Problem Solving in Mathematics

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade

The main reason for learning about math is to become a better problem solver in all aspects of life. Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems. Ask yourself exactly what type of information is being asked for: Is it one of addition, subtraction, multiplication , or division? Then determine all the information that is being given to you in the question.

Mathematician George Pólya’s book, “ How to Solve It: A New Aspect of Mathematical Method ,” written in 1957, is a great guide to have on hand. The ideas below, which provide you with general steps or strategies to solve math problems, are similar to those expressed in Pólya’s book and should help you untangle even the most complicated math problem.

Use Established Procedures

Learning how to solve problems in mathematics is knowing what to look for. Math problems often require established procedures and knowing what procedure to apply. To create procedures, you have to be familiar with the problem situation and be able to collect the appropriate information, identify a strategy or strategies, and use the strategy appropriately.

Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

Look for Clue Words

Think of yourself as a math detective. The first thing to do when you encounter a math problem is to look for clue words. This is one of the most important skills you can develop. If you begin to solve problems by looking for clue words, you will find that those words often indicate an operation.

Common clue words for addition  problems:

Common clue words for  subtraction  problems:

  • How much more

Common clue words for multiplication problems:

Common clue words for division problems:

Although clue words will vary a bit from problem to problem, you'll soon learn to recognize which words mean what in order to perform the correct operation.

Read the Problem Carefully

This, of course, means looking for clue words as outlined in the previous section. Once you’ve identified your clue words, highlight or underline them. This will let you know what kind of problem you’re dealing with. Then do the following:

  • Ask yourself if you've seen a problem similar to this one. If so, what is similar about it?
  • What did you need to do in that instance?
  • What facts are you given about this problem?
  • What facts do you still need to find out about this problem?

Develop a Plan and Review Your Work

Based on what you discovered by reading the problem carefully and identifying similar problems you’ve encountered before, you can then:

  • Define your problem-solving strategy or strategies. This might mean identifying patterns, using known formulas, using sketches, and even guessing and checking.
  • If your strategy doesn't work, it may lead you to an ah-ha moment and to a strategy that does work.

If it seems like you’ve solved the problem, ask yourself the following:

  • Does your solution seem probable?
  • Does it answer the initial question?
  • Did you answer using the language in the question?
  • Did you answer using the same units?

If you feel confident that the answer is “yes” to all questions, consider your problem solved.

Tips and Hints

Some key questions to consider as you approach the problem may be:

  • What are the keywords in the problem?
  • Do I need a data visual, such as a diagram, list, table, chart, or graph?
  • Is there a formula or equation that I'll need? If so, which one?
  • Will I need to use a calculator? Is there a pattern I can use or follow?

Read the problem carefully, and decide on a method to solve the problem. Once you've finished working the problem, check your work and ensure that your answer makes sense and that you've used the same terms and or units in your answer.

  • 2nd Grade Math Word Problems
  • The Horse Problem: A Math Challenge
  • 2020-21 Common Application Essay Option 4—Solving a Problem
  • How to Use Math Journals in Class
  • The Frayer Model for Math
  • Algorithms in Mathematics and Beyond
  • "Grandpa's Rubik's Cube"—Sample Common Application Essay, Option #4
  • Math Stumper: Use Two Squares to Make Separate Pens for Nine Pigs
  • Critical Thinking Definition, Skills, and Examples
  • Graphic Organizers in Math
  • College Interview Tips: "Tell Me About a Challenge You Overcame"
  • Christmas Word Problem Worksheets
  • Solving Problems Involving Distance, Rate, and Time
  • Innovative Ways to Teach Math
  • Study Tips for Math Homework and Math Tests
  • 7 Steps to Math Success

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

problem solving in mathematics definition

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

The home of mathematics education in New Zealand.

  • Forgot password ?
  • Teaching material
  • Problem solving activities
  • Problem Solving Information
  • What is Problem Solving?

What is problem solving?

The Ministry is migrating nzmaths content to Tāhurangi.             Relevant and up-to-date teaching resources are being moved to Tāhūrangi (tahurangi.education.govt.nz).  When all identified resources have been successfully moved, this website will close. We expect this to be in June 2024.  e-ako maths, e-ako Pāngarau, and e-ako PLD 360 will continue to be available. 

For more information visit https://tahurangi.education.govt.nz/updates-to-nzmaths

On this page we discuss "What is problem polving?" under three headings: introduction, four stages of problem solving, and the scientific approach.

Introduction

Naturally enough, problem solving is about solving problems. And we’ll restrict ourselves to thinking about mathematical problems here even though problem solving in school has a wider goal. When you think about it, the whole aim of education is to equip students to solve problems. 

But problem solving also contributes to mathematics itself. Mathematics consists of skills and processes. The skills are things that we are all familiar with. These include the basic arithmetical processes and the algorithms that go with them. They include algebra in all its levels as well as sophisticated areas such as the calculus. This is the side of the subject that is largely represented in the Strands of Number and Algebra, Geometry and Measurement and Statistics.

On the other hand, the processes of mathematics are the ways of using the skills creatively in new situations. Mathematical processes include problem solving, logic and reasoning, and communicating ideas. These are the parts of mathematics that enable us to use the skills in a wide variety of situations.

