• Position paper
  • Open access
  • Published: 02 December 2019

Biology education research: building integrative frameworks for teaching and learning about living systems

  • Ross H. Nehm   ORCID: orcid.org/0000-0002-5029-740X 1  

Disciplinary and Interdisciplinary Science Education Research volume  1 , Article number:  15 ( 2019 ) Cite this article

13k Accesses

17 Citations

1 Altmetric

Metrics details

This critical review examines the challenges and opportunities facing the field of Biology Education Research (BER). Ongoing disciplinary fragmentation is identified as a force working in opposition to the development of unifying conceptual frameworks for living systems and for understanding student thinking about living systems. A review of Concept Inventory (CI) research is used to illustrate how the absence of conceptual frameworks can complicate attempts to uncover student thinking about living systems and efforts to guide biology instruction. The review identifies possible starting points for the development of integrative cognitive and disciplinary frameworks for BER. First, relevant insights from developmental and cognitive psychology are reviewed and their connections are drawn to biology education. Second, prior theoretical work by biologists is highlighted as a starting point for re-integrating biology using discipline-focused frameworks. Specifically, three interdependent disciplinary themes are proposed as central to making sense of disciplinary core ideas: unity and diversity; randomness, probability, and contingency; and scale, hierarchy, and emergence. Overall, the review emphasizes that cognitive and conceptual grounding will help to foster much needed epistemic stability and guide the development of integrative empirical research agendas for BER.

Introduction

Many policy documents emphasize that student understanding of living systems requires the integration of concepts that span levels of biological organization, encompass the tree of life, and cross different fields of study (AAAS, 2011 ; NRC, 2009 ; NSF, 2019 ). Yet the institutional, disciplinary, and curricular structuring of the life sciences often works in opposition to these pursuits. More so than in physics and chemistry, “biology” encompasses an expansive array of disciplines, each of which is often housed in a different academic department (e.g., microbiology, botany, genetics). These disciplines often organize into different academic societies, communicate through different journals, embrace different methodological frameworks, and gather at separate scientific conferences. Such fragmentation is evident at many universities, which lack “biology” departments altogether, and may instead be organized by taxonomy (e.g., botany, zoology, microbiology departments), concept (e.g., genetics, ecology, evolution departments), unit or scale (e.g., cell biology, biochemistry). There is no organizational blueprint characteristic of biology departments in the United States, for example. Given that most universities have not identified a singular solution for structuring the life sciences, it is unsurprising that diverse structures also characterize biology education research. Disciplinary (and corresponding educational) fragmentation works against attempts at fostering an integrative understanding of living systems for students, which is arguably a foundational goal of biology education.

In this critical review I examine some of the conceptual challenges facing the field of Biology Education Research (BER). These challenges reflect the substantial disciplinary fragmentation of BER, but they also highlight opportunities for advancing student understanding of living systems. I focus on the conceptual foundations of the discipline because they are a unique feature of biology education and have received substantially less attention than education practices (e.g., active learning, course-based research experiences, inclusive pedagogies). I begin by documenting the disciplinary fragmentation of the biological sciences and the corresponding heterogeneity and conceptual fragmentation of BER efforts. A consequence of such compartmentalization has been the lack of attention to the development and testing of unifying conceptual frameworks for (i) living systems and (ii) student thinking about living systems (in contrast to individual concepts, such as mutation, heredity, or genetic drift). This finding aligns with prior reviews that have also noted limited empirical-theoretical coordination within BER. The lack of attention to unifying frameworks for both biology and BER has consequences for biology education. A review of Concept Inventory (CI) research is used to illustrate how the absence of robust conceptual frameworks can complicate attempts to uncover student thinking about living systems and to guide biology instruction. The reviews of BER scholarship and CIs are used to motivate discussion of possible blueprints for BER-specific frameworks. First, findings from developmental and cognitive psychology are proposed as central to the development of cognitive frameworks. Second, possible disciplinary frameworks for BER are proposed after summarizing attempts by biologists to establish unifying themes for living systems that transcend individual subdisciplines. These themes include unity and diversity; randomness, probability, and contingency; and scale, hierarchy, and emergence. The review ends by emphasizing that the most significant opportunity for strengthening and unifying BER lies in the formulation of conceptual frameworks that account for how learners make sense of living systems as they progress through ontogeny and formal education. Such frameworks are much-needed tools for organizing and executing field-specific disciplinary research agendas.

The disciplinary structures of biology and biology education research

Many journals focus on BER and have grown out of the disciplinary structures and educational needs of academic departments; this history helps to make sense of the fragmented structure currently characterizing BER. Many biological disciplines have produced associated educational journals that serve as examples: Microbiology ( Journal of Biology and Microbiology Education ), Evolution (e.g., Evolution: Education and Outreach ), and Neuroscience (e.g., Journal of Undergraduate Neuroscience Education ) (see Table  1 ). In many respects, this situation mirrors the explosion of discipline-specific journals in the life sciences.

Many of the research questions addressed within BER subdisciplines are an outgrowth of the educational contexts in which biological specialists have worked. The pressure to update curricula to reflect discipline-specific advances, for example, is a challenge inherent to all of the biological sciences (perhaps to a greater degree than in introductory physics and chemistry, where the content has remained relatively stable for the past century). Indeed, entirely new research areas (e.g., microbiomes, ancient DNA [deoxyribonucleic acid]) and methods (e.g., bioinformatics, CRISPR [clustered regularly interspaced short palindromic repeats]) emerge with increasing tempo each decade. Keeping students up-to-date with discipline-specific understanding is an ongoing challenge that has spurred educational reform, innovation, and ongoing professional development within biological subdisciplines (e.g., physiology) and their associated journals.

A second feature of the fragmented nature of biology education is the seemingly unique learning challenges that have been identified within each disciplinary context (e.g., microbiology, evolution, genetics). The challenge of addressing the student misconception that bacteria are primarily pathogenic, for example, is of particular concern within microbiology; developing approaches to tackle goal-driven reasoning about evolutionary change is central to evolution education; and helping students recognize the genetic similarity of eye cells and liver cells is foundational to genetics and genomics. Many educational efforts in biology education have arisen from attempts to tackle domain-specific learning challenges, including the development of tools for diagnosing topic-specific misunderstandings (see Student Thinking about Living Systems, below). Perhaps as a consequence of disciplinary isolation, markedly less work in BER has sought to identify common threads in the fabric of student confusion and to weave them into unified models of biological reasoning that are capable of explaining seemingly disparate educational challenges (although see Coley & Tanner, 2012 ; Opfer et al., 2012 , for cognition-based examples of such efforts).

The fragmentation of BER efforts and journals could be viewed as an historically contingent outcome of the disciplinary structure of the biological sciences and the unique challenges that characterize them. But a less myopic view might reveal cross-cutting commonalities across disciplines (see below). Indeed, recent efforts in the United States and elsewhere have attempted to reform the biology curriculum and highlight cross-cutting concepts that undergird many different subdisciplines (e.g., Vision and Change in Undergraduate Biology Education , AAAS, 2011 ). Efforts have also been made to bring different biology education communities together under new organizational arrangements (e.g., SABER: Society for the Advancement of Biology Education Research; ERIDOB: European Researchers In the Didactics Of Biology). Following these biology-specific unification efforts, the National Research Council ( 2012 ) has also attempted to define and unite the efforts of chemistry, physics, and biology education researchers under the umbrella of “Discipline-Based Educational Research” (DBER). It is clear that the disciplinary structure of biology education, like that of other educational research disciplines, is in flux. Attempts to integrate pockets of disciplinary research activity is ongoing, and it is too soon to characterize the outcomes of these efforts. But disciplinary unification is often fostered by conceptual frameworks that encompass the needs and goals of stakeholders (Miller, 1978 ). Such work will be invaluable for guiding educational integration.

In summary, the range and diversity of BER journals and research efforts (Table 1 ) continue to mirror the tangled disciplinary and academic roots from which they grew. Unifying the paradigms and perspectives being generated from multiple BER journals and scientific societies is challenging, yet a worthy goal if true conceptual unification into a “BER community” (or an even larger “DBER community”) is to be achieved. In the following sections, some cross-cutting themes from this expansive body of work are identified, reviewed, and critiqued. Much like BER itself, there are many alternative frameworks that could effectively characterize this evolving area of scholarship. But a persistent question that emerges from a review of this fractured body of work is whether there are sufficient conceptual and theoretical frameworks capable of supporting the challenge of disciplinary unification (and corresponding educational unification).

Conceptual and theoretical frameworks for biology education research

Theory building linked to causal explanation is a central goal of scientific and social-science research, although the two fields often differ in the number of theories used to explain particular phenomena. In both realms “… research emanates from the researcher’s implicit or explicit theory of the phenomenon under investigation” (Rocco & Plakhotnik, 2009 , p. 121). Therefore, clear specification of theoretical framing and grounding is essential to the research enterprise (Imenda, 2014 ). A question in need of attention is what conceptual or theoretical frameworks help to frame, ground, and unite BER as a standalone field of educational inquiry (cf. Nehm, 2014 )? Two of the more recent reviews of BER history and scholarship are notable in that they did not identify (or propose) discipline-specific educational frameworks (Dirks, 2011 ; deHaan, 2011 ). In her characterization of BER studies from 1990 to 2010, for example, Dirks ( 2011 ) identified three categories of scholarship: (1) student learning or performance, (2) student attitudes and beliefs, and (3) concept inventories and validated instruments. Within each category, Dirks examined the theoretical frameworks that were used to guide the empirical work that she reviewed. Few studies in these three categories linked empirical investigations to explicit theoretical frameworks. Instead, BER scholars framed their investigations in terms of ‘problem description.’ In cases where theoretical frameworks were hinted at, they were quite general (e.g., Bloom’s Taxonomy, Ausubel’s emphasis on prior knowledge and learning). The vast majority of studies in Dirks’s ( 2011 ) review lacked discipline-based educational framing and conceptual grounding, and no BER-specific theoretical frameworks were identified.

deHaan’s ( 2011 ) review of the history of BER also touched upon the theoretical frameworks that have been used to guide BER. Three frameworks--constructivism, conceptual change, and “others” (i.e., social interdependence and theories of intelligence)--were identified. It is notable that these frameworks did not originate within BER (they are frameworks developed in education and psychology) and they are not discipline-specific (i.e., educational frameworks unique to BER). Although not inherently problematic, one might expect (or indeed require) a discipline-focused educational enterprise to pursue and establish discipline-focused frameworks. If such frameworks are lacking, then the question arises as to what unifies and organizes the pursuits of affiliated scholars. A superficial, a-theoretical, and unsatisfying answer to this question could be that “BER focuses on biology education.” Overall, these reviews and a corresponding examination of studies from a variety of journals (Table 1 ) suggest that BER typically lacks discipline-specific conceptual or theoretical frameworks.

Although many BER studies lack explicit anchoring in conceptual or theoretical frameworks unique to living systems, some work has attempted to build such frameworks. Conceptual frameworks for the disciplinary core ideas of (i) information flow in living systems and (ii) evolutionary change illustrate how different concepts and empirical findings may be related to one another and integrated into a framework that explains, predicts, and guides research in biology education (Fig.  1 ). Shea et al. ( 2015 ), for example, elaborated on Stewart et al.’s ( 2005 ) genetics literacy model and presented a tripartite framework showing the interrelationships among content knowledge use, argumentation quality, and the role of item surface features in genetic reasoning (Fig. 1 a). This conceptual framework is biology-specific (i.e., addresses student reasoning about the disciplinary core idea of information flow at various scales) and applicable to most living systems (i.e., attends to phylogenetic diversity). The addition of argumentation to this model is valuable but not necessarily unique to this topic (argumentation is a practice central to all of science). This framework is a useful example because it (i) synthesizes prior empirical work, (ii) explains why student reasoning about information flow may fail to reach performance expectations, (iii) guides future research agendas and associated studies, (iv) applies broadly to living systems, and (v) motivates the development of particular curricular and pedagogical strategies.

figure 1

Examples of conceptual frameworks developed for biology education research. a A three-part conceptual framework for genetics literacy encompassing situational features, content knowledge use, and argumentation quality (modified from Shea et al. 2015 ). b A conceptual framework for evolutionary reasoning encompassing long-term memory, problem-solving processes, and item features (similar to the situational features of Shea et al. 2015 ). Modified from Nehm ( 2018 )

The second conceptual framework focuses on student reasoning about evolutionary change (Fig. 1 b). Nehm ( 2018 ) presents a conceptual framework that integrates aspects of Information Processing Theory, empirical findings on novice-expert evolutionary reasoning, and student challenges with evolutionary mechanisms (Fig. 1 b; see also Ha & Nehm 2014 ; Nehm & Ha, 2011 , Nehm and Ridgway 2011 ). When encountering tasks (or situations) that prompt for explanations of evolutionary change, sensitivity to item features (e.g., familiar plant species that have or lack thorns) impacts internal problem representation, which in turn affects the recruitment of individual concepts and schemas from long-term memory into working memory. The utilization of different assemblages of cognitive resources is driven by the features of the living systems. Like Shea et al.’s ( 2015 ) conceptual framework, Nehm’s ( 2018 ) conceptual framework (i) integrates existing theory (i.e., information processing theory) with prior empirical work, (ii) accounts for why student reasoning about evolutionary change may fail to reach performance expectations, (iii) guides future research agendas, and (iv) motivates the development of curricular and pedagogical strategies to address particular cognitive bottlenecks noted in the framework. Both of these frameworks attend to fundamental features of living systems (i.e., information flow, evolution) that transcend individual cases and exemplars (i.e., they consider diversity as a core feature of biological reasoning). Although both examples are simple, they organize a range of concepts central to understanding disciplinary thinking.

In summary, many factors work to maintain division among life science subfields (e.g., separate departments, conferences, journals, language; Table 1 ), and few counteracting factors promote unification (e.g., curricular cohesion, conceptual frameworks). Fragmentation of BER is an inevitable result. Interestingly, life scientists have long been concerned with a parallel challenge: the lack of attention to theoretical grounding and conceptual unification. The next section briefly reviews prior attempts to promote the development of conceptual frameworks for the life sciences. Although these frameworks do not address educational research specifically, they identify unifying concepts and principles that are essential starting points for building more robust conceptual foundations and frameworks for BER.

Conceptual frameworks for biology and biology education research

The past 60 years included several formal attempts to generate a conceptual framework for living systems and articulate a corresponding vision for the life sciences (e.g., Gerard and Stephens 1958 ; Miller, 1978 ; AAAS, 2011 ; NSF, 2019 ). The importance of theoretical foundations for biology was raised by Weiss ( 1958 , p. 93): “… the question [is] whether present-day biology is paying too little attention to its conceptual foundations, and if so, why.” In the 1950’s, the Biology Council of the U.S. National Academy of Sciences invited eminent biologists (e.g., Rollin Hotchkiss, Ernst Mayr, Sewell Wright) to explore the conceptual foundations of the life sciences given apparent disciplinary fragmentation. The report that emerged from their discussions and deliberations (NRC, 1958 ) attempted to re-envision biology through a more theoretical lens and generate a conceptual and hierarchical reconceptualization of the study of life. Conceptually, it included the broad categories of “Methods,” “Disciplines,” and “Concepts.” Methods organized life science research by the approaches used to generate understanding (e.g., immune tests, breeding, staining, factor analysis). Disciplines (structure [architecture, spatial relations, negative entropy]), and “Concepts” (history [origin]). Each of these categories—Methods, Disciplines, and Concepts--were then uniquely characterized at different biological scales (i.e., molecule, organelle, cell, organ, individual, small group, species, community/ecosystem, and total biota).

Three salient features of this early work include: (1) acknowledging the importance of conceptual grounding for the life sciences in light of disciplinary fragmentation; (2) situating academic topics and disciplines (e.g., anatomy, microbiology, ecology) within a conceptual superstructure (i.e., Structure, Equilibrium, History) and (3) highlighting the centrality of scale when considering life science Concepts, Methods, and Disciplines.

The U.S. National Research Council report Concepts of Biology ( 1958 ), while concerned with conceptual and disciplinary unification, did not lose sight of inherent connections to educational pursuits and outcomes: “Any success in improving the intellectual ordering of our subject would contribute to improved public relations, to the recruitment of more superior students, and to a better internal structure which would favor better teaching and research and in turn attract more students and support” (Weiss, 1958 , p. 95). These and many other significant efforts (e.g., Miller, 1978 ) confirm that the struggle for conceptual and educational unification of the life sciences has been ongoing, and repeated calls for unity suggest that the successes of these early efforts have been limited.

Although the history of BER illuminates the deeper roots of disciplinary challenges (deHaan 2011 ), attention to recent progress should also be noted. The efforts to develop and deploy unified conceptual and curricular frameworks for biology education that mirror expert conceptualizations are ongoing (e.g., AAAS, 2011 ; NSF, 2019 ). In the United States, for example, the past two decades have witnessed substantial progress on how to structure and reform undergraduate and K-12 biology education. Emerging from interactions among many different stakeholders and scholars (see Brownell, Freeman, Wenderoth, & Crowe, 2014 , their Table 1 ) and mirroring curricular innovations by working groups of biologists (e.g., Klymkowsky, Rentsch, Begovic, & Cooper, 2016 ) arose Vision and Change in Undergraduate Biology Education (AAAS, 2011 ) and, later, the Next Generation Science Standards (NRC, 2013 ). Both initiatives have attempted to winnow down the expansive range of biological topics that students experience and reorganize them into a more cohesive conceptual and curricular framework (much like NRC 1958 and Miller 1978 ). This framework is notable in that it continues to move the life sciences away from historically-based disciplinary structures focused on taxon (e.g., microbiology, botany, zoology) and towards more theoretical, principle-based schemes (e.g., structure and function) that transcend individual biological scales.

For example, Vision and Change reorganized biological knowledge according to five core concepts (AAAS, 2011 , pp. 12–14): (1) Evolution (The diversity of life evolved over time by processes of mutation, selection, and genetic change); (2) Structure and Function (Basic units of structure define the function of all living things); (3) Information Flow, Exchange, and Storage (The growth and behavior of organisms are activated through the expression of genetic information in context); (4) Pathways and Transformations of Energy and Matter (Biological systems grow and change by processes based upon chemical transformation pathways and are governed by the laws of thermodynamics); and (5) Systems (Living systems are interconnected and interacting). Many of these ideas are in alignment with previous conceptual work by Gerard and Stephens ( 1958 ) and Miller ( 1978 ). Vision and Change , however, provides a very limited characterization of these core concepts and does not explicitly discuss their interrelationships across biological scales (e.g., gene, organism, species, ecosystem).

The BioCore Guide (Brownell et al., 2014 ) was developed to provide more fine-grained and longer-term guidance for conceptualizing and implementing the goals of Vision and Change . Specifically, principles and statements were derived for each of the five Vision and Change core concepts in order to structure undergraduate degree learning pathways (Brownell et al., 2014 ). Efforts have also been made to stimulate change within institutions. Partnership for Undergraduate Life Science Education (PULSE Community, 2019 ), for example, has been developed to encourage adoption of these curricular innovations and self-reflection by life science departments.

Collectively, these conceptually-grounded curriculum frameworks (e.g., Vision and Change , BioCore) and associated reform efforts (PULSE) are important, new unifying forces counteracting the fragmented structure of the biological sciences. They also form necessary (but insufficient) substrates for constructing conceptual frameworks for BER. They are insufficient because, from an educational vantage point, identifying the concepts, schemas, and frameworks of a discipline is only one aspect of the challenge; these ideas must articulate in some way with how students think, reason, and learn about biological concepts and living systems. The next section reviews progress and limitations of biology educators’ attempts to understand student thinking about living systems in light of these disciplinary frameworks (e.g., NRC, 1958 ; Miller, 1978 ; AAAS, 2011 ).

Student thinking about living systems

Educational efforts to foster cognitive and practice-based competencies that align with disciplinary frameworks (such as Vision and Change ) must consider what is known about student thinking about living systems. It is therefore essential to consider how the BER community has approached this challenge, what they have learned, and what remains to be understood about living systems (e.g., NRC, 1958 ; Miller, 1978 ; AAAS, 2011 ).

The absence of robust conceptual and theoretical frameworks for the life sciences has not prevented teachers and educational researchers from different disciplinary backgrounds (e.g., microbiology, ecology) from identifying domain-specific learning challenges and misunderstandings (Driver et al. 1994 ; Pfundt & Duit, 1998 ; NRC, 2001 ). Hundreds of individual concepts (e.g., osmosis, recombination, genetic drift, trophic levels, global warming) are typically presented to students in textbooks and taught in classrooms (NRC, 1958 ). Biology teachers have correspondingly noticed, and biology researchers have empirically documented, an array of misunderstandings about these individual concepts and topics (for reviews, see Pfundt & Duit, 1998 ; Reiss and Kampourakis 2018 ). When attempting to solve biological problems, for example, many university students: convert matter into energy in biological systems; adopt use-and-disuse inheritance to explain changes in life over time; and account for differences between eye and liver cells as a result of DNA differences. Many of the same misunderstandings have been documented in young children (Driver, Squires, Rushworth, & Wood-Robinson, 1994 ; Pfundt & Duit, 1998 ).

The ubiquity and abundance of these non-normative conceptions and reasoning patterns has led biology educators in different subfields (see Table 1 ) to develop concept-specific assessment tools or instruments (so-called “Concept Inventories”) in order to document the ideas (both normative and non-normative) that students bring with them to biology classrooms (Table  2 ). For particular topics or concepts, researchers have consolidated studies of student misunderstandings by category (e.g., Driver et al., 1994 ; Pfundt & Duit, 1998 ), confirmed and refined descriptions of these misunderstandings using clinical interviews, and developed associated suites of assessment items relevant to a particular idea (i.e., concept, principle).

CIs typically contain items offering one normative scientific answer option along with a variety of commonly held misconception foils. These instruments are designed for instructors to uncover which non-normative ideas are most appealing to students and measure general levels of normative understanding. CIs have been developed for many topics in the biological subfields of cell biology, genetics, physiology, evolution, and ecology. The number of biology CIs continues to grow each year, providing valuable tools for uncovering student thinking about specific biological ideas (Table 2 ).

Biology CIs have advanced prior work on student misconceptions (Pfundt & Duit, 1998 ) by: (1) focusing attention on the core ideas of greatest importance to concept or topic learning (e.g., osmosis and diffusion), (2) attending to a broad range of common misunderstandings (previously identified in a variety of separate studies), (3) quantitatively documenting student understanding using large participant samples (in contrast to smaller-scale, qualitative studies); and (4) establishing more generalizable claims concerning students’ mastery of biology concepts (facilitated by easy administration and multiple-choice format). As noted by Dirks ( 2011 ), concept inventory development was an important advance for the BER community by helping biologists recognize the ubiquity of biology misunderstandings and learning difficulties throughout the educational hierarchy.

Given the importance of CI development to BER (Dirks, 2011 ; see above), a critical review of this work is in order. I identify six limitations in order to illustrate some of the remaining challenges to understanding student thinking about living systems. The first major limitation of BER CI development is that it continues to be largely descriptive, a-theoretical, and lacking in explicit grounding in cognitive or conceptual frameworks (BER-specific or otherwise) (e.g., NRC, 2001 ). I will illustrate the practical significance of frameworks for living systems and theoretical frameworks for measurement using the National Research Council’s ( 2001 ) “assessment triangle”. In brief, the assessment triangle encompasses the three most central and necessary features for embarking upon studies of student understanding (and CI development): cognition, observation, and interpretation (as well as interconnections thereof; see Fig. 1 ). Cognition refers to the relevant features and processes of the cognitive system that are used to frame and ground the development of assessment tasks. Observation refers to the tangible artifacts (e.g., verbal utterances, written text, diagrams) that are generated as a result of engaging with such tasks. Interpretation refers to the inferences drawn from analyses of the observations produced by the tasks.

All three corners of the assessment triangle are inextricably interrelated (Fig. 1 ). For example, interpretation relies on appropriate analyses of the observations , and the observations only have meaning when viewed in light of the cognitive models used to construct the assessment tasks. Misinterpretations and faulty inferences about student understanding may arise from implicit and unexamined (or false) assumptions at any corner of the triangle (e.g. inappropriate tasks, inappropriate analyses of observations, inappropriate theoretical grounding). The NRC assessment triangle identifies the central features involved in making inferences about student reasoning (e.g., reasoning about biological systems). Remarkably few biology CIs have attended to all of these central features.

