• Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Project – Definition, Writing Guide and Ideas

Research Project – Definition, Writing Guide and Ideas

Table of Contents

Research Project

Research Project

Definition :

Research Project is a planned and systematic investigation into a specific area of interest or problem, with the goal of generating new knowledge, insights, or solutions. It typically involves identifying a research question or hypothesis, designing a study to test it, collecting and analyzing data, and drawing conclusions based on the findings.

Types of Research Project

Types of Research Projects are as follows:

Basic Research

This type of research focuses on advancing knowledge and understanding of a subject area or phenomenon, without any specific application or practical use in mind. The primary goal is to expand scientific or theoretical knowledge in a particular field.

Applied Research

Applied research is aimed at solving practical problems or addressing specific issues. This type of research seeks to develop solutions or improve existing products, services or processes.

Action Research

Action research is conducted by practitioners and aimed at solving specific problems or improving practices in a particular context. It involves collaboration between researchers and practitioners, and often involves iterative cycles of data collection and analysis, with the goal of improving practices.

Quantitative Research

This type of research uses numerical data to investigate relationships between variables or to test hypotheses. It typically involves large-scale data collection through surveys, experiments, or secondary data analysis.

Qualitative Research

Qualitative research focuses on understanding and interpreting phenomena from the perspective of the people involved. It involves collecting and analyzing data in the form of text, images, or other non-numerical forms.

Mixed Methods Research

Mixed methods research combines elements of both quantitative and qualitative research, using multiple data sources and methods to gain a more comprehensive understanding of a phenomenon.

Longitudinal Research

This type of research involves studying a group of individuals or phenomena over an extended period of time, often years or decades. It is useful for understanding changes and developments over time.

Case Study Research

Case study research involves in-depth investigation of a particular case or phenomenon, often within a specific context. It is useful for understanding complex phenomena in their real-life settings.

Participatory Research

Participatory research involves active involvement of the people or communities being studied in the research process. It emphasizes collaboration, empowerment, and the co-production of knowledge.

Research Project Methodology

Research Project Methodology refers to the process of conducting research in an organized and systematic manner to answer a specific research question or to test a hypothesis. A well-designed research project methodology ensures that the research is rigorous, valid, and reliable, and that the findings are meaningful and can be used to inform decision-making.

There are several steps involved in research project methodology, which are described below:

Define the Research Question

The first step in any research project is to clearly define the research question or problem. This involves identifying the purpose of the research, the scope of the research, and the key variables that will be studied.

Develop a Research Plan

Once the research question has been defined, the next step is to develop a research plan. This plan outlines the methodology that will be used to collect and analyze data, including the research design, sampling strategy, data collection methods, and data analysis techniques.

Collect Data

The data collection phase involves gathering information through various methods, such as surveys, interviews, observations, experiments, or secondary data analysis. The data collected should be relevant to the research question and should be of sufficient quantity and quality to enable meaningful analysis.

Analyze Data

Once the data has been collected, it is analyzed using appropriate statistical techniques or other methods. The analysis should be guided by the research question and should aim to identify patterns, trends, relationships, or other insights that can inform the research findings.

Interpret and Report Findings

The final step in the research project methodology is to interpret the findings and report them in a clear and concise manner. This involves summarizing the results, discussing their implications, and drawing conclusions that can be used to inform decision-making.

Research Project Writing Guide

Here are some guidelines to help you in writing a successful research project:

  • Choose a topic: Choose a topic that you are interested in and that is relevant to your field of study. It is important to choose a topic that is specific and focused enough to allow for in-depth research and analysis.
  • Conduct a literature review : Conduct a thorough review of the existing research on your topic. This will help you to identify gaps in the literature and to develop a research question or hypothesis.
  • Develop a research question or hypothesis : Based on your literature review, develop a clear research question or hypothesis that you will investigate in your study.
  • Design your study: Choose an appropriate research design and methodology to answer your research question or test your hypothesis. This may include choosing a sample, selecting measures or instruments, and determining data collection methods.
  • Collect data: Collect data using your chosen methods and instruments. Be sure to follow ethical guidelines and obtain informed consent from participants if necessary.
  • Analyze data: Analyze your data using appropriate statistical or qualitative methods. Be sure to clearly report your findings and provide interpretations based on your research question or hypothesis.
  • Discuss your findings : Discuss your findings in the context of the existing literature and your research question or hypothesis. Identify any limitations or implications of your study and suggest directions for future research.
  • Write your project: Write your research project in a clear and organized manner, following the appropriate format and style guidelines for your field of study. Be sure to include an introduction, literature review, methodology, results, discussion, and conclusion.
  • Revise and edit: Revise and edit your project for clarity, coherence, and accuracy. Be sure to proofread for spelling, grammar, and formatting errors.
  • Cite your sources: Cite your sources accurately and appropriately using the appropriate citation style for your field of study.

Examples of Research Projects

Some Examples of Research Projects are as follows:

  • Investigating the effects of a new medication on patients with a particular disease or condition.
  • Exploring the impact of exercise on mental health and well-being.
  • Studying the effectiveness of a new teaching method in improving student learning outcomes.
  • Examining the impact of social media on political participation and engagement.
  • Investigating the efficacy of a new therapy for a specific mental health disorder.
  • Exploring the use of renewable energy sources in reducing carbon emissions and mitigating climate change.
  • Studying the effects of a new agricultural technique on crop yields and environmental sustainability.
  • Investigating the effectiveness of a new technology in improving business productivity and efficiency.
  • Examining the impact of a new public policy on social inequality and access to resources.
  • Exploring the factors that influence consumer behavior in a specific market.

Characteristics of Research Project

Here are some of the characteristics that are often associated with research projects:

  • Clear objective: A research project is designed to answer a specific question or solve a particular problem. The objective of the research should be clearly defined from the outset.
  • Systematic approach: A research project is typically carried out using a structured and systematic approach that involves careful planning, data collection, analysis, and interpretation.
  • Rigorous methodology: A research project should employ a rigorous methodology that is appropriate for the research question being investigated. This may involve the use of statistical analysis, surveys, experiments, or other methods.
  • Data collection : A research project involves collecting data from a variety of sources, including primary sources (such as surveys or experiments) and secondary sources (such as published literature or databases).
  • Analysis and interpretation : Once the data has been collected, it needs to be analyzed and interpreted. This involves using statistical techniques or other methods to identify patterns or relationships in the data.
  • Conclusion and implications : A research project should lead to a clear conclusion that answers the research question. It should also identify the implications of the findings for future research or practice.
  • Communication: The results of the research project should be communicated clearly and effectively, using appropriate language and visual aids, to a range of audiences, including peers, stakeholders, and the wider public.

