Writing an Abstract for Your Research Paper

Definition and Purpose of Abstracts

An abstract is a short summary of your (published or unpublished) research paper, usually about a paragraph (c. 6-7 sentences, 150-250 words) long. A well-written abstract serves multiple purposes:

  • an abstract lets readers get the gist or essence of your paper or article quickly, in order to decide whether to read the full paper;
  • an abstract prepares readers to follow the detailed information, analyses, and arguments in your full paper;
  • and, later, an abstract helps readers remember key points from your paper.

It’s also worth remembering that search engines and bibliographic databases use abstracts, as well as the title, to identify key terms for indexing your published paper. So what you include in your abstract and in your title are crucial for helping other researchers find your paper or article.

If you are writing an abstract for a course paper, your professor may give you specific guidelines for what to include and how to organize your abstract. Similarly, academic journals often have specific requirements for abstracts. So in addition to following the advice on this page, you should be sure to look for and follow any guidelines from the course or journal you’re writing for.

The Contents of an Abstract

Abstracts contain most of the following kinds of information in brief form. The body of your paper will, of course, develop and explain these ideas much more fully. As you will see in the samples below, the proportion of your abstract that you devote to each kind of information—and the sequence of that information—will vary, depending on the nature and genre of the paper that you are summarizing in your abstract. And in some cases, some of this information is implied, rather than stated explicitly. The Publication Manual of the American Psychological Association , which is widely used in the social sciences, gives specific guidelines for what to include in the abstract for different kinds of papers—for empirical studies, literature reviews or meta-analyses, theoretical papers, methodological papers, and case studies.

Here are the typical kinds of information found in most abstracts:

  • the context or background information for your research; the general topic under study; the specific topic of your research
  • the central questions or statement of the problem your research addresses
  • what’s already known about this question, what previous research has done or shown
  • the main reason(s) , the exigency, the rationale , the goals for your research—Why is it important to address these questions? Are you, for example, examining a new topic? Why is that topic worth examining? Are you filling a gap in previous research? Applying new methods to take a fresh look at existing ideas or data? Resolving a dispute within the literature in your field? . . .
  • your research and/or analytical methods
  • your main findings , results , or arguments
  • the significance or implications of your findings or arguments.

Your abstract should be intelligible on its own, without a reader’s having to read your entire paper. And in an abstract, you usually do not cite references—most of your abstract will describe what you have studied in your research and what you have found and what you argue in your paper. In the body of your paper, you will cite the specific literature that informs your research.

When to Write Your Abstract

Although you might be tempted to write your abstract first because it will appear as the very first part of your paper, it’s a good idea to wait to write your abstract until after you’ve drafted your full paper, so that you know what you’re summarizing.

What follows are some sample abstracts in published papers or articles, all written by faculty at UW-Madison who come from a variety of disciplines. We have annotated these samples to help you see the work that these authors are doing within their abstracts.

Choosing Verb Tenses within Your Abstract

The social science sample (Sample 1) below uses the present tense to describe general facts and interpretations that have been and are currently true, including the prevailing explanation for the social phenomenon under study. That abstract also uses the present tense to describe the methods, the findings, the arguments, and the implications of the findings from their new research study. The authors use the past tense to describe previous research.

The humanities sample (Sample 2) below uses the past tense to describe completed events in the past (the texts created in the pulp fiction industry in the 1970s and 80s) and uses the present tense to describe what is happening in those texts, to explain the significance or meaning of those texts, and to describe the arguments presented in the article.

The science samples (Samples 3 and 4) below use the past tense to describe what previous research studies have done and the research the authors have conducted, the methods they have followed, and what they have found. In their rationale or justification for their research (what remains to be done), they use the present tense. They also use the present tense to introduce their study (in Sample 3, “Here we report . . .”) and to explain the significance of their study (In Sample 3, This reprogramming . . . “provides a scalable cell source for. . .”).

Sample Abstract 1

From the social sciences.

Reporting new findings about the reasons for increasing economic homogamy among spouses

Gonalons-Pons, Pilar, and Christine R. Schwartz. “Trends in Economic Homogamy: Changes in Assortative Mating or the Division of Labor in Marriage?” Demography , vol. 54, no. 3, 2017, pp. 985-1005.

“The growing economic resemblance of spouses has contributed to rising inequality by increasing the number of couples in which there are two high- or two low-earning partners. [Annotation for the previous sentence: The first sentence introduces the topic under study (the “economic resemblance of spouses”). This sentence also implies the question underlying this research study: what are the various causes—and the interrelationships among them—for this trend?] The dominant explanation for this trend is increased assortative mating. Previous research has primarily relied on cross-sectional data and thus has been unable to disentangle changes in assortative mating from changes in the division of spouses’ paid labor—a potentially key mechanism given the dramatic rise in wives’ labor supply. [Annotation for the previous two sentences: These next two sentences explain what previous research has demonstrated. By pointing out the limitations in the methods that were used in previous studies, they also provide a rationale for new research.] We use data from the Panel Study of Income Dynamics (PSID) to decompose the increase in the correlation between spouses’ earnings and its contribution to inequality between 1970 and 2013 into parts due to (a) changes in assortative mating, and (b) changes in the division of paid labor. [Annotation for the previous sentence: The data, research and analytical methods used in this new study.] Contrary to what has often been assumed, the rise of economic homogamy and its contribution to inequality is largely attributable to changes in the division of paid labor rather than changes in sorting on earnings or earnings potential. Our findings indicate that the rise of economic homogamy cannot be explained by hypotheses centered on meeting and matching opportunities, and they show where in this process inequality is generated and where it is not.” (p. 985) [Annotation for the previous two sentences: The major findings from and implications and significance of this study.]

Sample Abstract 2

From the humanities.

Analyzing underground pulp fiction publications in Tanzania, this article makes an argument about the cultural significance of those publications

Emily Callaci. “Street Textuality: Socialism, Masculinity, and Urban Belonging in Tanzania’s Pulp Fiction Publishing Industry, 1975-1985.” Comparative Studies in Society and History , vol. 59, no. 1, 2017, pp. 183-210.

“From the mid-1970s through the mid-1980s, a network of young urban migrant men created an underground pulp fiction publishing industry in the city of Dar es Salaam. [Annotation for the previous sentence: The first sentence introduces the context for this research and announces the topic under study.] As texts that were produced in the underground economy of a city whose trajectory was increasingly charted outside of formalized planning and investment, these novellas reveal more than their narrative content alone. These texts were active components in the urban social worlds of the young men who produced them. They reveal a mode of urbanism otherwise obscured by narratives of decolonization, in which urban belonging was constituted less by national citizenship than by the construction of social networks, economic connections, and the crafting of reputations. This article argues that pulp fiction novellas of socialist era Dar es Salaam are artifacts of emergent forms of male sociability and mobility. In printing fictional stories about urban life on pilfered paper and ink, and distributing their texts through informal channels, these writers not only described urban communities, reputations, and networks, but also actually created them.” (p. 210) [Annotation for the previous sentences: The remaining sentences in this abstract interweave other essential information for an abstract for this article. The implied research questions: What do these texts mean? What is their historical and cultural significance, produced at this time, in this location, by these authors? The argument and the significance of this analysis in microcosm: these texts “reveal a mode or urbanism otherwise obscured . . .”; and “This article argues that pulp fiction novellas. . . .” This section also implies what previous historical research has obscured. And through the details in its argumentative claims, this section of the abstract implies the kinds of methods the author has used to interpret the novellas and the concepts under study (e.g., male sociability and mobility, urban communities, reputations, network. . . ).]

Sample Abstract/Summary 3

From the sciences.

Reporting a new method for reprogramming adult mouse fibroblasts into induced cardiac progenitor cells

Lalit, Pratik A., Max R. Salick, Daryl O. Nelson, Jayne M. Squirrell, Christina M. Shafer, Neel G. Patel, Imaan Saeed, Eric G. Schmuck, Yogananda S. Markandeya, Rachel Wong, Martin R. Lea, Kevin W. Eliceiri, Timothy A. Hacker, Wendy C. Crone, Michael Kyba, Daniel J. Garry, Ron Stewart, James A. Thomson, Karen M. Downs, Gary E. Lyons, and Timothy J. Kamp. “Lineage Reprogramming of Fibroblasts into Proliferative Induced Cardiac Progenitor Cells by Defined Factors.” Cell Stem Cell , vol. 18, 2016, pp. 354-367.

“Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. [Annotation for the previous sentence: The first sentence announces the topic under study, summarizes what’s already known or been accomplished in previous research, and signals the rationale and goals are for the new research and the problem that the new research solves: How can researchers reprogram fibroblasts into iCPCs?] Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipo-tency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. [Annotation for the previous four sentences: The methods the researchers developed to achieve their goal and a description of the results.] Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy.” (p. 354) [Annotation for the previous sentence: The significance or implications—for drug discovery, disease modeling, and therapy—of this reprogramming of adult somatic cells into iCPCs.]

Sample Abstract 4, a Structured Abstract

Reporting results about the effectiveness of antibiotic therapy in managing acute bacterial sinusitis, from a rigorously controlled study

Note: This journal requires authors to organize their abstract into four specific sections, with strict word limits. Because the headings for this structured abstract are self-explanatory, we have chosen not to add annotations to this sample abstract.

Wald, Ellen R., David Nash, and Jens Eickhoff. “Effectiveness of Amoxicillin/Clavulanate Potassium in the Treatment of Acute Bacterial Sinusitis in Children.” Pediatrics , vol. 124, no. 1, 2009, pp. 9-15.

“OBJECTIVE: The role of antibiotic therapy in managing acute bacterial sinusitis (ABS) in children is controversial. The purpose of this study was to determine the effectiveness of high-dose amoxicillin/potassium clavulanate in the treatment of children diagnosed with ABS.

METHODS : This was a randomized, double-blind, placebo-controlled study. Children 1 to 10 years of age with a clinical presentation compatible with ABS were eligible for participation. Patients were stratified according to age (<6 or ≥6 years) and clinical severity and randomly assigned to receive either amoxicillin (90 mg/kg) with potassium clavulanate (6.4 mg/kg) or placebo. A symptom survey was performed on days 0, 1, 2, 3, 5, 7, 10, 20, and 30. Patients were examined on day 14. Children’s conditions were rated as cured, improved, or failed according to scoring rules.

RESULTS: Two thousand one hundred thirty-five children with respiratory complaints were screened for enrollment; 139 (6.5%) had ABS. Fifty-eight patients were enrolled, and 56 were randomly assigned. The mean age was 6630 months. Fifty (89%) patients presented with persistent symptoms, and 6 (11%) presented with nonpersistent symptoms. In 24 (43%) children, the illness was classified as mild, whereas in the remaining 32 (57%) children it was severe. Of the 28 children who received the antibiotic, 14 (50%) were cured, 4 (14%) were improved, 4(14%) experienced treatment failure, and 6 (21%) withdrew. Of the 28children who received placebo, 4 (14%) were cured, 5 (18%) improved, and 19 (68%) experienced treatment failure. Children receiving the antibiotic were more likely to be cured (50% vs 14%) and less likely to have treatment failure (14% vs 68%) than children receiving the placebo.

CONCLUSIONS : ABS is a common complication of viral upper respiratory infections. Amoxicillin/potassium clavulanate results in significantly more cures and fewer failures than placebo, according to parental report of time to resolution.” (9)

Some Excellent Advice about Writing Abstracts for Basic Science Research Papers, by Professor Adriano Aguzzi from the Institute of Neuropathology at the University of Zurich:

where to put abstract in research paper

Academic and Professional Writing

This is an accordion element with a series of buttons that open and close related content panels.

Analysis Papers

Reading Poetry

A Short Guide to Close Reading for Literary Analysis

Using Literary Quotations

Play Reviews

Writing a Rhetorical Précis to Analyze Nonfiction Texts

Incorporating Interview Data

Grant Proposals

Planning and Writing a Grant Proposal: The Basics

Additional Resources for Grants and Proposal Writing

Job Materials and Application Essays

Writing Personal Statements for Ph.D. Programs

  • Before you begin: useful tips for writing your essay
  • Guided brainstorming exercises
  • Get more help with your essay
  • Frequently Asked Questions

Resume Writing Tips

CV Writing Tips

Cover Letters

Business Letters

Proposals and Dissertations

Resources for Proposal Writers

Resources for Dissertators

Research Papers

Planning and Writing Research Papers

Quoting and Paraphrasing

Writing Annotated Bibliographies

Creating Poster Presentations

Thank-You Notes

Advice for Students Writing Thank-You Notes to Donors

Reading for a Review

Critical Reviews

Writing a Review of Literature

Scientific Reports

Scientific Report Format

Sample Lab Assignment

Writing for the Web

Writing an Effective Blog Post

Writing for Social Media: A Guide for Academics

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

Abstract Writing: A Step-by-Step Guide With Tips & Examples

Sumalatha G

Table of Contents

step-by-step-guide-to-abstract-writing

Introduction

Abstracts of research papers have always played an essential role in describing your research concisely and clearly to researchers and editors of journals, enticing them to continue reading. However, with the widespread availability of scientific databases, the need to write a convincing abstract is more crucial now than during the time of paper-bound manuscripts.

Abstracts serve to "sell" your research and can be compared with your "executive outline" of a resume or, rather, a formal summary of the critical aspects of your work. Also, it can be the "gist" of your study. Since most educational research is done online, it's a sign that you have a shorter time for impressing your readers, and have more competition from other abstracts that are available to be read.

The APCI (Academic Publishing and Conferences International) articulates 12 issues or points considered during the final approval process for conferences & journals and emphasises the importance of writing an abstract that checks all these boxes (12 points). Since it's the only opportunity you have to captivate your readers, you must invest time and effort in creating an abstract that accurately reflects the critical points of your research.

With that in mind, let’s head over to understand and discover the core concept and guidelines to create a substantial abstract. Also, learn how to organise the ideas or plots into an effective abstract that will be awe-inspiring to the readers you want to reach.

What is Abstract? Definition and Overview

The word "Abstract' is derived from Latin abstractus meaning "drawn off." This etymological meaning also applies to art movements as well as music, like abstract expressionism. In this context, it refers to the revealing of the artist's intention.

Based on this, you can determine the meaning of an abstract: A condensed research summary. It must be self-contained and independent of the body of the research. However, it should outline the subject, the strategies used to study the problem, and the methods implemented to attain the outcomes. The specific elements of the study differ based on the area of study; however, together, it must be a succinct summary of the entire research paper.

Abstracts are typically written at the end of the paper, even though it serves as a prologue. In general, the abstract must be in a position to:

  • Describe the paper.
  • Identify the problem or the issue at hand.
  • Explain to the reader the research process, the results you came up with, and what conclusion you've reached using these results.
  • Include keywords to guide your strategy and the content.

Furthermore, the abstract you submit should not reflect upon any of  the following elements:

  • Examine, analyse or defend the paper or your opinion.
  • What you want to study, achieve or discover.
  • Be redundant or irrelevant.

After reading an abstract, your audience should understand the reason - what the research was about in the first place, what the study has revealed and how it can be utilised or can be used to benefit others. You can understand the importance of abstract by knowing the fact that the abstract is the most frequently read portion of any research paper. In simpler terms, it should contain all the main points of the research paper.

purpose-of-abstract-writing

What is the Purpose of an Abstract?

Abstracts are typically an essential requirement for research papers; however, it's not an obligation to preserve traditional reasons without any purpose. Abstracts allow readers to scan the text to determine whether it is relevant to their research or studies. The abstract allows other researchers to decide if your research paper can provide them with some additional information. A good abstract paves the interest of the audience to pore through your entire paper to find the content or context they're searching for.

Abstract writing is essential for indexing, as well. The Digital Repository of academic papers makes use of abstracts to index the entire content of academic research papers. Like meta descriptions in the regular Google outcomes, abstracts must include keywords that help researchers locate what they seek.

Types of Abstract

Informative and Descriptive are two kinds of abstracts often used in scientific writing.

A descriptive abstract gives readers an outline of the author's main points in their study. The reader can determine if they want to stick to the research work, based on their interest in the topic. An abstract that is descriptive is similar to the contents table of books, however, the format of an abstract depicts complete sentences encapsulated in one paragraph. It is unfortunate that the abstract can't be used as a substitute for reading a piece of writing because it's just an overview, which omits readers from getting an entire view. Also, it cannot be a way to fill in the gaps the reader may have after reading this kind of abstract since it does not contain crucial information needed to evaluate the article.

To conclude, a descriptive abstract is:

  • A simple summary of the task, just summarises the work, but some researchers think it is much more of an outline
  • Typically, the length is approximately 100 words. It is too short when compared to an informative abstract.
  • A brief explanation but doesn't provide the reader with the complete information they need;
  • An overview that omits conclusions and results

An informative abstract is a comprehensive outline of the research. There are times when people rely on the abstract as an information source. And the reason is why it is crucial to provide entire data of particular research. A well-written, informative abstract could be a good substitute for the remainder of the paper on its own.

A well-written abstract typically follows a particular style. The author begins by providing the identifying information, backed by citations and other identifiers of the papers. Then, the major elements are summarised to make the reader aware of the study. It is followed by the methodology and all-important findings from the study. The conclusion then presents study results and ends the abstract with a comprehensive summary.

In a nutshell, an informative abstract:

  • Has a length that can vary, based on the subject, but is not longer than 300 words.
  • Contains all the content-like methods and intentions
  • Offers evidence and possible recommendations.

Informative Abstracts are more frequent than descriptive abstracts because of their extensive content and linkage to the topic specifically. You should select different types of abstracts to papers based on their length: informative abstracts for extended and more complex abstracts and descriptive ones for simpler and shorter research papers.

What are the Characteristics of a Good Abstract?

  • A good abstract clearly defines the goals and purposes of the study.
  • It should clearly describe the research methodology with a primary focus on data gathering, processing, and subsequent analysis.
  • A good abstract should provide specific research findings.
  • It presents the principal conclusions of the systematic study.
  • It should be concise, clear, and relevant to the field of study.
  • A well-designed abstract should be unifying and coherent.
  • It is easy to grasp and free of technical jargon.
  • It is written impartially and objectively.

the-various-sections-of-abstract-writing

What are the various sections of an ideal Abstract?

By now, you must have gained some concrete idea of the essential elements that your abstract needs to convey . Accordingly, the information is broken down into six key sections of the abstract, which include:

An Introduction or Background

Research methodology, objectives and goals, limitations.

Let's go over them in detail.

The introduction, also known as background, is the most concise part of your abstract. Ideally, it comprises a couple of sentences. Some researchers only write one sentence to introduce their abstract. The idea behind this is to guide readers through the key factors that led to your study.

It's understandable that this information might seem difficult to explain in a couple of sentences. For example, think about the following two questions like the background of your study:

  • What is currently available about the subject with respect to the paper being discussed?
  • What isn't understood about this issue? (This is the subject of your research)

While writing the abstract’s introduction, make sure that it is not lengthy. Because if it crosses the word limit, it may eat up the words meant to be used for providing other key information.

Research methodology is where you describe the theories and techniques you used in your research. It is recommended that you describe what you have done and the method you used to get your thorough investigation results. Certainly, it is the second-longest paragraph in the abstract.

In the research methodology section, it is essential to mention the kind of research you conducted; for instance, qualitative research or quantitative research (this will guide your research methodology too) . If you've conducted quantitative research, your abstract should contain information like the sample size, data collection method, sampling techniques, and duration of the study. Likewise, your abstract should reflect observational data, opinions, questionnaires (especially the non-numerical data) if you work on qualitative research.

The research objectives and goals speak about what you intend to accomplish with your research. The majority of research projects focus on the long-term effects of a project, and the goals focus on the immediate, short-term outcomes of the research. It is possible to summarise both in just multiple sentences.

In stating your objectives and goals, you give readers a picture of the scope of the study, its depth and the direction your research ultimately follows. Your readers can evaluate the results of your research against the goals and stated objectives to determine if you have achieved the goal of your research.

In the end, your readers are more attracted by the results you've obtained through your study. Therefore, you must take the time to explain each relevant result and explain how they impact your research. The results section exists as the longest in your abstract, and nothing should diminish its reach or quality.

One of the most important things you should adhere to is to spell out details and figures on the results of your research.

Instead of making a vague assertion such as, "We noticed that response rates varied greatly between respondents with high incomes and those with low incomes", Try these: "The response rate was higher for high-income respondents than those with lower incomes (59 30 percent vs. 30 percent in both cases; P<0.01)."

You're likely to encounter certain obstacles during your research. It could have been during data collection or even during conducting the sample . Whatever the issue, it's essential to inform your readers about them and their effects on the research.

Research limitations offer an opportunity to suggest further and deep research. If, for instance, you were forced to change for convenient sampling and snowball samples because of difficulties in reaching well-suited research participants, then you should mention this reason when you write your research abstract. In addition, a lack of prior studies on the subject could hinder your research.

Your conclusion should include the same number of sentences to wrap the abstract as the introduction. The majority of researchers offer an idea of the consequences of their research in this case.

Your conclusion should include three essential components:

  • A significant take-home message.
  • Corresponding important findings.
  • The Interpretation.

Even though the conclusion of your abstract needs to be brief, it can have an enormous influence on the way that readers view your research. Therefore, make use of this section to reinforce the central message from your research. Be sure that your statements reflect the actual results and the methods you used to conduct your research.

examples-of-good-abstract-writing

Good Abstract Examples

Abstract example #1.

Children’s consumption behavior in response to food product placements in movies.

The abstract:

"Almost all research into the effects of brand placements on children has focused on the brand's attitudes or behavior intentions. Based on the significant differences between attitudes and behavioral intentions on one hand and actual behavior on the other hand, this study examines the impact of placements by brands on children's eating habits. Children aged 6-14 years old were shown an excerpt from the popular film Alvin and the Chipmunks and were shown places for the item Cheese Balls. Three different versions were developed with no placements, one with moderately frequent placements and the third with the highest frequency of placement. The results revealed that exposure to high-frequency places had a profound effect on snack consumption, however, there was no impact on consumer attitudes towards brands or products. The effects were not dependent on the age of the children. These findings are of major importance to researchers studying consumer behavior as well as nutrition experts as well as policy regulators."

Abstract Example #2

Social comparisons on social media: The impact of Facebook on young women’s body image concerns and mood. The abstract:

"The research conducted in this study investigated the effects of Facebook use on women's moods and body image if the effects are different from an internet-based fashion journal and if the appearance comparison tendencies moderate one or more of these effects. Participants who were female ( N = 112) were randomly allocated to spend 10 minutes exploring their Facebook account or a magazine's website or an appearance neutral control website prior to completing state assessments of body dissatisfaction, mood, and differences in appearance (weight-related and facial hair, face, and skin). Participants also completed a test of the tendency to compare appearances. The participants who used Facebook were reported to be more depressed than those who stayed on the control site. In addition, women who have the tendency to compare appearances reported more facial, hair and skin-related issues following Facebook exposure than when they were exposed to the control site. Due to its popularity it is imperative to conduct more research to understand the effect that Facebook affects the way people view themselves."

Abstract Example #3

The Relationship Between Cell Phone Use and Academic Performance in a Sample of U.S. College Students

"The cellphone is always present on campuses of colleges and is often utilised in situations in which learning takes place. The study examined the connection between the use of cell phones and the actual grades point average (GPA) after adjusting for predictors that are known to be a factor. In the end 536 students in the undergraduate program from 82 self-reported majors of an enormous, public institution were studied. Hierarchical analysis ( R 2 = .449) showed that use of mobile phones is significantly ( p < .001) and negative (b equal to -.164) connected to the actual college GPA, after taking into account factors such as demographics, self-efficacy in self-regulated learning, self-efficacy to improve academic performance, and the actual high school GPA that were all important predictors ( p < .05). Therefore, after adjusting for other known predictors increasing cell phone usage was associated with lower academic performance. While more research is required to determine the mechanisms behind these results, they suggest the need to educate teachers and students to the possible academic risks that are associated with high-frequency mobile phone usage."

quick-tips-on-writing-a-good-abstract

Quick tips on writing a good abstract

There exists a common dilemma among early age researchers whether to write the abstract at first or last? However, it's recommended to compose your abstract when you've completed the research since you'll have all the information to give to your readers. You can, however, write a draft at the beginning of your research and add in any gaps later.

