• USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Apr 16, 2024 10:20 AM
  • URL: https://libguides.usc.edu/writingguide

Grad Coach

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

What (exactly) is a variable.

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

research question dependent variable

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Free Webinar: Research Methodology 101

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations, so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

research question dependent variable

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Survey Design 101: The Basics

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Dependent Variable – Definition, Types and Example

Dependent Variable – Definition, Types and Example

Table of Contents

Dependent Variable

Dependent Variable

Definition:

Dependent variable is a variable in a study or experiment that is being measured or observed and is affected by the independent variable. In other words, it is the variable that researchers are interested in understanding, predicting, or explaining based on the changes made to the independent variable.

Types of Dependent Variables

Types of Dependent Variables are as follows:

  • Continuous dependent variable : A continuous variable is a variable that can take on any value within a certain range. Examples include height, weight, and temperature.
  • Discrete dependent variable: A discrete variable is a variable that can only take on certain values within a certain range. Examples include the number of children in a family, the number of pets someone has, and the number of cars owned by a household.
  • Categorical dependent variable: A categorical variable is a variable that can take on values that belong to specific categories or groups. Examples include gender, race, and marital status.
  • Dichotomous dependent variable: A dichotomous variable is a categorical variable that can take on only two values. Examples include whether someone is a smoker or non-smoker, or whether someone has a certain medical condition or not.
  • Ordinal dependent variable: An ordinal variable is a categorical variable that has a specific order or ranking to its categories. Examples include education level (e.g., high school diploma, college degree, graduate degree), or socioeconomic status (e.g., low, middle, high).
  • Interval dependent variable: An interval variable is a continuous variable that has a specific measurement scale with equal intervals between the values. Examples include temperature measured in degrees Celsius or Fahrenheit.
  • Ratio dependent variable : A ratio variable is a continuous variable that has a true zero point and equal intervals between the values. Examples include height, weight, and income.
  • Count dependent variable: A count variable is a discrete variable that represents the number of times an event occurs within a specific time period. Examples include the number of times a customer visits a store, or the number of times a student misses a class.
  • Time-to-event dependent variable: A time-to-event variable is a type of continuous variable that measures the time it takes for an event to occur. Examples include the time until a customer makes a purchase, or the time until a patient recovers from an illness.
  • Latent dependent variable: A latent variable is a variable that cannot be directly observed or measured, but is inferred from other observable variables. Examples include intelligence, personality traits, and motivation.
  • Binary dependent variable: A binary variable is a dichotomous variable with only two possible outcomes, usually represented by 0 or 1. Examples include whether a customer will make a purchase or not, or whether a patient will respond to a treatment or not.
  • Multinomial dependent variable: A multinomial variable is a categorical variable with more than two possible outcomes. Examples include political affiliation, type of employment, or type of transportation used to commute.
  • Longitudinal dependent variable : A longitudinal variable is a type of continuous variable that measures change over time. Examples include academic performance, income, or health status.

Examples of Dependent Variable

Here are some examples of dependent variables in different fields:

  • In physics : The velocity of an object is a dependent variable as it changes in response to the force applied to it.
  • In psychology : The level of happiness or satisfaction of a person can be a dependent variable as it may change in response to different factors such as the level of stress or social support.
  • I n medicine: The effectiveness of a new drug can be a dependent variable as it may be measured in relation to the symptoms of a disease.
  • In education : The grades of a student can be a dependent variable as they may be influenced by factors such as teaching methods or amount of studying.
  • In economics : The demand for a product can be a dependent variable as it may change in response to factors such as the price or availability of the product.
  • In biology : The growth rate of a plant can be a dependent variable as it may change in response to factors such as sunlight, water, or soil nutrients.
  • In sociology: The level of social support for an individual can be a dependent variable as it may change in response to factors such as the availability of community resources or the strength of social networks.
  • In marketing : The sales of a product can be a dependent variable as they may change in response to factors such as advertising, pricing, or consumer trends.
  • In environmental science : The biodiversity of an ecosystem can be a dependent variable as it may change in response to factors such as climate change, pollution, or habitat destruction.
  • I n political science : The outcome of an election can be a dependent variable as it may change in response to factors such as campaign strategies, political advertising, or voter turnout.
  • I n criminology : The likelihood of a person committing a crime can be a dependent variable as it may change in response to factors such as poverty, education, or socialization.
  • In engineering : The efficiency of a machine can be a dependent variable as it may change in response to factors such as the materials used, the design of the machine, or the operating conditions.
  • In linguistics: The speed and accuracy of language processing can be a dependent variable as they may change in response to factors such as linguistic complexity, language experience, or cognitive ability.
  • In history : The outcome of a historical event, such as a battle or a revolution, can be a dependent variable as it may change in response to factors such as leadership, strategy, or external forces.
  • In sports science : The performance of an athlete can be a dependent variable as it may change in response to factors such as training methods, nutrition, or psychological factors.

Applications of Dependent Variable

  • Experimental studies: In experimental studies, the dependent variable is used to test the effect of one or more independent variables on the outcome variable. For example, in a study on the effect of a new drug on blood pressure, the dependent variable is the blood pressure.
  • Observational studies : In observational studies, the dependent variable is used to explore the relationship between two or more variables. For example, in a study on the relationship between physical activity and depression, the dependent variable is the level of depression.
  • Psychology : In psychology, dependent variables are used to measure the response or behavior of individuals in response to different experimental or natural conditions.
  • Predictive modeling : In predictive modeling, the dependent variable is used to predict the outcome of a future event or situation. For example, in financial modeling, the dependent variable can be used to predict the future value of a stock or currency.
  • Regression analysis : In regression analysis, the dependent variable is used to predict the value of one or more independent variables based on their relationship with the dependent variable. For example, in a study on the relationship between income and education, the dependent variable is income.
  • Machine learning : In machine learning, the dependent variable is used to train the model to predict the value of the dependent variable based on the values of one or more independent variables. For example, in image recognition, the dependent variable can be used to identify the object in an image.
  • Quality control : In quality control, the dependent variable is used to monitor the performance of a product or process. For example, in a manufacturing process, the dependent variable can be used to measure the quality of the product and identify any defects.
  • Marketing research : In marketing research, the dependent variable is used to understand consumer behavior and preferences. For example, in a study on the effectiveness of a new advertising campaign, the dependent variable can be used to measure consumer response to the ad.
  • Social sciences research : In social sciences research, the dependent variable is used to study human behavior and attitudes. For example, in a study on the impact of social media on mental health, the dependent variable can be used to measure the level of anxiety or depression.
  • Epidemiological studies: In epidemiological studies, the dependent variable is used to investigate the prevalence and incidence of diseases or health conditions. For example, in a study on the risk factors for heart disease, the dependent variable can be used to measure the occurrence of heart disease.
  • Environmental studies : In environmental studies, the dependent variable is used to assess the impact of environmental factors on ecosystems and natural resources. For example, in a study on the effect of pollution on aquatic life, the dependent variable can be used to measure the health and survival of aquatic organisms.
  • Educational research: In educational research, the dependent variable is used to study the effectiveness of different teaching methods and instructional strategies. For example, in a study on the impact of a new teaching program on student achievement, the dependent variable can be used to measure student performance.

Purpose of Dependent Variable

The purpose of the dependent variable is to help researchers understand the relationship between the independent variable and the outcome they are studying. By measuring the changes in the dependent variable, researchers can determine the effects of different variables on the outcome of interest.

When to use Dependent Variable

Following are some situations When to use Dependent Variable:

  • When conducting scientific research or experiments, the dependent variable is the factor that is being measured or observed to determine its relationship with other factors or variables.
  • In statistical analysis, the dependent variable is the outcome or response variable that is being predicted or explained by one or more independent variables.
  • When formulating hypotheses, the dependent variable is the variable that is being predicted or explained by the independent variable(s).
  • When writing a research paper or report, it is important to clearly define the dependent variable(s) in order to provide a clear understanding of the research question and methods used to answer it.
  • In social sciences, such as psychology or sociology, the dependent variable may refer to behaviors, attitudes, or other measurable aspects of individuals or groups.
  • In natural sciences, such as biology or physics, the dependent variable may refer to physical properties or characteristics, such as temperature, speed, or mass.
  • The dependent variable is often contrasted with the independent variable, which is the variable that is being manipulated or changed in order to observe its effects on the dependent variable.

Characteristics of Dependent Variable

Some Characteristics of Dependent Variable are as follows:

  • The dependent variable is the outcome or response variable in the study.
  • Its value depends on the values of one or more independent variables.
  • The dependent variable is typically measured or observed, rather than manipulated by the researcher.
  • It can be continuous (e.g., height, weight) or categorical (e.g., yes/no, red/green/blue).
  • The dependent variable should be relevant to the research question and meaningful to the study participants.
  • It should have a clear and consistent definition and be measured or observed consistently across all participants in the study.
  • The dependent variable should be valid and reliable, meaning that it measures what it is intended to measure and produces consistent results over time.

Advantages of Dependent Variable

Some Advantages of Dependent Variable are as follows:

  • Allows for the testing of hypotheses: By measuring the dependent variable in response to changes in the independent variable, researchers can test hypotheses and draw conclusions about cause-and-effect relationships.
  • Provides insight into the relationship between variables: The dependent variable can provide insight into how one variable is related to another, allowing researchers to identify patterns and make predictions about future outcomes.
  • Enables the evaluation of interventions : By measuring changes in the dependent variable over time, researchers can evaluate the effectiveness of interventions and determine whether they have a meaningful impact on the outcome being studied.
  • Enables the comparison of groups: The dependent variable can be used to compare groups of participants or populations, helping researchers to identify differences or similarities and draw conclusions about underlying factors that may be contributing to those differences.
  • Enables the calculation of statistical measures: By measuring the dependent variable, researchers can calculate statistical measures such as means, variances, and standard deviations, which are used to make statistical inferences about the population being studied.