The cognition corner of the NRC’s ( 2001 ) assessment triangle demands focused attention on what is known about how students conceptualize and process information in general and biological systems in particular. That is, theories of cognition and theories of biological reasoning should undergird and support claims about what CI tasks are seeking to capture. The majority of CIs examined lack grounding in well-established theories of cognition (e.g., information processing theory, situated cognition theory) or theories of biological thinking and reasoning (e.g., categorization of living vs. non-living; see below). As a result, the necessary features of assessment design (Fig.  2 ) are lacking; this generates an unstable base for task design, data interpretation, and claims about biological thinking (Opfer et al., 2012 ).

figure 2

The NRC Assessment Triangle. Measurement and assessment of student understanding requires the integration of cognitive models, observations, and interpretations of observations in light of cognitive models. Models of thinking about living systems—the cognition corner—are therefore crucial to the development, application, and evaluation of assessments

A practical example may help to elucidate how the interplay among assessment triangle vertices impact claims drawn from CIs. Consider the role that the diversity of life might play in biological reasoning, for example. If the cognitive model (e.g., information processing theory) undergirding CI task design assumes that students will activate different ideas depending upon the taxon used in the assessment task (e.g., plant, non-human animal, human animal, fungus, bacteria), then multiple taxonomic contexts will be necessary in order to gather relevant observations and to draw robust inferences about how students think. If, on the other hand, the cognitive model assumes that students process information using abstractions of concepts, then attention to taxonomy in task design is unnecessary and most biological exemplars will suffice. The items that are developed and the corresponding scores that emerge from these two different cognitive perspectives are likely to be different. Cognition, observation, and interpretation (Fig. 2 ) emerge as necessary considerations in biology CI development, implementation, and score interpretations. Most CIs (Table 2 ) lack explicit alignment with the NRC’s ( 2001 ) assessment triangle, contain implicit or unexamined cognitive assumptions, and as a result may generate ambiguous or debatable claims about student thinking about living systems (and, ultimately, cloud the field’s attempt to make sense of how students think about living systems) (Tornabene, Lavington, & Nehm, 2018 ).

In addition to the lack of attention to theoretical grounding (i.e., NRC, 2001 ), a second limitation of CIs relates to their practical utility for biology education (Table  3 ). Given that hundreds of topics are typically included in textbooks and taught in biology classes (NRC, 1958 ), and dozens of CIs have now been developed (e.g., Table 2 ), the question arises as to what to do with them; what, in other words, is the broader aim of building this expansive test battery? Assessing all of the major domains for which CIs have been developed would require substantial amounts of time and effort. Devoting class time to all of the biological preconceptions and alternative conceptions uncovered by all of these instruments would require eliminating many other learning objectives or reorganizing biology instruction. The field has not developed practical strategies for aligning the numerous isolated insights generated from CIs with the practical realities of instruction, or the broader goals for BER.

One practical solution for making use of the broad array of CIs would be to develop and deploy Computer Adaptive Tests (CATs) capable of automatically diagnosing levels of conceptual understanding (as opposed to administering all assessment items from all of the CIs) and delivering personalized instructional resources aligned with documented learning difficulties. These digital tools could be provided as pre-class assignments or as supplemental resources. Another solution more closely tied with the focus of this critical review would be to identify learning challenges apparent across CIs (e.g., difficulties in reasoning about living systems) and to develop corresponding instructional materials to address these broader misunderstandings or promote cognitive coherence. This approach circles attention back to the question of how conceptual frameworks for biology and biology education could be leveraged to unify understanding of diverse misconceptions across subdisciplines (see Conceptual and Theoretical Frameworks for Biology Education Research, above).

A third limitation of biology CIs relates to the design of assessment tasks and the inferences that are drawn from their scores. When employing open-ended assessment tasks and clinical interviews, some BER research has shown that a majority of students utilize mixtures of normative and non-normative ideas together in their biological explanations (Nehm & Schonfeld, 2008 , 2010 ). Most CI instrument items nevertheless continue to employ multiple-choice (MC) formats and only permit students to choose between a normative or a non-normative answer option. This format may, in turn, introduce noise into the measurement process and weaken validity inferences. Multiple-True-False (MTF) items are one solution to this problem. Using MTF formats, students are permitted to indicate whether they consider each answer option to be correct or incorrect, thereby breaking the task design constraint evident in either-or item options. This limitation is another example of how consideration of both cognition (i.e., mixed cognitive models exist) and task design (MC vs. MTF) work together to impact the quality and meaning of inferences about biological thinking drawn from CI scores (i.e., observations).

A fourth limitation of BER CIs concerns the authenticity of the assessment tasks themselves. Most CIs assess pieces of knowledge using MC items. It is not clear if students who are able to achieve high scores (i.e., select the constellation of normative answer options across multiple items) understand the concept as a whole (Nehm & Haertig, 2012 ). For example, just because students select the normative ideas of mutation , heritability , environmental change , and differential survival from a pool of normative and non-normative item options does not necessarily mean that they would assemble these ideas in a scientifically correct manner. A student could, for example, use the aforementioned ideas to build an explanation in which environmental change in a particular habitat causes heritable mutations which in turn help these organisms differentially survive . Thus, non-normative models may be assembled from normative “pieces.” This is another example of how inferences about students’ biological understandings are tied to assessment and cognitive frameworks.

One solution to this challenge is to utilize Ordered Multiple Choice (OMC) items. These items prompt students to choose from among explanatory responses integrating many normative and non-normative combinations (as opposed to asking students to select individual ideas or conceptual fragments). These explanatory models could be designed to mirror hypothesized levels of conceptual understanding or biological expertise (e.g., learning progressions). OMC items have the potential to capture more holistic and valid characterizations of student reasoning (see Todd et al., 2017 for an example from genetics).

A fifth limitation of biology CIs centers on the “interpretation” corner of the assessment triangle (Fig. 2 ); robust validation methods aligned with contemporary psychometric frameworks are often lacking in biology CI studies (Boone, Staver, & Yale, 2014 ; Neumann, Neumann, & Nehm, 2011 ; Sbeglia & Nehm, 2018 , 2019 ). Rasch Analysis and Item Response Theory (IRT) are slowly supplanting traditional Classical Test Theory (CTT) methods for biology CI validation. In addition to psychometric limitations, validation studies of many biology instruments remain restricted to singular educational settings or demographically-restrictive samples (Mead et al. 2019 ; Campbell & Nehm, 2013 ). These methodological choices introduce uncertainty about the generalizability of CI score inferences across demographic groups, educational institutions, and international boundaries. Particular care must be made when drawing inferences from CI scores to inform instructional decisions or evaluate learning efficacy given these limitations (Table 3 ).

The sixth and final limitation of extant biology CIs returns to the topic of discipline-based conceptual frameworks. Few if any of the biology CIs and assessment instruments have been designed to target foundational disciplinary themes identified over the past 60 years (e.g., reasoning across biological scales) or the disciplinary formulations advanced in Vision and Change (AAAS, 2011 ). BER assessment tools remain aligned to concepts or topics characteristic of a particular subdiscipline, biological scale, or taxon (e.g., human animals). Despite significant progress in documenting concept understanding (and misunderstanding), biology educators have directed much less attention to assessing the foundational features of living systems that are most closely tied to disciplinary frameworks (i.e., NRC, 1958 ; Miller, 1978 ; AAAS, 2011 ). That is, analogous to many biology curricula, BER CI work has assembled a valuable but disarticulated jumble of information (in this case, lists of student learning difficulties) lacking deep structure or coherence.

In summary, a critical review of BER efforts to understand student thinking about living systems has revealed significant progress and significant limitations. Significant progress has been made in: identifying a range of important topics and concepts relevant to disciplinary core ideas; developing instruments that measure many of the learning difficulties uncovered in prior work (Table 2 ); and documenting widespread patterns of limited content mastery and numerous misunderstandings. Significant limitations have also been identified (Table 3 ). Many of the biology assessment tools lack: explicit grounding in psychometric and cognitive theory; task authenticity mirroring biological practice and reasoning; robust validation methods aligned with contemporary psychometric frameworks; robust inferences drawn from cognitively-aligned tasks; and implementation guidelines aligned with the practical realities of concept coverage in textbooks and classrooms. Collectively, much is now known about a scattered array of topics and concepts within biological subdisciplines; few if any tools are available for studying foundational and cross-disciplinary features of living systems identified by biologists over the past 60 years (e.g., identifying emergent properties across biological scales; considering stochasticity and determinism in biological causation; predicting biological outcomes using systems thinking; NRC, 1958 ; Miller, 1978 ; AAAS, 2011 ). BER requires discipline-specific frameworks that illuminate biological reasoning. Cognitive perspectives will be foundational to developing these frameworks.

What cognitive frameworks could guide BER?

A productive trend in BER involves efforts to link cognitive perspectives developed in other fields (e.g., education, psychology) with discipline-specific challenges characteristic of teaching and learning about living systems (Inagaki and Hatano, 1991 ; Kelemen and Rosset 2009 ). The fields of cognitive and developmental psychology serve as essential resources for understanding the roots of student reasoning about living systems. Developmental psychologists have generated many crucial insights into the foundations of human reasoning about living systems, including animacy, life, death, illness, growth, inheritance, and biological change (e.g., Opfer and Gelman 2010 ; Table  4 ). In particular, studies of human thinking have explored (1) whether ontogenetic development is characterized by reformulations of mental frameworks about living systems or by more continuous and less structured change, and (2) whether these early frameworks impact adult reasoning about living systems.

One of the more illuminating and well-studied examples of the linkages between cognitive and disciplinary frameworks concerns human thinking about plants (Opfer and Gelman 2010 ). Some psychologists consider the origins of biological thought to first emerge as young children ponder the question of what is alive and what is not (Goldberg & Thompson-Schill, 2009 ). For example, it is well established that young children initially conceptualize and classify plants as non-living entities. As cognitive development proceeds, plants are reclassified into an expanded category of “living” (e.g., plants + animals). An important question is whether early reasoning about biological categories and phenomena plays a significant role in later learning difficulties--including those documented in university undergraduates.

Plants provide a useful example for drawing possible connections among cognitive development, biological reasoning, and discipline-based conceptual frameworks. Plants comprise a central branch on the tree of life and are essential for human existence (i.e., sources of matter and energy). Yet, plants have posed significant challenges for life science educators (Wandersee & Schussler, 1999 ). These challenges range from students’ lack of perception of plants altogether (coined “plant blindness”) to fundamental misconceptions about how plants reproduce, transform matter and energy, and impact the chemical composition of the atmosphere (Wandersee & Schussler, 1999 ). The early reformulations of biological categories in young children--such as the reorganization of plants into the category of “living things”--appear to persist into adulthood.

A study by Goldberg and Thompson-Schill ( 2009 , p. 6) compared reasoning about plants relative to other living (e.g., animal) and non-living (e.g., rock) entities in undergraduates and biology professors. Under time pressure, it took biology professors significantly longer to recognize plants as living things (compared to animals and non-living entities). Goldberg and Thompson-Schill noted that “[t] he same items and features that cause confusions in young children also appear to cause underlying classification difficulties in university biology professors.” This case is not unique. Children’s reasoning about other biological phenomena, such as teleo-functional biases, also display continuities with adult thinking about evolutionary change (e.g., Kelemen and DiYanni, 2005 ). Work in cognitive and developmental psychology indicate that young children’s early formulations about living systems might not be “re-written”, but instead persist into adulthood, require active suppression, and impact later learning. Ongoing research in cognitive and developmental psychology has great potential for enriching our understanding of thinking in young adults, and for providing deeper insights into the causes of entrenched biology misunderstandings that often appear resistant to concerted educational efforts.

Studies at the other extreme--expert biologists--also have great potential for informing the development of unifying cognitive frameworks for BER. Comparative studies of experts and novices in different subject areas have been central to understanding domain-general and domain-specific features of problem representation and problem-solving performance for nearly a century (reviewed in Novick and Bassok, 2012 ). Novice-expert comparisons have seen comparatively little use in BER, although some notable exceptions include studies in genetics (Smith, 1983 ), evolution (Nehm & Ridgway, 2011 ), and genetically-modified organisms (Potter et al. 2017 ). These studies offer a range of insights into how novices and experts conceptualize problems, plan solutions, and utilize concepts and frameworks in problem-solving tasks. These insights could be leveraged to help elucidate expert frameworks of biological systems, as well as to identify conceptual, procedural, and epistemic barriers in novice reasoning. In a study of evolution, for example, novices performed poorly on problem-solving tasks not because of a lack of domain-specific knowledge, but because of the ways in which they used superficial task features (different organisms) to cognitively represent the problems at hand (i.e., in fundamentally different ways than the experts). Here the tension in student thinking about the unity and diversity of living systems is revealed—which is also a disciplinary idea unique to BER (Dobzhansky, 1973 ). Helping students perceive unity across the diversity of life emerges as a crucial (but often neglected) instructional goal. Comparing expert and novice problem-solving approaches could reveal unknown barriers to biology learning and illuminate potential features of a theoretical conceptualization of BER. These frameworks become central to the “cognition” corner of the assessment triangle (NRC, 2001 ) and efforts to design CIs and measure educational impact.

In addition to tracing the origination, persistence, and modification of cognitive structures about living systems through ontogeny and expertise, it is useful to ask whether the disciplinary organization of the biological sciences and associated degree programs, curricula, and textbook organizations (cf. Nehm et al., 2009 ) contribute to students’ fragmented models of living systems (e.g., Botany courses and textbooks focus on plants; Microbiology courses and textbooks focus on bacteria; Zoology courses and textbooks focus on animals). Few biologists would doubt that taxon-specific learning outcomes are essential for understanding the unique aspects of particular living systems. But an unanswered question is whether an effective balance between diversity and unity been achieved, or whether the scales have been tipped towards a focus on diversity-grounded learning (and corresponding cognitive fragmentation in biology students). It is notable that most biology textbook chapters, courses, and degree programs maintain organizational structures at odds with most conceptual reformulations of the life sciences (e.g., NRC, 1958 ; Miller, 1978 ; AAAS, 2011 ). Resolving these contradictions may help to conceptualize a more unified and principled framework for BER.

In summary, one of the most underdeveloped areas of BER concerns the formulation of conceptual and theoretical frameworks that account for how learners make sense of the similarities and differences within and across living systems as they progress through ontogeny and educational experiences. Cognitive and developmental psychology provide rich but largely untapped resources for enriching cognitively-grounded frameworks. In addition to studies of biological reasoning in young children, studies of expert thinking also offer considerable promise for uncovering barriers to expert-like conceptualizations of living systems. Collaborations with cognitive and developmental psychologists, and greater application of expert-novice comparisons, will be essential to advancing the cognitive frameworks for assessment design, curriculum development, and BER research.

What disciplinary frameworks could guide BER?

Although frameworks and models from psychology will be invaluable for crafting cognitive frameworks for BER, there are unique features of living systems that must also be explicitly considered in light of more broadly applicable cognitive models. To foster disciplinary unification and more integrative models of BER, these features should (1) span different biological subdisciplines and (2) undergird broad learning challenges about core ideas about living systems. Three areas--unity and diversity; randomness, probability, and contingency; and scale, hierarchy, and emergence—are likely to be valuable ideas for the development of discipline-grounded conceptual frameworks for BER. Each is discussed in turn below (Fig. 3 ).

figure 3

Integrating conceptual frameworks into BER: student reasoning about unity and diversity; scale, hierarchy, and emergence; and randomness, probability, and historical contingency. Note that all three ideas interact to generate understanding about living systems, including processes within them (e.g., information flow)

Unity and Diversity in biological reasoning

A foundational (yet undertheorized) disciplinary challenge inherent to BER concerns the development of conceptual models of student sensemaking about the similarities and differences within and across living systems (NRC 1958 ; Klymkowsky et al., 2016 ; Nehm, 2018 ; Nehm et al., 2012 ; Shea, Duncan, & Stephenson, 2015 ). A key argument often missed in Dobzhansky’s ( 1973 ) seminal paper expounding the importance of evolution to all of biology was “[t] he unity of life is no less remarkable than its diversity” (p. 127). Indeed, a core goal of all biological disciplines is to develop and deploy causal models that transcend particular scales, lineages, and phenomenologies. Biology educators have, for the most part, documented myriad student learning difficulties within disciplinary contexts (e.g., microbiology, heredity, evolution, ecology) that are likewise bound to particular scales, concepts, and taxonomic contexts. Much less work has explored reasoning across these areas and the extent to which conceptual unity is achieved as students progress through biology education (Garvin-Doxas & Klymkowsky, 2008 ).

A core need for BER is the development of explicit models of how student understanding of living systems changes in response to formal and informal educational experiences (e.g., exposure to household pets, gardens, books, zoos, digital media, formal schooling). Throughout ontogeny, learners experience a wide range of life forms and their associated phenomenologies (e.g., growth, function, behavior, death). As learners engage with the diversity of the living world, a foundational question for BER is whether students construct increasingly abstract models of living systems (i.e. conceptual unity) or whether their sense-making remains rooted in taxonomic contexts, experiential instances, and case examples (i.e. conceptual diversity; Fig.  4 ).

figure 4

One example of unity and diversity in biological reasoning. Note that examples using a broader set of scales (e.g., ecosystem) could be utilized. a Within a biological scale (in this case, the scale of organism), reasoning about living systems lacks unification and is organized by taxonomic contexts, experiential instances, and case examples. b Within a biological scale (in this case, the scale of organism) reasoning about living systems is characterized by abstract models transcending organismal type or lineage (i.e. conceptual unity). c Among biological scales (in this case, molecule, cell, organism), reasoning about living systems lacks unification and is organized by macroscopic (organismal), microscopic (cellular), and molecular (biochemical) levels of biological organization. d Among biological scales (in this case, molecule, cell, organism), reasoning about living systems at is characterized by abstract models linking biological scales (i.e. conceptual unity)

The limited body of work exploring student reasoning about the unity and diversity of living systems has uncovered different findings. In some cases, research suggests that in older children and young adults, reasoning about living systems may remain highly fragmented and taxon-specific at particular scales (Fig. 4 a; e.g., Freidenreich et al. 2011 ; Kargbo et al., 1980 ; Nehm & Ha, 2011 ). In other cases, research has shown that student reasoning may develop into unified problem-solving heuristics within a biological scale (Fig. 4 b; e.g., Schmiemann et al., 2017 ). Much less work has explored student reasoning about biological phenomena across biological scales (Fig. 4 c, d). Work in genetics education suggests that crossing these ontological levels or scales is inherently challenging for students (Freidenreich et al. 2011 ; Kargbo et al., 1980 ; Nehm & Ha, 2011 ; Nehm, 2018 ). For example, students may develop conceptual understanding within a biological level (Fig. 4 c) but be unable to conceptually link processes as they unfold over multiple scales (e.g., molecular, cellular, organismal; Fig. 4 d). Given that unity and diversity are foundational features of living systems, the development of conceptual and theoretical frameworks guiding empirical studies about student thinking about living systems is long overdue. Such frameworks could be used to synthesize past work, connect researchers from different life science sub-disciplines, and establish a unifying research agenda for BER.

Randomness, probability, and contingency

Many students and teachers have a tacit awareness that biology is different from the physical sciences. Yet, explicit frameworks illuminating these conceptual similarities and differences are often lacking in biology education (Klymkowsky et al., 2016 ). The behavior of biological systems is complex for many reasons, although the simultaneous operation of numerous causes each of which produces weak effects is an important one (Lewontin, 2000 ). Biological systems are also impacted by multiple probabilistic interactions with and among scales (e.g., molecular, cell, organismal, ecological) (Garvin-Doxas & Klymkowsky, 2008 ). For these reasons, biological patterns and processes are characterized by “...a plurality of causal factors, combined with probabilism in the chain of events …” across scales (Mayr, 1997 , p. 68). This messy situation often stands in sharp relief to student learning experiences in physics and chemistry, where fewer causes with stronger effects and more deterministic outcomes are encountered (Lewontin, 2000 ). Given the special properties of biological systems (at least in terms of the topics explored by students), a BER research program exploring how students make sense of randomness, probability, and determinism across lineages and biological scales emerges as an essential consideration (Garvin-Doxas & Klymkowsky, 2008 ).

Student learning difficulties with randomness and probability in biology are well established (Garvin-Doxas & Klymkowsky, 2008 ). Large numbers of university undergraduates previously exposed to natural selection falsely consider it to be a “random” process (Beggrow and Nehm, 2012 ); genetic drift misconceptions--many of which are closely tied to ideas of chance--are abundant (Price et al. 2014 ); and reasoning about osmosis and diffusion, which require thinking about probability at molecular scales, remains challenging for students at advanced levels of biology education (Garvin-Doxas & Klymkowsky, 2008 ). Many fundamental but very basic biological phenomena (i.e. in terms of the number of interacting causes within and among levels of organization) pose substantial challenges. But much like the discipline-specific documentation of other learning challenges, difficulties with randomness and probability are often discussed in the context of specific biological concepts (e.g., Punnett squares, Hardy-Weinberg equilibrium) rather than as unifying features of biological systems. What is currently lacking in BER is an organizing framework that cuts across instances (e.g., diffusion, meiosis, selection, drift) and guides systematic review and synthesis of different biology learning challenges relating to randomness and probability.

Student learning difficulties may be traced to many causes, which raises the question of whether there is empirical evidence that probabilistic reasoning is responsible for the aforementioned learning difficulties. Recent work by Fiedler et al. ( 2019 ) has quantified the contribution of probabilistic reasoning to biology understanding. In a large sample of university biology students, Fiedler et al. ( 2019 ) demonstrated that statistical reasoning (in the contexts of mathematics and evolution) displayed significant and strong associations with knowledge of evolution. Although this result is perhaps unsurprising given previous work (Garvin-Doxas & Klymkowsky, 2008 ), it is notable that statistical reasoning was also found to have significant and strong associations with the acceptance of evolution. Fiedler et al. ( 2019 ) affirm the significant role of probabilistic thinking in biological reasoning, and open the door to empirical explorations of many other topics in the life sciences. Although Fiedler et al. ( 2019 ) do not propose a framework for conceptualizing randomness and probability in the life sciences, they do argue that statistical reasoning is a core feature of reasoning about living systems (as opposed to an ancillary tool for studying living systems). This perspective reformulates the role of statistics in biological competence. Clearly, the development of a conceptual framework focusing on randomness, probability, and contingency could offer great potential for uniting research efforts across biological subdisciplines (e.g., molecular biology, genetics, evolution).

Scale, hierarchy, and emergence

The hierarchical structure of life, and its corresponding biological scales (e.g., cell, tissue, organ, organism, population, species, ecosystem) are repeatedly acknowledged as important considerations about biological systems in nearly every textbook and classroom. Although most (if not all) biology education programs draw student attention to the concepts of scale and hierarchy, they rarely explore how scale and hierarchy elucidate and problematize the functioning of biological systems. For example, an understanding of the interdependence of patterns and processes across scales (e.g., upward and downward causation) as well as the emergence of novel properties at higher levels (e.g., the whole is more than the sum of its parts), is necessary for making sense of nearly all of the core ideas unifying the life sciences (e.g., information flow, matter and energy transformation, evolution). Yet, a review of the literature reveals that an explicit curriculum for helping students engage in the meaning of this hierarchical arrangement appears lacking.

Extending discussions of the unity and diversity of life (see Fig. 4 , above), reasoning about living systems may also display unity or diversity across hierarchical levels. For example, reasoning about living systems may lack unification, and knowledge structures or mental models may be organized by macroscopic (organismal), microscopic (cellular), and molecular (biochemical) levels of biological organization (Fig. 4 c). In such cases, knowledge structures and reasoning are bound to particular scales or levels , and conceptual linkages among these scales (e.g., upward and downward causation, emergent properties) may be lacking. Alternatively, reasoning about living systems may be characterized by abstract models unifying biological scales (i.e. conceptual unity) (Fig. 4 d). In such cases, knowledge structures and mental models transcend scale and utilize level-specific understanding. The main point is that hierarchical scale is an important aspect of biological reasoning that may facilitate or constrain student understanding. The principles of scale, hierarchy, and emergence are central to biological reasoning, yet BER lacks a robust conceptualization of these concepts and their role in student understanding of living systems. Theoretical and conceptual frameworks for scale, hierarchy, and emergence could help to guide systematic review and synthesis of different biology learning challenges and guide research efforts in BER.

In summary, this critical review, as well as prior reviews of BER, have found few discipline-specific conceptual or theoretical frameworks for the field (Dirks, 2011 ; deHaan, 2011 ). The fragmented disciplinary history and structure of the life sciences (see above) has been a concern noted by eminent biologists and professional organizations for at least 60 years (e.g., NRC, 1958 ). Despite progress in conceptual unification in the biological sciences, the BER community to a significant degree remains compartmentalized along historical, institutional, and disciplinary boundaries (e.g., microbiology, biochemistry, evolution). Efforts by BER researchers to understand and measure student understanding of living systems have likewise progressed along disciplinary themes, concepts, and topics.

