described. In general, the higher the design is in the hierarchy, the greater the internal validity that the study traditionally possesses because the evidence of the potential causation between the intervention and the outcome is strengthened. 4

We then performed a systematic review of four years of publications from two informatics journals. First, we determined the number of quasi-experimental studies. We then classified these studies on the above-mentioned hierarchy. We also classified the quasi-experimental studies according to their application domain. The categories of application domains employed were based on categorization used by Yearbooks of Medical Informatics 1992–2005 and were similar to the categories of application domains employed by Annual Symposiums of the American Medical Informatics Association. 11 The categories were (1) health and clinical management; (2) patient records; (3) health information systems; (4) medical signal processing and biomedical imaging; (5) decision support, knowledge representation, and management; (6) education and consumer informatics; and (7) bioinformatics. Because the quasi-experimental study design has recognized limitations, we sought to determine whether authors acknowledged the potential limitations of this design. Examples of acknowledgment included mention of lack of randomization, the potential for regression to the mean, the presence of temporal confounders and the mention of another design that would have more internal validity.

All original scientific manuscripts published between January 2000 and December 2003 in the Journal of the American Medical Informatics Association (JAMIA) and the International Journal of Medical Informatics (IJMI) were reviewed. One author (ADH) reviewed all the papers to identify the number of quasi-experimental studies. Other authors (ADH, JCM, JF) then independently reviewed all the studies identified as quasi-experimental. The three authors then convened as a group to resolve any disagreements in study classification, application domain, and acknowledgment of limitations.

Results and Discussion

What is a quasi-experiment.

Quasi-experiments are studies that aim to evaluate interventions but that do not use randomization. Similar to randomized trials, quasi-experiments aim to demonstrate causality between an intervention and an outcome. Quasi-experimental studies can use both preintervention and postintervention measurements as well as nonrandomly selected control groups.

Using this basic definition, it is evident that many published studies in medical informatics utilize the quasi-experimental design. Although the randomized controlled trial is generally considered to have the highest level of credibility with regard to assessing causality, in medical informatics, researchers often choose not to randomize the intervention for one or more reasons: (1) ethical considerations, (2) difficulty of randomizing subjects, (3) difficulty to randomize by locations (e.g., by wards), (4) small available sample size. Each of these reasons is discussed below.

Ethical considerations typically will not allow random withholding of an intervention with known efficacy. Thus, if the efficacy of an intervention has not been established, a randomized controlled trial is the design of choice to determine efficacy. But if the intervention under study incorporates an accepted, well-established therapeutic intervention, or if the intervention has either questionable efficacy or safety based on previously conducted studies, then the ethical issues of randomizing patients are sometimes raised. In the area of medical informatics, it is often believed prior to an implementation that an informatics intervention will likely be beneficial and thus medical informaticians and hospital administrators are often reluctant to randomize medical informatics interventions. In addition, there is often pressure to implement the intervention quickly because of its believed efficacy, thus not allowing researchers sufficient time to plan a randomized trial.

For medical informatics interventions, it is often difficult to randomize the intervention to individual patients or to individual informatics users. So while this randomization is technically possible, it is underused and thus compromises the eventual strength of concluding that an informatics intervention resulted in an outcome. For example, randomly allowing only half of medical residents to use pharmacy order-entry software at a tertiary care hospital is a scenario that hospital administrators and informatics users may not agree to for numerous reasons.

Similarly, informatics interventions often cannot be randomized to individual locations. Using the pharmacy order-entry system example, it may be difficult to randomize use of the system to only certain locations in a hospital or portions of certain locations. For example, if the pharmacy order-entry system involves an educational component, then people may apply the knowledge learned to nonintervention wards, thereby potentially masking the true effect of the intervention. When a design using randomized locations is employed successfully, the locations may be different in other respects (confounding variables), and this further complicates the analysis and interpretation.

In situations where it is known that only a small sample size will be available to test the efficacy of an intervention, randomization may not be a viable option. Randomization is beneficial because on average it tends to evenly distribute both known and unknown confounding variables between the intervention and control group. However, when the sample size is small, randomization may not adequately accomplish this balance. Thus, alternative design and analytical methods are often used in place of randomization when only small sample sizes are available.

What Are the Threats to Establishing Causality When Using Quasi-experimental Designs in Medical Informatics?