Disadvantages of Dependent Variable

  • Limited in scope: The dependent variable is limited to the specific outcome being studied, which may not capture the full complexity of the system or phenomenon being investigated.
  • Vulnerable to confounding variables: Confounding variables, or factors that are not controlled for in the study, can influence the dependent variable and obscure the relationship between the independent and dependent variables.
  • Prone to measurement error: The dependent variable may be subject to measurement error due to issues with data collection methods or measurement instruments, which can lead to inaccurate or unreliable results.
  • Limited to observable variables : The dependent variable is typically limited to variables that can be measured or observed, which may not capture underlying or latent variables that may be important for understanding the phenomenon being studied.
  • Ethical concerns: In some cases, measuring the dependent variable may raise ethical concerns, such as in studies of sensitive topics or vulnerable populations.
  • Limited to specific time periods : The dependent variable is typically measured at specific time points or over specific time periods, which may not capture changes or fluctuations in the outcome over longer periods of time.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Control Variable

Control Variable – Definition, Types and Examples

Moderating Variable

Moderating Variable – Definition, Analysis...

Qualitative Variable

Qualitative Variable – Types and Examples

Variables in Research

Variables in Research – Definition, Types and...

Categorical Variable

Categorical Variable – Definition, Types and...

Independent Variable

Independent Variable – Definition, Types and...

Independent and Dependent Variables

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

In research, a variable is any characteristic, number, or quantity that can be measured or counted in experimental investigations . One is called the dependent variable, and the other is the independent variable.

In research, the independent variable is manipulated to observe its effect, while the dependent variable is the measured outcome. Essentially, the independent variable is the presumed cause, and the dependent variable is the observed effect.

Variables provide the foundation for examining relationships, drawing conclusions, and making predictions in research studies.

variables2

Independent Variable

In psychology, the independent variable is the variable the experimenter manipulates or changes and is assumed to directly affect the dependent variable.

It’s considered the cause or factor that drives change, allowing psychologists to observe how it influences behavior, emotions, or other dependent variables in an experimental setting. Essentially, it’s the presumed cause in cause-and-effect relationships being studied.

For example, allocating participants to drug or placebo conditions (independent variable) to measure any changes in the intensity of their anxiety (dependent variable).

In a well-designed experimental study , the independent variable is the only important difference between the experimental (e.g., treatment) and control (e.g., placebo) groups.

By changing the independent variable and holding other factors constant, psychologists aim to determine if it causes a change in another variable, called the dependent variable.

For example, in a study investigating the effects of sleep on memory, the amount of sleep (e.g., 4 hours, 8 hours, 12 hours) would be the independent variable, as the researcher might manipulate or categorize it to see its impact on memory recall, which would be the dependent variable.

Dependent Variable

In psychology, the dependent variable is the variable being tested and measured in an experiment and is “dependent” on the independent variable.

In psychology, a dependent variable represents the outcome or results and can change based on the manipulations of the independent variable. Essentially, it’s the presumed effect in a cause-and-effect relationship being studied.

An example of a dependent variable is depression symptoms, which depend on the independent variable (type of therapy).

In an experiment, the researcher looks for the possible effect on the dependent variable that might be caused by changing the independent variable.

For instance, in a study examining the effects of a new study technique on exam performance, the technique would be the independent variable (as it is being introduced or manipulated), while the exam scores would be the dependent variable (as they represent the outcome of interest that’s being measured).

Examples in Research Studies

For example, we might change the type of information (e.g., organized or random) given to participants to see how this might affect the amount of information remembered.

In this example, the type of information is the independent variable (because it changes), and the amount of information remembered is the dependent variable (because this is being measured).

Independent and Dependent Variables Examples

For the following hypotheses, name the IV and the DV.

1. Lack of sleep significantly affects learning in 10-year-old boys.

IV……………………………………………………

DV…………………………………………………..

2. Social class has a significant effect on IQ scores.

DV……………………………………………….…

3. Stressful experiences significantly increase the likelihood of headaches.

4. Time of day has a significant effect on alertness.

Operationalizing Variables

To ensure cause and effect are established, it is important that we identify exactly how the independent and dependent variables will be measured; this is known as operationalizing the variables.

Operational variables (or operationalizing definitions) refer to how you will define and measure a specific variable as it is used in your study. This enables another psychologist to replicate your research and is essential in establishing reliability (achieving consistency in the results).

For example, if we are concerned with the effect of media violence on aggression, then we need to be very clear about what we mean by the different terms. In this case, we must state what we mean by the terms “media violence” and “aggression” as we will study them.

Therefore, you could state that “media violence” is operationally defined (in your experiment) as ‘exposure to a 15-minute film showing scenes of physical assault’; “aggression” is operationally defined as ‘levels of electrical shocks administered to a second ‘participant’ in another room.

In another example, the hypothesis “Young participants will have significantly better memories than older participants” is not operationalized. How do we define “young,” “old,” or “memory”? “Participants aged between 16 – 30 will recall significantly more nouns from a list of twenty than participants aged between 55 – 70” is operationalized.

The key point here is that we have clarified what we mean by the terms as they were studied and measured in our experiment.

If we didn’t do this, it would be very difficult (if not impossible) to compare the findings of different studies to the same behavior.

Operationalization has the advantage of generally providing a clear and objective definition of even complex variables. It also makes it easier for other researchers to replicate a study and check for reliability .

For the following hypotheses, name the IV and the DV and operationalize both variables.

1. Women are more attracted to men without earrings than men with earrings.

I.V._____________________________________________________________

D.V. ____________________________________________________________

Operational definitions:

I.V. ____________________________________________________________

2. People learn more when they study in a quiet versus noisy place.

I.V. _________________________________________________________

D.V. ___________________________________________________________

3. People who exercise regularly sleep better at night.

Can there be more than one independent or dependent variable in a study?

Yes, it is possible to have more than one independent or dependent variable in a study.

In some studies, researchers may want to explore how multiple factors affect the outcome, so they include more than one independent variable.

Similarly, they may measure multiple things to see how they are influenced, resulting in multiple dependent variables. This allows for a more comprehensive understanding of the topic being studied.

What are some ethical considerations related to independent and dependent variables?

Ethical considerations related to independent and dependent variables involve treating participants fairly and protecting their rights.

Researchers must ensure that participants provide informed consent and that their privacy and confidentiality are respected. Additionally, it is important to avoid manipulating independent variables in ways that could cause harm or discomfort to participants.

Researchers should also consider the potential impact of their study on vulnerable populations and ensure that their methods are unbiased and free from discrimination.

Ethical guidelines help ensure that research is conducted responsibly and with respect for the well-being of the participants involved.

Can qualitative data have independent and dependent variables?

Yes, both quantitative and qualitative data can have independent and dependent variables.

In quantitative research, independent variables are usually measured numerically and manipulated to understand their impact on the dependent variable. In qualitative research, independent variables can be qualitative in nature, such as individual experiences, cultural factors, or social contexts, influencing the phenomenon of interest.

The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable.

So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

Can the same variable be independent in one study and dependent in another?

Yes, the same variable can be independent in one study and dependent in another.

The classification of a variable as independent or dependent depends on how it is used within a specific study. In one study, a variable might be manipulated or controlled to see its effect on another variable, making it independent.

However, in a different study, that same variable might be the one being measured or observed to understand its relationship with another variable, making it dependent.

The role of a variable as independent or dependent can vary depending on the research question and study design.

Print Friendly, PDF & Email

research question dependent variable

Dependent vs. Independent Variables in Research

research question dependent variable

Introduction

Independent and dependent variables in research, can qualitative data have independent and dependent variables.

Experiments rely on capturing the relationship between independent and dependent variables to understand causal patterns. Researchers can observe what happens when they change a condition in their experiment or if there is any effect at all.

It's important to understand the difference between the independent variable and dependent variable. We'll look at the notion of independent and dependent variables in this article. If you are conducting experimental research, defining the variables in your study is essential for realizing rigorous research .

research question dependent variable

In experimental research, a variable refers to the phenomenon, person, or thing that is being measured and observed by the researcher. A researcher conducts a study to see how one variable affects another and make assertions about the relationship between different variables.

A typical research question in an experimental study addresses a hypothesized relationship between the independent variable manipulated by the researcher and the dependent variable that is the outcome of interest presumably influenced by the researcher's manipulation.

Take a simple experiment on plants as an example. Suppose you have a control group of plants on one side of a garden and an experimental group of plants on the other side. All things such as sunlight, water, and fertilizer being equal, both plants should be expected to grow at the same rate.

Now imagine that the plants in the experimental group are given a new plant fertilizer under the assumption that they will grow faster. Then you will need to measure the difference in growth between the two groups in your study.

In this case, the independent variable is the type of fertilizer used on your plants while the dependent variable is the rate of growth among your plants. If there is a significant difference in growth between the two groups, then your study provides support to suggest that the fertilizer causes higher rates of plant growth.

research question dependent variable

What is the key difference between independent and dependent variables?

The independent variable is the element in your study that you intentionally change, which is why it can also be referred to as the manipulated variable.

You manipulate this variable to see how it might affect the other variables you observe, all other factors being equal. This means that you can observe the cause and effect relationships between one independent variable and one or multiple dependent variables.

Independent variables are directly manipulated by the researcher, while dependent variables are not. They are "dependent" because they are affected by the independent variable in the experiment. Researchers can thus study how manipulating the independent variable leads to changes in the main outcome of interest being measured as the dependent variable.

Note that while you can have multiple dependent variables, it is challenging to establish research rigor for multiple independent variables. If you are making so many changes in an experiment, how do you know which change is responsible for the outcome produced by the study? Studying more than one independent variable would require running an experiment for each independent variable to isolate its effects on the dependent variable.