Many core features of living systems offer opportunities for crafting discipline-specific educational frameworks for BER. Given the fragmentation of the life sciences and BER, it is presumptuous and unrealistic for any single scholar or subfield to impose such a framework. Three interconnected themes--unity and diversity; randomness, probability, and contingency; and scale, hierarchy, and emergence—have been identified in prior synthesis efforts and offered as potential starting points for a cross-disciplinary discussion of possible field-specific frameworks. Such frameworks are critical to the epistemic foundations of BER. They have immense potential for enriching a wide array of research efforts spanning different subfields, organizing the growing list of student learning difficulties, and building casual frameworks capable of grounding empirical research agendas.

Limitations

This critical review has identified significant opportunities and challenges for BER. The most pressing opportunity noted throughout this review is the development of discipline-specific conceptual and theoretical frameworks. The absence of explicit disciplinary frameworks raises questions about disciplinary identity (e.g., “What is BER?”) and encourages superficial and dissatisfying answers (e.g., “BER studies biology education”). The perspective advanced in this review is that the absence of cognitive and disciplinary frameworks generates epistemic instability (e.g., a-theoretical empiricism) and clouds our ability to rigorously understand student thinking about living systems. There are, however, alternative perspectives on the significance of discipline-specific frameworks for BER; two are discussed below.

First, if BER-affiliated scholars were to ignore or abandon the National Research Council’s ( 2013 ) conceptualization and definition of BER (and the broader topic of DBER), then biology-related educational research efforts could easily be subsumed within the field of Science Education (cf. Nehm, 2014 ). In this case, discipline-focused theoretical frameworks become less of a concern because frameworks from science education could guide epistemic aims and corresponding research agendas. Attention to the unique aspects of biological concepts (e.g., inheritance, photosynthesis, phylogenetics) would fade (but not disappear) and educational frameworks (e.g., socio-cognitive theory, constructivism) would come into sharper focus. This alternative conceptualization foregrounds educational frameworks and backgrounds disciplinary frameworks. The rationale for BER as a standalone field consequently weakens, along with arguments concerning the critical nature of discipline-focused conceptual frameworks.

A second perspective concerns the necessity of conceptual and theoretical frameworks for BER (and perhaps other scholarly efforts) altogether. Theory building linked to causal explanation is widely-recognized as a central goal of scientific and social-science research (cf. Brigandt, 2016 ; Rocco & Plakhotnik, 2009 ). Some BER scholars, however, do not appear to consider such frameworks as central epistemic features of their work (as indicated by much of the work reviewed here). Indeed, there are numerous examples of implicit or a-theoretical hypothesis testing in the BER journals listed in Table 1 . This stance minimizes the importance of conceptual or theoretical frameworks in scholarly work, and in so doing eliminates the central concern advanced in this review.

One final and significant limitation of this critical review is that it has adopted a Western, and largely American, perspective. Many of the conclusions drawn are unlikely to generalize to other nations or cultures. It is well known that the structure of biology education research differs around the world (e.g., Indonesia, China, Korea, Germany). Studies of biology learning may be situated within university education departments or biology departments (or combinations thereof). Teacher training in biology may be housed in colleges exclusively devoted to biology education, or departments focusing on general biology education (e.g., medicine, conservation).

International comparison studies (e.g., Ha, Wei, Wang, Hou, & Nehm, 2019 ; Rachmatullah, Nehm, Ha, & Roshayanti, 2018 ) are likely to offer rich insights into the relationships between biology education research agendas, institutional contexts, and the conceptual and theoretical frameworks used to make sense of student thinking about living systems. Indeed, what are the affordances and constraints of different institutional and epistemic arrangements to knowledge discovery in biology education? Collectively, how could these alternative arrangements enhance our ability to foster deeper understanding of the living world? Further reviews from a broader array of stakeholders will enhance our collective understanding of BER around the world.

This critical review examined the challenges and opportunities facing the field of Biology Education Research (BER). Ongoing fragmentation of the biological sciences was identified as a force working in opposition to the development of (i) unifying conceptual frameworks for living systems and (ii) unifying frameworks for understanding student thinking about living systems. Institutional, disciplinary, and conceptual fragmentation of the life sciences aligns with the finding that BER generally lacks unique, unifying, and discipline-focused conceptual or theoretical frameworks. Biology concept inventory research was used to illustrate the central role that conceptual frameworks (both cognitive and disciplinary) play in making sense of student thinking about living systems. Relevant insights from developmental and cognitive psychology were reviewed as potential starting points for building more robust cognitive frameworks, and prior theoretical work by biologists was leveraged to generate possible starting points for discipline-focused frameworks. Three interconnected themes--unity and diversity; randomness, probability, and contingency; and scale, hierarchy, and emergence—were identified as central to thinking about living systems and were linked to ongoing BER research efforts. The review emphasized that the development of conceptual frameworks that account for how learners make sense of similarities and differences within and across living systems as they progress through ontogeny and formal education will help to foster epistemic stability and disciplinary unification for BER.

Availability of data and materials

Not applicable as this is a review article.

Abbreviations

Biology Education Research

Computer Adaptive Test

Concept Inventory

Clustered Regularly Interspaced Short Palindromic Repeats

Classical Test Theory

Discipline-Based Education Research

Deoxyribonucleic Acid

European Researchers In the Didaktics of Biology

Item Response Theory

Multiple True False

National Research Council

Ordered Multiple Choice

Partnership for Undergraduate Life Science Education

Society for the Advancement of Biology Education Research

Abraham, J. K., Perez, K. E., & Price, R. M. (2014). The Dominance Concept Inventory: A Tool for Assessing Undergraduate Student Alternative Conceptions about Dominance in Mendelian and Population Genetics. CBE—Life Sciences Education , 13 (2), 349–358.

Article   Google Scholar  

American Association for the Advancement of Science (AAAS). (2011). Vision and change in undergraduate biology education. Washington, DC, 2011. http://visionandchange.org/ . Accessed 20 Feb 2018.

Au, T., Sidle, A., & Rollins, K. (1993). Developing an intuitive under-standing of conservation and contamination: Invisible particles as a plausible mechanism. Developmental Psychology , 29 , 286–299.

Bassok, M., & Novick, L. R. (2012). Problem solving . In: The Oxford Handbook of Thinking and Reasoning Edited by Keith J. Holyoak and Robert G. Morrison. Oxford University Press.

Book   Google Scholar  

Beggrow, E., & Nehm, R. H. (2012). Students’ mental models of evolutionary Causation: Natural Selection and Genetic Drift. Evolution Education and Outreach . https://doi.org/10.1007/s12052-012-0432-z .

Google Scholar  

Boone, W. J., Staver, J. R., & Yale, M. S. (2014). Rasch analysis in the human sciences . Dordrecht: Springer.

Brigandt, I. (2016). Why the Difference Between Explanation and Argument Matters to Science Education. Science & Education , 25 . https://doi.org/10.1007/s11191-016-9826-6 .

Brownell, S. E., Freeman, S., Wenderoth, M. P., & Crowe, A. J. (2014). BioCore Guide: A Tool for Interpreting the Core Concepts of Vision and Change for Biology Majors. CBE—Life Sciences Education , 13 (2), 200–211.

Campbell, C., & Nehm, R. H. (2013). Evaluating assessment quality in genomics and bioinformatics education research. CBE-Life Sciences Education , 12 (3), 530–541. https://doi.org/10.1187/cbe.12-06-0073 .

Catley, K. M., & Novick, L. R. (2009). Digging deep: Exploring college students' knowledge of macroevolutionary time. Journal of Research in Science Teaching , 46 (3), 311–332.

Coley, J. D., & Tanner, K. D. (2012). Common Origins of Diverse Misconceptions: Cognitive Principles and the Development of Biology Thinking. CBE—Life Sciences Education , 11 (3), 209–215.

DeHaan R. L. (2011). Education Research in the Biological Sciences: A Nine-Decade Review. Paper presented at the Second Committee Meeting on the Status, Contributions, and Future Directions of Discipline-Based Education Research, Washington, DC, 2010. www7.nationalacademies.org/bose/DBER_DeHaan_October_Paper.pdf . Accessed 21 Mar 2019.

Dirks C. (2011). The Current Status and Future Direction of Biology Education Research. Paper presented at the Second Committee Meeting on the Status, Contributions, and Future Directions of Discipline-Based Education Research, Washington, DC, 2010. www7.nationalacademies.org/bose/DBER_Dirks_October_Paper.pdf . Accessed 21 Mar 2019.

Dobzhansky, T (1973). Nothing in Biology Makes Sense except in the Light of Evolution. The American Biology Teacher, Vol. 35 No. 3, Mar., 1973; (pp. 125–129). https://doi.org/10.2307/4444260 .

Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into Children’s ideas. New York: Routledge.

Fiedler, D., Sbeglia, G. C., Nehm, R. H., & Harms, U. (2019). How strongly does statistical reasoning influence knowledge and acceptance of evolution? Journal of Research in Science Teaching , 56 (9), 1183–1206.

Fisher, K. M., Williams, K. S., & Lineback, J. E. (2011). Osmosis and Diffusion Conceptual Assessment. CBE—Life Sciences Education , 10 (4), 418–429.

Freidenreich, H. B., Duncan, R. G., & Shea, N. (2011). Exploring middle school students’ understanding of three conceptual models in genetics. International Journal of Science Education , 33 (17), 2323–2349.

Garvin-Doxas, K., & Klymkowsky, M. W. (2008). Understanding randomness and its impact on student learning: Lessons from the biology concept inventory (BCI). CBE Life Science Education , 7 , 227–233.

Gerard, R. W., & Stevens, R. B. (1958). Concepts of Biology , National Research Council Publication 560 (). D.C.: National Academy Press. Washington.

Goldberg, R. F., & Thompson-Schill, S. L. (2009). Developmental “roots” in mature biological knowledge. Psychological Science , 20 (4), 480–487.

Ha, M., & Nehm, R. H. (2014). Darwin's difficulties and students’ struggles with trait loss: Cognitive-historical parallelisms in evolutionary explanation. Science & Education. https://doi.org/10.1007/s11191-013-9626-1 .

Ha, M., Wei, X., Wang, J., Hou, D., & Nehm, R. H. (2019). Chinese pre-service biology teachers’ evolutionary knowledge, reasoning patterns, and acceptance levels. International Journal of Science Education , 41 (5), 628–651. https://doi.org/10.1080/09500693.2019.1572936 .

Haslam, F., & Treagust, D. (1987). Diagnosing Secondary Students’ Misconceptions of Photosynthesis and Respiration in Plants Using a Two-Tier Multiple-Choice Instrument. Journal of Biological Education , 21 . https://doi.org/10.1080/00219266.1987.9654897 .

Imenda, S. (2014). Is there a conceptual difference between theoretical and conceptual frameworks? Journal of Social Science , 2 (38), 185–195.

Inagaki, K., & Hatano, G. (1991). Constrained person analogy in young children’s biological inference. Cognitive Development , 6 , 219–231.

Kalas, P., O’Neill, A., Pollock, C., & Birol, G. (2013). Development of a Meiosis Concept Inventory. CBE—Life Sciences Education , 12 (4), 655–664.

Kampourakis, K. (2013). Making sense of evolution . Oxford University Press.

Kargbo, D. B., Hobbs, E. D., & Erickson, G. L. (1980). Children’s beliefs about inherited characteristics. Journal of Biological Education , 14 (2), 137–146.

Kelemen, D., & Rosset, E. (2009). The human function compunction: Teleological explanation in adults. Cognition , 111 , 138–143.

Kelemen, D., & DiYanni, C. (2005). Intuitions About Origins: Purpose and Intelligent Design in Children's Reasoning About Nature. Journal of Cognition and Development , 6 (1), 3–31.

Klymkowsky, M. W., Rentsch, J. D., Begovic, E., & Cooper, M. M. (2016). The design and transformation of biofundamentals: A non-survey introductory evolutionary and molecular biology course. CBE—Life Sciences Education , 15 , ar70.

Lewontin, R. (2000). The triple helix . Harvard University Press.

Mayr, E. (1997). This is biology . New York: Basic Books.

McFarland, J. L., Price, R. M., Wenderoth, M. P., Martinková, P., & Cliff, W. (2017). Joel Investigating Novice and Expert Conceptions of Genetically Modified Organisms. CBE—Life Sciences Education , 16 , 3.

Mead, L. S., Kohn, C., Warwick, A., & Schwartz, K. (2019). Applying measurement standards to evolution education assessment instruments. Evolution:Education and Outreach , 12 , 5. https://doi.org/10.1186/s12052-019-0097-y .

Miller, J. G. (1978). Living Systems . McGraw Hill.

National Research Council (1958). Concepts of Biology . National Academies Press.

National Research Council (2001). Knowing what students know: the science and design of educational assessment . Washington, DC: National Academies Press.

National Research Council (2009). The New Biology . Washington, DC: National Academies Press.

National Research Council (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. Washington, DC: National Academies Press.

National Research Council (2013). NGSS Lead States. Next generation science standards: for states, by states . Washington, DC: The National Academies Press.

National Science Foundation (2019). Re-Integrating Biology. https://reintegratingbiology.org/ . Accessed 5 Nov 2019.

Nehm, R. H. (2014). Discipline-based education research. Science Education. , 98 (3), 543–546.

Nehm, R. H. (2018). Evolution (chapter 14). In K. Kampourakis, & M. Reiss (Eds.), Teaching biology in schools: Global issues and trends . Taylor and Francis: Routledge.

Nehm, R. H., Beggrow, E., Opfer, J., & Ha, M. (2012). Reasoning about natural selection: Diagnosing Contextual competency using the ACORNS instrument. The American Biology Teacher. , 74 (2).

Nehm, R. H., & Ha, M. (2011). Item feature effects in evolution assessment. Journal of Research in Science Teaching , 48 (3), 237–256.

Nehm, R. H., & Haertig, H. (2012). Human vs. computer diagnosis of Students’ natural selection knowledge: Testing the efficacy of text analytic software. Journal of Science Education and Technology. , 21 (1), 56–73.

Nehm, R. H., & Mead, L. (2019). Evolution Assessment. Introduction to the Special Issue. Evolution Education & Outreach . https://doi.org/10.1186/s12052-019-0098-x .

Nehm, R. H., Poole, T. M., Lyford, M. E., Hoskins, S. G., Carruth, L., Ewers, B. E., & Colberg, P. J. (2009). Does the segregation of evolution in biology textbooks and introductory courses reinforce students’ faulty mental models of biology and evolution? Evolution Education and Outreach , 2 , 527–532.

Nehm, R. H., & Ridgway, J. (2011). What do experts and novices “see” in evolutionary problems? Evolution: Education and Outreach , 4 (4), 666–679.

Nehm, R. H., & Schonfeld, I. (2008). Measuring knowledge of natural selection: A comparison of the CINS, and open-response instrument, and oral interview. Journal of Research in Science Teaching , 1131–1160.

Nehm, R. H., & Schonfeld, I. (2010). The future of natural selection knowledge measurement. Journal of Research in Science Teaching. , 47 (3), 358–362.

Neumann, I., Neumann, K., & Nehm, R. (2011). Evaluating instrument quality in science education: Rasch-based analyses of a nature of science test. International Journal of Science Education , 33 (10), 1373–1405.

Newman, D. L., Snyder, C. W., Fisk, J. N., & Wright, L. K. (2016). Development of the Central Dogma Concept Inventory (CDCI) Assessment Tool. CBE—Life Sciences Education , 15 , 2.

Opfer, J. E., & Siegler, R. S. (2004). Revisiting preschoolers’ living things concept: A microgenetic analysis of conceptual change in basic biology. Cognitive Psychology , 49 , 301–332.

Opfer, J. E., et al. (2012). Cognitive foundations for science assessment design: Knowing what students know about evolution. Journal of Research in Science Teaching , 49 (6), 744–777.

Opfer, J. E., Gelman, S. A. (2010). Development of the Animate–Inanimate Distinction. In: Usha Goswami (Ed.). The Wiley‐Blackwell Handbook of Childhood Cognitive Development, Second edition.

Chapter   Google Scholar  

Partnership for Undergraduate Life Sciences Education (2019). http://www.pulse-community.org/ . Accessed 21 Mar 2019.

Pfundt, H., & Duit, R. (1998). Bibliography. Students’ Alternative Frameworks and Science Education , (2nd ed.).

Poling, D. A., & Evans, E. M. (2002). Why do birds of a feather flock together? Developmental change in the use of multiple explanations: Intention, teleology and essentialism. British Journal of Developmental Psychology , 20 , 89–112.

Potter, L. M., Bissonnette, S. A., Knight, J. D., Tanner, K. D., O’Dowd, D. K. (2017). Investigating Novice and Expert Conceptions of Genetically Modified Organisms. CBE—Life Sciences Education 16 (3):ar52.

Price, R. M., Andrews, T. C., McElhinny, T. L., Mead, L. S., Abraham, J. K., Thanukos, A., Perez, K. E., Shuster, M. (2014). The Genetic Drift Inventory: A Tool for Measuring What Advanced Undergraduates Have Mastered about Genetic Drift. CBE—Life Sciences Education , 13 (1), 65–75.

Rachmatullah, A., Nehm, R.H., Ha, M. Roshayanti, F. (2018). Evolution education in Indonesia: Pre-service biology teachers’ evolutionary knowledge levels, reasoning models, and acceptance patterns. Evolution Education around the Globe. (Eds.). Deniz, H. Borgerding, L. springer.

Raman, L., & Winer, G. A. (2002). Children’s and adults’ understanding of illness: Evidence in support of a coexistence model. Genetic, Social, and General Psychology Monographs, Washington , 128 (4), 325–355.

Reiss, M., & Kampourakis, K. (2018). Teaching Biology in Schools Global Research, Issues, and Trends . Taylor and Francis.

Rocco, T. S., & Plakhotnik, M. (2009). Literature reviews, conceptual frameworks, and theoretical frameworks: Terms, functions, and distinctions. Human Resource Development Review , 8 (1), 120–130.

Sbeglia, G., & Nehm, R. H. (2018). Measuring evolution acceptance using the GAENE: Influences of gender, race, degree-plan, and instruction. Evolution Education & Outreach. https://doi.org/10.1186/s12052-018-0091-9 .

Sbeglia, G., & Nehm, R. H. (2019). Do you see what I-SEA? A Rasch analysis of the psychometric properties of the Inventory of Student Evolution Acceptance. Science Education. https://doi.org/10.1002/sce.21494 .

Schmiemann, P., et al. (2017). Assessment of genetics understanding: Under what conditions do situational features have an impact on measures? Science Education , 26 (10), 1161–1191.

Shea, N. A., Duncan, R. G., & Stephenson, C. (2015). A tri-part model for genetics literacy: Exploring undergraduate student reasoning about authentic genetics dilemmas. Research in Science Education , 45 (4), 485–507.

Smith, M. K., Wood, W. B., & Knight, J. K. (2008). The genetics concept assessment: A new concept inventory for gauging student understanding of genetics. CBELife Sciences Education , 7 (4), 422–430.

Smith, M. U. (1983). A comparative analysis of the performance of experts and novices while solving selected classical genetics problems , Unpublished doctoral dissertation (). FL: Florida State University.

Solomon, G., Johnson, S. C., Zaitchik, D., & Carey, S. (1996). Like father like son: Young children's understanding of how and why offspring resemble their parents. Child Development , 67 , 151–171.

Stefanski, K. M., Gardner, G. E., & Seipelt-Thiemann, R. L. (2016). Development of a Lac Operon Concept Inventory (LOCI). CBE—Life Sciences Education , 15 , 2.

Stewart, J., Cartier, J. L., & Passmore, P. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Bransford (Eds.), How students learn (pp. 515–565). Washington D.C: National Research Council.

Todd, A., et al. (2017). Development and validation of the learning progression-based assessment of modern genetics (LPA-MG) in a high school context. Science Education , 101 (1), 32–65.

Tornabene, R. E., Lavington, E., & Nehm, R. H. (2018). Testing validity inferences for genetic drift inventory scores using Rasch modeling and item order analyses. Evolution Education & Outreach. , 11 (6). https://doi.org/10.1186/s12052-018-0082-x .

Wandersee, J. H., & Schussler, E. E. (1999). The American Biology Teacher, 61 (2) 82+84+86.

Ware, E. A., & Gelman, S. A. (2014). You get what you need: An examination of purpose-based inheritance reasoning in undergraduates, preschoolers, and biological experts. Cognitive Science , 38 (2), 197–243.

Weiss, P. (1958). Introduction , In: Gerard, R.W., Stevens, R. B. (1958). Concepts of Biology. National Research Council Publication 560 . D.C.: National Academy Press Washington.

Download references

Acknowledgements

Not applicable.

Partial funding for this work was provided by the Howard Hughes Medical Institute (HHMI) Inclusive Excellence program.

Author information

Authors and affiliations.

Department of Ecology and Evolution, Institute for STEM Education, Stony Brook University (SUNY), 650 Life Sciences Building, Stony Brook, New York, 11794-5233, USA

Ross H. Nehm

You can also search for this author in PubMed   Google Scholar

Contributions

RHN wrote the manuscript. The author read and approved the final manuscript.

Authors’ information

Corresponding author.

Correspondence to Ross H. Nehm .

Ethics declarations

Ethics approval and consent to participate, consent for publication, competing interests.

The author declares that he/she has no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Cite this article.

Nehm, R.H. Biology education research: building integrative frameworks for teaching and learning about living systems. Discip Interdscip Sci Educ Res 1 , 15 (2019). https://doi.org/10.1186/s43031-019-0017-6

Download citation

Received : 28 May 2019

Accepted : 08 November 2019

Published : 02 December 2019

DOI : https://doi.org/10.1186/s43031-019-0017-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Biology education research
  • Biology education
  • Discipline-based education research
  • Conceptual frameworks
  • Life science

biology education thesis pdf

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Contributions from Biology Education Research

Profile image of Kostas Kampourakis

Contributions from Biology Education Research (CBER) is the international book series of the European Researchers in Didactics of Biology (ERIDOB). The series includes edited collections of state-of-the-art papers presented at the ERIDOB international conferences, and monographs or edited collections of chapters by leading international scholars of the domain. The aim of the series is to shed light on global issues and trends in the teaching and learning of biology by gathering cutting edge research findings, theoretical views, and implications or concrete suggestions for everyday school practice regarding biology. The books may serve as resources for (a) getting informed about the most recent findings of biology education research to possibly integrate them in new personal research, and (b) studying about the teaching and learning of biology as a pre-service or in-service biology teacher. So, the main audiences for the series range from senior to early career biology education researchers and pre-or in-service biology teachers

Related Papers

Susan R. Singer

Biologists have long been concerned about the quality of undergraduate biology education. Indeed, some biology education journals, such as the American Biology Teacher, have been in existence since the 1930s. Early contributors to these journals addressed broad questions about science learning, such as whether collaborative or individual learning was more effective and the value of conceptualization over memorization. Over time, however, biology faculty members have begun to study increasingly sophisticated questions about teaching and learning in the discipline. These scholars, often called biology education researchers, are part of a growing field of inquiry called discipline-based education research (DBER). DBER investigates both fundamental and applied aspects of teaching and learning in a given discipline;our emphasis here is on several science disciplines and engineering. The distinguishing feature of DBER is deep disciplinary knowledge of what constitutes expertise and expert...

biology education thesis pdf

Science and Education

Dina Tsybulsky

Book review. Kostas Kampourakis, Michael J. Reiss (Eds.). (2018) Teaching Biology in Schools: Global Research, Issues, and Trends. Routledge, City. ISBN: 978-1-138-087989 (Paperback), 292 Pages, Price: 49.95$ (Paperback), 24.98$ (eBook)

Cell Biology Education

Susan R. Singer , Natalie Nielsen

Al-Ta lim Journal

This study aims to investigate the trend of biological education research (BER) from 2000 to 2017 in the thesis of pre-service biology teachers. This study conducted a series of content analyses of the thesis from two universities. A total 1347 thesis were analyzed in terms of sample, method, design, elements and topics and subject matter. It was found that junior and senior high school were the most popular research sample trends. This study was also found that quantitive, research and development or/and educational design research became the trend of the method most chosen and conducted by preservice biology teachers. This findings were also indicated that descriptive, experimental, and 4-D were design trends chosen by preservice biology teachers. This study was also found that cognitive and media of learning were the research elements are the most chosen and conducted by preservice biology teachers. The next findings showed that system and cell was the most popular of biology top...

American Biology Teacher

Michael J Reiss , William McComas

An international group of biology education researchers offer their views on areas of scholarship that might positively impact our understanding of teaching and learning in biology and potentially inform practices in biology and life science instruction. This article contains a series of essays on topics that include a framework for biology education research, considerations in the preparation of biology teachers, increasing accessibility to biology for all learners, the role and challenges of language in biology teaching, sociocultural issues in biology instruction, and assisting students in coping with scientific innovations. These contributions are framed by a discussion of the value of defining several potential " grand challenges " in biology education.