Importance of Research Project

Research projects are an essential part of the process of generating new knowledge and advancing our understanding of various fields of study. Here are some of the key reasons why research projects are important:

  • Advancing knowledge : Research projects are designed to generate new knowledge and insights into particular topics or questions. This knowledge can be used to inform policies, practices, and decision-making processes across a range of fields.
  • Solving problems: Research projects can help to identify solutions to real-world problems by providing a better understanding of the causes and effects of particular issues.
  • Developing new technologies: Research projects can lead to the development of new technologies or products that can improve people’s lives or address societal challenges.
  • Improving health outcomes: Research projects can contribute to improving health outcomes by identifying new treatments, diagnostic tools, or preventive strategies.
  • Enhancing education: Research projects can enhance education by providing new insights into teaching and learning methods, curriculum development, and student learning outcomes.
  • Informing public policy : Research projects can inform public policy by providing evidence-based recommendations and guidance on issues related to health, education, environment, social justice, and other areas.
  • Enhancing professional development : Research projects can enhance the professional development of researchers by providing opportunities to develop new skills, collaborate with colleagues, and share knowledge with others.

Research Project Ideas

Following are some Research Project Ideas:

Field: Psychology

  • Investigating the impact of social support on coping strategies among individuals with chronic illnesses.
  • Exploring the relationship between childhood trauma and adult attachment styles.
  • Examining the effects of exercise on cognitive function and brain health in older adults.
  • Investigating the impact of sleep deprivation on decision making and risk-taking behavior.
  • Exploring the relationship between personality traits and leadership styles in the workplace.
  • Examining the effectiveness of cognitive-behavioral therapy (CBT) for treating anxiety disorders.
  • Investigating the relationship between social comparison and body dissatisfaction in young women.
  • Exploring the impact of parenting styles on children’s emotional regulation and behavior.
  • Investigating the effectiveness of mindfulness-based interventions for treating depression.
  • Examining the relationship between childhood adversity and later-life health outcomes.

Field: Economics

  • Analyzing the impact of trade agreements on economic growth in developing countries.
  • Examining the effects of tax policy on income distribution and poverty reduction.
  • Investigating the relationship between foreign aid and economic development in low-income countries.
  • Exploring the impact of globalization on labor markets and job displacement.
  • Analyzing the impact of minimum wage laws on employment and income levels.
  • Investigating the effectiveness of monetary policy in managing inflation and unemployment.
  • Examining the relationship between economic freedom and entrepreneurship.
  • Analyzing the impact of income inequality on social mobility and economic opportunity.
  • Investigating the role of education in economic development.
  • Examining the effectiveness of different healthcare financing systems in promoting health equity.

Field: Sociology

  • Investigating the impact of social media on political polarization and civic engagement.
  • Examining the effects of neighborhood characteristics on health outcomes.
  • Analyzing the impact of immigration policies on social integration and cultural diversity.
  • Investigating the relationship between social support and mental health outcomes in older adults.
  • Exploring the impact of income inequality on social cohesion and trust.
  • Analyzing the effects of gender and race discrimination on career advancement and pay equity.
  • Investigating the relationship between social networks and health behaviors.
  • Examining the effectiveness of community-based interventions for reducing crime and violence.
  • Analyzing the impact of social class on cultural consumption and taste.
  • Investigating the relationship between religious affiliation and social attitudes.

Field: Computer Science

  • Developing an algorithm for detecting fake news on social media.
  • Investigating the effectiveness of different machine learning algorithms for image recognition.
  • Developing a natural language processing tool for sentiment analysis of customer reviews.
  • Analyzing the security implications of blockchain technology for online transactions.
  • Investigating the effectiveness of different recommendation algorithms for personalized advertising.
  • Developing an artificial intelligence chatbot for mental health counseling.
  • Investigating the effectiveness of different algorithms for optimizing online advertising campaigns.
  • Developing a machine learning model for predicting consumer behavior in online marketplaces.
  • Analyzing the privacy implications of different data sharing policies for online platforms.
  • Investigating the effectiveness of different algorithms for predicting stock market trends.

Field: Education

  • Investigating the impact of teacher-student relationships on academic achievement.
  • Analyzing the effectiveness of different pedagogical approaches for promoting student engagement and motivation.
  • Examining the effects of school choice policies on academic achievement and social mobility.
  • Investigating the impact of technology on learning outcomes and academic achievement.
  • Analyzing the effects of school funding disparities on educational equity and achievement gaps.
  • Investigating the relationship between school climate and student mental health outcomes.
  • Examining the effectiveness of different teaching strategies for promoting critical thinking and problem-solving skills.
  • Investigating the impact of social-emotional learning programs on student behavior and academic achievement.
  • Analyzing the effects of standardized testing on student motivation and academic achievement.

Field: Environmental Science

  • Investigating the impact of climate change on species distribution and biodiversity.
  • Analyzing the effectiveness of different renewable energy technologies in reducing carbon emissions.
  • Examining the impact of air pollution on human health outcomes.
  • Investigating the relationship between urbanization and deforestation in developing countries.
  • Analyzing the effects of ocean acidification on marine ecosystems and biodiversity.
  • Investigating the impact of land use change on soil fertility and ecosystem services.
  • Analyzing the effectiveness of different conservation policies and programs for protecting endangered species and habitats.
  • Investigating the relationship between climate change and water resources in arid regions.
  • Examining the impact of plastic pollution on marine ecosystems and biodiversity.
  • Investigating the effects of different agricultural practices on soil health and nutrient cycling.

Field: Linguistics

  • Analyzing the impact of language diversity on social integration and cultural identity.
  • Investigating the relationship between language and cognition in bilingual individuals.
  • Examining the effects of language contact and language change on linguistic diversity.
  • Investigating the role of language in shaping cultural norms and values.
  • Analyzing the effectiveness of different language teaching methodologies for second language acquisition.
  • Investigating the relationship between language proficiency and academic achievement.
  • Examining the impact of language policy on language use and language attitudes.
  • Investigating the role of language in shaping gender and social identities.
  • Analyzing the effects of dialect contact on language variation and change.
  • Investigating the relationship between language and emotion expression.