This being said, it is certainly possible to employ a study design that involves multiple independent and dependent variables, as is the case with what is called a factorial experiment. For example, a psychological study examining the effects of sleep and stress levels on work productivity and social interaction would have two independent variables and two dependent variables, respectively.

Such a study would be complex and require careful planning to establish the necessary research rigor , however. If possible, consider narrowing your research to the examination of one independent variable to make it more manageable and easier to understand.

Independent variable examples

Let's consider an experiment in the social studies. Suppose you want to determine the effectiveness of a new textbook compared to current textbooks in a particular school.

The new textbook is supposed to be better, but how can you prove it? Besides all the selling points that the textbook publisher makes, how do you know if the new textbook is any good? A rigorous study examining the effects of the textbook on classroom outcomes is in order.

The textbook given to students makes up the independent variable in your experimental study. The shift from the existing textbooks to the new one represents the manipulation of the independent variable in this study.

research question dependent variable

Dependent variable examples

In any experiment, the dependent variable is observed to measure how it is affected by changes to the independent variable. Outcomes such as test scores and other performance metrics can make up the data for the dependent variable.

Now that we are changing the textbook in the experiment above, we should examine if there are any effects.

To do this, we will need two classrooms of students. As best as possible, the two sets of students should be of similar proficiency (or at least of similar backgrounds) and placed within similar conditions for teaching and learning (e.g., physical space, lesson planning).

The control group in our study will be one set of students using the existing textbook. By examining their performance, we can establish a baseline. The performance of the experimental group, which is the set of students using the new textbook, can then be compared with the baseline performance.

As a result, the change in the test scores make up the data for our dependent variable. We cannot directly affect how well students perform on the test, but we can conclude from our experiment whether the use of the new textbook might impact students' performance.

research question dependent variable

Turn data into valuable insights with ATLAS.ti

Rely on our powerful data analysis interface for your research, starting with a free trial.

How do you know if a variable is independent or dependent?

We can typically think of an independent variable as something a researcher can directly change. In the above example, we can change the textbook used by the teacher in class. If we're talking about plants, we can change the fertilizer.

Conversely, the dependent variable is something that we do not directly influence or manipulate. Strictly speaking, we cannot directly manipulate a student's performance on a test or the rate of growth of a plant, not without other factors such as new teaching methods or new fertilizer, respectively.

Understanding the distinction between a dependent variable and an independent variable is key to experimental research. Ultimately, the distinction can be reduced to which element in a study has been directly influenced by the researcher.

Other variables

Given the potential complexities encountered in research, there is essential terminology for other variables in any experimental study. You might employ this terminology or encounter them while reading other research.

A control variable is any factor that the researcher tries to keep constant as the independent variable changes. In the plant experiment described earlier in this article, the sunlight and water are each a controlled variable while the type of fertilizer used is the manipulated variable across control and experimental groups.

To ensure research rigor, the researcher needs to keep these control variables constant to dispel any concerns that differences in growth rate were being driven by sunlight or water, as opposed to the fertilizer being used.

research question dependent variable

Extraneous variables refer to any unwanted influence on the dependent variable that may confound the analysis of the study. For example, if bugs or animals ate the plants in your fertilizer study, this was greatly impact the rates of plant growth. This is why it would be important to control the environment and protect it from such threats.

Finally, independent variables can go by different names such as subject variables or predictor variables. Dependent variables can also be referred to as the responding variable or outcome variable. Whatever the language, they all serve the same role of influencing the dependent variable in an experiment.

The use of the word " variables " is typically associated with quantitative and confirmatory research. Naturalistic qualitative research typically does not employ experimental designs or establish causality. Qualitative research often draws on observations , interviews , focus groups , and other forms of data collection that are allow researchers to study the naturally occurring "messiness" of the social world, rather than controlling all variables to isolate a cause-and-effect relationship.

In limited circumstances, the idea of experimental variables can apply to participant observations in ethnography , where the researcher should be mindful of their influence on the environment they are observing.

However, the experimental paradigm is best left to quantitative studies and confirmatory research questions. Qualitative researchers in the social sciences are oftentimes more interested in observing and describing socially-constructed phenomena rather than testing hypotheses .

Nonetheless, the notion of independent and dependent variables does hold important lessons for qualitative researchers. Even if they don't employ variables in their study design, qualitative researchers often observe how one thing affects another. A theoretical or conceptual framework can then suggest potential cause-and-effect relationships in their study.

research question dependent variable

With ATLAS.ti, insightful data analysis is at your fingertips

Download a free trial of ATLAS.ti to see how you can make the most of your data.

research question dependent variable

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

What Is a Dependent Variable?

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

research question dependent variable

Cara Lustik is a fact-checker and copywriter.

research question dependent variable

skynesher / Getty Images

  • Independent vs. Dependent
  • Selection Features

Frequently Asked Questions

The dependent variable is the variable that is being measured or tested in an experiment. For example, in a study looking at how tutoring impacts test scores, the dependent variable would be the participants' test scores since that is what is being measured.

This is different than the independent variable in an experiment, which is a variable that stands on its own. In the example above, the independent variable would be tutoring. The independent variable (tutoring) doesn't change based on other variables, but the dependent variable (test scores) may.

One way to help identify the dependent variable is to remember that it depends on the independent variable. When researchers make changes to the independent variable, they then measure any resulting changes to the dependent variable.

The dependent variable is called "dependent" because it is thought to depend, in some way, on the variations of the independent variable.

Independent vs. Dependent Variable

In a psychology experiment , researchers study how changes in one variable (the independent variable) change another variable (the dependent variable). Manipulating independent variables and measuring the effect on dependent variables allows researchers to draw conclusions about cause-and-effect relationships.

These experiments can range from simple to quite complicated, so it can sometimes be a bit confusing to know how to identify the independent vs. dependent variables. Here are a couple of questions to ask to help you learn which is which.

Which Variable Is the Experimenter Measuring?

Keep in mind that the dependent variable is the one being measured. So, if the experiment is trying to see how one variable affects another, the variable that is being affected is the dependent variable.

In many psychology experiments and studies, the dependent variable is a measure of a certain aspect of a participant's behavior . In an experiment looking at how sleep affects test performance, the dependent variable would be test performance.

Which Variable Does the Experimenter Manipulate?

The independent variable is "independent" because the experimenters are free to vary it as they need. This might mean changing the amount, duration, or type of variable that the participants in the study receive as a treatment or condition.

For example, it's common for treatment-based studies to have some subjects receive a certain treatment while others receive no treatment at all. In this case, the treatment is an independent variable because it is the one being manipulated or changed.

Variable being manipulated

Doesn't change based on other variables

Stands on its own

Variable being measured

May change based on other variables

Depends on other variables

How to Choose a Dependent Variable

How do researchers determine what will be a good dependent variable? There are a few key features that a scientist might consider.

Stability is often a good sign of a higher quality dependent variable. If the experiment is repeated with the same participants, conditions, and experimental manipulations, the effects on the dependent variable should be very close to what they were the first time around.

A researcher might also choose dependent variables based on the complexity of their study. While some studies only have one dependent variable and one independent variable, it is possible to have several of each type.

Researchers might also want to learn how changes in a single independent variable affect several dependent variables. For example, imagine an experiment where a researcher wants to learn how the messiness of a room influences people's creativity levels .

This research might also want to see how the messiness of a room might influence a person's mood. The messiness of a room would be the independent variable and the study would have two dependent variables: level of creativity and mood .

Ability to Operationalize

Operationalization is defined as "translating a construct into its manifestation." In simple terms, it refers to how a variable will be measured. So, a good dependent variable is one that you are able to measure.

If measuring burnout , for instance, researchers might decide to use the Maslach Burnout Inventory. If measuring depression, they could use the Patient Health Questionnaire-9 (PHQ-9).

Dependent Variable Examples

As you are learning to identify the dependent variables in an experiment, it can be helpful to look at examples. Here are just a few dependent variable examples in psychology research .

  • How does the amount of time spent studying influence test scores? The test scores would be the dependent variable and the amount of studying would be the independent variable. The researcher could also change the independent variable by instead evaluating how age or gender influences test scores.
  • How does stress influence memory? The dependent variable might be scores on a memory test and the independent variable might be exposure to a stressful task.
  • How does a specific therapeutic technique influence the symptoms of psychological disorders ? In this case, the dependent variable might be defined as the severity of the symptoms a patient is experiencing, while the independent variable would be the use of a specific therapy method .
  • Does listening to classical music help students perform better on a math exam? The scores on the math exams are the dependent variable and classical music is the independent variable.
  • How long does it take people to respond to different sounds? The length of time it takes participants to respond to a sound is the dependent variable, while the sounds are the independent variable.
  • Do first-born children learn to speak at a younger age than second-born children? In this example, the dependent variable is the age at which the child learns to speak and the independent variable is whether the child is first- or second-born.
  • How does alcohol use influence reaction time while driving? The amount of alcohol a participant ingests is the independent variable, while their performance on the driving test is the dependent variable.

A Word From Verywell

Understanding what a dependent variable is and how it is used can be helpful for interpreting different types of research that you encounter in different settings. When you are trying to determine which variables are which, remember that the independent variables are the cause while the dependent variables are the effect.

The dependent variable depends on the independent variable. Thus, if the independent variable changes, the dependent variable would likely change too.

The dependent variable is placed on a graph's y-axis. This is the vertical line or the line that extends upward. The independent variable is placed on the graph's x-axis or the horizontal line.

The dependent variable is the one being measured. If looking at how a lack of sleep affects mental health , for instance, mental health is the dependent variable. In a study that seeks to find the effects of supplements on mood , the participants' mood is the dependent variable.

A controlled variable is a variable that doesn't change during the experiment. This enables researchers to assess the relationship between the dependent and independent variables more accurately. For example, if trying to assess the impact of drinking green tea on memory, researchers might ask subjects to drink it at the same time of day. This would be a controlled variable.

U.S. National Library of Medicine. Dependent and independent variables .