Mustafa SOZBILIR

This paper provides a descriptive content analysis of biology education research papers published in eight major academic journals indexed in Social Science Citation Index [SSCI] of Thomson Reuters® from 1997 to 2014. Total of 1376 biology education research [BER] papers were examined. The findings indicated that most of the papers were published in the JBE and IJSE, and frequently studied topics were environment and ecology, genetics and biotechnology, and animal form and function. The findings were also indicated that learning, teaching and attitudes was in the forefront as the frequently investigated subject matters, undergraduate and secondary school students were mostly preferred as sample group and sample size mostly varies between 31-100 and 101-300. In addition, it was found out that interactive qualitative research designs were mostly preferred. Besides, that single data collection tool was generally used and this data collection tool included questionnaires, interviews and documents. Finally, frequency/percentage tables, central tendency measures, statistical analysis such as t-test and ANOVA/ANCOVA and content analysis were commonly used as data analysis.

School Science Review in Depth

Michael J Reiss

The third edition of the ASE's Teaching Secondary Biology sets out a vision for teaching and learning biology. Learning biology is not about learning the contents of a textbook. It is about conceptual learning, learning what it means to do biology and learning what it means to be a biologist. Our hope is that Teaching Secondary Biology helps teachers of biology to achieve these aims. The author team with whom we worked kept in mind a secondary teacher confronted with the task of teaching a specific topic, for example photosynthesis or evolution, and the preparation they would need to undertake. This article provides an overview of the book, which has sister volumes in chemistry and physics, and discusses ways in which teaching biology has much in common with teaching the other sciences, but is distinctive too. Teaching secondary biology Reiss and Winterbottom

International Journal of Educational Technology and Learning

Eirini Tzovla , Katerina Kedraka

This paper highlights the importance of teaching biological concepts in Primary Education and the need for enhancement in students of scientific literacy in general and biological literacy in particular. The students should be aware of the reality they experience in order to make decisions as active citizens and the teachers should use the best available methods and didactic approaches to enhance students' scientific literacy and prepare them for their real life. In this regard, it is important to build curricula that utilize multiple learning resources and adopt student-centred methods and practices such as inquiry-based learning, collaborative learning and the use of digital educational content. These approaches boost the 21st-century skills through the active participation of students and improve the learning outcomes. Hence, teachers play a significant role, because they should know those methods and practices to utilize in transmitting the scientific knowledge to the students and teach effectively the biological concepts to them.

Robin Wright , C. Dirks , K. Sirum , M. Withers

Rosa Branca Tracana

2. Theoretical background and key objectives The contemporary society lives a crisis related with several problems where we can highlighted the pollution problems and the resources over exploration, as the Brundtland Report refers “ … the sustainable development answer to the present needs without compromising the possibility of the next generations… ” (Mckeown et al, 2002). Environmental Education has been seen as a basic tool to contribute to the change of values, attitudes and behaviours. The interactions between scientific knowledge (K), values (V) and social practices (P) (model KVP by Clément, 2006) is important in the didactic transposition and a useful tool to understand what is related to science and to values in a scientific presentation such as in textbooks. In this work it was intended to analyse the didactical transposition in Environmental Education and Sustainable Development. More specifically, our key objectives can be formulated in the following research question: ...

RELATED PAPERS

Maandblad Voor Accountancy en Bedrijfseconomie

Ed Vosselman

SERGIO LUCENA

jpma.org.pk

ahmad hersi

Jurnal Tumbuh Kembang

Hasan Sulbar

Journal of Clinical Oncology

eoghan malone

Acta Obstetricia et Gynecologica Scandinavica

Rooyen T Mavenyengwa

Petros Antonarakos

Sains Malaysiana

Mahanem Noor

Actas Dermo-Sifiliográficas

Ariel Salinas R

Sasi Kirana

IEEE Communications Letters

Gustaw Mazurek

41st Aerospace Sciences Meeting and Exhibit

Environmental & Socio-economic Studies

ROSHANI DEVI

Yakhteh Med J

Ali Mostafaie

Science Advances

gabriel krasovec

Fundamental and Clinical Pharmacology

Maryse Lapeyre-mestre

Physical Review D

Biochemical Systematics and Ecology

Wenna Zhang

Digigyan Pune

Acta Botanica Mexicana

laura yañez

Advanced Engineering Materials

Klaus Liefeith

Journal of Electronic Materials

Mohamed Elsenety

Proceedings of the American Mathematical Society

eduardo gonzalez

Jessica Waterworth

S. A Dvoretskii

Microcirculation

Joakim Henricson

John Youril

Chemosphere

Gaétan Carrier

Nanomaterials

Iliana Medina-Ramirez

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Book cover

The Philosophy of Biology pp 1–29 Cite as

Philosophy of Biology and Biology Education: An Introduction

  • Kostas Kampourakis 2  
  • First Online: 01 January 2013

2854 Accesses

Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL,volume 1)

In this introductory chapter I describe the rationale and aims of the book. I also provide an overview of its contents, drawing attention to interrelated topics. Finally, I suggest particular ways in which one can read and use this book.

  • Natural Selection
  • Evolutionary Theory
  • Environmental Ethic
  • Intelligent Design
  • Biology Teacher

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Acknowledgements

I am indebted to all authors for the high quality chapters they contributed to this book. Working with them has been an intellectually stimulating experience. I am also indebted to all reviewers of these chapters, many of whom were also contributing authors. These include Denis Alexander, André Ariew, Robert Arp, Wallace Arthur, Stefan Artman, John Avise, Francisco Ayala, Bill Bechtel, Ingo Brigandt, John Hedley Brooke, Lindley Darden, David Depew, Laura Franklin-Hall, Patrick Forber, Lisa Gannett, Eva Jablonka, James Justus, Maureen O’Malley, Roberta Millstein, Robert Nola, Massimo Pigliucci, Erik Peterson, Angela Potochnik, Anya Plutynski, Richard Richards, Elliott Sober, Andrew Siegel and Tobias Uller. I am also very grateful to Michael Ruse who wrote a foreword for this book. Finally, I want to thank Dick Burian and Jim Lennox who invited me to co-author their chapters with them. It has been a great privilege and experience to have worked with them.

I am of course grateful to the publishing editor Ties Nijssen as well as to the editors of this series Charles Wolfe, Philippe Huneman and Thomas Reydon for making the publication of this book possible. Thomas Reydon has worked with me on this project from its inception and, being a philosopher of science with a good sense of what science education is about, he has been enormously helpful all the way. I am also grateful to Megan Faurot who helped finalizing the glossary. The glossary terms were written by the authors of the relevant chapters and were edited by me for consistency. Editing this book owes a lot to my previous experience as a guest editor for thematic issues for the journal Science & Education and to Michael Matthews, editor-in-chief of that journal. Finally, discussions with colleagues and friends over the years, about philosophy of science and how it relates to science education, have been extremely useful. I thank Alexandros Apostolou, Norm Lederman, Michael Matthews, Giorgos Malamis, Bill McComas, and Thomas Reydon for making me think hard about these topics.

Last but not least, I owe a lot to my wife, Katerina, and our children, Mirka and Giorgos, for their love and support. Without these, working on any book project would have been impossible. As I am finishing editing this book, I am also finishing writing my first book which I will dedicate to them. So, I thought that if I may dedicate this edited book to someone, it should be someone else to whom I also owe a lot. Thus, I dedicate this book to my father, Giorgos, who encouraged and supported my intellectual life ever since I was a child.

Author information

Authors and affiliations.

Secretariat of Educational Research and Development, Geitonas School, Vari Attikis, 16602, Greece

Kostas Kampourakis

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kostas Kampourakis .

Editor information

Editors and affiliations.

Educational Research & Development, Geitonas School, Vari Attikis, Athens, 1234, Attiki, Greece

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter.

Kampourakis, K. (2013). Philosophy of Biology and Biology Education: An Introduction. In: Kampourakis, K. (eds) The Philosophy of Biology. History, Philosophy and Theory of the Life Sciences, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6537-5_1

Download citation

DOI : https://doi.org/10.1007/978-94-007-6537-5_1

Published : 25 April 2013

Publisher Name : Springer, Dordrecht

Print ISBN : 978-94-007-6536-8

Online ISBN : 978-94-007-6537-5

eBook Packages : Humanities, Social Sciences and Law Philosophy and Religion (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Eduproject Topics

  • FREE PROJECT TOPICS
  • NCE PROJECT TOPICS
  • OND PROJECT TOPICS
  • HND PROJECT TOPICS
  • BSC PROJECT TOPICS
  • PGDE PROJECT TOPICS
  • MBA PROJECT TOPICS
  • MSC PROJECT TOPICS
  • HIRE A WRITER FOR NCE
  • HIRE A WRITER FOR OND
  • HIRE A WRITER FOR HND
  • HIRE A WRITER FOR BSC
  • HIRE A WRITER FOR PGD
  • HIRE A WRITER FOR MSC
  • HIRE A WRITER FOR MBA

Biology Education Project Topics and Materials PDF & DOC Download

Biology Education Project Topics And Materials PDF

These are Biology education project topics and materials PDF and MS Word format Download for final year undergraduates and postgraduates students in 2020 and 2021.

Are you a final year student in need of biology education project topics and materials? you are on the right page. We have a complete list of biology education project topics with good research and complete materials ready for download in PDF or DOC format.

Welcome to Edustore.NG, your number online academic  research library in Nigeria . This article will do justice by listing out free project topics on biology education  and affordable research materials for final year students in NCE, OND, HND, BSC, PGDE, MSC, Ph.D.

ATTENTION⇔ CLICK HERE TO SEE ALL TOPICS & MATERIALS»

Free Biology Education Project Topics and Materials for Final Year Students

In our research archive, we have lots of free biology education project topics and premium research papers. And also, related research seminar titles and journals for final year students in the biology education department.

Below is a list of best biology education project topics and materials PDF documents for students acquiring a degree in the college of education (NCE), National Diploma (ND), Higher National Diploma (HND), and Bachelor of Science (BSC).

Masters and Ph.D. students can also get their thesis and dissertation topics on this page. All you need to do is to select your topics below and submit them to your supervisor for approval . Then after approval come back for your complete material.

ATTENTION⇔   SEE ALL TOPICS & MATERIALS HERE»

Contents of the Free Biology Education Project Topics and Materials PDF

Instant Download on complete Biology Education Project Materials From Chapter 1-5 including the Abstract , Proposal, Introduction, Literature Review, Data Analysis and Presentation, Conclusion, Recommendation, References/Bibliography, Questionnaires Below.

List of Biology Education Project Topics and Research Materials

  • The role of motivation of the teachers in the teaching of biology (case study of ese-ode local government area, ondo state)
  • The effect of socio-economic background on academic performance of secondary school biology students in enugu north local government area of enugu state
  • The effect of biology practical activities on academic achievement of senior secondary school students (case study of enugu east local government area.)
  • Resources availability and utilization in the teaching of biology in secondary school in ibiono ibom local government area
  • Impact of problem solving and lecture method on biology students performance in secondary schools in owerri municipal council
  • Effects of instructional materials on achievement and retention of biology concepts among secondary school students in delta state, nigeria.
  • Effect of guided discovery and demonstration methods on students’ achievement, interest and conceptual change in practical biology
  • Comparative analysis of students’ secondary school performance in biology between 2012 and 2016 in oyo town
  • Causes of examination malpractice in biology in senior secondary school certificate examination: a case study of oshimili south l.g.a of delta state
  • Assessment of the knowledge of diagnosed sickle cell patients about sickle cell anaemia
  • Abundance of mosquito species within sokoto metropolis
  • The problems of teaching practical biology in senior secondary schools in igbo etiti local government area enugu state (a case study of ss iii students)
  • The effect of poor teacher – pupil relationship on academic achievement of biology students [case study of enugu south local government]
  • Teachers and students attitudes towards teaching of sex education in secondary schools (a case study of enugu education zone)
  • Perceived difficulties of some biological concept by senior secondary school students in the study of some biological concept
  • Ethnobotany of contraceptives among the people of ejigbo, osun state
  • Drug abuse and guidance services in secondary school in maiduguri metropolis council implication for counselling in bornor state
  • Challenges besetting the effective teaching and learning of biology in senior secondary schools
  • Attitude of mothers towards the introduction of sex education in secondary schools in enugu state (a case of enugu urban)
  • An investigation into the causes of premarital sex on secondary school girls and its impact on their academic achievements
  • A study of the impact of instructional materials in teaching and learning biology in senior secondary schools (a case study of enugu north local government area)
  • Impact of teaching, planning on students achievement in biology

CONTINUE FOR MORE TOPICS ON NEXT PAGE>>>

Consult a Research Project Writer

We have a team of dedicated professional writers that can guide you on your project, seminar works, proposal on any  level of degree . This consultation guide comes only if you could not find your biology education project topic and material on this website. If interested contact us now.

CONTACT US NOW>>

How to Download Complete Biology Education Project Materials PDF

Are you interested in getting any topic? please see our  Payments Instructions for more information on how to make payment and download your complete biology education project works from chapters 1-5 with references and questionnaires.

In Conclusion

Our biology education project topics PDF have their complete materials ready for instant download. In conclusion, we have listed above the best topics in biology education.

Do you need help?  you can contact us:  (+234) 08060082010, 08107932631  or via our email address:  [email protected]

Whatever degree you are acquiring in any school, we have listed above, complete biology education project topics and PDF research materials document for instant downloads. Good luck.

//

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.21(3); Fall 2022

Literature Reviews, Theoretical Frameworks, and Conceptual Frameworks: An Introduction for New Biology Education Researchers

Julie a. luft.

† Department of Mathematics, Social Studies, and Science Education, Mary Frances Early College of Education, University of Georgia, Athens, GA 30602-7124

Sophia Jeong

‡ Department of Teaching & Learning, College of Education & Human Ecology, Ohio State University, Columbus, OH 43210

Robert Idsardi

§ Department of Biology, Eastern Washington University, Cheney, WA 99004

Grant Gardner

∥ Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132

Associated Data

To frame their work, biology education researchers need to consider the role of literature reviews, theoretical frameworks, and conceptual frameworks as critical elements of the research and writing process. However, these elements can be confusing for scholars new to education research. This Research Methods article is designed to provide an overview of each of these elements and delineate the purpose of each in the educational research process. We describe what biology education researchers should consider as they conduct literature reviews, identify theoretical frameworks, and construct conceptual frameworks. Clarifying these different components of educational research studies can be helpful to new biology education researchers and the biology education research community at large in situating their work in the broader scholarly literature.

INTRODUCTION

Discipline-based education research (DBER) involves the purposeful and situated study of teaching and learning in specific disciplinary areas ( Singer et al. , 2012 ). Studies in DBER are guided by research questions that reflect disciplines’ priorities and worldviews. Researchers can use quantitative data, qualitative data, or both to answer these research questions through a variety of methodological traditions. Across all methodologies, there are different methods associated with planning and conducting educational research studies that include the use of surveys, interviews, observations, artifacts, or instruments. Ensuring the coherence of these elements to the discipline’s perspective also involves situating the work in the broader scholarly literature. The tools for doing this include literature reviews, theoretical frameworks, and conceptual frameworks. However, the purpose and function of each of these elements is often confusing to new education researchers. The goal of this article is to introduce new biology education researchers to these three important elements important in DBER scholarship and the broader educational literature.

The first element we discuss is a review of research (literature reviews), which highlights the need for a specific research question, study problem, or topic of investigation. Literature reviews situate the relevance of the study within a topic and a field. The process may seem familiar to science researchers entering DBER fields, but new researchers may still struggle in conducting the review. Booth et al. (2016b) highlight some of the challenges novice education researchers face when conducting a review of literature. They point out that novice researchers struggle in deciding how to focus the review, determining the scope of articles needed in the review, and knowing how to be critical of the articles in the review. Overcoming these challenges (and others) can help novice researchers construct a sound literature review that can inform the design of the study and help ensure the work makes a contribution to the field.

The second and third highlighted elements are theoretical and conceptual frameworks. These guide biology education research (BER) studies, and may be less familiar to science researchers. These elements are important in shaping the construction of new knowledge. Theoretical frameworks offer a way to explain and interpret the studied phenomenon, while conceptual frameworks clarify assumptions about the studied phenomenon. Despite the importance of these constructs in educational research, biology educational researchers have noted the limited use of theoretical or conceptual frameworks in published work ( DeHaan, 2011 ; Dirks, 2011 ; Lo et al. , 2019 ). In reviewing articles published in CBE—Life Sciences Education ( LSE ) between 2015 and 2019, we found that fewer than 25% of the research articles had a theoretical or conceptual framework (see the Supplemental Information), and at times there was an inconsistent use of theoretical and conceptual frameworks. Clearly, these frameworks are challenging for published biology education researchers, which suggests the importance of providing some initial guidance to new biology education researchers.

Fortunately, educational researchers have increased their explicit use of these frameworks over time, and this is influencing educational research in science, technology, engineering, and mathematics (STEM) fields. For instance, a quick search for theoretical or conceptual frameworks in the abstracts of articles in Educational Research Complete (a common database for educational research) in STEM fields demonstrates a dramatic change over the last 20 years: from only 778 articles published between 2000 and 2010 to 5703 articles published between 2010 and 2020, a more than sevenfold increase. Greater recognition of the importance of these frameworks is contributing to DBER authors being more explicit about such frameworks in their studies.

Collectively, literature reviews, theoretical frameworks, and conceptual frameworks work to guide methodological decisions and the elucidation of important findings. Each offers a different perspective on the problem of study and is an essential element in all forms of educational research. As new researchers seek to learn about these elements, they will find different resources, a variety of perspectives, and many suggestions about the construction and use of these elements. The wide range of available information can overwhelm the new researcher who just wants to learn the distinction between these elements or how to craft them adequately.

Our goal in writing this paper is not to offer specific advice about how to write these sections in scholarly work. Instead, we wanted to introduce these elements to those who are new to BER and who are interested in better distinguishing one from the other. In this paper, we share the purpose of each element in BER scholarship, along with important points on its construction. We also provide references for additional resources that may be beneficial to better understanding each element. Table 1 summarizes the key distinctions among these elements.

Comparison of literature reviews, theoretical frameworks, and conceptual reviews

This article is written for the new biology education researcher who is just learning about these different elements or for scientists looking to become more involved in BER. It is a result of our own work as science education and biology education researchers, whether as graduate students and postdoctoral scholars or newly hired and established faculty members. This is the article we wish had been available as we started to learn about these elements or discussed them with new educational researchers in biology.

LITERATURE REVIEWS

Purpose of a literature review.

A literature review is foundational to any research study in education or science. In education, a well-conceptualized and well-executed review provides a summary of the research that has already been done on a specific topic and identifies questions that remain to be answered, thus illustrating the current research project’s potential contribution to the field and the reasoning behind the methodological approach selected for the study ( Maxwell, 2012 ). BER is an evolving disciplinary area that is redefining areas of conceptual emphasis as well as orientations toward teaching and learning (e.g., Labov et al. , 2010 ; American Association for the Advancement of Science, 2011 ; Nehm, 2019 ). As a result, building comprehensive, critical, purposeful, and concise literature reviews can be a challenge for new biology education researchers.

Building Literature Reviews

There are different ways to approach and construct a literature review. Booth et al. (2016a) provide an overview that includes, for example, scoping reviews, which are focused only on notable studies and use a basic method of analysis, and integrative reviews, which are the result of exhaustive literature searches across different genres. Underlying each of these different review processes are attention to the s earch process, a ppraisa l of articles, s ynthesis of the literature, and a nalysis: SALSA ( Booth et al. , 2016a ). This useful acronym can help the researcher focus on the process while building a specific type of review.

However, new educational researchers often have questions about literature reviews that are foundational to SALSA or other approaches. Common questions concern determining which literature pertains to the topic of study or the role of the literature review in the design of the study. This section addresses such questions broadly while providing general guidance for writing a narrative literature review that evaluates the most pertinent studies.

The literature review process should begin before the research is conducted. As Boote and Beile (2005 , p. 3) suggested, researchers should be “scholars before researchers.” They point out that having a good working knowledge of the proposed topic helps illuminate avenues of study. Some subject areas have a deep body of work to read and reflect upon, providing a strong foundation for developing the research question(s). For instance, the teaching and learning of evolution is an area of long-standing interest in the BER community, generating many studies (e.g., Perry et al. , 2008 ; Barnes and Brownell, 2016 ) and reviews of research (e.g., Sickel and Friedrichsen, 2013 ; Ziadie and Andrews, 2018 ). Emerging areas of BER include the affective domain, issues of transfer, and metacognition ( Singer et al. , 2012 ). Many studies in these areas are transdisciplinary and not always specific to biology education (e.g., Rodrigo-Peiris et al. , 2018 ; Kolpikova et al. , 2019 ). These newer areas may require reading outside BER; fortunately, summaries of some of these topics can be found in the Current Insights section of the LSE website.

In focusing on a specific problem within a broader research strand, a new researcher will likely need to examine research outside BER. Depending upon the area of study, the expanded reading list might involve a mix of BER, DBER, and educational research studies. Determining the scope of the reading is not always straightforward. A simple way to focus one’s reading is to create a “summary phrase” or “research nugget,” which is a very brief descriptive statement about the study. It should focus on the essence of the study, for example, “first-year nonmajor students’ understanding of evolution,” “metacognitive prompts to enhance learning during biochemistry,” or “instructors’ inquiry-based instructional practices after professional development programming.” This type of phrase should help a new researcher identify two or more areas to review that pertain to the study. Focusing on recent research in the last 5 years is a good first step. Additional studies can be identified by reading relevant works referenced in those articles. It is also important to read seminal studies that are more than 5 years old. Reading a range of studies should give the researcher the necessary command of the subject in order to suggest a research question.

Given that the research question(s) arise from the literature review, the review should also substantiate the selected methodological approach. The review and research question(s) guide the researcher in determining how to collect and analyze data. Often the methodological approach used in a study is selected to contribute knowledge that expands upon what has been published previously about the topic (see Institute of Education Sciences and National Science Foundation, 2013 ). An emerging topic of study may need an exploratory approach that allows for a description of the phenomenon and development of a potential theory. This could, but not necessarily, require a methodological approach that uses interviews, observations, surveys, or other instruments. An extensively studied topic may call for the additional understanding of specific factors or variables; this type of study would be well suited to a verification or a causal research design. These could entail a methodological approach that uses valid and reliable instruments, observations, or interviews to determine an effect in the studied event. In either of these examples, the researcher(s) may use a qualitative, quantitative, or mixed methods methodological approach.

Even with a good research question, there is still more reading to be done. The complexity and focus of the research question dictates the depth and breadth of the literature to be examined. Questions that connect multiple topics can require broad literature reviews. For instance, a study that explores the impact of a biology faculty learning community on the inquiry instruction of faculty could have the following review areas: learning communities among biology faculty, inquiry instruction among biology faculty, and inquiry instruction among biology faculty as a result of professional learning. Biology education researchers need to consider whether their literature review requires studies from different disciplines within or outside DBER. For the example given, it would be fruitful to look at research focused on learning communities with faculty in STEM fields or in general education fields that result in instructional change. It is important not to be too narrow or too broad when reading. When the conclusions of articles start to sound similar or no new insights are gained, the researcher likely has a good foundation for a literature review. This level of reading should allow the researcher to demonstrate a mastery in understanding the researched topic, explain the suitability of the proposed research approach, and point to the need for the refined research question(s).

The literature review should include the researcher’s evaluation and critique of the selected studies. A researcher may have a large collection of studies, but not all of the studies will follow standards important in the reporting of empirical work in the social sciences. The American Educational Research Association ( Duran et al. , 2006 ), for example, offers a general discussion about standards for such work: an adequate review of research informing the study, the existence of sound and appropriate data collection and analysis methods, and appropriate conclusions that do not overstep or underexplore the analyzed data. The Institute of Education Sciences and National Science Foundation (2013) also offer Common Guidelines for Education Research and Development that can be used to evaluate collected studies.

Because not all journals adhere to such standards, it is important that a researcher review each study to determine the quality of published research, per the guidelines suggested earlier. In some instances, the research may be fatally flawed. Examples of such flaws include data that do not pertain to the question, a lack of discussion about the data collection, poorly constructed instruments, or an inadequate analysis. These types of errors result in studies that are incomplete, error-laden, or inaccurate and should be excluded from the review. Most studies have limitations, and the author(s) often make them explicit. For instance, there may be an instructor effect, recognized bias in the analysis, or issues with the sample population. Limitations are usually addressed by the research team in some way to ensure a sound and acceptable research process. Occasionally, the limitations associated with the study can be significant and not addressed adequately, which leaves a consequential decision in the hands of the researcher. Providing critiques of studies in the literature review process gives the reader confidence that the researcher has carefully examined relevant work in preparation for the study and, ultimately, the manuscript.

A solid literature review clearly anchors the proposed study in the field and connects the research question(s), the methodological approach, and the discussion. Reviewing extant research leads to research questions that will contribute to what is known in the field. By summarizing what is known, the literature review points to what needs to be known, which in turn guides decisions about methodology. Finally, notable findings of the new study are discussed in reference to those described in the literature review.