It is worth starting by distinguishing between the three words "method", "answer" and "solution". By "method" we mean the means used to get an answer. This will generally involve one or more Problem Solving Strategies . On the other hand, we use "answer" to mean a number, quantity or some other entity that the problem is asking for. Finally, a "solution" is the whole process of solving a problem, including the method of obtaining an answer and the answer itself.

method + answer = solution

But how do we do Problem Solving? There are four basic steps. Pólya enunciated these in 1945 but all of them were known and used well before then. Pólya’s four stages of problem solving are listed below.

Four stages of problem solving                             

1. Understand and explore the problem  2. Find a strategy  3. Use the strategy to solve the problem  4. Look back and reflect on the solution.

Although we have listed the four stages in order, for difficult problems it may not be possible to simply move through them consecutively to produce an answer. It is frequently the case that students move backwards and forwards between and across the steps.

You can't solve a problem unless you can first understand it. This requires not only knowing what you have to find but also the key pieces of information that need to be put together to obtain the answer.

Students will often not be able to absorb all the important information of a problem in one go. It will almost always be necessary to read a problem several times, both at the start and while working on it. With younger students it is worth repeating the problem and then asking them to put the question in their own words. Older students might use a highlighter to mark the important parts of the problem.

Finding a strategy tends to suggest that it is a simple matter to think of an appropriate strategy. However, for many problems students may find it necessary to play around with the information before they are able to think of a strategy that might produce a solution. This exploratory phase will also help them to understand the problem better and may make them aware of some piece of information that they had neglected after the first reading.

Having explored the problem and decided on a strategy, the third step, solve the problem , can be attempted. Hopefully now the problem will be solved and an answer obtained. During this phase it is important for the students to keep a track of what they are doing. This is useful to show others what they have done and it is also helpful in finding errors should the right answer not be found.

At this point many students, especially mathematically able ones, will stop. But it is worth getting them into the habit of looking back over what they have done. There are several good reasons for this. First of all it is good practice for them to check their working and make sure that they have not made any errors. Second, it is vital to make sure that the answer they obtained is in fact the answer to the problem. Third, in looking back and thinking a little more about the problem, students are often able to see another way of solving the problem. This new solution may be a nicer solution than the original and may give more insight into what is really going on. Finally, students may be able to generalise or extend the problem.

Generalising a problem means creating a problem that has the original problem as a special case. So a problem about three pigs may be changed into one which has any number of pigs.

In Problem 4 of What is a Problem? , there is a problem on towers. The last part of that problem asks how many towers can be built for any particular height. The answer to this problem will contain the answer to the previous three questions. There we were asked for the number of towers of height one, two and three. If we have some sort of formula, or expression, for any height, then we can substitute into that formula to get the answer for height three, for instance. So the "any" height formula is a generalisation of the height three case. It contains the height three case as a special example.

Extending a problem is a related idea. Here though, we are looking at a new problem that is somehow related to the first one. For instance, a problem that involves addition might be looked at to see if it makes any sense with multiplication. A rather nice problem is to take any whole number and divide it by two if it’s even and multiply it by three and add one if it’s odd. Keep repeating this manipulation. Is the answer you get eventually 1? We’ll do an example. Let’s start with 34. Then we get

34 → 17 → 52 → 26 → 13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1

We certainly got to 1 then. Now it turns out that no one in the world knows if you will always get to 1 this way, no matter where you start. That’s something for you to worry about. But where does the extension come in? Well we can extend this problem, by just changing the 3 to 5. So this time instead of dividing by 2 if the number is even and multiplying it by three and adding one if it’s odd, try dividing by 2 if the number is even and multiplying it by 5 and adding one if it’s odd. This new problem doesn’t contain the first one as a special case, so it’s not a generalisation. It is an extension though – it’s a problem that is closely related to the original. 

It is by this method of generalisation and extension that mathematics makes great strides forward. Up until Pythagoras’ time, many right-angled triangles were known. For instance, it was known that a triangle with sides 3, 4 and 5 was a right-angled triangle. Similarly people knew that triangles with sides 5, 12 and 13, and 7, 24 and 25 were right angled. Pythagoras’ generalisation was to show that EVERY triangle with sides a, b, c was a right-angled triangle if and only if a 2 + b 2 = c 2 .

This brings us to an aspect of problem solving that we haven’t mentioned so far. That is justification (or proof). Your students may often be able to guess what the answer to a problem is but their solution is not complete until they can justify their answer.

Now in some problems it is hard to find a justification. Indeed you may believe that it is not something that any of the class can do. So you may be happy that the students can find an answer. However, bear in mind that this justification is what sets mathematics apart from every other discipline. Consequently the justification step is an important one that shouldn’t be missed too often.

Scientific approach                                   

Another way of looking at the Problem Solving process is what might be called the scientific approach. We show this in the diagram below.

