News from the Columbia Climate School

How Exactly Does Carbon Dioxide Cause Global Warming?

Sarah Fecht

“ You Asked ” is a series where Earth Institute experts tackle reader questions on science and sustainability. Over the past few years, we’ve received a lot of questions about carbon dioxide — how it traps heat, how it can have such a big effect if it only makes up a tiny percentage of the atmosphere, and more. With the help of Jason Smerdon , a climate scientist at Columbia University’s Lamont-Doherty Earth Observatory, we answer several of those questions here.

How does carbon dioxide trap heat?

You’ve probably already read that carbon dioxide and other greenhouse gases act like a blanket or a cap, trapping some of the heat that Earth might have otherwise radiated out into space. That’s the simple answer. But how exactly do certain molecules trap heat? The answer there requires diving into physics and chemistry.

When sunlight reaches Earth, the surface absorbs some of the light’s energy and reradiates it as infrared waves, which we feel as heat. (Hold your hand over a dark rock on a warm sunny day and you can feel this phenomenon for yourself.) These infrared waves travel up into the atmosphere and will escape back into space if unimpeded.

Oxygen and nitrogen don’t interfere with infrared waves in the atmosphere. That’s because molecules are picky about the range of wavelengths that they interact with, Smerdon explained. For example, oxygen and nitrogen absorb energy that has tightly packed wavelengths of around 200 nanometers or less, whereas infrared energy travels at wider and lazier wavelengths of 700 to 1,000,000 nanometers. Those ranges don’t overlap, so to oxygen and nitrogen, it’s as if the infrared waves don’t even exist; they let the waves (and heat) pass freely through the atmosphere.

electromagnetic spectrum

With CO2 and other greenhouse gases, it’s different. Carbon dioxide, for example, absorbs energy at a variety of wavelengths between 2,000 and 15,000 nanometers — a range that overlaps with that of infrared energy. As CO2 soaks up this infrared energy, it vibrates and re-emits the infrared energy back in all directions. About half of that energy goes out into space, and about half of it returns to Earth as heat, contributing to the ‘greenhouse effect.’

Smerdon says that the reason why some molecules absorb infrared waves and some don’t “depends on their geometry and their composition.” He explained that oxygen and nitrogen molecules are simple — they’re each made up of only two atoms of the same element — which narrows their movements and the variety of wavelengths they can interact with. But greenhouse gases like CO2 and methane are made up of three or more atoms, which gives them a larger variety of ways to stretch and bend and twist. That means they can absorb a wider range of wavelengths — including infrared waves.

How can I see for myself that CO2 absorbs heat?

As an experiment that can be done in the home or the classroom, Smerdon recommends filling one soda bottle with CO2 (perhaps from a soda machine) and filling a second bottle with ambient air. “If you expose them both to a heat lamp, the CO2 bottle will warm up much more than the bottle with just ambient air,” he says. He recommends checking the bottle temperatures with a no-touch infrared thermometer. You’ll also want to make sure that you use the same style of bottle for each, and that both bottles receive the same amount of light from the lamp. Here’s a video of a similar experiment:

A more logistically challenging experiment that Smerdon recommends involves putting an infrared camera and a candle at opposite ends of a closed tube. When the tube is filled with ambient air, the camera picks up the infrared heat from the candle clearly. But once the tube is filled with carbon dioxide, the infrared image of the flame disappears, because the CO2 in the tube absorbs and scatters the heat from the candle in all directions, and therefore blurs out the image of the candle. There are several videos of the experiment online, including this one:

Why does carbon dioxide let heat in, but not out?

Energy enters our atmosphere as visible light, whereas it tries to leave as infrared energy. In other words, “energy coming into our planet from the Sun arrives as one currency, and it leaves in another,” said Smerdon.

CO2 molecules don’t really interact with sunlight’s wavelengths. Only after the Earth absorbs sunlight and reemits the energy as infrared waves can the CO2 and other greenhouse gases absorb the energy.

How can CO2 trap so much heat if it only makes up 0.04% of the atmosphere? Aren’t the molecules spaced too far apart?

Before humans began burning fossil fuels, naturally occurring greenhouse gases helped to make Earth’s climate habitable. Without them, the planet’s average temperature would be below freezing. So we know that even very low, natural levels of carbon dioxide and other greenhouse gases can make a huge difference in Earth’s climate.

Today, CO2 levels are higher than they have been in at least 3 million years . And although they still account for only 0.04% of the atmosphere , that still adds up to billions upon billions of tons of heat-trapping gas. For example, in 2019 alone, humans dumped 36.44 billion tonnes of CO2 into the atmosphere, where it will linger for hundreds of years. So there are plenty of CO2 molecules to provide a heat-trapping blanket across the entire atmosphere.

In addition, “trace amounts of a substance can have a large impact on a system,” explains Smerdon. Borrowing an analogy from Penn State meteorology professor David Titley, Smerdon said that “If someone my size drinks two beers, my blood alcohol content will be about 0.04 percent. That is right when the human body starts to feel the effects of alcohol.” Commercial drivers with a blood alcohol content of 0.04% can be convicted for driving under the influence.

“Similarly, it doesn’t take that much cyanide to poison a person,” adds Smerdon. “It has to do with how that specific substance interacts with the larger system and what it does to influence that system.”

In the case of greenhouse gases, the planet’s temperature is a balance between how much energy comes in versus how much energy goes out. Ultimately, any increase in the amount of heat-trapping means that the Earth’s surface gets hotter. (For a more advanced discussion of the thermodynamics involved, check out this NASA page .)

If there’s more water than CO2 in the atmosphere, how do we know that water isn’t to blame for climate change?

Water is indeed a greenhouse gas. It absorbs and re-emits infrared radiation, and thus makes the planet warmer. However, Smerdon says the amount of water vapor in the atmosphere is a consequence of warming rather than a driving force, because warmer air holds more water.

“We know this on a seasonal level,” he explains. “It’s generally drier in the winter when our local atmosphere is colder, and it’s more humid in the summer when it’s warmer.”

As carbon dioxide and other greenhouse gases heat up the planet, more water evaporates into the atmosphere, which in turn raises the temperature further. However, a hypothetical villain would not be able to exacerbate climate change by trying to pump more water vapor into the atmosphere, says Smerdon. “It would all rain out because temperature determines how much moisture can actually be held by the atmosphere.”

Similarly, it makes no sense to try to remove water vapor from the atmosphere, because natural, temperature-driven evaporation from plants and bodies of water would immediately replace it. To reduce water vapor in the atmosphere, we must lower global temperatures by reducing other greenhouse gases.

If Venus has an atmosphere that’s 95% CO2, shouldn’t it be a lot hotter than Earth?

image of venus from space

The concentration of CO2 in Venus’ atmosphere is about 2,400 times higher than that of Earth. Yet the average temperature of Venus is only about 15 times higher. What gives?

Interestingly enough, part of the answer has to do with water vapor. According to Smerdon, scientists think that long ago, Venus experienced a runaway greenhouse effect that boiled away almost all of the planet’s water — and water vapor, remember, is also a heat-trapping gas.

“It doesn’t have water vapor in its atmosphere, which is an important factor,” says Smerdon. “And then the other important factor is Venus has all these crazy sulfuric acid clouds.”

High up in Venus’ atmosphere, he explained, clouds of sulfuric acid block about 75% of incoming sunlight. That means the vast majority of sunlight never gets a chance to reach the planet’s surface, return to the atmosphere as infrared energy, and get trapped by all that CO2 in the atmosphere.

Won’t the plants, ocean, and soil just absorb all the excess CO2?

Eventually … in several thousand years or so.

Plants, the oceans, and soil are natural carbon sinks — they remove some carbon dioxide from the atmosphere and store it underground, underwater, or in roots and tree trunks. Without human activity, the vast amounts of carbon in coal, oil, and natural gas deposits would have remained stored underground and mostly separate from the rest of the carbon cycle. But by burning these fossil fuels, humans are adding a lot more carbon into the atmosphere and ocean, and the carbon sinks don’t work fast enough to clean up our mess.

carbon cycle diagram

It’s like watering your garden with a firehose. Even though plants absorb water, they can only do so at a set rate, and if you keep running the firehose, your yard is going to flood. Currently our atmosphere and ocean are flooded with CO2, and we can see that the carbon sinks can’t keep up because the concentrations of CO2 in the atmosphere and oceans are rising quickly .

Unfortunately, we don’t have thousands of years to wait for nature to absorb the flood of CO2. By then, billions of people would have suffered and died from the impacts of climate change; there would be mass extinctions, and our beautiful planet would become unrecognizable. We can avoid much of that damage and suffering through a combination of decarbonizing our energy supply, pulling CO2 out the atmosphere , and developing more sustainable ways of thriving.

Editor’s note (March 17, 2021): This post was updated with additional links to Youtube videos with experiments showing the effects of carbon dioxide. Enjoy!

Related Posts

Key Ocean Current Contains a Warning on Climate

Key Ocean Current Contains a Warning on Climate

Summer 2024 Climate School Internship Opportunities

Summer 2024 Climate School Internship Opportunities

Using Nature to Help the Climate: 4 Ways That Work

Using Nature to Help the Climate: 4 Ways That Work

Science for the Planet: In these short video explainers, discover how scientists and scholars across the Columbia Climate School are working to understand the effects of climate change and help solve the crisis.

I’m writing a paper for my environmental class How does the cooler atmosphere transport heat Q to the warmer surface? Q = sigma•(Ts^4 -Ta^4)

John L. Keller

If the air’s cooler than the surface, it wouldn’t.

Daniel H.

GREAT question Joe!

The short answer:

It doesn’t. Heat always flows from higher temperature to lower temperature. If it didn’t, the 2nd Law of Thermodynamics would be violated, and entropy would decrease (as enthalpy increased).

The longer answer:

The “greenhouse gas” mechanism does not exist. The atmosphere (including CO2) provides convection cooling to the Earth’s surface. Cloud cover does *temporarily* prevent radiational cooling by reflecting radiation back to the surface. This is distinctly different than the fictitious greenhouse gas model of absorption-and-reemission. The atmosphere also distributes heat more evenly around the planet through convection heat transfer in general; this is why the planet surface doesn’t have wild temperature differences from day to night like the moon. There is NO net warming effect due to so-called greenhouse gases.

That being said, here’s what I’m NOT saying:

-I’m not saying global warming isn’t real. We are experiencing a warming trend. -I’m not saying human activity doesn’t add to this warming trend; it does. -I’m not saying trying to minimize environmental impact isn’t worthwhile. It is not only worthwhile, it is critical. -I’m not saying plants and trees do not have a net cooling effect. They do, but it is because they are endothermic from a heat balance point of view. Plants are great because they absorb energy, NOT because they happen to use CO2 to do this.

All I’m saying is that if anyone is concerned about reducing anthropogenic global warming effects, the best approach is to try to minimize waste heat.

7.5 billion humans generate a LOT of waste heat. Birth control and insulation will help. Sequestering plant food (CO2) will make the problem worse. Less CO2=less plant life=less radiant energy from the sun being used during photosynthesis.

Iain Climie

The obvious retort here is that many actions essential if mainstream theories are correct make sense regardless of the nature, extent, cause and direction if climate change. They would help cope with a volcanic winter (e.g. that in 1816 after the Tambora eruption) and also the collapse of a major food crop. Examples include less waste, combining conservation with careful use, restoring fish stocks, growing fewer cash crops, regenerative agriculture, silviculture and reducing the impact per head and probably numbers of conventional livestock.. Instead of shovelling grain and soya down cattle they can be fed on crop residues, natural vegetation and spent brewery grain while methane-reducing feed additives like Asparogopsis taxiformis in livestock feed could give a huge cut in emissions and some boost growth.

These are all win-win options which make sense regardless. Instead of adopting them, humanity has wasted decades bickering about who is right. I despair at times!

I posted something on food security on the climate coalition website last year if you’re interested.

salamatu gyenne adams

Send me the link

Barton Paul Levenson

The greenhouse gas mechanism definitely does exist. Colder objects still radiate, unless they are at absolute zero. The atmosphere is well above that at 255 K or so on average, and it radiates plenty of infrared light. When that infrared light strikes the ground, what do you think happens?

Name Hidden

. . . it doesn’t reflect to the ground at all. Virtually all of the terrestrial IR is captured by CO2. For the same reason, virtually all of the terrestrial IR that can be absorbed by CO2 is absorbed within 15m of the ground.

Doug Mackenzie

Not true, the atmospheric window allows IR in the 8-14 micron wavelengths to pass to outer space. What you are saying only holds true in the 4.3 and 15 micron absorption bands.

jeff

Sir, if I understand you correctly…some of the CO2 driven IR energy safely dissipates through an atmospheric window in the 8-14 micron range?

With respect to cumulative greenhouse gases, why are holes in the earths ozone no longer mentioned as threat? How did those holes repair? How did the Great Barrier reef make a recovery?

Weller

What common sense you bring to the table Daniel. ISA temperature of our world is 15C, the aim of the low carbon believers is to keep Global Warming to + 1.5 degrees ie. an increase of 10% in ISA to 17.5C. If CO2 were to cause this increase it would need to form 10% of the atmosphere, assuming it was totally opaque to heat transfer. Being heavier than air, the warming would not bother us at all, all air breathing life would be extinct from suffocation.

Sorry, can’ do arithmetic for 17.5 read 16.5…

Dennis

It gets worse. 1.5C is not a 10% rise in temperature! To write about temperature in percent one must use Kelvin so 1.5C rise is only 1.5/288 = 0.5%. Can we stick with real science?

Eric Edeen

Your argument conflates infrared radiation with heat, but they are not the same thing. The phenomenon of “heat” is due to kinetic energy at the molecular level, i.e., the motion of molecules and atoms. Infrared radiation is a form of electromagnetic radiation and, although it can cause heat by causing molecules to vibrate (kinetic energy), it is not, itself, a form of heat energy.

In the specific case of heat energy, yes, the 2nd law of thermodynamics says that “heat” always “flows” from regions of higher temperature to regions of lower temperature. That is because heat energy is transmitted by molecules “bumping into” other molecules causing some of their kinetic energy to be transferred. Since the motion of the molecules is random, the energy spreads out and thus heat tends to “flow” from hotter to cooler molecules.

Electromagnetic energy is transmitted in totally different way that DOES NOT violate the 2nd law of thermodynamics. It is the ability of CO2 to “trap” infrared radiation and reflect it back to earth (not convection) that is the cause of the so-called “greenhouse effect” and therefore it does not violate the 2nd law.

Graham Bennett

Molecules bumping into one another is conduction, not radiation. It does not explain to the layman how heat supposedly radiates back to warmer surface from the cooler CO2 in the atmosphere. Just saying.

Forrest Frantz

The Greenhouse warming effect of CO2 is real. But so are the cooling effects of CO2: the Co-aerosol effect and the Green effect. This is a layman explanation.

The Greenhouse effect is visible using official biospheric records over deserts with little flora. A change in CO2 leads to (precedes) a proportional change in temperature. CO2 “receives” the electromagnetic wave (at quantum frequencies) to move the orbit of electrons to an unstable and higher energy state (EM energy is converted to potential energy). At more than a billion times a second, that CO2 molecule “bumps” into another molecule at near the speed of sound. The electron returns to a more stable orbit, and the potential energy is converted to a photon that randomly emits in a direction that has a near 50% chance of going “down” vs. “up”. This delay, ever so slightly, lowers the emissivity of air (how quickly the atmosphere gives up radiative heat). The radiation that no longer shoots directly to space now lingers … maybe affecting the temperature of your skin or thermometer. If isolating this property of CO2, more CO2 begets higher temperatures.

The Co-aerosol effect is visible on an hourly scale at climate observatories (e.g., Mauna Loa). Co-aerosols are produced when natural organic sources are used to create energy. These co-aerosols, mostly invisible and odorless, reflect incoming shortwave solar radiation back to space before it is absorbed by our biosphere. If isolating this property of CO2, more CO2 begets lower temperatures.