If you find abstract writing a herculean task, here are the few tips to help you with it:

1. Always develop a framework to support your abstract

Before writing, ensure you create a clear outline for your abstract. Divide it into sections and draw the primary and supporting elements in each one. You can include keywords and a few sentences that convey the essence of your message.

2. Review Other Abstracts

Abstracts are among the most frequently used research documents, and thousands of them were written in the past. Therefore, prior to writing yours, take a look at some examples from other abstracts. There are plenty of examples of abstracts for dissertations in the dissertation and thesis databases.

3. Avoid Jargon To the Maximum

When you write your abstract, focus on simplicity over formality. You should  write in simple language, and avoid excessive filler words or ambiguous sentences. Keep in mind that your abstract must be readable to those who aren't acquainted with your subject.

4. Focus on Your Research

It's a given fact that the abstract you write should be about your research and the findings you've made. It is not the right time to mention secondary and primary data sources unless it's absolutely required.

Conclusion: How to Structure an Interesting Abstract?

Abstracts are a short outline of your essay. However, it's among the most important, if not the most important. The process of writing an abstract is not straightforward. A few early-age researchers tend to begin by writing it, thinking they are doing it to "tease" the next step (the document itself). However, it is better to treat it as a spoiler.

The simple, concise style of the abstract lends itself to a well-written and well-investigated study. If your research paper doesn't provide definitive results, or the goal of your research is questioned, so will the abstract. Thus, only write your abstract after witnessing your findings and put your findings in the context of a larger scenario.

The process of writing an abstract can be daunting, but with these guidelines, you will succeed. The most efficient method of writing an excellent abstract is to centre the primary points of your abstract, including the research question and goals methods, as well as key results.

Interested in learning more about dedicated research solutions? Go to the SciSpace product page to find out how our suite of products can help you simplify your research workflows so you can focus on advancing science.

Literature search in Scispace

The best-in-class solution is equipped with features such as literature search and discovery, profile management, research writing and formatting, and so much more.

But before you go,

You might also like.

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • 3. The Abstract
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

An abstract summarizes, usually in one paragraph of 300 words or less, the major aspects of the entire paper in a prescribed sequence that includes: 1) the overall purpose of the study and the research problem(s) you investigated; 2) the basic design of the study; 3) major findings or trends found as a result of your analysis; and, 4) a brief summary of your interpretations and conclusions.

Writing an Abstract. The Writing Center. Clarion University, 2009; Writing an Abstract for Your Research Paper. The Writing Center, University of Wisconsin, Madison; Koltay, Tibor. Abstracts and Abstracting: A Genre and Set of Skills for the Twenty-first Century . Oxford, UK: Chandos Publishing, 2010;

Importance of a Good Abstract

Sometimes your professor will ask you to include an abstract, or general summary of your work, with your research paper. The abstract allows you to elaborate upon each major aspect of the paper and helps readers decide whether they want to read the rest of the paper. Therefore, enough key information [e.g., summary results, observations, trends, etc.] must be included to make the abstract useful to someone who may want to examine your work.

How do you know when you have enough information in your abstract? A simple rule-of-thumb is to imagine that you are another researcher doing a similar study. Then ask yourself: if your abstract was the only part of the paper you could access, would you be happy with the amount of information presented there? Does it tell the whole story about your study? If the answer is "no" then the abstract likely needs to be revised.

Farkas, David K. “A Scheme for Understanding and Writing Summaries.” Technical Communication 67 (August 2020): 45-60;  How to Write a Research Abstract. Office of Undergraduate Research. University of Kentucky; Staiger, David L. “What Today’s Students Need to Know about Writing Abstracts.” International Journal of Business Communication January 3 (1966): 29-33; Swales, John M. and Christine B. Feak. Abstracts and the Writing of Abstracts . Ann Arbor, MI: University of Michigan Press, 2009.

Structure and Writing Style

I.  Types of Abstracts

To begin, you need to determine which type of abstract you should include with your paper. There are four general types.

Critical Abstract A critical abstract provides, in addition to describing main findings and information, a judgment or comment about the study’s validity, reliability, or completeness. The researcher evaluates the paper and often compares it with other works on the same subject. Critical abstracts are generally 400-500 words in length due to the additional interpretive commentary. These types of abstracts are used infrequently.

Descriptive Abstract A descriptive abstract indicates the type of information found in the work. It makes no judgments about the work, nor does it provide results or conclusions of the research. It does incorporate key words found in the text and may include the purpose, methods, and scope of the research. Essentially, the descriptive abstract only describes the work being summarized. Some researchers consider it an outline of the work, rather than a summary. Descriptive abstracts are usually very short, 100 words or less. Informative Abstract The majority of abstracts are informative. While they still do not critique or evaluate a work, they do more than describe it. A good informative abstract acts as a surrogate for the work itself. That is, the researcher presents and explains all the main arguments and the important results and evidence in the paper. An informative abstract includes the information that can be found in a descriptive abstract [purpose, methods, scope] but it also includes the results and conclusions of the research and the recommendations of the author. The length varies according to discipline, but an informative abstract is usually no more than 300 words in length.

Highlight Abstract A highlight abstract is specifically written to attract the reader’s attention to the study. No pretense is made of there being either a balanced or complete picture of the paper and, in fact, incomplete and leading remarks may be used to spark the reader’s interest. In that a highlight abstract cannot stand independent of its associated article, it is not a true abstract and, therefore, rarely used in academic writing.

II.  Writing Style

Use the active voice when possible , but note that much of your abstract may require passive sentence constructions. Regardless, write your abstract using concise, but complete, sentences. Get to the point quickly and always use the past tense because you are reporting on a study that has been completed.

Abstracts should be formatted as a single paragraph in a block format and with no paragraph indentations. In most cases, the abstract page immediately follows the title page. Do not number the page. Rules set forth in writing manual vary but, in general, you should center the word "Abstract" at the top of the page with double spacing between the heading and the abstract. The final sentences of an abstract concisely summarize your study’s conclusions, implications, or applications to practice and, if appropriate, can be followed by a statement about the need for additional research revealed from the findings.

Composing Your Abstract

Although it is the first section of your paper, the abstract should be written last since it will summarize the contents of your entire paper. A good strategy to begin composing your abstract is to take whole sentences or key phrases from each section of the paper and put them in a sequence that summarizes the contents. Then revise or add connecting phrases or words to make the narrative flow clearly and smoothly. Note that statistical findings should be reported parenthetically [i.e., written in parentheses].

Before handing in your final paper, check to make sure that the information in the abstract completely agrees with what you have written in the paper. Think of the abstract as a sequential set of complete sentences describing the most crucial information using the fewest necessary words. The abstract SHOULD NOT contain:

  • A catchy introductory phrase, provocative quote, or other device to grab the reader's attention,
  • Lengthy background or contextual information,
  • Redundant phrases, unnecessary adverbs and adjectives, and repetitive information;
  • Acronyms or abbreviations,
  • References to other literature [say something like, "current research shows that..." or "studies have indicated..."],
  • Using ellipticals [i.e., ending with "..."] or incomplete sentences,
  • Jargon or terms that may be confusing to the reader,
  • Citations to other works, and
  • Any sort of image, illustration, figure, or table, or references to them.

Abstract. Writing Center. University of Kansas; Abstract. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper. Department of Biology. Bates College; Abstracts. The Writing Center. University of North Carolina; Borko, Harold and Seymour Chatman. "Criteria for Acceptable Abstracts: A Survey of Abstracters' Instructions." American Documentation 14 (April 1963): 149-160; Abstracts. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Hartley, James and Lucy Betts. "Common Weaknesses in Traditional Abstracts in the Social Sciences." Journal of the American Society for Information Science and Technology 60 (October 2009): 2010-2018; Koltay, Tibor. Abstracts and Abstracting: A Genre and Set of Skills for the Twenty-first Century. Oxford, UK: Chandos Publishing, 2010; Procter, Margaret. The Abstract. University College Writing Centre. University of Toronto; Riordan, Laura. “Mastering the Art of Abstracts.” The Journal of the American Osteopathic Association 115 (January 2015 ): 41-47; Writing Report Abstracts. The Writing Lab and The OWL. Purdue University; Writing Abstracts. Writing Tutorial Services, Center for Innovative Teaching and Learning. Indiana University; Koltay, Tibor. Abstracts and Abstracting: A Genre and Set of Skills for the Twenty-First Century . Oxford, UK: 2010; Writing an Abstract for Your Research Paper. The Writing Center, University of Wisconsin, Madison.

Writing Tip

Never Cite Just the Abstract!

Citing to just a journal article's abstract does not confirm for the reader that you have conducted a thorough or reliable review of the literature. If the full-text is not available, go to the USC Libraries main page and enter the title of the article [NOT the title of the journal]. If the Libraries have a subscription to the journal, the article should appear with a link to the full-text or to the journal publisher page where you can get the article. If the article does not appear, try searching Google Scholar using the link on the USC Libraries main page. If you still can't find the article after doing this, contact a librarian or you can request it from our free i nterlibrary loan and document delivery service .

  • << Previous: Research Process Video Series
  • Next: Executive Summary >>
  • Last Updated: Apr 5, 2024 1:38 PM
  • URL: https://libguides.usc.edu/writingguide

How to Write an Abstract APA Format

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

An APA abstract is a brief, comprehensive summary of the contents of an article, research paper, dissertation, or report.

It is written in accordance with the guidelines of the American Psychological Association (APA), which is a widely used format in social and behavioral sciences. 

An APA abstract summarizes, usually in one paragraph of between 150–250 words, the major aspects of a research paper or dissertation in a prescribed sequence that includes:
  • The rationale: the overall purpose of the study, providing a clear context for the research undertaken.
  • Information regarding the method and participants: including materials/instruments, design, procedure, and data analysis.
  • Main findings or trends: effectively highlighting the key outcomes of the hypotheses.
  • Interpretations and conclusion(s): solidify the implications of the research.
  • Keywords related to the study: assist the paper’s discoverability in academic databases.

The abstract should stand alone, be “self-contained,” and make sense to the reader in isolation from the main article.

The purpose of the abstract is to give the reader a quick overview of the essential information before reading the entire article. The abstract is placed on its own page, directly after the title page and before the main body of the paper.

Although the abstract will appear as the very first part of your paper, it’s good practice to write your abstract after you’ve drafted your full paper, so that you know what you’re summarizing.

Note : This page reflects the latest version of the APA Publication Manual (i.e., APA 7), released in October 2019.

Structure of the Abstract

[NOTE: DO NOT separate the components of the abstract – it should be written as a single paragraph. This section is separated to illustrate the abstract’s structure.]

1) The Rationale

One or two sentences describing the overall purpose of the study and the research problem(s) you investigated. You are basically justifying why this study was conducted.

  • What is the importance of the research?
  • Why would a reader be interested in the larger work?
  • For example, are you filling a gap in previous research or applying new methods to take a fresh look at existing ideas or data?
  • Women who are diagnosed with breast cancer can experience an array of psychosocial difficulties; however, social support, particularly from a spouse, has been shown to have a protective function during this time. This study examined the ways in which a woman’s daily mood, pain, and fatigue, and her spouse’s marital satisfaction predict the woman’s report of partner support in the context of breast cancer.
  • The current nursing shortage, high hospital nurse job dissatisfaction, and reports of uneven quality of hospital care are not uniquely American phenomena.
  • Students with special educational needs and disabilities (SEND) are more likely to exhibit behavioral difficulties than their typically developing peers. The aim of this study was to identify specific risk factors that influence variability in behavior difficulties among individuals with SEND.

2) The Method

Information regarding the participants (number, and population). One or two sentences outlining the method, explaining what was done and how. The method is described in the present tense.

  • Pretest data from a larger intervention study and multilevel modeling were used to examine the effects of women’s daily mood, pain, and fatigue and average levels of mood, pain, and fatigue on women’s report of social support received from her partner, as well as how the effects of mood interacted with partners’ marital satisfaction.
  • This paper presents reports from 43,000 nurses from more than 700 hospitals in the United States, Canada, England, Scotland, and Germany in 1998–1999.
  • The study sample comprised 4,228 students with SEND, aged 5–15, drawn from 305 primary and secondary schools across England. Explanatory variables were measured at the individual and school levels at baseline, along with a teacher-reported measure of behavior difficulties (assessed at baseline and the 18-month follow-up).

3) The Results

One or two sentences indicating the main findings or trends found as a result of your analysis. The results are described in the present or past tense.

  • Results show that on days in which women reported higher levels of negative or positive mood, as well as on days they reported more pain and fatigue, they reported receiving more support. Women who, on average, reported higher levels of positive mood tended to report receiving more support than those who, on average, reported lower positive mood. However, average levels of negative mood were not associated with support. Higher average levels of fatigue but not pain were associated with higher support. Finally, women whose husbands reported higher levels of marital satisfaction reported receiving more partner support, but husbands’ marital satisfaction did not moderate the effect of women’s mood on support.
  • Nurses in countries with distinctly different healthcare systems report similar shortcomings in their work environments and the quality of hospital care. While the competence of and relation between nurses and physicians appear satisfactory, core problems in work design and workforce management threaten the provision of care.
  • Hierarchical linear modeling of data revealed that differences between schools accounted for between 13% (secondary) and 15.4% (primary) of the total variance in the development of students’ behavior difficulties, with the remainder attributable to individual differences. Statistically significant risk markers for these problems across both phases of education were being male, eligibility for free school meals, being identified as a bully, and lower academic achievement. Additional risk markers specific to each phase of education at the individual and school levels are also acknowledged.

4) The Conclusion / Implications

A brief summary of your conclusions and implications of the results, described in the present tense. Explain the results and why the study is important to the reader.

  • For example, what changes should be implemented as a result of the findings of the work?
  • How does this work add to the body of knowledge on the topic?

Implications of these findings are discussed relative to assisting couples during this difficult time in their lives.

  • Resolving these issues, which are amenable to managerial intervention, is essential to preserving patient safety and care of consistently high quality.
  • Behavior difficulties are affected by risks across multiple ecological levels. Addressing any one of these potential influences is therefore likely to contribute to the reduction in the problems displayed.

The above examples of abstracts are from the following papers:

Aiken, L. H., Clarke, S. P., Sloane, D. M., Sochalski, J. A., Busse, R., Clarke, H., … & Shamian, J. (2001). Nurses’ reports on hospital care in five countries . Health affairs, 20(3) , 43-53.

Boeding, S. E., Pukay-Martin, N. D., Baucom, D. H., Porter, L. S., Kirby, J. S., Gremore, T. M., & Keefe, F. J. (2014). Couples and breast cancer: Women’s mood and partners’ marital satisfaction predicting support perception . Journal of Family Psychology, 28(5) , 675.

Oldfield, J., Humphrey, N., & Hebron, J. (2017). Risk factors in the development of behavior difficulties among students with special educational needs and disabilities: A multilevel analysis . British journal of educational psychology, 87(2) , 146-169.

5) Keywords

APA style suggests including a list of keywords at the end of the abstract. This is particularly common in academic articles and helps other researchers find your work in databases.

Keywords in an abstract should be selected to help other researchers find your work when searching an online database. These keywords should effectively represent the main topics of your study. Here are some tips for choosing keywords:

Core Concepts: Identify the most important ideas or concepts in your paper. These often include your main research topic, the methods you’ve used, or the theories you’re discussing.

Specificity: Your keywords should be specific to your research. For example, suppose your paper is about the effects of climate change on bird migration patterns in a specific region. In that case, your keywords might include “climate change,” “bird migration,” and the region’s name.

Consistency with Paper: Make sure your keywords are consistent with the terms you’ve used in your paper. For example, if you use the term “adolescent” rather than “teen” in your paper, choose “adolescent” as your keyword, not “teen.”

Jargon and Acronyms: Avoid using too much-specialized jargon or acronyms in your keywords, as these might not be understood or used by all researchers in your field.

Synonyms: Consider including synonyms of your keywords to capture as many relevant searches as possible. For example, if your paper discusses “post-traumatic stress disorder,” you might include “PTSD” as a keyword.

Remember, keywords are a tool for others to find your work, so think about what terms other researchers might use when searching for papers on your topic.

The Abstract SHOULD NOT contain:

Lengthy background or contextual information: The abstract should focus on your research and findings, not general topic background.

Undefined jargon, abbreviations,  or acronyms: The abstract should be accessible to a wide audience, so avoid highly specialized terms without defining them.

Citations: Abstracts typically do not include citations, as they summarize original research.

Incomplete sentences or bulleted lists: The abstract should be a single, coherent paragraph written in complete sentences.

New information not covered in the paper: The abstract should only summarize the paper’s content.

Subjective comments or value judgments: Stick to objective descriptions of your research.

Excessive details on methods or procedures: Keep descriptions of methods brief and focused on main steps.

Speculative or inconclusive statements: The abstract should state the research’s clear findings, not hypotheses or possible interpretations.

  • Any illustration, figure, table, or references to them . All visual aids, data, or extensive details should be included in the main body of your paper, not in the abstract. 
  • Elliptical or incomplete sentences should be avoided in an abstract . The use of ellipses (…), which could indicate incomplete thoughts or omitted text, is not appropriate in an abstract.

APA Style for Abstracts

An APA abstract must be formatted as follows:

Include the running head aligned to the left at the top of the page (professional papers only) and page number. Note, student papers do not require a running head. On the first line, center the heading “Abstract” and bold (do not underlined or italicize). Do not indent the single abstract paragraph (which begins one line below the section title). Double-space the text. Use Times New Roman font in 12 pt. Set one-inch (or 2.54 cm) margins. If you include a “keywords” section at the end of the abstract, indent the first line and italicize the word “Keywords” while leaving the keywords themselves without any formatting.

Example APA Abstract Page

Download this example as a PDF

APA Style Abstract Example

Further Information

  • APA 7th Edition Abstract and Keywords Guide
  • Example APA Abstract
  • How to Write a Good Abstract for a Scientific Paper or Conference Presentation
  • How to Write a Lab Report
  • Writing an APA paper

How long should an APA abstract be?

An APA abstract should typically be between 150 to 250 words long. However, the exact length may vary depending on specific publication or assignment guidelines. It is crucial that it succinctly summarizes the essential elements of the work, including purpose, methods, findings, and conclusions.

Where does the abstract go in an APA paper?

In an APA formatted paper, the abstract is placed on its own page, directly after the title page and before the main body of the paper. It’s typically the second page of the document. It starts with the word “Abstract” (centered and not in bold) at the top of the page, followed by the text of the abstract itself.

What are the 4 C’s of abstract writing?

The 4 C’s of abstract writing are an approach to help you create a well-structured and informative abstract. They are:

Conciseness: An abstract should briefly summarize the key points of your study. Stick to the word limit (typically between 150-250 words for an APA abstract) and avoid unnecessary details.

Clarity: Your abstract should be easy to understand. Avoid jargon and complex sentences. Clearly explain the purpose, methods, results, and conclusions of your study.

Completeness: Even though it’s brief, the abstract should provide a complete overview of your study, including the purpose, methods, key findings, and your interpretation of the results.

Cohesion: The abstract should flow logically from one point to the next, maintaining a coherent narrative about your study. It’s not just a list of disjointed elements; it’s a brief story of your research from start to finish.

What is the abstract of a psychology paper?

An abstract in a psychology paper serves as a snapshot of the paper, allowing readers to quickly understand the purpose, methodology, results, and implications of the research without reading the entire paper. It is generally between 150-250 words long.

Print Friendly, PDF & Email

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Paper Abstract – Writing Guide and Examples

Research Paper Abstract – Writing Guide and Examples

Table of Contents

Research Paper Abstract

Research Paper Abstract

Research Paper Abstract is a brief summary of a research pape r that describes the study’s purpose, methods, findings, and conclusions . It is often the first section of the paper that readers encounter, and its purpose is to provide a concise and accurate overview of the paper’s content. The typical length of an abstract is usually around 150-250 words, and it should be written in a concise and clear manner.

Research Paper Abstract Structure

The structure of a research paper abstract usually includes the following elements:

  • Background or Introduction: Briefly describe the problem or research question that the study addresses.
  • Methods : Explain the methodology used to conduct the study, including the participants, materials, and procedures.
  • Results : Summarize the main findings of the study, including statistical analyses and key outcomes.
  • Conclusions : Discuss the implications of the study’s findings and their significance for the field, as well as any limitations or future directions for research.
  • Keywords : List a few keywords that describe the main topics or themes of the research.

How to Write Research Paper Abstract

Here are the steps to follow when writing a research paper abstract:

  • Start by reading your paper: Before you write an abstract, you should have a complete understanding of your paper. Read through the paper carefully, making sure you understand the purpose, methods, results, and conclusions.
  • Identify the key components : Identify the key components of your paper, such as the research question, methods used, results obtained, and conclusion reached.
  • Write a draft: Write a draft of your abstract, using concise and clear language. Make sure to include all the important information, but keep it short and to the point. A good rule of thumb is to keep your abstract between 150-250 words.
  • Use clear and concise language : Use clear and concise language to explain the purpose of your study, the methods used, the results obtained, and the conclusions drawn.
  • Emphasize your findings: Emphasize your findings in the abstract, highlighting the key results and the significance of your study.
  • Revise and edit: Once you have a draft, revise and edit it to ensure that it is clear, concise, and free from errors.
  • Check the formatting: Finally, check the formatting of your abstract to make sure it meets the requirements of the journal or conference where you plan to submit it.

Research Paper Abstract Examples

Research Paper Abstract Examples could be following:

Title : “The Effectiveness of Cognitive-Behavioral Therapy for Treating Anxiety Disorders: A Meta-Analysis”

Abstract : This meta-analysis examines the effectiveness of cognitive-behavioral therapy (CBT) in treating anxiety disorders. Through the analysis of 20 randomized controlled trials, we found that CBT is a highly effective treatment for anxiety disorders, with large effect sizes across a range of anxiety disorders, including generalized anxiety disorder, panic disorder, and social anxiety disorder. Our findings support the use of CBT as a first-line treatment for anxiety disorders and highlight the importance of further research to identify the mechanisms underlying its effectiveness.

Title : “Exploring the Role of Parental Involvement in Children’s Education: A Qualitative Study”

Abstract : This qualitative study explores the role of parental involvement in children’s education. Through in-depth interviews with 20 parents of children in elementary school, we found that parental involvement takes many forms, including volunteering in the classroom, helping with homework, and communicating with teachers. We also found that parental involvement is influenced by a range of factors, including parent and child characteristics, school culture, and socio-economic status. Our findings suggest that schools and educators should prioritize building strong partnerships with parents to support children’s academic success.

Title : “The Impact of Exercise on Cognitive Function in Older Adults: A Systematic Review and Meta-Analysis”

Abstract : This paper presents a systematic review and meta-analysis of the existing literature on the impact of exercise on cognitive function in older adults. Through the analysis of 25 randomized controlled trials, we found that exercise is associated with significant improvements in cognitive function, particularly in the domains of executive function and attention. Our findings highlight the potential of exercise as a non-pharmacological intervention to support cognitive health in older adults.

When to Write Research Paper Abstract

The abstract of a research paper should typically be written after you have completed the main body of the paper. This is because the abstract is intended to provide a brief summary of the key points and findings of the research, and you can’t do that until you have completed the research and written about it in detail.

Once you have completed your research paper, you can begin writing your abstract. It is important to remember that the abstract should be a concise summary of your research paper, and should be written in a way that is easy to understand for readers who may not have expertise in your specific area of research.

Purpose of Research Paper Abstract

The purpose of a research paper abstract is to provide a concise summary of the key points and findings of a research paper. It is typically a brief paragraph or two that appears at the beginning of the paper, before the introduction, and is intended to give readers a quick overview of the paper’s content.

The abstract should include a brief statement of the research problem, the methods used to investigate the problem, the key results and findings, and the main conclusions and implications of the research. It should be written in a clear and concise manner, avoiding jargon and technical language, and should be understandable to a broad audience.