Here the problem is given and initially the idea is to experiment with it or explore it in order to get some feeling as to how to proceed. After a while it is hoped that the solver is able to make a conjecture or guess what the answer might be. If the conjecture is true it might be possible to prove or justify it. In that case the looking back process sets in and an effort is made to generalise or extend the problem. In this case you have essentially chosen a new problem and so the whole process starts over again.

Sometimes, however, the conjecture is wrong and so a counter-example is found. This is an example that contradicts the conjecture. In that case another conjecture is sought and you have to look for a proof or another counterexample.

Some problems are too hard so it is necessary to give up. Now you may give up so that you can take a rest, in which case it is a ‘for now’ giving up. Actually this is a good problem solving strategy. Often when you give up for a while your subconscious takes over and comes up with a good idea that you can follow. On the other hand, some problems are so hard that you eventually have to give up ‘for ever’. There have been many difficult problems throughout history that mathematicians have had to give up on.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

2.10: Problem Solving and Decision Making

  • Last updated
  • Save as PDF
  • Page ID 41786

Learning Objectives

  • Learn to understand the problem.
  • Learn to combine creative thinking and critical thinking to solve problems.
  • Practice problem solving in a group.

Much of your college and professional life will be spent solving problems; some will be complex, such as deciding on a career, and require time and effort to come up with a solution. Others will be small, such as deciding what to eat for lunch, and will allow you to make a quick decision based entirely on your own experience. But, in either case, when coming up with the solution and deciding what to do, follow the same basic steps.

  • Define the problem. Use your analytical skills. What is the real issue? Why is it a problem? What are the root causes? What kinds of outcomes or actions do you expect to generate to solve the problem? What are some of the key characteristics that will make a good choice: Timing? Resources? Availability of tools and materials? For more complex problems, it helps to actually write out the problem and the answers to these questions. Can you clarify your understanding of the problem by using metaphors to illustrate the issue?
  • Narrow the problem. Many problems are made up of a series of smaller problems, each requiring its own solution. Can you break the problem into different facets? What aspects of the current issue are “noise” that should not be considered in the problem solution? (Use critical thinking to separate facts from opinion in this step.)
  • Generate possible solutions. List all your options. Use your creative thinking skills in this phase. Did you come up with the second “right” answer, and the third or the fourth? Can any of these answers be combined into a stronger solution? What past or existing solutions can be adapted or combined to solve this problem?

Group Think: Effective Brainstorming

Brainstorming is a process of generating ideas for solutions in a group. This method is very effective because ideas from one person will trigger additional ideas from another. The following guidelines make for an effective brainstorming session:

  • Decide who should moderate the session. That person may participate, but his main role is to keep the discussion flowing.
  • Define the problem to be discussed and the time you will allow to consider it.
  • Write all ideas down on a board or flip chart for all participants to see.
  • Encourage everyone to speak.
  • Do not allow criticism of ideas. All ideas are good during a brainstorm. Suspend disbelief until after the session. Remember a wildly impossible idea may trigger a creative and feasible solution to a problem.
  • Choose the best solution. Use your critical thinking skills to select the most likely choices. List the pros and cons for each of your selections. How do these lists compare with the requirements you identified when you defined the problem? If you still can’t decide between options, you may want to seek further input from your brainstorming team.

Decisions, Decisions

You will be called on to make many decisions in your life. Some will be personal, like what to major in, or whether or not to get married. Other times you will be making decisions on behalf of others at work or for a volunteer organization. Occasionally you will be asked for your opinion or experience for decisions others are making. To be effective in all of these circumstances, it is helpful to understand some principles about decision making.

First, define who is responsible for solving the problem or making the decision. In an organization, this may be someone above or below you on the organization chart but is usually the person who will be responsible for implementing the solution. Deciding on an academic major should be your decision, because you will have to follow the course of study. Deciding on the boundaries of a sales territory would most likely be the sales manager who supervises the territories, because he or she will be responsible for producing the results with the combined territories. Once you define who is responsible for making the decision, everyone else will fall into one of two roles: giving input, or in rare cases, approving the decision.

Understanding the role of input is very important for good decisions. Input is sought or given due to experience or expertise, but it is up to the decision maker to weigh the input and decide whether and how to use it. Input should be fact based, or if offering an opinion, it should be clearly stated as such. Finally, once input is given, the person giving the input must support the other’s decision, whether or not the input is actually used.

Consider a team working on a project for a science course. The team assigns you the responsibility of analyzing and presenting a large set of complex data. Others on the team will set up the experiment to demonstrate the hypothesis, prepare the class presentation, and write the paper summarizing the results. As you face the data, you go to the team to seek input about the level of detail on the data you should consider for your analysis. The person doing the experiment setup thinks you should be very detailed, because then it will be easy to compare experiment results with the data. However, the person preparing the class presentation wants only high-level data to be considered because that will make for a clearer presentation. If there is not a clear understanding of the decision-making process, each of you may think the decision is yours to make because it influences the output of your work; there will be conflict and frustration on the team. If the decision maker is clearly defined upfront, however, and the input is thoughtfully given and considered, a good decision can be made (perhaps a creative compromise?) and the team can get behind the decision and work together to complete the project.

Finally, there is the approval role in decisions. This is very common in business decisions but often occurs in college work as well (the professor needs to approve the theme of the team project, for example). Approval decisions are usually based on availability of resources, legality, history, or policy.