Field: Political Science

  • Analyzing the impact of electoral systems on women’s political representation.
  • Investigating the relationship between political ideology and attitudes towards immigration.
  • Examining the effects of political polarization on democratic institutions and political stability.
  • Investigating the impact of social media on political participation and civic engagement.
  • Analyzing the effects of authoritarianism on human rights and civil liberties.
  • Investigating the relationship between public opinion and foreign policy decisions.
  • Examining the impact of international organizations on global governance and cooperation.
  • Investigating the effectiveness of different conflict resolution strategies in resolving ethnic and religious conflicts.
  • Analyzing the effects of corruption on economic development and political stability.
  • Investigating the role of international law in regulating global governance and human rights.

Field: Medicine

  • Investigating the impact of lifestyle factors on chronic disease risk and prevention.
  • Examining the effectiveness of different treatment approaches for mental health disorders.
  • Investigating the relationship between genetics and disease susceptibility.
  • Analyzing the effects of social determinants of health on health outcomes and health disparities.
  • Investigating the impact of different healthcare delivery models on patient outcomes and cost effectiveness.
  • Examining the effectiveness of different prevention and treatment strategies for infectious diseases.
  • Investigating the relationship between healthcare provider communication skills and patient satisfaction and outcomes.
  • Analyzing the effects of medical error and patient safety on healthcare quality and outcomes.
  • Investigating the impact of different pharmaceutical pricing policies on access to essential medicines.
  • Examining the effectiveness of different rehabilitation approaches for improving function and quality of life in individuals with disabilities.

Field: Anthropology

  • Analyzing the impact of colonialism on indigenous cultures and identities.
  • Investigating the relationship between cultural practices and health outcomes in different populations.
  • Examining the effects of globalization on cultural diversity and cultural exchange.
  • Investigating the role of language in cultural transmission and preservation.
  • Analyzing the effects of cultural contact on cultural change and adaptation.
  • Investigating the impact of different migration policies on immigrant integration and acculturation.
  • Examining the role of gender and sexuality in cultural norms and values.
  • Investigating the impact of cultural heritage preservation on tourism and economic development.
  • Analyzing the effects of cultural revitalization movements on indigenous communities.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Research Design

Research Design – Types, Methods and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Evaluating Research

Evaluating Research – Process, Examples and...

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

research based project meaning

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Prevent plagiarism. Run a free check.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

Unlimited Academic AI-Proofreading

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

research based project meaning

Illustration by James Round

How to plan a research project

Whether for a paper or a thesis, define your question, review the work of others – and leave yourself open to discovery.

by Brooke Harrington   + BIO

is professor of sociology at Dartmouth College in New Hampshire. Her research has won international awards both for scholarly quality and impact on public life. She has published dozens of articles and three books, most recently the bestseller Capital without Borders (2016), now translated into five languages.

Edited by Sam Haselby

Need to know

‘When curiosity turns to serious matters, it’s called research.’ – From Aphorisms (1880-1905) by Marie von Ebner-Eschenbach

Planning research projects is a time-honoured intellectual exercise: one that requires both creativity and sharp analytical skills. The purpose of this Guide is to make the process systematic and easy to understand. While there is a great deal of freedom and discovery involved – from the topics you choose, to the data and methods you apply – there are also some norms and constraints that obtain, no matter what your academic level or field of study. For those in high school through to doctoral students, and from art history to archaeology, research planning involves broadly similar steps, including: formulating a question, developing an argument or predictions based on previous research, then selecting the information needed to answer your question.

Some of this might sound self-evident but, as you’ll find, research requires a different way of approaching and using information than most of us are accustomed to in everyday life. That is why I include orienting yourself to knowledge-creation as an initial step in the process. This is a crucial and underappreciated phase in education, akin to making the transition from salaried employment to entrepreneurship: suddenly, you’re on your own, and that requires a new way of thinking about your work.

What follows is a distillation of what I’ve learned about this process over 27 years as a professional social scientist. It reflects the skills that my own professors imparted in the sociology doctoral programme at Harvard, as well as what I learned later on as a research supervisor for Ivy League PhD and MA students, and then as the author of award-winning scholarly books and articles. It can be adapted to the demands of both short projects (such as course term papers) and long ones, such as a thesis.

At its simplest, research planning involves the four distinct steps outlined below: orienting yourself to knowledge-creation; defining your research question; reviewing previous research on your question; and then choosing relevant data to formulate your own answers. Because the focus of this Guide is on planning a research project, as opposed to conducting a research project, this section won’t delve into the details of data-collection or analysis; those steps happen after you plan the project. In addition, the topic is vast: year-long doctoral courses are devoted to data and analysis. Instead, the fourth part of this section will outline some basic strategies you could use in planning a data-selection and analysis process appropriate to your research question.

Step 1: Orient yourself

Planning and conducting research requires you to make a transition, from thinking like a consumer of information to thinking like a producer of information. That sounds simple, but it’s actually a complex task. As a practical matter, this means putting aside the mindset of a student, which treats knowledge as something created by other people. As students, we are often passive receivers of knowledge: asked to do a specified set of readings, then graded on how well we reproduce what we’ve read.

Researchers, however, must take on an active role as knowledge producers . Doing research requires more of you than reading and absorbing what other people have written: you have to engage in a dialogue with it. That includes arguing with previous knowledge and perhaps trying to show that ideas we have accepted as given are actually wrong or incomplete. For example, rather than simply taking in the claims of an author you read, you’ll need to draw out the implications of those claims: if what the author is saying is true, what else does that suggest must be true? What predictions could you make based on the author’s claims?

In other words, rather than treating a reading as a source of truth – even if it comes from a revered source, such as Plato or Marie Curie – this orientation step asks you to treat the claims you read as provisional and subject to interrogation. That is one of the great pieces of wisdom that science and philosophy can teach us: that the biggest advances in human understanding have been made not by being correct about trivial things, but by being wrong in an interesting way . For example, Albert Einstein was wrong about quantum mechanics, but his arguments about it with his fellow physicist Niels Bohr have led to some of the biggest breakthroughs in science, even a century later.

Step 2: Define your research question

Students often give this step cursory attention, but experienced researchers know that formulating a good question is sometimes the most difficult part of the research planning process. That is because the precise language of the question frames the rest of the project. It’s therefore important to pose the question carefully, in a way that’s both possible to answer and likely to yield interesting results. Of course, you must choose a question that interests you, but that’s only the beginning of what’s likely to be an iterative process: most researchers come back to this step repeatedly, modifying their questions in light of previous research, resource limitations and other considerations.