The abstract serves as a way to quickly and easily communicate the main points of a research paper to potential readers, such as academics, researchers, and students, who may be looking for information on a particular topic. It can also help researchers determine whether a paper is relevant to their own research interests and whether they should read the full paper.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Design

Research Design – Types, Methods and Examples

Research Paper Title

Research Paper Title – Writing Guide and Example

Research Paper Introduction

Research Paper Introduction – Writing Guide and...

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Dissertation
  • How to Write an Abstract | Steps & Examples

How to Write an Abstract | Steps & Examples

Published on 1 March 2019 by Shona McCombes . Revised on 10 October 2022 by Eoghan Ryan.

An abstract is a short summary of a longer work (such as a dissertation or research paper ). The abstract concisely reports the aims and outcomes of your research, so that readers know exactly what your paper is about.

Although the structure may vary slightly depending on your discipline, your abstract should describe the purpose of your work, the methods you’ve used, and the conclusions you’ve drawn.

One common way to structure your abstract is to use the IMRaD structure. This stands for:

  • Introduction

Abstracts are usually around 100–300 words, but there’s often a strict word limit, so make sure to check the relevant requirements.

In a dissertation or thesis , include the abstract on a separate page, after the title page and acknowledgements but before the table of contents .

Instantly correct all language mistakes in your text

Be assured that you'll submit flawless writing. Upload your document to correct all your mistakes.

upload-your-document-ai-proofreader

Table of contents

Abstract example, when to write an abstract, step 1: introduction, step 2: methods, step 3: results, step 4: discussion, tips for writing an abstract, frequently asked questions about abstracts.

Hover over the different parts of the abstract to see how it is constructed.

This paper examines the role of silent movies as a mode of shared experience in the UK during the early twentieth century. At this time, high immigration rates resulted in a significant percentage of non-English-speaking citizens. These immigrants faced numerous economic and social obstacles, including exclusion from public entertainment and modes of discourse (newspapers, theater, radio).

Incorporating evidence from reviews, personal correspondence, and diaries, this study demonstrates that silent films were an affordable and inclusive source of entertainment. It argues for the accessible economic and representational nature of early cinema. These concerns are particularly evident in the low price of admission and in the democratic nature of the actors’ exaggerated gestures, which allowed the plots and action to be easily grasped by a diverse audience despite language barriers.

Keywords: silent movies, immigration, public discourse, entertainment, early cinema, language barriers.

Prevent plagiarism, run a free check.

You will almost always have to include an abstract when:

  • Completing a thesis or dissertation
  • Submitting a research paper to an academic journal
  • Writing a book proposal
  • Applying for research grants

It’s easiest to write your abstract last, because it’s a summary of the work you’ve already done. Your abstract should:

  • Be a self-contained text, not an excerpt from your paper
  • Be fully understandable on its own
  • Reflect the structure of your larger work

Start by clearly defining the purpose of your research. What practical or theoretical problem does the research respond to, or what research question did you aim to answer?

You can include some brief context on the social or academic relevance of your topic, but don’t go into detailed background information. If your abstract uses specialised terms that would be unfamiliar to the average academic reader or that have various different meanings, give a concise definition.

After identifying the problem, state the objective of your research. Use verbs like “investigate,” “test,” “analyse,” or “evaluate” to describe exactly what you set out to do.

This part of the abstract can be written in the present or past simple tense  but should never refer to the future, as the research is already complete.

  • This study will investigate the relationship between coffee consumption and productivity.
  • This study investigates the relationship between coffee consumption and productivity.

Next, indicate the research methods that you used to answer your question. This part should be a straightforward description of what you did in one or two sentences. It is usually written in the past simple tense, as it refers to completed actions.

  • Structured interviews will be conducted with 25 participants.
  • Structured interviews were conducted with 25 participants.

Don’t evaluate validity or obstacles here — the goal is not to give an account of the methodology’s strengths and weaknesses, but to give the reader a quick insight into the overall approach and procedures you used.

Next, summarise the main research results . This part of the abstract can be in the present or past simple tense.

  • Our analysis has shown a strong correlation between coffee consumption and productivity.
  • Our analysis shows a strong correlation between coffee consumption and productivity.
  • Our analysis showed a strong correlation between coffee consumption and productivity.

Depending on how long and complex your research is, you may not be able to include all results here. Try to highlight only the most important findings that will allow the reader to understand your conclusions.

Finally, you should discuss the main conclusions of your research : what is your answer to the problem or question? The reader should finish with a clear understanding of the central point that your research has proved or argued. Conclusions are usually written in the present simple tense.

  • We concluded that coffee consumption increases productivity.
  • We conclude that coffee consumption increases productivity.

If there are important limitations to your research (for example, related to your sample size or methods), you should mention them briefly in the abstract. This allows the reader to accurately assess the credibility and generalisability of your research.

If your aim was to solve a practical problem, your discussion might include recommendations for implementation. If relevant, you can briefly make suggestions for further research.

If your paper will be published, you might have to add a list of keywords at the end of the abstract. These keywords should reference the most important elements of the research to help potential readers find your paper during their own literature searches.

Be aware that some publication manuals, such as APA Style , have specific formatting requirements for these keywords.

It can be a real challenge to condense your whole work into just a couple of hundred words, but the abstract will be the first (and sometimes only) part that people read, so it’s important to get it right. These strategies can help you get started.

Read other abstracts

The best way to learn the conventions of writing an abstract in your discipline is to read other people’s. You probably already read lots of journal article abstracts while conducting your literature review —try using them as a framework for structure and style.

You can also find lots of dissertation abstract examples in thesis and dissertation databases .

Reverse outline

Not all abstracts will contain precisely the same elements. For longer works, you can write your abstract through a process of reverse outlining.

For each chapter or section, list keywords and draft one to two sentences that summarise the central point or argument. This will give you a framework of your abstract’s structure. Next, revise the sentences to make connections and show how the argument develops.

Write clearly and concisely

A good abstract is short but impactful, so make sure every word counts. Each sentence should clearly communicate one main point.

To keep your abstract or summary short and clear:

  • Avoid passive sentences: Passive constructions are often unnecessarily long. You can easily make them shorter and clearer by using the active voice.
  • Avoid long sentences: Substitute longer expressions for concise expressions or single words (e.g., “In order to” for “To”).
  • Avoid obscure jargon: The abstract should be understandable to readers who are not familiar with your topic.
  • Avoid repetition and filler words: Replace nouns with pronouns when possible and eliminate unnecessary words.
  • Avoid detailed descriptions: An abstract is not expected to provide detailed definitions, background information, or discussions of other scholars’ work. Instead, include this information in the body of your thesis or paper.

If you’re struggling to edit down to the required length, you can get help from expert editors with Scribbr’s professional proofreading services .

Check your formatting

If you are writing a thesis or dissertation or submitting to a journal, there are often specific formatting requirements for the abstract—make sure to check the guidelines and format your work correctly. For APA research papers you can follow the APA abstract format .

Checklist: Abstract

The word count is within the required length, or a maximum of one page.

The abstract appears after the title page and acknowledgements and before the table of contents .

I have clearly stated my research problem and objectives.

I have briefly described my methodology .

I have summarized the most important results .

I have stated my main conclusions .

I have mentioned any important limitations and recommendations.

The abstract can be understood by someone without prior knowledge of the topic.

You've written a great abstract! Use the other checklists to continue improving your thesis or dissertation.

An abstract is a concise summary of an academic text (such as a journal article or dissertation ). It serves two main purposes:

  • To help potential readers determine the relevance of your paper for their own research.
  • To communicate your key findings to those who don’t have time to read the whole paper.

Abstracts are often indexed along with keywords on academic databases, so they make your work more easily findable. Since the abstract is the first thing any reader sees, it’s important that it clearly and accurately summarises the contents of your paper.

An abstract for a thesis or dissertation is usually around 150–300 words. There’s often a strict word limit, so make sure to check your university’s requirements.

The abstract is the very last thing you write. You should only write it after your research is complete, so that you can accurately summarize the entirety of your thesis or paper.

Avoid citing sources in your abstract . There are two reasons for this:

  • The abstract should focus on your original research, not on the work of others.
  • The abstract should be self-contained and fully understandable without reference to other sources.

There are some circumstances where you might need to mention other sources in an abstract: for example, if your research responds directly to another study or focuses on the work of a single theorist. In general, though, don’t include citations unless absolutely necessary.

The abstract appears on its own page, after the title page and acknowledgements but before the table of contents .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, October 10). How to Write an Abstract | Steps & Examples. Scribbr. Retrieved 2 April 2024, from https://www.scribbr.co.uk/thesis-dissertation/abstract/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a thesis or dissertation introduction, thesis & dissertation acknowledgements | tips & examples, dissertation title page.

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

  • PLOS Biology
  • PLOS Climate
  • PLOS Complex Systems
  • PLOS Computational Biology
  • PLOS Digital Health
  • PLOS Genetics
  • PLOS Global Public Health
  • PLOS Medicine
  • PLOS Mental Health
  • PLOS Neglected Tropical Diseases
  • PLOS Pathogens
  • PLOS Sustainability and Transformation
  • PLOS Collections
  • How to Write an Abstract

Abstract

Expedite peer review, increase search-ability, and set the tone for your study

The abstract is your chance to let your readers know what they can expect from your article. Learn how to write a clear, and concise abstract that will keep your audience reading.

How your abstract impacts editorial evaluation and future readership

After the title , the abstract is the second-most-read part of your article. A good abstract can help to expedite peer review and, if your article is accepted for publication, it’s an important tool for readers to find and evaluate your work. Editors use your abstract when they first assess your article. Prospective reviewers see it when they decide whether to accept an invitation to review. Once published, the abstract gets indexed in PubMed and Google Scholar , as well as library systems and other popular databases. Like the title, your abstract influences keyword search results. Readers will use it to decide whether to read the rest of your article. Other researchers will use it to evaluate your work for inclusion in systematic reviews and meta-analysis. It should be a concise standalone piece that accurately represents your research. 

where to put abstract in research paper

What to include in an abstract

The main challenge you’ll face when writing your abstract is keeping it concise AND fitting in all the information you need. Depending on your subject area the journal may require a structured abstract following specific headings. A structured abstract helps your readers understand your study more easily. If your journal doesn’t require a structured abstract it’s still a good idea to follow a similar format, just present the abstract as one paragraph without headings. 

Background or Introduction – What is currently known? Start with a brief, 2 or 3 sentence, introduction to the research area. 

Objectives or Aims – What is the study and why did you do it? Clearly state the research question you’re trying to answer.

Methods – What did you do? Explain what you did and how you did it. Include important information about your methods, but avoid the low-level specifics. Some disciplines have specific requirements for abstract methods. 

  • CONSORT for randomized trials.
  • STROBE for observational studies
  • PRISMA for systematic reviews and meta-analyses

Results – What did you find? Briefly give the key findings of your study. Include key numeric data (including confidence intervals or p values), where possible.

Conclusions – What did you conclude? Tell the reader why your findings matter, and what this could mean for the ‘bigger picture’ of this area of research. 

Writing tips

The main challenge you may find when writing your abstract is keeping it concise AND convering all the information you need to.

where to put abstract in research paper

  • Keep it concise and to the point. Most journals have a maximum word count, so check guidelines before you write the abstract to save time editing it later.
  • Write for your audience. Are they specialists in your specific field? Are they cross-disciplinary? Are they non-specialists? If you’re writing for a general audience, or your research could be of interest to the public keep your language as straightforward as possible. If you’re writing in English, do remember that not all of your readers will necessarily be native English speakers.
  • Focus on key results, conclusions and take home messages.
  • Write your paper first, then create the abstract as a summary.
  • Check the journal requirements before you write your abstract, eg. required subheadings.
  • Include keywords or phrases to help readers search for your work in indexing databases like PubMed or Google Scholar.
  • Double and triple check your abstract for spelling and grammar errors. These kind of errors can give potential reviewers the impression that your research isn’t sound, and can make it easier to find reviewers who accept the invitation to review your manuscript. Your abstract should be a taste of what is to come in the rest of your article.

where to put abstract in research paper

Don’t

  • Sensationalize your research.
  • Speculate about where this research might lead in the future.
  • Use abbreviations or acronyms (unless absolutely necessary or unless they’re widely known, eg. DNA).
  • Repeat yourself unnecessarily, eg. “Methods: We used X technique. Results: Using X technique, we found…”
  • Contradict anything in the rest of your manuscript.
  • Include content that isn’t also covered in the main manuscript.
  • Include citations or references.

Tip: How to edit your work

Editing is challenging, especially if you are acting as both a writer and an editor. Read our guidelines for advice on how to refine your work, including useful tips for setting your intentions, re-review, and consultation with colleagues.

  • How to Write a Great Title
  • How to Write Your Methods
  • How to Report Statistics
  • How to Write Discussions and Conclusions
  • How to Edit Your Work

The contents of the Peer Review Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

The contents of the Writing Center are also available as a live, interactive training session, complete with slides, talking points, and activities. …

There’s a lot to consider when deciding where to submit your work. Learn how to choose a journal that will help your study reach its audience, while reflecting your values as a researcher…

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write an APA Abstract

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

where to put abstract in research paper

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

where to put abstract in research paper

Verywell / Nusha Ashjaee 

  • Writing Your Abstract
  • How to Use Keywords

An APA abstract is a concise but comprehensive summary of a scientific paper. It is typically a paragraph long, or about 150 to 250 words. The goal of the abstract is to provide the reader with a brief and accurate idea of what a paper is about.

The APA abstract should appear on a separate page immediately after the title page and before the main content of your paper. While professional papers that appear in scientific journals and other publications require an APA abstract, they may not be required for student papers. However, you should always check with your instructor for specific requirements.

What Is APA Format?

APA format is the official style of the American Psychological Association. It is used in writing for psychology and other social sciences. These style guidelines specify different aspects of a document's presentation and layout, including how pages are structured, how references are organized, and how sources are cited.

This article explains how to create an abstract in APA format for your psychology papers or other types of scientific writing. It covers the basic rules you should follow as well as specific guidelines for writing abstracts for experimental reports, literature reviews, and other articles.

What Is an Abstract in APA Format?

In addition to providing guidance for the general style and organization of a paper, APA format also stipulates using an abstract designed to briefly summarize the key details in a paper.

While it is sometimes overlooked or only an afterthought, an abstract is an integral part of any academic or professional paper. The abstract is a critical component of an APA-formatted paper. This brief overview summarizes what your paper contains. It should succinctly and accurately represent what your paper is about and what the reader can expect to find.

Following a few simple guidelines, you can create an abstract following the format. Done well, an abstract generates interest in your work and helps readers learn if the paper will interest them.

APA Format Abstract Basics

The abstract is the second page of a lab report or APA-format paper and should immediately follow the title page . Think of an abstract as a highly condensed summary of your entire paper.

The purpose of your abstract is to provide a brief yet thorough overview of your paper. It should function much like your title page—it should allow the person reading it to quickly determine what your paper is all about. Your abstract is the first thing that most people will read, and it is usually what informs their decision to read the rest of your paper.

The abstract is the single most important paragraph in your entire paper, according to the APA Publication Manual. A good abstract lets the reader know that your paper is worth reading.

According to the official guidelines of the American Psychological Association, an abstract should be brief but packed with information. Each sentence must be written with maximum impact in mind. To keep your abstract short, focus on including just four or five of the essential points, concepts, or findings.

An abstract must also be objective and accurate. The abstract's purpose is to report rather than provide commentary. It should accurately reflect what your paper is about. Only include information that is also included in the body of your paper.

Key Elements of an APA Abstract

Your abstract page should include:

  • A running head , which is a shortened version of your title that appears in all caps at the top left of each page of your paper
  • A section label , which should be the word "Abstract" centered and bolded at the top of the page
  • A page number , which should be the second page of your paper (the title page should be page 1)
  • A double-spaced paragraph of about 150 to 250 words
  • An indented list of keywords related to your paper's content. Include the label "Keywords:" in italics and list three to five keywords that are separated by commas

How to Write an Abstract in APA Format

Before you write your abstract, you first need to write your paper in its entirety. In order to write a good abstract, you need to have a finished draft of your paper so you can summarize it accurately.

While the abstract will be at the beginning of your paper, it should be the last section you write.

Once you have completed the final draft of your psychology paper , use it as a guide for writing your abstract.

  • Begin your abstract on a new page . Place your running head and page number 2 in the top right-hand corner. Center the word "Abstract" at the top of the page.
  • Know your target word count . An abstract should be between 150 and 250 words. Exact word counts vary from journal to journal . If you are writing your paper for a psychology course, your professor may have specific word requirements, so be sure to ask. The abstract should be written as only one paragraph with no indentation.
  • Structure the abstract in the same order as your paper . Begin with a brief summary of the introduction , and then continue on with a summary of the method , results , and discussion sections of your paper.
  • Look at other abstracts in professional journals for examples of how to summarize your paper . Notice the main points that the authors chose to mention in the abstract. Use these examples as a guide when choosing the main ideas in your own paper.
  • Write a rough draft of your abstract . Use the format required for your type of paper (see next sections). While you should aim for brevity, be careful not to make your summary too short. Try to write one to two sentences summarizing each section of your paper. Once you have a rough draft, you can edit for length and clarity.
  • Ask a friend to read over the abstract . Sometimes, having someone look at your abstract with fresh eyes can provide perspective and help you spot possible typos and other errors.

The abstract is vital to your paper, so it should not be overlooked or treated as an afterthought. Spend time writing this section carefully to ensure maximum readability and clarity.

It is important to remember that while the abstract is the last thing you write, it is often the most read part of your paper.

Experimental Report Abstracts

The format of your abstract also depends on the type of paper you are writing. For example, an abstract summarizing an experimental paper will differ from that of a meta-analysis or case study . For an experimental report, your abstract should:

  • Identify the problem . In many cases, you should begin by stating the question you sought to investigate and your hypothesis .
  • Describe the participants in the study . State how many participants took part and how they were selected. For example: "In this study, 215 undergraduate student participants were randomly assigned to [the experimental condition] or [the control condition]."
  • Describe the study method . For example, identify whether you used a within-subjects, between-subjects, or mixed design.
  • Give the basic findings . This is essentially a brief preview of the results of your paper. 
  • Provide any conclusions or implications of the study . What might your results indicate, and what directions does it point to for future research?

Literature Review Abstracts

If your paper is a meta-analysis or literature review, your abstract should:

  • Describe the problem of interest . In other words, what is it that you set out to investigate in your analysis or review?
  • Explain the criteria used to select the studies included in the paper . There may be many different studies devoted to your topic. Your analysis or review probably only looks at a portion of these studies. For what reason did you select these specific studies to include in your research?
  • Identify the participants in the studies . Inform the reader about who the participants were in the studies. Were they college students? Older adults? How were they selected and assigned?
  • Provide the main results . Again, this is essentially a quick peek at what readers will find when they read your results section. Don't try to include everything. Just provide a very brief summary of your main findings. 
  • Describe any conclusions or implications . What might these results mean and what do they reveal about the body of research that exists on this particular topic?

Lab Reports and Articles

Psychology papers such as lab reports and APA format articles also often require an abstract. In these cases as well, the abstract should include all of the major elements of your paper, including an introduction, hypothesis, methods, results, and discussion.

Remember, although the abstract should be placed at the beginning of your paper (right after the title page), you will write the abstract last after you have completed a final draft of your paper.

To ensure that all of your APA formatting is correct, consider consulting a copy of the  Publication Manual of the American Psychological Association .

Keywords in an APA Abstract

After the paragraph containing the main elements of your abstract, you can also include keywords related to your paper. Such keywords are used when indexing your paper in databases and can help researchers and students locate your paper when searching for information about those topics.

Because keywords help people find your paper, it is essential to choose the right ones. The APA suggests including between three and five keywords.

You can identify keywords by thinking about what your paper is about. For example, if your paper focuses on how social media use is related to depression in teenagers, you might include the keywords: social media, mood, depression, adolescents, social networking sites 

A Word From Verywell

The abstract may be very brief, but it is so important that the official APA style manual identifies it as the most important paragraph in your entire paper. Careful attention to detail can ensure that your abstract does a good job representing the contents of your paper. If possible, take your paper to your school's writing lab for assistance.

Nagda S. How to write a scientific abstract. J Indian Prosthodont Soc. 2013;13(3):382–383. doi:10.1007/s13191-013-0299-x

Kumar A. Writing an abstract: Revealing the essence with eloquence .  J Indian Soc Periodontol . 2022;26(1):1-2. doi:10.4103/jisp.jisp_634_21

American Psychological Association. APA Style Journal Article Reporting Standards: Reporting Standards for Studies With an Experimental Manipulation .

American Psychological Association. APA Style Journal Article Reporting Standards: Quantitative Meta-Analysis Article Reporting Standards .

Tullu MS. Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key .  Saudi J Anaesth . 2019;13(Suppl 1):S12-S17. doi:10.4103/sja.SJA_685_18

American Psychological Association. Publication Manual of the American Psychological Association (7th ed.). American Psychological Association; 2019.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write an Abstract for a Research Paper | Examples

where to put abstract in research paper

What is a research paper abstract?

Research paper abstracts summarize your study quickly and succinctly to journal editors and researchers and prompt them to read further. But with the ubiquity of online publication databases, writing a compelling abstract is even more important today than it was in the days of bound paper manuscripts.

Abstracts exist to “sell”  your work, and they could thus be compared to the “executive summary” of a business resume: an official briefing on what is most important about your research. Or the “gist” of your research. With the majority of academic transactions being conducted online, this means that you have even less time to impress readers–and increased competition in terms of other abstracts out there to read.

The APCI (Academic Publishing and Conferences International) notes that there are  12 questions or “points” considered in the selection process  for journals and conferences and stresses the importance of having an abstract that ticks all of these boxes. Because it is often the ONLY chance you have to convince readers to keep reading, it is important that you spend time and energy crafting an abstract that faithfully represents the central parts of your study and captivates your audience.

With that in mind, follow these suggestions when structuring and writing your abstract, and learn how exactly to put these ideas into a solid abstract that will captivate your target readers.

Before Writing Your Abstract

How long should an abstract be.

All abstracts are written with the same essential objective: to give a summary of your study. But there are two basic styles of abstract: descriptive and informative . Here is a brief delineation of the two:

Of the two types of abstracts, informative abstracts are much more common, and they are widely used for submission to journals and conferences. Informative abstracts apply to lengthier and more technical research and are common in the sciences, engineering, and psychology, while descriptive abstracts are more likely used in humanities and social science papers. The best method of determining which abstract type you need to use is to follow the instructions for journal submissions and to read as many other published articles in those journals as possible.

Research Abstract Guidelines and Requirements

As any article about research writing will tell you, authors must always closely follow the specific guidelines and requirements indicated in the Guide for Authors section of their target journal’s website. The same kind of adherence to conventions should be applied to journal publications, for consideration at a conference, and even when completing a class assignment.

Each publisher has particular demands when it comes to formatting and structure. Here are some common questions addressed in the journal guidelines:

  • Is there a maximum or minimum word/character length?
  • What are the style and formatting requirements?
  • What is the appropriate abstract type?
  • Are there any specific content or organization rules that apply?

There are of course other rules to consider when composing a research paper abstract. But if you follow the stated rules the first time you submit your manuscript, you can avoid your work being thrown in the “circular file” right off the bat.

Identify Your Target Readership

The main purpose of your abstract is to lead researchers to the full text of your research paper. In scientific journals, abstracts let readers decide whether the research discussed is relevant to their own interests or study. Abstracts also help readers understand your main argument quickly. Consider these questions as you write your abstract:

  • Are other academics in your field the main target of your study?
  • Will your study perhaps be useful to members of the general public?
  • Do your study results include the wider implications presented in the abstract?

Outlining and Writing Your Abstract

What to include in an abstract.

Just as your  research paper title  should cover as much ground as possible in a few short words, your abstract must cover  all  parts of your study in order to fully explain your paper and research. Because it must accomplish this task in the space of only a few hundred words, it is important not to include ambiguous references or phrases that will confuse the reader or mislead them about the content and objectives of your research. Follow these  dos  and  don’ts  when it comes to what kind of writing to include:

  • Avoid acronyms or abbreviations since these will need to be explained in order to make sense to the reader, which takes up valuable abstract space. Instead, explain these terms in the Introduction section of the main text.
  • Only use references to people or other works if they are well-known. Otherwise, avoid referencing anything outside of your study in the abstract.
  • Never include tables, figures, sources, or long quotations in your abstract; you will have plenty of time to present and refer to these in the body of your paper.