Key Takeaways

  • Effective problem solving involves critical and creative thinking.

The four steps to effective problem solving are the following:

  • Define the problem
  • Narrow the problem
  • Generate solutions
  • Choose the solution
  • Brainstorming is a good method for generating creative solutions.
  • Understanding the difference between the roles of deciding and providing input makes for better decisions.

Checkpoint Exercises

Gather a group of three or four friends and conduct three short brainstorming sessions (ten minutes each) to generate ideas for alternate uses for peanut butter, paper clips, and pen caps. Compare the results of the group with your own ideas. Be sure to follow the brainstorming guidelines. Did you generate more ideas in the group? Did the quality of the ideas improve? Were the group ideas more innovative? Which was more fun? Write your conclusions here.

__________________________________________________________________

Using the steps outlined earlier for problem solving, write a plan for the following problem: You are in your second year of studies in computer animation at Jefferson Community College. You and your wife both work, and you would like to start a family in the next year or two. You want to become a video game designer and can benefit from more advanced work in programming. Should you go on to complete a four-year degree?

Define the problem: What is the core issue? What are the related issues? Are there any requirements to a successful solution? Can you come up with a metaphor to describe the issue?

Narrow the problem: Can you break down the problem into smaller manageable pieces? What would they be?

Generate solutions: What are at least two “right” answers to each of the problem pieces?

Choose the right approach: What do you already know about each solution? What do you still need to know? How can you get the information you need? Make a list of pros and cons for each solution.

Cambridge University Faculty of Mathematics

Or search by topic

Number and algebra

  • The Number System and Place Value
  • Calculations and Numerical Methods
  • Fractions, Decimals, Percentages, Ratio and Proportion
  • Properties of Numbers
  • Patterns, Sequences and Structure
  • Algebraic expressions, equations and formulae
  • Coordinates, Functions and Graphs

Geometry and measure

  • Angles, Polygons, and Geometrical Proof
  • 3D Geometry, Shape and Space
  • Measuring and calculating with units
  • Transformations and constructions
  • Pythagoras and Trigonometry
  • Vectors and Matrices

Probability and statistics

  • Handling, Processing and Representing Data
  • Probability

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets
  • Cross-curricular contexts
  • Physical and digital manipulatives

For younger learners

  • Early Years Foundation Stage

Advanced mathematics

  • Decision Mathematics and Combinatorics
  • Advanced Probability and Statistics

Published 2013 Revised 2019

Problem Solving and the New Curriculum

  • seeking solutions not just memorising procedures
  • exploring patterns not just memorising formulas
  • formulating conjectures, not just doing exercises.

problem solving in mathematics definition

Noah watched the animals going into the ark. He was counting and by noon he got to $12$, but he was only counting the legs of the animals. How many creatures did he see? See if you can find other answers? Try to tell someone how you found these answers out?

Planning a School Trip

problem solving in mathematics definition

This activity is taken from the ATM publication "We Can Work It Out!", a book of collaborative problem solving activity cards by Anitra Vickery and Mike Spooner. It is available from The Association of Teachers of Mathematics https://www.atm.org.uk/Shop/Primary-Education/Primary-Education-Books/Books--Hardcopy/We-Can-Work-It-Out-1/act054

References Polya, G. 1945) How to Solve It. Princeton University Press Schoenfeld, A.H. (1992) Learning to think mathematically: problem solving, metacognition and sense-making in mathematics. In D.Grouws (ed) Handbook for Research on Mathematics Teaching and Learning (pp334-370) New York: MacMillan

Lampert m (1992) quoted in schoenfeld, above..

Problem Solving Skills: Meaning, Examples & Techniques

Table of Contents

26 January 2021

Reading Time: 2 minutes

Do your children have trouble solving their Maths homework?

Or, do they struggle to maintain friendships at school?

If your answer is ‘Yes,’ the issue might be related to your child’s problem-solving abilities. Whether your child often forgets his/her lunch at school or is lagging in his/her class, good problem-solving skills can be a major tool to help them manage their lives better.

Children need to learn to solve problems on their own. Whether it is about dealing with academic difficulties or peer issues when children are equipped with necessary problem-solving skills they gain confidence and learn to make healthy decisions for themselves. So let us look at what is problem-solving, its benefits, and how to encourage your child to inculcate problem-solving abilities

Problem-solving skills can be defined as the ability to identify a problem, determine its cause, and figure out all possible solutions to solve the problem.

  • Trigonometric Problems

What is problem-solving, then? Problem-solving is the ability to use appropriate methods to tackle unexpected challenges in an organized manner. The ability to solve problems is considered a soft skill, meaning that it’s more of a personality trait than a skill you’ve learned at school, on-the-job, or through technical training. While your natural ability to tackle problems and solve them is something you were born with or began to hone early on, it doesn’t mean that you can’t work on it. This is a skill that can be cultivated and nurtured so you can become better at dealing with problems over time.

Problem Solving Skills: Meaning, Examples & Techniques are mentioned below in the Downloadable PDF. 