Researchers face limits in terms of time and money. They, like everyone else, have to pose research questions that they can plausibly answer given the constraints they face. For example, it would be inadvisable to frame a project around the question ‘What are the roots of the Arab-Israeli conflict?’ if you have only a week to develop an answer and no background on that topic. That’s not to limit your imagination: you can come up with any question you’d like. But it typically does require some creativity to frame a question that you can answer well – that is, by investigating thoroughly and providing new insights – within the limits you face.

In addition to being interesting to you, and feasible within your resource constraints, the third and most important characteristic of a ‘good’ research topic is whether it allows you to create new knowledge. It might turn out that your question has already been asked and answered to your satisfaction: if so, you’ll find out in the next step of this process. On the other hand, you might come up with a research question that hasn’t been addressed previously. Before you get too excited about breaking uncharted ground, consider this: a lot of potentially researchable questions haven’t been studied for good reason ; they might have answers that are trivial or of very limited interest. This could include questions such as ‘Why does the area of a circle equal π r²?’ or ‘Did winter conditions affect Napoleon’s plans to invade Russia?’ Of course, you might be able to make the argument that a seemingly trivial question is actually vitally important, but you must be prepared to back that up with convincing evidence. The exercise in the ‘Learn More’ section below will help you think through some of these issues.

Finally, scholarly research questions must in some way lead to new and distinctive insights. For example, lots of people have studied gender roles in sports teams; what can you ask that hasn’t been asked before? Reinventing the wheel is the number-one no-no in this endeavour. That’s why the next step is so important: reviewing previous research on your topic. Depending on what you find in that step, you might need to revise your research question; iterating between your question and the existing literature is a normal process. But don’t worry: it doesn’t go on forever. In fact, the iterations taper off – and your research question stabilises – as you develop a firm grasp of the current state of knowledge on your topic.

Step 3: Review previous research

In academic research, from articles to books, it’s common to find a section called a ‘literature review’. The purpose of that section is to describe the state of the art in knowledge on the research question that a project has posed. It demonstrates that researchers have thoroughly and systematically reviewed the relevant findings of previous studies on their topic, and that they have something novel to contribute.

Your own research project should include something like this, even if it’s a high-school term paper. In the research planning process, you’ll want to list at least half a dozen bullet points stating the major findings on your topic by other people. In relation to those findings, you should be able to specify where your project could provide new and necessary insights. There are two basic rhetorical positions one can take in framing the novelty-plus-importance argument required of academic research:

  • Position 1 requires you to build on or extend a set of existing ideas; that means saying something like: ‘Person A has argued that X is true about gender; this implies Y, which has not yet been tested. My project will test Y, and if I find evidence to support it, that will change the way we understand gender.’
  • Position 2 is to argue that there is a gap in existing knowledge, either because previous research has reached conflicting conclusions or has failed to consider something important. For example, one could say that research on middle schoolers and gender has been limited by being conducted primarily in coeducational environments, and that findings might differ dramatically if research were conducted in more schools where the student body was all-male or all-female.

Your overall goal in this step of the process is to show that your research will be part of a larger conversation: that is, how your project flows from what’s already known, and how it advances, extends or challenges that existing body of knowledge. That will be the contribution of your project, and it constitutes the motivation for your research.

Two things are worth mentioning about your search for sources of relevant previous research. First, you needn’t look only at studies on your precise topic. For example, if you want to study gender-identity formation in schools, you shouldn’t restrict yourself to studies of schools; the empirical setting (schools) is secondary to the larger social process that interests you (how people form gender identity). That process occurs in many different settings, so cast a wide net. Second, be sure to use legitimate sources – meaning publications that have been through some sort of vetting process, whether that involves peer review (as with academic journal articles you might find via Google Scholar) or editorial review (as you’d find in well-known mass media publications, such as The Economist or The Washington Post ). What you’ll want to avoid is using unvetted sources such as personal blogs or Wikipedia. Why? Because anybody can write anything in those forums, and there is no way to know – unless you’re already an expert – if the claims you find there are accurate. Often, they’re not.

Step 4: Choose your data and methods

Whatever your research question is, eventually you’ll need to consider which data source and analytical strategy are most likely to provide the answers you’re seeking. One starting point is to consider whether your question would be best addressed by qualitative data (such as interviews, observations or historical records), quantitative data (such as surveys or census records) or some combination of both. Your ideas about data sources will, in turn, suggest options for analytical methods.

You might need to collect your own data, or you might find everything you need readily available in an existing dataset someone else has created. A great place to start is with a research librarian: university libraries always have them and, at public universities, those librarians can work with the public, including people who aren’t affiliated with the university. If you don’t happen to have a public university and its library close at hand, an ordinary public library can still be a good place to start: the librarians are often well versed in accessing data sources that might be relevant to your study, such as the census, or historical archives, or the Survey of Consumer Finances.

Because your task at this point is to plan research, rather than conduct it, the purpose of this step is not to commit you irrevocably to a course of action. Instead, your goal here is to think through a feasible approach to answering your research question. You’ll need to find out, for example, whether the data you want exist; if not, do you have a realistic chance of gathering the data yourself, or would it be better to modify your research question? In terms of analysis, would your strategy require you to apply statistical methods? If so, do you have those skills? If not, do you have time to learn them, or money to hire a research assistant to run the analysis for you?

Please be aware that qualitative methods in particular are not the casual undertaking they might appear to be. Many people make the mistake of thinking that only quantitative data and methods are scientific and systematic, while qualitative methods are just a fancy way of saying: ‘I talked to some people, read some old newspapers, and drew my own conclusions.’ Nothing could be further from the truth. In the final section of this guide, you’ll find some links to resources that will provide more insight on standards and procedures governing qualitative research, but suffice it to say: there are rules about what constitutes legitimate evidence and valid analytical procedure for qualitative data, just as there are for quantitative data.

Circle back and consider revising your initial plans

As you work through these four steps in planning your project, it’s perfectly normal to circle back and revise. Research planning is rarely a linear process. It’s also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : ‘The outcome of any serious research can only be to make two questions grow where only one grew before.’ That’s as true of research planning as it is of a completed project. Try to enjoy the horizons that open up for you in this process, rather than becoming overwhelmed; the four steps, along with the two exercises that follow, will help you focus your plan and make it manageable.