Use keywords in your abstract to focus your topic

A vital search tool is the research paper keywords section, which lists the most relevant terms directly underneath the abstract. Think of these keywords as the “tubes” that readers will seek and enter—via queries on databases and search engines—to ultimately land at their destination, which is your paper. Your abstract keywords should thus be words that are commonly used in searches but should also be highly relevant to your work and found in the text of your abstract. Include 5 to 10 important words or short phrases central to your research in both the abstract and the keywords section.

For example, if you are writing a paper on the prevalence of obesity among lower classes that crosses international boundaries, you should include terms like “obesity,” “prevalence,” “international,” “lower classes,” and “cross-cultural.” These are terms that should net a wide array of people interested in your topic of study. Look at our nine rules for choosing keywords for your research paper if you need more input on this.

Research Paper Abstract Structure

As mentioned above, the abstract (especially the informative abstract) acts as a surrogate or synopsis of your research paper, doing almost as much work as the thousands of words that follow it in the body of the main text. In the hard sciences and most social sciences, the abstract includes the following sections and organizational schema.

Each section is quite compact—only a single sentence or two, although there is room for expansion if one element or statement is particularly interesting or compelling. As the abstract is almost always one long paragraph, the individual sections should naturally merge into one another to create a holistic effect. Use the following as a checklist to ensure that you have included all of the necessary content in your abstract.

how to structure an abstract list

1) Identify your purpose and motivation

So your research is about rabies in Brazilian squirrels. Why is this important? You should start your abstract by explaining why people should care about this study—why is it significant to your field and perhaps to the wider world? And what is the exact purpose of your study; what are you trying to achieve? Start by answering the following questions:

  • What made you decide to do this study or project?
  • Why is this study important to your field or to the lay reader?
  • Why should someone read your entire article?

In summary, the first section of your abstract should include the importance of the research and its impact on related research fields or on the wider scientific domain.

2) Explain the research problem you are addressing

Stating the research problem that your study addresses is the corollary to why your specific study is important and necessary. For instance, even if the issue of “rabies in Brazilian squirrels” is important, what is the problem—the “missing piece of the puzzle”—that your study helps resolve?

You can combine the problem with the motivation section, but from a perspective of organization and clarity, it is best to separate the two. Here are some precise questions to address:

  • What is your research trying to better understand or what problem is it trying to solve?
  • What is the scope of your study—does it try to explain something general or specific?
  • What is your central claim or argument?

3) Discuss your research approach

Your specific study approach is detailed in the Methods and Materials section .  You have already established the importance of the research, your motivation for studying this issue, and the specific problem your paper addresses. Now you need to discuss  how  you solved or made progress on this problem—how you conducted your research. If your study includes your own work or that of your team, describe that here. If in your paper you reviewed the work of others, explain this here. Did you use analytic models? A simulation? A double-blind study? A case study? You are basically showing the reader the internal engine of your research machine and how it functioned in the study. Be sure to:

  • Detail your research—include methods/type of the study, your variables, and the extent of the work
  • Briefly present evidence to support your claim
  • Highlight your most important sources

4) Briefly summarize your results

Here you will give an overview of the outcome of your study. Avoid using too many vague qualitative terms (e.g, “very,” “small,” or “tremendous”) and try to use at least some quantitative terms (i.e., percentages, figures, numbers). Save your qualitative language for the conclusion statement. Answer questions like these:

  • What did your study yield in concrete terms (e.g., trends, figures, correlation between phenomena)?
  • How did your results compare to your hypothesis? Was the study successful?
  • Where there any highly unexpected outcomes or were they all largely predicted?

5) State your conclusion

In the last section of your abstract, you will give a statement about the implications and  limitations of the study . Be sure to connect this statement closely to your results and not the area of study in general. Are the results of this study going to shake up the scientific world? Will they impact how people see “Brazilian squirrels”? Or are the implications minor? Try not to boast about your study or present its impact as  too  far-reaching, as researchers and journals will tend to be skeptical of bold claims in scientific papers. Answer one of these questions:

  • What are the exact effects of these results on my field? On the wider world?
  • What other kind of study would yield further solutions to problems?
  • What other information is needed to expand knowledge in this area?

After Completing the First Draft of Your Abstract

Revise your abstract.

The abstract, like any piece of academic writing, should be revised before being considered complete. Check it for  grammatical and spelling errors  and make sure it is formatted properly.

Get feedback from a peer

Getting a fresh set of eyes to review your abstract is a great way to find out whether you’ve summarized your research well. Find a reader who understands research papers but is not an expert in this field or is not affiliated with your study. Ask your reader to summarize what your study is about (including all key points of each section). This should tell you if you have communicated your key points clearly.

In addition to research peers, consider consulting with a professor or even a specialist or generalist writing center consultant about your abstract. Use any resource that helps you see your work from another perspective.

Consider getting professional editing and proofreading

While peer feedback is quite important to ensure the effectiveness of your abstract content, it may be a good idea to find an academic editor  to fix mistakes in grammar, spelling, mechanics, style, or formatting. The presence of basic errors in the abstract may not affect your content, but it might dissuade someone from reading your entire study. Wordvice provides English editing services that both correct objective errors and enhance the readability and impact of your work.

Additional Abstract Rules and Guidelines

Write your abstract after completing your paper.

Although the abstract goes at the beginning of your manuscript, it does not merely introduce your research topic (that is the job of the title), but rather summarizes your entire paper. Writing the abstract last will ensure that it is complete and consistent with the findings and statements in your paper.

Keep your content in the correct order

Both questions and answers should be organized in a standard and familiar way to make the content easier for readers to absorb. Ideally, it should mimic the overall format of your essay and the classic “introduction,” “body,” and “conclusion” form, even if the parts are not neatly divided as such.

Write the abstract from scratch

Because the abstract is a self-contained piece of writing viewed separately from the body of the paper, you should write it separately as well. Never copy and paste direct quotes from the paper and avoid paraphrasing sentences in the paper. Using new vocabulary and phrases will keep your abstract interesting and free of redundancies while conserving space.

Don’t include too many details in the abstract

Again, the density of your abstract makes it incompatible with including specific points other than possibly names or locations. You can make references to terms, but do not explain or define them in the abstract. Try to strike a balance between being specific to your study and presenting a relatively broad overview of your work.

Wordvice Resources

If you think your abstract is fine now but you need input on abstract writing or require English editing services (including paper editing ), then head over to the Wordvice academic resources page, where you will find many more articles, for example on writing the Results , Methods , and Discussion sections of your manuscript, on choosing a title for your paper , or on how to finalize your journal submission with a strong cover letter .    

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Saudi J Anaesth
  • v.13(Suppl 1); 2019 Apr

Writing the title and abstract for a research paper: Being concise, precise, and meticulous is the key

Milind s. tullu.

Department of Pediatrics, Seth G.S. Medical College and KEM Hospital, Parel, Mumbai, Maharashtra, India

This article deals with formulating a suitable title and an appropriate abstract for an original research paper. The “title” and the “abstract” are the “initial impressions” of a research article, and hence they need to be drafted correctly, accurately, carefully, and meticulously. Often both of these are drafted after the full manuscript is ready. Most readers read only the title and the abstract of a research paper and very few will go on to read the full paper. The title and the abstract are the most important parts of a research paper and should be pleasant to read. The “title” should be descriptive, direct, accurate, appropriate, interesting, concise, precise, unique, and should not be misleading. The “abstract” needs to be simple, specific, clear, unbiased, honest, concise, precise, stand-alone, complete, scholarly, (preferably) structured, and should not be misrepresentative. The abstract should be consistent with the main text of the paper, especially after a revision is made to the paper and should include the key message prominently. It is very important to include the most important words and terms (the “keywords”) in the title and the abstract for appropriate indexing purpose and for retrieval from the search engines and scientific databases. Such keywords should be listed after the abstract. One must adhere to the instructions laid down by the target journal with regard to the style and number of words permitted for the title and the abstract.

Introduction

This article deals with drafting a suitable “title” and an appropriate “abstract” for an original research paper. Because the “title” and the “abstract” are the “initial impressions” or the “face” of a research article, they need to be drafted correctly, accurately, carefully, meticulously, and consume time and energy.[ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 ] Often, these are drafted after the complete manuscript draft is ready.[ 2 , 3 , 4 , 5 , 9 , 10 , 11 ] Most readers will read only the title and the abstract of a published research paper, and very few “interested ones” (especially, if the paper is of use to them) will go on to read the full paper.[ 1 , 2 ] One must remember to adhere to the instructions laid down by the “target journal” (the journal for which the author is writing) regarding the style and number of words permitted for the title and the abstract.[ 2 , 4 , 5 , 7 , 8 , 9 , 12 ] Both the title and the abstract are the most important parts of a research paper – for editors (to decide whether to process the paper for further review), for reviewers (to get an initial impression of the paper), and for the readers (as these may be the only parts of the paper available freely and hence, read widely).[ 4 , 8 , 12 ] It may be worth for the novice author to browse through titles and abstracts of several prominent journals (and their target journal as well) to learn more about the wording and styles of the titles and abstracts, as well as the aims and scope of the particular journal.[ 5 , 7 , 9 , 13 ]

The details of the title are discussed under the subheadings of importance, types, drafting, and checklist.

Importance of the title

When a reader browses through the table of contents of a journal issue (hard copy or on website), the title is the “ first detail” or “face” of the paper that is read.[ 2 , 3 , 4 , 5 , 6 , 13 ] Hence, it needs to be simple, direct, accurate, appropriate, specific, functional, interesting, attractive/appealing, concise/brief, precise/focused, unambiguous, memorable, captivating, informative (enough to encourage the reader to read further), unique, catchy, and it should not be misleading.[ 1 , 2 , 3 , 4 , 5 , 6 , 9 , 12 ] It should have “just enough details” to arouse the interest and curiosity of the reader so that the reader then goes ahead with studying the abstract and then (if still interested) the full paper.[ 1 , 2 , 4 , 13 ] Journal websites, electronic databases, and search engines use the words in the title and abstract (the “keywords”) to retrieve a particular paper during a search; hence, the importance of these words in accessing the paper by the readers has been emphasized.[ 3 , 4 , 5 , 6 , 12 , 14 ] Such important words (or keywords) should be arranged in appropriate order of importance as per the context of the paper and should be placed at the beginning of the title (rather than the later part of the title, as some search engines like Google may just display only the first six to seven words of the title).[ 3 , 5 , 12 ] Whimsical, amusing, or clever titles, though initially appealing, may be missed or misread by the busy reader and very short titles may miss the essential scientific words (the “keywords”) used by the indexing agencies to catch and categorize the paper.[ 1 , 3 , 4 , 9 ] Also, amusing or hilarious titles may be taken less seriously by the readers and may be cited less often.[ 4 , 15 ] An excessively long or complicated title may put off the readers.[ 3 , 9 ] It may be a good idea to draft the title after the main body of the text and the abstract are drafted.[ 2 , 3 , 4 , 5 ]

Types of titles

Titles can be descriptive, declarative, or interrogative. They can also be classified as nominal, compound, or full-sentence titles.

Descriptive or neutral title

This has the essential elements of the research theme, that is, the patients/subjects, design, interventions, comparisons/control, and outcome, but does not reveal the main result or the conclusion.[ 3 , 4 , 12 , 16 ] Such a title allows the reader to interpret the findings of the research paper in an impartial manner and with an open mind.[ 3 ] These titles also give complete information about the contents of the article, have several keywords (thus increasing the visibility of the article in search engines), and have increased chances of being read and (then) being cited as well.[ 4 ] Hence, such descriptive titles giving a glimpse of the paper are generally preferred.[ 4 , 16 ]

Declarative title

This title states the main finding of the study in the title itself; it reduces the curiosity of the reader, may point toward a bias on the part of the author, and hence is best avoided.[ 3 , 4 , 12 , 16 ]

Interrogative title

This is the one which has a query or the research question in the title.[ 3 , 4 , 16 ] Though a query in the title has the ability to sensationalize the topic, and has more downloads (but less citations), it can be distracting to the reader and is again best avoided for a research article (but can, at times, be used for a review article).[ 3 , 6 , 16 , 17 ]

From a sentence construct point of view, titles may be nominal (capturing only the main theme of the study), compound (with subtitles to provide additional relevant information such as context, design, location/country, temporal aspect, sample size, importance, and a provocative or a literary; for example, see the title of this review), or full-sentence titles (which are longer and indicate an added degree of certainty of the results).[ 4 , 6 , 9 , 16 ] Any of these constructs may be used depending on the type of article, the key message, and the author's preference or judgement.[ 4 ]

Drafting a suitable title

A stepwise process can be followed to draft the appropriate title. The author should describe the paper in about three sentences, avoiding the results and ensuring that these sentences contain important scientific words/keywords that describe the main contents and subject of the paper.[ 1 , 4 , 6 , 12 ] Then the author should join the sentences to form a single sentence, shorten the length (by removing redundant words or adjectives or phrases), and finally edit the title (thus drafted) to make it more accurate, concise (about 10–15 words), and precise.[ 1 , 3 , 4 , 5 , 9 ] Some journals require that the study design be included in the title, and this may be placed (using a colon) after the primary title.[ 2 , 3 , 4 , 14 ] The title should try to incorporate the Patients, Interventions, Comparisons and Outcome (PICO).[ 3 ] The place of the study may be included in the title (if absolutely necessary), that is, if the patient characteristics (such as study population, socioeconomic conditions, or cultural practices) are expected to vary as per the country (or the place of the study) and have a bearing on the possible outcomes.[ 3 , 6 ] Lengthy titles can be boring and appear unfocused, whereas very short titles may not be representative of the contents of the article; hence, optimum length is required to ensure that the title explains the main theme and content of the manuscript.[ 4 , 5 , 9 ] Abbreviations (except the standard or commonly interpreted ones such as HIV, AIDS, DNA, RNA, CDC, FDA, ECG, and EEG) or acronyms should be avoided in the title, as a reader not familiar with them may skip such an article and nonstandard abbreviations may create problems in indexing the article.[ 3 , 4 , 5 , 6 , 9 , 12 ] Also, too much of technical jargon or chemical formulas in the title may confuse the readers and the article may be skipped by them.[ 4 , 9 ] Numerical values of various parameters (stating study period or sample size) should also be avoided in the titles (unless deemed extremely essential).[ 4 ] It may be worthwhile to take an opinion from a impartial colleague before finalizing the title.[ 4 , 5 , 6 ] Thus, multiple factors (which are, at times, a bit conflicting or contrasting) need to be considered while formulating a title, and hence this should not be done in a hurry.[ 4 , 6 ] Many journals ask the authors to draft a “short title” or “running head” or “running title” for printing in the header or footer of the printed paper.[ 3 , 12 ] This is an abridged version of the main title of up to 40–50 characters, may have standard abbreviations, and helps the reader to navigate through the paper.[ 3 , 12 , 14 ]

Checklist for a good title

Table 1 gives a checklist/useful tips for drafting a good title for a research paper.[ 1 , 2 , 3 , 4 , 5 , 6 , 12 ] Table 2 presents some of the titles used by the author of this article in his earlier research papers, and the appropriateness of the titles has been commented upon. As an individual exercise, the reader may try to improvise upon the titles (further) after reading the corresponding abstract and full paper.

Checklist/useful tips for drafting a good title for a research paper

Some titles used by author of this article in his earlier publications and remark/comment on their appropriateness

The Abstract

The details of the abstract are discussed under the subheadings of importance, types, drafting, and checklist.

Importance of the abstract

The abstract is a summary or synopsis of the full research paper and also needs to have similar characteristics like the title. It needs to be simple, direct, specific, functional, clear, unbiased, honest, concise, precise, self-sufficient, complete, comprehensive, scholarly, balanced, and should not be misleading.[ 1 , 2 , 3 , 7 , 8 , 9 , 10 , 11 , 13 , 17 ] Writing an abstract is to extract and summarize (AB – absolutely, STR – straightforward, ACT – actual data presentation and interpretation).[ 17 ] The title and abstracts are the only sections of the research paper that are often freely available to the readers on the journal websites, search engines, and in many abstracting agencies/databases, whereas the full paper may attract a payment per view or a fee for downloading the pdf copy.[ 1 , 2 , 3 , 7 , 8 , 10 , 11 , 13 , 14 ] The abstract is an independent and stand-alone (that is, well understood without reading the full paper) section of the manuscript and is used by the editor to decide the fate of the article and to choose appropriate reviewers.[ 2 , 7 , 10 , 12 , 13 ] Even the reviewers are initially supplied only with the title and the abstract before they agree to review the full manuscript.[ 7 , 13 ] This is the second most commonly read part of the manuscript, and therefore it should reflect the contents of the main text of the paper accurately and thus act as a “real trailer” of the full article.[ 2 , 7 , 11 ] The readers will go through the full paper only if they find the abstract interesting and relevant to their practice; else they may skip the paper if the abstract is unimpressive.[ 7 , 8 , 9 , 10 , 13 ] The abstract needs to highlight the selling point of the manuscript and succeed in luring the reader to read the complete paper.[ 3 , 7 ] The title and the abstract should be constructed using keywords (key terms/important words) from all the sections of the main text.[ 12 ] Abstracts are also used for submitting research papers to a conference for consideration for presentation (as oral paper or poster).[ 9 , 13 , 17 ] Grammatical and typographic errors reflect poorly on the quality of the abstract, may indicate carelessness/casual attitude on part of the author, and hence should be avoided at all times.[ 9 ]

Types of abstracts

The abstracts can be structured or unstructured. They can also be classified as descriptive or informative abstracts.

Structured and unstructured abstracts

Structured abstracts are followed by most journals, are more informative, and include specific subheadings/subsections under which the abstract needs to be composed.[ 1 , 7 , 8 , 9 , 10 , 11 , 13 , 17 , 18 ] These subheadings usually include context/background, objectives, design, setting, participants, interventions, main outcome measures, results, and conclusions.[ 1 ] Some journals stick to the standard IMRAD format for the structure of the abstracts, and the subheadings would include Introduction/Background, Methods, Results, And (instead of Discussion) the Conclusion/s.[ 1 , 2 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 17 , 18 ] Structured abstracts are more elaborate, informative, easy to read, recall, and peer-review, and hence are preferred; however, they consume more space and can have same limitations as an unstructured abstract.[ 7 , 9 , 18 ] The structured abstracts are (possibly) better understood by the reviewers and readers. Anyway, the choice of the type of the abstract and the subheadings of a structured abstract depend on the particular journal style and is not left to the author's wish.[ 7 , 10 , 12 ] Separate subheadings may be necessary for reporting meta-analysis, educational research, quality improvement work, review, or case study.[ 1 ] Clinical trial abstracts need to include the essential items mentioned in the CONSORT (Consolidated Standards Of Reporting Trials) guidelines.[ 7 , 9 , 14 , 19 ] Similar guidelines exist for various other types of studies, including observational studies and for studies of diagnostic accuracy.[ 20 , 21 ] A useful resource for the above guidelines is available at www.equator-network.org (Enhancing the QUAlity and Transparency Of health Research). Unstructured (or non-structured) abstracts are free-flowing, do not have predefined subheadings, and are commonly used for papers that (usually) do not describe original research.[ 1 , 7 , 9 , 10 ]

The four-point structured abstract: This has the following elements which need to be properly balanced with regard to the content/matter under each subheading:[ 9 ]

Background and/or Objectives: This states why the work was undertaken and is usually written in just a couple of sentences.[ 3 , 7 , 8 , 9 , 10 , 12 , 13 ] The hypothesis/study question and the major objectives are also stated under this subheading.[ 3 , 7 , 8 , 9 , 10 , 12 , 13 ]

Methods: This subsection is the longest, states what was done, and gives essential details of the study design, setting, participants, blinding, sample size, sampling method, intervention/s, duration and follow-up, research instruments, main outcome measures, parameters evaluated, and how the outcomes were assessed or analyzed.[ 3 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 17 ]

Results/Observations/Findings: This subheading states what was found, is longer, is difficult to draft, and needs to mention important details including the number of study participants, results of analysis (of primary and secondary objectives), and include actual data (numbers, mean, median, standard deviation, “P” values, 95% confidence intervals, effect sizes, relative risks, odds ratio, etc.).[ 3 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 17 ]

Conclusions: The take-home message (the “so what” of the paper) and other significant/important findings should be stated here, considering the interpretation of the research question/hypothesis and results put together (without overinterpreting the findings) and may also include the author's views on the implications of the study.[ 3 , 7 , 8 , 9 , 10 , 12 , 13 , 14 , 17 ]

The eight-point structured abstract: This has the following eight subheadings – Objectives, Study Design, Study Setting, Participants/Patients, Methods/Intervention, Outcome Measures, Results, and Conclusions.[ 3 , 9 , 18 ] The instructions to authors given by the particular journal state whether they use the four- or eight-point abstract or variants thereof.[ 3 , 14 ]

Descriptive and Informative abstracts

Descriptive abstracts are short (75–150 words), only portray what the paper contains without providing any more details; the reader has to read the full paper to know about its contents and are rarely used for original research papers.[ 7 , 10 ] These are used for case reports, reviews, opinions, and so on.[ 7 , 10 ] Informative abstracts (which may be structured or unstructured as described above) give a complete detailed summary of the article contents and truly reflect the actual research done.[ 7 , 10 ]

Drafting a suitable abstract

It is important to religiously stick to the instructions to authors (format, word limit, font size/style, and subheadings) provided by the journal for which the abstract and the paper are being written.[ 7 , 8 , 9 , 10 , 13 ] Most journals allow 200–300 words for formulating the abstract and it is wise to restrict oneself to this word limit.[ 1 , 2 , 3 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 22 ] Though some authors prefer to draft the abstract initially, followed by the main text of the paper, it is recommended to draft the abstract in the end to maintain accuracy and conformity with the main text of the paper (thus maintaining an easy linkage/alignment with title, on one hand, and the introduction section of the main text, on the other hand).[ 2 , 7 , 9 , 10 , 11 ] The authors should check the subheadings (of the structured abstract) permitted by the target journal, use phrases rather than sentences to draft the content of the abstract, and avoid passive voice.[ 1 , 7 , 9 , 12 ] Next, the authors need to get rid of redundant words and edit the abstract (extensively) to the correct word count permitted (every word in the abstract “counts”!).[ 7 , 8 , 9 , 10 , 13 ] It is important to ensure that the key message, focus, and novelty of the paper are not compromised; the rationale of the study and the basis of the conclusions are clear; and that the abstract is consistent with the main text of the paper.[ 1 , 2 , 3 , 7 , 9 , 11 , 12 , 13 , 14 , 17 , 22 ] This is especially important while submitting a revision of the paper (modified after addressing the reviewer's comments), as the changes made in the main (revised) text of the paper need to be reflected in the (revised) abstract as well.[ 2 , 10 , 12 , 14 , 22 ] Abbreviations should be avoided in an abstract, unless they are conventionally accepted or standard; references, tables, or figures should not be cited in the abstract.[ 7 , 9 , 10 , 11 , 13 ] It may be worthwhile not to rush with the abstract and to get an opinion by an impartial colleague on the content of the abstract; and if possible, the full paper (an “informal” peer-review).[ 1 , 7 , 8 , 9 , 11 , 17 ] Appropriate “Keywords” (three to ten words or phrases) should follow the abstract and should be preferably chosen from the Medical Subject Headings (MeSH) list of the U.S. National Library of Medicine ( https://meshb.nlm.nih.gov/search ) and are used for indexing purposes.[ 2 , 3 , 11 , 12 ] These keywords need to be different from the words in the main title (the title words are automatically used for indexing the article) and can be variants of the terms/phrases used in the title, or words from the abstract and the main text.[ 3 , 12 ] The ICMJE (International Committee of Medical Journal Editors; http://www.icmje.org/ ) also recommends publishing the clinical trial registration number at the end of the abstract.[ 7 , 14 ]

Checklist for a good abstract

Table 3 gives a checklist/useful tips for formulating a good abstract for a research paper.[ 1 , 2 , 3 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 17 , 22 ]

Checklist/useful tips for formulating a good abstract for a research paper

Concluding Remarks

This review article has given a detailed account of the importance and types of titles and abstracts. It has also attempted to give useful hints for drafting an appropriate title and a complete abstract for a research paper. It is hoped that this review will help the authors in their career in medical writing.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

Acknowledgement

The author thanks Dr. Hemant Deshmukh - Dean, Seth G.S. Medical College & KEM Hospital, for granting permission to publish this manuscript.

 alt=

Academic & Employability Skills

Subscribe to academic & employability skills.