The Green effect is visible on a monthly scale over farming areas and jungles (think Amazon). As stated in other posts, this is primarily due to the absorption of photons in the endothermic (cooling) photosynthesis process. Just like the greenhouse effect, the absorption is not totally permanent. Think exothermic (warm) decay of plant matter. But that delay change the emissivity of our atmosphere just like the greenhouse effect, but in the opposite direction. This cooling effect is so strong that temperatures have actually dropped in central Amazon. If isolating this property of CO2, more CO2 begets lower temperatures.

People that understand that anthropogenic CO2 has three effects on climate change, one that warms and two that cool, then ask a key question. Globally, which climate changing property is strongest?

That answer is fascinating. When Earth is really cold, there is little flora and few humans. So the primary effect of CO2 is to warm. When Earth is gets warm (on its way to too warm), flora and humans flourish. Our biosphere greens and cools (Google NASA Green Earth). And for those that also know that CO2 is at about a third to a half of where it needs to be and that the glacial maximum was only about 20,000 years ago, we crossed the Greenhouse vs Green effect line in approximately the 1970s. Our biosphere had finally gotten green enough to overpower the greenhouse effect and cool–partially mitigating the natural sun/sea caused 200+ year rise in global temperatures since the mini-Ice Age.

DDP

You are correct re ‘convectional cooling’, and as such means that ‘convectional heating’ is also applicable.

Seeing as CO2 have been known and proven since early 1800’s to absorb and radiate heat, your statement that greenhouse gases have no affect creates a conflict in your statement.

That is unless you can prove CO2 doesn’t do any such thing? Any kid with a couple empty bottles and a temp gauge can prove CO2 does indeed do.

Paul Adams

But that’s the problem. The earth is not a couple of empty bottles. The earth’s atmosphere is much much more complex!

John Vance

Trapped heat is not the same as the earths convection system. Anyone thinking that must have been emptying those bottles wholesale!

Qinghan Bian

I strongly believe that waste heat from human activities dominates the warming, just like air conditioning a house by spending energy. About 80% of globally consumed energy enters the environment as waste heat, which cannot be ignored, from daily life (boiling water, cooking foods, air conditioning), transportation to industries.

From this point one can reasonably understand how the global warming can be linked to our activities that release waste heat. Actually it can easily simulate the temperature changes in air, land and oceans according to the waste heat allocated to them based on simple thermodynamic calculations.

Waste heat: the dominating root cause of current global warming | Environmental Systems Research | Full Text (springeropen.com)

James

I have never given much thought to waste heat from human activity. In fact, scientist have never really mentione it and only focused on co2,methane and deforestation.

Larry Joe Scroggins

The main focus is co2. If it were lower the waste heat would escape and no warming.

Kevin Madden

I spent time on Lake Keowee in South Carolina last month. This lake is a part of a set of reservoirs owned by Georgia Power. On Lake Keowee is a nuclear reactor, which utilizes the reservoir for cooling. Going swimming I was shocked at the warmth of the water temperature. This really made me think about heat from human activities This is not a small body of water. I can only imagine what compounding this around the world could do. Whether nuclear, coal, gas, solar or wind the amount of energy produced ends up being expelled as some form of energy that eventually turns to heat. I’m not a CO2 control believer. However, it became very apparent to me reducing usage can’t be all that bad. Reduce, reuse, recycle

Andrew Hopper

The Earths historical temperature over billions of years shows very strong links between CO2 levels and ambient temperature. There is no other cause, no one had cars 350 million years ago when CO2 levels were similar and a mass extinction resulted.

JOHN

Geothermal heating from 1000 centigrade magma is a major contender by conduction!

Michael R.

Nobody seems to discuss the small influence a relatively large increase in CO2 has on plant growth. I used to represent commercial marijuana growers. Most of them grew indoors and augmented their controlled atmosphere with CO2. Now cannabis is called weed for a reason. It grows pretty easily and is not finicky. Yet to double the plant’s yield with CO2, you need at least 3.5x increase in CO2 from ambient and, in fact, it’s more like 5x. So there’s no way this extra CO2 we are producing is just going to be gobbled up by plants.

tom

Are you saying that the plant won’t absorb the CO2 at all unless it is increased by 3.5x or more like 5x?

Wild temperatures happen daily on the moon? Where can I get info

Magnificent! CO2 is a fake? What about endless geothermal heating and it’s energy supply, since constant motion (energy) is illegal physics

Alex Janssen

Good answer!

David Watson

The best, most complete and correct answer below is from Lisa Goddard. I will simplify it even further by saying there are only two forms of heat transfer – conduction and radiation. Convection is a special case of conduction in which fluid flow (air in this case) is taken into account as a heat distribution mechanism, and influencer of heat transfer coefficients (I got an A- in my first semester of heat transfer), but ultimately it is still conduction.

Conduction occurs with the molecules or atoms of a substance come into contact and transfer energy to one another. So it is fair to say there will not be a net transfer of thermal energy (heat) from cooler air to a warmer surface through conduction.

The other mechanism of heat flow is radiation. This is the radiation of electromagnetic radiation from objects, ie the molecules and atoms in bodies. This form of energy can travel through a vacuum, such as the various forms of electromagnetic radiation that travel through the vacuum of space to our Earth. After absorbing this radiation from the sun, the earth’s surface radiates some of it back into space in the form of infrared radiation which has a little bit longer wave length than the various visible light wavelengths we see. Oxygen and Nitrogen in the air mostly ignore it, but Carbon Dioxide molecules have the geometry and composition that allows them to absorb the radiation of this wavelength. They get “excited” and re-radiate the energy, again as infrared, back out. Some goes up, and some goes back down to the surface.

So if there was only O2 and N2 in the atmosphere the infrared energy would mostly radiate back into the black body of space. But each CO2 molecule catches some and sends a portion back to earth. The more CO2 molecules there are, the more infrared radiation gets interrupted and sent back to earth, instead of out to space. That is how CO2 in the atmosphere can transfer energy to the surface, by blocking infrared energy heading to space and sending some of it back to the surface.

Overall, increasing CO2 and other greenhouse gasses reduces the earth’s ability to “cool itself off” by radiating energy into space. In other words the greenhouse gas molecules “catch” the infrared energy trying to escape earth, and “throw” some of it back to earth. Increasing greenhouse molecules, increases the amount of energy that gets caught and sent back.

Liam

In your final sentence you say that radiation increases greenhouse molecules. Energy converts to matter. That sounds faintly ridiculous. It would be useful to read an explanation of how that works.

David Watson is not saying that radiation increases greenhouse molecules. He is saying that as CO2 concentrations increase in the atmosphere due to other means (e.g., by combustion of molecules that include carbon such as petroleum, coal and wood), that more infrared radiation that would otherwise radiate out into space is being reflected back to earth. The reason is that physics of CO2 molecules allow them to be excited by radiation in infrared wavelengths where as other molecules present in our atmosphere, such as O2 and N2 do not. The energy absorbed by the CO2 when it is excited by infrared radiation causes them to vibrate and thus emit infrared radiation themselves, some of which is radiated into space, but some of which are radiated back to earth, causing the molecules of earth to vibrate (because most molecules are capable of absorbing infrared) and thus create heat. Ergo, there is a net gain of heat on earth.

Raafter

It would seem that if N2 and O2 are transparent to incoming radiation that the introduction of CO2 would also act to ‘insulate’ the incoming radiation and reflect some of it back into space as well as reflect some of the exiting radiation (from the earth) back to the earth. Why don’t these effects offset?

BadJon

As mentioned above, visible light coming from the sun passes the CO2 molecules without interaction. Upon reaching the ground some of the visible light is re-radiated from the ground as infra-red radiation, which does interact with CO2.

They do! That’s one of the reasons why a Greenhouse period has a more stable temperature around the planet. They leave out the global greening caused by c02 fertilization which = more oxygen = thicker atmosphere because of an over simplistic empty bottle experiment done over a hundred years ago.

Robert Hisey

A rather severe misunderstanding. When a CO2 molecule absorbs a photon of IR, it become energized. I will lose this energy by collision with another air molecule, in which case the energy shows up a kinetis energy or heat. This occurrs some billion times per second. It also can spontaneously emit a photon, returning to the ground state. In a vacuum, the life is about one second. So heat release is effectively 100%, and photon emission is a vanishingly small portion

Effectively, CO2 affects the global heat balance only in the 14-16micron wavelength range. NASA data shows that ZERO energy goes to space in this wavelength band. All else is just talk. The NASA data is at NASA Technical Memorandum 103957, Appendix E.

So why is the whole earth at a nice pleasant 80F during a Greenhouse period with co2 10 times higher then today? What you’re saying is correct but there are obviously other things going on in the atmosphere you are not aware of.

Hal Luebbert

No matter what else is causing the planet to warm, CO-w, methane, and greenhouse gases are making it worse – far worse.

Victor Leonard

If I can interject into this, the other thing we are warned about is acidification of seas by co2 and that it causes north & south pole ice to melt ..

xtron

dumb question from a science dummy…. at what concentration of CO2 will ALL IR energy be trapped on earths surface and NONE be radiated into space?? at that point, will further increases in CO2 be irrelevant because there will be no more heat to trap??

At the end of the day equilibrium is between the release into our atmosphere and us consuming. THIS IS THE BEST THANK U

Ron Turkett

Read about the Second Law of Thermodynamics that heat always flows to cooler areas not hotter ones.

Lisa Goddard

There are 3 ways that energy can be transferred: conduction, convection, and radiation. What John LK and Daniel H have described are 2 of those, and both are certainly at play in distributing the sun’s energy that the surface (and some atmospheric constituents) absorb. What they both have not addressed is radiation. This is how greenhouse gasses work in our atmosphere, and incidentally, how the sun’s energy reaches Earth. If there were no greenhouse gasses in the atmosphere, heat energy radiated from the surface would almost entirely radiate back to space, leaving the surface at a very very cold -18C (or about 0F, and that is averaged over the whole planet surface!). Greenhouse gasses (like CO2 and water vapor) can effectively absorb the wavelengths associated with what we call “heat”, or infrared radiation, coming from the surface or other parts of the atmosphere. They will re-radiate that energy in all directions, sending energy back to the surface, as well as out to space. This is how the surface is effectively receiving additional energy (and thus can warm). Those greenhouse gas molecules will radiate at the temperature of their immediate environment. So, CO2 or H2O near the surface radiate at a higher temperature than those same molecules higher up in the atmosphere. The altitude, above which there are no more appreciable greenhouse gasses will appear to be the radiating temperature at that point (often called outgoing long wave radiation). @Joe — in your equation below, this would be an expression for the energy balance at the surface, used to determine either the temperature of the surface or of the atmosphere, in a very idealized context, where the atmosphere is one big slab of stuff. What you are missing there though, is an ‘epsilon’ that represents the opacity of the atmosphere, basically the ability to absorb/emit radiation. The Q in that equation would be the net energy received from the sun, which is known and become approximate in the specific value for the Earth’s albedo (how much sun is reflected back to space). If you add one more equation – say the energy balance within the atmosphere, or at the top of the atmosphere, you would have enough information to solve for one, say T_surface, and find the other (T_atmosphere — though again, this would be an idealized representative temperature for the entire atmospheric column over the planet, but that is a similar situation for the surface temperature in this case too).

The intelligent and accurate retort as opposed to my less intellectual bypassing the whole argument – see previous post.

I’m after the physics describing the greenhouse effect/mechanism of heat transfer.

The equation is a radiative heat transfer equation the units are expressed in power per unit area, not energy. To get energy integrate power per unit area over time then multiply by area

The equation is for heat transfer between two surfaces, earth and the atmosphere.

Suppose the sun is delivering power to the surface over time transferring energy generating surface temperature Ts.

Q=sigma(Ts^4-Ta^4)

When is Q negative? K

In my paper I’m after the physics describing the greenhouse effect/mechanism of heat transfer.

The equation used is a radiative heat transfer equation applied between two surfaces, earth and the atmosphere. The equation has units of power not energy. For simplicity epsilon is 1.

Applying the equation to a single layer atmospheric model we know heat from the sun (Qs), and can find atmosphere temperature (Ta), earth surface temperature (Ts)……

The term “back radiation” is used to describe the heat transfer mechanism. Using the radiative heat transfer equation and applying it to a single layer model with the known values for Ts & Ta;

When is Q negative for atmosphere to surface heat transfer?

Your equation is set up to always give the answer that the atmosphere can’t warm the surface, which is wrong. You need to compare the situation with a warm atmosphere to one with no atmosphere at all.

For the present situation, Ts = 288, Ta = 255, so Q = 5.670373e-8 (288^4 – 255^4) = 150 W m^-2.

Now try Ts = 288, Ta = 2.7 K (the temperature of interstellar space). You get Q = 390 W m^-2.

In other words, with the warm atmosphere there, net radiation leaving the surface is 150 W m^-2, but without the atmosphere in the way, it would be 390 W m^-2. Input and output would no longer balance and the Earth would cool off until it was radiating as much as comes in. (This whole discussion ignores sunlight, convection, and evapotranspiration, which are necessary to give a proper balance.)

Zagzigger

Many, many universities and others will have attempted to prove the Greenhouse Effect in a lab. However, nobody has published a single paper demonstrating heating from such a mechanism. The rewards for demonstrating the GHE are multiple Nobel Prizes for everyone involved – probably even including the president of the country. Worse still, not one publication has been seen covering failed experiments or null results. That is just dishonest surely. Null results are extremely important in science – otherwise it just becomes Groupthink.

Catprog

Because it has been demonstrated so much that it is not paper worthy any more.

For instance this very article says how someone can do an experiment to show the effect themselves.

Plus you can measure the IR radiation leaving the earth with satellites.

brad

I have done that experiment. The temperature increase was the same.

Thank you for reason and sanity

Edward

If 97 to 98% of the co2 in the atmosphere comes from natural sources how much impact can industrial sources have based on the small % of co2 in air. Isn’t it true that during the jurrasic period co2 levels were 10 times what they are today. Seems to me like a futile effort, nature rules in this case.

The atmosphere is not 2-3% artificial CO2 but 33% artificial CO2. You are confusing the fraction of emissions with the fraction of build-up. All the natural sources are matched by natural SINKS. The artificial production is not, so that’s where the increase comes from.

what are the natural Co2 ? I assume the other types are a product of burning or combustion, how do those trace gases sty up in the clouds ?-for years

It is true that CO2 concentrations in some prehistoric eras were much higher than their current levels. We believe this because of the preponderance of evidence found in the the fossil record the tells us so. (by “fossil record”, I don’t mean just actual fossils, but also other geological evidence of past climate conditions such as glacial ice cores, etc.) What the fossil record also tells us is that higher atmospheric CO2 concentrations are always associated with higher world-wide average temperatures. More importantly, it also tells us that the rate of increase of atmospheric CO2 in the current era has no precedent, i.e. it is increasing MUCH more rapidly. In the past, climate significant changes in the world wide climate occurred over extend periods of time that allowed evolutionary adaptation to occur in time to avoid catastrophic die-offs. The climate is changing far more rapidly this time around such evolutionary adaptation will not save us. What keeps me up at night is the loss of large swaths of arable land and ocean fish stock depletion.

And yet global greening grows to 7% and beyond from co2 fertilization. We need to concentrate on the 95% of the batteries filling our land fills, leaching acid into the water chain and killing the coral reefs. As this interglacial continues to warm the oceans and eventually melt the northern hemisphere like every other interglacial in the past, will release even more co2 before the next glacial period starts. Every greenhouse growers will tell you that 420 ppm co2 is a fraction for what these co2 starved plants need today. More plant growth is healthy for the planet no matter how you look at it! What should be keeping you awake at night is how close to end of life we came at a 180 ppm in 1850! 150 ppm is a threshold. 400 ppm is no scientific threshold that I know of.

Bob McGill

In a recent study baby coral was attached to dead coral ( caused by acidity) the baby coral thrived. Explain that, but look up the experiment first.

Dan Brady

As of 2023, the CO2 level in the atmosphere is 46% higher than the level in 1800. I’ve seen this calculated as just over 1 trillion additional tonnes of CO2 now, versus in 1800.

The “small” percentage measurement is over 2 trillion tonnes. One is a small number and the other is large. But they describe the same thing. Don’t be misled by intuition regarding the size of numbers and percentages.