Key points – How to plan a research project

  • Planning a research project is essential no matter your academic level or field of study. There is no one ‘best’ way to design research, but there are certain guidelines that can be helpfully applied across disciplines.
  • Orient yourself to knowledge-creation. Make the shift from being a consumer of information to being a producer of information.
  • Define your research question. Your question frames the rest of your project, sets the scope, and determines the kinds of answers you can find.
  • Review previous research on your question. Survey the existing body of relevant knowledge to ensure that your research will be part of a larger conversation.
  • Choose your data and methods. For instance, will you be collecting qualitative data, via interviews, or numerical data, via surveys?
  • Circle back and consider revising your initial plans. Expect your research question in particular to undergo multiple rounds of refinement as you learn more about your topic.

Good research questions tend to beget more questions. This can be frustrating for those who want to get down to business right away. Try to make room for the unexpected: this is usually how knowledge advances. Many of the most significant discoveries in human history have been made by people who were looking for something else entirely. There are ways to structure your research planning process without over-constraining yourself; the two exercises below are a start, and you can find further methods in the Links and Books section.

The following exercise provides a structured process for advancing your research project planning. After completing it, you’ll be able to do the following:

  • describe clearly and concisely the question you’ve chosen to study
  • summarise the state of the art in knowledge about the question, and where your project could contribute new insight
  • identify the best strategy for gathering and analysing relevant data

In other words, the following provides a systematic means to establish the building blocks of your research project.

Exercise 1: Definition of research question and sources

This exercise prompts you to select and clarify your general interest area, develop a research question, and investigate sources of information. The annotated bibliography will also help you refine your research question so that you can begin the second assignment, a description of the phenomenon you wish to study.

Jot down a few bullet points in response to these two questions, with the understanding that you’ll probably go back and modify your answers as you begin reading other studies relevant to your topic:

  • What will be the general topic of your paper?
  • What will be the specific topic of your paper?

b) Research question(s)

Use the following guidelines to frame a research question – or questions – that will drive your analysis. As with Part 1 above, you’ll probably find it necessary to change or refine your research question(s) as you complete future assignments.

  • Your question should be phrased so that it can’t be answered with a simple ‘yes’ or ‘no’.
  • Your question should have more than one plausible answer.
  • Your question should draw relationships between two or more concepts; framing the question in terms of How? or What? often works better than asking Why ?

c) Annotated bibliography

Most or all of your background information should come from two sources: scholarly books and journals, or reputable mass media sources. You might be able to access journal articles electronically through your library, using search engines such as JSTOR and Google Scholar. This can save you a great deal of time compared with going to the library in person to search periodicals. General news sources, such as those accessible through LexisNexis, are acceptable, but should be cited sparingly, since they don’t carry the same level of credibility as scholarly sources. As discussed above, unvetted sources such as blogs and Wikipedia should be avoided, because the quality of the information they provide is unreliable and often misleading.

To create an annotated bibliography, provide the following information for at least 10 sources relevant to your specific topic, using the format suggested below.

Name of author(s):
Publication date:
Title of book, chapter, or article:
If a chapter or article, title of journal or book where they appear:
Brief description of this work, including main findings and methods ( c 75 words):
Summary of how this work contributes to your project ( c 75 words):
Brief description of the implications of this work ( c 25 words):
Identify any gap or controversy in knowledge this work points up, and how your project could address those problems ( c 50 words):

Exercise 2: Towards an analysis

Develop a short statement ( c 250 words) about the kind of data that would be useful to address your research question, and how you’d analyse it. Some questions to consider in writing this statement include:

  • What are the central concepts or variables in your project? Offer a brief definition of each.
  • Do any data sources exist on those concepts or variables, or would you need to collect data?
  • Of the analytical strategies you could apply to that data, which would be the most appropriate to answer your question? Which would be the most feasible for you? Consider at least two methods, noting their advantages or disadvantages for your project.

Links & books

One of the best texts ever written about planning and executing research comes from a source that might be unexpected: a 60-year-old work on urban planning by a self-trained scholar. The classic book The Death and Life of Great American Cities (1961) by Jane Jacobs (available complete and free of charge via this link ) is worth reading in its entirety just for the pleasure of it. But the final 20 pages – a concluding chapter titled ‘The Kind of Problem a City Is’ – are really about the process of thinking through and investigating a problem. Highly recommended as a window into the craft of research.

Jacobs’s text references an essay on advancing human knowledge by the mathematician Warren Weaver. At the time, Weaver was director of the Rockefeller Foundation, in charge of funding basic research in the natural and medical sciences. Although the essay is titled ‘A Quarter Century in the Natural Sciences’ (1960) and appears at first blush to be merely a summation of one man’s career, it turns out to be something much bigger and more interesting: a meditation on the history of human beings seeking answers to big questions about the world. Weaver goes back to the 17th century to trace the origins of systematic research thinking, with enthusiasm and vivid anecdotes that make the process come alive. The essay is worth reading in its entirety, and is available free of charge via this link .

For those seeking a more in-depth, professional-level discussion of the logic of research design, the political scientist Harvey Starr provides insight in a compact format in the article ‘Cumulation from Proper Specification: Theory, Logic, Research Design, and “Nice” Laws’ (2005). Starr reviews the ‘research triad’, consisting of the interlinked considerations of formulating a question, selecting relevant theories and applying appropriate methods. The full text of the article, published in the scholarly journal Conflict Management and Peace Science , is available, free of charge, via this link .

Finally, the book Getting What You Came For (1992) by Robert Peters is not only an outstanding guide for anyone contemplating graduate school – from the application process onward – but it also includes several excellent chapters on planning and executing research, applicable across a wide variety of subject areas. It was an invaluable resource for me 25 years ago, and it remains in print with good reason; I recommend it to all my students, particularly Chapter 16 (‘The Thesis Topic: Finding It’), Chapter 17 (‘The Thesis Proposal’) and Chapter 18 (‘The Thesis: Writing It’).

research based project meaning

The nature of reality

How to think about time

This philosopher’s introduction to the nature of time could radically alter how you see your past and imagine your future

by Graeme A Forbes

research based project meaning

Cognitive and behavioural therapies

How to stop living on auto-pilot

Are you going through the motions? Use these therapy techniques to set meaningful goals and build a ‘life worth living’

by Kiki Fehling

A close-up of a man using an online betting platform on his smartphone. The phone screen lights up a darkened room

How to control your gambling

What’s fun at first can all too easily get out of hand. Learn the warning signs and use these tips to rein things in

by Luke Clark

TAA Abstract

The What: Defining a research project

During Academic Writing Month 2018, TAA hosted a series of #AcWriChat TweetChat events focused on the five W’s of academic writing. Throughout the series we explored The What: Defining a research project ; The Where: Constructing an effective writing environment ; The When: Setting realistic timeframes for your research ; The Who: Finding key sources in the existing literature ; and The Why: Explaining the significance of your research . This series of posts brings together the discussions and resources from those events. Let’s start with The What: Defining a research project .