Benefits of learning problem-solving skills  

Promotes creative thinking and thinking outside the box.

Improves decision-making abilities.

Builds solid communication skills.

Develop the ability to learn from mistakes and avoid the repetition of mistakes.

Problem Solving as an ability is a life skill desired by everyone, as it is essential to manage our day-to-day lives. Whether you are at home, school, or work, life throws us curve balls at every single step of the way. And how do we resolve those? You guessed it right – Problem Solving.

Strengthening and nurturing problem-solving skills helps children cope with challenges and obstacles as they come. They can face and resolve a wide variety of problems efficiently and effectively without having a breakdown. Nurturing good problem-solving skills develop your child’s independence, allowing them to grow into confident, responsible adults. 

Children enjoy experimenting with a wide variety of situations as they develop their problem-solving skills through trial and error. A child’s action of sprinkling and pouring sand on their hands while playing in the ground, then finally mixing it all to eliminate the stickiness shows how fast their little minds work.

Sometimes children become frustrated when an idea doesn't work according to their expectations, they may even walk away from their project. They often become focused on one particular solution, which may or may not work.

However, they can be encouraged to try other methods of problem-solving when given support by an adult. The adult may give hints or ask questions in ways that help the kids to formulate their solutions. 

Encouraging Problem-Solving Skills in Kids

Practice problem solving through games.

Exposing kids to various riddles, mysteries, and treasure hunts, puzzles, and games not only enhances their critical thinking but is also an excellent bonding experience to create a lifetime of memories.

Create a safe environment for brainstorming

Welcome, all the ideas your child brings up to you. Children learn how to work together to solve a problem collectively when given the freedom and flexibility to come up with their solutions. This bout of encouragement instills in them the confidence to face obstacles bravely.

Invite children to expand their Learning capabilities

 Whenever children experiment with an idea or problem, they test out their solutions in different settings. They apply their teachings to new situations and effectively receive and communicate ideas. They learn the ability to think abstractly and can learn to tackle any obstacle whether it is finding solutions to a math problem or navigating social interactions.

Problem-solving is the act of finding answers and solutions to complicated problems. 

Developing problem-solving skills from an early age helps kids to navigate their life problems, whether academic or social more effectively and avoid mental and emotional turmoil.

Children learn to develop a future-oriented approach and view problems as challenges that can be easily overcome by exploring solutions. 

About Cuemath

Cuemath, a student-friendly mathematics and coding platform, conducts regular  Online Classes  for academics and skill-development, and their Mental Math App, on both  iOS  and  Android , is a one-stop solution for kids to develop multiple skills. Understand the Cuemath Fee structure and sign up for a free trial.

Frequently Asked Questions (FAQs)

How do you teach problem-solving skills.

Model a useful problem-solving method. Problem solving can be difficult and sometimes tedious. ... 1. Teach within a specific context. ... 2. Help students understand the problem. ... 3. Take enough time. ... 4. Ask questions and make suggestions. ... 5. Link errors to misconceptions.

What makes a good problem solver?

Excellent problem solvers build networks and know how to collaborate with other people and teams. They are skilled in bringing people together and sharing knowledge and information. A key skill for great problem solvers is that they are trusted by others.

Book cover

Encyclopedia of the Sciences of Learning pp 2680–2683 Cite as

Problem Solving

  • David H. Jonassen 2 &
  • Woei Hung 3  
  • Reference work entry

1799 Accesses

10 Citations

Cognition ; Problem typology ; Problem-based learning ; Problems ; Reasoning

Problem solving is the process of constructing and applying mental representations of problems to finding solutions to those problems that are encountered in nearly every context.

Theoretical Background

Problem solving is the process of articulating solutions to problems. Problems have two critical attributes. First, a problem is an unknown in some context. That is, there is a situation in which there is something that is unknown (the difference between a goal state and a current state). Those situations vary from algorithmic math problems to vexing and complex social problems, such as violence in society (see Problem Typology ). Second, finding or solving for the unknown must have some social, cultural, or intellectual value. That is, someone believes that it is worth finding the unknown. If no one perceives an unknown or a need to determine an unknown, there is no perceived problem. Finding...

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Bransford, J., & Stein, B. S. (1984). The IDEAL problem solver: A guide for improving thinking, learning, and creativity . New York: WH Freeman.

Google Scholar  

Frensch, P. A., & Funke, J. (Eds.). (1995). Complex problem solving: The European perspective . Hillsdale: Erlbaum.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15 , 1–38.

Article   Google Scholar  

Jonassen, D. H. (2010). Learning to solve problems: A handbook . New York: Routledge.

Jonassen, D. H., & Hung, W. (2008). All problems are not equal: Implications for PBL. Interdisciplinary Journal of Problem-Based Learning, 2 (2), 6–28.

Jonassen, D. H. (2000). Toward a design theory of problem solving. Educational Technology: Research & Development, 48 (4), 63–85.

Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments . New York: Routledge.

Klein, G. A. (1998). Sources of power: How people make decisions . Cambridge, MA: MIT Press.

Lehman, D., Lempert, R., & Nisbett, R. E. (1988). The effects of graduate training on reasoning: Formal discipline and thinking about everyday-life events. Educational Psychologist, 43 , 431–442.