Steingrimsdottir HS, Arntzen E. On the utility of within-participant research design when working with patients with neurocognitive disorders .  Clin Interv Aging . 2015;10:1189-1199. doi:10.2147/CIA.S81868

Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size .  Indian Dermatol Online J . 2019;10(1):82-86. doi:10.4103/idoj.IDOJ_468_18

Flannelly LT, Flannelly KJ, Jankowski KR. Independent, dependent, and other variables in healthcare and chaplaincy research . J Health Care Chaplain . 2014;20(4):161-70. doi:10.1080/08854726.2014.959374

Weiten W.  Psychology: Themes and Variations . Cengage Learning.

Roediger HL, Elmes DG, Kantowitz BH. Experimental Psychology . Cengage Learning.

Vassar M, Matthew H. The retrospective chart review: important methodological considerations . J Educ Eval Health Prof . 2013;10:12. doi:10.3352/jeehp.2013.10.12

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Back Home

  • Science Notes Posts
  • Contact Science Notes
  • Todd Helmenstine Biography
  • Anne Helmenstine Biography
  • Free Printable Periodic Tables (PDF and PNG)
  • Periodic Table Wallpapers
  • Interactive Periodic Table
  • Periodic Table Posters
  • How to Grow Crystals
  • Chemistry Projects
  • Fire and Flames Projects
  • Holiday Science
  • Chemistry Problems With Answers
  • Physics Problems
  • Unit Conversion Example Problems
  • Chemistry Worksheets
  • Biology Worksheets
  • Periodic Table Worksheets
  • Physical Science Worksheets
  • Science Lab Worksheets
  • My Amazon Books

Independent and Dependent Variables Examples

The independent variable is the factor the researcher controls, while the dependent variable is the one that is measured.

The independent and dependent variables are key to any scientific experiment, but how do you tell them apart? Here are the definitions of independent and dependent variables, examples of each type, and tips for telling them apart and graphing them.

Independent Variable

The independent variable is the factor the researcher changes or controls in an experiment. It is called independent because it does not depend on any other variable. The independent variable may be called the “controlled variable” because it is the one that is changed or controlled. This is different from the “ control variable ,” which is variable that is held constant so it won’t influence the outcome of the experiment.

Dependent Variable

The dependent variable is the factor that changes in response to the independent variable. It is the variable that you measure in an experiment. The dependent variable may be called the “responding variable.”

Examples of Independent and Dependent Variables

Here are several examples of independent and dependent variables in experiments:

  • In a study to determine whether how long a student sleeps affects test scores, the independent variable is the length of time spent sleeping while the dependent variable is the test score.
  • You want to know which brand of fertilizer is best for your plants. The brand of fertilizer is the independent variable. The health of the plants (height, amount and size of flowers and fruit, color) is the dependent variable.
  • You want to compare brands of paper towels, to see which holds the most liquid. The independent variable is the brand of paper towel. The dependent variable is the volume of liquid absorbed by the paper towel.
  • You suspect the amount of television a person watches is related to their age. Age is the independent variable. How many minutes or hours of television a person watches is the dependent variable.
  • You think rising sea temperatures might affect the amount of algae in the water. The water temperature is the independent variable. The mass of algae is the dependent variable.
  • In an experiment to determine how far people can see into the infrared part of the spectrum, the wavelength of light is the independent variable and whether the light is observed is the dependent variable.
  • If you want to know whether caffeine affects your appetite, the presence/absence or amount of caffeine is the independent variable. Appetite is the dependent variable.
  • You want to know which brand of microwave popcorn pops the best. The brand of popcorn is the independent variable. The number of popped kernels is the dependent variable. Of course, you could also measure the number of unpopped kernels instead.
  • You want to determine whether a chemical is essential for rat nutrition, so you design an experiment. The presence/absence of the chemical is the independent variable. The health of the rat (whether it lives and reproduces) is the dependent variable. A follow-up experiment might determine how much of the chemical is needed. Here, the amount of chemical is the independent variable and the rat health is the dependent variable.

How to Tell the Independent and Dependent Variable Apart

If you’re having trouble identifying the independent and dependent variable, here are a few ways to tell them apart. First, remember the dependent variable depends on the independent variable. It helps to write out the variables as an if-then or cause-and-effect sentence that shows the independent variable causes an effect on the dependent variable. If you mix up the variables, the sentence won’t make sense. Example : The amount of eat (independent variable) affects how much you weigh (dependent variable).

This makes sense, but if you write the sentence the other way, you can tell it’s incorrect: Example : How much you weigh affects how much you eat. (Well, it could make sense, but you can see it’s an entirely different experiment.) If-then statements also work: Example : If you change the color of light (independent variable), then it affects plant growth (dependent variable). Switching the variables makes no sense: Example : If plant growth rate changes, then it affects the color of light. Sometimes you don’t control either variable, like when you gather data to see if there is a relationship between two factors. This can make identifying the variables a bit trickier, but establishing a logical cause and effect relationship helps: Example : If you increase age (independent variable), then average salary increases (dependent variable). If you switch them, the statement doesn’t make sense: Example : If you increase salary, then age increases.

How to Graph Independent and Dependent Variables

Plot or graph independent and dependent variables using the standard method. The independent variable is the x-axis, while the dependent variable is the y-axis. Remember the acronym DRY MIX to keep the variables straight: D = Dependent variable R = Responding variable/ Y = Graph on the y-axis or vertical axis M = Manipulated variable I = Independent variable X = Graph on the x-axis or horizontal axis

  • Babbie, Earl R. (2009). The Practice of Social Research (12th ed.) Wadsworth Publishing. ISBN 0-495-59841-0.
  • di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 978-0-521-29925-1.
  • Gauch, Hugh G. Jr. (2003). Scientific Method in Practice . Cambridge University Press. ISBN 978-0-521-01708-4.
  • Popper, Karl R. (2003). Conjectures and Refutations: The Growth of Scientific Knowledge . Routledge. ISBN 0-415-28594-1.

Related Posts

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

research question dependent variable

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

What is a dependent variable?

Last updated

4 March 2023

Reviewed by

Miroslav Damyanov

Admit it. The mere mention of the term "dependent variables" evokes vague memories of your math and science classes back in high school. If you're a science buff, you likely enjoyed those classes a lot. 

Fast forward to today, and that knowledge could've come in handy—except you don't remember the nitty-gritty of it all. Fret not; we've got you covered.

At the heart of every scientific experiment lies the dependent variable, and we cannot overstate its importance in understanding cause-and-effect relationships. 

In this definitive guide, we'll look at dependent variables, how they differ from their independent counterparts, how to choose one, examples, and everything in between. 

Make research less tedious

Dovetail streamlines research to help you uncover and share actionable insights

  • First things first, what is a variable?

A variable is an entity that can assume different values. In the simplest of terms, we can consider anything that can vary as a variable. 

For instance, height is a variable because we can assign a person's height a value. Other variables include income, age, country of birth, test scores, and so on.

  • What exactly is a dependent variable?

Now, back to our topic of the day. A dependent variable varies when other factors influence it. Specifically, it changes as a result of the independent variable's influence. 

In an experimental study, the dependent variable is typically the one you're interested in measuring or monitoring to determine whether or not other variables affect it. 

In statistics, dependent variables use a few other names, including:

Outcome variables because you observe and measure them by changing independent variables

Response variables because they respond to changes in other variables

Left-hand-side variables because they appear on the left side of the equals sign in a regression equation

Y-variables because 'Y' usually represents them on a graph

Is it possible to define dependent variables in the context of cause-and-effect relationships? Absolutely! That's precisely why this phenomenon exists in the first place. 

While the independent variable is the "cause," the dependent variable is the "effect"—the affected variable. 

Naturally, you're itching to learn the difference between dependent and independent variables. Luckily for you, that's next.

  • Dependent vs. independent variables: How are they different?

Let's first understand what an independent variable is. True to its name, an independent variable stands alone, and other variables don’t change or affect it. 

If the value of an independent variable changes at any time, that change happens at the researcher's discretion, not because of other variables. 

Typically, the researcher determines the independent variable. Its value is clear and well-known right at the beginning of the experiment, unlike the dependent variable. Those values only become clear after the experiment's conclusion.

Comprehending the difference between dependent and independent variables is vital for any research. Thankfully, getting it right the first time isn't difficult. 

The quickest way is to place both variables in the sentence below in a logical way:

"The IV causes changes to the DV. It is not possible that DV could cause any changes to IV."

Here's how that would reflect in our above example:

"Sleeping causes changes to test results. It is not possible that test results could cause any changes to sleeping."

When altering the independent variable during an experiment, your goal is to track and measure the changes it causes to dependent variables. Remember that changes in the dependent variable can only occur due to independent variable manipulation. 

To better understand the nuanced differences between dependent and independent variables, let's explore a few examples:

Example 1: What is the effect of green tea on blood pressure?

Independent variable: The amount of green tea consumed

Dependent variable: Blood pressure

Example 2: How does employee productivity affect business growth?

Independent variable: Hours spent doing productive work

Dependent variable: Business growth

Example 3: What is the impact of economic change on customer behavior?

Independent variable: Individual changes in the economy

Dependent variable: Customer behavior

On a broader level, here's what makes dependent and independent variables fundamentally different:

Dependent variables:

Depend on other variables

May change due to other variables

Are always the ones you’re measuring

Independent variables:

Stand on their own

Never change due to other variables

Undergo manipulation

  • How to choose a good dependent variable

Pinpointing a good dependent variable is more complex than it sounds. You're often contending with several above-par variables, leaving you spoilt for choice. Other times, the research context is way too complex and gives nothing away. 

Fortunately for you, we've formulated a set of questions to streamline your selection process.

How stable is the variable?

A dependent variable is only half as good as the stability and consistency of its output. A high-quality variable yields the same outcome irrespective of how often you repeat the experiment. 