Palladini

yes, remove all the CO2, and all the plants die, and the human race is not far behind. you can kiss your ass goodbye if all the plants die.

Sarah Fecht

No one is saying we should remove all the CO2. It’s about returning CO2 to reasonable levels.

CO2 is at the Optimal level right now

Yeah I guess if you like extra droughts and wildfires and deadlier hurricanes? Not my idea of optimal.

So we need to stop emitting CO2 right now or it will go out of optimal levels very quickly?

James Asherman

What is a reasonable level in ppm.?

Climate scientist James Hansen has suggested that we should try to limit CO2 to 350ppm, although for thousands of years, natural cycles didn’t bring it above 300ppm: https://climate.nasa.gov/vital-signs/carbon-dioxide/

Why 350. Cause it’s a little lower then 400?

All human civilization and agriculture developed when the CO2 level was about 280 ppmv and the (mean global annual surface) temperature was 286-287 K. Serious deviations from that either way have the potential to badly disrupt our agriculture and our civilization.

That is ridiculous. Those levels would produce Plague. Famine and War, just as they did during the Little Ice Age. Why would you want to go back to a climate that was bad for 700 years ? This mystifies me.

Agriculture is up and will continue to go up with increased co2. Decreasing co2 will lead to more starvation and more war.

Jim Jones

…at least you see the true impetus. The entire GHE is predicated on the economic model of war mongers.

Adrian Vance

This is all nonsense. CO2 drives water vapor out of air per the Le Chateliaer Principle. H2O absorbs 7 time as much IR energy as CO2 per molecule so the temperature drops! It does not rise. This is easily demonstrated with a large bottle, baking soda and Vinegar.

J Doug Swallow

So, what is your opinion of what a “reasonable level” of CO₂ is? Do you think that during the Ordovician period when the CO₂ level was at 2,240 ppm and the Earth survived that was a “reasonable level”?

Yeah, the Earth has survived a lot of things. For millions of years, the surface of the planet was molten from being struck by so many asteroids and other space debris, and the Earth survived. So I guess it’s ok to return to those conditions, too? Just because the Earth has survived hell, doesn’t necessarily mean the human species can or will. Climate change is already causing a lot of human suffering, and it could get worse if we let it — does that just not matter to you? Do the profits of fossil fuel companies matter more than human lives?

Dick

Is CFC no more depleting the ozone? Is CO2 blanketing the atmosphere at the moment?

Jon

Have you ever though considered an alternative world to fossil fuels? In 1820 86% of the entire world lived in extreme poverty, of which only 12% of the world were literate. Planes have made us less xenophobic, & civilised in a really short period of time. How would we all get around today otherwise, certainly without assembly lines? ‘Horseback’, or steam-fueled modes powered by wood, ‘all’ things powered by wood. Wood we don’t have to spare. Streets caked in manure. Meat & milk reliance. Even if due to mortality, the population was just 3 billion today, it would be a planet of ruminants, undrinkable water, and deforestation. No satellites to help us know about the Earth. Sub out that 3% Co2 we’ve added for a ‘lot’ more methane. And for the fear CO2 lives a long time, it also becomes exponentially ineffective at warming beyond saturation, as the IPCCs formula demonstrates. Doubling all the CO2 in the atmosphere today (to 800ppm) would see 0.06 degrees C of warming by 2100, according to that formula. Isn’t this purely in the hands of cloud formation and weather systems? Positive & negative feedbacks? How can it not be? How would we know if we’ve not spared the planet from global cooling if negative feedbacks had gathered momentum centuries ago? What if our CO2 prevented that from occuring? Whether water vapour is an effect or not, it’s still the major player. I find it odd in the 2000s NASA articles stated how the ozone hole had wreaked havoc with the climate & seen masses of water vapour end up in the sky. Aren’t we just trying to decide why more water is in the sky? I just don’t feel like an experiment with bottles cuts it. If the climate has never changed drastically in short periods of time before, how does adding 3% of something cause sudden extreme change? I’m aware feedback loops should exercise caution, but the Earth seems to have arrived at pretty impressive regulation systems. Maybe we just don’t understand them yet because we have about 60 years of semi-reliable data. A century ago to measure the ocean we’d pull up a bucket & pop a thermometer into it.

Survived?? 180 ppm is just Surviving. 4000 ppm grew enough food to feed dinosaurs. Dinosaurs would starve today!

John Kerry is:

Even if we get to net zero, we still need to get carbon dioxide out of the atmosphere,’ ‘This is a bigger challenge than a lot of people have really grabbed on to yet.’

Neither John Kerry or anyone else is suggesting that we eliminate all CO2 from the atmosphere (which is neither possible or desirable). If you read the quote above carefully you will note it says “net zero”, which means getting to the point where our CO2 emmissions are no longer increasing the CO2 concentration in the atmosphere. He is also warning that he thinks getting to “net zero” would insufficient to avoid the long term effects of climate change because current levels are already too high and we will therefore need to find ways to reduce the concentration to safer levels.

Vincent

I thought net zero meant putting out no more than can be reabsorbed by the earth’s soils, rocks trees, oceans..with the number of people on the planet, the amount of activity, I think it will be a tall order to get to the point where there is no more Co2 being emitted..it would have to be a very basic, frugal existence. If you look at the ‘prospects’ for electric vehicles, as one example, doubts are already surfacing about how viable they are on a mass scale..

Rock Dancun

But how can we remove it from from the atmosphere yet daily industries are evolving

And what scientific reasonable co2 level would that be? 150 ppm is plant death. 420 ppm is better but still in co2 starved condition. 1500 ppm is a good level for these starved co2 plants we have today. 4000 ppm is some of earth’s strongest/healthiest times when mammals were ten times the size.

However, at concentrations above 1%, CO2 may start to affect [ 4 ]:

  • Breathing rate
  • Heart rhythm
  • Consciousness

(or 1000ppm) https://labs.selfdecode.com/blog/carbon-dioxide-poisoning/

Plus buildings have issues with ventilation so a 1000ppm outdoor setting would have much more inside.

Beard

check your maths mate. 1% = 10 000ppm

Ed Nold

The Earth didn’t have 9 billion people living on it when co2 was 4000 ppm. In India right now people are dying from the existing conditions because they can’t afford air conditioning or they have to work outside when the temperature is 114F with 60% humidity. For Mediterranean climates like California, Spain, Portugal, southern France, Italy and Greece a couple of degrees hotter could mean a desert. Just look across the sea. Billions of people will have to migrate to avoid death. Small countries can’t afford to have thousands of people even walking through their country. The US the richest country in the world is having trouble dealing with 3000 people a day. The war in Syria was the result of a drought causing people to lose their livelihoods and because they were a different sect than the people living within the Capital, the government decided it was cheaper and they thought easier to bomb them out of existence than to provide welfare for them. This situation caused hundreds of thousands of deaths and the largest migration in the world’s history.

Don’t just think of the plants, think of the people and other animals too.

Strive to improve, protect, serve, sufficient, prosperous, resilient, peaceful, Civil and Wild Life on Earth.

What is the rate of decay of CO2 to return to reasonable levels?

But the solution doesn’t seem reasonable at the present time.

Ratko Borić

It’s not only the plants, the Earth’s largest lungs are planctons who’ll extinct if the temp of the sea rises a bit…. That will kill the plants as well everything else, and all just because co2 rising levels

Ky-guy25

But the plants are being fed CO2 right

John Sheppard

I am strugling to find a percentage, or range of percentages showing the proven human activity responsible for the global warming. This is a question I get stumped with by sceptics. Is there unquestionable data and science to support that, say, 70% to say 90% of the increase in temperature is proven to be a result of human activity? While CO2 modelling I appreciate is complex, does the science (at a molecular modelled level) show without question that the increase in CO2 in our atmosphere causes the associated increase in termperature we measure. While I can see the data graphs that imply this, is there detailed modelling that supports this? I am working with the IMechE to have a supportive presence at COP26 and, while I just want to clean up our planet regardless, I need good back up when I field questions from sceptics.

The obvious retort to sceptics is that many ideas essential if mainstream views are correct make sense even if climate change were a damp squib or temperatures fell e.g following a major volcanic eruption like Tambora in 1815. For that matter they work if a major food crop collapses. Typical actions include reducing waste, silviculture, regenerative agriculture, alternatives to fossil fuels (whose extraction can be polluting or destructive), fewer cash crops, combining conservation with careful use and cutting the impact per head and probably numbers of conventional livestock. These win-win options are effective no matter what. Instead the last few decades have seen huge debate on climate change rather than doing something effective to cover all bases.

All the recent warming can be attributed to human activity. If you add up all the natural forcings, the Earth should be slowly cooling. It’s only when you add the artificial ones that you get warming.

how is the temperature measured ? where do stick the thermometer ?

We can measure how much IR is coming off of the earth for starters.

There’s no good back up. Once, it was CFC depleting ozone layer. Nowadays, it’s CO2 blanketing the atmosphere. The good concept is that the entropy of the universe increases but never decreases. As the entropy increases the temperature rises. The randomness of occurances is called ENTROPY. This can be seen from the ice age glacier and interglacial zillions of years ago. The universe climate is irreversible. Therefore, heat death is a state where there’s no structure but constant temperature .

Antonín

I have some question, When the sunlight hit the ground it transforms into infrared light, when the infrared light hit the CO2, shouldn’t the wavelength changed too?

Thierry Pauwels

My understanding is that when sunlight hits the ground, it heats the ground. Because the surface of the sun is so hot, the radiation is mainly in the visual, i.e. at relatively short wavelengths. The ground is radiating back, but because the ground is so much less hot, it radiates at longer wavelengths, i.e. in infrared. The sunlight is not transformed directly. It is the net result of absorption and emission by the ground. If CO2 is then heated by infrared radiation, and the temperature is not much different, it should re-emit the radiation in about the same wavelength.

So does Co2 absorb and emit radiation or does it block it ? The article talks about radiating, but the experiment you show seems to show blocking. Shouldn’t we see the Co2 absorb the heat and re radiate it ? Of course the experiment is faked anyway. That is a laboratory FLIR. Camera. It can show temperatures in at least 4000 colors . But the only thing it shows at all is the candle flame. Therefore the sensitivity on the expensive FLIR camera is cranked down so low it only registers if something is on fire. Then he fills the chamber with gas from a cylinder. That comes out very cold. The carbon dioxide which is cold, would have to be on fire to register on the misadjusted FLIR cam, and so effectively blocks the flame like a cold smoke screen. Then he cuts it short. I’m sorry, that is fakery to fool children.

The CO2 scatters the infrared by absorbing it and reemitting in all directions — which is exactly what the video claims to show. Since some of the infrared is bounced back to the source, it is often characterized as “blocking.”

But it doesn’t show that at all. It only shows that the cold gas blocks infrared for few seconds, to a badly adjusted FLIR camera.

Unfortunately, neither you nor I know the exact conditions of the experiment and what temperature the CO2 gas was at. However, climate scientist Jason Smerdon says that even if the gas was cold, the IR from the candle would still transmit directly to the camera if the gas were not interacting with the IR radiation. So, the experiment shows that the CO2 is scattering the IR, regardless of the gas’s temperature.

It’s also worth noting that even if there were a problem with the experiment, scientists know from many other lines of evidence that CO2 absorbs and scatters infrared energy — that fact of nature does not hinge on this one Youtube video.

Hi James, here’s a slightly experiment where cold CO2 is definitely not an issue, and it shows the same results: https://youtu.be/Rt6gLt6G5Kc?t=107 Hope this helps

David Link

How come experiments that claim to prove CO2 is a key driver of AGW use CO2 concentrations at exaggerated levels instead of the .03% to .06% we are concerned about.

I think this paper reflects a more realistic experiment . The Influence of IR Absorption and Backscatter Radiation from CO2 on Air Temperature during Heating in a Simulated Earth/Atmosphere Experiment: uhttps://www.scirp.org/journal/paperinformation.aspx?paperid=99608

John J Truskolawski

If Mars is 95%co2 how come it is not hotter. My last question is what happened to the sunspots. Did the industrial revolution cause that too?

Most of Earth’s greenhouse effect comes from water vapor and clouds, which together account for about 25 K of the Earth’s 33 K difference from the radiative equilibrium temperature (CO2 accounts for most of the rest). Mars has a very dry atmosphere. In addition, its atmospheric pressure is very low, so the absorption lines are not pressure-broadened the way they are on Earth, and the greenhouse effect is less effective. Lastly, Mars receives much less sunlight than Earth. Despite all this, Mars does wind up with a greenhouse effect of about 4 K (radiative equilibrium temperature is 210, emission temperature is 214).

Because Mars is further away from the sun and has less atmosphere to keep the temperature in.

If CO2 is not responsible for temperature increases why is Venus hotter then Mercury?

Dr F Sikkema

Indeed the climate is changing and CO2 certainly seems to be playing a role. However, I find the statement “Unfortunately, we don’t have thousands of years to wait for nature to absorb the flood of CO2. By then, billions of people would have suffered and died from the impacts of climate change; there would be mass extinctions, and our beautiful planet would become unrecognizable” to be coming out of thin air. The climate has changed in human history (medieval warm period, ice ages) and humans have always been able to adapt. Why would this climate change be different? “Billions dead” ? Why?

Droughts, wildfires, extreme heat, hurricanes, sea level rise, infectious disease — climate change makes all of these things worse, and the climate is changing faster and more dramatically than in all of human history. Surely we can and will adapt, and a big part of adapting means moving away from fossil fuels.

Jeff

Recently, I became embroiled in an online debate on the subject of anthropogenic global warming (“Claim”) originated by a talk radio host, who was hostile to the claim of anthropogenic global warming. Some responders were outright abusive, but one at least posed the following counter-arguments to the Claim:

(1) “So one of you educated climate alarmists please the explanation of how CO2 in the atmosphere is capable of increasing its fingerprint absorption wavelengths of 2.7, 4.3, and 15 microns so that it can absorb more than 8% of the infrared spectrum that it already does” “Don’t give me the ‘broadens its wings’ explanation b/c that only accounts for about 1.7% increase when the CO2 is doubled” (explanation offered by the IPCC)

“Since the science is ‘settled’, you no doubt have that explanation handy and it will no doubt be in peer reviewed form”.

(2) “Explain while the dilution of the CO2 molecules by other molecules is ignored. Every CO@ molecule in the atmosphere is, at current concentration, surrounded by 2500 other molecules. In order for CO2 to heat the atmosphere to just one degree, the CO2 molecule would have to start at a temperature of 2500 degrees C.

(3) “Also, explain why the climate scientists use the Stefan-Boltzmann constant incorrectly to explain radiation from the air to the ground. (The) Stefan-Boltzmann constant is how much radiation is given off an OPAQUE surface at a given temperature.”

This was actually the least contentious response. I was just wondering how anyone at Columbia would answer these counter-arguments.

https://news.climate.columbia.edu/2021/02/25/carbon-dioxide-cause-global-warming/

I did read the article, which was very informative. I was informed by someone else that the Stefan-Boltzmann constant is not used in the more current, detailed models, which accounts for “Challenge” 3. Challenge 2 seems a bit absurd, and is a thermal transfer issue. The one that kind of confounded me was Challenge 1, an atmospheric chemistry issue. Would have something specific to say about this one, say if it was posed directly to you?

1) A quick thought experiment.

Average moon temperature 133.15K (quick guess based on google searching)

Average earth temperature 293.15K (Another guess based on a guess of 20C average)

160K difference due the greenhouse effect.

1.7% of that works out at 3 degrees of warming

Julian

You forgot to mention the earth is bigger and has a liquid metal core.

Blake B

I would like to know what is the way that carbon dioxide involves global warming

harrie geenen

If you see the earth as a ball receiving energy (from the sun) and emitting energy (infrared due to the earth’s temp), you may understand that in the long run , incoming and outgoing energies must be equal.exept for storage changes. So all outgoing energy is infrared. From infrared spectroscopy we know some gases absorb infrared energy in the infrared area. CO2 is one of them as is H2O vapour. Gasses like CO2 do not only absorb infrared radiation, but they also re-emit the same radiation, , this time in whathever direction, partly back to the earth. If you would measure the infrared output of the earth at sealevel and you would measure this outside the atmosphere, you would find a difference. in certain bands, much less infrared energy leaves the earth. If this energy does not leave the earth, it can only heat it. Wenn the temperature of the earth rises a little bit, the earth starts emitting more infrared energy, so balancing again, at a sligtly higher temp.