Newell, A., & Simon, H. (1972). Human problem solving . Englewood Cliffs: Prentice Hall.

Rumelhart, D. E., & Norman, D. A. (1988). Representation in memory. In R. C. Atkinson, R. J. Herrnstein, G. Lindzey, & R. D. Luce (Eds.), Steven’s handbook of experimental psychology (Learning and cognition 2nd ed., Vol. 2, pp. 511–587). New York: Wiley.

Sinnott, J. D. (1989). Everyday problem solving: Theory and applications (pp. 72–99). New York: Praeger.

Wood, P. K. (1983). Inquiring systems and problem structures: Implications for cognitive development. Human Development, 26 , 249–265.

Download references

Author information

Authors and affiliations.

School of Information Science and Learning Technologies, University of Missouri, 221C Townsend Hall, 65211, Columbia, MO, USA

Dr. David H. Jonassen

College of Education and Human Development, University of North Dakota, 231 Centennial Drive, Stop 7189, 58202, Grand Forks, ND, USA

Dr. Woei Hung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to David H. Jonassen .

Editor information

Editors and affiliations.

Faculty of Economics and Behavioral Sciences, Department of Education, University of Freiburg, 79085, Freiburg, Germany

Norbert M. Seel

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry.

Jonassen, D.H., Hung, W. (2012). Problem Solving. In: Seel, N.M. (eds) Encyclopedia of the Sciences of Learning. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1428-6_208

Download citation

DOI : https://doi.org/10.1007/978-1-4419-1428-6_208

Publisher Name : Springer, Boston, MA

Print ISBN : 978-1-4419-1427-9

Online ISBN : 978-1-4419-1428-6

eBook Packages : Humanities, Social Sciences and Law

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

A question that needs a solution. In mathematics some problems use words: "John was traveling at 20 km per hour for half an hour. How far did he travel?" And some use equations: "Solve x+5=22"

logo white

  • Mathematicians
  • Math Lessons
  • Square Roots
  • Math Calculators
  • Problem | Definition & Meaning

JUMP TO TOPIC

Word Problems 

Addition and subtraction, multiplication and division, equation-related mathematical problems, problem|definition & meaning.

A mathematical problem is an unsolved question . These problems usually provide some values and ask to find some unknown value . For example, if you cycled a total distance of 16 km in one hour, then what was your average speed? In other problems, you might have an equation already and need to solve it for the unknown variable e.g., what is the value of x in x + 6 = 21?

Some mathematical Problems include the usage of words , such as, “Jim maintained a speed of 30 kilometers per hour during the entire hour . How much ground did he cover?” Others use equations such as  “If x + 19 = 78, what is x?” In this article, we shall talk about them in great detail.

Math Problems

Figure 1 – Problems in Mathematics

Word problems are notoriously difficult for pupils to master. Because there are so many moving parts in the process of solving word problems , it can be difficult to isolate the specific factor that is making things difficult for students.

Types of Word Problems

Types of Word Problems

Figure 2 – Types of Word Problems

There are three primary categories of problems involving addition and subtraction:

  • joining problems
  • separating problems
  • comparing problems

Any problem in which you begin with one quantity , acquire some more, and then finish with a greater quantity is said to be a joining problem. Any situation in which you begin with one quantity , remove some of that quantity , and then finish up with a smaller quantity is known as a separating problem. Take, for instance:

  • Joining: make sure you have 4 orange slices. Another 5 orange slices were handed to me by my brother. How many orange slices do I still have in my possession right now?
  • Separating: Count nine blueberries before you separate them. I eat four of them in total. How many blueberries are there still available?

In each of these scenarios, the end outcome is unknown because we know how much we begin with, we know how much is joined or separated (the change), and now we need to determine how much is left over after the process . Both of these issues may be solved using the following straightforward pattern:

Students need to solve issues in which either the result, the change, or the starting point is unknown .

  • Make a tally of the first set.
  • Add some of them to the original set, or take some of them away from it.
  • Determine the updated total when the event has been completed.

You’ll find that there are innumerable opportunities throughout the day to utilize the terminology of joining and separating! The most obvious of them is eating because your child is always considering joining other children in order to grab more of their food and then consuming that food after it has been obtained (separating).

When you play a game with your child that involves blocks, ask them to count how many are in their tower. Then you should ask them, “ Now I’ve added three more blocks to your tower . How many blocks do you currently have on your tower?” Have your child count the number of cars in a row while they see vehicles parked in a parking lot. Then pose the following question: “If two vehicles depart the parking lot, how many vehicles will be left?”

If your child is having trouble, you shouldn’t give them the solution. Instead, you should assist them in carrying out the action.

“You have 9 blueberries. Now you are going to devour four of them. When you consume those blueberries, what happens to the blueberries? Your kid might remark something along the lines of “They went in my stomach!” And you are able to reply, “Good.” So, those blueberries are still sitting there on your plate, are they?”

They will respond with a negative, at which point you can say, “Ok. So please display those blueberries that are disappearing from your dish. When performing an additive comparison, the problem might have the following forms, where x could be any whole number.