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 397 other subscribers.

Email Address

' src=

Writing an abstract - a six point checklist (with samples)

Posted in: abstract , dissertations

where to put abstract in research paper

The abstract is a vital part of any research paper. It is the shop front for your work, and the first stop for your reader. It should provide a clear and succinct summary of your study, and encourage your readers to read more. An effective abstract, therefore should answer the following questions:

  • Why did you do this study or project?
  • What did you do and how?
  • What did you find?
  • What do your findings mean?

So here's our run down of the key elements of a well-written abstract.

  • Size - A succinct and well written abstract should be between approximately 100- 250 words.
  • Background - An effective abstract usually includes some scene-setting information which might include what is already known about the subject, related to the paper in question (a few short sentences).
  • Purpose  - The abstract should also set out the purpose of your research, in other words, what is not known about the subject and hence what the study intended to examine (or what the paper seeks to present).
  • Methods - The methods section should contain enough information to enable the reader to understand what was done, and how. It should include brief details of the research design, sample size, duration of study, and so on.
  • Results - The results section is the most important part of the abstract. This is because readers who skim an abstract do so to learn about the findings of the study. The results section should therefore contain as much detail about the findings as the journal word count permits.
  • Conclusion - This section should contain the most important take-home message of the study, expressed in a few precisely worded sentences. Usually, the finding highlighted here relates to the primary outcomes of the study. However, other important or unexpected findings should also be mentioned. It is also customary, but not essential, to express an opinion about the theoretical or practical implications of the findings, or the importance of their findings for the field. Thus, the conclusions may contain three elements:
  • The primary take-home message
  • Any additional findings of importance
  • Implications for future studies 

abstract 1

Example Abstract 2: Engineering Development and validation of a three-dimensional finite element model of the pelvic bone.

bone

Abstract from: Dalstra, M., Huiskes, R. and Van Erning, L., 1995. Development and validation of a three-dimensional finite element model of the pelvic bone. Journal of biomechanical engineering, 117(3), pp.272-278.

And finally...  A word on abstract types and styles

Abstract types can differ according to subject discipline. You need to determine therefore which type of abstract you should include with your paper. Here are two of the most common types with examples.

Informative Abstract

The majority of abstracts are informative. While they still do not critique or evaluate a work, they do more than describe it. A good informative abstract acts as a surrogate for the work itself. That is, the researcher presents and explains all the main arguments and the important results and evidence in the paper. An informative abstract includes the information that can be found in a descriptive abstract [purpose, methods, scope] but it also includes the results and conclusions of the research and the recommendations of the author. The length varies according to discipline, but an informative abstract is usually no more than 300 words in length.

Descriptive Abstract A descriptive abstract indicates the type of information found in the work. It makes no judgements about the work, nor does it provide results or conclusions of the research. It does incorporate key words found in the text and may include the purpose, methods, and scope of the research. Essentially, the descriptive abstract only describes the work being summarised. Some researchers consider it an outline of the work, rather than a summary. Descriptive abstracts are usually very short, 100 words or less.

(Adapted from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136027/ )

Share this:

  • Click to print (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)

Click here to cancel reply.

  • Email * (we won't publish this)

Write a response

' src=

Navigating the dissertation process: my tips for final years

Imagine for a moment... After months of hard work and research on a topic you're passionate about, the time has finally come to click the 'Submit' button on your dissertation. You've just completed your longest project to date as part...

Vanda Sigel and another HSS student working on laptops.

8 ways to beat procrastination

Whether you’re writing an assignment or revising for exams, getting started can be hard. Fortunately, there’s lots you can do to turn procrastination into action.

A post-it note reading 'Procrastination' surrounded by balls of screwed-up paper

My takeaways on how to write a scientific report

If you’re in your dissertation writing stage or your course includes writing a lot of scientific reports, but you don’t quite know where and how to start, the Skills Centre can help you get started. I recently attended their ‘How...

Person in a lab coat looking into a microscope doing an experiment in a laboratory. There's a row of test tubes on the bench. The person is writing on a clipboard.

  • SpringerLink shop

Title, Abstract and Keywords

The importance of titles.

The title of your manuscript is usually the first introduction readers (and reviewers) have to your work. Therefore, you must select a title that grabs attention, accurately describes the contents of your manuscript, and makes people want to read further.

An effective title should:

  • Convey the  main topics  of the study
  • Highlight the  importance  of the research
  • Be  concise
  • Attract  readers

Writing a good title for your manuscript can be challenging. First, list the topics covered by the manuscript. Try to put all of the topics together in the title using as few words as possible. A title that is too long will seem clumsy, annoy readers, and probably not meet journal requirements.

Does Vaccinating Children and Adolescents with Inactivated Influenza Virus Inhibit the Spread of Influenza in Unimmunized Residents of Rural Communities?

This title has too many unnecessary words.

Influenza Vaccination of Children: A Randomized Trial

This title doesn’t give enough information about what makes the manuscript interesting.

Effect of Child Influenza Vaccination on Infection Rates in Rural Communities: A Randomized Trial This is an effective title. It is short, easy to understand, and conveys the important aspects of the research.

Think about why your research will be of interest to other scientists. This should be related to the reason you decided to study the topic. If your title makes this clear, it will likely attract more readers to your manuscript. TIP: Write down a few possible titles, and then select the best to refine further. Ask your colleagues their opinion. Spending the time needed to do this will result in a better title.

Abstract and Keywords

The Abstract is:

  • A  summary  of the content of the journal manuscript
  • A time-saving  shortcut  for busy researchers
  • A guide to the most important parts of your manuscript’s written content

Many readers will only read the Abstract of your manuscript. Therefore, it has to be able to  stand alone . In most cases the abstract is the only part of your article that appears in indexing databases such as Web of Science or PubMed and so will be the most accessed part of your article; making a good impression will encourage researchers to read your full paper.

A well written abstract can also help speed up the peer-review process. During peer review, referees are usually only sent the abstract when invited to review the paper. Therefore, the abstract needs to contain enough information about the paper to allow referees to make a judgement as to whether they have enough expertise to review the paper and be engaging enough for them to want to review it.

Your Abstract should answer these questions about your manuscript:

  • What was done?
  • Why did you do it?
  • What did you find?
  • Why are these findings useful and important?

Answering these questions lets readers know the most important points about your study, and helps them decide whether they want to read the rest of the paper. Make sure you follow the proper journal manuscript formatting guidelines when preparing your abstract.

TIP: Journals often set a maximum word count for Abstracts, often 250 words, and no citations. This is to ensure that the full Abstract appears in indexing services.

Keywords  are a tool to help indexers and search engines find relevant papers. If database search engines can find your journal manuscript, readers will be able to find it too. This will increase the number of people reading your manuscript, and likely lead to more citations.

However, to be effective, Keywords must be chosen carefully. They should:

  • Represent  the content of your manuscript
  • Be  specific  to your field or sub-field

Manuscript title:  Direct observation of nonlinear optics in an isolated carbon nanotube

Poor keywords:  molecule, optics, lasers, energy lifetime

Better keywords:  single-molecule interaction, Kerr effect, carbon nanotubes, energy level structure

Manuscript title:  Region-specific neuronal degeneration after okadaic acid administration Poor keywords:  neuron, brain, OA (an abbreviation), regional-specific neuronal degeneration, signaling

Better keywords:  neurodegenerative diseases; CA1 region, hippocampal; okadaic acid; neurotoxins; MAP kinase signaling system; cell death

Manuscript title:  Increases in levels of sediment transport at former glacial-interglacial transitions

Poor keywords:  climate change, erosion, plant effects Better keywords:  quaternary climate change, soil erosion, bioturbation

Back │ Next

Home / Guides / Citation Guides / MLA Format / How to write abstracts in MLA

How to write abstracts in MLA

Abstracts are usually between 100-250 words or around 5-7 sentences depending on the type. They can include short descriptions of your motivations, objective, methods, findings, discussion, and conclusion of the paper. You can also include why you wrote the paper and why readers should be interested.

APA abstracts have different formatting from MLA abstracts, so do not to use their rules interchangeably.

Why do you need an abstract?

Abstracts allow for a quick summary of your paper for other researchers. Busy researchers don’t have time to read everything, so they rely on the abstract to help them decide whether or not they will read the paper.

Although MLA style doesn’t require an abstract, the MLA style abstract is the most commonly used style in the humanities. If you are writing a paper for a class in literature, religion, philosophy, or other similar subjects, you should use MLA style. Check with your professor to see if an abstract is required for your paper.

Different types of abstracts

There are two different types of abstracts: descriptive and informative.

  • Descriptive abstracts are approximately 100 words and give a brief overview of the paper. They do not include a full analysis and may not include the results and/or conclusions.
  • Informative abstracts are longer and are approximately 150-250 words. They are a condensed version of your writing that contains information from every part of the paper.

How to write an abstract in MLA style

To write a high-quality abstract in MLA style, you will need an explanation of what research was done and what the outcomes were. Write in a clear, simple, and direct style. The abstract gives readers the information they need to decide whether to read the complete paper or not.

Here are some guidelines for writing a great abstract in MLA style:

  • Finish the paper first. While it may be tempting to get a head start on your abstract, you should complete your paper before writing the abstract.
  • Review your paper for key points and take notes. One way to take notes is to write one sentence for each paragraph. You should not copy directly from your text since your abstract should have different words and phrases. You do not need to include every detail, and in fact, you should avoid doing so. If you have an outline of your paper, use that as a guide to writing your abstract.
  • Give a detailed account of the research methods used in the study and how the results were obtained.
  • Provide an account of your findings and what you found as a result of your research.
  • If your findings have larger implications, include them in the abstract.
  • Condense those main points by summarizing the “who, what, where, and when” of your paper.
  • If you don’t have an outline, organize information in the same order as in the paper.
  • Write a rough draft of your abstract. Begin your abstract with a clear statement about your thesis and why your readers should care about what you’ve written. Then turn your notes into sentences.
  • Avoid using long complicated sentences in your abstract along with ambiguous and unnecessary words and phrases. Remember that your abstract needs to be simple and easy to read.
  • Do not include citations or footnotes in your abstract.
  • Add transitions to show clear connections between ideas and create a smooth flow to your writing.
  • Revise your abstract until it is 5-7 sentences or 250 words or less. Limit the length to one or two paragraphs.
  • Proofread your abstract several times to make sure it is free of errors. People will stop reading if they see mistakes, and it will damage your credibility.

Format for an MLA abstract

  • Use one-inch margins.
  • Double-space the abstract.
  • Place the abstract after the title and before the main body of the paper.
  • Use one space after punctuation marks.
  • Indent the first line of the paragraphs ½ inch from the left margin.
  • Use 12-point font such as Times New Roman or Arial.
  • Spell out acronyms.
  • Include italics instead of quotation marks if you reference a long work in the abstract.

MLA abstract examples

Descriptive abstracts.

  • Example 1 on Cannon’s “From Literacy to Literature: Elementary Learning and the Middle English Poet.”
  • Example 2 on Sealy-Morris’s “The Rhetoric of the Paneled Page: Comics and Composition Pedagogy.”

Informational abstracts

  • Example 1 on O’Neill’s “The Personal Public Sphere of Whitman’s 1840s Journalism.”

Works cited

Cannon, Christopher. “From Literacy to Literature: Elementary Learning and the Middle English Poet.”  PMLA , vol. 129, no. 3, 2014, pp. 349–364.  JSTOR, www.jstor.org/stable/24769474.

MLA Handbook . 9th ed., Modern Language Association of America, 2021.

O’Neill, Bonnie Carr. “The Personal Public Sphere of Whitman’s 1840s Journalism.”  PMLA , vol. 126, no. 4, 2011, pp. 983–998.   JSTOR , www.jstor.org/stable/41414171.

Sealey-Morris, Gabriel. “The Rhetoric of the Paneled Page: Comics and Composition Pedagogy.”  Composition Studies , vol. 43, no. 1, 2015, pp. 31–50.   JSTOR , www.jstor.org/stable/43501877.

Wallace, Joseph. “How to Write an Abstract.”  MLA Style Center , Modern Language Association of America, 5 Dec. 2018, style.mla.org/how-to-write-an-abstract/.

Published October 25, 2020. Updated July 18, 2021.

By Catherine Sigler. Catherine has a Ph.D. in English Education and has taught college-level writing for 15 years.

MLA Formatting Guide

MLA Formatting

  • Annotated Bibliography
  • Bibliography
  • Block Quotes
  • et al Usage
  • In-text Citations
  • Paraphrasing
  • Page Numbers
  • Sample Paper
  • Works Cited
  • MLA 8 Updates
  • MLA 9 Updates
  • View MLA Guide

Citation Examples

  • Book Chapter
  • Journal Article
  • Magazine Article
  • Newspaper Article
  • Website (no author)
  • View all MLA Examples

How useful was this post?

Click on a star to rate it!

We are sorry that this post was not useful for you!

Let us improve this post!

Tell us how we can improve this post?

MLA Citation Examples

Writing Tools

Citation Generators

Other Citation Styles

Plagiarism Checker

Upload a paper to check for plagiarism against billions of sources and get advanced writing suggestions for clarity and style.

Get Started

Generate accurate APA citations for free

  • Knowledge Base
  • APA Style 6th edition
  • How to write and format an APA abstract (6th edition)

How to write and format an APA Abstract (6th edition)

Published on November 6, 2020 by Courtney Gahan .

An APA abstract is a summary of your paper in 150–250 words. It describes the research problem , methods , results and conclusions of your research. For published papers, it also includes a list of keywords.

Write the abstract after you have finished your paper, and place it on a separate page after the title page .

The formatting of the abstract page is the same as the rest of an APA style paper : double-spaced, Times New Roman 12pt font, one-inch margins, and a running head at the top of the page.

Table of contents

Apa format abstract example, how to write an apa abstract, apa abstract keywords.

SCRIBBR APA ABSTRACT EXAMPLE RUNNING HEAD 1

What is the problem? Outline the objective, problem statement, research questions and hypotheses. What has been done? Explain your method. What did you discover? Summarize the key findings and conclusions. What do the findings mean? Summarize the discussion and recommendations. What is the problem? Outline the objective, problem statement, research questions and hypotheses. What has been done? Explain your method. What did you discover? Summarize the key findings and conclusions. What do the findings mean? Summarize the discussion and recommendations. What is the problem? Outline the objective, problem statement, research questions and hypotheses. What has been done? Explain your method. What did you discover? Summarize the key findings and conclusions. What do the findings mean? Summarize the discussion and recommendations. What is the problem? Outline the objective, problem statement, research questions and hypotheses. What has been done? Explain your method. What did you discover? Summarize the key findings and conclusions. What do the findings mean? Summarize the discussion and recommendations. What is the problem? Outline the objective, problem statement, research questions and hypotheses. What has been done? Explain your method. What did you discover? Summarize the key findings and conclusions. What do the findings mean? Summarize the discussion and recommendations.

Keywords : example keyword, example keyword, example keyword

An APA abstract must be formatted as follows:

  • Include the running head aligned to the left at the top of the page
  • On the first line, write the heading “Abstract” (centered and without any formatting)
  • Do not indent any part of the text
  • Double space the text
  • Use Times New Roman font in 12 pt
  • Set one-inch (or 2.54 cm) margins
  • If you include a “keywords” section at the end of the abstract, indent the first line and italicize the word “Keywords” while leaving the keywords themselves without any formatting

Prevent plagiarism. Run a free check.

Simply answer the following questions and put them together, then voila! You have an abstract for your paper.

  • What is the problem? Outline the objective , research questions and/or  hypotheses .
  • What has been done? Explain your research methods .
  • What did you discover? Summarize the key findings and conclusions .
  • What do the findings mean? Summarize the discussion and recommendations .

If you need more guidance writing your abstract, read our detailed instructions on what to include and see an abstract example.

How to write an abstract

At the end of the abstract, you can also include a short list of keywords that will be used for indexing if your paper is published on a database. Listing your keywords will help other researchers find your work.

Make sure that your keywords:

  • Accurately represent the content
  • Are specific to your field

APA abstract keywords example

Here is an example of an APA format paper published as a chapter in a book, where the author has included a set of keywords. The author has chosen the terms listed in the title as keywords as well as several other related keywords that feature in their research.

Book chapter title: Nonparalytic Polio and Post-Polio Syndrome

From: Post-Polio Syndrome: A Guide for Polio Survivors and Their Families (pp. 21-26), Julie K. Silver, Yale University Press (2001)

Keywords: Polio, Paralysis, Symptoms, Postpoliomyelitis syndrome, Medical diagnosis, Legs, Physicians, Strokes, Misdiagnosis

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Gahan, C. (2020, November 06). How to write and format an APA Abstract (6th edition). Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/apa-style/6th-edition/archived-abstract/

Is this article helpful?

Courtney Gahan

Courtney Gahan

Scribbr apa citation checker.

An innovative new tool that checks your APA citations with AI software. Say goodbye to inaccurate citations!

where to put abstract in research paper

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 26 March 2024

Predicting and improving complex beer flavor through machine learning

  • Michiel Schreurs   ORCID: orcid.org/0000-0002-9449-5619 1 , 2 , 3   na1 ,
  • Supinya Piampongsant 1 , 2 , 3   na1 ,
  • Miguel Roncoroni   ORCID: orcid.org/0000-0001-7461-1427 1 , 2 , 3   na1 ,
  • Lloyd Cool   ORCID: orcid.org/0000-0001-9936-3124 1 , 2 , 3 , 4 ,
  • Beatriz Herrera-Malaver   ORCID: orcid.org/0000-0002-5096-9974 1 , 2 , 3 ,
  • Christophe Vanderaa   ORCID: orcid.org/0000-0001-7443-5427 4 ,
  • Florian A. Theßeling 1 , 2 , 3 ,
  • Łukasz Kreft   ORCID: orcid.org/0000-0001-7620-4657 5 ,
  • Alexander Botzki   ORCID: orcid.org/0000-0001-6691-4233 5 ,
  • Philippe Malcorps 6 ,
  • Luk Daenen 6 ,
  • Tom Wenseleers   ORCID: orcid.org/0000-0002-1434-861X 4 &
  • Kevin J. Verstrepen   ORCID: orcid.org/0000-0002-3077-6219 1 , 2 , 3  

Nature Communications volume  15 , Article number:  2368 ( 2024 ) Cite this article

48k Accesses

846 Altmetric

Metrics details

  • Chemical engineering
  • Gas chromatography
  • Machine learning
  • Metabolomics
  • Taste receptors

The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.

Similar content being viewed by others

where to put abstract in research paper

Sensory lexicon and aroma volatiles analysis of brewing malt

Xiaoxia Su, Miao Yu, … Tianyi Du

where to put abstract in research paper

Predicting odor from molecular structure: a multi-label classification approach

Kushagra Saini & Venkatnarayan Ramanathan

where to put abstract in research paper

Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach

Lorenzo Pallante, Aigli Korfiati, … Marco A. Deriu

Introduction

Predicting and understanding food perception and appreciation is one of the major challenges in food science. Accurate modeling of food flavor and appreciation could yield important opportunities for both producers and consumers, including quality control, product fingerprinting, counterfeit detection, spoilage detection, and the development of new products and product combinations (food pairing) 1 , 2 , 3 , 4 , 5 , 6 . Accurate models for flavor and consumer appreciation would contribute greatly to our scientific understanding of how humans perceive and appreciate flavor. Moreover, accurate predictive models would also facilitate and standardize existing food assessment methods and could supplement or replace assessments by trained and consumer tasting panels, which are variable, expensive and time-consuming 7 , 8 , 9 . Lastly, apart from providing objective, quantitative, accurate and contextual information that can help producers, models can also guide consumers in understanding their personal preferences 10 .

Despite the myriad of applications, predicting food flavor and appreciation from its chemical properties remains a largely elusive goal in sensory science, especially for complex food and beverages 11 , 12 . A key obstacle is the immense number of flavor-active chemicals underlying food flavor. Flavor compounds can vary widely in chemical structure and concentration, making them technically challenging and labor-intensive to quantify, even in the face of innovations in metabolomics, such as non-targeted metabolic fingerprinting 13 , 14 . Moreover, sensory analysis is perhaps even more complicated. Flavor perception is highly complex, resulting from hundreds of different molecules interacting at the physiochemical and sensorial level. Sensory perception is often non-linear, characterized by complex and concentration-dependent synergistic and antagonistic effects 15 , 16 , 17 , 18 , 19 , 20 , 21 that are further convoluted by the genetics, environment, culture and psychology of consumers 22 , 23 , 24 . Perceived flavor is therefore difficult to measure, with problems of sensitivity, accuracy, and reproducibility that can only be resolved by gathering sufficiently large datasets 25 . Trained tasting panels are considered the prime source of quality sensory data, but require meticulous training, are low throughput and high cost. Public databases containing consumer reviews of food products could provide a valuable alternative, especially for studying appreciation scores, which do not require formal training 25 . Public databases offer the advantage of amassing large amounts of data, increasing the statistical power to identify potential drivers of appreciation. However, public datasets suffer from biases, including a bias in the volunteers that contribute to the database, as well as confounding factors such as price, cult status and psychological conformity towards previous ratings of the product.

Classical multivariate statistics and machine learning methods have been used to predict flavor of specific compounds by, for example, linking structural properties of a compound to its potential biological activities or linking concentrations of specific compounds to sensory profiles 1 , 26 . Importantly, most previous studies focused on predicting organoleptic properties of single compounds (often based on their chemical structure) 27 , 28 , 29 , 30 , 31 , 32 , 33 , thus ignoring the fact that these compounds are present in a complex matrix in food or beverages and excluding complex interactions between compounds. Moreover, the classical statistics commonly used in sensory science 34 , 35 , 36 , 37 , 38 , 39 require a large sample size and sufficient variance amongst predictors to create accurate models. They are not fit for studying an extensive set of hundreds of interacting flavor compounds, since they are sensitive to outliers, have a high tendency to overfit and are less suited for non-linear and discontinuous relationships 40 .

In this study, we combine extensive chemical analyses and sensory data of a set of different commercial beers with machine learning approaches to develop models that predict taste, smell, mouthfeel and appreciation from compound concentrations. Beer is particularly suited to model the relationship between chemistry, flavor and appreciation. First, beer is a complex product, consisting of thousands of flavor compounds that partake in complex sensory interactions 41 , 42 , 43 . This chemical diversity arises from the raw materials (malt, yeast, hops, water and spices) and biochemical conversions during the brewing process (kilning, mashing, boiling, fermentation, maturation and aging) 44 , 45 . Second, the advent of the internet saw beer consumers embrace online review platforms, such as RateBeer (ZX Ventures, Anheuser-Busch InBev SA/NV) and BeerAdvocate (Next Glass, inc.). In this way, the beer community provides massive data sets of beer flavor and appreciation scores, creating extraordinarily large sensory databases to complement the analyses of our professional sensory panel. Specifically, we characterize over 200 chemical properties of 250 commercial beers, spread across 22 beer styles, and link these to the descriptive sensory profiling data of a 16-person in-house trained tasting panel and data acquired from over 180,000 public consumer reviews. These unique and extensive datasets enable us to train a suite of machine learning models to predict flavor and appreciation from a beer’s chemical profile. Dissection of the best-performing models allows us to pinpoint specific compounds as potential drivers of beer flavor and appreciation. Follow-up experiments confirm the importance of these compounds and ultimately allow us to significantly improve the flavor and appreciation of selected commercial beers. Together, our study represents a significant step towards understanding complex flavors and reinforces the value of machine learning to develop and refine complex foods. In this way, it represents a stepping stone for further computer-aided food engineering applications 46 .