Hi I was wondering how does carbon dioxide have a big impact on global warming. I was just wondering for a school project.

Be sure: You will not get an answer here.

Bruce G Frykman

I find many of these answers far too simplistic and not nearly quantitative enough to satisfy my curiosity.

I note that the insulation response involves elements of convective resistance, conductive resistance and radiative resistance. In all cases it is a logarithmic function and not linear. Why no mention of any of these factors when it comes to CO2? Doesnt each doubling of CO2 halve its already minuscule IR absorption factor? If so shouldn’t you point this out so your followers are not unduly alarmed

I also note that the hottest areas on Earth are found in dry, below-sea-level valleys located in temperate zones. This correlation appears to have nothing to do with CO2 concentrations. The hottest official temperature that ever occurred on Earth occurred at Greenland Ranch in Death Valley in 1913 long before the heavy use of fossil fuels were in effect. How can this be? Are we cherry picking only the factoids that support our preferred premise?

My own idea is that moist air carries far more thermal inertia than dry air and yet the two are treated identically by using simple average temperature. Aren’t joules/mass the appropriate metric for the effect of heat trapping gases?

Further, how far must IR radiation travel before encountering a CO2 molecule that absorbs its energy at .04% concentration at standard temperature and pressure? Once absorbed doesn’t this energy lead to convective forces carrying the molecule into lower pressure zones at higher altitude before losing its energy to other cooler molecules. There are endless complexities to these energy transfers that I have never heard explained satisfactorily, other than with the typical simple bromides.

Moreover, more CO2 can’t simply mean increased oceanic evaporation because if that were true there would be runaway evaporation causing more greenhouse gases until the oceans boiled away. Clearly there can be no positive feedback associated with increased evaporation. I might suggest that cloud cover of all types have a great deal of influence over regulating radiation flux impinging on the surface. No mention of any of this – why?

Lastly your spectrum of greenhouse radiation chart (above) makes no mention whatsoever of water vapor with its broad spectrum of IR radiation absorption making it the only significant greenhouse gas and often completely masking the effects of any additional CO2 interference

If I understand you correctly, you want to adress 3 points.

What is the quantative relation between absorbtion and concentration for CO2? Such issues are very well known in standard Chemical analysis, Any good chemistry book on spectroscopy can help you further.

The relation between amount of water vapour in the air and temperature. You state correctly that dry area’s have the highest temperatures. This is very well known in all desert area;s around the world. However, only at daytime, the nights are cold. In general, very unevenly distributed water vapour levels, both by region as by height, makes understanding and calculating very difficult. CO2 levels, which are, contrarely to water, evenly distributed around the world, have virtually no influence on local temp. differences.

Your third point: ,”” more CO2 can’t simply mean increased oceanic evaporation”” is incorrect. CO2 has an independent (its own) contribution to earths temperature and thus to oceanic evaporation.An associated positive feedback can be a moderate one, it does not automatically mean an explosive one.

Bruce

Thanks for affirming my point that measuring the actual heat retaining characteristics of our complex atmosphere is difficult. I have always suspected as much.

Can you address another question I have regarding the IR heat trapping capabilities of atmospheric CO2. I have a very image oriented mind and here is the image I conjure up regarding the phenomenon.

Sol generated photons of some arbitrary wavelength eventually pierce the atmosphere to strike (interact) with atoms/molecules of the Earth’s surface thereby raising their energy level. These atoms/molecules in turn transfer their excess energy by conduction/radiation to adjacent particles who which selectively lose energy by emitting photons of a wavelength that CO2 molecules can catch. Since the solid angle of these emitted photons will occur in any random x,y,z coordinate, only 50% should be “sky bound” Correct?

At some point CO2 does its job of catching a sky traveling photon only to re-emit it at another random solid angle. Presumably half of all these photons will emerge in the hemisphere headed back towards the solid Earth, the other half will continue in some random skybound direction. To my simple way of thinking the net effect of these interactions is zero

Where have I gone wrong in my thinking ?

Brian S

The planet Mars has an atmosphere of 96% CO2 but a surface temperature of -62°C (-80°F) shouldn’t the planet be a bit warmer than this if CO2 traps heat even allowing for the thinner atmosphere and a further distance from the Sun that the Earth?

Joe

I just want the temperature to be 70 degrees F constantly, worldwide, how would I go about accomplishing that?

Impossible. Suppose, it was 70 degrees worldwide, so emitting roughly equal amounts of IR radiation per square meter everywhere, where would that energy come from ?, the sun?, no way. Impossible.

Adam

Why are most, if not all, of the UN’s IPCC temperature models over the past 20 years showing temperature increases much, much higher than what has actually happened? And that’s even with RSS temperature models cooling the past and warming the present more and more with every new model version? If the IPCC’s models can’t have at least an average error over and under actual temperatures, measured by a obviously biased-to-warmth RSS model set, then how can we ever believe the CO2 alarmist’s calls to action on climate change?

John Shewchuk

All the models fail because only parameterizations instead of established meteorological equations. Plus, since none of them can replicate past climates — they can’t predict the future. However, I have found some proof of human-caused climate change … https://www.youtube.com/watch?v=2BPsloM04R0

Eamonn McGennis

How Exactly Does Carbon Dioxide Cause Global Warming? BY SARAH FECHT |FEBRUARY 25, 2021

The article notes that ‘ Water is indeed a greenhouse gas ( and ) it absorbs and re-emits infrared radiation, and thus makes the planet warmer .’ The article also notes that ‘ warmer air holds more water’ This appears to suggest an uncontrolled feedback loop where warmer air holds more water in turn making the planet warmer. The article also notes that ‘ temperature determines how much moisture can actually be held by the atmosphere .’ Again suggesting the possibility of an uncontrolled feedback loop. Although most water drops out of the atmosphere as rain there is still significant volumes of water in air across the globe where the temperature is above the dew point. These natural volumes of water in air appear to be significantly in excess of the volumes of CO2. Indeed the volumes of water being injected into the upper atmosphere by aviation contrails have had the effect of increasing the level of atmospheric water through a mechanism that has not existed in the past. Given that both CO2 and H2O are greenhouse gases the article does not seem to address how we can measure the relative influence of the two gasses.

The article addresses this issue. We can lower the amount of water in the atmosphere by lowering the temperature. We can lower the temperature by reducing carbon emissions.

Thank you for the prompt response and appreciate your feedback that we can  lower the temperature by reducing carbon emissions.   Given the clear evidence of global warming what is the scientific explanation for the way in which carbon emissions absorb more sunlight than water vapour.  

I Think water vapour absorbs more, but 2 aspects might be considered.

  • water vapour can build clouds, reflecting sunlight so lowering energy input. a negative contribution.
  • CO2 is roughly evenly distributed around the world and relative to height, water vapour is not. Think of an extreme experiment in your mind. If all water vapour was concentrated in a narrow vertical cilinder and zero elsewhere, what would happen? Distribution matters.

Sorry but I keep hearing this..H20 or water is a gas ?? it’s water !

The author seems to have forgotten that plants take up CO2. There will be better plant growth with more CO2. Insufficient CO2 will make a block to plant growth. There are more people on the planet, surely we need more plants to grow more food?

The author of this comment seems to have not read through to the end of the piece.

I want to propose a different perspective on the way we should looking. Look only to energy in and energy out at the very outside of the worlds atmosfere.

Use minds experiment. Use a world with a normal airshield, but without CO2. We use long term stable temp., incoming energy (sun) and outgoing, let’s say at a 50 miles border outside the world( IR radiation), must be equal.

Now we add CO2. From spectroscopic data we read that outgoing energy is far less in the CO2 absorbtion window.

https://www.physi.uni-heidelberg.de/~eisele/schuelerlabor/SpektroskopieUmweltphysikExperimente.pdf

We started with incoming and outgoiing energies are equal in stable temp. conditions. As the sun is still the same and less energy is emitted in the greenhouse absorbtion bands, the temp starts raising untill the emitted IR once again , aquals thes sun’s

The earth can be considered what in physics is a black radiator. Its behavior can easily be calculated using a formula.

The rising temp. of the earth leads to more IR radiation, outside the greenhouse windows, leaving us forever. Now we have a stable and equal situation again, The energy not leaving the earth in the greenhouse windows equals the energy difference between the 2 black radiators is thus easily calculable.

A simplified way of calculating is: 1/ the energy blocked in the greenhouse gas window is expressed as a percentage of total IR radiation. example 5% 2/ the extra IR energy emitted by the black radiator (the earth) per degree temp raise is expressed in percentage of total IR emitted, example 2%. Now the earths temp. raise is 2.5 %

sorry, 2.5 degrees of course

Cyril A.G.O. Varma

In the climate discussion the fate of excited CO2 molecules in the earth’s atmosphere has been ignored. The amount of CO2 in the atmosphere is widely believed to be responsible for global warming due to human activity. The IPCC explains the greenhouse effect in the atmosphere in their frequently asked questions as follows: “Much of the thermal radiation emitted by the land and ocean is absorbed by the atmosphere, including clouds, and re-radiated back to Earth. This is called the greenhouse effect.” The mentioned greenhouse effect of CO2 is not in accordance with the molecular properties of CO2. These have to be treated quantum mechanically. The interaction with radiation as well as intermolecular interactions are described by quantum mechanics. There are selection rules for possible energy transtions in molecules. Vibrational transitions are limited to molecules whose electric dipole varies during the vibration. This exclude homonuclear diatomic molecules such as O2 and N2 . For rotational transitions, the molecule must have a permanent electric dipole. This excludes homonuclear diatomics, with the exception of O2 which has a triplet electronic ground state allowing magnetic dipole rotational transitions. Therefore O2 is important in cooling the earth by emitting radiation from rotational states. The radiative lifetime and collisional deactivation of vibrationally excited CO2 have important consequences for its ability to emit infrared radiation under atmospheric conditions. CO2 in its vibrational ground state may be excited to its vibrational excited state CO2 (0110) by radiation with wavenumber 667.4 cm-1.This is the strongest infrared absorption of CO2 and therefore the main process for excitation of CO2 by infrared radiation from the earth’s surface. The vibrationally excited state CO2 (0110) emits radiation with a rate constant kr = 2.98 s -1 This state may be deactivated in bimolecular collisions with CO2 and N2 in their vibrational ground state. The deactivation rate may be calculated using data from J. A. Blauer and G.R. Nickerson, A survey of vibrational relaxation rate data for processes important to C02-N2-H20 infrared plume radiation. Prepared for Air Force Rocket Propulsion Laboratory, October 1973, Distributed by National Technical Information Service, US Department of Commerce, 5285 Port Royal Road, Springfield VA. 22151. The rate constant for bimolecular deactivation by ground state CO2 or N2 depends on temperature T. For instance in the case 200 ppmv of CO2 in the air the rate of deactivation by collission with N2 amounts to 6.8 x 1014 s-1 at 288 K at ground level and to 5.5 x 1010 s-1 at 198.5 K and 80 km and above sea level. This means that as soon as a CO2 molecule gets excited by absorption of surface IR radiation to the state CO2 (0110) it has a negligible chance of emitting a photon. Therefore the entire observed 667.4 cm-1 radiation from the atmosphere must arise from the Boltzmann population of the state CO2 (0110). This holds even if the CO2 concentration is doubled. Therefore the statement of the IPCC concerning back radiation is untenable. Any observed 667 cm-1 radiation in the atmosphere originates from the sun, directly or through Raleigh scattering by CO2 in the upper atmosphere.

Oef, quite a bit, if I understand you correctly, You think CO2 molecules remain in their excited state for a longer time, making them inactive for further action. Not from theory, but from real measurements, we know that in the CO2 window, the IR emitted at sealevel is far larger than outside the atmosphere, proving there is constant absorbtion. How do you explain this.?

Dear harrie geenen, Note that one day after I posted my comment, I saw that there were serious typographical errors in the representation. I submitted a revised version with a different notation of powers of ten. Please adhere to the new version.

The particular excited vibrational state of CO2 has a radiative lifetime of 1/kr = 336 ms. That would be the lifetime under collision free conditions. However under atmospheric conditions the excited molecule suffers many collisions during that period which convert the excitation energy into translational and rotational energy of the collision partners.

Denote the rate constants for quenching the 667.4 cm-1 emission by collisions with CO2 or N2 respectively by k1(T) and k2(T). The concentrations of CO2 is denoted as Ω(CO2). It is given by Ω(CO2) = FC * (DA / MA) [mol / m^3] where the molar mass of air MA = 0,289644 kg / mol. DA is the local density of air, FC is the fraction of CO2 in air.

The quantum yield Φ(T) for emission of radiation by CO2 (0110) at temperature T is given by Φ(T) = kr / { kr + k1(T) + k2(T) }.

Denote the number density in the Boltzmann population of the excited state CO2(01^10).for the given temperature and fraction of CO2 by N(BEC,T). It is given by

N(BEC,T) = A x Ω(CO2) x exp{-667.4 / (kB x T)}

where A is Avogadro’s constant, kB is Boltzmann’s constant. Their values are A = 6,022 x 10^23 and kB = 0.6952 cm^-1 / K.

The number of photons NP emitted per second by CO2(01^1 0) is given by

NP(T) = Φ(T) x N(BEC,T) x kr / s

With the energy EP of a photon at 667.4 cm^-1 = 1325.4 x 10^-23 J, the amount of energy E(667 cm-1 ) radiated per second from 1 m3 air is given by

E(667 cm-1 ) = NP(T) * EP [J /s]

The values of E(667 cm-1 ) obtained in this manner in the case of 200 ppmv are: 1.56 x 10^-11 J /(s m^3) at 288 K and 0 km above ground and 6.51 x 10^-12 J /(s m^3) at 198.5 K and 80 km above ground.

Clearly more energy is radiated at ground level. The basic reasons are that both the thermal energy kB x T and the density of air larger.

With regard to the satellite measurements, I wonder what the technical details are. Such as the exact radiation frequency and bandwidth selected for detection and how an intensity profile as a function of height above ground is extracted from the total energy measured.

Although CO2 does not reemit radiation, its effect on radiative transfer is evident above 60 km height. There it contributes to absorption and scattering of direct solar radiation on its path to the earth’s surface. At heights above 40 km interaction of high energy solar particles can lead to destruction of CO2. Capture of electrons emitted from the sun may produce the anion CO2−.Reaction of CO2 with solvated electrons in water droplets will also produce the anion CO2−. Photoionization of CO2 yields the cation CO2+. Excitation by 150 -210 nm radiation leads to photodissociation of CO2. These photo products of CO2 can react further with other intact components of air or their photo products. For instance the anion CO2− reacts with H2O yielding hydrocarbonate and formate anions. At 50 km height with 400 ppm CO2 and 25000 ppm H2O, the collision rate between CO2 and H2O molecules is calculated to be 6.14 x 10^33 / (s m^3) . Prior to electron autodetachment the anion CO2− has a lifetime of 30-60 μs. During its lifetime there are many collisions with H2O to cause reaction. The processes mentioned above initiated by solar radiation decrease the concentration CO2 at heights above say 40 km, resulting in both more 667 cm-1 solar radiation reaching ground level and less Raleigh scattering of it into space.

Finally, I want to stress the importance of radiation from rotational states of O2 in cooling the planet. A result of burning materials is the consumption of O2. Photosynthesis in plants, bacteria and algae repair the damage by producing O2 from CO2. This may not fully refill the loss of O2 as forests are destroyed. It would be helpful to find if the concentration O2 in the atmosphere is affected by human actions.