  • How much further is it?
  • How much less do you want?

There are three primary kinds of word problems involving multiplication and division

  • Equal groups
  • Comparing problems

Equal Groups

When there is the same number of items in two different groups, we refer to such groupings as “equal groups.” Therefore, an equal number of items or things are grouped together in each equal group.

For example: If there are three boxes and you put five candies in each box, then there will be an equal number of candies in each box. At this point, we will assume that there ar e three equal groupings , each containing five candies .

The operations of multiplication and division can be represented by using rows and columns in an array. The rows denote the number of different categories. The number of items in each category, as well as their respective sizes, are denoted by the columns, although this is not necessarily a strict rule, and the two can be swapped.

It is essential for one to keep in mind that rows, which represent groups, are drawn horizontally, and columns, which represent the number of items in each group, are drawn vertically.

Comparing Problems

When doing a multiplicative comparison, the problem can involve expressions such as where x can be any whole number.

  • x multiples as many as that
  • x multiplied in comparison to

It is possible that the product, the size of the group, or the number of groups will all be unknown within each type of problem. Once again, we make use of counters to guide the students through the process of selecting the appropriate equation to apply while trying to solve the various kinds of issues.

The difference between issues involving addition and subtraction and problems involving multiplication and division should be brought to the attention of the students.

Students’ thinking and ability to solve problems are considerably improved when they are required to compose word problems in a fashion that is consistent with a certain word problem style. Because this is a considerably more difficult ability, the first time we practice composing word problems, we usually do so under the supervision of an instructor.

Equations are used to solve issues , and in order to solve a problem using equations, we must do two things:

  • Translate the expression of the question from the common language into the algebraic language to get an equation.
  • Reduce this equation so that the unknown quantity will stand by itself , and its value will be stated in terms of known quantities on the opposite side .

One of the most notable characteristics of an algebraic solution is that the quantity that is being sought is incorporated into the very operation that is being performed. Because of this, we are able to construct a statement of the conditions in the same form as if the problem had already been solved.

Equation related Mathematical Problems

Figure 3 – Equation Related Mathematical Problems

Nothing else has to be done at this point other than to simplify the equation and determine the total sum of the quantities that are already known. Because they are equivalent to the unknown quantity on the opposite side of the equation , the value of that is likewise determined, which means that the problem has been solved as a result.

Examples of Problems

These examples are quite literally examples of problems and illustrate the process of translating words into equations and then simplifying them to find the value of the unknown variable.

When a given integer is divided by 10, the sum of the quotient, dividend, and divisor equals 54. Determine the number that satisfies it.

Let x equal the desired number. Then:

(x / 10) + x + 10 = 54

x + 10x + 100 = 540

11x = 540 – 100

When a deal is made, a particular amount of profit or loss is realized by a merchant. In the second deal, he makes a profit of 250 dollars, but in the third, he loses 50 dollars. In the end, he determines that the three transactions resulted in a profit of one hundred dollars for him. In comparison to the first, how much ground did he make or lose?

In this particular illustration, the profit and the loss are of opposing characters, so it is necessary to differentiate between them using signs that are the opposite of one another. When the profit is a plus sign (+), the loss should be a minus sign (-).

Let’s say x equals the total amount needed.

The conclusion that follows from this is that x plus 250 minus 50 equals 100.

So, x = -100 .

The fact that the answer has a negative sign attached to it demonstrates that there was a loss incurred in the initial transaction; hence, the correct sign for x is also a negative sign. However, because this is dependent on the response, leaving it out of the calculation won’t result in an error at all.

All images were created with GeoGebra.

Prism Definition < Glossary Index > Profit Definition

IMAGES

  1. What IS Problem-Solving?

    problem solving in mathematics definition

  2. What IS Problem-Solving?

    problem solving in mathematics definition

  3. PPT

    problem solving in mathematics definition

  4. PPT

    problem solving in mathematics definition

  5. Math Problem Solving 101

    problem solving in mathematics definition

  6. What Are Some Problem Solving Strategies In Math

    problem solving in mathematics definition

VIDEO

  1. Solving a math problem Algebra I

  2. A Nice Mathematical Problem

  3. Let's simplify this interesting problem!!!

  4. basic maths problem solving

  5. #mathematics problem solving

  6. can you solve this problem mathematics 🌹📝 short

COMMENTS

  1. PDF Problem solving in mathematics

    Therefore, high-quality assessment of problem solving in public tests and assessments1 is essential in order to ensure the effective learning and teaching of problem solving throughout primary and secondary education. Although the focus here is on the assessment of problem solving in mathematics, many of the ideas will be directly transferable ...

  2. Problem Solving in Mathematics

    Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

  3. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  4. 1.1: Introduction to Problem Solving

    Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt.

  5. Problem Solving in Mathematics Education

    Problem solving in mathematics education has been a prominent research field that aims at understanding and relating the processes involved in solving problems to students' development of mathematical knowledge and problem solving competencies. ... such a scenario is the definition of a problem. For example, Resnick and Glaser define a ...