Within published BER studies, literature reviews can be placed in different locations in an article. When included in the introductory section of the study, the first few paragraphs of the manuscript set the stage, with the literature review following the opening paragraphs. Cooper et al. (2019) illustrate this approach in their study of course-based undergraduate research experiences (CUREs). An introduction discussing the potential of CURES is followed by an analysis of the existing literature relevant to the design of CUREs that allows for novel student discoveries. Within this review, the authors point out contradictory findings among research on novel student discoveries. This clarifies the need for their study, which is described and highlighted through specific research aims.

A literature reviews can also make up a separate section in a paper. For example, the introduction to Todd et al. (2019) illustrates the need for their research topic by highlighting the potential of learning progressions (LPs) and suggesting that LPs may help mitigate learning loss in genetics. At the end of the introduction, the authors state their specific research questions. The review of literature following this opening section comprises two subsections. One focuses on learning loss in general and examines a variety of studies and meta-analyses from the disciplines of medical education, mathematics, and reading. The second section focuses specifically on LPs in genetics and highlights student learning in the midst of LPs. These separate reviews provide insights into the stated research question.

Suggestions and Advice

A well-conceptualized, comprehensive, and critical literature review reveals the understanding of the topic that the researcher brings to the study. Literature reviews should not be so big that there is no clear area of focus; nor should they be so narrow that no real research question arises. The task for a researcher is to craft an efficient literature review that offers a critical analysis of published work, articulates the need for the study, guides the methodological approach to the topic of study, and provides an adequate foundation for the discussion of the findings.

In our own writing of literature reviews, there are often many drafts. An early draft may seem well suited to the study because the need for and approach to the study are well described. However, as the results of the study are analyzed and findings begin to emerge, the existing literature review may be inadequate and need revision. The need for an expanded discussion about the research area can result in the inclusion of new studies that support the explanation of a potential finding. The literature review may also prove to be too broad. Refocusing on a specific area allows for more contemplation of a finding.

It should be noted that there are different types of literature reviews, and many books and articles have been written about the different ways to embark on these types of reviews. Among these different resources, the following may be helpful in considering how to refine the review process for scholarly journals:

  • Booth, A., Sutton, A., & Papaioannou, D. (2016a). Systemic approaches to a successful literature review (2nd ed.). Los Angeles, CA: Sage. This book addresses different types of literature reviews and offers important suggestions pertaining to defining the scope of the literature review and assessing extant studies.
  • Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., & Fitzgerald, W. T. (2016b). The craft of research (4th ed.). Chicago: University of Chicago Press. This book can help the novice consider how to make the case for an area of study. While this book is not specifically about literature reviews, it offers suggestions about making the case for your study.
  • Galvan, J. L., & Galvan, M. C. (2017). Writing literature reviews: A guide for students of the social and behavioral sciences (7th ed.). Routledge. This book offers guidance on writing different types of literature reviews. For the novice researcher, there are useful suggestions for creating coherent literature reviews.

THEORETICAL FRAMEWORKS

Purpose of theoretical frameworks.

As new education researchers may be less familiar with theoretical frameworks than with literature reviews, this discussion begins with an analogy. Envision a biologist, chemist, and physicist examining together the dramatic effect of a fog tsunami over the ocean. A biologist gazing at this phenomenon may be concerned with the effect of fog on various species. A chemist may be interested in the chemical composition of the fog as water vapor condenses around bits of salt. A physicist may be focused on the refraction of light to make fog appear to be “sitting” above the ocean. While observing the same “objective event,” the scientists are operating under different theoretical frameworks that provide a particular perspective or “lens” for the interpretation of the phenomenon. Each of these scientists brings specialized knowledge, experiences, and values to this phenomenon, and these influence the interpretation of the phenomenon. The scientists’ theoretical frameworks influence how they design and carry out their studies and interpret their data.

Within an educational study, a theoretical framework helps to explain a phenomenon through a particular lens and challenges and extends existing knowledge within the limitations of that lens. Theoretical frameworks are explicitly stated by an educational researcher in the paper’s framework, theory, or relevant literature section. The framework shapes the types of questions asked, guides the method by which data are collected and analyzed, and informs the discussion of the results of the study. It also reveals the researcher’s subjectivities, for example, values, social experience, and viewpoint ( Allen, 2017 ). It is essential that a novice researcher learn to explicitly state a theoretical framework, because all research questions are being asked from the researcher’s implicit or explicit assumptions of a phenomenon of interest ( Schwandt, 2000 ).

Selecting Theoretical Frameworks

Theoretical frameworks are one of the most contemplated elements in our work in educational research. In this section, we share three important considerations for new scholars selecting a theoretical framework.

The first step in identifying a theoretical framework involves reflecting on the phenomenon within the study and the assumptions aligned with the phenomenon. The phenomenon involves the studied event. There are many possibilities, for example, student learning, instructional approach, or group organization. A researcher holds assumptions about how the phenomenon will be effected, influenced, changed, or portrayed. It is ultimately the researcher’s assumption(s) about the phenomenon that aligns with a theoretical framework. An example can help illustrate how a researcher’s reflection on the phenomenon and acknowledgment of assumptions can result in the identification of a theoretical framework.

In our example, a biology education researcher may be interested in exploring how students’ learning of difficult biological concepts can be supported by the interactions of group members. The phenomenon of interest is the interactions among the peers, and the researcher assumes that more knowledgeable students are important in supporting the learning of the group. As a result, the researcher may draw on Vygotsky’s (1978) sociocultural theory of learning and development that is focused on the phenomenon of student learning in a social setting. This theory posits the critical nature of interactions among students and between students and teachers in the process of building knowledge. A researcher drawing upon this framework holds the assumption that learning is a dynamic social process involving questions and explanations among students in the classroom and that more knowledgeable peers play an important part in the process of building conceptual knowledge.

It is important to state at this point that there are many different theoretical frameworks. Some frameworks focus on learning and knowing, while other theoretical frameworks focus on equity, empowerment, or discourse. Some frameworks are well articulated, and others are still being refined. For a new researcher, it can be challenging to find a theoretical framework. Two of the best ways to look for theoretical frameworks is through published works that highlight different frameworks.

When a theoretical framework is selected, it should clearly connect to all parts of the study. The framework should augment the study by adding a perspective that provides greater insights into the phenomenon. It should clearly align with the studies described in the literature review. For instance, a framework focused on learning would correspond to research that reported different learning outcomes for similar studies. The methods for data collection and analysis should also correspond to the framework. For instance, a study about instructional interventions could use a theoretical framework concerned with learning and could collect data about the effect of the intervention on what is learned. When the data are analyzed, the theoretical framework should provide added meaning to the findings, and the findings should align with the theoretical framework.

A study by Jensen and Lawson (2011) provides an example of how a theoretical framework connects different parts of the study. They compared undergraduate biology students in heterogeneous and homogeneous groups over the course of a semester. Jensen and Lawson (2011) assumed that learning involved collaboration and more knowledgeable peers, which made Vygotsky’s (1978) theory a good fit for their study. They predicted that students in heterogeneous groups would experience greater improvement in their reasoning abilities and science achievements with much of the learning guided by the more knowledgeable peers.

In the enactment of the study, they collected data about the instruction in traditional and inquiry-oriented classes, while the students worked in homogeneous or heterogeneous groups. To determine the effect of working in groups, the authors also measured students’ reasoning abilities and achievement. Each data-collection and analysis decision connected to understanding the influence of collaborative work.

Their findings highlighted aspects of Vygotsky’s (1978) theory of learning. One finding, for instance, posited that inquiry instruction, as a whole, resulted in reasoning and achievement gains. This links to Vygotsky (1978) , because inquiry instruction involves interactions among group members. A more nuanced finding was that group composition had a conditional effect. Heterogeneous groups performed better with more traditional and didactic instruction, regardless of the reasoning ability of the group members. Homogeneous groups worked better during interaction-rich activities for students with low reasoning ability. The authors attributed the variation to the different types of helping behaviors of students. High-performing students provided the answers, while students with low reasoning ability had to work collectively through the material. In terms of Vygotsky (1978) , this finding provided new insights into the learning context in which productive interactions can occur for students.

Another consideration in the selection and use of a theoretical framework pertains to its orientation to the study. This can result in the theoretical framework prioritizing individuals, institutions, and/or policies ( Anfara and Mertz, 2014 ). Frameworks that connect to individuals, for instance, could contribute to understanding their actions, learning, or knowledge. Institutional frameworks, on the other hand, offer insights into how institutions, organizations, or groups can influence individuals or materials. Policy theories provide ways to understand how national or local policies can dictate an emphasis on outcomes or instructional design. These different types of frameworks highlight different aspects in an educational setting, which influences the design of the study and the collection of data. In addition, these different frameworks offer a way to make sense of the data. Aligning the data collection and analysis with the framework ensures that a study is coherent and can contribute to the field.

New understandings emerge when different theoretical frameworks are used. For instance, Ebert-May et al. (2015) prioritized the individual level within conceptual change theory (see Posner et al. , 1982 ). In this theory, an individual’s knowledge changes when it no longer fits the phenomenon. Ebert-May et al. (2015) designed a professional development program challenging biology postdoctoral scholars’ existing conceptions of teaching. The authors reported that the biology postdoctoral scholars’ teaching practices became more student-centered as they were challenged to explain their instructional decision making. According to the theory, the biology postdoctoral scholars’ dissatisfaction in their descriptions of teaching and learning initiated change in their knowledge and instruction. These results reveal how conceptual change theory can explain the learning of participants and guide the design of professional development programming.

The communities of practice (CoP) theoretical framework ( Lave, 1988 ; Wenger, 1998 ) prioritizes the institutional level , suggesting that learning occurs when individuals learn from and contribute to the communities in which they reside. Grounded in the assumption of community learning, the literature on CoP suggests that, as individuals interact regularly with the other members of their group, they learn about the rules, roles, and goals of the community ( Allee, 2000 ). A study conducted by Gehrke and Kezar (2017) used the CoP framework to understand organizational change by examining the involvement of individual faculty engaged in a cross-institutional CoP focused on changing the instructional practice of faculty at each institution. In the CoP, faculty members were involved in enhancing instructional materials within their department, which aligned with an overarching goal of instituting instruction that embraced active learning. Not surprisingly, Gehrke and Kezar (2017) revealed that faculty who perceived the community culture as important in their work cultivated institutional change. Furthermore, they found that institutional change was sustained when key leaders served as mentors and provided support for faculty, and as faculty themselves developed into leaders. This study reveals the complexity of individual roles in a COP in order to support institutional instructional change.

It is important to explicitly state the theoretical framework used in a study, but elucidating a theoretical framework can be challenging for a new educational researcher. The literature review can help to identify an applicable theoretical framework. Focal areas of the review or central terms often connect to assumptions and assertions associated with the framework that pertain to the phenomenon of interest. Another way to identify a theoretical framework is self-reflection by the researcher on personal beliefs and understandings about the nature of knowledge the researcher brings to the study ( Lysaght, 2011 ). In stating one’s beliefs and understandings related to the study (e.g., students construct their knowledge, instructional materials support learning), an orientation becomes evident that will suggest a particular theoretical framework. Theoretical frameworks are not arbitrary , but purposefully selected.

With experience, a researcher may find expanded roles for theoretical frameworks. Researchers may revise an existing framework that has limited explanatory power, or they may decide there is a need to develop a new theoretical framework. These frameworks can emerge from a current study or the need to explain a phenomenon in a new way. Researchers may also find that multiple theoretical frameworks are necessary to frame and explore a problem, as different frameworks can provide different insights into a problem.

Finally, it is important to recognize that choosing “x” theoretical framework does not necessarily mean a researcher chooses “y” methodology and so on, nor is there a clear-cut, linear process in selecting a theoretical framework for one’s study. In part, the nonlinear process of identifying a theoretical framework is what makes understanding and using theoretical frameworks challenging. For the novice scholar, contemplating and understanding theoretical frameworks is essential. Fortunately, there are articles and books that can help:

  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Los Angeles, CA: Sage. This book provides an overview of theoretical frameworks in general educational research.
  • Ding, L. (2019). Theoretical perspectives of quantitative physics education research. Physical Review Physics Education Research , 15 (2), 020101-1–020101-13. This paper illustrates how a DBER field can use theoretical frameworks.
  • Nehm, R. (2019). Biology education research: Building integrative frameworks for teaching and learning about living systems. Disciplinary and Interdisciplinary Science Education Research , 1 , ar15. https://doi.org/10.1186/s43031-019-0017-6 . This paper articulates the need for studies in BER to explicitly state theoretical frameworks and provides examples of potential studies.
  • Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice . Sage. This book also provides an overview of theoretical frameworks, but for both research and evaluation.

CONCEPTUAL FRAMEWORKS

Purpose of a conceptual framework.

A conceptual framework is a description of the way a researcher understands the factors and/or variables that are involved in the study and their relationships to one another. The purpose of a conceptual framework is to articulate the concepts under study using relevant literature ( Rocco and Plakhotnik, 2009 ) and to clarify the presumed relationships among those concepts ( Rocco and Plakhotnik, 2009 ; Anfara and Mertz, 2014 ). Conceptual frameworks are different from theoretical frameworks in both their breadth and grounding in established findings. Whereas a theoretical framework articulates the lens through which a researcher views the work, the conceptual framework is often more mechanistic and malleable.

Conceptual frameworks are broader, encompassing both established theories (i.e., theoretical frameworks) and the researchers’ own emergent ideas. Emergent ideas, for example, may be rooted in informal and/or unpublished observations from experience. These emergent ideas would not be considered a “theory” if they are not yet tested, supported by systematically collected evidence, and peer reviewed. However, they do still play an important role in the way researchers approach their studies. The conceptual framework allows authors to clearly describe their emergent ideas so that connections among ideas in the study and the significance of the study are apparent to readers.

Constructing Conceptual Frameworks

Including a conceptual framework in a research study is important, but researchers often opt to include either a conceptual or a theoretical framework. Either may be adequate, but both provide greater insight into the research approach. For instance, a research team plans to test a novel component of an existing theory. In their study, they describe the existing theoretical framework that informs their work and then present their own conceptual framework. Within this conceptual framework, specific topics portray emergent ideas that are related to the theory. Describing both frameworks allows readers to better understand the researchers’ assumptions, orientations, and understanding of concepts being investigated. For example, Connolly et al. (2018) included a conceptual framework that described how they applied a theoretical framework of social cognitive career theory (SCCT) to their study on teaching programs for doctoral students. In their conceptual framework, the authors described SCCT, explained how it applied to the investigation, and drew upon results from previous studies to justify the proposed connections between the theory and their emergent ideas.

In some cases, authors may be able to sufficiently describe their conceptualization of the phenomenon under study in an introduction alone, without a separate conceptual framework section. However, incomplete descriptions of how the researchers conceptualize the components of the study may limit the significance of the study by making the research less intelligible to readers. This is especially problematic when studying topics in which researchers use the same terms for different constructs or different terms for similar and overlapping constructs (e.g., inquiry, teacher beliefs, pedagogical content knowledge, or active learning). Authors must describe their conceptualization of a construct if the research is to be understandable and useful.

There are some key areas to consider regarding the inclusion of a conceptual framework in a study. To begin with, it is important to recognize that conceptual frameworks are constructed by the researchers conducting the study ( Rocco and Plakhotnik, 2009 ; Maxwell, 2012 ). This is different from theoretical frameworks that are often taken from established literature. Researchers should bring together ideas from the literature, but they may be influenced by their own experiences as a student and/or instructor, the shared experiences of others, or thought experiments as they construct a description, model, or representation of their understanding of the phenomenon under study. This is an exercise in intellectual organization and clarity that often considers what is learned, known, and experienced. The conceptual framework makes these constructs explicitly visible to readers, who may have different understandings of the phenomenon based on their prior knowledge and experience. There is no single method to go about this intellectual work.

Reeves et al. (2016) is an example of an article that proposed a conceptual framework about graduate teaching assistant professional development evaluation and research. The authors used existing literature to create a novel framework that filled a gap in current research and practice related to the training of graduate teaching assistants. This conceptual framework can guide the systematic collection of data by other researchers because the framework describes the relationships among various factors that influence teaching and learning. The Reeves et al. (2016) conceptual framework may be modified as additional data are collected and analyzed by other researchers. This is not uncommon, as conceptual frameworks can serve as catalysts for concerted research efforts that systematically explore a phenomenon (e.g., Reynolds et al. , 2012 ; Brownell and Kloser, 2015 ).

Sabel et al. (2017) used a conceptual framework in their exploration of how scaffolds, an external factor, interact with internal factors to support student learning. Their conceptual framework integrated principles from two theoretical frameworks, self-regulated learning and metacognition, to illustrate how the research team conceptualized students’ use of scaffolds in their learning ( Figure 1 ). Sabel et al. (2017) created this model using their interpretations of these two frameworks in the context of their teaching.

An external file that holds a picture, illustration, etc.
Object name is cbe-21-rm33-g001.jpg

Conceptual framework from Sabel et al. (2017) .

A conceptual framework should describe the relationship among components of the investigation ( Anfara and Mertz, 2014 ). These relationships should guide the researcher’s methods of approaching the study ( Miles et al. , 2014 ) and inform both the data to be collected and how those data should be analyzed. Explicitly describing the connections among the ideas allows the researcher to justify the importance of the study and the rigor of the research design. Just as importantly, these frameworks help readers understand why certain components of a system were not explored in the study. This is a challenge in education research, which is rooted in complex environments with many variables that are difficult to control.

For example, Sabel et al. (2017) stated: “Scaffolds, such as enhanced answer keys and reflection questions, can help students and instructors bridge the external and internal factors and support learning” (p. 3). They connected the scaffolds in the study to the three dimensions of metacognition and the eventual transformation of existing ideas into new or revised ideas. Their framework provides a rationale for focusing on how students use two different scaffolds, and not on other factors that may influence a student’s success (self-efficacy, use of active learning, exam format, etc.).

In constructing conceptual frameworks, researchers should address needed areas of study and/or contradictions discovered in literature reviews. By attending to these areas, researchers can strengthen their arguments for the importance of a study. For instance, conceptual frameworks can address how the current study will fill gaps in the research, resolve contradictions in existing literature, or suggest a new area of study. While a literature review describes what is known and not known about the phenomenon, the conceptual framework leverages these gaps in describing the current study ( Maxwell, 2012 ). In the example of Sabel et al. (2017) , the authors indicated there was a gap in the literature regarding how scaffolds engage students in metacognition to promote learning in large classes. Their study helps fill that gap by describing how scaffolds can support students in the three dimensions of metacognition: intelligibility, plausibility, and wide applicability. In another example, Lane (2016) integrated research from science identity, the ethic of care, the sense of belonging, and an expertise model of student success to form a conceptual framework that addressed the critiques of other frameworks. In a more recent example, Sbeglia et al. (2021) illustrated how a conceptual framework influences the methodological choices and inferences in studies by educational researchers.

Sometimes researchers draw upon the conceptual frameworks of other researchers. When a researcher’s conceptual framework closely aligns with an existing framework, the discussion may be brief. For example, Ghee et al. (2016) referred to portions of SCCT as their conceptual framework to explain the significance of their work on students’ self-efficacy and career interests. Because the authors’ conceptualization of this phenomenon aligned with a previously described framework, they briefly mentioned the conceptual framework and provided additional citations that provided more detail for the readers.

Within both the BER and the broader DBER communities, conceptual frameworks have been used to describe different constructs. For example, some researchers have used the term “conceptual framework” to describe students’ conceptual understandings of a biological phenomenon. This is distinct from a researcher’s conceptual framework of the educational phenomenon under investigation, which may also need to be explicitly described in the article. Other studies have presented a research logic model or flowchart of the research design as a conceptual framework. These constructions can be quite valuable in helping readers understand the data-collection and analysis process. However, a model depicting the study design does not serve the same role as a conceptual framework. Researchers need to avoid conflating these constructs by differentiating the researchers’ conceptual framework that guides the study from the research design, when applicable.

Explicitly describing conceptual frameworks is essential in depicting the focus of the study. We have found that being explicit in a conceptual framework means using accepted terminology, referencing prior work, and clearly noting connections between terms. This description can also highlight gaps in the literature or suggest potential contributions to the field of study. A well-elucidated conceptual framework can suggest additional studies that may be warranted. This can also spur other researchers to consider how they would approach the examination of a phenomenon and could result in a revised conceptual framework.

It can be challenging to create conceptual frameworks, but they are important. Below are two resources that could be helpful in constructing and presenting conceptual frameworks in educational research:

  • Maxwell, J. A. (2012). Qualitative research design: An interactive approach (3rd ed.). Los Angeles, CA: Sage. Chapter 3 in this book describes how to construct conceptual frameworks.
  • Ravitch, S. M., & Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research . Los Angeles, CA: Sage. This book explains how conceptual frameworks guide the research questions, data collection, data analyses, and interpretation of results.

CONCLUDING THOUGHTS

Literature reviews, theoretical frameworks, and conceptual frameworks are all important in DBER and BER. Robust literature reviews reinforce the importance of a study. Theoretical frameworks connect the study to the base of knowledge in educational theory and specify the researcher’s assumptions. Conceptual frameworks allow researchers to explicitly describe their conceptualization of the relationships among the components of the phenomenon under study. Table 1 provides a general overview of these components in order to assist biology education researchers in thinking about these elements.

It is important to emphasize that these different elements are intertwined. When these elements are aligned and complement one another, the study is coherent, and the study findings contribute to knowledge in the field. When literature reviews, theoretical frameworks, and conceptual frameworks are disconnected from one another, the study suffers. The point of the study is lost, suggested findings are unsupported, or important conclusions are invisible to the researcher. In addition, this misalignment may be costly in terms of time and money.

Conducting a literature review, selecting a theoretical framework, and building a conceptual framework are some of the most difficult elements of a research study. It takes time to understand the relevant research, identify a theoretical framework that provides important insights into the study, and formulate a conceptual framework that organizes the finding. In the research process, there is often a constant back and forth among these elements as the study evolves. With an ongoing refinement of the review of literature, clarification of the theoretical framework, and articulation of a conceptual framework, a sound study can emerge that makes a contribution to the field. This is the goal of BER and education research.