Unfortunately superscripts and subscripts were ignored in the representation of my comment 2053342. Therefore I modified the text to indicate superscripts with the symbol ^. Powers of 10 are now represented as 10^. 6.8 x 1014 s-1 had to be 6.8 x 10^14 / s and 5.5 x 1010 s-1 had to be 5.5 x 10^10 / s. The revised version of the comment appears below. In the climate discussion the fate of excited CO2 molecules in the earth’s atmosphere has been ignored. The amount of CO2 in the atmosphere is widely believed to be responsible for global warming due to human activity. The IPCC explains the greenhouse effect in the atmosphere in their frequently asked questions as follows: “Much of the thermal radiation emitted by the land and ocean is absorbed by the atmosphere, including clouds, and re-radiated back to Earth. This is called the greenhouse effect.” The mentioned greenhouse effect of CO2 is not in accordance with the molecular properties of CO2. These have to be treated quantum mechanically. The interaction with radiation as well as intermolecular interactions are described by quantum mechanics. There are selection rules for possible energy transtions in molecules. Vibrational transitions are limited to molecules whose electric dipole varies during the vibration. This exclude homonuclear diatomic molecules such as O2 and N2 . For rotational transitions, the molecule must have a permanent electric dipole. This excludes homonuclear diatomics, with the exception of O2 which has a triplet electronic ground state allowing magnetic dipole rotational transitions. Therefore O2 is important in cooling the earth by emitting radiation from rotational states. The radiative lifetime and collisional deactivation of vibrationally excited CO2 have important consequences for its ability to emit infrared radiation under atmospheric conditions. CO2 in its vibrational ground state may be excited to its vibrational excited state CO2 (01^10) by radiation with wavenumber 667.4 cm-1.This is the strongest infrared absorption of CO2 and therefore the main process for excitation of CO2 by infrared radiation from the earth’s surface. The vibrationally excited state CO2 (01^10) emits radiation with a rate constant kr = 2.98 / s. This state may be deactivated in bimolecular collisions with CO2 and N2 in their vibrational ground state. The deactivation rate may be calculated using data from J. A. Blauer and G.R. Nickerson, A survey of vibrational relaxation rate data for processes important to C02-N2-H20 infrared plume radiation. Prepared for Air Force Rocket Propulsion Laboratory, October 1973, Distributed by National Technical Information Service, US Department of Commerce, 5285 Port Royal Road, Springfield VA. 22151. The rate constant for bimolecular deactivation by ground state CO2 or N2 depends on temperature T. For instance in the case 200 ppmv of CO2 in the air the rate of deactivation by collission with N2 amounts to 6.8 x 10^14 / s at 288 K at ground level and to 5.5 x 10^10 / s at 198.5 K and 80 km and above sea level. This means that as soon as a CO2 molecule gets excited by absorption of surface IR radiation to the state CO2 (0110) it has a negligible chance of emitting a photon. Therefore the entire observed 667.4 cm-1 radiation from the atmosphere must arise from the Boltzmann population of the state CO2 (0110). This holds even if the CO2 concentration is doubled. Therefore the statement of the IPCC concerning back radiation is untenable. Any observed 667 cm-1 radiation in the atmosphere originates from the sun, directly or through Raleigh scattering by CO2 in the upper atmosphere.

I hope we can agree on the fact that in the CO2 window, there is a constant strong absorbtion of the infrared radiation originating from the earth. There are 2 possibilities to release this energy again, 1, by emitting IR radiation, what the IPCC sees as dominant, in any direction, partly into space, partly back to earth. In reality, not a single action, but many absorbtions and re-emittings.

2, what I think you are meaning, by colliding to other molecules. In this case the greenhouse effect would be larger. In the radiation option, a part is kept here and a part goes in space and is lost. In loosing energy through collisions, all energy remains here and the greenhouse effect would be a lot stronger.

In principle both effects could be working but there would be a difference in the thermal gradient from the earth to the outside off our air layer.

By measuring this gradient, one can calculate the relative contributions.

If there would be no other greenhouse gasses, outher CO2, and all absorbed IR radiation would be transferred into heat (collisions), we would have an inverse thermal gradient, so hottest high in air and cooler closer to earth.

harrie, I do not agree with your statement that in the CO2 window, there is a constant strong absorbtion of the infrared radiation originating from the earth. The earth is not a black body. The materials of which the earth surface consists are not homogeneously distributed. Different constituents have different emission spectra. Therefore you have to distinguish were the observations are made. Above sea or above forests or above desserts? With regard to CO2 we may restrict the discussion to vibrational and rotational transitions. Vibrational transitions are in the infrared and rotational transitions in the microwave region of the electromagnetic spectrum. Energies within molecules are quantized. That means that only radiation with specific frequencies are absorbed or emitted. The probability for absorption or spontaneous emission at such frequencies depends on the magnitude of the corresponding transition moments. The important question is which constituents of the earth surface emit radiation at the specific frequencies required for these transitions in CO2 at the actual surface temperature. I did not came across the relevant data. One thing is certain, transfer of energy from the earth surface to molecules is possible without involvement of radiation, namely when they collide with the surface. The thermal gradient in the atmosphere is a consequence of the gradual reduction in pressure as the height increases, arising from the action of gravity. At constant volume the temperature drops according to the ideal gas law: P V = n R T with n the amount of substance and R the gas constant. The temperature gradient has nothing to do with global warming due to human activity.

Richard C

The experiment with a bottle full of CO2 vs normal air is not a comparable experiment to prove the hypothesis of the earths warming as the hypothesis is 0.035% vs 0.04% creating a 2 degree increase is the issue, so the experiment would be to have a comparable increased amount of CO2 in one bottle vs the baseline and to see if there is a 1-2 degree increase in temperature in the CO2 bottle vs the baseline bottle. if there is, then the hypothesis would be proved. Note the light source would need to be turned on and off every 12 hours and assumes the sun gives off a constant radiation over a 12 hour period, which I was not aware it did given the elliptical oscelating orbit.

Krkan

increased emissions of CO suppress the oxidative capacity or power of the atmosphere which leads to more CO2 and stronger greenhouse effect. Many blame Co2 as the main cause of global warming while the CO is actual problem and prevents CO2 from functioning naturaly. Am I correct?

Chase

So if CO2 reflects infrared radiation coming from earth, wouldn’t it also reflect radiation from the sun back into space?

Andrea

Yes, but it reflects back far more infrared than it does visible light. So the visible light can reach the earth and turn to heat. Part of the heat which would previously escape as infrared is now trapped.

what is the average distance an infrared photon travels before encountering a CO2 molecule at 400 ppm and STP?

alexandre chueri

As water vapor concentration is roughly 100 times bigger than CO2 and it also traps infrared light .Why it is ignored ?

Otto Dietrich

Isn’t “ambient air only 0.004 % CO2? Then how can a “hollow tube filled with CO2” be valld test? Why don’t they use ambient air and try the same experiment?

Dave

You stated “Before humans began burning fossil fuels, naturally occurring greenhouse gases helped to make Earth’s climate habitable. Without them, the planet’s average temperature would be below freezing. So we know that even very low, natural levels of carbon dioxide and other greenhouse gases can make a huge difference in Earth’s climate.” Haven’t you ignored the large effect of water vapor when you conclude that “even very low” CO2 and “other greenhouse gases can make a huge difference” Didn’t you just incorrectly imply that water vapor percentage is “very low” by not mentioning it or its effect is minimal? Neither is true are they?

Tom

The runaway Greenhouse effect on Venus is not real. It goes as follows: During the cosmic bombardment; when the planets were molten rock, Venus and Earth received water through millions of meteorites that were constantly crashing into the planets. On Venus, being much closer to the sun, water never got the chance to condensate to water. So all the water received, built up as vapor from the start. The pressure kept increasing while it received more water until the level we see today. It never got a chance to form oceans and rivers. The energy that Earth receives from the sun is less so oceans could form. With the energy that Earth receives from the sun it is a physical impossibility to trigger a runaway greenhouse effect like on Venus. Whatever we do, even if we burn every last grain of coal and drop of oil, we will never completely destroy earths life sustaining climate. All fossil fuels come from a vibrant earth full of life, if we recycle all that dead carbon back into the atmosphere and into new life, the total biomass on earth will be similar than that of the time all fossil fuels formed; millions of years ago.

chris robinson

i didn’t read the whole paper, but the response was unresponsive re: co2. the response referred to many or all greenhouse gases, and didn’t address CO2 contribution solely.

Carti B

Ha! I wonder who came here solely because of online school.

Simon

A better experiment would be to have 3 large containers – one containing earth’s atmosphere with no CO2, one with atmosphere of 0.025% CO2 and one with atmosphere of 0.04% CO2 (present level). Apply exactly equal heat to all 3 containers in a controlled environment for the same length of time. Then see how much more or less heat each container retains over a period of time.

caly

im new to this global warming and climate change and i was looking for how much the earth temperature increases for the past 150 years (from 1850-2000). i have no idea about this 0.177±0.052°c. what does the temperature in the left and right is for? thank you so much.

I’m not sure where you found that. Every climate center in the world has different growth rates since 1850. They all hover around 1.7 degrees C for the time period in questions. You can easily download their data by searching for Global Temperature History … followed by the site: NOAA, NASA, Berkeley Earth, UK Met Center, Cowtan-Way, Japan Meteorological Organization.

Excellent science. But the title is misleading. The title makes the assumption that CO2 only has one climate-change property–Greenhouse. Let’s be specific.

CO2 has three climate change properties that are well documented. Co-Aerosol that cools the planet from aerosols associated with anthropogenic CO2. And Green, the huge effect that CO2 is having on type C3 flora that cools Earth. So one warming property and two cooling properties.

The way to discover the “full” effect of CO2 is to look at the past 60+ years of real-time CO2 cause-effects on global temperature and the results are quite clear. The highest annual increases seen in CO2 precede global cooling. The lowest increases seen in CO2 annual increase precede explosive global warming. Please do this simple analysis with any of the full set of records from: NASA, NOAA, MLO, Berkeley Earth, Met Center, Cowtan-Way, Japan Meteorological Organization, RSS, or UAH.

Looking at any long-term lag (more than three months, the time it takes CO2’s Green property to create life that cools) proves this point. All of the above highest authorities in climate science concur. There is no higher authority than actual climate data.

Good science. Great explanation of the greenhouse property. But misleading because of factual omissions.

The title should be, “How Exactly Does Carbon Dioxide’s Greenhouse Property Warm the Atmosphere”. And then at the end, note that anthropogenic CO2 has two properties that cool. And that the full effect of CO2 is to cool Earth. The co-aerosol effect is currently neutralizing the Greenhouse effect in the short-term. The Green effect overpowers the Greenhouse effect after three months and is lasting.

Geoff Smith

one thing that bothers me after reading the scientific facts on the warming effects of CO2 is that the heat absorbed by the greenhouse gas seems to be radiated from the earths surface, and following this trend I would say that the action seems to be secondary, after the suns light is absorbed at the surface. Would it not be more accurate to say that the denuding of millions of hectares with deforestation, would be the initial cause of the source of the heat, especially as trees absorb CO2, and many studies claim the shade caused by the canopy is between 10 and 20C cooler, this cool air blanket being removed would be as much if not more of a cause of g;global warming than the CO2 by itself?

Antti Puustinen

Photosynthesis is endotermic reaction and good adsorber of extra energy. If energy is not going in to the plants, it s heating up land and atmosphere.

What you write in the end is basically Urban Heat Island effect.

avery v.

willl we eventually run out of air to breathe?

No, earth is getting greener due higher CO2 and temperature. Earth is still below optimal CO2 consentration for plant growth. In Photosynthesis basically each CO2 molecule will produce equal amount of O2. “T oday’s concentration of oxygen could be produced by  photosynthetic  organisms in 2,000 years” says Dole, M. (1965).  “The Natural History of Oxygen” .  The Journal of General Physiology

Firstly, Co2 is heavier than air. how does it stay in the upper atmosphere ? Since it’s a trace gas, where do these images we see, come from? there is the train of thought that increases in Co2 do not lead to corresponding increases in temperature. how is the Earth’s tempereature measured ?

Can we agree Co2 has helped green the planet ? more crops more trees, more grass. healthier soil

Yes. Nasa tells “ The Earth has become five percent greener in 20 years. In total, the increase in leaf area over the past two decades corresponds to an area as large as the Amazon rainforests”.

That’s interesting..so if most of the world moves to Net Zero…that could be less good for all plants, crops. that would require more fertiliser, chemicals etc. Funny how this was not mentioned at Cop26 nor the effect of world population increase

It is said that without greenhouse gasses average temperature of earth would be abouf 32K colder. It is also said that DOUBLING of CO2 will cause 1,5 to 4,5 K warming. This should also apply for slitting the amount of GHC in atmosphere.

We can calculate that from single CO2 atom we have doubled CO2 about 137 times. Justsplit molecular weight of CO2 by Avogardo number to get weight of CO2 and then start to double it. After 137 doubling you will get about then amount of CO2 in atmosphere.

So if CO2 would be ONLY GHC shoudn’t each doubling increase temperature by 32K/137? And because water has effect too, GHC effect is much smaller?

Nicholas Umberg

The sun shines light upon the earth, both visible and infrared. The earth radiates almost all energy back into space as infrared. Some of the infrared is absorbed by CO2 and other gases. These gases absorb certain wavelengths while allowing others to be transmitted. What is the relationship between the density of these gases and transmission through the atmosphere? It seems to me that transmission through miles of atmosphere would be completely blocked once any level of gas was present and the addition of more gas would make no difference.

Part of the problem is the 24/7 society we live in..at any time someone is driving, flying, using electricity, buying a product, making meals…being born ! so Net Zero targets are harder to acheive now than in the pre industrial age..even with new technology

james bain

I chose this link because of a comment made regarding the use of carbon dioxide as a refrigerant, alleging that this fact makes climate change due to gasses like CO2 highly unlikely. A couple of websites explain how CO2 works as a refrigerant, which I only read enough to grasp imperfectly and came looking for more. Since the person who made the assertion that drove me here has, in the past, expressed ideas that, while couched in seemingly articulate terms, strike me occasionally as patent conservative gobbledegook. Being too polite to immediately call him out on his altered state, wishing to afford him the benefit of the doubt, I re*trained myself. It seems to me that what he proposes might do well being included in discussions like this to insure greater understanding of this horrendously significant natural phenomenon.

LOL@Klimate Katastrophe Kooks

CO2 is used as a refrigerant because the CFC / HCFC / HFC refrigerants are problematic for the ozone layer. CO2 is not.

You’ll note that they don’t use, for an example, monoatomics as a refrigerant. Why? Because the amount of energy an atom or molecule can transit from one place to another (its specific heat capacity and latent heat capacity) is dependent upon the DOF (Degrees of Freedom) of that atom or molecule.

No, they use complex CFC, HCFC or HFC molecules with many DOF.

By the same token, they don’t use complex high-DOF molecules as a filler gas in dual-pane windows… they use low-DOF monoatomics. Why? Because the low Degrees of Freedom transit less energy from one window pane to the other. If CO2 was such a terrific ‘heat trapping’ gas, it’d be used as a filler gas in dual pane windows. It’s not.

CO2 is similar, it is a high-DOF molecule which can transit quite a bit of energy, especially if compressed to the point that it undergoes phase change. It requires higher pressure than the CFC, HCFC or HFC molecules, but that’s a tradeoff that’s apparently acceptable.

It is the monoatomics (Ar) and homonuclear diatomics (N2, O2) which are the actual ‘greenhouse’ gases. Remember that an actual greenhouse works by hindering convection .

In an atmosphere consisting of solely monoatomics and homonuclear diatomics, the atoms / molecules could pick up energy via conduction by contacting the surface, just as the polyatomics do; they could convect just as the polyatomics do… but once in the upper atmosphere, they could not as effectively radiatively emit that energy, the upper atmosphere would warm, lending less buoyancy to convecting air, thus hindering convection… and that’s how an actual greenhouse works, by hindering convection .

We can see this in the dry and humid adiabatic lapse rate. Remember that the lapse rate is ‘anchored’ at TOA (Top of Atmosphere… that altitude where air density reduces sufficient that the atmosphere is no longer opaque to any given wavelength of radiation).

Water vapor reduces the lapse rate (~9.81 K km-1 dry ALR; ~3.5 – ~6.5 humid ALR) by transiting more energy from surface to upper atmosphere, which has the effect of attempting to reduce temperature differential with altitude (ie: the lapse rate reduces), while at the same time it radiatively cools the upper troposphere faster than it can convectively warm it. This cools the surface.