To generate a comprehensive dataset on beer flavor, we selected 250 commercial Belgian beers across 22 different beer styles (Supplementary Fig.  S1 ). Beers with ≤ 4.2% alcohol by volume (ABV) were classified as non-alcoholic and low-alcoholic. Blonds and Tripels constitute a significant portion of the dataset (12.4% and 11.2%, respectively) reflecting their presence on the Belgian beer market and the heterogeneity of beers within these styles. By contrast, lager beers are less diverse and dominated by a handful of brands. Rare styles such as Brut or Faro make up only a small fraction of the dataset (2% and 1%, respectively) because fewer of these beers are produced and because they are dominated by distinct characteristics in terms of flavor and chemical composition.

Extensive analysis identifies relationships between chemical compounds in beer

For each beer, we measured 226 different chemical properties, including common brewing parameters such as alcohol content, iso-alpha acids, pH, sugar concentration 47 , and over 200 flavor compounds (Methods, Supplementary Table  S1 ). A large portion (37.2%) are terpenoids arising from hopping, responsible for herbal and fruity flavors 16 , 48 . A second major category are yeast metabolites, such as esters and alcohols, that result in fruity and solvent notes 48 , 49 , 50 . Other measured compounds are primarily derived from malt, or other microbes such as non- Saccharomyces yeasts and bacteria (‘wild flora’). Compounds that arise from spices or staling are labeled under ‘Others’. Five attributes (caloric value, total acids and total ester, hop aroma and sulfur compounds) are calculated from multiple individually measured compounds.

As a first step in identifying relationships between chemical properties, we determined correlations between the concentrations of the compounds (Fig.  1 , upper panel, Supplementary Data  1 and 2 , and Supplementary Fig.  S2 . For the sake of clarity, only a subset of the measured compounds is shown in Fig.  1 ). Compounds of the same origin typically show a positive correlation, while absence of correlation hints at parameters varying independently. For example, the hop aroma compounds citronellol, and alpha-terpineol show moderate correlations with each other (Spearman’s rho=0.39 and 0.57), but not with the bittering hop component iso-alpha acids (Spearman’s rho=0.16 and −0.07). This illustrates how brewers can independently modify hop aroma and bitterness by selecting hop varieties and dosage time. If hops are added early in the boiling phase, chemical conversions increase bitterness while aromas evaporate, conversely, late addition of hops preserves aroma but limits bitterness 51 . Similarly, hop-derived iso-alpha acids show a strong anti-correlation with lactic acid and acetic acid, likely reflecting growth inhibition of lactic acid and acetic acid bacteria, or the consequent use of fewer hops in sour beer styles, such as West Flanders ales and Fruit beers, that rely on these bacteria for their distinct flavors 52 . Finally, yeast-derived esters (ethyl acetate, ethyl decanoate, ethyl hexanoate, ethyl octanoate) and alcohols (ethanol, isoamyl alcohol, isobutanol, and glycerol), correlate with Spearman coefficients above 0.5, suggesting that these secondary metabolites are correlated with the yeast genetic background and/or fermentation parameters and may be difficult to influence individually, although the choice of yeast strain may offer some control 53 .

figure 1

Spearman rank correlations are shown. Descriptors are grouped according to their origin (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)), and sensory aspect (aroma, taste, palate, and overall appreciation). Please note that for the chemical compounds, for the sake of clarity, only a subset of the total number of measured compounds is shown, with an emphasis on the key compounds for each source. For more details, see the main text and Methods section. Chemical data can be found in Supplementary Data  1 , correlations between all chemical compounds are depicted in Supplementary Fig.  S2 and correlation values can be found in Supplementary Data  2 . See Supplementary Data  4 for sensory panel assessments and Supplementary Data  5 for correlation values between all sensory descriptors.

Interestingly, different beer styles show distinct patterns for some flavor compounds (Supplementary Fig.  S3 ). These observations agree with expectations for key beer styles, and serve as a control for our measurements. For instance, Stouts generally show high values for color (darker), while hoppy beers contain elevated levels of iso-alpha acids, compounds associated with bitter hop taste. Acetic and lactic acid are not prevalent in most beers, with notable exceptions such as Kriek, Lambic, Faro, West Flanders ales and Flanders Old Brown, which use acid-producing bacteria ( Lactobacillus and Pediococcus ) or unconventional yeast ( Brettanomyces ) 54 , 55 . Glycerol, ethanol and esters show similar distributions across all beer styles, reflecting their common origin as products of yeast metabolism during fermentation 45 , 53 . Finally, low/no-alcohol beers contain low concentrations of glycerol and esters. This is in line with the production process for most of the low/no-alcohol beers in our dataset, which are produced through limiting fermentation or by stripping away alcohol via evaporation or dialysis, with both methods having the unintended side-effect of reducing the amount of flavor compounds in the final beer 56 , 57 .

Besides expected associations, our data also reveals less trivial associations between beer styles and specific parameters. For example, geraniol and citronellol, two monoterpenoids responsible for citrus, floral and rose flavors and characteristic of Citra hops, are found in relatively high amounts in Christmas, Saison, and Brett/co-fermented beers, where they may originate from terpenoid-rich spices such as coriander seeds instead of hops 58 .

Tasting panel assessments reveal sensorial relationships in beer

To assess the sensory profile of each beer, a trained tasting panel evaluated each of the 250 beers for 50 sensory attributes, including different hop, malt and yeast flavors, off-flavors and spices. Panelists used a tasting sheet (Supplementary Data  3 ) to score the different attributes. Panel consistency was evaluated by repeating 12 samples across different sessions and performing ANOVA. In 95% of cases no significant difference was found across sessions ( p  > 0.05), indicating good panel consistency (Supplementary Table  S2 ).

Aroma and taste perception reported by the trained panel are often linked (Fig.  1 , bottom left panel and Supplementary Data  4 and 5 ), with high correlations between hops aroma and taste (Spearman’s rho=0.83). Bitter taste was found to correlate with hop aroma and taste in general (Spearman’s rho=0.80 and 0.69), and particularly with “grassy” noble hops (Spearman’s rho=0.75). Barnyard flavor, most often associated with sour beers, is identified together with stale hops (Spearman’s rho=0.97) that are used in these beers. Lactic and acetic acid, which often co-occur, are correlated (Spearman’s rho=0.66). Interestingly, sweetness and bitterness are anti-correlated (Spearman’s rho = −0.48), confirming the hypothesis that they mask each other 59 , 60 . Beer body is highly correlated with alcohol (Spearman’s rho = 0.79), and overall appreciation is found to correlate with multiple aspects that describe beer mouthfeel (alcohol, carbonation; Spearman’s rho= 0.32, 0.39), as well as with hop and ester aroma intensity (Spearman’s rho=0.39 and 0.35).

Similar to the chemical analyses, sensorial analyses confirmed typical features of specific beer styles (Supplementary Fig.  S4 ). For example, sour beers (Faro, Flanders Old Brown, Fruit beer, Kriek, Lambic, West Flanders ale) were rated acidic, with flavors of both acetic and lactic acid. Hoppy beers were found to be bitter and showed hop-associated aromas like citrus and tropical fruit. Malt taste is most detected among scotch, stout/porters, and strong ales, while low/no-alcohol beers, which often have a reputation for being ‘worty’ (reminiscent of unfermented, sweet malt extract) appear in the middle. Unsurprisingly, hop aromas are most strongly detected among hoppy beers. Like its chemical counterpart (Supplementary Fig.  S3 ), acidity shows a right-skewed distribution, with the most acidic beers being Krieks, Lambics, and West Flanders ales.

Tasting panel assessments of specific flavors correlate with chemical composition

We find that the concentrations of several chemical compounds strongly correlate with specific aroma or taste, as evaluated by the tasting panel (Fig.  2 , Supplementary Fig.  S5 , Supplementary Data  6 ). In some cases, these correlations confirm expectations and serve as a useful control for data quality. For example, iso-alpha acids, the bittering compounds in hops, strongly correlate with bitterness (Spearman’s rho=0.68), while ethanol and glycerol correlate with tasters’ perceptions of alcohol and body, the mouthfeel sensation of fullness (Spearman’s rho=0.82/0.62 and 0.72/0.57 respectively) and darker color from roasted malts is a good indication of malt perception (Spearman’s rho=0.54).

figure 2

Heatmap colors indicate Spearman’s Rho. Axes are organized according to sensory categories (aroma, taste, mouthfeel, overall), chemical categories and chemical sources in beer (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)). See Supplementary Data  6 for all correlation values.

Interestingly, for some relationships between chemical compounds and perceived flavor, correlations are weaker than expected. For example, the rose-smelling phenethyl acetate only weakly correlates with floral aroma. This hints at more complex relationships and interactions between compounds and suggests a need for a more complex model than simple correlations. Lastly, we uncovered unexpected correlations. For instance, the esters ethyl decanoate and ethyl octanoate appear to correlate slightly with hop perception and bitterness, possibly due to their fruity flavor. Iron is anti-correlated with hop aromas and bitterness, most likely because it is also anti-correlated with iso-alpha acids. This could be a sign of metal chelation of hop acids 61 , given that our analyses measure unbound hop acids and total iron content, or could result from the higher iron content in dark and Fruit beers, which typically have less hoppy and bitter flavors 62 .

Public consumer reviews complement expert panel data

To complement and expand the sensory data of our trained tasting panel, we collected 180,000 reviews of our 250 beers from the online consumer review platform RateBeer. This provided numerical scores for beer appearance, aroma, taste, palate, overall quality as well as the average overall score.

Public datasets are known to suffer from biases, such as price, cult status and psychological conformity towards previous ratings of a product. For example, prices correlate with appreciation scores for these online consumer reviews (rho=0.49, Supplementary Fig.  S6 ), but not for our trained tasting panel (rho=0.19). This suggests that prices affect consumer appreciation, which has been reported in wine 63 , while blind tastings are unaffected. Moreover, we observe that some beer styles, like lagers and non-alcoholic beers, generally receive lower scores, reflecting that online reviewers are mostly beer aficionados with a preference for specialty beers over lager beers. In general, we find a modest correlation between our trained panel’s overall appreciation score and the online consumer appreciation scores (Fig.  3 , rho=0.29). Apart from the aforementioned biases in the online datasets, serving temperature, sample freshness and surroundings, which are all tightly controlled during the tasting panel sessions, can vary tremendously across online consumers and can further contribute to (among others, appreciation) differences between the two categories of tasters. Importantly, in contrast to the overall appreciation scores, for many sensory aspects the results from the professional panel correlated well with results obtained from RateBeer reviews. Correlations were highest for features that are relatively easy to recognize even for untrained tasters, like bitterness, sweetness, alcohol and malt aroma (Fig.  3 and below).

figure 3

RateBeer text mining results can be found in Supplementary Data  7 . Rho values shown are Spearman correlation values, with asterisks indicating significant correlations ( p  < 0.05, two-sided). All p values were smaller than 0.001, except for Esters aroma (0.0553), Esters taste (0.3275), Esters aroma—banana (0.0019), Coriander (0.0508) and Diacetyl (0.0134).

Besides collecting consumer appreciation from these online reviews, we developed automated text analysis tools to gather additional data from review texts (Supplementary Data  7 ). Processing review texts on the RateBeer database yielded comparable results to the scores given by the trained panel for many common sensory aspects, including acidity, bitterness, sweetness, alcohol, malt, and hop tastes (Fig.  3 ). This is in line with what would be expected, since these attributes require less training for accurate assessment and are less influenced by environmental factors such as temperature, serving glass and odors in the environment. Consumer reviews also correlate well with our trained panel for 4-vinyl guaiacol, a compound associated with a very characteristic aroma. By contrast, correlations for more specific aromas like ester, coriander or diacetyl are underrepresented in the online reviews, underscoring the importance of using a trained tasting panel and standardized tasting sheets with explicit factors to be scored for evaluating specific aspects of a beer. Taken together, our results suggest that public reviews are trustworthy for some, but not all, flavor features and can complement or substitute taste panel data for these sensory aspects.

Models can predict beer sensory profiles from chemical data

The rich datasets of chemical analyses, tasting panel assessments and public reviews gathered in the first part of this study provided us with a unique opportunity to develop predictive models that link chemical data to sensorial features. Given the complexity of beer flavor, basic statistical tools such as correlations or linear regression may not always be the most suitable for making accurate predictions. Instead, we applied different machine learning models that can model both simple linear and complex interactive relationships. Specifically, we constructed a set of regression models to predict (a) trained panel scores for beer flavor and quality and (b) public reviews’ appreciation scores from beer chemical profiles. We trained and tested 10 different models (Methods), 3 linear regression-based models (simple linear regression with first-order interactions (LR), lasso regression with first-order interactions (Lasso), partial least squares regressor (PLSR)), 5 decision tree models (AdaBoost regressor (ABR), extra trees (ET), gradient boosting regressor (GBR), random forest (RF) and XGBoost regressor (XGBR)), 1 support vector regression (SVR), and 1 artificial neural network (ANN) model.

To compare the performance of our machine learning models, the dataset was randomly split into a training and test set, stratified by beer style. After a model was trained on data in the training set, its performance was evaluated on its ability to predict the test dataset obtained from multi-output models (based on the coefficient of determination, see Methods). Additionally, individual-attribute models were ranked per descriptor and the average rank was calculated, as proposed by Korneva et al. 64 . Importantly, both ways of evaluating the models’ performance agreed in general. Performance of the different models varied (Table  1 ). It should be noted that all models perform better at predicting RateBeer results than results from our trained tasting panel. One reason could be that sensory data is inherently variable, and this variability is averaged out with the large number of public reviews from RateBeer. Additionally, all tree-based models perform better at predicting taste than aroma. Linear models (LR) performed particularly poorly, with negative R 2 values, due to severe overfitting (training set R 2  = 1). Overfitting is a common issue in linear models with many parameters and limited samples, especially with interaction terms further amplifying the number of parameters. L1 regularization (Lasso) successfully overcomes this overfitting, out-competing multiple tree-based models on the RateBeer dataset. Similarly, the dimensionality reduction of PLSR avoids overfitting and improves performance, to some extent. Still, tree-based models (ABR, ET, GBR, RF and XGBR) show the best performance, out-competing the linear models (LR, Lasso, PLSR) commonly used in sensory science 65 .

GBR models showed the best overall performance in predicting sensory responses from chemical information, with R 2 values up to 0.75 depending on the predicted sensory feature (Supplementary Table  S4 ). The GBR models predict consumer appreciation (RateBeer) better than our trained panel’s appreciation (R 2 value of 0.67 compared to R 2 value of 0.09) (Supplementary Table  S3 and Supplementary Table  S4 ). ANN models showed intermediate performance, likely because neural networks typically perform best with larger datasets 66 . The SVR shows intermediate performance, mostly due to the weak predictions of specific attributes that lower the overall performance (Supplementary Table  S4 ).

Model dissection identifies specific, unexpected compounds as drivers of consumer appreciation

Next, we leveraged our models to infer important contributors to sensory perception and consumer appreciation. Consumer preference is a crucial sensory aspects, because a product that shows low consumer appreciation scores often does not succeed commercially 25 . Additionally, the requirement for a large number of representative evaluators makes consumer trials one of the more costly and time-consuming aspects of product development. Hence, a model for predicting chemical drivers of overall appreciation would be a welcome addition to the available toolbox for food development and optimization.

Since GBR models on our RateBeer dataset showed the best overall performance, we focused on these models. Specifically, we used two approaches to identify important contributors. First, rankings of the most important predictors for each sensorial trait in the GBR models were obtained based on impurity-based feature importance (mean decrease in impurity). High-ranked parameters were hypothesized to be either the true causal chemical properties underlying the trait, to correlate with the actual causal properties, or to take part in sensory interactions affecting the trait 67 (Fig.  4A ). In a second approach, we used SHAP 68 to determine which parameters contributed most to the model for making predictions of consumer appreciation (Fig.  4B ). SHAP calculates parameter contributions to model predictions on a per-sample basis, which can be aggregated into an importance score.

figure 4

A The impurity-based feature importance (mean deviance in impurity, MDI) calculated from the Gradient Boosting Regression (GBR) model predicting RateBeer appreciation scores. The top 15 highest ranked chemical properties are shown. B SHAP summary plot for the top 15 parameters contributing to our GBR model. Each point on the graph represents a sample from our dataset. The color represents the concentration of that parameter, with bluer colors representing low values and redder colors representing higher values. Greater absolute values on the horizontal axis indicate a higher impact of the parameter on the prediction of the model. C Spearman correlations between the 15 most important chemical properties and consumer overall appreciation. Numbers indicate the Spearman Rho correlation coefficient, and the rank of this correlation compared to all other correlations. The top 15 important compounds were determined using SHAP (panel B).

Both approaches identified ethyl acetate as the most predictive parameter for beer appreciation (Fig.  4 ). Ethyl acetate is the most abundant ester in beer with a typical ‘fruity’, ‘solvent’ and ‘alcoholic’ flavor, but is often considered less important than other esters like isoamyl acetate. The second most important parameter identified by SHAP is ethanol, the most abundant beer compound after water. Apart from directly contributing to beer flavor and mouthfeel, ethanol drastically influences the physical properties of beer, dictating how easily volatile compounds escape the beer matrix to contribute to beer aroma 69 . Importantly, it should also be noted that the importance of ethanol for appreciation is likely inflated by the very low appreciation scores of non-alcoholic beers (Supplementary Fig.  S4 ). Despite not often being considered a driver of beer appreciation, protein level also ranks highly in both approaches, possibly due to its effect on mouthfeel and body 70 . Lactic acid, which contributes to the tart taste of sour beers, is the fourth most important parameter identified by SHAP, possibly due to the generally high appreciation of sour beers in our dataset.

Interestingly, some of the most important predictive parameters for our model are not well-established as beer flavors or are even commonly regarded as being negative for beer quality. For example, our models identify methanethiol and ethyl phenyl acetate, an ester commonly linked to beer staling 71 , as a key factor contributing to beer appreciation. Although there is no doubt that high concentrations of these compounds are considered unpleasant, the positive effects of modest concentrations are not yet known 72 , 73 .

To compare our approach to conventional statistics, we evaluated how well the 15 most important SHAP-derived parameters correlate with consumer appreciation (Fig.  4C ). Interestingly, only 6 of the properties derived by SHAP rank amongst the top 15 most correlated parameters. For some chemical compounds, the correlations are so low that they would have likely been considered unimportant. For example, lactic acid, the fourth most important parameter, shows a bimodal distribution for appreciation, with sour beers forming a separate cluster, that is missed entirely by the Spearman correlation. Additionally, the correlation plots reveal outliers, emphasizing the need for robust analysis tools. Together, this highlights the need for alternative models, like the Gradient Boosting model, that better grasp the complexity of (beer) flavor.

Finally, to observe the relationships between these chemical properties and their predicted targets, partial dependence plots were constructed for the six most important predictors of consumer appreciation 74 , 75 , 76 (Supplementary Fig.  S7 ). One-way partial dependence plots show how a change in concentration affects the predicted appreciation. These plots reveal an important limitation of our models: appreciation predictions remain constant at ever-increasing concentrations. This implies that once a threshold concentration is reached, further increasing the concentration does not affect appreciation. This is false, as it is well-documented that certain compounds become unpleasant at high concentrations, including ethyl acetate (‘nail polish’) 77 and methanethiol (‘sulfury’ and ‘rotten cabbage’) 78 . The inability of our models to grasp that flavor compounds have optimal levels, above which they become negative, is a consequence of working with commercial beer brands where (off-)flavors are rarely too high to negatively impact the product. The two-way partial dependence plots show how changing the concentration of two compounds influences predicted appreciation, visualizing their interactions (Supplementary Fig.  S7 ). In our case, the top 5 parameters are dominated by additive or synergistic interactions, with high concentrations for both compounds resulting in the highest predicted appreciation.

To assess the robustness of our best-performing models and model predictions, we performed 100 iterations of the GBR, RF and ET models. In general, all iterations of the models yielded similar performance (Supplementary Fig.  S8 ). Moreover, the main predictors (including the top predictors ethanol and ethyl acetate) remained virtually the same, especially for GBR and RF. For the iterations of the ET model, we did observe more variation in the top predictors, which is likely a consequence of the model’s inherent random architecture in combination with co-correlations between certain predictors. However, even in this case, several of the top predictors (ethanol and ethyl acetate) remain unchanged, although their rank in importance changes (Supplementary Fig.  S8 ).

Next, we investigated if a combination of RateBeer and trained panel data into one consolidated dataset would lead to stronger models, under the hypothesis that such a model would suffer less from bias in the datasets. A GBR model was trained to predict appreciation on the combined dataset. This model underperformed compared to the RateBeer model, both in the native case and when including a dataset identifier (R 2  = 0.67, 0.26 and 0.42 respectively). For the latter, the dataset identifier is the most important feature (Supplementary Fig.  S9 ), while most of the feature importance remains unchanged, with ethyl acetate and ethanol ranking highest, like in the original model trained only on RateBeer data. It seems that the large variation in the panel dataset introduces noise, weakening the models’ performances and reliability. In addition, it seems reasonable to assume that both datasets are fundamentally different, with the panel dataset obtained by blind tastings by a trained professional panel.

Lastly, we evaluated whether beer style identifiers would further enhance the model’s performance. A GBR model was trained with parameters that explicitly encoded the styles of the samples. This did not improve model performance (R2 = 0.66 with style information vs R2 = 0.67). The most important chemical features are consistent with the model trained without style information (eg. ethanol and ethyl acetate), and with the exception of the most preferred (strong ale) and least preferred (low/no-alcohol) styles, none of the styles were among the most important features (Supplementary Fig.  S9 , Supplementary Table  S5 and S6 ). This is likely due to a combination of style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original models, as well as the low number of samples belonging to some styles, making it difficult for the model to learn style-specific patterns. Moreover, beer styles are not rigorously defined, with some styles overlapping in features and some beers being misattributed to a specific style, all of which leads to more noise in models that use style parameters.

Model validation

To test if our predictive models give insight into beer appreciation, we set up experiments aimed at improving existing commercial beers. We specifically selected overall appreciation as the trait to be examined because of its complexity and commercial relevance. Beer flavor comprises a complex bouquet rather than single aromas and tastes 53 . Hence, adding a single compound to the extent that a difference is noticeable may lead to an unbalanced, artificial flavor. Therefore, we evaluated the effect of combinations of compounds. Because Blond beers represent the most extensive style in our dataset, we selected a beer from this style as the starting material for these experiments (Beer 64 in Supplementary Data  1 ).

In the first set of experiments, we adjusted the concentrations of compounds that made up the most important predictors of overall appreciation (ethyl acetate, ethanol, lactic acid, ethyl phenyl acetate) together with correlated compounds (ethyl hexanoate, isoamyl acetate, glycerol), bringing them up to 95 th percentile ethanol-normalized concentrations (Methods) within the Blond group (‘Spiked’ concentration in Fig.  5A ). Compared to controls, the spiked beers were found to have significantly improved overall appreciation among trained panelists, with panelist noting increased intensity of ester flavors, sweetness, alcohol, and body fullness (Fig.  5B ). To disentangle the contribution of ethanol to these results, a second experiment was performed without the addition of ethanol. This resulted in a similar outcome, including increased perception of alcohol and overall appreciation.

figure 5

Adding the top chemical compounds, identified as best predictors of appreciation by our model, into poorly appreciated beers results in increased appreciation from our trained panel. Results of sensory tests between base beers and those spiked with compounds identified as the best predictors by the model. A Blond and Non/Low-alcohol (0.0% ABV) base beers were brought up to 95th-percentile ethanol-normalized concentrations within each style. B For each sensory attribute, tasters indicated the more intense sample and selected the sample they preferred. The numbers above the bars correspond to the p values that indicate significant changes in perceived flavor (two-sided binomial test: alpha 0.05, n  = 20 or 13).