The lack of random assignment is the major weakness of the quasi-experimental study design. Associations identified in quasi-experiments meet one important requirement of causality since the intervention precedes the measurement of the outcome. Another requirement is that the outcome can be demonstrated to vary statistically with the intervention. Unfortunately, statistical association does not imply causality, especially if the study is poorly designed. Thus, in many quasi-experiments, one is most often left with the question: “Are there alternative explanations for the apparent causal association?” If these alternative explanations are credible, then the evidence of causation is less convincing. These rival hypotheses, or alternative explanations, arise from principles of epidemiologic study design.

Shadish et al. 4 outline nine threats to internal validity that are outlined in ▶ . Internal validity is defined as the degree to which observed changes in outcomes can be correctly inferred to be caused by an exposure or an intervention. In quasi-experimental studies of medical informatics, we believe that the methodological principles that most often result in alternative explanations for the apparent causal effect include (a) difficulty in measuring or controlling for important confounding variables, particularly unmeasured confounding variables, which can be viewed as a subset of the selection threat in ▶ ; (b) results being explained by the statistical principle of regression to the mean . Each of these latter two principles is discussed in turn.

Threats to Internal Validity

Adapted from Shadish et al. 4

An inability to sufficiently control for important confounding variables arises from the lack of randomization. A variable is a confounding variable if it is associated with the exposure of interest and is also associated with the outcome of interest; the confounding variable leads to a situation where a causal association between a given exposure and an outcome is observed as a result of the influence of the confounding variable. For example, in a study aiming to demonstrate that the introduction of a pharmacy order-entry system led to lower pharmacy costs, there are a number of important potential confounding variables (e.g., severity of illness of the patients, knowledge and experience of the software users, other changes in hospital policy) that may have differed in the preintervention and postintervention time periods ( ▶ ). In a multivariable regression, the first confounding variable could be addressed with severity of illness measures, but the second confounding variable would be difficult if not nearly impossible to measure and control. In addition, potential confounding variables that are unmeasured or immeasurable cannot be controlled for in nonrandomized quasi-experimental study designs and can only be properly controlled by the randomization process in randomized controlled trials.

An external file that holds a picture, illustration, etc.
Object name is 16f01.jpg

Example of confounding. To get the true effect of the intervention of interest, we need to control for the confounding variable.

Another important threat to establishing causality is regression to the mean. 12 , 13 , 14 This widespread statistical phenomenon can result in wrongly concluding that an effect is due to the intervention when in reality it is due to chance. The phenomenon was first described in 1886 by Francis Galton who measured the adult height of children and their parents. He noted that when the average height of the parents was greater than the mean of the population, the children tended to be shorter than their parents, and conversely, when the average height of the parents was shorter than the population mean, the children tended to be taller than their parents.

In medical informatics, what often triggers the development and implementation of an intervention is a rise in the rate above the mean or norm. For example, increasing pharmacy costs and adverse events may prompt hospital informatics personnel to design and implement pharmacy order-entry systems. If this rise in costs or adverse events is really just an extreme observation that is still within the normal range of the hospital's pharmaceutical costs (i.e., the mean pharmaceutical cost for the hospital has not shifted), then the statistical principle of regression to the mean predicts that these elevated rates will tend to decline even without intervention. However, often informatics personnel and hospital administrators cannot wait passively for this decline to occur. Therefore, hospital personnel often implement one or more interventions, and if a decline in the rate occurs, they may mistakenly conclude that the decline is causally related to the intervention. In fact, an alternative explanation for the finding could be regression to the mean.

What Are the Different Quasi-experimental Study Designs?

In the social sciences literature, quasi-experimental studies are divided into four study design groups 4 , 6 :

  • Quasi-experimental designs without control groups
  • Quasi-experimental designs that use control groups but no pretest
  • Quasi-experimental designs that use control groups and pretests
  • Interrupted time-series designs

There is a relative hierarchy within these categories of study designs, with category D studies being sounder than categories C, B, or A in terms of establishing causality. Thus, if feasible from a design and implementation point of view, investigators should aim to design studies that fall in to the higher rated categories. Shadish et al. 4 discuss 17 possible designs, with seven designs falling into category A, three designs in category B, and six designs in category C, and one major design in category D. In our review, we determined that most medical informatics quasi-experiments could be characterized by 11 of 17 designs, with six study designs in category A, one in category B, three designs in category C, and one design in category D because the other study designs were not used or feasible in the medical informatics literature. Thus, for simplicity, we have summarized the 11 study designs most relevant to medical informatics research in ▶ .

Relative Hierarchy of Quasi-experimental Designs

O = Observational Measurement; X = Intervention Under Study. Time moves from left to right.