Supplementary Material

  • Allee, V. (2000). Knowledge networks and communities of learning . OD Practitioner , 32 ( 4 ), 4–13. [ Google Scholar ]
  • Allen, M. (2017). The Sage encyclopedia of communication research methods (Vols. 1–4 ). Los Angeles, CA: Sage. 10.4135/9781483381411 [ CrossRef ] [ Google Scholar ]
  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC. [ Google Scholar ]
  • Anfara, V. A., Mertz, N. T. (2014). Setting the stage . In Anfara, V. A., Mertz, N. T. (eds.), Theoretical frameworks in qualitative research (pp. 1–22). Sage. [ Google Scholar ]
  • Barnes, M. E., Brownell, S. E. (2016). Practices and perspectives of college instructors on addressing religious beliefs when teaching evolution . CBE—Life Sciences Education , 15 ( 2 ), ar18. https://doi.org/10.1187/cbe.15-11-0243 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Boote, D. N., Beile, P. (2005). Scholars before researchers: On the centrality of the dissertation literature review in research preparation . Educational Researcher , 34 ( 6 ), 3–15. 10.3102/0013189x034006003 [ CrossRef ] [ Google Scholar ]
  • Booth, A., Sutton, A., Papaioannou, D. (2016a). Systemic approaches to a successful literature review (2nd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Booth, W. C., Colomb, G. G., Williams, J. M., Bizup, J., Fitzgerald, W. T. (2016b). The craft of research (4th ed.). Chicago, IL: University of Chicago Press. [ Google Scholar ]
  • Brownell, S. E., Kloser, M. J. (2015). Toward a conceptual framework for measuring the effectiveness of course-based undergraduate research experiences in undergraduate biology . Studies in Higher Education , 40 ( 3 ), 525–544. https://doi.org/10.1080/03075079.2015.1004234 [ Google Scholar ]
  • Connolly, M. R., Lee, Y. G., Savoy, J. N. (2018). The effects of doctoral teaching development on early-career STEM scholars’ college teaching self-efficacy . CBE—Life Sciences Education , 17 ( 1 ), ar14. https://doi.org/10.1187/cbe.17-02-0039 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Cooper, K. M., Blattman, J. N., Hendrix, T., Brownell, S. E. (2019). The impact of broadly relevant novel discoveries on student project ownership in a traditional lab course turned CURE . CBE—Life Sciences Education , 18 ( 4 ), ar57. https://doi.org/10.1187/cbe.19-06-0113 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Creswell, J. W. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • DeHaan, R. L. (2011). Education research in the biological sciences: A nine decade review (Paper commissioned by the NAS/NRC Committee on the Status, Contributions, and Future Directions of Discipline Based Education Research) . Washington, DC: National Academies Press. Retrieved May 20, 2022, from www7.nationalacademies.org/bose/DBER_Mee ting2_commissioned_papers_page.html [ Google Scholar ]
  • Ding, L. (2019). Theoretical perspectives of quantitative physics education research . Physical Review Physics Education Research , 15 ( 2 ), 020101. [ Google Scholar ]
  • Dirks, C. (2011). The current status and future direction of biology education research . Paper presented at: Second Committee Meeting on the Status, Contributions, and Future Directions of Discipline-Based Education Research, 18–19 October (Washington, DC). Retrieved May 20, 2022, from http://sites.nationalacademies.org/DBASSE/BOSE/DBASSE_071087 [ Google Scholar ]
  • Duran, R. P., Eisenhart, M. A., Erickson, F. D., Grant, C. A., Green, J. L., Hedges, L. V., Schneider, B. L. (2006). Standards for reporting on empirical social science research in AERA publications: American Educational Research Association . Educational Researcher , 35 ( 6 ), 33–40. [ Google Scholar ]
  • Ebert-May, D., Derting, T. L., Henkel, T. P., Middlemis Maher, J., Momsen, J. L., Arnold, B., Passmore, H. A. (2015). Breaking the cycle: Future faculty begin teaching with learner-centered strategies after professional development . CBE—Life Sciences Education , 14 ( 2 ), ar22. https://doi.org/10.1187/cbe.14-12-0222 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Galvan, J. L., Galvan, M. C. (2017). Writing literature reviews: A guide for students of the social and behavioral sciences (7th ed.). New York, NY: Routledge. https://doi.org/10.4324/9781315229386 [ Google Scholar ]
  • Gehrke, S., Kezar, A. (2017). The roles of STEM faculty communities of practice in institutional and departmental reform in higher education . American Educational Research Journal , 54 ( 5 ), 803–833. https://doi.org/10.3102/0002831217706736 [ Google Scholar ]
  • Ghee, M., Keels, M., Collins, D., Neal-Spence, C., Baker, E. (2016). Fine-tuning summer research programs to promote underrepresented students’ persistence in the STEM pathway . CBE—Life Sciences Education , 15 ( 3 ), ar28. https://doi.org/10.1187/cbe.16-01-0046 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Institute of Education Sciences & National Science Foundation. (2013). Common guidelines for education research and development . Retrieved May 20, 2022, from www.nsf.gov/pubs/2013/nsf13126/nsf13126.pdf
  • Jensen, J. L., Lawson, A. (2011). Effects of collaborative group composition and inquiry instruction on reasoning gains and achievement in undergraduate biology . CBE—Life Sciences Education , 10 ( 1 ), 64–73. https://doi.org/10.1187/cbe.19-05-0098 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Kolpikova, E. P., Chen, D. C., Doherty, J. H. (2019). Does the format of preclass reading quizzes matter? An evaluation of traditional and gamified, adaptive preclass reading quizzes . CBE—Life Sciences Education , 18 ( 4 ), ar52. https://doi.org/10.1187/cbe.19-05-0098 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Labov, J. B., Reid, A. H., Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: A new biology education for the twenty-first century? CBE—Life Sciences Education , 9 ( 1 ), 10–16. https://doi.org/10.1187/cbe.09-12-0092 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lane, T. B. (2016). Beyond academic and social integration: Understanding the impact of a STEM enrichment program on the retention and degree attainment of underrepresented students . CBE—Life Sciences Education , 15 ( 3 ), ar39. https://doi.org/10.1187/cbe.16-01-0070 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lave, J. (1988). Cognition in practice: Mind, mathematics and culture in everyday life . New York, NY: Cambridge University Press. [ Google Scholar ]
  • Lo, S. M., Gardner, G. E., Reid, J., Napoleon-Fanis, V., Carroll, P., Smith, E., Sato, B. K. (2019). Prevailing questions and methodologies in biology education research: A longitudinal analysis of research in CBE — Life Sciences Education and at the Society for the Advancement of Biology Education Research . CBE—Life Sciences Education , 18 ( 1 ), ar9. https://doi.org/10.1187/cbe.18-08-0164 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Lysaght, Z. (2011). Epistemological and paradigmatic ecumenism in “Pasteur’s quadrant:” Tales from doctoral research . In Official Conference Proceedings of the Third Asian Conference on Education in Osaka, Japan . Retrieved May 20, 2022, from http://iafor.org/ace2011_offprint/ACE2011_offprint_0254.pdf
  • Maxwell, J. A. (2012). Qualitative research design: An interactive approach (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Miles, M. B., Huberman, A. M., Saldaña, J. (2014). Qualitative data analysis (3rd ed.). Los Angeles, CA: Sage. [ Google Scholar ]
  • Nehm, R. (2019). Biology education research: Building integrative frameworks for teaching and learning about living systems . Disciplinary and Interdisciplinary Science Education Research , 1 , ar15. https://doi.org/10.1186/s43031-019-0017-6 [ Google Scholar ]
  • Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice . Los Angeles, CA: Sage. [ Google Scholar ]
  • Perry, J., Meir, E., Herron, J. C., Maruca, S., Stal, D. (2008). Evaluating two approaches to helping college students understand evolutionary trees through diagramming tasks . CBE—Life Sciences Education , 7 ( 2 ), 193–201. https://doi.org/10.1187/cbe.07-01-0007 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Posner, G. J., Strike, K. A., Hewson, P. W., Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change . Science Education , 66 ( 2 ), 211–227. [ Google Scholar ]
  • Ravitch, S. M., Riggan, M. (2016). Reason & rigor: How conceptual frameworks guide research . Los Angeles, CA: Sage. [ Google Scholar ]
  • Reeves, T. D., Marbach-Ad, G., Miller, K. R., Ridgway, J., Gardner, G. E., Schussler, E. E., Wischusen, E. W. (2016). A conceptual framework for graduate teaching assistant professional development evaluation and research . CBE—Life Sciences Education , 15 ( 2 ), es2. https://doi.org/10.1187/cbe.15-10-0225 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds, J. A., Thaiss, C., Katkin, W., Thompson, R. J. Jr. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , 11 ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rocco, T. S., Plakhotnik, M. S. (2009). Literature reviews, conceptual frameworks, and theoretical frameworks: Terms, functions, and distinctions . Human Resource Development Review , 8 ( 1 ), 120–130. https://doi.org/10.1177/1534484309332617 [ Google Scholar ]
  • Rodrigo-Peiris, T., Xiang, L., Cassone, V. M. (2018). A low-intensity, hybrid design between a “traditional” and a “course-based” research experience yields positive outcomes for science undergraduate freshmen and shows potential for large-scale application . CBE—Life Sciences Education , 17 ( 4 ), ar53. https://doi.org/10.1187/cbe.17-11-0248 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sabel, J. L., Dauer, J. T., Forbes, C. T. (2017). Introductory biology students’ use of enhanced answer keys and reflection questions to engage in metacognition and enhance understanding . CBE—Life Sciences Education , 16 ( 3 ), ar40. https://doi.org/10.1187/cbe.16-10-0298 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Sbeglia, G. C., Goodridge, J. A., Gordon, L. H., Nehm, R. H. (2021). Are faculty changing? How reform frameworks, sampling intensities, and instrument measures impact inferences about student-centered teaching practices . CBE—Life Sciences Education , 20 ( 3 ), ar39. https://doi.org/10.1187/cbe.20-11-0259 [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Schwandt, T. A. (2000). Three epistemological stances for qualitative inquiry: Interpretivism, hermeneutics, and social constructionism . In Denzin, N. K., Lincoln, Y. S. (Eds.), Handbook of qualitative research (2nd ed., pp. 189–213). Los Angeles, CA: Sage. [ Google Scholar ]
  • Sickel, A. J., Friedrichsen, P. (2013). Examining the evolution education literature with a focus on teachers: Major findings, goals for teacher preparation, and directions for future research . Evolution: Education and Outreach , 6 ( 1 ), 23. https://doi.org/10.1186/1936-6434-6-23 [ Google Scholar ]
  • Singer, S. R., Nielsen, N. R., Schweingruber, H. A. (2012). Discipline-based education research: Understanding and improving learning in undergraduate science and engineering . Washington, DC: National Academies Press. [ Google Scholar ]
  • Todd, A., Romine, W. L., Correa-Menendez, J. (2019). Modeling the transition from a phenotypic to genotypic conceptualization of genetics in a university-level introductory biology context . Research in Science Education , 49 ( 2 ), 569–589. https://doi.org/10.1007/s11165-017-9626-2 [ Google Scholar ]
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes . Cambridge, MA: Harvard University Press. [ Google Scholar ]
  • Wenger, E. (1998). Communities of practice: Learning as a social system . Systems Thinker , 9 ( 5 ), 2–3. [ Google Scholar ]
  • Ziadie, M. A., Andrews, T. C. (2018). Moving evolution education forward: A systematic analysis of literature to identify gaps in collective knowledge for teaching . CBE—Life Sciences Education , 17 ( 1 ), ar11. https://doi.org/10.1187/cbe.17-08-0190 [ PMC free article ] [ PubMed ] [ Google Scholar ]

Edinburgh Research Archive

University of Edinburgh homecrest

  •   ERA Home
  • Biological Sciences, School of

Biological Sciences thesis and dissertation collection

biology education thesis pdf

By Issue Date Authors Titles Subjects Publication Type Sponsor Supervisors

Search within this Collection:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Recent Submissions

Rna editing ligases as novel drug targets in trypanosomatid parasites , pifs as a novel target in soybean to modulate the shade avoidance syndrome , structure and function of microtubule nucleation proteins , evaluation of the structural, functional, cellular and molecular basis of heart pathophysiology in mouse models of spinal muscular atrophy , understanding and utilising bacterial growth rate changes at high external osmolarities , origin and maintenance of diversity in british euphrasia (orobanchaceae) , single-cell time-series analysis of metabolic rhythms in yeast , ectopic heterochromatin provides an alternative route to fungal resistance , understanding adaptive immunity using immune receptor repertoire sequencing , mapping inbreeding depression in wild red deer (cervus elaphus) , transcription-only cell-free systems and their application in biosensing , encapsulin engineering for metal nanoparticle production , adaptive genomics and phylogeography of guazuma ulmifolia (malvaceae) , structural and functional characterization of cenp-v: a novel glutathione-binding protein , chromosome rearrangements and population genomics , quantitative genetics of gene expression: regulatory complexity and patterns of variation , exploring an enigma: the geographic and temporal origins of the western ghats flora , spatio-temporal organisation and dynamics of centromere  , investigation of the chromatin characteristics driving murine rif1s association with and compartmentalisation of late-replicating chromatin , exploring the importance of axial identity in transplantation studies using neural progenitors of specific anteroposterior identity .

biology education thesis pdf

Home > FACULTIES > Biology > BIOLOGY-ETD

Biology Department

Biology Theses and Dissertations

This collection contains theses and dissertations from the Department of Biology, collected from the Scholarship@Western Electronic Thesis and Dissertation Repository

Theses/Dissertations from 2023 2023

SUFU in SHH signalling mediated myogenesis , Suleyman Abdullah

Effect of rearing conditions on the allocation of larval and adult acquired essential and nonessential fatty acids to flight in two adult Lepidoptera: Danaus plexippus and Mythimna unipuncta , Libesha Anparasan

The effect of dietary thiaminase on cardiac function and morphology in lake trout (Salvelinus namaycush) , Peter Baker

The introduction of nursery seedlings and their fungi to a spruce-fir forest in Newfoundland , Alicia G. Banwell

Evaluating Phosphorylation as a Potential Regulator of ADT5 in Arabidopsis thaliana , Eileen Barac

Elucidating the neural circuitry underlying social spacing in Drosophila melanogaster through the lens of neuroligin 3 , Abigail T. Bechard

Development of reverse genetics tools in the two-spotted spider mite Tetranychus urticae , Nivitha Bhaskar

Post-breeding survival of adult and hatch-year Bank Swallows (Riparia riparia) in the Great Lakes region: a radio telemetry study , Christian M.M Buchanan-Fraser

Effects of 11-KT and Prolactin on Gene Expression, Parental Care Behaviour and Immune Response in Male Bluegill Sunfish. , Adriano A P da Cunha

Differential Migration Timing and the Form and Function of Avian Wings , Jessica E. Deakin

Unraveling The Evolution And Diversity Of Giant Plastid Genomes In Chlamydomonadalean Green Algae , Hager Gaouda

Elucidating the Relationships Between Spider Size, Joint Stiffness, and the Mechanical Frequency Response of the Body , Reese L. Gartly

The effects of elevated carbon dioxide and warming on photosynthesis and growth in five boreal tree species , Julia M. Hammer

Molecular Characterization of Osmotin and Four Plasmodesmata Callose Binding Protein Homologs from Arabidopsis in Turnip Mosaic Virus Infection , Rongrong He

The effects of warming on floral traits , Kiana J. Lee Ms.

The Adaptor Protein p66Shc Governs Central Nervous System Cell Metabolism and Resistance to Aβ Toxicity , Asad Lone

The detectability of Atlantic salmon (Salmo salar) microsatellite and mitochondrial environmental DNA , Simone N. Miklosi

Changes in peatland soil fauna biomass alter food web structure and function under warming and hydrological changes , Trevor L. Pettit

Mouse Genotyping Array-Based Analysis of Variation at Single Nucleotide Polymorphic Loci in the Context of Macro- and Micro-environments , Freda Qi

Investigating the Soil Mycobiome of American Ginseng , Rachel Amelia Rajsp

Age and Sex Differences in Stopover Behaviours and Flight Performance in Black-throated Blue Warblers , Patricia Rokitnicki

Freezing tolerance of herbaceous legumes within southwestern Ontario: evidence of disproportionate freezing sensitivity , Samuel L. Rycroft

Short-term versus long-term effects of nitrogen addition and warming on ecosystem N dynamics in a grass-dominated temperate old field , Benjamin F. A. Souriol

Characterization of Etoxazole Resistance in Tetranychus urticae Populations Collected from Commercial Greenhouses & Fields in Ontario , Jeremy Spenler

Molecular identification and characterization of Heat shock protein 70 family proteins essential for Turnip mosaic virus infection in Arabidopsis thaliana , Ziwei Tang

Role and regulation of galectin-12 in the context of cellular differentiation , Rada Tazhitdinova

Random Mating in the Face of Balancing Selection at the Major Histocompatibility Complex Class I in Song Sparrows (Melospiza melodia) , Scout R.L Thompson

Investigating soil microbiome changes during Panax quinquefolius cultivation in new gardens , Pok Man Paul Wan

Recovery from social isolation in Drosophila: The role of dopamine and the autism-related gene nlg3. , Ryley T. Yost

Theses/Dissertations from 2022 2022

Effects of the Brain Nonapeptides Arginine-Vasotocin and Isotocin on Shoaling Behaviour in the Guppy (Poecilia reticulata) , Babak Ataei Mehr

Effects of methylmercury and unpredictable food stress exposure on songbirds’ physiology and seasonal transition , Claire L.J. Bottini

Gene Regulatory Context of Honey Bee Worker Sterility , Rahul Choorakkat Unnikrishnan

The Sequence-Function Relationship of Arabidopsis AROGENATE DEHYDRATASES , Emily J. Clayton

Characterization of SPL4's role in drought stress and trichome development in alfalfa , Matei A. Dan-Dobre

Cadmium Uptake in Plants as Influenced by Selenium Uptake and Sulphate Availability , Marnie J. Demand

Nitrogen transfer from cover crops to the subsequent grain crop and the influence of variability in winter conditions , Spencer Heuchan

Effects of Experimental Malaria Infection On Migration of Yellow-rumped Warblers (Setophaga coronata) , Rebecca J. Howe

Understanding the molecular mechanism of postharvest seed coat darkening in pinto beans , Nishat Shayala Islam

Characterization of galectin-16 expression and function in placental cells , Jennifer Kaminker

Using conservation genetics to inform reintroduction of the endangered Mottled Duskywing (Erynnis martialis) , Shayla Kroeze

Mechanisms of Diapause and Cold Tolerance in the Colorado Potato Beetle , Jacqueline E. Lebenzon

Effects of spatial and temporal heterogeneity on the genetic diversity of the alpine butterfly Parnassius smintheus , Mel Lucas

The Biosynthesis of Non-protein Sulfur Amino Acid in Developing Seeds of Common Bean , Zixuan Lu

Additional Sulfur Does Not Alleviate Cadmium Toxicity In Soybean , Spencer Matt

From Individuals To Communities: The Effect Of Climate Change On Ectothermic Predators , Matthew Lawrence Meehan

Temperature-Dependent Developmental Plasticity in the Cardiorespiratory System of Atlantic Salmon , Carlie A. Muir

Characterization of the Role of miR156-SPL12 Regulatory Module in Root Architecture and Stress Response in Medicago sativa (alfalfa) , Vida Nasrollahi

The impact of long-term artificial removal experiment and natural local extinctions on the genetics of an alpine butterfly , Keon Young Park

Role of HXXXD-motif acyltransferases in suberin biosynthesis , Yudelkis Indira Queralta Castillo

Spatiotemporal characterization of the prr12 paralogues in zebrafish , Renee Jeannine Resendes

Manipulating the root mycobiome to improve plant performance and reduce pathogen pressure in corn (Zea mays) , Noor F. Saeed Cheema

The role of galectins in differentiation of acute myeloid leukemia cells , Jolaine Smith

Regulation of Hedgehog and Wnt Signaling in Neural Differentiation of P19 Embryonal Carcinoma Cells , Danielle Margaret Spice

Biochemistry of trehalose accumulation in the spring field cricket, Gryllus veletis , Alyssa R. Stephens

Investigation of HD2 family histone deacetylases relationship in drought stress response and root growth in Arabidopsis thaliana , Muhammad Sufyan Tahir

Western diet-like culture conditions and oxidative stress on a cell model of non-alcoholic fatty liver disease , Celina M. Valvano

Root-Inhabiting and Rhizosphere Mycobiomes and Crop Yield of Corn and Wheat , Marianna E. Wallace

MT1-MMP enhances cell survival and proliferation via roles unrelated to metabolic transcript levels in MCF7 breast cancer cells , Rachel A. Wise

Using Stable Isotope Techniques To Complement Existing Northern Pintail Management. , Dariusz Wojtaszek

Theses/Dissertations from 2021 2021

The Effects of Silver Nanoparticles on Soybean (Glycine max) Growth and Nodulation , Paul J. Boersma

Response of the Soil Bacterial Community, Resistome, and Mobilome to a Decade of Macrolide Antibiotic Contamination , Liam Paul Brown

Screens for Phenotypic Non-Specificity of Transcription Factor Function in Drosophila melanogaster , Sheng Cheng

A genetic perspective on social insect castes: A synthetic review and empirical study , Anna M. Chernyshova

Investigating social dynamics using automated radiotracking of winter flocks of Black-capped chickadees (Poecile atricapillus) , Christopher J. Course

Long-term vs. Short-term Plant Responses to Warming and Nitrogen Addition in a Temperate Old Field , Breanna Craig

Diversity and drivers of oribatid mites (Acari: Oribatida) in boreal peatlands , Carlos Rafael de Araujo Barreto

Effects of Gene-Environment Interactions on the Evolution of Social Behaviours , Vonica J. Flear

Fear of the Human "Super-Predator" In African Mammals , Nikita R. Frizzelle

Metabolic regulation during extraembryonic endoderm differentiation , Mohamed Gatie

Hibernation is super complex: dynamics of electron transport system supercomplexes , Amalie J. Hutchinson

The Analysis of Ginsenosides in Ginseng Garden Soil , Karina Marie Kaberi

Dynamics of the Soil Microbiome in Ginseng Gardens , Megan E. Lambert

Metschnikowia mitochondria , Dong Kyung Lee

Food Caching Decisions in Canada Jays (Perisoreus canadensis) , Robert J. Martin

Insights into O-GlcNAc-mediated regulation of galectin expression and secretion in promyelocytic HL-60 cells , Adam J. McTague

Developing a toolbox to engineer quantitative trait variation in legume species using CRISPR/Cas technologies. , Petar Miletic

Kindlin-1 is involved in spreading, migration, and protein regulation in epidermal SCC-13 cells , Naomi Mishan

Evaluation of two mouse models of high genetic variation for suitability to test a heterozygote instability hypothesis , Hailie Pavanel

Evaluation of the Bioactive Properties of Peptides Derived From the Common Bean (Phaseolus vulgaris L.) , Zhujun Qiu

Mitigation of Replant Disease using Solarization in American Ginseng (Panex quinquefolius) , Andrew G. Rabas

Functional Characterization of Arogenate Dehydratase Isoforms in Soybean , Ramtin Sirjani

Short-term vs. Long-term Warming and Nitrogen Treatment Effects on Soil Carbon and Microbial Activity in a Temperate Old Field , Erica Stroud

Production of self-assembling protein nanocages and virus-like particles displaying porcine reproductive and respiratory syndrome virus epitopes in Nicotiana benthamiana , Jordan T. VanderBurgt

Establishment of a pesticide resistance monitoring tool for the two-spotted spider mite, Tetranychus urticae , Hanna Varonina

Microplastics in White Sucker (Catostomus commersonii) and Common Carp (Cyprinus carpio) from the Upper Thames River, Ontario. , Colleen Wardlaw

Investigating mycelial-crop residue mat application to reduce early-colonizing weeds in row-crop agriculture , Donald T. Watson

Sequencing and Assembling the Nuclear Genome of the Antarctic Psychrophilic Green Alga Chlamydomonas sp. UWO241: Unravelling the Evolution of Cold Adaptation , Xi Zhang

Theses/Dissertations from 2020 2020

Behavioural And Molecular Consequences Of Postnatal Stress In A Mouse Model Of Fetal Alcohol Spectrum Disorder , Bonnie Alberry

Foliage Type Controls Mercury Input, Storage, and Release in the Boreal Forest , Madelaine J R Anderson

The effects of legacy sulphur deposition on methylmercury production in northern peatlands; geochemical and biological considerations , Jennifer L. Blythe

Heterozygosity: An Inconspicuous Meiosis-Linked Intrinsic Mutagen in Mice , Nicholas A. Boehler

Mass spectrometry identification of membrane-type 1 matrix metalloproteinase (MT1-MMP) binding partners following co-immunoprecipitation in MCF-7 cells , Bradley Bork

Niche segregation among three sympatric species of swallows in southern Ontario , Kaelyn H. Bumelis

Yield improvement of a plant-made antibody against Enterohemorrhagic E. coli , Adam S. Chin-Fatt

The Role of V-ATPase in Regulating pH in the Digestive Tract of Tetranychus urticae Koch , Zoran Culo

Reactive oxygen species damage and consequences for mitochondrial function in the hibernating thirteen-lined ground squirrel, Ictidomys tridecemlineatus , Brynne Duffy

microRNA156: A Short RNA with a Major Role in Abiotic Stress Tolerance in Alfalfa , Biruk Ayenew Feyissa

Chemical Communication in Songbirds , Leanne A. Grieves

Characterization of SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL), and its role in drought stress tolerance in Medicago sativa (alfalfa). , Alexandria K. Hanly

Investigating the Impact of Environmentally Relevant Imidazole Concentrations on the Antifungal Susceptibility and Community Composition of Soil Fungi , Farhaan Kanji

  • Accessible Formats

Advanced Search

  • Notify me via email or RSS
  • Expert Gallery
  • Online Journals
  • eBook Collections
  • Reports and Working Papers
  • Conferences and Symposiums
  • Electronic Theses and Dissertations
  • Digitized Special Collections
  • All Collections
  • Disciplines

Author Corner

  • Submit Thesis/Dissertation

Home | About | FAQ | My Account | Accessibility Statement | Privacy | Copyright

©1878 - 2016 Western University

ScholarWorks@UMass Amherst

Home > CNS > BIOCHEM > MCB > MCB_THESES

Molecular and Cellular Biology Masters Theses Collection

Theses from 2023 2023.