Before moving forward on any academic writing effort, it is important to understand what the research project is intended to understand and document. In order to accomplish this, it’s also important to understand what a research project is. This is where we began our discussion of the five W’s of academic writing.

Q1: What constitutes a research project?

According to a Rutgers University resource titled, Definition of a research project and specifications for fulfilling the requirement , “A research project is a scientific endeavor to answer a research question.” Specifically, projects may take the form of “case series, case control study, cohort study, randomized, controlled trial, survey, or secondary data analysis such as decision analysis, cost effectiveness analysis or meta-analysis”.

Hampshire College offers that “Research is a process of systematic inquiry that entails collection of data; documentation of critical information; and analysis and interpretation of that data/information, in accordance with suitable methodologies set by specific professional fields and academic disciplines.” in their online resource titled, What is research? The resource also states that “Research is conducted to evaluate the validity of a hypothesis or an interpretive framework; to assemble a body of substantive knowledge and findings for sharing them in appropriate manners; and to generate questions for further inquiries.”

TweetChat participant @TheInfoSherpa , who is currently “investigating whether publishing in a predatory journal constitutes blatant research misconduct, inappropriate conduct, or questionable conduct,” summarized these ideas stating, “At its simplest, a research project is a project which seeks to answer a well-defined question or set of related questions about a specific topic.” TAA staff member, Eric Schmieder, added to the discussion that“a research project is a process by which answers to a significant question are attempted to be answered through exploration or experimentation.”

In a learning module focused on research and the application of the Scientific Method, the Office of Research Integrity within the U.S. Department of Health and Human Services states that “Research is a process to discover new knowledge…. No matter what topic is being studied, the value of the research depends on how well it is designed and done.”

Wenyi Ho of Penn State University states that “Research is a systematic inquiry to describe, explain, predict and control the observed phenomenon.” in an online resource which further shares four types of knowledge that research contributes to education, four types of research based on different purposes, and five stages of conducting a research study. Further understanding of research in definition, purpose, and typical research practices can be found in this Study.com video resource .

Now that we have a foundational understanding of what constitutes a research project, we shift the discussion to several questions about defining specific research topics.

Q2: When considering topics for a new research project, where do you start?

A guide from the University of Michigan-Flint on selecting a topic states, “Be aware that selecting a good topic may not be easy. It must be narrow and focused enough to be interesting, yet broad enough to find adequate information.”

Schmieder responded to the chat question with his approach.“I often start with an idea or question of interest to me and then begin searching for existing research on the topic to determine what has been done already.”

@TheInfoSherpa added, “Start with the research. Ask a librarian for help. The last thing you want to do is design a study thst someone’s already done.”

The Utah State University Libraries shared a video that “helps you find a research topic that is relevant and interesting to you!”

Q2a: What strategies do you use to stay current on research in your discipline?

The California State University Chancellor’s Doctoral Incentive Program Community Commons resource offers four suggestions for staying current in your field:

  • Become an effective consumer of research
  • Read key publications
  • Attend key gatherings
  • Develop a network of colleagues

Schmieder and @TheInfoSherpa discussed ways to use databases for this purpose. Schmieder identified using “journal database searches for publications in the past few months on topics of interest” as a way to stay current as a consumer of research.

@TheInfoSherpa added, “It’s so easy to set up an alert in your favorite database. I do this for specific topics, and all the latest research gets delivered right to my inbox. Again, your academic or public #librarian can help you with this.” To which Schmieder replied, “Alerts are such useful advancements in technology for sorting through the myriad of material available online. Great advice!”

In an open access article, Keeping Up to Date: An Academic Researcher’s Information Journey , researchers Pontis, et. al. “examined how researchers stay up to date, using the information journey model as a framework for analysis and investigating which dimensions influence information behaviors.” As a result of their study, “Five key dimensions that influence information behaviors were identified: level of seniority, information sources, state of the project, level of familiarity, and how well defined the relevant community is.”

Q3: When defining a research topic, do you tend to start with a broad idea or a specific research question?

In a collection of notes on where to start by Don Davis at Columbia University, Davis tells us “First, there is no ‘Right Topic.’”, adding that “Much more important is to find something that is important and genuinely interests you.”

Schmieder shared in the chat event, “I tend to get lost in the details while trying to save the world – not sure really where I start though. :O)” @TheInfoSherpa added, “Depends on the project. The important thing is being able to realize when your topic is too broad or too narrow and may need tweaking. I use the five Ws or PICO(T) to adjust my topic if it’s too broad or too narrow.”

In an online resource , The Writing Center at George Mason University identifies the following six steps to developing a research question, noting significance in that “the specificity of a well-developed research question helps writers avoid the ‘all-about’ paper and work toward supporting a specific, arguable thesis.”

  • Choose an interesting general topic
  • Do some preliminary research on your general topic
  • Consider your audience
  • Start asking questions
  • Evaluate your question
  • Begin your research

USC Libraries’ research guides offer eight strategies for narrowing the research topic : Aspect, Components, Methodology, Place, Relationship, Time, Type, or a Combination of the above.

Q4: What factors help to determine the realistic scope a research topic?

The scope of a research topic refers to the actual amount of research conducted as part of the study. Often the search strategies used in understanding previous research and knowledge on a topic will impact the scope of the current study. A resource from Indiana University offers both an activity for narrowing the search strategy when finding too much information on a topic and an activity for broadening the search strategy when too little information is found.

The Mayfield Handbook of Technical & Scientific Writing identifies scope as an element to be included in the problem statement. Further when discussing problem statements, this resource states, “If you are focusing on a problem, be sure to define and state it specifically enough that you can write about it. Avoid trying to investigate or write about multiple problems or about broad or overly ambitious problems. Vague problem definition leads to unsuccessful proposals and vague, unmanageable documents. Naming a topic is not the same as defining a problem.”