The nomenclature and relative hierarchy were used in the systematic review of four years of JAMIA and the IJMI. Similar to the relative hierarchy that exists in the evidence-based literature that assigns a hierarchy to randomized controlled trials, cohort studies, case-control studies, and case series, the hierarchy in ▶ is not absolute in that in some cases, it may be infeasible to perform a higher level study. For example, there may be instances where an A6 design established stronger causality than a B1 design. 15 , 16 , 17

Quasi-experimental Designs without Control Groups

equation M1

Here, X is the intervention and O is the outcome variable (this notation is continued throughout the article). In this study design, an intervention (X) is implemented and a posttest observation (O1) is taken. For example, X could be the introduction of a pharmacy order-entry intervention and O1 could be the pharmacy costs following the intervention. This design is the weakest of the quasi-experimental designs that are discussed in this article. Without any pretest observations or a control group, there are multiple threats to internal validity. Unfortunately, this study design is often used in medical informatics when new software is introduced since it may be difficult to have pretest measurements due to time, technical, or cost constraints.

equation M2

This is a commonly used study design. A single pretest measurement is taken (O1), an intervention (X) is implemented, and a posttest measurement is taken (O2). In this instance, period O1 frequently serves as the “control” period. For example, O1 could be pharmacy costs prior to the intervention, X could be the introduction of a pharmacy order-entry system, and O2 could be the pharmacy costs following the intervention. Including a pretest provides some information about what the pharmacy costs would have been had the intervention not occurred.

equation M3

The advantage of this study design over A2 is that adding a second pretest prior to the intervention helps provide evidence that can be used to refute the phenomenon of regression to the mean and confounding as alternative explanations for any observed association between the intervention and the posttest outcome. For example, in a study where a pharmacy order-entry system led to lower pharmacy costs (O3 < O2 and O1), if one had two preintervention measurements of pharmacy costs (O1 and O2) and they were both elevated, this would suggest that there was a decreased likelihood that O3 is lower due to confounding and regression to the mean. Similarly, extending this study design by increasing the number of measurements postintervention could also help to provide evidence against confounding and regression to the mean as alternate explanations for observed associations.

equation M4

This design involves the inclusion of a nonequivalent dependent variable ( b ) in addition to the primary dependent variable ( a ). Variables a and b should assess similar constructs; that is, the two measures should be affected by similar factors and confounding variables except for the effect of the intervention. Variable a is expected to change because of the intervention X, whereas variable b is not. Taking our example, variable a could be pharmacy costs and variable b could be the length of stay of patients. If our informatics intervention is aimed at decreasing pharmacy costs, we would expect to observe a decrease in pharmacy costs but not in the average length of stay of patients. However, a number of important confounding variables, such as severity of illness and knowledge of software users, might affect both outcome measures. Thus, if the average length of stay did not change following the intervention but pharmacy costs did, then the data are more convincing than if just pharmacy costs were measured.

The Removed-Treatment Design

equation M5

This design adds a third posttest measurement (O3) to the one-group pretest-posttest design and then removes the intervention before a final measure (O4) is made. The advantage of this design is that it allows one to test hypotheses about the outcome in the presence of the intervention and in the absence of the intervention. Thus, if one predicts a decrease in the outcome between O1 and O2 (after implementation of the intervention), then one would predict an increase in the outcome between O3 and O4 (after removal of the intervention). One caveat is that if the intervention is thought to have persistent effects, then O4 needs to be measured after these effects are likely to have disappeared. For example, a study would be more convincing if it demonstrated that pharmacy costs decreased after pharmacy order-entry system introduction (O2 and O3 less than O1) and that when the order-entry system was removed or disabled, the costs increased (O4 greater than O2 and O3 and closer to O1). In addition, there are often ethical issues in this design in terms of removing an intervention that may be providing benefit.

The Repeated-Treatment Design

equation M6

The advantage of this design is that it demonstrates reproducibility of the association between the intervention and the outcome. For example, the association is more likely to be causal if one demonstrates that a pharmacy order-entry system results in decreased pharmacy costs when it is first introduced and again when it is reintroduced following an interruption of the intervention. As for design A5, the assumption must be made that the effect of the intervention is transient, which is most often applicable to medical informatics interventions. Because in this design, subjects may serve as their own controls, this may yield greater statistical efficiency with fewer numbers of subjects.