Thus water vapor, by dint of its higher molar heat capacity and latent heat capacity, is actually a net atmospheric radiative coolant… it increases thermodynamic coupling between heat source (the surface) and heat sink (space).

By the same token, the higher molar heat capacity of CO2 convectively transits more energy than bulk air. A parcel of air with higher CO2 concentration will convectively transit more energy from surface to upper atmosphere than will a lower CO2 concentration parcel, which has the effect (just as it does with water vapor) of reducing temperature differential with altitude, while at the same time radiatively cooling the upper atmosphere faster than it can convectively warm it. IOW, CO2 is also a net atmospheric radiative coolant.

In point of fact, water vapor is the prevalent atmospheric radiative coolant below the tropopause, and CO2 is the prevalent atmospheric radiative coolant above the tropopause.

comment image

The image above is from a presentation given by atmospheric research scientist Maria Z. Hakuba at NASA JPL.

comment image

That’s adapted from the Clough and Iacono study, Journal Of Geophysical Research, Vol. 100, No. D8, Pages 16,519-16,535, August 20, 1995 .

Note that the Clough & Iacono study is for the atmospheric radiative cooling effect, so positive numbers at right are cooling, negative numbers are warming.

SamH

In the Clough & Iacono study, cooling rate refers to the divergence of total flux. It is essentially a measure of the difference between upward and downward flux, or how much power is locally lost to radiation. This is a real cooling, but it must be compared to the situation with no greenhouse gases — in which case the cooling rate would be an enormous delta function at the surface.

Greenhouse gases push the radiative energy loss from the surface up to higher in the atmosphere. At these altitudes the temperature is lower, and so the cooling is less than it would otherwise be at the surface.

William Haas

How does the LWIR absorption properties affect both the lapse rate and the Effective Radiating Level? Hence what must be the climate sensitivity of CO2?

Albert Snapenstein

William, AFAIK, the the absorption properties of CO2 have had little affect on the lapse rate. This implies that the warmer surface has resulted in a higher ERL, and visa versa.

William H. Haas

I realize that as derived from first principals the dry lapse rate in the troposphere is equal to -g/cp where g is the acceleration of gravity and cp is the heat capacity of the atmosphere at constant pressure. Hence the LWIR absorption properties of component gases have no effect on the thermal insulating properties of the atmosphere. Exact;y how does CO2 affect the ERL and what does that say about the climate sensitivity of CO2?

The GHE can also be understood in terms of residence time – how long does the sun’s heat stick around in a given area, in this case Earth’s atmosphere, before exiting into space? Longer means more will accumulate, shorter, less will accumulate.

You could look at all sorts of heat flow problems in a similar way, including home insulation, the clothes we wear to stay warm, or an actual greenhouse.

In all cases the heat is not actually trapped, it is made to linger longer while leaving.

Chris

As a certified infrared thermographer, I have always had significant misgivings regarding the proposition of CO2 as a greenhouse gas on the basis of it absorbing and scattering emitted infrared from the earth, thus retaining this energy within the atmosphere. The infrared wavelengths emitted by a body are temperature dependant, and, given a surface temperature range somewhere between -40 and +50 at the extremes, then for CO2 to be a problem it would need to absorb and scatter the upgoing infrared wavelengths between around 8 and 12 microns. Quite simply, it does not. The absorption range for CO2 is around 11 to 18 microns. There is a small overlap between these ranges; but there is more. Also hugely important is that the total absorption and scattering even in the wavelength range that is affected by CO2 is total (much of it by water vapour b.t.w.), i.e. 100%, none of it escapes and this has been the case for centuries. If the absorption and scattering of upgoing infrared in the ranges affected by CO2 was already at saturation before the industrial revolution, how can more CO2 possibly have an adverse effect? I do have good references for the above assertions and I have voiced my doubts in many forums, but have never been provided a satisfactory resolution – I just keep getting the same polemic responses. I am very receptive to a genuine scientific and logic based argument (oh please not the ice core records) but have yet to encounter one. But I live in hope. Incidentally, the article is not quite correct in saying that atmospheric nitrogen and oxygen do not absorb and scatter IR energy – they do, in the range 5 – 8 microns (which is why LW infrared cameras operate in the region below and SW cameras above). But this is only relevant to temperatures above those of the Earth’s surface so the article perhaps skipped this detail for simplicity.

Chris, You’re coming at this from a false premise, “none of it escapes and this has been the case for centuries.”

Every pulse of solar energy that gets absorbed by the surface, clouds or atmosphere will eventually make its way to space. All of it escapes.

NICK SEIGAL

Perhaps this will give you the answer you are seeking: https://principia-scientific.com/the-absorption-of-thermal-emitted-infrared-radiation-by-co2/

The article discusses why water in the atmosphere is not responsible for global warming. I am interested in your thoughts on the opposite question: could increasing the amount of water in the atmosphere cool the planet?

I have read that high (stratospheric) clouds act as a greenhouse gas much like CO2 but weaker in effect. I have read that low (tropospheric) clouds do not act this way but actually cool the surface.

I also read that the net effect of low and high clouds is currently net slightly cooling. I also read that it is uncertain whether global warming will lead to more low clouds or more high clouds or less of either. I also read that vegetation plays a major role in low cloud formation. Could we increase vegetation to increase the low clouds to cool the Earth?

Gary Laabs

The idea about co2 and its heating effect is actually only a theory and no matter how many experiments and cool (pun) things we come up with we really don’t no what is actually occurring out in space. Seems like a lot of conjecturing. We can make little greenhouses and try to project are ideas, but I don’t think we really know. Try not to make this a political issue.

JOSEPH JENKINS

Have there been any laboratory experiments showing how much 400 ppm CO2 scatters infrared wavelengths? I’m thinking of a 100 foot large diameter pipe with a tunable laser at one end pointed to a laser detector at the other end and the CO2 concentration varied from about 300 to 500 ppm. As the CO2 ppm is varied, the laser detector output current should also vary by some amount. But, by how much.

BEVERLEY Anne Louise DERAVIN

I wonder whether the real intensity of the sun is increased more than the weather bureau air temperature quoted, and how much is it increased? I think it highly likely the sun’s heat is much more intense now, December 2021, than it has been within the last ten years or so. ie The air temperature is quoted according to scientific instruments, but the actual radiation intensity is much higher.

Allan Shiff

Something missing in the colour diagram.. A colour coded arrow should show radiated heat leaving Earth surface and going BEYOND atmosphere into space – 1, low atmospheric ghg content and high atmospheric ghg content. Allan Shiff, Toronto.

Get the Columbia Climate School Newsletter →

essay on carbon dioxide

Vital Signs

Carbon dioxide, key takeaway:.

Carbon dioxide in the atmosphere warms the planet, causing climate change. Human activities have raised the atmosphere’s carbon dioxide content by 50% in less than 200 years.

Carbon dioxide (CO 2 ) is an important heat-trapping gas, also known as a greenhouse gas, that comes from the extraction and burning of fossil fuels (such as coal, oil, and natural gas), from wildfires, and natural processes like volcanic eruptions. The first graph shows atmospheric CO 2 levels measured by NOAA at Mauna Loa Observatory, Hawaii, since 1958. The second graph shows CO 2 levels during Earth’s last three glacial cycles, as captured by air bubbles trapped in ice sheets and glaciers.

Since the onset of industrial times in the 18th century, human activities have raised atmospheric CO 2 by 50% – meaning the amount of CO 2 is now 150% of its value in 1750. This human-induced rise is greater than the natural increase observed at the end of the last ice age 20,000 years ago.

The animated map shows how the historical changes in global carbon dioxide over time. Note the colors change as the amount of CO 2 rises from 365 parts per million (ppm) in 2002 to over 420 ppm currently. It's important to understand that “parts per million” refers to the number of carbon dioxide molecules per million molecules of dry air. These measurements are from the mid-troposphere, the layer of Earth's atmosphere that is 8 to 12 kilometers (about 5 to 7 miles) above the ground. This data provides insights into the significant rise in atmospheric CO2 concentrations, highlighting the impact of human activities on Earth's climate.

CO 2 Through the Seasons

A closer look at the carbon dioxide measurements at Mauna Loa shows a series of wiggles in the data. Although total CO 2 is increasing each year, there is also a short-term cycle visible within the larger trend.

Chart showing Atmospheric C02 through seasons, Jan 2019 - Oct 2022

This annual rise and fall of CO 2 levels is caused by seasonal cycles in photosynthesis on a massive scale. In Northern Hemisphere spring, plants come to life and draw in CO 2 to fuel their growth. This begins the process of lowering the amount of CO 2 in the atmosphere. In northern autumn, plant growth stops or slows down, and the whole process reverses itself. Much of the plant matter decomposes, releasing CO 2 back to the atmosphere.

A similar but less intense pattern repeats in the Southern Hemisphere in opposite seasons. Spring growth starts in September and winter decomposition begins in March, so CO 2 records in the Southern Hemisphere show the opposite pattern of that seen in Mauna Loa. However, because there is a lot more land and vegetation in the Northern Hemisphere than the southern, the global seasonal cycle more closely aligns with the northern pattern.

See the cycle in action in the visualization Watching Earth Breathe: The Seasonal Vegetation Cycle and Atmospheric Carbon Dioxide .

This boom-and-bust cycle of plant growth gives the graph of CO 2 a sawtooth pattern of ups and downs from year to year. At a larger scale, the upward climb of the trend line over the decades is caused by CO 2 emissions, primarily from burning fossil fuels. Thus, the data illustrate both natural factors and human additions of CO 2 .

Learn more:

NASA's Climate Kids: Why is Carbon Important?

Missions That Observe CO 2

Atmospheric Infrared Sounder (AIRS)

Orbiting Carbon Observatory (OCO-2)

Orbiting Carbon Observatory (OCO-3)

DIRECT MEASUREMENTS: 1958-PRESENT

Proxy (indirect) measurements, time series: 2002-2022.

Time Series: 2002-2022, image #0

The Greenhouse Effect and our Planet

The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth’s atmosphere. Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases.

Biology, Ecology, Earth Science, Geography, Human Geography

Loading ...

Newsela

The greenhouse effect happens when certain gases , which are known as greenhouse gases , accumulate in Earth’s atmosphere . Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases.

Greenhouse gases allow the sun’s light to shine onto Earth’s surface, and then the gases , such as ozone , trap the heat that reflects back from the surface inside Earth’s atmosphere . The gases act like the glass walls of a  greenhouse —thus the name, greenhouse gas .

According to scientists, the average temperature of Earth would drop from 14˚C (57˚F) to as low as –18˚C (–0.4˚F), without the greenhouse effect .

Some greenhouse gases come from natural sources, for example, evaporation  adds water vapor to the atmosphere . Animals and plants release carbon dioxide when they respire, or breathe. Methane is released naturally from decomposition. There is evidence that suggests methane is released in low-oxygen environments , such as  swamps or landfills . Volcanoes —both on land and under the ocean —release greenhouse gases , so periods of high volcanic activity tend to be warmer.

Since the  Industrial Revolution  of the late 1700s and early 1800s, people have been releasing larger quantities of greenhouse gases into the atmosphere. That amount has skyrocketed in the past century. Greenhouse gas emissions increased 70 percent between 1970 and 2004. Emissions of CO 2 , rose by about 80 percent during that time.

The amount of CO 2 in the atmosphere far exceeds the naturally occurring range seen during the last 650,000 years.

Most of the CO 2 that people put into the atmosphere comes from burning  fossil fuels . Cars, trucks, t rains , and planes all burn fossil fuels. Many electric power plants do as well. Another way humans release CO 2 into the atmosphere is by cutting down  forests , because trees contain large amounts of carbon.

People add methane to the atmosphere through  livestock  farming, landfills , and fossil fuel production such as  coal mining  and natural gas processing. Nitrous oxide comes from  agriculture  and fossil fuel burning. Fluorinated gases include chlorofluoro carbons (CFCs),  hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). They are produced during the manufacturing of refrigeration and cooling products and through aerosols.

All of these human activities add greenhouse gases to the atmosphere . As the level of these gases rises, so does the  temperature  of Earth. The rise in Earth’s average temperature contributed to by human activity is known as  global warming .

The Greenhouse Effect and Climate Change Even slight increases in average global temperatures can have huge effects.

Perhaps the biggest, most obvious effect is that  glaciers and  ice caps melt faster than usual. The  meltwater  d rains into the oceans , causing  sea levels to rise.

Glaciers and ice caps cover about 10 percent of the world’s landmasses. They hold between 70 and 75 percent of the world’s  freshwater . If all of this ice melted, sea levels would rise by about 70 meters (230 feet).

The Intergovernmental Panel on Climate Change states that the global sea level rose about 1.8 millimeters (0.07 inches) per year from 1961 to 1993, and about 3.1 millimeters (0.12 inches) per year since 1993.

Rising sea levels cause  flooding in  coastal cities, which could displace millions of people in low-lying areas such as Bangladesh, the U.S. state of Florida, and the Netherlands.

Millions more people in countries like Bolivia, Peru, and India depend on glacial meltwater for drinking,  irrigation , and  hydroelectric power . Rapid loss of these glaciers would devastate those countries.

Greenhouse gas emissions affect more than just temperature . Another effect involves changes in  precipitation , such as  rain  and  snow .

Over the course of the 20th century, precipitation increased in eastern parts of North and South America, northern Europe, and northern and central Asia. However, it has decreased in parts of Africa, the Mediterranean, and southern Asia.

As climates change, so do the habitats for living things. Animals that are adapted to a certain  climate  may become threatened. Many human societies depend on predictable rain patterns in order to grow specific  crops for food, clothing, and trade. If the climate of an area changes, the people who live there may no longer be able to grow the crops they depend on for survival. Some scientists also worry that tropical diseases will expand their ranges into what are now more temperate regions if the temperatures of those areas increase.

Most climate scientists agree that we must reduce the amount of greenhouse gases released into the atmosphere. Ways to do this, include:

  • driving less, using public transportation , carpooling, walking, or riding a bike.
  • flying less—airplanes produce huge amounts of greenhouse gas emissions.
  • reducing, reusing, and recycling.
  • planting a tree—trees absorb carbon dioxide, keeping it out of the atmosphere.
  • using less  electricity .
  • eating less meat—cows are one of the biggest methane producers.
  • supporting alternative energy sources that don’t burn fossil fuels.

Artificial Gas

Chlorofluorocarbons (CFCs) are the only greenhouse gases not created by nature. They are created through refrigeration and aerosol cans.

CFCs, used mostly as refrigerants, are chemicals that were developed in the late 19th century and came into wide use in the mid-20th century.

Other greenhouse gases, such as carbon dioxide, are emitted by human activity, at an unnatural and unsustainable level, but the molecules do occur naturally in Earth's atmosphere.

Audio & Video

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Essays on Carbon Dioxide

Faq about carbon dioxide.

Subscribe or renew today

Every print subscription comes with full digital access

Science News

It’s possible to reach net-zero carbon emissions. here’s how.

Cutting carbon dioxide emissions to curb climate change is possible but not easy

A line of wind turbines disappearing into the distance with an out of focus wheat field in the foreground.

Curbing climate change means getting more electricity from renewable sources, such as wind power.

Erik Isakson/ Tetra images/Getty Images

Share this:

By Alexandra Witze

January 27, 2023 at 7:00 am

Patricia Hidalgo-Gonzalez saw the future of energy on a broiling-hot day last September.

An email alert hit her inbox from the San Diego Gas & Electric Company. “Extreme heat straining the grid,” read the message, which was also pinged as a text to 27 million people. “Save energy to help avoid power interruptions.”

It worked. People cut their energy use. Demand plunged, blackouts were avoided and California successfully weathered a crisis exacerbated by climate change. “It was very exciting to see,” says Hidalgo-Gonzalez, an electrical engineer at the University of California, San Diego who studies renewable energy and the power grid.

This kind of collective societal response, in which we reshape how we interact with the systems that provide us energy, will be crucial as we figure out how to live on a changing planet.