Schmieder identified in the chat several considerations when determining the scope of a research topic, namely “Time, money, interest and commitment, impact to self and others.” @TheInfoSherpa reiterated their use of PICO(T) stating, “PICO(T) is used in the health sciences, but it can be used to identify a manageable scope” and sharing a link to a Georgia Gwinnett College Research Guide on PICOT Questions .

By managing the scope of your research topic, you also define the limitations of your study. According to a USC Libraries’ Research Guide, “The limitations of the study are those characteristics of design or methodology that impacted or influenced the interpretation of the findings from your research.” Accepting limitations help maintain a manageable scope moving forward with the project.

Q5/5a: Do you generally conduct research alone or with collaborative authors? What benefits/challenges do collaborators add to the research project?

Despite noting that the majority of his research efforts have been solo, Schmieder did identify benefits to collaboration including “brainstorming, division of labor, speed of execution” and challenges of developing a shared vision, defining roles and responsibilities for the collaborators, and accepting a level of dependence on the others in the group.

In a resource on group writing from The Writing Center at the University of North Carolina at Chapel Hill, both advantages and pitfalls are discussed. Looking to the positive, this resource notes that “Writing in a group can have many benefits: multiple brains are better than one, both for generating ideas and for getting a job done.”

Yale University’s Office of the Provost has established, as part of its Academic Integrity policies, Guidance on Authorship in Scholarly or Scientific Publications to assist researchers in understanding authorship standards as well as attribution expectations.

In times when authorship turns sour , the University of California, San Francisco offers the following advice to reach a resolution among collaborative authors:

  • Address emotional issues directly
  • Elicit the problem author’s emotions
  • Acknowledge the problem author’s emotions
  • Express your own emotions as “I feel …”
  • Set boundaries
  • Try to find common ground
  • Get agreement on process
  • Involve a neutral third party

Q6: What other advice can you share about defining a research project?

Schmieder answered with question with personal advice to “Choose a topic of interest. If you aren’t interested in the topic, you will either not stay motivated to complete it or you will be miserable in the process and not produce the best results from your efforts.”

For further guidance and advice, the following resources may prove useful:

  • 15 Steps to Good Research (Georgetown University Library)
  • Advice for Researchers and Students (Tao Xie and University of Illinois)
  • Develop a research statement for yourself (University of Pennsylvania)

Whatever your next research project, hopefully these tips and resources help you to define it in a way that leads to greater success and better writing.

Share this:

research based project meaning

  • Share on Tumblr

research based project meaning

  • Our Mission

Project-Based Learning Research Review

What the research says about aspects of project-based learning ranging from implementation to learning outcomes.

Table covered with newspaper and teacher showing something to a boy; girl wearing gloves handling a trout; boy with safety googles looking on

Studies have proven that when implemented well, project-based learning (PBL) can increase retention of content and improve students’ attitudes toward learning, among other benefits. Edutopia’s PBL research review explores the vast body of research on the topic and helps make sense of the results.

What Is Project-Based Learning?

PBL hails from a tradition of pedagogy which asserts that students learn best by experiencing and solving real-world problems. According to researchers ( Barron & Darling-Hammond, 2008 ; Thomas, 2000 ), PBL essentially involves the following:

  • students learning knowledge to tackle realistic problems as they would be solved in the real world,
  • increased student control over his or her learning,
  • teachers serving as coaches and facilitators of inquiry and reflection, and
  • students (usually, but not always) working in pairs or groups.

Teachers can create real-world problem-solving situations by designing questions and tasks that correspond to two different frameworks of inquiry-based teaching: problem-based learning, which tackles a problem but doesn’t necessarily include a student project, and project-based learning, which involves a complex task and some form of student presentation, and/or students creating an actual product or artifact.

These inquiry-based teaching methods engage students in creating, questioning, and revising knowledge, while developing their skills in critical thinking, collaboration, communication, reasoning, synthesis, and resilience (Barron & Darling-Hammond, 2008). Although these methods of inquiry-based teaching differ slightly, for simplicity they’re combined in these pages and referred to as project-based learning or PBL.

Learning Outcomes

Studies comparing learning outcomes for students taught via project-based learning versus traditional instruction show that when implemented well, PBL increases long-term retention of content, helps students perform as well as or better than traditional learners in high-stakes tests, improves problem-solving and collaboration skills, and improves students’ attitudes toward learning ( Strobel & van Barneveld, 2009 ; Walker & Leary, 2009 ). PBL can also provide an effective model for whole-school reform ( National Clearinghouse for Comprehensive School Reform, 2004 ; Newmann & Wehlage, 1995 ).

A 2016 MDRC/Lucas Education Research literature review found that the design principles most commonly used in PBL align well with the goals of preparing students for deeper learning, higher-level thinking skills, and intra/interpersonal skills ( Condliffe et al., 2016 ).

Keys to Project-Based Learning Success

Researchers have identified several components that are critical to successful PBL (Barron & Darling-Hammond, 2008; Ertmer & Simons, 2005 ; Mergendoller & Thomas, 2005 ; Hung, 2008 ). While project-based learning has been criticized in the past for not being rigorous enough, the following features will greatly improve the chances of a project's success.

  • A realistic problem or project that aligns with students' skills and interests, and requires learning clearly defined content and skills (e.g., using rubrics, or exemplars from local professionals and students).
  • Structured group work with groups of three to four students, with diverse skill levels and interdependent roles; team rewards; and individual accountability, based on student growth.
  • Multi-faceted assessment, with multiple opportunities for students to receive feedback and revise their work (e.g., benchmarks, reflective activities); multiple learning outcomes (e.g., problem-solving, content, collaboration); and presentations that encourage participation and signal social value (e.g. exhibitions, portfolios, performances, reports).
  • Participation in a professional learning network, including collaborating and reflecting upon PBL experiences in the classroom with colleagues, and courses in inquiry-based teaching methods.

You will find much greater detail on these four key components, along with step-by-step instructions on how to put them into place, in the next section.

Editor’s Note: This article was originally written by Vanessa Vega, with subsequent updates made by the Edutopia staff.

PBL Research Table of Contents:

  • Introduction and Learning Outcomes
  • Evidence-Based Components of Success
  • Best Practices Across Disciplines
  • Avoiding Pitfalls
  • Annotated Bibliography

Evidence-Based Research Series-Paper 1: What Evidence-Based Research is and why is it important?