Quasi-experimental Designs That Use a Control Group but No Pretest

equation M7

An intervention X is implemented for one group and compared to a second group. The use of a comparison group helps prevent certain threats to validity including the ability to statistically adjust for confounding variables. Because in this study design, the two groups may not be equivalent (assignment to the groups is not by randomization), confounding may exist. For example, suppose that a pharmacy order-entry intervention was instituted in the medical intensive care unit (MICU) and not the surgical intensive care unit (SICU). O1 would be pharmacy costs in the MICU after the intervention and O2 would be pharmacy costs in the SICU after the intervention. The absence of a pretest makes it difficult to know whether a change has occurred in the MICU. Also, the absence of pretest measurements comparing the SICU to the MICU makes it difficult to know whether differences in O1 and O2 are due to the intervention or due to other differences in the two units (confounding variables).

Quasi-experimental Designs That Use Control Groups and Pretests

The reader should note that with all the studies in this category, the intervention is not randomized. The control groups chosen are comparison groups. Obtaining pretest measurements on both the intervention and control groups allows one to assess the initial comparability of the groups. The assumption is that if the intervention and the control groups are similar at the pretest, the smaller the likelihood there is of important confounding variables differing between the two groups.

equation M8

The use of both a pretest and a comparison group makes it easier to avoid certain threats to validity. However, because the two groups are nonequivalent (assignment to the groups is not by randomization), selection bias may exist. Selection bias exists when selection results in differences in unit characteristics between conditions that may be related to outcome differences. For example, suppose that a pharmacy order-entry intervention was instituted in the MICU and not the SICU. If preintervention pharmacy costs in the MICU (O1a) and SICU (O1b) are similar, it suggests that it is less likely that there are differences in the important confounding variables between the two units. If MICU postintervention costs (O2a) are less than preintervention MICU costs (O1a), but SICU costs (O1b) and (O2b) are similar, this suggests that the observed outcome may be causally related to the intervention.

equation M9

In this design, the pretests are administered at two different times. The main advantage of this design is that it controls for potentially different time-varying confounding effects in the intervention group and the comparison group. In our example, measuring points O1 and O2 would allow for the assessment of time-dependent changes in pharmacy costs, e.g., due to differences in experience of residents, preintervention between the intervention and control group, and whether these changes were similar or different.

equation M10

With this study design, the researcher administers an intervention at a later time to a group that initially served as a nonintervention control. The advantage of this design over design C2 is that it demonstrates reproducibility in two different settings. This study design is not limited to two groups; in fact, the study results have greater validity if the intervention effect is replicated in different groups at multiple times. In the example of a pharmacy order-entry system, one could implement or intervene in the MICU and then at a later time, intervene in the SICU. This latter design is often very applicable to medical informatics where new technology and new software is often introduced or made available gradually.

Interrupted Time-Series Designs

equation M11

An interrupted time-series design is one in which a string of consecutive observations equally spaced in time is interrupted by the imposition of a treatment or intervention. The advantage of this design is that with multiple measurements both pre- and postintervention, it is easier to address and control for confounding and regression to the mean. In addition, statistically, there is a more robust analytic capability, and there is the ability to detect changes in the slope or intercept as a result of the intervention in addition to a change in the mean values. 18 A change in intercept could represent an immediate effect while a change in slope could represent a gradual effect of the intervention on the outcome. In the example of a pharmacy order-entry system, O1 through O5 could represent monthly pharmacy costs preintervention and O6 through O10 monthly pharmacy costs post the introduction of the pharmacy order-entry system. Interrupted time-series designs also can be further strengthened by incorporating many of the design features previously mentioned in other categories (such as removal of the treatment, inclusion of a nondependent outcome variable, or the addition of a control group).

Systematic Review Results

The results of the systematic review are in ▶ . In the four-year period of JAMIA publications that the authors reviewed, 25 quasi-experimental studies among 22 articles were published. Of these 25, 15 studies were of category A, five studies were of category B, two studies were of category C, and no studies were of category D. Although there were no studies of category D (interrupted time-series analyses), three of the studies classified as category A had data collected that could have been analyzed as an interrupted time-series analysis. Nine of the 25 studies (36%) mentioned at least one of the potential limitations of the quasi-experimental study design. In the four-year period of IJMI publications reviewed by the authors, nine quasi-experimental studies among eight manuscripts were published. Of these nine, five studies were of category A, one of category B, one of category C, and two of category D. Two of the nine studies (22%) mentioned at least one of the potential limitations of the quasi-experimental study design.