Earth has warmed at least 1.1 degrees Celsius since the 19th century, when the burning of coal, oil and other fossil fuels began belching heat-trapping gases such as carbon dioxide into the atmosphere. Scientists agree that only drastic action to cut emissions can keep the planet from blasting past 1.5 degrees of warming — a threshold beyond which the consequences become even more catastrophic than the rising sea levels, extreme weather and other impacts the world is already experiencing.

The goal is to achieve what’s known as net-zero emissions, where any greenhouse gases still entering the atmosphere are balanced by those being removed — and to do it as soon as we can.

Scientists say it is possible to swiftly transform the ways we produce and consume energy. To show the way forward, researchers have set out paths toward a world where human activities generate little to no carbon dioxide and other greenhouse gases — a decarbonized economy.

The key to a decarbonized future lies in producing vast amounts of new electricity from sources that emit little to none of the gases, such as wind, solar and hydropower, and then transforming as much of our lives and our industries as possible to run off those sources. Clean electricity needs to power not only the planet’s current energy use but also the increased demands of a growing global population.

Once humankind has switched nearly entirely to clean electricity, we will also have to counter­balance the carbon dioxide we still emit — yes, we will still emit some — by pulling an equivalent amount of carbon dioxide out of the atmosphere and storing it somewhere permanently.

Achieving net-zero emissions won’t be easy. Getting to effective and meaningful action on climate change requires overcoming decades of inertia and denial about the scope and magnitude of the problem. Nations are falling well short of existing pledges to reduce emissions, and global warming remains on track to charge past 1.5 degrees perhaps even by the end of this decade.

Yet there is hope. The rate of growth in CO 2 emissions is slowing globally — down from 3 percent annual growth in the 2000s to half a percent annual growth in the last decade, according to the Global Carbon Project , which quantifies greenhouse gas emissions.

There are signs annual emissions could start shrinking. And over the last two years, the United States, by far the biggest cumulative contributor to global warming, has passed several pieces of federal legislation that include financial incentives to accelerate the transition to clean energy. “We’ve never seen anything at this scale,” says Erin Mayfield, an energy researcher at Dartmouth College.

Though the energy transition will require many new technologies, such as innovative ways to permanently remove carbon from the atmosphere, many of the solutions, such as wind and solar power, are in hand — “stuff we already have,” Mayfield says.

How to hit net-zero carbon emissions by 2050

In a 2021 report, the International Energy Agency described the steps necessary to ensure that by 2050 the amount of carbon dioxide emitted into the atmosphere globally balances the amount being taken out. This chart shows how carbon dioxide emissions would have to drop across sectors to bring planetwide emissions from roughly 34 billion metric tons annually to net-zero.  

The current state of carbon dioxide emissions

Of all the emissions that need to be slashed, the most important is carbon dioxide, which comes from many sources such as cars and trucks and coal-burning power plants. The gas accounted for 79 percent of U.S. greenhouse gas emissions in 2020. The next most significant greenhouse gas, at 11 percent of emissions in the United States, is methane, which comes from oil and gas operations as well as livestock, landfills and other land uses.

The amount of methane may seem small, but it is mighty — over the short term, methane is more than 80 times as efficient at trapping heat as carbon dioxide is, and methane’s atmospheric levels have nearly tripled in the last two centuries. Other greenhouse gases include nitrous oxides, which come from sources such as applying fertilizer to crops or burning fuels and account for 7 percent of U.S. emissions, and human-made fluorinated gases such as hydrofluorocarbons that account for 3 percent.

Globally, emissions are dominated by large nations that produce lots of energy. The United States alone emits around 5 billion metric tons of carbon dioxide each year. It is responsible for most of the greenhouse gas emissions throughout history and ceded the spot for top annual emitter to China only in the mid-2000s. India ranks third.

Because of the United States’ role in producing most of the carbon pollution to date, many researchers and advocates argue that it has the moral responsibility to take the global lead on cutting emissions. And the United States has the most ambitious goals of the major emitters, at least on paper. President Joe Biden has said the country is aiming to reach net-zero emissions by 2050. Leaders in China and India have set net-zero goals of 2060 and 2070, respectively.

Under the auspices of a 2015 international climate change treaty known as the Paris agreement, 193 nations plus the European Union have pledged to reduce their emissions. The agreement aims to keep global warming well below 2 degrees, and ideally to 1.5 degrees, above preindustrial levels. But it is insufficient. Even if all countries cut their emissions as much as they have promised under the Paris agreement, the world would likely blow past 2 degrees of warming before the end of this century. 

Every nation continues to find its own path forward. “At the end of the day, all the solutions are going to be country-specific,” says Sha Yu, an earth scientist at the Pacific Northwest National Laboratory and University of Maryland’s Joint Global Change Research Institute in College Park, Md. “There’s not a universal fix.”

But there are some common themes for how to accomplish this energy transition — ways to focus our efforts on the things that will matter most. These are efforts that go beyond individual consumer choices such as whether to fly less or eat less meat. They instead penetrate every aspect of how society produces and consumes energy.

Such massive changes will need to overcome a lot of resistance, including from companies that make money off old forms of energy as well as politicians and lobbyists. But if society can make these changes, it will rank as one of humanity’s greatest accomplishments. We will have tackled a problem of our own making and conquered it.

Here’s a look at what we’ll need to do.

Make as much clean electricity as possible

To meet the need for energy without putting carbon dioxide into the atmosphere, countries would need to dramatically scale up the amount of clean energy they produce. Fortunately, most of that energy would be generated by technologies we already have — renewable sources of energy including wind and solar power.

“Renewables, far and wide, are the key pillar in any net-zero scenario,” says Mayfield, who worked on an influential 2021 report from Princeton University’s Net-Zero America project , which focused on the U.S. economy.

The Princeton report envisions wind and solar power production roughly quadrupling by 2030 to get the United States to net-zero emissions by 2050. That would mean building many new solar and wind farms, so many that in the most ambitious scenario, wind turbines would cover an area the size of Arkansas, Iowa, Kansas, Missouri, Nebraska and Oklahoma combined.

How much solar and wind power would we need?

Achieving net-zero would require a dramatic increase in solar and wind power in the United States. These maps show the footprint of existing solar and wind infrastructure in the contiguous United States (as of 2020) and a possible footprint for a midrange scenario for 2050. Gray shows population density of 100 people per square kilometer or greater.

Two maps showing few solar and wind projects in 2020 and many more proposed projects in 2050 to help reach net zero.

Such a scale-up is only possible because prices to produce renewable energy have plunged. The cost of wind power has dropped nearly 70 percent, and solar power nearly 90 percent, over the last decade in the United States. “That was a game changer that I don’t know if some people were expecting,” Hidalgo-Gonzalez says.

Globally the price drop in renewables has allowed growth to surge; China, for instance, installed a record 55 gigawatts of solar power capacity in 2021, for a total of 306 gigawatts or nearly 13 percent of the nation’s installed capacity to generate electricity. China is almost certain to have had another record year for solar power installations in 2022.

Challenges include figuring out ways to store and transmit all that extra electricity, and finding locations to build wind and solar power installations that are acceptable to local communities. Other types of low-carbon power, such as hydropower and nuclear power, which comes with its own public resistance, will also likely play a role going forward.

More renewable electricity globally

Renewable energy sources, such as solar, wind and hydropower, account for a larger share of global electricity generation today than they did in 2015. The International Energy Agency expects that trend to continue, projecting that renewables will top 38 percent in 2027.

Get efficient and go electric

The drive toward net-zero emissions also requires boosting energy efficiency across industries and electrifying as many aspects of modern life as possible, such as transportation and home heating.

Some industries are already shifting to more efficient methods of production, such as steelmaking in China that incorporates hydrogen-based furnaces that are much cleaner than coal-fired ones, Yu says. In India, simply closing down the most inefficient coal-burning power plants provides the most bang for the buck, says Shayak Sengupta, an energy and policy expert at the Observer Research Foundation America think tank in Washington, D.C. “The list has been made up,” he says, of the plants that should close first, “and that’s been happening.”

To achieve net-zero, the United States would need to increase its share of electric heat pumps, which heat houses much more cleanly than gas- or oil-fired appliances, from around 10 percent in 2020 to as much as 80 percent by 2050, according to the Princeton report. Federal subsidies for these sorts of appliances are rolling out in 2023 as part of the new Inflation Reduction Act , legislation that contains a number of climate-related provisions.

Shifting cars and other vehicles away from burning gasoline to running off of electricity would also lead to significant emissions cuts. In a major 2021 report , the National Academies of Sciences, Engineering and Medicine said that one of the most important moves in decarbonizing the U.S. economy would be having electric vehicles account for half of all new vehicle sales by 2030. That’s not impossible; electric car sales accounted for nearly 6 percent of new sales in the United States in 2022, which is still a low number but nearly double the previous year .

Make clean fuels

Some industries such as manufacturing and transportation can’t be fully electrified using current technologies — battery powered airplanes, for instance, will probably never be feasible for long-duration flights. Technologies that still require liquid fuels will need to switch from gas, oil and other fossil fuels to low-carbon or zero-carbon fuels.

One major player will be fuels extracted from plants and other biomass, which take up carbon dioxide as they grow and emit it when they die, making them essentially carbon neutral over their lifetime. To create biofuels, farmers grow crops, and others process the harvest in conversion facilities into fuels such as hydrogen. Hydrogen, in turn, can be substituted for more carbon-intensive substances in various industrial processes such as making plastics and fertilizers — and maybe even as fuel for airplanes someday.

In one of the Princeton team’s scenarios, the U.S. Midwest and Southeast would become peppered with biomass conversion plants by 2050, so that fuels can be processed close to where crops are grown. Many of the biomass feedstocks could potentially grow alongside food crops or replace other, nonfood crops.

Solar and wind power trends in the United States

The amount of electricity generated from wind and solar power in the United States has surged in the last decade. The boost was made possible in large part by drops in the costs of producing that energy.

Cut methane and other non-CO 2 emissions

Greenhouse gas emissions other than carbon dioxide will also need to be slashed. In the United States, the majority of methane emissions come from livestock, landfills and other agricultural sources, as well as scattered sources such as forest fires and wetlands. But about one-third of U.S. methane emissions come from oil, gas and coal operations. These may be some of the first places that regulators can target for cleanup, especially “super emitters” that can be pinpointed using satellites and other types of remote sensing .

In 2021, the United States and the European Union unveiled what became a global methane pledge endorsed by 150 countries to reduce emissions. There is, however, no enforcement of it yet. And China, the world’s largest methane emitter, has not signed on.

Nitrous oxides could be reduced by improving soil management techniques, and fluorinated gases by finding alternatives and improving production and recycling efforts.

Sop up as much CO 2 as possible

Once emissions have been cut as much as possible, reaching net-zero will mean removing and storing an equivalent amount of carbon to what society still emits.

One solution already in use is to capture carbon dioxide produced at power plants and other industrial facilities and store it permanently somewhere, such as deep underground. Globally there are around 35 such operations, which collectively draw down around 45 million tons of carbon dioxide annually. About 200 new plants are on the drawing board to be operating by the end of this decade, according to the International Energy Agency.

The Princeton report envisions carbon capture being added to almost every kind of U.S. industrial plant, from cement production to biomass conversion. Much of the carbon dioxide would be liquefied and piped along more than 100,000 kilometers of new pipelines to deep geologic storage, primarily along the Texas Gulf Coast, where underground reservoirs can be used to trap it permanently. This would be a massive infrastructure effort. Building this pipeline network could cost up to $230 billion, including $13 billion for early buy-in from local communities and permitting alone.

Another way to sop up carbon is to get forests and soils to take up more. That could be accomplished by converting crops that are relatively carbon-intensive, such as corn to be used in ethanol, to energy-rich grasses that can be used for more efficient biofuels, or by turning some cropland or pastures back into forest. It’s even possible to sprinkle crushed rock onto croplands, which accelerates natural weathering processes that suck carbon dioxide out of the atmosphere.

Another way to increase the amount of carbon stored in the land is to reduce the amount of the Amazon rainforest that is cut down each year. “For a few countries like Brazil, preventing deforestation will be the first thing you can do,” Yu says.

When it comes to climate change, there’s no time to waste

The Princeton team estimates that the United States would need to invest at least an additional $2.5 trillion over the next 10 years for the country to have a shot at achieving net-zero emissions by 2050. Congress has begun ramping up funding with two large pieces of federal legislation it passed in 2021 and 2022. Those steer more than $1 trillion toward modernizing major parts of the nation’s economy over a decade — including investing in the energy transition to help fight climate change.

Between now and 2030, solar and wind power, plus increasing energy efficiency, can deliver about half of the emissions reductions needed for this decade, the International Energy Agency estimates. After that, the primary drivers would need to be increasing electrification, carbon capture and storage, and clean fuels such as hydrogen.

The Ivanpah Solar Electric Generating System in the Mojave Desert.

The trick is to do all of this without making people’s lives worse. Developing nations need to be able to supply energy for their economies to develop. Communities whose jobs relied on fossil fuels need to have new economic opportunities.

Julia Haggerty, a geographer at Montana State University in Bozeman who studies communities that are dependent on natural resources, says that those who have money and other resources to support the transition will weather the change better than those who are under-resourced now. “At the landscape of states and regions, it just remains incredibly uneven,” she says.

The ongoing energy transition also faces unanticipated shocks such as Russia’s invasion of Ukraine, which sent energy prices soaring in Europe, and the COVID-19 pandemic, which initially slashed global emissions but later saw them rebound.

But the technologies exist for us to wean our lives off fossil fuels. And we have the inventiveness to develop more as needed. Transforming how we produce and use energy, as rapidly as possible, is a tremendous challenge — but one that we can meet head-on. For Mayfield, getting to net-zero by 2050 is a realistic goal for the United States. “I think it’s possible,” she says. “But it doesn’t mean there’s not a lot more work to be done.”

More Stories from Science News on Climate

A picture of Greenland's ice sheet near Baffin Bay.

Climate change is changing how we keep time

A photograph of a flooded street in Conway, South Carolina.

Waterlogged soils can give hurricanes new life after they arrive on land

A painting titled “The Plague of Rome” depicts the angel of death directing fatalities during the Antonine Plague. The angel of death has white wings and red fabric floating around it and yields a sword in one hand. Humans suffer and decay in the alley where the painting takes place.

Cold, dry snaps accompanied three plagues that struck the Roman Empire

Picture of land slumping near Tehran, Iran.

Many but not all of the world’s aquifers are losing water

A numbat, brown and black marsupial with white stripes and a pointy nose, sits on a log.

Numbats are built to hold heat, making climate change extra risky for the marsupials

A photo of the vast and rugged surface of Thwaites Glacier, from above.

Speed bumps under Thwaites Glacier could help slow its flow to the sea

Flakes of marine snow fall in the ocean surrounding a dumbo octopus.

Invisible comet tails of mucus slow sinking flakes of ‘marine snow’

A satellite image of the Antarctic peninsula showing fractured sea ice in the ocean next to white land.

3 Antarctic glaciers show rapidly accelerated ice loss from ocean warming

From the nature index.

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

How Do We Reduce Greenhouse Gases?

To stop climate change , we need to stop the amount of greenhouse gases, like carbon dioxide, from increasing. For the past 150 years, burning fossil fuels and cutting down forests, which naturally pull carbon dioxide out of the air, has caused greenhouse gas levels to increase. There are two main ways to stop the amount of greenhouse gases from increasing: we can stop adding them to the air, and we can increase the Earth’s ability to pull them out of the air.

This is called climate mitigation . There is not one single way to mitigate climate change. Instead, we will have to piece together many different solutions to stop the climate from warming. Below are descriptions of the main methods that we can use.

Many of these solutions are already being implemented in places around the world. Some can be tackled by individuals, such as using less energy, riding a bike instead of driving, driving an electric car, and switching to renewable energy. Other actions to mitigate climate change involve communities, regions, or nations working together to make changes, such as switching power plants from burning coal or gas to renewable energy and growing public transit.

Use less electricity.

Taking steps to use less electricity, especially when it comes from burning coal or gas, can take a big bite out of greenhouse gas emissions. Worldwide, electricity use is responsible for a quarter of all emissions. 