In a last experiment, we tested whether using the model’s predictions can boost the appreciation of a non-alcoholic beer (beer 223 in Supplementary Data  1 ). Again, the addition of a mixture of predicted compounds (omitting ethanol, in this case) resulted in a significant increase in appreciation, body, ester flavor and sweetness.

Predicting flavor and consumer appreciation from chemical composition is one of the ultimate goals of sensory science. A reliable, systematic and unbiased way to link chemical profiles to flavor and food appreciation would be a significant asset to the food and beverage industry. Such tools would substantially aid in quality control and recipe development, offer an efficient and cost-effective alternative to pilot studies and consumer trials and would ultimately allow food manufacturers to produce superior, tailor-made products that better meet the demands of specific consumer groups more efficiently.

A limited set of studies have previously tried, to varying degrees of success, to predict beer flavor and beer popularity based on (a limited set of) chemical compounds and flavors 79 , 80 . Current sensitive, high-throughput technologies allow measuring an unprecedented number of chemical compounds and properties in a large set of samples, yielding a dataset that can train models that help close the gaps between chemistry and flavor, even for a complex natural product like beer. To our knowledge, no previous research gathered data at this scale (250 samples, 226 chemical parameters, 50 sensory attributes and 5 consumer scores) to disentangle and validate the chemical aspects driving beer preference using various machine-learning techniques. We find that modern machine learning models outperform conventional statistical tools, such as correlations and linear models, and can successfully predict flavor appreciation from chemical composition. This could be attributed to the natural incorporation of interactions and non-linear or discontinuous effects in machine learning models, which are not easily grasped by the linear model architecture. While linear models and partial least squares regression represent the most widespread statistical approaches in sensory science, in part because they allow interpretation 65 , 81 , 82 , modern machine learning methods allow for building better predictive models while preserving the possibility to dissect and exploit the underlying patterns. Of the 10 different models we trained, tree-based models, such as our best performing GBR, showed the best overall performance in predicting sensory responses from chemical information, outcompeting artificial neural networks. This agrees with previous reports for models trained on tabular data 83 . Our results are in line with the findings of Colantonio et al. who also identified the gradient boosting architecture as performing best at predicting appreciation and flavor (of tomatoes and blueberries, in their specific study) 26 . Importantly, besides our larger experimental scale, we were able to directly confirm our models’ predictions in vivo.

Our study confirms that flavor compound concentration does not always correlate with perception, suggesting complex interactions that are often missed by more conventional statistics and simple models. Specifically, we find that tree-based algorithms may perform best in developing models that link complex food chemistry with aroma. Furthermore, we show that massive datasets of untrained consumer reviews provide a valuable source of data, that can complement or even replace trained tasting panels, especially for appreciation and basic flavors, such as sweetness and bitterness. This holds despite biases that are known to occur in such datasets, such as price or conformity bias. Moreover, GBR models predict taste better than aroma. This is likely because taste (e.g. bitterness) often directly relates to the corresponding chemical measurements (e.g., iso-alpha acids), whereas such a link is less clear for aromas, which often result from the interplay between multiple volatile compounds. We also find that our models are best at predicting acidity and alcohol, likely because there is a direct relation between the measured chemical compounds (acids and ethanol) and the corresponding perceived sensorial attribute (acidity and alcohol), and because even untrained consumers are generally able to recognize these flavors and aromas.

The predictions of our final models, trained on review data, hold even for blind tastings with small groups of trained tasters, as demonstrated by our ability to validate specific compounds as drivers of beer flavor and appreciation. Since adding a single compound to the extent of a noticeable difference may result in an unbalanced flavor profile, we specifically tested our identified key drivers as a combination of compounds. While this approach does not allow us to validate if a particular single compound would affect flavor and/or appreciation, our experiments do show that this combination of compounds increases consumer appreciation.

It is important to stress that, while it represents an important step forward, our approach still has several major limitations. A key weakness of the GBR model architecture is that amongst co-correlating variables, the largest main effect is consistently preferred for model building. As a result, co-correlating variables often have artificially low importance scores, both for impurity and SHAP-based methods, like we observed in the comparison to the more randomized Extra Trees models. This implies that chemicals identified as key drivers of a specific sensory feature by GBR might not be the true causative compounds, but rather co-correlate with the actual causative chemical. For example, the high importance of ethyl acetate could be (partially) attributed to the total ester content, ethanol or ethyl hexanoate (rho=0.77, rho=0.72 and rho=0.68), while ethyl phenylacetate could hide the importance of prenyl isobutyrate and ethyl benzoate (rho=0.77 and rho=0.76). Expanding our GBR model to include beer style as a parameter did not yield additional power or insight. This is likely due to style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original model, as well as the smaller sample size per style, limiting the power to uncover style-specific patterns. This can be partly attributed to the curse of dimensionality, where the high number of parameters results in the models mainly incorporating single parameter effects, rather than complex interactions such as style-dependent effects 67 . A larger number of samples may overcome some of these limitations and offer more insight into style-specific effects. On the other hand, beer style is not a rigid scientific classification, and beers within one style often differ a lot, which further complicates the analysis of style as a model factor.

Our study is limited to beers from Belgian breweries. Although these beers cover a large portion of the beer styles available globally, some beer styles and consumer patterns may be missing, while other features might be overrepresented. For example, many Belgian ales exhibit yeast-driven flavor profiles, which is reflected in the chemical drivers of appreciation discovered by this study. In future work, expanding the scope to include diverse markets and beer styles could lead to the identification of even more drivers of appreciation and better models for special niche products that were not present in our beer set.

In addition to inherent limitations of GBR models, there are also some limitations associated with studying food aroma. Even if our chemical analyses measured most of the known aroma compounds, the total number of flavor compounds in complex foods like beer is still larger than the subset we were able to measure in this study. For example, hop-derived thiols, that influence flavor at very low concentrations, are notoriously difficult to measure in a high-throughput experiment. Moreover, consumer perception remains subjective and prone to biases that are difficult to avoid. It is also important to stress that the models are still immature and that more extensive datasets will be crucial for developing more complete models in the future. Besides more samples and parameters, our dataset does not include any demographic information about the tasters. Including such data could lead to better models that grasp external factors like age and culture. Another limitation is that our set of beers consists of high-quality end-products and lacks beers that are unfit for sale, which limits the current model in accurately predicting products that are appreciated very badly. Finally, while models could be readily applied in quality control, their use in sensory science and product development is restrained by their inability to discern causal relationships. Given that the models cannot distinguish compounds that genuinely drive consumer perception from those that merely correlate, validation experiments are essential to identify true causative compounds.

Despite the inherent limitations, dissection of our models enabled us to pinpoint specific molecules as potential drivers of beer aroma and consumer appreciation, including compounds that were unexpected and would not have been identified using standard approaches. Important drivers of beer appreciation uncovered by our models include protein levels, ethyl acetate, ethyl phenyl acetate and lactic acid. Currently, many brewers already use lactic acid to acidify their brewing water and ensure optimal pH for enzymatic activity during the mashing process. Our results suggest that adding lactic acid can also improve beer appreciation, although its individual effect remains to be tested. Interestingly, ethanol appears to be unnecessary to improve beer appreciation, both for blond beer and alcohol-free beer. Given the growing consumer interest in alcohol-free beer, with a predicted annual market growth of >7% 84 , it is relevant for brewers to know what compounds can further increase consumer appreciation of these beers. Hence, our model may readily provide avenues to further improve the flavor and consumer appreciation of both alcoholic and non-alcoholic beers, which is generally considered one of the key challenges for future beer production.

Whereas we see a direct implementation of our results for the development of superior alcohol-free beverages and other food products, our study can also serve as a stepping stone for the development of novel alcohol-containing beverages. We want to echo the growing body of scientific evidence for the negative effects of alcohol consumption, both on the individual level by the mutagenic, teratogenic and carcinogenic effects of ethanol 85 , 86 , as well as the burden on society caused by alcohol abuse and addiction. We encourage the use of our results for the production of healthier, tastier products, including novel and improved beverages with lower alcohol contents. Furthermore, we strongly discourage the use of these technologies to improve the appreciation or addictive properties of harmful substances.

The present work demonstrates that despite some important remaining hurdles, combining the latest developments in chemical analyses, sensory analysis and modern machine learning methods offers exciting avenues for food chemistry and engineering. Soon, these tools may provide solutions in quality control and recipe development, as well as new approaches to sensory science and flavor research.

Beer selection

250 commercial Belgian beers were selected to cover the broad diversity of beer styles and corresponding diversity in chemical composition and aroma. See Supplementary Fig.  S1 .

Chemical dataset

Sample preparation.

Beers within their expiration date were purchased from commercial retailers. Samples were prepared in biological duplicates at room temperature, unless explicitly stated otherwise. Bottle pressure was measured with a manual pressure device (Steinfurth Mess-Systeme GmbH) and used to calculate CO 2 concentration. The beer was poured through two filter papers (Macherey-Nagel, 500713032 MN 713 ¼) to remove carbon dioxide and prevent spontaneous foaming. Samples were then prepared for measurements by targeted Headspace-Gas Chromatography-Flame Ionization Detector/Flame Photometric Detector (HS-GC-FID/FPD), Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), colorimetric analysis, enzymatic analysis, Near-Infrared (NIR) analysis, as described in the sections below. The mean values of biological duplicates are reported for each compound.

HS-GC-FID/FPD

HS-GC-FID/FPD (Shimadzu GC 2010 Plus) was used to measure higher alcohols, acetaldehyde, esters, 4-vinyl guaicol, and sulfur compounds. Each measurement comprised 5 ml of sample pipetted into a 20 ml glass vial containing 1.75 g NaCl (VWR, 27810.295). 100 µl of 2-heptanol (Sigma-Aldrich, H3003) (internal standard) solution in ethanol (Fisher Chemical, E/0650DF/C17) was added for a final concentration of 2.44 mg/L. Samples were flushed with nitrogen for 10 s, sealed with a silicone septum, stored at −80 °C and analyzed in batches of 20.

The GC was equipped with a DB-WAXetr column (length, 30 m; internal diameter, 0.32 mm; layer thickness, 0.50 µm; Agilent Technologies, Santa Clara, CA, USA) to the FID and an HP-5 column (length, 30 m; internal diameter, 0.25 mm; layer thickness, 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) to the FPD. N 2 was used as the carrier gas. Samples were incubated for 20 min at 70 °C in the headspace autosampler (Flow rate, 35 cm/s; Injection volume, 1000 µL; Injection mode, split; Combi PAL autosampler, CTC analytics, Switzerland). The injector, FID and FPD temperatures were kept at 250 °C. The GC oven temperature was first held at 50 °C for 5 min and then allowed to rise to 80 °C at a rate of 5 °C/min, followed by a second ramp of 4 °C/min until 200 °C kept for 3 min and a final ramp of (4 °C/min) until 230 °C for 1 min. Results were analyzed with the GCSolution software version 2.4 (Shimadzu, Kyoto, Japan). The GC was calibrated with a 5% EtOH solution (VWR International) containing the volatiles under study (Supplementary Table  S7 ).

HS-SPME-GC-MS

HS-SPME-GC-MS (Shimadzu GCMS-QP-2010 Ultra) was used to measure additional volatile compounds, mainly comprising terpenoids and esters. Samples were analyzed by HS-SPME using a triphase DVB/Carboxen/PDMS 50/30 μm SPME fiber (Supelco Co., Bellefonte, PA, USA) followed by gas chromatography (Thermo Fisher Scientific Trace 1300 series, USA) coupled to a mass spectrometer (Thermo Fisher Scientific ISQ series MS) equipped with a TriPlus RSH autosampler. 5 ml of degassed beer sample was placed in 20 ml vials containing 1.75 g NaCl (VWR, 27810.295). 5 µl internal standard mix was added, containing 2-heptanol (1 g/L) (Sigma-Aldrich, H3003), 4-fluorobenzaldehyde (1 g/L) (Sigma-Aldrich, 128376), 2,3-hexanedione (1 g/L) (Sigma-Aldrich, 144169) and guaiacol (1 g/L) (Sigma-Aldrich, W253200) in ethanol (Fisher Chemical, E/0650DF/C17). Each sample was incubated at 60 °C in the autosampler oven with constant agitation. After 5 min equilibration, the SPME fiber was exposed to the sample headspace for 30 min. The compounds trapped on the fiber were thermally desorbed in the injection port of the chromatograph by heating the fiber for 15 min at 270 °C.

The GC-MS was equipped with a low polarity RXi-5Sil MS column (length, 20 m; internal diameter, 0.18 mm; layer thickness, 0.18 µm; Restek, Bellefonte, PA, USA). Injection was performed in splitless mode at 320 °C, a split flow of 9 ml/min, a purge flow of 5 ml/min and an open valve time of 3 min. To obtain a pulsed injection, a programmed gas flow was used whereby the helium gas flow was set at 2.7 mL/min for 0.1 min, followed by a decrease in flow of 20 ml/min to the normal 0.9 mL/min. The temperature was first held at 30 °C for 3 min and then allowed to rise to 80 °C at a rate of 7 °C/min, followed by a second ramp of 2 °C/min till 125 °C and a final ramp of 8 °C/min with a final temperature of 270 °C.

Mass acquisition range was 33 to 550 amu at a scan rate of 5 scans/s. Electron impact ionization energy was 70 eV. The interface and ion source were kept at 275 °C and 250 °C, respectively. A mix of linear n-alkanes (from C7 to C40, Supelco Co.) was injected into the GC-MS under identical conditions to serve as external retention index markers. Identification and quantification of the compounds were performed using an in-house developed R script as described in Goelen et al. and Reher et al. 87 , 88 (for package information, see Supplementary Table  S8 ). Briefly, chromatograms were analyzed using AMDIS (v2.71) 89 to separate overlapping peaks and obtain pure compound spectra. The NIST MS Search software (v2.0 g) in combination with the NIST2017, FFNSC3 and Adams4 libraries were used to manually identify the empirical spectra, taking into account the expected retention time. After background subtraction and correcting for retention time shifts between samples run on different days based on alkane ladders, compound elution profiles were extracted and integrated using a file with 284 target compounds of interest, which were either recovered in our identified AMDIS list of spectra or were known to occur in beer. Compound elution profiles were estimated for every peak in every chromatogram over a time-restricted window using weighted non-negative least square analysis after which peak areas were integrated 87 , 88 . Batch effect correction was performed by normalizing against the most stable internal standard compound, 4-fluorobenzaldehyde. Out of all 284 target compounds that were analyzed, 167 were visually judged to have reliable elution profiles and were used for final analysis.

Discrete photometric and enzymatic analysis

Discrete photometric and enzymatic analysis (Thermo Scientific TM Gallery TM Plus Beermaster Discrete Analyzer) was used to measure acetic acid, ammonia, beta-glucan, iso-alpha acids, color, sugars, glycerol, iron, pH, protein, and sulfite. 2 ml of sample volume was used for the analyses. Information regarding the reagents and standard solutions used for analyses and calibrations is included in Supplementary Table  S7 and Supplementary Table  S9 .

NIR analyses

NIR analysis (Anton Paar Alcolyzer Beer ME System) was used to measure ethanol. Measurements comprised 50 ml of sample, and a 10% EtOH solution was used for calibration.

Correlation calculations

Pairwise Spearman Rank correlations were calculated between all chemical properties.

Sensory dataset

Trained panel.

Our trained tasting panel consisted of volunteers who gave prior verbal informed consent. All compounds used for the validation experiment were of food-grade quality. The tasting sessions were approved by the Social and Societal Ethics Committee of the KU Leuven (G-2022-5677-R2(MAR)). All online reviewers agreed to the Terms and Conditions of the RateBeer website.

Sensory analysis was performed according to the American Society of Brewing Chemists (ASBC) Sensory Analysis Methods 90 . 30 volunteers were screened through a series of triangle tests. The sixteen most sensitive and consistent tasters were retained as taste panel members. The resulting panel was diverse in age [22–42, mean: 29], sex [56% male] and nationality [7 different countries]. The panel developed a consensus vocabulary to describe beer aroma, taste and mouthfeel. Panelists were trained to identify and score 50 different attributes, using a 7-point scale to rate attributes’ intensity. The scoring sheet is included as Supplementary Data  3 . Sensory assessments took place between 10–12 a.m. The beers were served in black-colored glasses. Per session, between 5 and 12 beers of the same style were tasted at 12 °C to 16 °C. Two reference beers were added to each set and indicated as ‘Reference 1 & 2’, allowing panel members to calibrate their ratings. Not all panelists were present at every tasting. Scores were scaled by standard deviation and mean-centered per taster. Values are represented as z-scores and clustered by Euclidean distance. Pairwise Spearman correlations were calculated between taste and aroma sensory attributes. Panel consistency was evaluated by repeating samples on different sessions and performing ANOVA to identify differences, using the ‘stats’ package (v4.2.2) in R (for package information, see Supplementary Table  S8 ).

Online reviews from a public database

The ‘scrapy’ package in Python (v3.6) (for package information, see Supplementary Table  S8 ). was used to collect 232,288 online reviews (mean=922, min=6, max=5343) from RateBeer, an online beer review database. Each review entry comprised 5 numerical scores (appearance, aroma, taste, palate and overall quality) and an optional review text. The total number of reviews per reviewer was collected separately. Numerical scores were scaled and centered per rater, and mean scores were calculated per beer.

For the review texts, the language was estimated using the packages ‘langdetect’ and ‘langid’ in Python. Reviews that were classified as English by both packages were kept. Reviewers with fewer than 100 entries overall were discarded. 181,025 reviews from >6000 reviewers from >40 countries remained. Text processing was done using the ‘nltk’ package in Python. Texts were corrected for slang and misspellings; proper nouns and rare words that are relevant to the beer context were specified and kept as-is (‘Chimay’,’Lambic’, etc.). A dictionary of semantically similar sensorial terms, for example ‘floral’ and ‘flower’, was created and collapsed together into one term. Words were stemmed and lemmatized to avoid identifying words such as ‘acid’ and ‘acidity’ as separate terms. Numbers and punctuation were removed.

Sentences from up to 50 randomly chosen reviews per beer were manually categorized according to the aspect of beer they describe (appearance, aroma, taste, palate, overall quality—not to be confused with the 5 numerical scores described above) or flagged as irrelevant if they contained no useful information. If a beer contained fewer than 50 reviews, all reviews were manually classified. This labeled data set was used to train a model that classified the rest of the sentences for all beers 91 . Sentences describing taste and aroma were extracted, and term frequency–inverse document frequency (TFIDF) was implemented to calculate enrichment scores for sensorial words per beer.

The sex of the tasting subject was not considered when building our sensory database. Instead, results from different panelists were averaged, both for our trained panel (56% male, 44% female) and the RateBeer reviews (70% male, 30% female for RateBeer as a whole).

Beer price collection and processing

Beer prices were collected from the following stores: Colruyt, Delhaize, Total Wine, BeerHawk, The Belgian Beer Shop, The Belgian Shop, and Beer of Belgium. Where applicable, prices were converted to Euros and normalized per liter. Spearman correlations were calculated between these prices and mean overall appreciation scores from RateBeer and the taste panel, respectively.

Pairwise Spearman Rank correlations were calculated between all sensory properties.

Machine learning models

Predictive modeling of sensory profiles from chemical data.

Regression models were constructed to predict (a) trained panel scores for beer flavors and quality from beer chemical profiles and (b) public reviews’ appreciation scores from beer chemical profiles. Z-scores were used to represent sensory attributes in both data sets. Chemical properties with log-normal distributions (Shapiro-Wilk test, p  <  0.05 ) were log-transformed. Missing chemical measurements (0.1% of all data) were replaced with mean values per attribute. Observations from 250 beers were randomly separated into a training set (70%, 175 beers) and a test set (30%, 75 beers), stratified per beer style. Chemical measurements (p = 231) were normalized based on the training set average and standard deviation. In total, three linear regression-based models: linear regression with first-order interaction terms (LR), lasso regression with first-order interaction terms (Lasso) and partial least squares regression (PLSR); five decision tree models, Adaboost regressor (ABR), Extra Trees (ET), Gradient Boosting regressor (GBR), Random Forest (RF) and XGBoost regressor (XGBR); one support vector machine model (SVR) and one artificial neural network model (ANN) were trained. The models were implemented using the ‘scikit-learn’ package (v1.2.2) and ‘xgboost’ package (v1.7.3) in Python (v3.9.16). Models were trained, and hyperparameters optimized, using five-fold cross-validated grid search with the coefficient of determination (R 2 ) as the evaluation metric. The ANN (scikit-learn’s MLPRegressor) was optimized using Bayesian Tree-Structured Parzen Estimator optimization with the ‘Optuna’ Python package (v3.2.0). Individual models were trained per attribute, and a multi-output model was trained on all attributes simultaneously.

Model dissection

GBR was found to outperform other methods, resulting in models with the highest average R 2 values in both trained panel and public review data sets. Impurity-based rankings of the most important predictors for each predicted sensorial trait were obtained using the ‘scikit-learn’ package. To observe the relationships between these chemical properties and their predicted targets, partial dependence plots (PDP) were constructed for the six most important predictors of consumer appreciation 74 , 75 .

The ‘SHAP’ package in Python (v0.41.0) was implemented to provide an alternative ranking of predictor importance and to visualize the predictors’ effects as a function of their concentration 68 .

Validation of causal chemical properties

To validate the effects of the most important model features on predicted sensory attributes, beers were spiked with the chemical compounds identified by the models and descriptive sensory analyses were carried out according to the American Society of Brewing Chemists (ASBC) protocol 90 .

Compound spiking was done 30 min before tasting. Compounds were spiked into fresh beer bottles, that were immediately resealed and inverted three times. Fresh bottles of beer were opened for the same duration, resealed, and inverted thrice, to serve as controls. Pairs of spiked samples and controls were served simultaneously, chilled and in dark glasses as outlined in the Trained panel section above. Tasters were instructed to select the glass with the higher flavor intensity for each attribute (directional difference test 92 ) and to select the glass they prefer.

The final concentration after spiking was equal to the within-style average, after normalizing by ethanol concentration. This was done to ensure balanced flavor profiles in the final spiked beer. The same methods were applied to improve a non-alcoholic beer. Compounds were the following: ethyl acetate (Merck KGaA, W241415), ethyl hexanoate (Merck KGaA, W243906), isoamyl acetate (Merck KGaA, W205508), phenethyl acetate (Merck KGaA, W285706), ethanol (96%, Colruyt), glycerol (Merck KGaA, W252506), lactic acid (Merck KGaA, 261106).

Significant differences in preference or perceived intensity were determined by performing the two-sided binomial test on each attribute.

Reporting summary

Further information on research design is available in the  Nature Portfolio Reporting Summary linked to this article.

Data availability

The data that support the findings of this work are available in the Supplementary Data files and have been deposited to Zenodo under accession code 10653704 93 . The RateBeer scores data are under restricted access, they are not publicly available as they are property of RateBeer (ZX Ventures, USA). Access can be obtained from the authors upon reasonable request and with permission of RateBeer (ZX Ventures, USA).  Source data are provided with this paper.

Code availability

The code for training the machine learning models, analyzing the models, and generating the figures has been deposited to Zenodo under accession code 10653704 93 .

Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355 , 391–394 (2017).

Article   ADS   CAS   PubMed   Google Scholar  

Plutowska, B. & Wardencki, W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – A review. Food Chem. 107 , 449–463 (2008).

Article   CAS   Google Scholar  

Legin, A., Rudnitskaya, A., Seleznev, B. & Vlasov, Y. Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie. Anal. Chim. Acta 534 , 129–135 (2005).

Loutfi, A., Coradeschi, S., Mani, G. K., Shankar, P. & Rayappan, J. B. B. Electronic noses for food quality: A review. J. Food Eng. 144 , 103–111 (2015).

Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. & Barabási, A.-L. Flavor network and the principles of food pairing. Sci. Rep. 1 , 196 (2011).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bartoshuk, L. M. & Klee, H. J. Better fruits and vegetables through sensory analysis. Curr. Biol. 23 , R374–R378 (2013).

Article   CAS   PubMed   Google Scholar  

Piggott, J. R. Design questions in sensory and consumer science. Food Qual. Prefer. 3293 , 217–220 (1995).