Systematic Review of Four Years of Quasi-designs in JAMIA

JAMIA = Journal of the American Medical Informatics Association; IJMI = International Journal of Medical Informatics.

In addition, three studies from JAMIA were based on a counterbalanced design. A counterbalanced design is a higher order study design than other studies in category A. The counterbalanced design is sometimes referred to as a Latin-square arrangement. In this design, all subjects receive all the different interventions but the order of intervention assignment is not random. 19 This design can only be used when the intervention is compared against some existing standard, for example, if a new PDA-based order entry system is to be compared to a computer terminal–based order entry system. In this design, all subjects receive the new PDA-based order entry system and the old computer terminal-based order entry system. The counterbalanced design is a within-participants design, where the order of the intervention is varied (e.g., one group is given software A followed by software B and another group is given software B followed by software A). The counterbalanced design is typically used when the available sample size is small, thus preventing the use of randomization. This design also allows investigators to study the potential effect of ordering of the informatics intervention.

Although quasi-experimental study designs are ubiquitous in the medical informatics literature, as evidenced by 34 studies in the past four years of the two informatics journals, little has been written about the benefits and limitations of the quasi-experimental approach. As we have outlined in this paper, a relative hierarchy and nomenclature of quasi-experimental study designs exist, with some designs being more likely than others to permit causal interpretations of observed associations. Strengths and limitations of a particular study design should be discussed when presenting data collected in the setting of a quasi-experimental study. Future medical informatics investigators should choose the strongest design that is feasible given the particular circumstances.

Supplementary Material

Dr. Harris was supported by NIH grants K23 AI01752-01A1 and R01 AI60859-01A1. Dr. Perencevich was supported by a VA Health Services Research and Development Service (HSR&D) Research Career Development Award (RCD-02026-1). Dr. Finkelstein was supported by NIH grant RO1 HL71690.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Quasi-Experimental Design | Definition, Types & Examples

Quasi-Experimental Design | Definition, Types & Examples

Published on July 31, 2020 by Lauren Thomas . Revised on January 22, 2024.

Like a true experiment , a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable .

However, unlike a true experiment, a quasi-experiment does not rely on random assignment . Instead, subjects are assigned to groups based on non-random criteria.

Quasi-experimental design is a useful tool in situations where true experiments cannot be used for ethical or practical reasons.

Quasi-experimental design vs. experimental design

Table of contents

Differences between quasi-experiments and true experiments, types of quasi-experimental designs, when to use quasi-experimental design, advantages and disadvantages, other interesting articles, frequently asked questions about quasi-experimental designs.

There are several common differences between true and quasi-experimental designs.

Example of a true experiment vs a quasi-experiment

However, for ethical reasons, the directors of the mental health clinic may not give you permission to randomly assign their patients to treatments. In this case, you cannot run a true experiment.

Instead, you can use a quasi-experimental design.

You can use these pre-existing groups to study the symptom progression of the patients treated with the new therapy versus those receiving the standard course of treatment.

Prevent plagiarism. Run a free check.

Many types of quasi-experimental designs exist. Here we explain three of the most common types: nonequivalent groups design, regression discontinuity, and natural experiments.

Nonequivalent groups design

In nonequivalent group design, the researcher chooses existing groups that appear similar, but where only one of the groups experiences the treatment.

In a true experiment with random assignment , the control and treatment groups are considered equivalent in every way other than the treatment. But in a quasi-experiment where the groups are not random, they may differ in other ways—they are nonequivalent groups .

When using this kind of design, researchers try to account for any confounding variables by controlling for them in their analysis or by choosing groups that are as similar as possible.

This is the most common type of quasi-experimental design.

Regression discontinuity

Many potential treatments that researchers wish to study are designed around an essentially arbitrary cutoff, where those above the threshold receive the treatment and those below it do not.

Near this threshold, the differences between the two groups are often so minimal as to be nearly nonexistent. Therefore, researchers can use individuals just below the threshold as a control group and those just above as a treatment group.

However, since the exact cutoff score is arbitrary, the students near the threshold—those who just barely pass the exam and those who fail by a very small margin—tend to be very similar, with the small differences in their scores mostly due to random chance. You can therefore conclude that any outcome differences must come from the school they attended.

Natural experiments

In both laboratory and field experiments, researchers normally control which group the subjects are assigned to. In a natural experiment, an external event or situation (“nature”) results in the random or random-like assignment of subjects to the treatment group.

Even though some use random assignments, natural experiments are not considered to be true experiments because they are observational in nature.