To arrive at accurate conclusions, you must maintain the same conditions, experimental manipulations, and participants from start to finish.

How complex is your study?

Choosing a dependent variable without first considering the complexity of your study is a recipe for failure. Some studies require more than just a single variable of either type. 

You must do your due diligence early in the process to ensure your final results are accurate and conclusive. 

You might also have a situation where you want to find out how changes in one independent variable impact a couple of dependent variables. In that case, it's crucial to pinpoint all of them correctly from the get-go.

For instance, say you want to investigate how low employee morale affects productivity. 

Obviously, the dependent variable here is productivity, while low employee morale is the independent variable. Upon further scrutiny, you'll realize there's an opportunity to test for a few more dependent variables, including employee turnover and profitability. 

So, it all boils down to how complex you want your study to be.

Is it possible to operationalize the variable?

In research, operationalization refers to the ability to measure a variable. A dependent variable is only good enough if you can measure it easily, accurately, and without hiccups.

In measuring individual test results, you may use the standard error of measurement (SEm). 

If measuring blood pressure, you could use a digital blood pressure monitor. SEm will tell you how much the repeated measures of the same person on the same digital pressure monitor tend to be spread around the person’s “true” score.

  • Pitfalls to keep an eye on

We hate to break it to you, but dependent and independent variables aren't the only variables that may influence the outcome of your experiment. Several others can, too. 

Here are a few to be aware of:

Confounding variables

You can’t account for a confounding variable in a scientific experiment. It acts as an external force that can quickly change the effect of dependent and independent research variables, often yielding outcomes that differ completely from reality.

For example, a confounding variable may be responsible for the correlation between weight loss and weight loss. We’d expect that the more you exercise, the more likely you will lose weight.

However, a confounding variable may be eating habits: The more people eat, the more weight they gain, regardless of exercise.

It's best to account for confounding variables before your study starts to prevent them from wreaking havoc. Matching, restriction, and randomization are all reliable methods for keeping these wayward variables in check.

Extraneous variables

Sometimes, it's impossible to control a confounding variable. When that happens, it automatically becomes an extraneous variable .

One way to control extraneous variables is through elimination. Control by elimination means removing potential extraneous variables by holding them constant in all experimental conditions. Otherwise, you may draw inaccurate conclusions about the relationships between the independent and dependent variables.

  • Examples of Dependent Variables

We've already highlighted several tangible examples of dependent variables. For clarity's sake, let's go a step further.

Here are additional dependent variables examples you might find helpful.

In organizations

A business wants to find out how the color of the office decor affects worker productivity. 

In this case, worker productivity would be the dependent variable, and the color of the office would be the independent variable. The business could also alter the independent variable by instead evaluating how work hours or low morale influence worker productivity.

In the workplace

A researcher wants to determine if giving workers more control over their extra shifts leads to increased job satisfaction. 

In an experiment, one group of employees gets to pick up shifts freely and without restriction, while the other group enjoys little freedom. Job satisfaction is the dependent variable in this example.

In psychology research

A researcher intends to investigate the effects of alcohol on the brain. 

Here, the dependent variable could be the scores on the PHQ-9 assessment tool, which provisionally diagnoses depression. The independent variable might be the amount of alcohol a participant ingests.

Of course, dependent variable examples abound. We couldn't possibly exhaust all of them. But with the information and slew of examples in this piece, you should be well-positioned to make your next experiment a resounding success.

  • Final words

The role of dependent variables in shaping and grounding modern-day research experiments is undeniably important. 

Alongside independent variables, dependent variables make it easy for researchers and organizations to uncover the true impact of events. This speeds up the formulation of real and tangible solutions.

What are the three types of variables?

An experimental study has three types of variables:

Independent variable

Dependent variable

Controlled variable

A dependent variable is the one a researcher tests to get its values. 

An independent variable is what the researcher changes to test the dependent variable. 

The variable that the scientist intentionally holds constant throughout the research is a controlled variable. While it may not be part of the experiment, it's important because it can affect the results.

Is the control group the same as the dependent variable?

No. The control group serves as the standard of comparison in a specific experiment. In other words, this group isn't part of the actual experiment.

The opposite of a control group is an experimental group.

Meanwhile, the dependent variable is the factor that may change as a result of independent variable manipulation.

How do you identify a dependent variable?

The quickest way to identify a dependent variable is to ask yourself these three questions:

Does it depend on another variable in the experiment?

Does it change due to other variables?

Is it the one you’re measuring?

If your answer to all these questions is yes, that's a dependent variable.

If not, reexamine the above criteria to see if it’s an independent variable instead.

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 December 2023

Last updated: 16 December 2023

Last updated: 6 October 2023

Last updated: 5 March 2024

Last updated: 25 November 2023

Last updated: 15 February 2024

Last updated: 11 March 2024

Last updated: 12 December 2023

Last updated: 6 March 2024

Last updated: 10 April 2023

Last updated: 20 December 2023

Latest articles

Related topics, log in or sign up.

Get started for free

Logo for Mavs Open Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

4.3 Quantitative research questions

Learning objectives.

  • Describe how research questions for exploratory, descriptive, and explanatory quantitative questions differ and how to phrase them
  • Identify the differences between and provide examples of strong and weak explanatory research questions

Quantitative descriptive questions

The type of research you are conducting will impact the research question that you ask. Probably the easiest questions to think of are quantitative descriptive questions. For example, “What is the average student debt load of MSW students?” is a descriptive question—and an important one. We aren’t trying to build a causal relationship here. We’re simply trying to describe how much debt MSW students carry. Quantitative descriptive questions like this one are helpful in social work practice as part of community scans, in which human service agencies survey the various needs of the community they serve. If the scan reveals that the community requires more services related to housing, child care, or day treatment for people with disabilities, a nonprofit office can use the community scan to create new programs that meet a defined community need.

an illuminated street sign that reads "ask"

Quantitative descriptive questions will often ask for percentage, count the number of instances of a phenomenon, or determine an average. Descriptive questions may only include one variable, such as ours about debt load, or they may include multiple variables. Because these are descriptive questions, we cannot investigate causal relationships between variables. To do that, we need to use a quantitative explanatory question.

Quantitative explanatory questions

Most studies you read in the academic literature will be quantitative and explanatory. Why is that? Explanatory research tries to build something called nomothetic causal explanations.Matthew DeCarlo says “com[ing]up with a broad, sweeping explanation that is universally true for all people” is the hallmark of nomothetic causal relationships (DeCarlo, 2018, chapter 7.2, para 5 ). They are generalizable across space and time, so they are applicable to a wide audience. The editorial board of a journal wants to make sure their content will be useful to as many people as possible, so it’s not surprising that quantitative research dominates the academic literature.

Structurally, quantitative explanatory questions must contain an independent variable and dependent variable. Questions should ask about the relation between these variables. A standard format for an explanatory quantitative research question is: “What is the relation between [independent variable] and [dependent variable] for [target population]?” You should play with the wording for your research question, revising it as you see fit. The goal is to make the research question reflect what you really want to know in your study.

Let’s take a look at a few more examples of possible research questions and consider the relative strengths and weaknesses of each. Table 4.1 does just that. While reading the table, keep in mind that it only includes some of the most relevant strengths and weaknesses of each question. Certainly each question may have additional strengths and weaknesses not noted in the table.

Making it more specific

A good research question should also be specific and clear about the concepts it addresses. A group of students investigating gender and household tasks knows what they mean by “household tasks.” You likely also have an impression of what “household tasks” means. But are your definition and the students’ definition the same? A participant in their study may think that managing finances and performing home maintenance are household tasks, but the researcher may be interested in other tasks like childcare or cleaning. The only way to ensure your study stays focused and clear is to be specific about what you mean by a concept. The student in our example could pick a specific household task that was interesting to them or that the literature indicated was important—for example, childcare. Or, the student could have a broader view of household tasks, one that encompasses childcare, food preparation, financial management, home repair, and care for relatives. Any option is probably okay, as long as the researchers are clear on what they mean by “household tasks.”

Table 4.2 contains some “watch words” that indicate you may need to be more specific about the concepts in your research question.

It can be challenging in social work research to be this specific, particularly when you are just starting out your investigation of the topic. If you’ve only read one or two articles on the topic, it can be hard to know what you are interested in studying. Broad questions like “What are the causes of chronic homelessness, and what can be done to prevent it?” are common at the beginning stages of a research project. However, social work research demands that you examine the literature on the topic and refine your question over time to be more specific and clear before you begin your study. Perhaps you want to study the effect of a specific anti-homelessness program that you found in the literature. Maybe there is a particular model to fighting homelessness, like Housing First or transitional housing that you want to investigate further. You may want to focus on a potential cause of homelessness such as LGBTQ discrimination that you find interesting or relevant to your practice. As you can see, the possibilities for making your question more specific are almost infinite.

Quantitative exploratory questions

In exploratory research, the researcher doesn’t quite know the lay of the land yet. If someone is proposing to conduct an exploratory quantitative project, the watch words highlighted in Table 4.2 are not problematic at all. In fact, questions such as “What factors influence the removal of children in child welfare cases?” are good because they will explore a variety of factors or causes. In this question, the independent variable is less clearly written, but the dependent variable, family preservation outcomes, is quite clearly written. The inverse can also be true. If we were to ask, “What outcomes are associated with family preservation services in child welfare?”, we would have a clear independent variable, family preservation services, but an unclear dependent variable, outcomes. Because we are only conducting exploratory research on a topic, we may not have an idea of what concepts may comprise our “outcomes” or “factors.” Only after interacting with our participants will we be able to understand which concepts are important.

Key Takeaways

  • Quantitative descriptive questions are helpful for community scans but cannot investigate causal relationships between variables.
  • Quantitative explanatory questions must include an independent and dependent variable.

Image attributions

Ask by terimakasih0 cc-0.