Elucidating the Priming Mechanism of ClpXP Protease by Single-Domain Response Regulator CpdR in Caulobacter crescentus , Kimberly E. Barker, Molecular & Cellular Biology

The Discovery of a Novel Bacteria from a Large Co-assembly of Metagenomes , Matthew Finkelberg, Molecular & Cellular Biology

Investigating Diterpene Biosynthesis in Medicago Truncatula , Sungwoo Hwang, Molecular & Cellular Biology

Combining Simulation and the MspA Nanopore to Study p53 Dynamics and Interactions , Samantha A. Schultz, Molecular & Cellular Biology

Caulobacter ClpXP Adaptor PopA’s Domain Interactions in the Adaptor Hierarchy of CtrA Degradation , Thomas P. Scudder, Molecular & Cellular Biology

Climate Change, Giant Viruses and Their Putative Hosts , Sarah K. Tucker, Molecular & Cellular Biology

Theses from 2022 2022

Changes in Gene Expression From Long-Term Warming Revealed Using Metatranscriptome Mapping to FAC-Sorted Bacteria , Christopher A. Colvin, Molecular & Cellular Biology

Determining CaMKII Variant Activities and Their Roles in Human Disease , Matthew J. Dunn, Molecular & Cellular Biology

Developmental Exposures to PFAS Mixtures Impair Elongation of the Exocrine Pancreas in Zebrafish (Danio rerio) , Emily M. Formato, Molecular & Cellular Biology

A Metatranscriptomic Analysis of the Long-Term Effects of Warming on the Harvard Forest Soil Microbiome , Brooke A. Linnehan, Molecular & Cellular Biology

Characterization of the Poly (ADP-Ribose) Polymerase Family in the Fusarium oxysporum Species Complex , Daniel Norment, Molecular & Cellular Biology

Theses from 2021 2021

Exploring Knockdown Phenotypes and Interactions between ATAD3 Proteins in Arabidopsis thaliana , Eli S. Gordon, Molecular & Cellular Biology

Development of a Site-Specific Labeling Assay to Study the Pseudomonas aeruginosa Type III Secretion Translocon in Native Membranes , Kyle A. Mahan, Molecular & Cellular Biology

Liposomal Nanoparticles Target TLR7/8-SHP2 to Repolarize Macrophages to Aid in Cancer Immunotherapy , Vaishali Malik, Molecular & Cellular Biology

Hsp70 Phosphorylation: A Case Study of Serine Residues 385 and 400 , Sashrika Saini, Molecular & Cellular Biology

Activation of Nrf2 at Critical Windows of Development Alters Protein S-Glutathionylation in the Zebrafish Embryo (Danio rerio) , Emily G. Severance, Molecular & Cellular Biology

Utilizing Fluorescence Microscopy to Characterize the Subcellular Distribution of the Novel Protein Acheron , Varun Sheel, Molecular & Cellular Biology

Theses from 2020 2020

The Association Between Sperm DNA Methylation and Sperm Mitochondrial DNA Copy Number , Emily Houle, Molecular & Cellular Biology

Gene Expression Regulation in the Mouse Liver by Mechanistic Target Of Rapamycin Complexes I and II , Anthony Poluyanoff, Molecular & Cellular Biology

Sperm Mitochondrial DNA Biomarkers as a Measure of Male Fecundity and Overall Sperm Quality , Allyson Rosati, Molecular & Cellular Biology

Exploration of the Association between Muscle Volume and Bone Geometry Reveals Surprising Relationship at the Genetic Level , Prakrit Subba, Molecular & Cellular Biology

Theses from 2019 2019

Studies on the Interaction and Organization of Bacterial Proteins on Membranes , Mariana Brena, Molecular & Cellular Biology

Investigating The Role Of LBH During Early Embryonic Development In Xenopus Laevis , Emma Weir, Molecular & Cellular Biology

Theses from 2018 2018

Exploring the Influence of PKC-theta Phosphorylation on Notch1 Activation and T Helper Cell Differentiation , Grace Trombley, Molecular & Cellular Biology

Theses from 2017 2017

Partial Craniofacial Cartilage Rescue in ace/fgf8 Mutants from Compensatory Signaling From the Ventricle of Danio Rerio , Douglas A. Calenda II, Molecular & Cellular Biology

THE FAR C-TERMINUS OF TPX2 CONTRIBUTES TO SPINDLE MORPHOGENESIS , Brett Estes, Molecular & Cellular Biology

Characterization of Calcium Homeostasis Parameters in TRPV3 and CaV3.2 Double Null Mice , Aujan Mehregan, Molecular & Cellular Biology

Microtransplantation of Rat Brain Neurolemma into Xenopus Laevis Oocytes to Study the Effect of Environmental Toxicants on Endogenous Voltage-Sensitive Ion Channels , Edwin Murenzi, Molecular & Cellular Biology

Regulation of Katanin Activity on Microtubules , Madison A. Tyler, Molecular & Cellular Biology

Theses from 2016 2016

The Role of MicroRNAs in Regulating the Translatability and Stability of Target Messenger RNAs During the Atrophy and Programmed Cell Death of the Intersegmental Muscles of the Tobacco Hawkmoth Manduca sexta. , Elizabeth Chan, Molecular & Cellular Biology

An in Vivo Study of Cortical Dynein Dynamics and its Contribution to Microtubule Sliding in the Midzone , Heather M. Jordan, Molecular & Cellular Biology

A Genetic Analysis of Cichlid Scale Morphology , Kenta C. Kawasaki, Molecular & Cellular Biology

Modulation of Notch in an Animal Model of Multiple Sclerosis , Manit Nikhil Munshi, Molecular & Cellular Biology

One-Carbon Metabolism Related B-Vitamins Alter The Expression Of MicroRNAS And Target Genes Within The Wnt Signaling Pathway In Mouse Colonic Epithelium , Riccardo Racicot, Molecular & Cellular Biology

Characterizing the Inhibition of Katanin Using Tubulin Carboxy-Terminal Tail Constructs , Corey E. Reed, Molecular & Cellular Biology

The Identification of Notch1 Functional Domains Responsible for its Physical Interaction with PKCθ , Wesley D. Rossiter, Molecular & Cellular Biology

Dynamics of Microtubule Networks with Antiparallel Crosslinkers , Kasimira T. Stanhope, Molecular & Cellular Biology

Modifications of Myofilament Structure and Function During Global Myocardial Ischemia , Mike K. Woodward, Molecular & Cellular Biology

Theses from 2015 2015

Regulation of Jak1 and Jak2 Synthesis through Non-Classical Progestin Receptors , Hillary Adams, Molecular & Cellular Biology

Antineoplastic Effects of Rhodiola Crenulata on B16-F10 Melanoma , Maxine Dudek, Molecular & Cellular Biology

RNAi Validation of Resistance Genes and Their Interactions in the Highly DDT-Resistant 91-R Strain of Drosophila Melanogaster , Kyle Gellatly, Molecular & Cellular Biology

Characterization of Protein-Protein Interactions for Therapeutic Drug Design Utilizing Mass Spectrometry , Alex J. Johnson, Molecular & Cellular Biology

Promoting Extracellular Matrix Crosslinking in Synthetic Hydrogels , Marcos M. Manganare, Molecular & Cellular Biology

Characterization of the Reconstituted and Native Pseudomonas aeruginosa Type III Secretion System Translocon , Kathryn R. Monopoli, Molecular & Cellular Biology

Thermocycle-regulated WALL REGULATOR INTERACTING bHLH Encodes a Protein That Interacts with Secondary-Cell-Wall-Associated Transcription Factors , Ian P. Whitney, Molecular & Cellular Biology

Theses from 2014 2014

Engineering Camelina sativa for Biofuel Production via increasing oil yield and tolerance to abiotic stresses , Kenny Ablordeppey, Molecular & Cellular Biology

Designing a Pore-Forming Toxin Cytolysin A (ClyA) Specific to Target Cancer Cells , Alzira Rocheteau Avelino, Molecular & Cellular Biology

The Role of the Novel Lupus Antigen, Acheron, in Moderating Life and Death Decisions , Ankur Sheel, Molecular & Cellular Biology

Expression and Purification of Human Lysosomal β-galactosidase from Pichia Pastoris , Sarah E. Tarullo, Molecular & Cellular Biology

Properties of Potential Substrates of a Cyanobacterial Small Heat Shock Protein , Yichen Zhang, Molecular & Cellular Biology

Theses from 2013 2013

Characterizing the Heavy Metal Chelator, Tpen, as a Ca2+ Tool in the Mammalian Oocyte , Robert A. Agreda Mccaughin, Molecular & Cellular Biology

Sustainable Biofuels Production Through Understanding Fundamental Bacterial Pathways Involved in Biomass Degradation and Sugar Utilization , James CM Hayes, Molecular & Cellular Biology

Stiffness and Modulus and Independent Controllers of Breast Cancer Metastasis , Dannielle Ryman, Molecular & Cellular Biology

Theses from 2012 2012

The Pyrethroid Deltamethrin, Which Causes Choreoathetosis with Salivation (CS-Syndrome), Enhances Calcium Ion Influx via Phosphorylated CaV2.2 expresssed in Xenopus laevis oocytes , Anna-maria Alves, Molecular & Cellular Biology

A Test of the Hypothesis That Environmental Chemicals Interfere With Thyroid Hormone Action in Human Placenta , Katherine Geromini, Molecular & Cellular Biology

Analyzing the Role of Reactive Oxygen Species in Male-Female Interactions in Arabidopsis thaliana. , Eric A. Johnson, Molecular & Cellular Biology

Rhythmic Growth And Vascular Development In Brachypodium Distachyon , Dominick A. Matos, Molecular & Cellular Biology

Polymer Prodrug Conjugation to Tumor Homing Mesenchymal Stem Cells , Nick Panzarino, Molecular & Cellular Biology

Investigation of Differential Vector Competence of Bartonella quintana in Human Head and Body Lice , Domenic j. Previte, Molecular & Cellular Biology

Downregulation of Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Leads to Improved Biological Conversion Efficiency in Brachypodium distachyon , Gina M. Trabucco, Molecular & Cellular Biology

Theses from 2011 2011

Evolutionary Relationship of the ampC Resistance Gene In E. cloacae , Shanika S. Collins, Molecular & Cellular Biology

Sex Difference in Calbindin Cell Number in the Mouse Preoptic Area: Effects of Neonatal Estradiol and Bax Gene Deletion , Richard F. Gilmore III, Molecular & Cellular Biology

In Vivo Investigations of Polymer Conjugates as Therapeutics , Elizabeth M. Henchey, Molecular & Cellular Biology

Examination of Sexually Dimorphic Cell Death in the Pubertal Mouse Brain , Amanda Holley, Molecular & Cellular Biology

Human Niemann-Pick Type C2 Disease Protein Expression, Purification and Crystallization , Yurie T. Kim, Molecular & Cellular Biology

Revealing the Localization of the Class I Formin Family in the Moss Physcomitrella patens Using Gene Targeting Strategies , Kelli Pattavina, Molecular & Cellular Biology

Connecting Motors and Membranes: A Quantitative Investigation of Dynein Pathway Components and in vitro Characterization of the Num1 Coiled Coil Domain , Bryan J. St. Germain, Molecular & Cellular Biology

Theses from 2010 2010

The Protective Effects A Full-term Pregnancy Plays Against Mammary Carcinoma , Matthew p. Carter, Molecular & Cellular Biology

Analysis Of An Actin Binding Guanine Exchange Factor, Gef8, And Actin Depolymerizing Factor In Arabidopsis Thaliana. , Aleksey Chudnovskiy, Molecular & Cellular Biology

The Role of Ykl-40, a Secreted Heparin-Binding Glycoprotein, in Tumor Angiogenesis, Metastasis, and Progression: a Potential Therapeutic Target , Michael Faibish, Molecular & Cellular Biology

In Vivo Visualization of Hedgehog Signaling in Zebrafish , Christopher J. Ferreira, Molecular & Cellular Biology

An In Vivo Study of the Mammalian Mitotic Kinesin Eg5 , Alyssa D. Gable, Molecular & Cellular Biology

Identification of Dynein Binding Sites in Budding Yeast Pac1/LIS1 , Christopher W. Meaden, Molecular & Cellular Biology

Functional Characterization of Arabidopsis Formin Homologues Afh1, Afh5, Afh6, Afh7 and Afh8 , Shahriar Niroomand, Molecular & Cellular Biology

Regulation of Crbp1 In Mammary Epithelial Cells , Stacy L. Pease, Molecular & Cellular Biology

In Vivo Labeling Of A Model β-Clam Protein With A Fluorescent Amino Acid , Mangayarkarasi Periasamy, Molecular & Cellular Biology

In Vivo Characterization of Interactions Among Dynein Complex Components at Microtubule Plus Ends , Karen M. Plevock, Molecular & Cellular Biology

Anti-Diabetic Potentials of Phenolic Enriched Chilean Potato and Select Herbs of Apiaceae and Lamiaceae Families , Fahad Saleem, Molecular & Cellular Biology

Interconversion of the Specificities of Human Lysosomal Enzymes , Ivan B. Tomasic, Molecular & Cellular Biology

Deletions of Fstl3 and/or Fst Isoforms 303 and 315 Results in Hepatic Steatosis , Nathan A. Ungerleider, Molecular & Cellular Biology

Theses from 2009 2009

A New Laser Pointer Driven Optical Microheater for Precise Local Heat Shock , Mike Placinta, Molecular & Cellular Biology

Theses from 2008 2008

Cysteine Dioxygenase: The Importance of Key Residues and Insight into the Mechanism of the Metal Center , Jonathan H. Leung, Molecular & Cellular Biology

Invertebrate Phenology and Prey Selection of Three Sympatric Species of Salmonids; Implications for Individual Fish Growth , Jeffrey V. Ojala, Wildlife & Fisheries Conservation

Paralemmin Splice Variants and mRNA and Protein Expression in Breast Cancer , Casey M. Turk, Molecular & Cellular Biology

Stability of the frog motor nerve terminal: roles of perisynaptic Schwann cells and muscle fibers , Ling Xin, Molecular & Cellular Biology

Theses from 2007 2007

Antioxidant Response Mechanism in Apples during Post-Harvest Storage and Implications for Human Health Benefits , Ishan Adyanthaya, Molecular & Cellular Biology

Progress Towards A Model Flavoenzyme System , Kevin M. Bardon, Molecular & Cellular Biology

The effect of Rhodiola crenulata on a highly metastatic murine mammary carcinoma , Jessica L. Doerner, Molecular & Cellular Biology

Advanced Search

  • Notify me via email or RSS
  • Collections
  • Disciplines

Author Corner

  • Login for Faculty Authors
  • Faculty Author Gallery
  • Expert Gallery
  • University Libraries
  • Molecular and Cellular Biology Graduate Program Website
  • UMass Amherst

This page is sponsored by the University Libraries.

© 2009 University of Massachusetts Amherst • Site Policies

Privacy Copyright

BYU ScholarsArchive

BYU ScholarsArchive

Home > Life Sciences > Microbiology and Molecular Biology > Theses and Dissertations

Microbiology and Molecular Biology Theses and Dissertations

Theses/dissertations from 2023 2023.

Elucidating the Architecture of the TclIJN Complex that Converts Cysteine to Thiazoles in the Biosynthesis of Micrococcin , Diana G. Calvopina Chavez

Manipulating and Assaying Chromatin Architecture Around Enhancer Elements in vivo , John Lawrence Carter

Halophilic Genes that Impact Plant Growth in Saline Soils , Mckay A. Meinzer

Characterizing Stress Granule Regulation by PAS Kinase, Ataxin-2 and Ptc6 and Investigating the Lifespan of Covid-19 Virus on Currency , Colleen R. Newey

Changes in RNA Expression of HuT78 Cells Resulting From the HIV-1 Viral Protein R R77Q Mutation , Joshua S. Ramsey

Theses/Dissertations from 2022 2022

Biofilm Characterization and the Potential Role of eDNA in Horizontal Gene Transfer in Hospital and Meat Isolates of Staphylococcus aureus and Their Biofilms , Ashley Lynne Ball

Novel Patterns for Nucleosome Positioning: From in vitro to in vivo , David Andrew Bates

The Effects of Polymorphisms of Viral Protein R of HIV-1 on the Induction of Apoptosis in Primary Cells and the Characterization of Twelve Novel Bacillus anthracis Bacteriophage , Jacob D. Fairholm

Analysis of the Cytopathogenic Effect of Different HIV-1 Vpr Isoforms on Primary Human CD4+ T Cells and a Model Cell Line , Jonatan Josue Fierro Nieves

The Role of Chitinase A in Mastitis-Associated Escherichia coli Pathogenesis , Weston D. Hutchison

Big Data Meta-Analyses of Transcriptional Responses of Human Samples to Orthohantavirus Infection and Shotgun Metagenomics From Crohn's Disease Patients. , John L. Krapohl

An Exploration of Factors that Impact Uptake of Human Papillomavirus Vaccines , David Samuel Redd

Genomic Analysis and Therapeutic Development of Bacteriophages to Treat Bacterial Infections and Parasitic Infestations , Daniel W. Thompson

The Use of Nucleotide Salvage Pathway Enzymes as Suitable Tumor Targets for Antibody-Based and Adoptive Cell Therapies , Edwin J. Velazquez

Comparative Sequence Analysis Elucidates the Evolutionary Patterns of Yersinia pestis in New Mexico over Thirty-Two Years , M. Elizabeth Warren

Regulation of T Cell Activation by the CD5 Co-Receptor and Altered Peptides, Characterization of Thymidine Kinase-Specific Antibodies, and Integrating Genomics Education in Society , Kiara Vaden Whitley

Theses/Dissertations from 2021 2021

Evolution and Selection: From Suppression of Metabolic Deficiencies to Bacteriophage Host Range and Resistance , Daniel Kurt Arens

Identifying Sinorhizobium meliloti Genes that Determine Fitness Outcomes , Alexander B. Benedict

Pushing the Limits of SARS-CoV-2 Survival: How SARS-CoV-2 Responds to Quaternary Ammonium Compounds and Wastewater , Benjamin Hawthorne Ogilvie

Mutations in HIV-1 Vpr Affect Pathogenesis in T-Lymphocytes and Novel Strategies to Contain the Current COVID-19 Pandemic , Antonio Solis Leal

Theses/Dissertations from 2020 2020

Staphylococcus aureus Metal Acquisition in Milk and Mammary Gland Tissue , Shalee Killpack Carlson

Antimicrobial Peptide Development: From Massively Parallel Peptide Sequencing to Bioinformatic Motif Identification , Alexander K. Erikson

A Comparison of Chikungunya Virus Infection, Dissemination, and Cytokine Induction in Human and Murine Macrophages and Characterization of RAG2-/-γc-/- Mice as an Animal Model to Study Neurotropic Chikungunya Disease , Israel Guerrero

The Effects of Immune Regulation and Dysregulation: Helper T Cell Receptor Affinity, Systemic Lupus Erythematosus and Cancer Risk, and Vaccine Hesitancy , Deborah K. Johnson

Identification of Genes that Determine Fitness, Virulence, and Disease Outcomes in Mastitis Associated Eschericia coli , Michael Andrew Olson

Theses/Dissertations from 2019 2019

Investigation of Thymidine Kinase 1 in Cancer Progression , Eliza Esther King Bitter

Ribosomally Synthesized and Post-Translationally Modified Peptides as Potential Scaffolds for Peptide Engineering , Devan Bursey

Bioaerosols Associated with Evaporative Cooler Use in Low-Income Homes in Semi-Arid Climates , Ashlin Elaine Cowger

PAS Kinase and TOR, Controllers of Cell Growth and Proliferation , Brooke Jasmyn Cozzens

Regulation of Immune Cell Activation and Functionby the nBMPp2 Protein andthe CD5 Co-Receptor , Claudia Mercedes Freitas

Characterizing Novel Pathways for Regulation and Function of Ataxin-2 , Elise Spencer Melhado

Interactions Between the Organellar Pol1A, Pol1B, and Twinkle DNA Replication Proteins and Their Role in Plant Organelle DNA Replication , Stewart Anthony Morley

SNFing Glucose to PASs Mitochondrial Dysfunction: The Role of Two Sensory Protein Kinases in Metabolic Diseases , Kai Li Ong

Characterizing the Function of PAS kinase in Cellular Metabolism and Neurodegenerative Disease , Jenny Adele Pape

Isolation, Characterization, and Genomic Comparison of Bacteriophages of Enterobacteriales Order , Ruchira Sharma

Isolation, Genetic Characterization and Clinical Application of Bacteriophages of Pathogenic Bacterial Species , Trever Leon Thurgood

Investigation of Therapeutic Immune Cell Metabolism , Josephine Anna Tueller

Theses/Dissertations from 2018 2018

Innate Immune Cell Phenotypes Are Dictated by Distinct Epigenetic Reprogramming , Kevin Douglas Adams

Bacteriophages for Treating American Foulbrood and the Neutralization of Paenibacillus larvae Spores , Thomas Scott Brady

Methods for Detection of and Therapy for Carbapenem-Resistant Enterobacteriaceae , Olivia Tateoka Brown

The Diversity Found Among Carbapenem-Resistant Bacteria , Galen Edward Card

Exploration of Antimicrobial Activity in Natural Peptides and High-Throughput Discovery of Synthetic Peptides , Emma Kay Dallon

Gut Microbiota Regulates the Interplay Between Diet and Genetics to Influence Insulin Resistance , Jeralyn Jones Franson

The Antimicrobial Properties of Honey and Their Effect on Pathogenic Bacteria , Shreena Himanshu Mody

The Ability of Novel Phage to Infect Virulent Bacillus anthracis Isolates , Hyrum Smith Shumway

Galleria Mellonella as an Alternate Infection Model for Burkholderia Species and a Comparison of Suspension and Surface Test Methods for Evaluating Sporicidal Efficacy , Joseph D. Thiriot

The Clinical Significance of HPRT as a Diagnostic and Therapeutic Biomarker for Hematological and Solid Malignancies , Michelle Hannah Townsend

Biomarker Analysis and Clinical Relevance of Thymidine Kinase 1 in Solid and Hematological Malignancies , Evita Giraldez Weagel

Hospital and meat associated Staphylococcus aureus and Their Biofilm Characteristics , Trevor Michael Wienclaw

Theses/Dissertations from 2017 2017

Comparison of Cytokine Expression and Bacterial Growth During Periparturient and Mid Lactation Mastitis in a Mouse Model , Rhonda Nicole Chronis

Influence of Epstein-Barr Virus on Systemic Lupus Erythematosus Disease Development and the Role of Depression on Disease Progression , Caleb Cornaby

The Effects of Nucleosome Positioning and Chromatin Architecture on Transgene Expression , Colton E. Kempton

Phosphate Signaling Through Alternate Conformations of the PstSCAB Phosphate Transporter , Ramesh Krishna Vuppada

Acetobacter fabarum Genes Influencing Drosophila melanogaster Phenotypes , Kylie MaKay White

Theses/Dissertations from 2016 2016

The Path to Understanding Salt Tolerance: Global Profiling of Genes Using Transcriptomics of the Halophyte Suaeda fruticosa , Joann Diray Arce

Genetic and Biochemical Analysis of the Micrococcin Biosynthetic Pathway , Philip Ross Bennallack

Characterizing Interaction Between PASK and PBP1/ ATXN2 to Regulate Cell Growth and Proliferation , Nidhi Rajan Choksi

The Activity of Alkaline Glutaraldehyde Against Bacterial Endospores and Select Non-Enveloped Viruses , Justen Thalmus Despain

The Role of Viral Interleukin-6 in Tumor Development of Kaposi's Sarcoma-Associated Herpesvirus Lymphomas , Rebecca A. Fullwood

The Role of the Transcriptional Antiterminator RfaH in Lipopolysaccharide Synthesis, Resistance to Antimicrobial Peptides, and Virulence of Yersinia pseudotuberculosis and Yersinia pestis , Jared Michael Hoffman

A CryAB Interactome Reveals Clientele Specificity and Dysfunction of Mutants Associated with Human Disease , Whitney Katherine Hoopes

The pmrHFIJKLM Operon in Yersinia pseudotuberculosis Enhances Resistance to CCL28 and Promotes Phagocytic Engulfment by Neutrophils , Lauren Elizabeth Johnson

Characterization of Five Brevibacillus Bacteriophages and Their Genomes , Michael Allen Sheflo

Analysis of Nucleosome Isolation and Recovery: From In Silico Invitrosomes to In Vivo Nucleosomes , Collin Brendan Skousen

Human Herpesvirus 6A Infection and Immunopathogenesis in Humanized Rag2 -/-γc-/- Mice and Relevance to HIV/AIDS and Autoimmunity , Anne Tanner

Theses/Dissertations from 2015 2015

Identifying and Characterizing Yeast PAS Kinase 1 Substrates Reveals Regulation of Mitochondrial and Cell Growth Pathways , Desiree DeMille

The Detection and Molecular Evolution of Francisella tularensis Subspecies , Mark K. Gunnell

Isolation and Host Range of Staphylococcus aureus Bacteriophages and Use for Decontamination of Fomites , Kyle C. Jensen

The Antioxidant and DNA Repair Capacities of Resveratrol, Piceatannol, and Pterostilbene , Justin Ryan Livingston

High Salinity Stabilizes Bacterial Community Composition and Activity Through Time , Tylan Wayne Magnusson

Advancing Phage Genomics and Honeybee Health Through Discovery and Characterization of Paenibacillaceae Bacteriophages , Bryan Douglas Merrill

Specialized Replication Operons Control Rhizobial Plasmid Copy Number in Developing Symbiotic Cells , Clarice Lorraine Perry