Although the researchers have no control over the independent variable , they can exploit this event after the fact to study the effect of the treatment.

However, as they could not afford to cover everyone who they deemed eligible for the program, they instead allocated spots in the program based on a random lottery.

Although true experiments have higher internal validity , you might choose to use a quasi-experimental design for ethical or practical reasons.

Sometimes it would be unethical to provide or withhold a treatment on a random basis, so a true experiment is not feasible. In this case, a quasi-experiment can allow you to study the same causal relationship without the ethical issues.

The Oregon Health Study is a good example. It would be unethical to randomly provide some people with health insurance but purposely prevent others from receiving it solely for the purposes of research.

However, since the Oregon government faced financial constraints and decided to provide health insurance via lottery, studying this event after the fact is a much more ethical approach to studying the same problem.

True experimental design may be infeasible to implement or simply too expensive, particularly for researchers without access to large funding streams.

At other times, too much work is involved in recruiting and properly designing an experimental intervention for an adequate number of subjects to justify a true experiment.

In either case, quasi-experimental designs allow you to study the question by taking advantage of data that has previously been paid for or collected by others (often the government).

Quasi-experimental designs have various pros and cons compared to other types of studies.

  • Higher external validity than most true experiments, because they often involve real-world interventions instead of artificial laboratory settings.
  • Higher internal validity than other non-experimental types of research, because they allow you to better control for confounding variables than other types of studies do.
  • Lower internal validity than true experiments—without randomization, it can be difficult to verify that all confounding variables have been accounted for.
  • The use of retrospective data that has already been collected for other purposes can be inaccurate, incomplete or difficult to access.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

quasi experimental research thesis pdf

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Thomas, L. (2024, January 22). Quasi-Experimental Design | Definition, Types & Examples. Scribbr. Retrieved March 20, 2024, from https://www.scribbr.com/methodology/quasi-experimental-design/

Is this article helpful?

Lauren Thomas

Lauren Thomas

Other students also liked, guide to experimental design | overview, steps, & examples, random assignment in experiments | introduction & examples, control variables | what are they & why do they matter, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Advanced Search
  • by Research Center
  • by Document Type
  • Users by Expertise
  • Users by Department
  • Users by Name
  • Latest Additions

Information

  • -->Main Page
  • Getting Started
  • Submitting Your ETD
  • Repository Policies

Over the past couple of decades, teacher effectiveness has become a major focus to improve students’ mathematics learning. Teacher professional development (PD), in particular, has been at the center of efforts aimed at improving teaching practice and the mathematics learning of students. However, empirical evidence for the effectiveness of PD for improving student achievement is mixed and there is limited research-based knowledge about the features of effective PD not only in mathematics but also in other subject areas. In this quasi-experimental study, I examined the effect of a Math and Science Partnership (MSP) PD on student achievement trajectories. Results of hierarchical growth models for this study revealed that content-focused (Algebra1 and Geometry), ongoing PD was effective for improving student achievement (relative to a matched comparison group) in Algebra1 (both for high and low performing students) and in Geometry (for low performing students only). There was no effect of PD on students’ achievement in Algebra2, which was not the focus of the MSP-PD. By demonstrating an effect of PD on student achievement, this study contributes to our growing knowledge base about features of PD programs that appear to contribute to their effectiveness. Moreover, it provides a case study showing how the research design might contribute in important ways to the ability to detect an effect of PD -if one exists- on student achievement. For example, given the data I had from the district, I was able to examine student growth within all Algebra 1, Geometry and Algebra 2 courses, while matching classrooms on aggregate student characteristics and school contexts. This allowed me to eliminate the potential confound of curriculum and to utilize longitudinal models to examine PD effects on students’ growth (relative to a comparison sample) for matched classrooms. Findings of this study have implications for educational practitioners and policymakers in their efforts to design and support effective PD programs in mathematics, and these features likely transfer to the design of PD in all subject areas. Moreover, for educational researchers this study suggests potential strategies for demonstrating robust research-based evidence for the effectiveness of PD on student learning.

Monthly Views for the past 3 years

Plum analytics, actions (login required).

This site is hosted by the University Library System of the University of Pittsburgh as part of its D-Scribe Digital Publishing Program

The ULS Office of Scholarly Communication and Publishing fosters and supports new modes of publishing and information-sharing among researchers.

The University of Pittsburgh and D-Scholarship@Pitt support Open Access to research.

Connect with us

Send comments or questions.