  6. Mathematical Problem

    A math problem is a problem that can be solved, or a question that can be answered, with the tools of mathematics. Mathematical problem-solving makes use of various math functions and processes.

  7. Module 1: Problem Solving Strategies

    Step 2: Devise a plan. Going to use Guess and test along with making a tab. Many times the strategy below is used with guess and test. Make a table and look for a pattern: Procedure: Make a table reflecting the data in the problem.

  8. What is problem solving?

    This will generally involve one or more Problem Solving Strategies. On the other hand, we use "answer" to mean a number, quantity or some other entity that the problem is asking for. Finally, a "solution" is the whole process of solving a problem, including the method of obtaining an answer and the answer itself. method + answer = solution.

  9. Problem Solving

    Brief. Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education of K-12 students. However, knowing how to incorporate problem solving meaningfully into the mathematics curriculum is not necessarily obvious to mathematics teachers. (The term "problem solving" refers to mathematical ...

  10. 2.10: Problem Solving and Decision Making

    Key Takeaways. Effective problem solving involves critical and creative thinking. The four steps to effective problem solving are the following: Define the problem. Narrow the problem. Generate solutions. Choose the solution. Brainstorming is a good method for generating creative solutions.

  11. What Is Problem Solving?

    In this article I model the process of problem solving and thinking through a problem. The focus is on the problem solving process, using NRICH problems to highlight the processes. Needless to say, this is not how problems should be taught to a class! ... The NRICH Project aims to enrich the mathematical experiences of all learners. To support ...

  12. Mathematical problem

    A mathematical problem is a problem that can be represented, analyzed, and possibly solved, with the methods of mathematics. This can be a real-world problem, such as computing the orbits of the planets in the solar system, or a problem of a more abstract nature, such as Hilbert's problems. It can also be a problem referring to the nature of ...

  13. Problem Solving and the New Curriculum

    Problem solving in Polya's view is about engaging with real problems; guessing, discovering, and making sense of mathematics. (Real problems don't have to be 'real world' applications, they can be within mathematics itself. The main criterion is that they should be non-routine and new to the student.) Compared to the interpretation as a set of ...

  14. Problem Solving Skills: Meaning, Examples & Techniques

    Problem-solving is the ability to use appropriate methods to tackle unexpected challenges in an organized manner. The ability to solve problems is considered a soft skill, meaning that it's more of a personality trait than a skill you've learned at school, on-the-job, or through technical training. While your natural ability to tackle ...

  15. PDF The Mathematics Educator A Problem With Problem Solving: Teaching

    Three examples of a problem solving heuristic are presented in Table 1. The first belongs to John Dewey, who explicated a method of problem solving in How We Think (1933). The second is George Polya's, whose method is mostly associated with problem solving in mathematics. The last is a more contemporary version

  16. Mathematics Through Problem Solving

    A further characteristic is that a problem-solving approach can be used to encourage students to make generalisations about rules and concepts, a process which is central to mathematics (Evan and Lappin, 1994). Schoenfeld (in Olkin and Schoenfeld, 1994, p.43) described the way in which the use of problem solving in his teaching has changed ...

  17. Problem Solving

    Problem solving is the process of articulating solutions to problems. Problems have two critical attributes. First, a problem is an unknown in some context. That is, there is a situation in which there is something that is unknown (the difference between a goal state and a current state). Those situations vary from algorithmic math problems to ...

  18. What exactly do we mean by the term 'problem solving'?

    Identifying the problem to solve may even be a problem in itself. 'Problem solving' is sometimes taken to include (or to additionally require) activities of problem finding, problem definition and problem framing (and reframing). These activities can have a huge impact on the range of solutions that are explored and thus on the eventual ...

  19. The problem-solving process in a mathematics classroom

    Problem-solving and mathematical connections are two important things in learning mathematics, namely as the goal of learning mathematics. However, it is unfortunate that the ability of students ...

  20. Problem Definition (Illustrated Mathematics Dictionary)

    A question that needs a solution. In mathematics some problems use words: "John was traveling at 20 km per hour for half an hour. How far did he travel?" And some use equations: "Solve x+5=22". Illustrated definition of Problem: A question that needs a solution.

  21. PDF What Is Problem-solving Ability? Carmen M. Laterell Abstract

    Polya defined problem solving as. finding "a way where no way is known, off-hand... out of a difficulty...around an obstacle". (1949/1980, p. 1). Polya stated that to know mathematics is to solve problems. The difference between nonroutine and routine problems seems to be a key element in.

  22. Problem

    Definition. A mathematical problem is an unsolved question. These problems usually provide some values and ask to find some unknown value. For example, if you cycled a total distance of 16 km in one hour, then what was your average speed? ... Because there are so many moving parts in the process of solving word problems, it can be difficult to ...

  23. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  24. Math Message Boards FAQ & Community Help

    Art of Problem Solving AoPS Online. Math texts, online classes, and more for students in grades 5-12. Visit AoPS Online ‚ Books for Grades 5-12 ...

  25. The mathematical muddle created by leap years

    The French newspaper La Bougie du Sapeur is only published on 29 February every four years (Credit: Getty Images) There are only two fundamentally determined units of time for our planet.