Affiliations.

  • 1 Johns Hopkins Evidence-based Practice Center, Division of General Internal Medicine, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
  • 2 Digital Content Services, Operations, Elsevier Ltd., 125 London Wall, London, EC2Y 5AS, UK.
  • 3 School of Nursing, McMaster University, Health Sciences Centre, Room 2J20, 1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1; Section for Evidence-Based Practice, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen, P.O.Box 7030 N-5020 Bergen, Norway.
  • 4 Department of Sport Science and Clinical Biomechanics, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark; Department of Physiotherapy and Occupational Therapy, University Hospital of Copenhagen, Herlev & Gentofte, Kildegaardsvej 28, 2900, Hellerup, Denmark.
  • 5 Musculoskeletal Statistics Unit, the Parker Institute, Bispebjerg and Frederiksberg Hospital, Copenhagen, Nordre Fasanvej 57, 2000, Copenhagen F, Denmark; Department of Clinical Research, Research Unit of Rheumatology, University of Southern Denmark, Odense University Hospital, Denmark.
  • 6 Section for Evidence-Based Practice, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen, P.O.Box 7030 N-5020 Bergen, Norway. Electronic address: [email protected].
  • PMID: 32979491
  • DOI: 10.1016/j.jclinepi.2020.07.020

Objectives: There is considerable actual and potential waste in research. Evidence-based research ensures worthwhile and valuable research. The aim of this series, which this article introduces, is to describe the evidence-based research approach.

Study design and setting: In this first article of a three-article series, we introduce the evidence-based research approach. Evidence-based research is the use of prior research in a systematic and transparent way to inform a new study so that it is answering questions that matter in a valid, efficient, and accessible manner.

Results: We describe evidence-based research and provide an overview of the approach of systematically and transparently using previous research before starting a new study to justify and design the new study (article #2 in series) and-on study completion-place its results in the context with what is already known (article #3 in series).

Conclusion: This series introduces evidence-based research as an approach to minimize unnecessary and irrelevant clinical health research that is unscientific, wasteful, and unethical.

Keywords: Clinical health research; Clinical trials; Evidence synthesis; Evidence-based research; Medical ethics; Research ethics; Systematic review.

Copyright © 2020 Elsevier Inc. All rights reserved.

Publication types

  • Research Support, Non-U.S. Gov't
  • Biomedical Research* / methods
  • Biomedical Research* / organization & administration
  • Clinical Trials as Topic / ethics
  • Clinical Trials as Topic / methods
  • Clinical Trials as Topic / organization & administration
  • Ethics, Research
  • Evidence-Based Medicine / methods*
  • Needs Assessment
  • Reproducibility of Results
  • Research Design* / standards
  • Research Design* / trends
  • Systematic Reviews as Topic
  • Treatment Outcome

IMAGES

  1. 15 Types of Research Methods (2024)

    research based project meaning

  2. PPT

    research based project meaning

  3. What is Research

    research based project meaning

  4. How to Do a Research Project: Step-by-Step Process |Leverage Edu

    research based project meaning

  5. Illustrating the stages of research-based learning implementation

    research based project meaning

  6. Preliminary Research Strategies

    research based project meaning

VIDEO

  1. Brain Stroke Prediction Using Python

  2. Proposal 101: What Is A Research Topic?

  3. Introduction of Digital Marketing

  4. Data Collection & Directory SIte

  5. Research Report

  6. Basic of Email Marketing

COMMENTS

  1. Research Project - Definition, Writing Guide and Ideas

    Definition: Research Project is a planned and systematic investigation into a specific area of interest or problem, with the goal of generating new knowledge, insights, or solutions. It typically involves identifying a research question or hypothesis, designing a study to test it, collecting and analyzing data, and drawing conclusions based on ...

  2. What is a research project? - Scribbr

    A research project is an academic, scientific, or professional undertaking to answer a research question. Research projects can take many forms, such as qualitative or quantitative, descriptive, longitudinal, experimental, or correlational. What kind of research approach you choose will depend on your topic.

  3. A Beginner's Guide to Starting the Research Process - Scribbr

    This describes who the problem affects, why research is needed, and how your research project will contribute to solving it. >>Read more about defining a research problem. Step 3: Formulate research questions. Next, based on the problem statement, you need to write one or more research questions. These target exactly what you want to find out.

  4. Research Methods | Definitions, Types, Examples - Scribbr

    Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design. When planning your methods, there are two key decisions you will make. First, decide how you will collect data. Your methods depend on what type of data you need to answer your research question:

  5. How to do a research project for your academic study

    Methodology – the methods you will use for your primary research. Findings and results – presenting the data from your primary research. Discussion – summarising and analysing your research and what you have found out. Conclusion – how the project went (successes and failures), areas for future study.

  6. How to plan a research project | Psyche Guides

    In other words, the following provides a systematic means to establish the building blocks of your research project. Exercise 1: Definition of research question and sources. This exercise prompts you to select and clarify your general interest area, develop a research question, and investigate sources of information.

  7. DEFINITION OF A RESEARCH PROJECT AND SPECIFICATIONS FOR ...

    research project is a scientific endeavor to answer a research question. Research projects may include: Case series. Case control study. Cohort study. Randomized, controlled trial. Survey. Secondary data analysis such as decision analysis, cost effectiveness analysis or meta-analysis. Each resident must work under the guidance of a faculty mentor.

  8. The What: Defining a research project » Abstract

    According to a Rutgers University resource titled, Definition of a research project and specifications for fulfilling the requirement, “A research project is a scientific endeavor to answer a research question.”. Specifically, projects may take the form of “case series, case control study, cohort study, randomized, controlled trial ...

  9. Project-Based Learning Research Review | Edutopia

    Edutopia. Working with their teacher, middle school science students identify the parts of a fish before painting it to make a Japanese-style gyotaku print. Studies have proven that when implemented well, project-based learning (PBL) can increase retention of content and improve students’ attitudes toward learning, among other benefits.

  10. Evidence-Based Research Series-Paper 1: What Evidence-Based ...

    Evidence-based research is the use of prior research in a systematic and transparent way to inform a new study so that it is answering questions that matter in a valid, efficient, and accessible manner. Results: We describe evidence-based research and provide an overview of the approach of systematically and transparently using previous ...