Quasi-Experimental Research Designs

Affiliation.

  • 1 Author Affiliation: Senior Nurse Scientist, Department of Nursing Research and Innovation, Cleveland Clinic, Ohio.
  • PMID: 32796378
  • DOI: 10.1097/NUR.0000000000000540
  • Nurse Clinicians*
  • Nursing Research / methods*
  • Research Design*

IMAGES

  1. (PDF) The Limitations of Quasi-Experimental Studies, and Methods for

    quasi experimental research thesis pdf

  2. Research Design

    quasi experimental research thesis pdf

  3. (PDF) Quasi-Experimental Research Designs

    quasi experimental research thesis pdf

  4. (PDF) A QUASI-EXPERIMENTAL STUDY ON USING SHORT STORIES: STATISTICAL

    quasi experimental research thesis pdf

  5. (PDF) Experimental and Quasi-Experimental Designs in Implementation

    quasi experimental research thesis pdf

  6. (PDF) A Guide for Novice Researchers on Experimental and Quasi

    quasi experimental research thesis pdf

VIDEO

  1. Research methodology- crash course|exam based| unit 5&6 || all theory

  2. Research methodology- crash course||unit 1 and unit 2|| All theory

  3. Thesis Experimental Video

  4. Experimental Animation Thesis

  5. Quasi Experimental & Experimental Research Strategies in Social & Behavioral Sciences

  6. 6 Types of Quantitative Research Design 📊🔍: What Are Those? 🤔 #shorts #research

COMMENTS

  1. A Quasi-Experimental Design To Study The Effect Of Multicultural

    A Quasi-Experimental Design To Study The Effect Of Multicultural Coursework And Culturally Diverse Field Placements On Preservice Teachers' Attitudes Toward Diversity Patty Moore Adeeb University of North Florida Follow this and additional works at: https://digitalcommons.unf.edu/etd Part of the Education Commons Suggested Citation

  2. (PDF) Quasi-Experimental Research Designs

    Quasi-Experimental Research Designs February 2012 DOI: 10.1093/acprof:oso/9780195387384.001.0001 Authors: Bruce A. Thyer Florida State University Abstract and Figures Quasi-experimental research...

  3. PDF A Quasi-Experimental Research on the Educational Value of Performance

    Eun-Hui Hwang Baekhyun Middle School Korea The purpose of this study is to demonstrate that performance assessment increases educational value in teaching-learning activities using a quasi-experimental research design.

  4. (PDF) Experimental and quasi-experimental designs

    Experimental and quasi-experimental designs Authors: John Rogers The Hong Kong Polytechnic University Andrea Revesz University College London Abstract and Figures Researchers within the field of...

  5. Use of Quasi-Experimental Research Designs in Education Research

    What Are Quasi-Experimental Research Designs? To understand the causal effect of any policy or intervention, researchers strive to establish an appropriate counterfactual, or what would have happened in the absence of the policy or intervention, to provide a baseline from which causal effects can be estimated.

  6. Selecting and Improving Quasi-Experimental Designs in Effectiveness and

    We focus on commonly used QEDs (pre-post designs with non-equivalent control groups, interrupted time series, and stepped wedge designs) and discuss several variants that maximize internal and external validity at the design, execution, and analysis stages.

  7. PDF QUASI-EXPERIMENTAL or AND SINGLE-CASE EXPERIMENTAL post, DESIGNScopy

    of quasi-experimental research design. In this chapter, we separate the content into two major sections: quasi-experimental designs and single-case experimental designs. We begin this chapter with an introduction to the type of research design illustrated here: the quasi-experimental research design. 13.1 An Overview of Quasi-Experimental Designs

  8. PDF A Quasi-Experimental Examination: Cognitive Sequencing of ...

    Volume 58, Issue 4, 2017. Agricultural education is rooted in experiential learning (Baker, 2012; Roberts, 2006). The process of integrating abstract concepts in an agricultural setting can be facilitated through the use of Kolb's (1984) experiential learning theory (ELT) as the model through which to deliver, reinforce, and evaluate student ...

  9. PDF Quasi-Experimental Designs

    Quasi-experimental designs (QED) can still help researchers understand the impacts of a policy or program. What makes a QED "quasi" is the fact that instead of randomly assigning subjects to intervention and control groups, they are split by some other means. Two groups are formed through various, non-random processes.