Article   Google Scholar  

Kermit, M. & Lengard, V. Assessing the performance of a sensory panel-panellist monitoring and tracking. J. Chemom. 19 , 154–161 (2005).

Cook, D. J., Hollowood, T. A., Linforth, R. S. T. & Taylor, A. J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 40 , 631–641 (2005).

Chinchanachokchai, S., Thontirawong, P. & Chinchanachokchai, P. A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence based product recommendations. J. Retail. Consum. Serv. 61 , 1–12 (2021).

Ross, C. F. Sensory science at the human-machine interface. Trends Food Sci. Technol. 20 , 63–72 (2009).

Chambers, E. IV & Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 18 , 4887–4905 (2013).

Pinu, F. R. Metabolomics—The new frontier in food safety and quality research. Food Res. Int. 72 , 80–81 (2015).

Danezis, G. P., Tsagkaris, A. S., Brusic, V. & Georgiou, C. A. Food authentication: state of the art and prospects. Curr. Opin. Food Sci. 10 , 22–31 (2016).

Shepherd, G. M. Smell images and the flavour system in the human brain. Nature 444 , 316–321 (2006).

Meilgaard, M. C. Prediction of flavor differences between beers from their chemical composition. J. Agric. Food Chem. 30 , 1009–1017 (1982).

Xu, L. et al. Widespread receptor-driven modulation in peripheral olfactory coding. Science 368 , eaaz5390 (2020).

Kupferschmidt, K. Following the flavor. Science 340 , 808–809 (2013).

Billesbølle, C. B. et al. Structural basis of odorant recognition by a human odorant receptor. Nature 615 , 742–749 (2023).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Smith, B. Perspective: Complexities of flavour. Nature 486 , S6–S6 (2012).

Pfister, P. et al. Odorant receptor inhibition is fundamental to odor encoding. Curr. Biol. 30 , 2574–2587 (2020).

Moskowitz, H. W., Kumaraiah, V., Sharma, K. N., Jacobs, H. L. & Sharma, S. D. Cross-cultural differences in simple taste preferences. Science 190 , 1217–1218 (1975).

Eriksson, N. et al. A genetic variant near olfactory receptor genes influences cilantro preference. Flavour 1 , 22 (2012).

Ferdenzi, C. et al. Variability of affective responses to odors: Culture, gender, and olfactory knowledge. Chem. Senses 38 , 175–186 (2013).

Article   PubMed   Google Scholar  

Lawless, H. T. & Heymann, H. Sensory evaluation of food: Principles and practices. (Springer, New York, NY). https://doi.org/10.1007/978-1-4419-6488-5 (2010).

Colantonio, V. et al. Metabolomic selection for enhanced fruit flavor. Proc. Natl. Acad. Sci. 119 , e2115865119 (2022).

Fritz, F., Preissner, R. & Banerjee, P. VirtualTaste: a web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res 49 , W679–W684 (2021).

Tuwani, R., Wadhwa, S. & Bagler, G. BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules. Sci. Rep. 9 , 1–13 (2019).

Dagan-Wiener, A. et al. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci. Rep. 7 , 1–13 (2017).

Pallante, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci. Rep. 12 , 1–11 (2022).

Malavolta, M. et al. A survey on computational taste predictors. Eur. Food Res. Technol. 248 , 2215–2235 (2022).

Lee, B. K. et al. A principal odor map unifies diverse tasks in olfactory perception. Science 381 , 999–1006 (2023).

Mayhew, E. J. et al. Transport features predict if a molecule is odorous. Proc. Natl. Acad. Sci. 119 , e2116576119 (2022).

Niu, Y. et al. Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose. Food Res. Int. 113 , 102–114 (2018).

Yu, P., Low, M. Y. & Zhou, W. Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 71 , 202–215 (2018).

Oladokun, O. et al. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 205 , 212–220 (2016).

Linforth, R., Cabannes, M., Hewson, L., Yang, N. & Taylor, A. Effect of fat content on flavor delivery during consumption: An in vivo model. J. Agric. Food Chem. 58 , 6905–6911 (2010).

Guo, S., Na Jom, K. & Ge, Y. Influence of roasting condition on flavor profile of sunflower seeds: A flavoromics approach. Sci. Rep. 9 , 11295 (2019).

Ren, Q. et al. The changes of microbial community and flavor compound in the fermentation process of Chinese rice wine using Fagopyrum tataricum grain as feedstock. Sci. Rep. 9 , 3365 (2019).

Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. (Springer, New York, NY). https://doi.org/10.1007/978-0-387-21606-5 (2001).

Dietz, C., Cook, D., Huismann, M., Wilson, C. & Ford, R. The multisensory perception of hop essential oil: a review. J. Inst. Brew. 126 , 320–342 (2020).

CAS   Google Scholar  

Roncoroni, Miguel & Verstrepen, Kevin Joan. Belgian Beer: Tested and Tasted. (Lannoo, 2018).

Meilgaard, M. Flavor chemistry of beer: Part II: Flavor and threshold of 239 aroma volatiles. in (1975).

Bokulich, N. A. & Bamforth, C. W. The microbiology of malting and brewing. Microbiol. Mol. Biol. Rev. MMBR 77 , 157–172 (2013).

Dzialo, M. C., Park, R., Steensels, J., Lievens, B. & Verstrepen, K. J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 41 , S95–S128 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Datta, A. et al. Computer-aided food engineering. Nat. Food 3 , 894–904 (2022).

American Society of Brewing Chemists. Beer Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A.).

Olaniran, A. O., Hiralal, L., Mokoena, M. P. & Pillay, B. Flavour-active volatile compounds in beer: production, regulation and control. J. Inst. Brew. 123 , 13–23 (2017).

Verstrepen, K. J. et al. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Meilgaard, M. C. Flavour chemistry of beer. part I: flavour interaction between principal volatiles. Master Brew. Assoc. Am. Tech. Q 12 , 107–117 (1975).

Briggs, D. E., Boulton, C. A., Brookes, P. A. & Stevens, R. Brewing 227–254. (Woodhead Publishing). https://doi.org/10.1533/9781855739062.227 (2004).

Bossaert, S., Crauwels, S., De Rouck, G. & Lievens, B. The power of sour - A review: Old traditions, new opportunities. BrewingScience 72 , 78–88 (2019).

Google Scholar  

Verstrepen, K. J. et al. Flavor active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Snauwaert, I. et al. Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int. J. Food Microbiol. 221 , 1–11 (2016).

Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 9 , e95384 (2014).

Blanco, C. A., Andrés-Iglesias, C. & Montero, O. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 56 , 1379–1388 (2016).

Jackowski, M. & Trusek, A. Non-Alcohol. beer Prod. – Overv. 20 , 32–38 (2018).

Takoi, K. et al. The contribution of geraniol metabolism to the citrus flavour of beer: Synergy of geraniol and β-citronellol under coexistence with excess linalool. J. Inst. Brew. 116 , 251–260 (2010).

Kroeze, J. H. & Bartoshuk, L. M. Bitterness suppression as revealed by split-tongue taste stimulation in humans. Physiol. Behav. 35 , 779–783 (1985).

Mennella, J. A. et al. A spoonful of sugar helps the medicine go down”: Bitter masking bysucrose among children and adults. Chem. Senses 40 , 17–25 (2015).

Wietstock, P., Kunz, T., Perreira, F. & Methner, F.-J. Metal chelation behavior of hop acids in buffered model systems. BrewingScience 69 , 56–63 (2016).

Sancho, D., Blanco, C. A., Caballero, I. & Pascual, A. Free iron in pale, dark and alcohol-free commercial lager beers. J. Sci. Food Agric. 91 , 1142–1147 (2011).

Rodrigues, H. & Parr, W. V. Contribution of cross-cultural studies to understanding wine appreciation: A review. Food Res. Int. 115 , 251–258 (2019).

Korneva, E. & Blockeel, H. Towards better evaluation of multi-target regression models. in ECML PKDD 2020 Workshops (eds. Koprinska, I. et al.) 353–362 (Springer International Publishing, Cham, 2020). https://doi.org/10.1007/978-3-030-65965-3_23 .

Gastón Ares. Mathematical and Statistical Methods in Food Science and Technology. (Wiley, 2013).

Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep learning on tabular data? Preprint at http://arxiv.org/abs/2207.08815 (2022).

Gries, S. T. Statistics for Linguistics with R: A Practical Introduction. in Statistics for Linguistics with R (De Gruyter Mouton, 2021). https://doi.org/10.1515/9783110718256 .

Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2 , 56–67 (2020).

Ickes, C. M. & Cadwallader, K. R. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens. Percept. 10 , 119–134 (2017).

Kato, M. et al. Influence of high molecular weight polypeptides on the mouthfeel of commercial beer. J. Inst. Brew. 127 , 27–40 (2021).

Wauters, R. et al. Novel Saccharomyces cerevisiae variants slow down the accumulation of staling aldehydes and improve beer shelf-life. Food Chem. 398 , 1–11 (2023).

Li, H., Jia, S. & Zhang, W. Rapid determination of low-level sulfur compounds in beer by headspace gas chromatography with a pulsed flame photometric detector. J. Am. Soc. Brew. Chem. 66 , 188–191 (2008).

Dercksen, A., Laurens, J., Torline, P., Axcell, B. C. & Rohwer, E. Quantitative analysis of volatile sulfur compounds in beer using a membrane extraction interface. J. Am. Soc. Brew. Chem. 54 , 228–233 (1996).

Molnar, C. Interpretable Machine Learning: A Guide for Making Black-Box Models Interpretable. (2020).

Zhao, Q. & Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. Publ. Am. Stat. Assoc. 39 , 272–281 (2019).

Article   MathSciNet   Google Scholar  

Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. (Springer, 2019).

Labrado, D. et al. Identification by NMR of key compounds present in beer distillates and residual phases after dealcoholization by vacuum distillation. J. Sci. Food Agric. 100 , 3971–3978 (2020).

Lusk, L. T., Kay, S. B., Porubcan, A. & Ryder, D. S. Key olfactory cues for beer oxidation. J. Am. Soc. Brew. Chem. 70 , 257–261 (2012).

Gonzalez Viejo, C., Torrico, D. D., Dunshea, F. R. & Fuentes, S. Development of artificial neural network models to assess beer acceptability based on sensory properties using a robotic pourer: A comparative model approach to achieve an artificial intelligence system. Beverages 5 , 33 (2019).

Gonzalez Viejo, C., Fuentes, S., Torrico, D. D., Godbole, A. & Dunshea, F. R. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 293 , 479–485 (2019).

Gilbert, J. L. et al. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. PLOS ONE 10 , 1–21 (2015).

Goulet, C. et al. Role of an esterase in flavor volatile variation within the tomato clade. Proc. Natl. Acad. Sci. 109 , 19009–19014 (2012).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Borisov, V. et al. Deep Neural Networks and Tabular Data: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 1–21 https://doi.org/10.1109/TNNLS.2022.3229161 (2022).

Statista. Statista Consumer Market Outlook: Beer - Worldwide.

Seitz, H. K. & Stickel, F. Molecular mechanisms of alcoholmediated carcinogenesis. Nat. Rev. Cancer 7 , 599–612 (2007).

Voordeckers, K. et al. Ethanol exposure increases mutation rate through error-prone polymerases. Nat. Commun. 11 , 3664 (2020).

Goelen, T. et al. Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid. Oikos 129 , 1415–1428 (2020).

Article   ADS   Google Scholar  

Reher, T. et al. Evaluation of hop (Humulus lupulus) as a repellent for the management of Drosophila suzukii. Crop Prot. 124 , 104839 (2019).

Stein, S. E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10 , 770–781 (1999).

American Society of Brewing Chemists. Sensory Analysis Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A., 1992).

McAuley, J., Leskovec, J. & Jurafsky, D. Learning Attitudes and Attributes from Multi-Aspect Reviews. Preprint at https://doi.org/10.48550/arXiv.1210.3926 (2012).

Meilgaard, M. C., Carr, B. T. & Carr, B. T. Sensory Evaluation Techniques. (CRC Press, Boca Raton). https://doi.org/10.1201/b16452 (2014).

Schreurs, M. et al. Data from: Predicting and improving complex beer flavor through machine learning. Zenodo https://doi.org/10.5281/zenodo.10653704 (2024).

Download references

Acknowledgements

We thank all lab members for their discussions and thank all tasting panel members for their contributions. Special thanks go out to Dr. Karin Voordeckers for her tremendous help in proofreading and improving the manuscript. M.S. was supported by a Baillet-Latour fellowship, L.C. acknowledges financial support from KU Leuven (C16/17/006), F.A.T. was supported by a PhD fellowship from FWO (1S08821N). Research in the lab of K.J.V. is supported by KU Leuven, FWO, VIB, VLAIO and the Brewing Science Serves Health Fund. Research in the lab of T.W. is supported by FWO (G.0A51.15) and KU Leuven (C16/17/006).

Author information

These authors contributed equally: Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni.

Authors and Affiliations

VIB—KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni, Lloyd Cool, Beatriz Herrera-Malaver, Florian A. Theßeling & Kevin J. Verstrepen

CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium

Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium

Lloyd Cool, Christophe Vanderaa & Tom Wenseleers

VIB Bioinformatics Core, VIB, Rijvisschestraat 120, B-9052, Ghent, Belgium

Łukasz Kreft & Alexander Botzki

AB InBev SA/NV, Brouwerijplein 1, B-3000, Leuven, Belgium

Philippe Malcorps & Luk Daenen

You can also search for this author in PubMed   Google Scholar

Contributions

S.P., M.S. and K.J.V. conceived the experiments. S.P., M.S. and K.J.V. designed the experiments. S.P., M.S., M.R., B.H. and F.A.T. performed the experiments. S.P., M.S., L.C., C.V., L.K., A.B., P.M., L.D., T.W. and K.J.V. contributed analysis ideas. S.P., M.S., L.C., C.V., T.W. and K.J.V. analyzed the data. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Kevin J. Verstrepen .

Ethics declarations

Competing interests.

K.J.V. is affiliated with bar.on. The other authors declare no competing interests.

Peer review

Peer review information.

Nature Communications thanks Florian Bauer, Andrew John Macintosh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, description of additional supplementary files, supplementary data 1, supplementary data 2, supplementary data 3, supplementary data 4, supplementary data 5, supplementary data 6, supplementary data 7, reporting summary, source data, source data, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Schreurs, M., Piampongsant, S., Roncoroni, M. et al. Predicting and improving complex beer flavor through machine learning. Nat Commun 15 , 2368 (2024). https://doi.org/10.1038/s41467-024-46346-0

Download citation

Received : 30 October 2023

Accepted : 21 February 2024

Published : 26 March 2024

DOI : https://doi.org/10.1038/s41467-024-46346-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

where to put abstract in research paper

Research on recognition algorithm for special-shaped parts based on improved YOLOv5s

  • Zhang, Jiarui
  • Guo, Zhongfeng
  • Yang, Junlin

With the rapid development of machinery and equipment modernization, more and more non-standard shaped parts are designed and put into specific occasions to use to meet the needs of special circumstances. Therefore, how to quickly recognize the shaped parts has become an urgent need for a technology. To recognize shaped parts, deep learning methods such as the widely used YOLOv5s network are commonly employed. However, directly deploying the official network model has drawbacks, including heavy reliance on data, poor detection results for small target objects, and high hardware requirements. These issues increase the threshold for non-professionals to use it. For this reason, this paper designs an improved network based on YOLOv5s. This paper proposes improvements in terms of both lightness and accuracy. In terms of light weight, the backbone of YOLOv5s is replaced by MobileNetV3; and the convolution and C3 module of the head part of YOLOv5s is replaced by phantom convolution and C3Ghost module, and the attention mechanism layer is trimmed to reduce the number of computational parameters and model size. In terms of accuracy, non-maximum suppression (NMS) is improved to Soft-NMS; intersection over union (IoU) loss function is replaced with distance-IoU loss function. And trained on the homemade shaped parts dataset, the results show that the average accuracy of the improved network is 99.2% in the test case, the model size is 2.4M, and the detection time is 1.5 ms per image, which is a significant increase in speed and accuracy compared with other unmodified networks, and a substantial decrease in the model size and the number of parameters.

  • YOLOv5s algorithm;
  • machine vision;
  • special-shaped part recognition;
  • deep learning

IMAGES

  1. How to Write an Abstract for a Research Paper

    where to put abstract in research paper

  2. HOW TO WRITE AN ABSTRACT

    where to put abstract in research paper

  3. Writing An Abstract For A Scientific Report

    where to put abstract in research paper

  4. How to Write an Abstract for a Research Paper?

    where to put abstract in research paper

  5. How to Write an Abstract in APA: 14 Steps (with Pictures)

    where to put abstract in research paper

  6. How To Write Abstract For Research Paper

    where to put abstract in research paper

VIDEO

  1. Salient Features Of Abstract In A Research Paper(ENGLISH FOR RESEARCH PAPER WRITING)

  2. CRITIQUE OF RESEARCH ABSTRACT

  3. How To Write An Abstract

  4. How to write the Abstract in your Research/ Seminar/ Conference paper

  5. Writing an Abstract for Your Research Paper

  6. How to write an abstract

COMMENTS

  1. Writing an Abstract for Your Research Paper

    Definition and Purpose of Abstracts An abstract is a short summary of your (published or unpublished) research paper, usually about a paragraph (c. 6-7 sentences, 150-250 words) long. A well-written abstract serves multiple purposes: an abstract lets readers get the gist or essence of your paper or article quickly, in order to decide whether to….

  2. How to Write an Abstract

    An abstract is a short summary of a longer work (such as a thesis, dissertation or research paper). The abstract concisely reports the aims and outcomes of your research, so that readers know exactly what your paper is about. Although the structure may vary slightly depending on your discipline, your abstract should describe the purpose of your ...

  3. APA Abstract (2020)

    Follow these five steps to format your abstract in APA Style: Insert a running head (for a professional paper—not needed for a student paper) and page number. Set page margins to 1 inch (2.54 cm). Write "Abstract" (bold and centered) at the top of the page. Place the contents of your abstract on the next line.

  4. Abstract Writing: A Step-by-Step Guide With Tips & Examples

    You can, however, write a draft at the beginning of your research and add in any gaps later. If you find abstract writing a herculean task, here are the few tips to help you with it: 1. Always develop a framework to support your abstract. Before writing, ensure you create a clear outline for your abstract.

  5. PDF Abstract and Keywords Guide, APA Style 7th Edition

    Abstract Format. recommended fonts: 11-point Calibri, 11-point Arial, 10-point Lucida Sans Unicode, 12-point Times New Roman, 11-point Georgia, or 10-point Computer Modern2. 1-in. margins on all sides. placement: second page of the paper. section label: "Abstract". ° centered and in bold. ° written on the first line of the page.

  6. 3. The Abstract

    An abstract summarizes, usually in one paragraph of 300 words or less, the major aspects of the entire paper in a prescribed sequence that includes: 1) the overall purpose of the study and the research problem(s) you investigated; 2) the basic design of the study; 3) major findings or trends found as a result of your analysis; and, 4) a brief summary of your interpretations and conclusions.

  7. How to Write an Abstract in APA Format with Examples

    An APA abstract must be formatted as follows: Include the running head aligned to the left at the top of the page (professional papers only) and page number. Note, student papers do not require a running head. On the first line, center the heading "Abstract" and bold (do not underlined or italicize).

  8. Research Paper Abstract

    Research Paper Abstract is a brief summary of a research paper that describes the study's purpose, methods, findings, and conclusions. It is often the first section of the paper that readers encounter, and its purpose is to provide a concise and accurate overview of the paper's content. The typical length of an abstract is usually around ...

  9. How to Write an Abstract

    How to Write an Abstract | Steps & Examples. Published on 1 March 2019 by Shona McCombes.Revised on 10 October 2022 by Eoghan Ryan. An abstract is a short summary of a longer work (such as a dissertation or research paper).The abstract concisely reports the aims and outcomes of your research, so that readers know exactly what your paper is about.

  10. How to Write an Abstract

    Focus on key results, conclusions and take home messages. Write your paper first, then create the abstract as a summary. Check the journal requirements before you write your abstract, eg. required subheadings. Include keywords or phrases to help readers search for your work in indexing databases like PubMed or Google Scholar.

  11. How to Write a Research Paper Abstract in 2024: Guide With Examples

    Set a 1-inch (2.54 centimeter) margin on all sides. The running head should be aligned to the left at the top of the page. The abstract should be on the second page of the paper (the first one is reserved for the title). Avoid indentations, unless you must include a keywords section at the end of the abstract.

  12. How to Write an Abstract in APA Format

    While the abstract will be at the beginning of your paper, it should be the last section you write. Once you have completed the final draft of your psychology paper, use it as a guide for writing your abstract. Begin your abstract on a new page. Place your running head and page number 2 in the top right-hand corner.

  13. How to Write an Abstract for a Research Paper

    Include 5 to 10 important words or short phrases central to your research in both the abstract and the keywords section. For example, if you are writing a paper on the prevalence of obesity among lower classes that crosses international boundaries, you should include terms like "obesity," "prevalence," "international," "lower ...

  14. The Writing Center

    An abstract is a 150- to 250-word paragraph that provides readers with a quick overview of your essay or report and its organization. It should express your thesis (or central idea) and your key points; it should also suggest any implications or applications of the research you discuss in the paper. According to Carole Slade, an abstract is ...

  15. Writing the title and abstract for a research paper: Being concise

    Introduction. This article deals with drafting a suitable "title" and an appropriate "abstract" for an original research paper. Because the "title" and the "abstract" are the "initial impressions" or the "face" of a research article, they need to be drafted correctly, accurately, carefully, meticulously, and consume time and energy.[1,2,3,4,5,6,7,8,9,10] Often, these ...

  16. Where does the abstract go in a thesis or dissertation?

    The abstract is a brief summary of your research that appears on its own page after the title page and acknowledgements. Learn more about the structure, format, and content of your thesis or dissertation from Scribbr's frequently asked questions.

  17. How To Write an Abstract in 7 Steps (With an Example)

    Here are the basic steps to follow when writing an abstract: 1. Write your paper. Since the abstract is a summary of a research paper, the first step is to write your paper. Even if you know what you will be including in your paper, it's always best to save your abstract for the end so you can accurately summarize the findings you describe in ...

  18. Writing an abstract

    Methods - The methods section should contain enough information to enable the reader to understand what was done, and how. It should include brief details of the research design, sample size, duration of study, and so on. Results - The results section is the most important part of the abstract. This is because readers who skim an abstract do so ...

  19. Title, Abstract and Keywords

    Try to put all of the topics together in the title using as few words as possible. ... easy to understand, and conveys the important aspects of the research. Think about why your research will be of interest to other scientists. ... referees are usually only sent the abstract when invited to review the paper. Therefore, the abstract needs to ...

  20. How to write abstracts in MLA

    An abstract is a concise summary of a finished research paper that motivates readers to keep reading. It is a reduced form of a lengthy piece of writing that highlights the key points and briefly describes the content and scope of the paper. An abstract in MLA format generally aims to summarize the objective, methods, ...

  21. How to write and format an APA Abstract (6th edition)

    An APA abstract is a summary of your paper in 150-250 words. It describes the research problem, methods, results and conclusions of your research. For published papers, it also includes a list of keywords. Write the abstract after you have finished your paper, and place it on a separate page after the title page.

  22. 15 Abstract Examples: A Comprehensive Guide

    An abstract may contain a succinct background statement highlighting the research's significance, a problem statement, the methodologies used, a synopsis of the results, and the conclusions drawn. When it comes to writing an abstract for a research paper, striking a balance between consciousness and informative detail is essential.

  23. Predicting and improving complex beer flavor through machine ...

    The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine ...

  24. Research on recognition algorithm for special-shaped parts based on

    With the rapid development of machinery and equipment modernization, more and more non-standard shaped parts are designed and put into specific occasions to use to meet the needs of special circumstances. Therefore, how to quickly recognize the shaped parts has become an urgent need for a technology. To recognize shaped parts, deep learning methods such as the widely used YOLOv5s network are ...