Guidebook for Social Work Literature Reviews and Research Questions Copyright © 2020 by Rebecca Mauldin and Matthew DeCarlo is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Get science-backed answers as you write with Paperpal's Research feature

How to Write a Research Question: Types and Examples 

research quetsion

The first step in any research project is framing the research question. It can be considered the core of any systematic investigation as the research outcomes are tied to asking the right questions. Thus, this primary interrogation point sets the pace for your research as it helps collect relevant and insightful information that ultimately influences your work.   

Typically, the research question guides the stages of inquiry, analysis, and reporting. Depending on the use of quantifiable or quantitative data, research questions are broadly categorized into quantitative or qualitative research questions. Both types of research questions can be used independently or together, considering the overall focus and objectives of your research.  

What is a research question?

A research question is a clear, focused, concise, and arguable question on which your research and writing are centered. 1 It states various aspects of the study, including the population and variables to be studied and the problem the study addresses. These questions also set the boundaries of the study, ensuring cohesion. 

Designing the research question is a dynamic process where the researcher can change or refine the research question as they review related literature and develop a framework for the study. Depending on the scale of your research, the study can include single or multiple research questions. 

A good research question has the following features: 

  • It is relevant to the chosen field of study. 
  • The question posed is arguable and open for debate, requiring synthesizing and analysis of ideas. 
  • It is focused and concisely framed. 
  • A feasible solution is possible within the given practical constraint and timeframe. 

A poorly formulated research question poses several risks. 1   

  • Researchers can adopt an erroneous design. 
  • It can create confusion and hinder the thought process, including developing a clear protocol.  
  • It can jeopardize publication efforts.  
  • It causes difficulty in determining the relevance of the study findings.  
  • It causes difficulty in whether the study fulfils the inclusion criteria for systematic review and meta-analysis. This creates challenges in determining whether additional studies or data collection is needed to answer the question.  
  • Readers may fail to understand the objective of the study. This reduces the likelihood of the study being cited by others. 

Now that you know “What is a research question?”, let’s look at the different types of research questions. 

Types of research questions

Depending on the type of research to be done, research questions can be classified broadly into quantitative, qualitative, or mixed-methods studies. Knowing the type of research helps determine the best type of research question that reflects the direction and epistemological underpinnings of your research. 

The structure and wording of quantitative 2 and qualitative research 3 questions differ significantly. The quantitative study looks at causal relationships, whereas the qualitative study aims at exploring a phenomenon. 

  • Quantitative research questions:  
  • Seeks to investigate social, familial, or educational experiences or processes in a particular context and/or location.  
  • Answers ‘how,’ ‘what,’ or ‘why’ questions. 
  • Investigates connections, relations, or comparisons between independent and dependent variables. 

Quantitative research questions can be further categorized into descriptive, comparative, and relationship, as explained in the Table below. 

  • Qualitative research questions  

Qualitative research questions are adaptable, non-directional, and more flexible. It concerns broad areas of research or more specific areas of study to discover, explain, or explore a phenomenon. These are further classified as follows: 

  • Mixed-methods studies  

Mixed-methods studies use both quantitative and qualitative research questions to answer your research question. Mixed methods provide a complete picture than standalone quantitative or qualitative research, as it integrates the benefits of both methods. Mixed methods research is often used in multidisciplinary settings and complex situational or societal research, especially in the behavioral, health, and social science fields. 

What makes a good research question

A good research question should be clear and focused to guide your research. It should synthesize multiple sources to present your unique argument, and should ideally be something that you are interested in. But avoid questions that can be answered in a few factual statements. The following are the main attributes of a good research question. 

  • Specific: The research question should not be a fishing expedition performed in the hopes that some new information will be found that will benefit the researcher. The central research question should work with your research problem to keep your work focused. If using multiple questions, they should all tie back to the central aim. 
  • Measurable: The research question must be answerable using quantitative and/or qualitative data or from scholarly sources to develop your research question. If such data is impossible to access, it is better to rethink your question. 
  • Attainable: Ensure you have enough time and resources to do all research required to answer your question. If it seems you will not be able to gain access to the data you need, consider narrowing down your question to be more specific. 
  • You have the expertise 
  • You have the equipment and resources 
  • Realistic: Developing your research question should be based on initial reading about your topic. It should focus on addressing a problem or gap in the existing knowledge in your field or discipline. 
  • Based on some sort of rational physics 
  • Can be done in a reasonable time frame 
  • Timely: The research question should contribute to an existing and current debate in your field or in society at large. It should produce knowledge that future researchers or practitioners can later build on. 
  • Novel 
  • Based on current technologies. 
  • Important to answer current problems or concerns. 
  • Lead to new directions. 
  • Important: Your question should have some aspect of originality. Incremental research is as important as exploring disruptive technologies. For example, you can focus on a specific location or explore a new angle. 
  • Meaningful whether the answer is “Yes” or “No.” Closed-ended, yes/no questions are too simple to work as good research questions. Such questions do not provide enough scope for robust investigation and discussion. A good research question requires original data, synthesis of multiple sources, and original interpretation and argumentation before providing an answer. 

Steps for developing a good research question

The importance of research questions cannot be understated. When drafting a research question, use the following frameworks to guide the components of your question to ease the process. 4  

  • Determine the requirements: Before constructing a good research question, set your research requirements. What is the purpose? Is it descriptive, comparative, or explorative research? Determining the research aim will help you choose the most appropriate topic and word your question appropriately. 
  • Select a broad research topic: Identify a broader subject area of interest that requires investigation. Techniques such as brainstorming or concept mapping can help identify relevant connections and themes within a broad research topic. For example, how to learn and help students learn. 
  • Perform preliminary investigation: Preliminary research is needed to obtain up-to-date and relevant knowledge on your topic. It also helps identify issues currently being discussed from which information gaps can be identified. 
  • Narrow your focus: Narrow the scope and focus of your research to a specific niche. This involves focusing on gaps in existing knowledge or recent literature or extending or complementing the findings of existing literature. Another approach involves constructing strong research questions that challenge your views or knowledge of the area of study (Example: Is learning consistent with the existing learning theory and research). 
  • Identify the research problem: Once the research question has been framed, one should evaluate it. This is to realize the importance of the research questions and if there is a need for more revising (Example: How do your beliefs on learning theory and research impact your instructional practices). 

How to write a research question

Those struggling to understand how to write a research question, these simple steps can help you simplify the process of writing a research question. 

Sample Research Questions

The following are some bad and good research question examples 

  • Example 1 
  • Example 2 

References:  

  • Thabane, L., Thomas, T., Ye, C., & Paul, J. (2009). Posing the research question: not so simple.  Canadian Journal of Anesthesia/Journal canadien d’anesthésie ,  56 (1), 71-79. 
  • Rutberg, S., & Bouikidis, C. D. (2018). Focusing on the fundamentals: A simplistic differentiation between qualitative and quantitative research.  Nephrology Nursing Journal ,  45 (2), 209-213. 
  • Kyngäs, H. (2020). Qualitative research and content analysis.  The application of content analysis in nursing science research , 3-11. 
  • Mattick, K., Johnston, J., & de la Croix, A. (2018). How to… write a good research question.  The clinical teacher ,  15 (2), 104-108. 
  • Fandino, W. (2019). Formulating a good research question: Pearls and pitfalls.  Indian Journal of Anaesthesia ,  63 (8), 611. 
  • Richardson, W. S., Wilson, M. C., Nishikawa, J., & Hayward, R. S. (1995). The well-built clinical question: a key to evidence-based decisions.  ACP journal club ,  123 (3), A12-A13 

Paperpal is a comprehensive AI writing toolkit that helps students and researchers achieve 2x the writing in half the time. It leverages 21+ years of STM experience and insights from millions of research articles to provide in-depth academic writing, language editing, and submission readiness support to help you write better, faster.  

Get accurate academic translations, rewriting support, grammar checks, vocabulary suggestions, and generative AI assistance that delivers human precision at machine speed. Try for free or upgrade to Paperpal Prime starting at US$19 a month to access premium features, including consistency, plagiarism, and 30+ submission readiness checks to help you succeed.  

Experience the future of academic writing – Sign up to Paperpal and start writing for free!  

Related Reads:

  • Scientific Writing Style Guides Explained
  • Ethical Research Practices For Research with Human Subjects
  • 8 Most Effective Ways to Increase Motivation for Thesis Writing 
  • 6 Tips for Post-Doc Researchers to Take Their Career to the Next Level

Transitive and Intransitive Verbs in the World of Research

Language and grammar rules for academic writing, you may also like, quillbot review: features, pricing, and free alternatives, what is an academic paper types and elements , publish research papers: 9 steps for successful publications , what are the different types of research papers, how to make translating academic papers less challenging, 6 tips for post-doc researchers to take their..., presenting research data effectively through tables and figures, ethics in science: importance, principles & guidelines , jenni ai review: top features, pricing, and alternatives, 8 most effective ways to increase motivation for....

helpful professor logo

15 Independent and Dependent Variable Examples

independent and dependent variables, explained below

An independent variable (IV) is what is manipulated in a scientific experiment to determine its effect on the dependent variable (DV).

By varying the level of the independent variable and observing associated changes in the dependent variable, a researcher can conclude whether the independent variable affects the dependent variable or not.

This can provide very valuable information when studying just about any subject.

Because the researcher controls the level of the independent variable, it can be determined if the independent variable has a causal effect on the dependent variable.

The term causation is vitally important. Scientists want to know what causes changes in the dependent variable. The only way to do that is to manipulate the independent variable and observe any changes in the dependent variable.

Definition of Independent and Dependent Variables

The independent variable and dependent variable are used in a very specific type of scientific study called the experiment .

Although there are many variations of the experiment, generally speaking, it involves either the presence or absence of the independent variable and the observation of what happens to the dependent variable.

The research participants are randomly assigned to either receive the independent variable (called the treatment condition), or not receive the independent variable (called the control condition).