Gene Networks Involved in Competitive Root Colonization and Nodulation in the Sinorhizobium meliloti-Medicago truncatula Symbiosis , Ryan D. VanYperen

Theses/Dissertations from 2014 2014

Snf1 Mediated Phosphorylation and Activation of PAS Kinase , Bryan D. Badal

Studies of PhoU in Escherichia coli: Metal Binding, Dimerization,Protein/Protein Interactions, and a Signaling Complex Model , Stewart G. Gardner

Pharmacologic Immunomodulation of Macrophage Activation by Caffeine , Ryan Perry Steck

Analysis of Nucleosome Mobility, Fragility, and Recovery: From Embryonic Stem Cells to Invitrosomes , Ashley Nicolle Wright

Enhancing Protein and Enzyme Stability Through Rationally Engineered Site-Specific Immobilization Utilizing Non-Canonical Amino Acids , Jeffrey Chun Wu

Theses/Dissertations from 2013 2013

Thymidine Kinase 1: Diagnostic and Prognostic Significance in Malignancy , Melissa Marie Alegre

Promoter Polymorphisms in Interferon Regulatory Factor 5 , Daniel N. Clark

Modulators of Symbiotic Outcome in Sinorhizobium meliloti , Matthew B. Crook

Evidences for Protein-Protein Interactions Between PstB and PhoU in the Phosphate Signaling Complex of Escherichia coli , Kristine Dawn Johns

Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins , Kelsey Murphey Langston

A Quadruplex Real-Time PCR Assay for the Rapid Detection and Differentiation of the Burkholderia pseudomallei Complex: B. mallei , B. pseudomallei , and B. thailandensis , Chinn-woan Lowe

The Role of Nuclear BMP2 in the Cell Cycle and Tumorigenesis , Brandt Alan Nichols

Nuclear BMP2 and the Immune Response , Daniel S. Olsen

Hypersaline Lake Environments Exhibit Reduced Microbial Dormancy , Joshua Christopher Vert

Theses/Dissertations from 2012 2012

Characterization of the Cellular and Organellar Dynamics that Occur with a Partial Depletion of Mitochondrial DNA when Arabidopsis Organellar DNA Polymerase IB is Mutated , John D. Cupp

Effect of Antioxidants and Oxidative Stress on Different Cancer Cell Types , Gaytri Devi Gupta Elera

Effects of Chemical Stimulation and Tumor Co-Incubation on Macrophage Activation and Aggressiveness, Measured Through Phagocytosis and Respiratory Burst , Bo Marcus Gustafsson

Loss of the Lipopolysaccharide Core Biosynthesis rfaD Gene Increases Antimicrobial Chemokine Binding and Bacterial Susceptibility to CCL28 and Polymyxin: A Model for Understanding the Interface of Antimicrobial Chemokines and Bacterial Host Defense Avoidance Mechanisms , Cynthia S. Lew

Partial Characterization of the Antimicrobial Activity of CCL28 , Bin Liu

Characterizing the Role of HspB2 in Cardiac Metabolism and Muscle Structure Using Yeast and Mammalian Systems , Jonathan Paul Neubert

Humanized Mice as a Model to Study Human Viral Pathogenesis and Novel Antiviral Drugs , Freddy Mauricio Sanchez Tumbaco

Transgene Delivery via Microelectromechanical Systems , Aubrey Marie Mueller Wilson

Theses/Dissertations from 2011 2011

Antioxidants in Cancer Research and Prevention: Assay Comparison, Structure-Function Analysis, and Food Product Analysis , Andrew Robert Garrett

Characterization of the Role Nuclear Bmp2 (nBmp2) Plays in Regulating Gene Expression , Fialka Grigorova

Theses/Dissertations from 2010 2010

Effects of Diabetic State and Gender on Pro-Inflammatory Cytokine Secretion by Human Macrophages Infected with Burkholderia pseudomallei , Annette J. Blam

Organellar DNA Polymerases Gamma I and II in Arabidopsis thaliana , Jeffrey M. Brammer

Determining the Function of Nuclear Bmp4 , Trina Jane Loos

Advanced Search

  • Notify me via email or RSS

ScholarsArchive ISSN: 2572-4479

  • Collections
  • Disciplines
  • Scholarly Communication
  • Additional Collections
  • Academic Research Blog

Author Corner

Hosted by the.

  • Harold B. Lee Library

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright

Digital Commons @ University of South Florida

  • USF Research
  • USF Libraries

Digital Commons @ USF > College of Arts and Sciences > Molecular Biosciences > Theses and Dissertations

Molecular Biosciences Theses and Dissertations

Theses/dissertations from 2023 2023.

Exploring strain variation and bacteriophage predation in the gut microbiome of Ciona robusta , Celine Grace F. Atkinson

Distinct Nrf2 Signaling Thresholds Mediate Lung Tumor Initiation and Progression , Janine M. DeBlasi

Thermodynamic frustration of TAD2 and PRR contribute to autoinhibition of p53 , Emily Gregory

Utilization of Detonation Nanodiamonds: Nanocarrier for Gene Therapy in Non-Small Cell Lung Cancer , Allan E. Gutierrez

Role of HLA-DRB1 Fucosylation in Anti-Melanoma Immunity , Daniel K. Lester

Targeting BET Proteins Downregulates miR-33a To Promote Synergy with PIM Inhibitors in CMML , Christopher T. Letson

Regulated Intramembrane Proteolysis by M82 Peptidases: The Role of PrsS in the Staphylococcus aureus Stress Response , Baylie M. Schott

Histone Deacetylase 8 is a Novel Therapeutic Target for Mantle Cell Lymphoma and Preserves Natural Killer Cell Cytotoxic Function , January M. Watters

Theses/Dissertations from 2022 2022

Regulation of the Heat Shock Response via Lysine Acetyltransferase CBP-1 and in Neurodegenerative Disease in Caenorhabditis elegans , Lindsey N. Barrett

Determining the Role of Dendritic Cells During Response to Treatment with Paclitaxel/Anti-TIM-3 , Alycia Gardner

Cell-free DNA Methylation Signatures in Cancer Detection and Classification , Jinyong Huang

The Role Of Eicosanoid Metabolism in Mammalian Wound Healing and Inflammation , Kenneth D. Maus

A Holistic Investigation of Acidosis in Breast Cancer , Bryce Ordway

Characterizing the Impact of Postharvest Temperature Stress on Polyphenol Profiles of Red and White-Fruited Strawberry Cultivars , Alyssa N. Smith

Theses/Dissertations from 2021 2021

Multifaceted Approach to Understanding Acinetobacter baumannii Biofilm Formation and Drug Resistance , Jessie L. Allen

Cellular And Molecular Alterations Associated with Ovarian and Renal Cancer Pathophysiology , Ravneet Kaur Chhabra

Ecology and diversity of boletes of the southeastern United States , Arian Farid

CircREV1 Expression in Triple-Negative Breast Cancer , Meagan P. Horton

Microbial Dark Matter: Culturing the Uncultured in Search of Novel Chemotaxonomy , Sarah J. Kennedy

The Multifaceted Role of CCAR-1 in the Alternative Splicing and Germline Regulation in Caenorhabditis elegans , Doreen Ikhuva Lugano

Unraveling the Role of Novel G5 Peptidase Family Proteins in Virulence and Cell Envelope Biogenesis of Staphylococcus aureus , Stephanie M. Marroquin

Cytoplasmic Polyadenylation Element Binding Protein 2 Alternative Splicing Regulates HIF1α During Chronic Hypoxia , Emily M. Mayo

Transcriptomic and Functional Investigation of Bacterial Biofilm Formation , Brooke R. Nemec

A Functional Characterization of the Omega (ω) subunit of RNA Polymerase in Staphylococcus aureus , Shrushti B. Patil

The Role Of Cpeb2 Alternative Splicing In TNBC Metastasis , Shaun C. Stevens

Screening Next-generation Fluorine-19 Probe and Preparation of Yeast-derived G Proteins for GPCR Conformation and Dynamics Study , Wenjie Zhao

Theses/Dissertations from 2020 2020

Understanding the Role of Cereblon in Hematopoiesis Through Structural and Functional Analyses , Afua Adutwumwa Akuffo

To Mid-cell and Beyond: Characterizing the Roles of GpsB and YpsA in Cell Division Regulation in Gram-positive Bacteria , Robert S. Brzozowski

Spatiotemporal Changes of Microbial Community Assemblages and Functions in the Subsurface , Madison C. Davis

New Mechanisms That Regulate DNA Double-Strand Break-Induced Gene Silencing and Genome Integrity , Dante Francis DeAscanis

Regulation of the Heat Shock Response and HSF-1 Nuclear Stress Bodies in C. elegans , Andrew Deonarine

New Mechanisms that Control FACT Histone Chaperone and Transcription-mediated Genome Stability , Angelo Vincenzo de Vivo Diaz

Targeting the ESKAPE Pathogens by Botanical and Microbial Approaches , Emily Dilandro

Succession in native groundwater microbial communities in response to effluent wastewater , Chelsea M. Dinon

Role of ceramide-1 phosphate in regulation of sphingolipid and eicosanoid metabolism in lung epithelial cells , Brittany A. Dudley

Allosteric Control of Proteins: New Methods and Mechanisms , Nalvi Duro

Microbial Community Structures in Three Bahamian Blue Holes , Meghan J. Gordon

A Novel Intramolecular Interaction in P53 , Fan He

The Impact of Myeloid-Mediated Co-Stimulation and Immunosuppression on the Anti-Tumor Efficacy of Adoptive T cell Therapy , Pasquale Patrick Innamarato

Investigating Mechanisms of Immune Suppression Secondary to an Inflammatory Microenvironment , Wendy Michelle Kandell

Posttranslational Modification and Protein Disorder Regulate Protein-Protein Interactions and DNA Binding Specificity of p53 , Robin Levy

Mechanistic and Translational Studies on Skeletal Malignancies , Jeremy McGuire

Novel Long Non-Coding RNA CDLINC Promotes NSCLC Progression , Christina J. Moss

Genome Maintenance Roles of Polycomb Transcriptional Repressors BMI1 and RNF2 , Anthony Richard Sanchez IV

The Ecology and Conservation of an Urban Karst Subterranean Estuary , Robert J. Scharping

Biological and Proteomic Characterization of Cornus officinalis on Human 1.1B4 Pancreatic β Cells: Exploring Use for T1D Interventional Application , Arielle E. Tawfik

Evaluation of Aging and Genetic Mutation Variants on Tauopathy , Amber M. Tetlow

Theses/Dissertations from 2019 2019

Investigating the Proteinaceous Regulome of the Acinetobacter baumannii , Leila G. Casella

Functional Characterization of the Ovarian Tumor Domain Deubiquitinating Enzyme 6B , Jasmin M. D'Andrea

Integrated Molecular Characterization of Lung Adenocarcinoma with Implications for Immunotherapy , Nicholas T. Gimbrone

The Role of Secreted Proteases in Regulating Disease Progression in Staphylococcus aureus , Brittney D. Gimza

Advanced Proteomic and Epigenetic Characterization of Ethanol-Induced Microglial Activation , Jennifer Guergues Guergues

Understanding immunometabolic and suppressive factors that impact cancer development , Rebecca Swearingen Hesterberg

Biochemical and Proteomic Approaches to Determine the Impact Level of Each Step of the Supply Chain on Tomato Fruit Quality , Robert T. Madden

Enhancing Immunotherapeutic Interventions for Treatment of Chronic Lymphocytic Leukemia , Kamira K. Maharaj

Characterization of the Autophagic-Iron Axis in the Pathophysiology of Endometriosis and Epithelial Ovarian Cancers , Stephanie Rockfield

Understanding the Influence of the Cancer Microenvironment on Metabolism and Metastasis , Shonagh Russell

Modeling of Interaction of Ions with Ether- and Ester-linked Phospholipids , Matthew W. Saunders

Novel Insights into the Multifaceted Roles of BLM in the Maintenance of Genome Stability , Vivek M. Shastri

Conserved glycine residues control transient helicity and disorder in the cold regulated protein, Cor15a , Oluwakemi Sowemimo

A Novel Cytokine Response Modulatory Function of MEK Inhibitors Mediates Therapeutic Efficacy , Mengyu Xie

Novel Strategies on Characterizing Biologically Specific Protein-protein Interaction Networks , Bi Zhao

Theses/Dissertations from 2018 2018

Characterization of the Transcriptional Elongation Factor ELL3 in B cells and Its Role in B-cell Lymphoma Proliferation and Survival , Lou-Ella M.m. Alexander

Identification of Regulatory miRNAs Associated with Ethanol-Induced Microglial Activation Using Integrated Proteomic and Transcriptomic Approaches , Brandi Jo Cook

Molecular Phylogenetics of Floridian Boletes , Arian Farid

MYC Distant Enhancers Underlie Ovarian Cancer Susceptibility at the 8q24.21 Locus , Anxhela Gjyshi Gustafson

Quantitative Proteomics to Support Translational Cancer Research , Melissa Hoffman

A Systems Chemical Biology Approach for Dissecting Differential Molecular Mechanisms of Action of Clinical Kinase Inhibitors in Lung Cancer , Natalia Junqueira Sumi

Investigating the Roles of Fucosylation and Calcium Signaling in Melanoma Invasion , Tyler S. Keeley

Synthesis, Oxidation, and Distribution of Polyphenols in Strawberry Fruit During Cold Storage , Katrina E. Kelly

Investigation of Alcohol-Induced Changes in Hepatic Histone Modifications Using Mass Spectrometry Based Proteomics , Crystina Leah Kriss

Off-Target Based Drug Repurposing Using Systems Pharmacology , Brent M. Kuenzi

Investigation of Anemarrhena asphodeloides and its Constituent Timosaponin-AIII as Novel, Naturally Derived Adjunctive Therapeutics for the Treatment of Advanced Pancreatic Cancer , Catherine B. MarElia

The Role of Phosphohistidine Phosphatase 1 in Ethanol-induced Liver Injury , Daniel Richard Martin

Theses/Dissertations from 2017 2017

Changing the Pathobiological Paradigm in Myelodysplastic Syndromes: The NLRP3 Inflammasome Drives the MDS Phenotype , Ashley Basiorka

Modeling of Dynamic Allostery in Proteins Enabled by Machine Learning , Mohsen Botlani-Esfahani

Uncovering Transcriptional Activators and Targets of HSF-1 in Caenorhabditis elegans , Jessica Brunquell

The Role of Sgs1 and Exo1 in the Maintenance of Genome Stability. , Lillian Campos-Doerfler

Mechanisms of IKBKE Activation in Cancer , Sridevi Challa

Discovering Antibacterial and Anti-Resistance Agents Targeting Multi-Drug Resistant ESKAPE Pathogens , Renee Fleeman

Functional Roles of Matrix Metalloproteinases in Bone Metastatic Prostate Cancer , Jeremy S. Frieling

Disorder Levels of c-Myb Transactivation Domain Regulate its Binding Affinity to the KIX Domain of CREB Binding Protein , Anusha Poosapati

Role of Heat Shock Transcription Factor 1 in Ovarian Cancer Epithelial-Mesenchymal Transition and Drug Sensitivity , Chase David Powell

Cell Division Regulation in Staphylococcus aureus , Catherine M. Spanoudis

A Novel Approach to the Discovery of Natural Products From Actinobacteria , Rahmy Tawfik

Non-classical regulators in Staphylococcus aureus , Andy Weiss

Theses/Dissertations from 2016 2016

In Vitro and In Vivo Antioxidant Capacity of Synthetic and Natural Polyphenolic Compounds Identified from Strawberry and Fruit Juices , Marvin Abountiolas

Quantitative Proteomic Investigation of Disease Models of Type 2 Diabetes , Mark Gabriel Athanason

CMG Helicase Assembly and Activation: Regulation by c-Myc through Chromatin Decondensation and Novel Therapeutic Avenues for Cancer Treatment , Victoria Bryant

Computational Modeling of Allosteric Stimulation of Nipah Virus Host Binding Protein , Priyanka Dutta

Cell Cycle Arrest by TGFß1 is Dependent on the Inhibition of CMG Helicase Assembly and Activation , Brook Samuel Nepon-Sixt

Gene Expression Profiling and the Role of HSF1 in Ovarian Cancer in 3D Spheroid Models , Trillitye Paullin

VDR-RIPK1 Interaction and its Implications in Cell Death and Cancer Intervention , Waise Quarni

Regulation of nAChRs and Stemness by Nicotine and E-cigarettes in NSCLC , Courtney Schaal

Targeting Histone Deacetylases in Melanoma and T-cells to Improve Cancer Immunotherapy , Andressa Sodre De Castro Laino

Nonreplicative DNA Helicases Involved in Maintaining Genome Stability , Salahuddin Syed

Theses/Dissertations from 2015 2015

Functional Analysis of the Ovarian Cancer Susceptibility Locus at 9p22.2 Reveals a Transcription Regulatory Network Mediated by BNC2 in Ovarian Cells , Melissa Buckley

Exploring the Pathogenic and Drug Resistance Mechanisms of Staphylococcus aureus , Whittney Burda

Regulation and Targeting of the FANCD2 Activation in DNA Repair , Valentina Celeste Caceres

Mass Spectrometry-Based Investigation of APP-Dependent Mechanisms in Neurodegeneration , Dale Chaput

Advanced Search

  • Email Notifications and RSS
  • All Collections
  • USF Faculty Publications
  • Open Access Journals
  • Conferences and Events
  • Theses and Dissertations
  • Textbooks Collection

Useful Links

  • Rights Information
  • SelectedWorks
  • Submit Research

Home | About | Help | My Account | Accessibility Statement | Language and Diversity Statements

Privacy Copyright

COMMENTS

  1. PDF A Group of Students' and Teachers' Perceptions With Respect to Biology

    I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science Prof. Dr. Ömer Geban ... to biology education at high school level in order to reveal the reasons of students' low achievement in biology as indicated by the university entrance examinations

  2. PDF Investigating the Performance of Senior High School Students in Biology

    Thesis submitted to the Department of Science Education of the Faculty of ... (2004), advocated for adequate biology education for every child in the contemporary world dominated by science. Biology has remained the most popular subject in the senior high school System in Ghana (Anamuah-Mensah, 1995). ...

  3. (PDF) Teaching Methods in Biology Education and Sustainability

    experts from biology education, environmental education, sustainable development education, and educational sciences, and all researchers are experienced teacher educators and resear chers. 6.

  4. PDF Thesis Doctor Of Education

    Poon, 2014). Biology was initially perceived by some scientists and educators as a subject with little relevance and significant only in preparation for a medical career. However, as described by Goh, Diong & Yeo (1989), the purpose of biology education is to prepare students for life and living as well as for an understanding of the environment.

  5. (PDF) Effective Teaching strategies in biological education: present

    Download full-text PDF Read full-text. ... learning model in the animal tissue and body structure course on the problem-solving abilities of students in the biology education study program with a ...

  6. Biology education research: building integrative frameworks for

    This critical review examines the challenges and opportunities facing the field of Biology Education Research (BER). Ongoing disciplinary fragmentation is identified as a force working in opposition to the development of unifying conceptual frameworks for living systems and for understanding student thinking about living systems. A review of Concept Inventory (CI) research is used to ...

  7. Contributions from Biology Education Research

    ISBN: 978-1-138-087989 (Paperback), 292 Pages, Price: 49.95$ (Paperback), 24.98$ (eBook) This study aims to investigate the trend of biological education research (BER) from 2000 to 2017 in the thesis of pre-service biology teachers. This study conducted a series of content analyses of the thesis from two universities.

  8. Current Research in Biology Education

    About this book. This book is a collection of full papers based on the peer-reviewed submissions accepted for the ERIDOB 2020 conference (which was cancelled due to COVID-19). ERIDOB brings together researchers in Biology Education from around the world to share and discuss their research work and results. It is the only major international ...

  9. (PDF) Teaching Biology in Schools: Global Research, Issues, and Trends

    Abstract. An indispensable tool for biology teacher educators, researchers, and graduate students, this book presents up-to-date research, addresses common misconceptions, and discusses the ...

  10. PDF Which strategy best suits biology teaching

    science education for over one hundred years now (Trowbridge & Bybee, 1996; Trowbridge et al, 2000). Ajaja (1998) and Bennett (2003) noted that the school science curricula like Biological Science Curriculum Study (BSCS) (American Institute of Biological Sciences, 1958), Chemical Education Material Study (CEMS) Campbell, 1961) and Chemical Bond

  11. PDF http://www.cepsj.si/pdfs/cepsj_7_1/CEPS_Journal_7-1_2017.pdf

    The sample consisted of 634 participants, 427 primary school pupils (aged 11-14), and 207 student teachers of biology (aged 20-23). We found that the populations of primary school pupils and student teachers of biol-ogy difer greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex ...

  12. PDF Philosophy of Biology and Biology Education: An Introduction

    philosophically minded biologists bring their work to bear on biology education. I strongly believe that philosophers could and should make important contributions to biology education, predominantly in two domains: (a) understanding concepts and (b) understanding the nature of science. All chapters included in this book make such contributions.

  13. Biology Education Project Topics and Materials PDF & DOC Download

    Our biology education project topics PDF have their complete materials ready for instant download. In conclusion, we have listed above the best topics in biology education. Do you need help? you can contact us: (+234) 08060082010, 08107932631 or via our email address: [email protected].

  14. Escaping the cell: virtual reality escape rooms in biology education

    1. Introduction. Researchers agree that procedural or higher-order cognitive skills are best rehearsed and attained through hands-on experimentation (Jones et al. Citation 2019; Semilarski and Laius Citation 2021).However, teacher-oriented instruction is still dominant in biology education, despite the serious limitations that such an approach inhibits on knowledge acquisition and construction ...

  15. PDF Research Article Filipino prospective teachers' experiences in ...

    A myriad of concerns continues to hamper the advancement of biology education in the different parts of the globe (Rogayan & Albino, 2019). The role of universities and colleges is very indispensable in promoting quality biology education and science education in general. Teacher education institutions (TEIs) are tasked to

  16. (PDF) The Trends of Biology Education Research from 2000 to 2017: A

    This study aims to investigate the trend of biological education research (BER) from 2000 to 2017 in the thesis of pre-service biology teachers. This study conducted a series of content analyses ...

  17. Literature Reviews, Theoretical Frameworks, and Conceptual Frameworks

    Clearly, these frameworks are challenging for published biology education researchers, which suggests the importance of providing some initial guidance to new biology education researchers. Fortunately, educational researchers have increased their explicit use of these frameworks over time, and this is influencing educational research in ...

  18. Biological Sciences thesis and dissertation collection

    Understanding adaptive immunity using immune receptor repertoire sequencing . Sutherland, Catherine (The University of Edinburgh, 2023-12-21) Adaptive Immune Receptor Repertoire Sequencing (AIRR-seq) uses high throughput sequencing to characterise the state and dynamics of B and T cell receptor (BCR and TCR) repertoires. In this thesis, I ...

  19. Biology Theses and Dissertations

    Theses/Dissertations from 2022. PDF. Effects of the Brain Nonapeptides Arginine-Vasotocin and Isotocin on Shoaling Behaviour in the Guppy (Poecilia reticulata), Babak Ataei Mehr. PDF. Effects of methylmercury and unpredictable food stress exposure on songbirds' physiology and seasonal transition, Claire L.J. Bottini.

  20. Molecular and Cellular Biology Masters Theses Collection

    Theses from 2021 PDF. Exploring Knockdown Phenotypes and Interactions between ATAD3 Proteins in Arabidopsis thaliana, Eli S. Gordon, Molecular & Cellular Biology. PDF. Development of a Site-Specific Labeling Assay to Study the Pseudomonas aeruginosa Type III Secretion Translocon in Native Membranes, Kyle A. Mahan, Molecular & Cellular Biology. PDF

  21. (PDF) Biology Education: The Value of Taking Student ...

    For example, adopting outdoor science education (OSE) in schools and colleges could have multiple benefits, supporting and building girls' general engagement with biology and science education and ...

  22. Microbiology and Molecular Biology Theses and Dissertations

    PDF. Comparative Sequence Analysis Elucidates the Evolutionary Patterns of Yersinia pestis in New Mexico over Thirty-Two Years, M. Elizabeth Warren. PDF. Regulation of T Cell Activation by the CD5 Co-Receptor and Altered Peptides, Characterization of Thymidine Kinase-Specific Antibodies, and Integrating Genomics Education in Society, Kiara ...

  23. Molecular Biosciences Theses and Dissertations

    Theses/Dissertations from 2022. PDF. Regulation of the Heat Shock Response via Lysine Acetyltransferase CBP-1 and in Neurodegenerative Disease in Caenorhabditis elegans, Lindsey N. Barrett. PDF. Determining the Role of Dendritic Cells During Response to Treatment with Paclitaxel/Anti-TIM-3, Alycia Gardner. PDF.