  10. The Use and Interpretation of Quasi-Experimental Studies in Medical

    Although quasi-experimental study designs are ubiquitous in the medical informatics literature, as evidenced by 34 studies in the past four years of the two informatics journals, little has been written about the benefits and limitations of the quasi-experimental approach. As we have outlined in this paper, a relative hierarchy and nomenclature ...

  11. A Quasi-Experimental Study on the Impact of Explicit ...

    a quasi-experimental study on the impact of explicit instruction of science text structures on eighth-grade english learners' and non-english learners' content learning and reading comprehension in three inclusive science classrooms by jelitza rivera b.a. herbert h. lehman college, 2003 m.ed. university of central florida, 2006

  12. PDF Quasi-Experimental Design and Methods

    Quasi-experimental designs identify a comparison group that is as similar as possible to the treatment group in terms of baseline (pre-intervention) characteristics. The comparison group captures what would have been the outcomes if the programme/policy had not been implemented (i.e., the counterfactual).

  13. PDF Experimental and quasi-experimental designs

    Quasi-experiments are a subtype of non-experiments, which attempt to mimic randomized, true experiments in rigor and experimental structure but lack random assignment (Cook & Wong, 2008; Kirk, 2009). Quasi-experimental studies do not require a true control group either but may include a comparison group.

  14. Quasi-Experimental Design

    Revised on January 22, 2024. Like a true experiment, a quasi-experimental design aims to establish a cause-and-effect relationship between an independent and dependent variable. However, unlike a true experiment, a quasi-experiment does not rely on random assignment. Instead, subjects are assigned to groups based on non-random criteria.

  15. PDF A Quasi-Experimental Control Group Design Study to Determine the ...

    A QUASI-EXPERIMENTAL CONTROL GROUP DESIGN STUDY TO DETERMINE THE EFFECT OF INTEGRATING CHARACTER EDUCATION INTO A HIGH SCHOOL SOCIAL STUDIES CURRICULUM THROUGH STORYTELLING . by . Russell L. Long . Liberty University . A Dissertation Presented in Partial Fulfillment . Of the Requirements for the Degree . Doctor of Education . Liberty University ...

  16. A Quasi-experimental Study of The Effect of Mathematics Professional

    (Unpublished) PDF Primary Text Download (1MB) | Preview Abstract Over the past couple of decades, teacher effectiveness has become a major focus to improve students' mathematics learning.

  17. (PDF) AN EXPERIMENTAL STUDY ON THE EFFECT OF PARTS ...

    The population was nine classes (420 students) of grade XI in SMA Negeri 5 Denpasar academic year 2012/2013, in which 2 classes were samples which were assigned into two groups, i.e. experimental...

  18. [PDF] Quasi-experimental Design in Education

    394. PDF. The following example illustrates what a quasi-experiment may look like in education: A principal would like to know whether a recently implemented after-school program is positively impacting at-risk students' academic achievement in math as measured by the Iowa Assessments. Since random assignment is impractical due to real-world ...

  19. PDF Quasi-experimental Better Evidence methods in Action

    Quasi-experimental methods help us establish the effect of an intervention on a target population or the absence of an expected effect. They also allow us to investigate the effects of policies on different components of individual and household wellbeing.

  20. PDF A Quasi-Experimental Study The Author(s) 2020 of a Web-Based English

    research indicates that teachers lose their motivation the longer that they teach, influencing their teaching strategies and student achievements (X. Wu et al., 2003). Therefore, this study considers the implementation strategies employed by different teachers in its examination of the impact of ABRA on phonics-based teaching among Chinese ...

  21. The Limitations of Quasi-Experimental Studies, and Methods for Data

    A quasi-experimental (QE) study is one that compares outcomes between intervention groups where, for reasons related to ethics or feasibility, participants are not randomized to their respective interventions; an example is the historical comparison of pregnancy outcomes in women who did versus did not receive antidepressant medication during pregnancy.

  22. (PDF) Chapter 3 Research Design and Methodology

    This chapter is composed of five parts: (1) Background and Theoretical Framework of the study, (2) Statement of the Problem and Hypotheses, (3) Significance of the Study, (4) Definition of Terms,...

  23. Quasi-Experimental Research Designs

    Quasi-Experimental Research Designs Clin Nurse Spec. 2020 Sep/Oct;34(5):198-202. doi: 10.1097/NUR.0000000000000540. Author Sandra L Siedlecki 1 Affiliation 1 Author Affiliation: Senior Nurse Scientist, Department of Nursing Research and Innovation, Cleveland Clinic, Ohio. PMID: 32796378 DOI: 10.1097 ...