Other variations of an experiment might include having multiple levels of the independent variable.

If the independent variable affects the dependent variable, then it should be possible to observe changes in the dependent variable based on the presence or absence of the independent variable.  

Of course, there are a lot of issues to consider when conducting an experiment, but these are the basic principles.

These concepts should not be confused with predictor and outcome variables .

Examples of Independent and Dependent Variables

1. gatorade and improved athletic performance.

A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

If they can back up that claim with hard scientific data, that would be great for sales.

So, the researcher goes to a nearby university and randomly selects both male and female athletes from several sports: track and field, volleyball, basketball, and football. Each athlete will run on a treadmill for one hour while their heart rate is tracked.

All of the athletes are given the exact same amount of liquid to consume 30-minutes before and during their run. Half are given Gatorade, and the other half are given water, but no one knows what they are given because both liquids have been colored.

In this example, the independent variable is Gatorade, and the dependent variable is heart rate.  

2. Chemotherapy and Cancer

A hospital is investigating the effectiveness of a new type of chemotherapy on cancer. The researchers identified 120 patients with relatively similar types of cancerous tumors in both size and stage of progression.

The patients are randomly assigned to one of three groups: one group receives no chemotherapy, one group receives a low dose of chemotherapy, and one group receives a high dose of chemotherapy.

Each group receives chemotherapy treatment three times a week for two months, except for the no-treatment group. At the end of two months, the doctors measure the size of each patient’s tumor.

In this study, despite the ethical issues (remember this is just a hypothetical example), the independent variable is chemotherapy, and the dependent variable is tumor size.

3. Interior Design Color and Eating Rate

A well-known fast-food corporation wants to know if the color of the interior of their restaurants will affect how fast people eat. Of course, they would prefer that consumers enter and exit quickly to increase sales volume and profit.

So, they rent space in a large shopping mall and create three different simulated restaurant interiors of different colors. One room is painted mostly white with red trim and seats; one room is painted mostly white with blue trim and seats; and one room is painted mostly white with off-white trim and seats.

Next, they randomly select shoppers on Saturdays and Sundays to eat for free in one of the three rooms. Each shopper is given a box of the same food and drink items and sent to one of the rooms. The researchers record how much time elapses from the moment they enter the room to the moment they leave.

The independent variable is the color of the room, and the dependent variable is the amount of time spent in the room eating.

4. Hair Color and Attraction

A large multinational cosmetics company wants to know if the color of a woman’s hair affects the level of perceived attractiveness in males. So, they use Photoshop to manipulate the same image of a female by altering the color of her hair: blonde, brunette, red, and brown.

Next, they randomly select university males to enter their testing facilities. Each participant sits in front of a computer screen and responds to questions on a survey. At the end of the survey, the screen shows one of the photos of the female.

At the same time, software on the computer that utilizes the computer’s camera is measuring each male’s pupil dilation. The researchers believe that larger dilation indicates greater perceived attractiveness.

The independent variable is hair color, and the dependent variable is pupil dilation.

5. Mozart and Math

After many claims that listening to Mozart will make you smarter, a group of education specialists decides to put it to the test. So, first, they go to a nearby school in a middle-class neighborhood.

During the first three months of the academic year, they randomly select some 5th-grade classrooms to listen to Mozart during their lessons and exams. Other 5 th grade classrooms will not listen to any music during their lessons and exams.

The researchers then compare the scores of the exams between the two groups of classrooms.

Although there are a lot of obvious limitations to this hypothetical, it is the first step.

The independent variable is Mozart, and the dependent variable is exam scores.

6. Essential Oils and Sleep

A company that specializes in essential oils wants to examine the effects of lavender on sleep quality. They hire a sleep research lab to conduct the study. The researchers at the lab have their usual test volunteers sleep in individual rooms every night for one week.

The conditions of each room are all exactly the same, except that half of the rooms have lavender released into the rooms and half do not. While the study participants are sleeping, their heart rates and amount of time spent in deep sleep are recorded with high-tech equipment.

At the end of the study, the researchers compare the total amount of time spent in deep sleep of the lavender-room participants with the no lavender-room participants.

The independent variable in this sleep study is lavender, and the dependent variable is the total amount of time spent in deep sleep.

7. Teaching Style and Learning

A group of teachers is interested in which teaching method will work best for developing critical thinking skills.

So, they train a group of teachers in three different teaching styles : teacher-centered, where the teacher tells the students all about critical thinking; student-centered, where the students practice critical thinking and receive teacher feedback; and AI-assisted teaching, where the teacher uses a special software program to teach critical thinking.

At the end of three months, all the students take the same test that assesses critical thinking skills. The teachers then compare the scores of each of the three groups of students.

The independent variable is the teaching method, and the dependent variable is performance on the critical thinking test.

8. Concrete Mix and Bridge Strength

A chemicals company has developed three different versions of their concrete mix. Each version contains a different blend of specially developed chemicals. The company wants to know which version is the strongest.

So, they create three bridge molds that are identical in every way. They fill each mold with one of the different concrete mixtures. Next, they test the strength of each bridge by placing progressively more weight on its center until the bridge collapses.

In this study, the independent variable is the concrete mixture, and the dependent variable is the amount of weight at collapse.

9. Recipe and Consumer Preferences

People in the pizza business know that the crust is key. Many companies, large and small, will keep their recipe a top secret. Before rolling out a new type of crust, the company decides to conduct some research on consumer preferences.

The company has prepared three versions of their crust that vary in crunchiness, they are: a little crunchy, very crunchy, and super crunchy. They already have a pool of consumers that fit their customer profile and they often use them for testing.

Each participant sits in a booth and takes a bite of one version of the crust. They then indicate how much they liked it by pressing one of 5 buttons: didn’t like at all, liked, somewhat liked, liked very much, loved it.

The independent variable is the level of crust crunchiness, and the dependent variable is how much it was liked.

10. Protein Supplements and Muscle Mass

A large food company is considering entering the health and nutrition sector. Their R&D food scientists have developed a protein supplement that is designed to help build muscle mass for people that work out regularly.

The company approaches several gyms near its headquarters. They enlist the cooperation of over 120 gym rats that work out 5 days a week. Their muscle mass is measured, and only those with a lower level are selected for the study, leaving a total of 80 study participants.

They randomly assign half of the participants to take the recommended dosage of their supplement every day for three months after each workout. The other half takes the same amount of something that looks the same but actually does nothing to the body.

At the end of three months, the muscle mass of all participants is measured.

The independent variable is the supplement, and the dependent variable is muscle mass.  

11. Air Bags and Skull Fractures

In the early days of airbags , automobile companies conducted a great deal of testing. At first, many people in the industry didn’t think airbags would be effective at all. Fortunately, there was a way to test this theory objectively.

In a representative example: Several crash cars were outfitted with an airbag, and an equal number were not. All crash cars were of the same make, year, and model. Then the crash experts rammed each car into a crash wall at the same speed. Sensors on the crash dummy skulls allowed for a scientific analysis of how much damage a human skull would incur.

The amount of skull damage of dummies in cars with airbags was then compared with those without airbags.

The independent variable was the airbag and the dependent variable was the amount of skull damage.

12. Vitamins and Health

Some people take vitamins every day. A group of health scientists decides to conduct a study to determine if taking vitamins improves health.

They randomly select 1,000 people that are relatively similar in terms of their physical health. The key word here is “similar.”

Because the scientists have an unlimited budget (and because this is a hypothetical example, all of the participants have the same meals delivered to their homes (breakfast, lunch, and dinner), every day for one year.

In addition, the scientists randomly assign half of the participants to take a set of vitamins, supplied by the researchers every day for 1 year. The other half do not take the vitamins.

At the end of one year, the health of all participants is assessed, using blood pressure and cholesterol level as the key measurements.

In this highly unrealistic study, the independent variable is vitamins, and the dependent variable is health, as measured by blood pressure and cholesterol levels.

13. Meditation and Stress

Does practicing meditation reduce stress? If you have ever wondered if this is true or not, then you are in luck because there is a way to know one way or the other.

All we have to do is find 90 people that are similar in age, stress levels, diet and exercise, and as many other factors as we can think of.

Next, we randomly assign each person to either practice meditation every day, three days a week, or not at all. After three months, we measure the stress levels of each person and compare the groups.

How should we measure stress? Well, there are a lot of ways. We could measure blood pressure, or the amount of the stress hormone cortisol in their blood, or by using a paper and pencil measure such as a questionnaire that asks them how much stress they feel.

In this study, the independent variable is meditation and the dependent variable is the amount of stress (however it is measured).

14. Video Games and Aggression

When video games started to become increasingly graphic, it was a huge concern in many countries in the world. Educators, social scientists, and parents were shocked at how graphic games were becoming.

Since then, there have been hundreds of studies conducted by psychologists and other researchers. A lot of those studies used an experimental design that involved males of various ages randomly assigned to play a graphic or non-graphic video game.

Afterward, their level of aggression was measured via a wide range of methods, including direct observations of their behavior, their actions when given the opportunity to be aggressive, or a variety of other measures.

So many studies have used so many different ways of measuring aggression.

In these experimental studies, the independent variable was graphic video games, and the dependent variable was observed level of aggression.

15. Vehicle Exhaust and Cognitive Performance

Car pollution is a concern for a lot of reasons. In addition to being bad for the environment, car exhaust may cause damage to the brain and impair cognitive performance.

One way to examine this possibility would be to conduct an animal study. The research would look something like this: laboratory rats would be raised in three different rooms that varied in the degree of car exhaust circulating in the room: no exhaust, little exhaust, or a lot of exhaust.

After a certain period of time, perhaps several months, the effects on cognitive performance could be measured.

One common way of assessing cognitive performance in laboratory rats is by measuring the amount of time it takes to run a maze successfully. It would also be possible to examine the physical effects of car exhaust on the brain by conducting an autopsy.

In this animal study, the independent variable would be car exhaust and the dependent variable would be amount of time to run a maze.

Read Next: Extraneous Variables Examples

The experiment is an incredibly valuable way to answer scientific questions regarding the cause and effect of certain variables. By manipulating the level of an independent variable and observing corresponding changes in a dependent variable, scientists can gain an understanding of many phenomena.

For example, scientists can learn if graphic video games make people more aggressive, if mediation reduces stress, if Gatorade improves athletic performance, and even if certain medical treatments can cure cancer.

The determination of causality is the key benefit of manipulating the independent variable and them observing changes in the dependent variable. Other research methodologies can reveal factors that are related to the dependent variable or associated with the dependent variable, but only when the independent variable is controlled by the researcher can causality be determined.

Ferguson, C. J. (2010). Blazing Angels or Resident Evil? Can graphic video games be a force for good? Review of General Psychology, 14 (2), 68-81. https://doi.org/10.1037/a0018941

Flannelly, L. T., Flannelly, K. J., & Jankowski, K. R. (2014). Independent, dependent, and other variables in healthcare and chaplaincy research. Journal of Health Care Chaplaincy , 20 (4), 161–170. https://doi.org/10.1080/08854726.2014.959374

Manocha, R., Black, D., Sarris, J., & Stough, C.(2011). A randomized, controlled trial of meditation for work stress, anxiety and depressed mood in full-time workers. Evidence-Based Complementary and Alternative Medicine , vol. 2011, Article ID 960583. https://doi.org/10.1155/2011/960583

Rumrill, P. D., Jr. (2004). Non-manipulation quantitative designs. Work (Reading, Mass.) , 22 (3), 255–260.

Taylor, J. M., & Rowe, B. J. (2012). The “Mozart Effect” and the mathematical connection, Journal of College Reading and Learning, 42 (2), 51-66.  https://doi.org/10.1080/10790195.2012.10850354

Dave

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Positive Punishment Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Dissociation Examples (Psychology)
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Zone of Proximal Development Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ Perception Checking: 15 Examples and Definition

Chris

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

  • Chris Drew (PhD) #molongui-disabled-link 25 Positive Punishment Examples
  • Chris Drew (PhD) #molongui-disabled-link 25 Dissociation Examples (Psychology)
  • Chris Drew (PhD) #molongui-disabled-link 15 Zone of Proximal Development Examples
  • Chris Drew (PhD) #molongui-disabled-link Perception Checking: 15 Examples and Definition

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • 10 Research Question Examples to Guide Your Research Project

10 Research Question Examples to Guide your Research Project

Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023.

The research question is one of the most important parts of your research paper , thesis or dissertation . It’s important to spend some time assessing and refining your question before you get started.

The exact form of your question will depend on a few things, such as the length of your project, the type of research you’re conducting, the topic , and the research problem . However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue.

Once you’ve read our guide on how to write a research question , you can use these examples to craft your own.

Note that the design of your research question can depend on what method you are pursuing. Here are a few options for qualitative, quantitative, and statistical research questions.

Other interesting articles

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr. Retrieved April 15, 2024, from https://www.scribbr.com/research-process/research-question-examples/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, writing strong research questions | criteria & examples, how to choose a dissertation topic | 8 steps to follow, evaluating sources | methods & examples, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Study Guides
  • Homework Questions

NURS 363 quiz 4

IMAGES

  1. Dependent Variable: Definition and Examples

    research question dependent variable

  2. Types of Research Variable in Research with Example

    research question dependent variable

  3. Easy Way to Explain Dependent and Independent Variables

    research question dependent variable

  4. Types of Research Variable in Research with Example

    research question dependent variable

  5. Dependent Variable: Definition and Examples

    research question dependent variable

  6. Research questions, constructs and dependent variables.

    research question dependent variable

VIDEO

  1. Independent and Dependent Variables: Increase Impact With Small Changes

  2. Variables in Research: Dependent and independent variables

  3. Research Variables

  4. Independent Samples T-Test

  5. how to find independent variable and dependent variable in a topic research paper or thesis titles

  6. 10Min Research Methodology

COMMENTS

  1. Independent vs. Dependent Variables

    The independent variable is the cause. Its value is independent of other variables in your study. The dependent variable is the effect. Its value depends on changes in the independent variable. Example: Independent and dependent variables. You design a study to test whether changes in room temperature have an effect on math test scores.

  2. Independent and Dependent Variables

    Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent. The variables should be outlined in the introduction of your paper and explained in more detail in the methods section. There are no ...

  3. Independent & Dependent Variables (With Examples)

    While the independent variable is the " cause ", the dependent variable is the " effect " - or rather, the affected variable. In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable. Keeping with the previous example, let's look at some dependent variables ...

  4. Dependent Variable

    When writing a research paper or report, it is important to clearly define the dependent variable(s) in order to provide a clear understanding of the research question and methods used to answer it. In social sciences, such as psychology or sociology, the dependent variable may refer to behaviors, attitudes, or other measurable aspects of ...

  5. Independent and Dependent Variables

    The dependent variable, in both cases, is what is being observed or studied to see how it changes in response to the independent variable. So, regardless of the type of data, researchers analyze the relationship between independent and dependent variables to gain insights into their research questions.

  6. How to Write a Strong Hypothesis

    The dependent variable is the level of happiness - the assumed effect. Prevent plagiarism. Run a free check. Try for free ... Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project. Example: Research question Do students ...

  7. PDF Chapter 4 Developing Research Questions: Hypotheses and Variables

    Selecting a Dependent Variable Characteristics of a Good Dependent Variable Multiple Dependent Variables Response Classes of Dependent Variables Case Analysis General Summary ... Obviously, research questions may be asked for many reasons. Answers to all questions cannot be provided, nor should they be. Clearly, some questions are too trivial ...

  8. Dependent & Independent Variables

    A researcher conducts a study to see how one variable affects another and make assertions about the relationship between different variables. A typical research question in an experimental study addresses a hypothesized relationship between the independent variable manipulated by the researcher and the dependent variable that is the outcome of ...

  9. Variables in Research

    The dependent variable in a research study or experiment is what is being measured in the study or experiment. ... Some examples of research questions involving these variables include:

  10. What Is a Dependent Variable?

    The dependent variable is the variable that is being measured or tested in an experiment. For example, in a study looking at how tutoring impacts test scores, the dependent variable would be the participants' test scores since that is what is being measured. This is different than the independent variable in an experiment, which is a variable ...

  11. PDF Research Questions and Hypotheses

    The use of variables in research questions or hypotheses is typically limited to three basic approaches. The researcher may compare groups on an independent variable to see its impact on a dependent variable. Alternatively, the investigator may relate one or more independent vari-ables to one or more dependent variables. Third, the researcher may

  12. Independent and Dependent Variables Examples

    Here are several examples of independent and dependent variables in experiments: In a study to determine whether how long a student sleeps affects test scores, the independent variable is the length of time spent sleeping while the dependent variable is the test score. You want to know which brand of fertilizer is best for your plants.

  13. Research Questions & Hypotheses

    The primary research question should originate from the hypothesis, not the data, and be established before starting the study. ... In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal ...

  14. Independent vs Dependent Variables: Definitions & Examples

    The independent variable is the cause and the dependent variable is the effect, that is, independent variables influence dependent variables. In research, a dependent variable is the outcome of interest of the study and the independent variable is the factor that may influence the outcome. Let's explain this with an independent and dependent ...

  15. A Practical Guide to Writing Quantitative and Qualitative Research

    These are precise and typically linked to the subject population, dependent and independent variables, and research design.1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured (descriptive research questions).1,5,14 These ...

  16. Dependent Variable: An Overview

    A dependent variable varies when other factors influence it. Specifically, it changes as a result of the independent variable's influence. In an experimental study, the dependent variable is typically the one you're interested in measuring or monitoring to determine whether or not other variables affect it.

  17. 4.3 Quantitative research questions

    Questions should ask about the relation between these variables. A standard format for an explanatory quantitative research question is: "What is the relation between [independent variable] and [dependent variable] for [target population]?" You should play with the wording for your research question, revising it as you see fit.

  18. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    In survey projects the use of research questions and objectives is more frequent In experiments the use of hypotheses are more frequent Represent comparison between variables relationship between variables Characteristics The testable proposition to be deduced from theory. Independent and dependent variables to be separated and measured separately.

  19. How to Write a Research Question in 2024: Types, Steps, and Examples

    This research question design often includes both dependent and independent variables and use words such as "association" or "trends." Qualitative research questions Similar to quantitative research questions, qualitative research questions are linked to research design.

  20. How to Write a Research Question: Types and Examples

    A research question is a clear, focused, concise, and arguable question on which your research and writing are centered. 1 It states various aspects of the study, including the population and variables to be studied and the problem the study addresses. These questions also set the boundaries of the study, ensuring cohesion.

  21. 15 Independent and Dependent Variable Examples (2024)

    Examples of Independent and Dependent Variables. 1. Gatorade and Improved Athletic Performance. A sports medicine researcher has been hired by Gatorade to test the effects of its sports drink on athletic performance. The company wants to claim that when an athlete drinks Gatorade, their performance will improve.

  22. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  23. Exploring Dependent Variable Selection in Phylogenetic ...

    This study investigates the impact of variable selection on PVR outcomes in evolutionary biology research. Through simulations and model comparisons, we explore how different selections of dependent and independent variables influence phylogenetic eigenvector selection and correlation outcomes. Our results reveal significant discrepancies in ...

  24. NURS 363 quiz 4 (docx)

    Question 1 3.33 / 3.33 pts In an experimental research study, the primary goal is to isolate and identify the effect produced by the: dependent variable. extraneous variable. confounding variable. independent variable Incorrect Question 2 0 / 3.33 pts The group that receives the experimental treatment is called the: experimental group. control group.