Some steps that you can take to use less electricity are simple and save money, like replacing incandescent light bulbs with LED bulbs that use less electricity, adding insulation to your home, and setting the thermostat lower in the winter and higher in the summer, especially when no one is home. There are also new technologies that help keep buildings energy efficient, such as glass that reflects heat, low-flow water fixtures, smart thermostats, and new air conditioning technology with refrigerants that don’t cause warming. In urban and suburban environments, green or cool roofs can limit the amount of heat that gets into buildings during hot days and help decrease the urban heat island effect .

This is an image of the roof of a home that is covered in planted vegetation, which makes it a green roof.

Green roof on the Walter Reed Community Center in Arlington, VA, US Credit: Arlington County on Flickr/CC BY-SA 2.0

Generate electricity without emissions.

Renewable energy sources include solar energy, geothermal energy, wind turbines, ocean wave and tidal energy, waste and biomass energy, and hydropower. Because they do not burn fossil fuels, these renewable energy sources do not release greenhouse gases into the atmosphere as they generate electricity. Nuclear energy also creates no greenhouse gas emissions, so it can be thought of as a solution to climate change. However, it does generate radioactive waste that needs long-term, secure storage.

Today, the amount of electricity that comes from renewable energy is growing. A few countries, such as Iceland and Costa Rica, now get nearly all of their electricity from renewable energy. In many other countries, the percentage of electricity from renewable sources is currently small (5 - 10%) but growing.

This is an image of several offshore wind turbines, with an ocean horizon.

Wind turbines can be on land or in the ocean, where high winds are common. Credit: Nicholas Doherty on Unsplash

Shrink the footprint of food.

Today, about a fifth of global carbon emissions come from raising farm animals for meat. For example, as cattle digest food they burp, releasing methane, a powerful greenhouse gas, and their manure releases the greenhouse gases carbon dioxide and nitrous oxide. And forests, which take carbon dioxide out of the air, are often cut down so that cattle have space to graze.

Eating a diet that is mostly or entirely plant-based (such as vegetables, bread, rice, and beans) lowers emissions. According to the Drawdown Project , if half the population worldwide adopts a plant-rich diet by 2050, 65 gigatons of carbon dioxide would be kept out of the atmosphere over about 30 years. (For a sense of scale, 65 gigatons of carbon dioxide is nearly two-years-worth of recent emissions from fossil fuels and industry.) Reducing food waste can make an even larger impact, saving about 90 gigatons of carbon dioxide from the atmosphere over 30 years.

This is an image of tomatoes on the vine, chick peas, sliced avocados, carrots, and onions.

Eating a plant-rich diet lowers greenhouse gas emissions. Credit: Victoria Shes on Unsplash

Travel without making greenhouse gases.

Most of the ways we have to get from place to place currently rely on fossil fuels: gasoline for vehicles and jet fuel for planes. Burning fossil fuels for transportation adds up to 14% of global greenhouse gas emissions worldwide. We can reduce emissions by shifting to alternative technologies that either don’t need gasoline (like bicycles and electric cars) or don’t need as much (like hybrid cars). Using public transportation, carpooling, biking, and walking leads to fewer vehicles on the road and less greenhouse gases in the atmosphere. Cities and towns can make it easier for people to lower greenhouse gas emissions by adding bus routes, bike paths, and sidewalks.

This is an image of an electric bike parked outside alongside a waterway.

Electric bicycles can be a way to get around without burning gasoline. Credit: Karlis Dambrans/CC BY 2.0

Reduce household waste.

Waste we put in landfills releases greenhouse gases. Almost half the gas released by landfill waste is methane, which is an especially potent greenhouse gas. Landfills are, in fact, the third largest source of methane emissions in the U.S., behind natural gas/petroleum use and animals raised for food production (and their manure). In the U.S., each member of a household produces an average of 2 kg (4.4 lbs) of trash per day. That's 726 kg (1660 lbs) of trash per person per year! Conscious choices, including avoiding unnecessary purchases, buying secondhand, eliminating reliance on single-use containers, switching to reusable bags, bottles, and beverage cups, reducing paper subscriptions and mail in favor of digital options, recycling, and composting, can all help reduce household waste.     

Reduce emissions from industry.

Manufacturing, mining for raw materials, and dealing with the waste all take energy. Most of the products that we buy — everything from phones and TVs to clothing and shoes — are created in factories, which produce up to about 20% of the greenhouse gases emitted worldwide.

There are ways to decrease emissions from manufacturing. Using materials that aren’t made from fossil fuels and don’t release greenhouse gases is a good start. For example, cement releases carbon dioxide as it hardens, but there are alternative products that don’t create greenhouse gases. Similarly, bioplastics made from plants are an alternative to plastics that come from fossil fuels. Companies can also use renewable energy sources to power factories and ship the products that they create in fuel-saving cargo ships.

Take carbon dioxide out of the air.

Along with reducing the amount of carbon dioxide that we add to the air, we can also take action to increase the amount of carbon dioxide we take out of the air. The places where carbon dioxide is pulled out of the air are called carbon sinks. For example, planting trees, bamboo, and other plants increases the number of carbon sinks. Conserving forests, grasslands, peatlands, and wetlands, where carbon is held in plants and soils, protects existing carbon sinks. Farming methods such as planting cover crops and crop rotation keep soils healthy so that they are effective carbon sinks. There are also carbon dioxide removal technologies, which may be able to pull large amounts of greenhouse gases out of the atmosphere.

This is an image of a stand of tall trees in a forest, with sunlight filtering through the branches.

As the trees and other plants in a forest use sunlight to create the food they need, they are also pulling carbon dioxide out of the air. Credit: B NW on Unsplash

© 2020 UCAR

  • Solving Climate Change
  • Why Earth Is Warming
  • The Greenhouse Effect
  • What's Your Carbon Footprint?
  • Classroom Activity: Mitigation or Adaptation?
  • Classroom Activity: Solving the Carbon Dioxide Problem
  • Stabilization Wedges (Activity and Resources)

Home — Essay Samples — Environment — Carbon Dioxide — CO2 Emissions in our planet

test_template

Co2 Emissions in Our Planet

  • Categories: Carbon Dioxide Planet

About this sample

close

Words: 643 |

Published: Feb 12, 2019

Words: 643 | Page: 1 | 4 min read

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Verified writer

  • Expert in: Environment Science

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

3 pages / 1250 words

2 pages / 786 words

2 pages / 881 words

4 pages / 1827 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Carbon Dioxide

Climate change is arguably the greatest collective-action problem the world has ever faced (Barrett 257). It would be inevitable to completely reduce all CO2 emissions because both developed and developing countries are [...]

Acid rain, a detrimental environmental phenomenon, has garnered significant attention due to its adverse effects on ecosystems, infrastructure, and public health. This essay aims to explore the causes, consequences, and [...]

There have been multiple attempts by Arab countries to help reduce the carbon footprint of the region that is well-known for being a hub for polluting resources like oil, coal and gas. While it may be harder for the region to [...]

Niels Bohr was a man who was born in Copenhagen in the year 1885, on the 7th of October. Niels Henrik David Bohr was already in the clear to be a strong influence to the scientific community. Bohr was raised in an educated [...]

For the past century, man has become innovative and he invented an energy which is very strong and reliable; this is the nuclear energy. At the start of the 21st-century man used nuclear energy to make nuclear bombs especially [...]

Have you ever pondered the profound importance of forests in our lives, especially when crafting a deforestation argumentative essay? Often, we take the trees in our surroundings for granted as mere background scenery in our [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essay on carbon dioxide

Climate Change: Atmospheric Carbon Dioxide

Based on the annual report from NOAA’s Global Monitoring Lab , global average atmospheric carbon dioxide was 417.06 parts per million (“ppm” for short) in 2022, setting a new record high. The increase between 2021 and 2022 was 2.13 ppm—the 11 th year in a row where the amount of carbon dioxide in the atmosphere increased by more than 2 ppm. At Mauna Loa Observatory in Hawaii, where the modern carbon dioxide record began in 1958, the annual average carbon dioxide in 2022 was 418.56.

Carbon Dioxide graph for the Global Climate Dashboard

The modern record of atmospheric carbon dioxide levels began with observations recorded at Mauna Loa Observatory in Hawaii. This graph shows the station's monthly average carbon dioxide measurements since 1958 in parts per million (ppm). The seasonal cycle of highs and lows (small peaks and valleys) is driven by Northern Hemisphere summer vegetation growth, which reduces atmospheric carbon dioxide, and winter decay, which increases it. The long-term trend of rising carbon dioxide levels is driven by human activities. At Mauna Loa, the highest monthly value each year occurs in May. In May 2023, carbon dioxide hit 424 ppm —a new record. NOAA Climate.gov image, based on Mauna Loa monthly mean data from NOAA Global Monitoring Lab . 

Carbon dioxide concentrations are rising mostly because of the fossil fuels that people are burning for energy. Fossil fuels like coal and oil contain carbon that plants pulled out of the atmosphere through photosynthesis over many millions of years; we are returning that carbon to the atmosphere in just a few hundred. Since the middle of the 20 th century, annual emissions from burning fossil fuels have increased every decade, from close to 11 billion tons of carbon dioxide per year in the 1960s to an estimated 36.6 billion tons in 2022 according to the Global Carbon Budget 2022 .

Carbon cycle experts estimate that natural “sinks”—processes that remove carbon from the atmosphere—on land and in the ocean absorbed the equivalent of about half of the carbon dioxide we emitted each year in the 2011-2020 decade. Because we put more carbon dioxide into the atmosphere than natural sinks can remove, the total amount of carbon dioxide in the atmosphere increases every year.

The more we overshoot what natural processes can remove in a given year, the faster the atmospheric concentration of carbon dioxide rises. In the 1960s, the global growth rate of atmospheric carbon dioxide was roughly 0.8± 0.1 ppm per year. Over the next half century, the annual growth rate tripled, reaching 2.4 ppm per year during the 2010s. The annual rate of increase in atmospheric carbon dioxide over the past 60 years is about 100 times faster than previous natural increases, such as those that occurred at the end of the last ice age 11,000-17,000 years ago. 

Line graphs showing how atmospheric carbon dioxide amounts have risen at roughly the same pace as carbon dioxide emissions

The amount of carbon dioxide in the atmosphere (blue line) has increased along with human emissions (gray line) since the start of the Industrial Revolution in 1750. Emissions rose slowly to about 5 gigatons—one gigaton is a billion metric tons—per year in the mid-20 th century before skyrocketing to more than 35 billion tons per year by the end of the century. NOAA Climate.gov graph, adapted from original by Dr. Howard Diamond (NOAA ARL). Atmospheric CO 2 data from NOAA and ETHZ . CO 2 emissions data from Our World in Data and the Global Carbon Project . 

Why carbon dioxide matters

Carbon dioxide is Earth’s most important greenhouse gas : a gas that absorbs and radiates heat. Unlike oxygen or nitrogen (which make up most of our atmosphere), greenhouse gases absorb heat radiating from the Earth’s surface and re-release it in all directions—including back toward Earth’s surface. Without carbon dioxide, Earth’s natural greenhouse effect would be too weak to keep the average global surface temperature above freezing. By adding more carbon dioxide to the atmosphere, people are supercharging the natural greenhouse effect, causing global temperature to rise. According to observations by the NOAA Global Monitoring Lab, in 2021 carbon dioxide alone was responsible for about two-thirds of the total heating influence of all human-produced greenhouse gases.

Another reason carbon dioxide is important in the Earth system is that it dissolves into the ocean like the fizz in a can of soda. It reacts with water molecules, producing carbonic acid and lowering the ocean's pH (raising its acidity). Since the start of the Industrial Revolution, the pH of the ocean's surface waters has dropped from 8.21 to 8.10. This drop in pH is called ocean acidification .

macro photo of tiny ocean snail shells showing a healthy snail shell compared to one damaged by ocean acidification

( left ) A healthy ocean snail has a transparent shell with smoothly contoured ridges. ( right ) A shell exposed to more acidic, corrosive waters is cloudy, ragged, and pockmarked with ‘kinks’ and weak spots. Photos courtesy Nina Bednarsek, NOAA PMEL. 

Past and future carbon dioxide

Natural increases in carbon dioxide concentrations have periodically warmed Earth’s temperature during ice age cycles over the past million years or more. The warm episodes (interglacials) began with a small increase in incoming sunlight in the Northern Hemisphere due to variations in Earth’s orbit around the Sun and its axis of rotation. (For more details, see the “Milankovitch cycles and ice ages” section of our Climate change: incoming sunlight article.) That little bit of extra sunlight caused a little bit of warming. As the oceans warmed, they outgassed carbon dioxide—like a can of soda going flat in the heat of a summer day. The extra carbon dioxide in the atmosphere greatly amplified the initial, solar-driven warming.

Based on air bubbles trapped in mile-thick ice cores and other paleoclimate evidence, we know that during the ice age cycles of the past million years or so, atmospheric carbon dioxide never exceeded 300 ppm. Before the Industrial Revolution started in the mid-1700s, atmospheric carbon dioxide was 280 ppm or less.

paleo-carbon dioxide graph - large

Atmospheric carbon dioxide (CO 2) in parts per million (ppm) for the past 800,000 years based on ice-core data (light purple line) compared to 2022 concentration (bright purple dot). The peaks and valleys in the line show ice ages (low CO 2 ) and warmer interglacials (higher CO 2 ). Throughout that time, CO 2 was never higher than 300 ppm (light purple dot, between 300,000 and 400,000 years ago). The increase over the last 60 years is 100 times faster than previous natural increases. In fact, on the geologic time scale, the increase from the end of the last ice age to the present (dashed purple line) looks virtually instantaneous. Graph by NOAA Climate.gov based on data from Lüthi, et al., 2008, via NOAA NCEI Paleoclimatology Program.

By the time continuous observations began at Mauna Loa Volcanic Observatory in 1958, global atmospheric carbon dioxide was already 315 ppm. Carbon dioxide levels today are higher than at any point in human history. In fact, the last time atmospheric carbon dioxide amounts were this high was more than 3 million years ago, during the Mid-Pliocene Warm Period, when global surface temperature was 4.5–7.2 degrees Fahrenheit (2.5–4 degrees Celsius) warmer than during the pre-industrial era. Sea level was at least 16 feet higher than it was in 1900 and possibly as much as 82 feet higher.

If global energy demand continues to grow rapidly and we meet it mostly with fossil fuels, human emissions of carbon dioxide could reach 75 billion tons per year or more by the end of the century. Atmospheric carbon dioxide could be 800 ppm or higher—conditions not seen on Earth for close to 50 million years.

Plausible future socioeconomic pathways for annual carbon dioxide emissions (left) and the resulting atmospheric carbon dioxide concentrations (right) through the end of the century. A shared socioeconomic pathway is an internally consistent set of assumptions about future population growth, global and regional economic activity, and technological advances. Models use these pathways to project a range of possible future carbon dioxide emissions; for simplicity, the image only shows the only the mean value. NOAA Climate.gov graphic adapted from figure TS.4 in the IPCC Sixth Assessment Report Technical Summary .

More on carbon dioxide

NOAA carbon dioxide observations

Carbon cycle factsheet

Carbon dioxide emissions by country over time

Comparing greenhouse gases by their global warming potential

Ocean acidification

Collins, M., R. Knutti, J. Arblaster, J.-L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W.J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A.J. Weaver and M. Wehner, 2013: Long-term Climate Change: Projections, Commitments and Irreversibility . In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Gregor, L., Hauck, J., Le Quéré, C., Luijkx, I. T., Olsen, A., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Alkama, R., … Zheng, B. (2022). Global Carbon Budget 2022. Earth System Science Data, 14(11), 4811–4900. https://doi.org/10.5194/essd-14-4811-2022

Lan, X., B. D. Hall, G. Dutton, J. Mühle, J. W. Elkins, and I. J. Vimont. (2022). Long-lived greenhouses gases [in  State of the Climate in 2021, Chapter 2: Global Climate ]. Bulletin of the American Meteorological Society , 103 (8), S81-S84. https://doi.org/10.1175/BAMS-D-22-0092.1 .

Lüthi, D., M. Le Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T.F. Stocker. (2008). High-resolution carbon dioxide concentration record 650,000-800,000 years before present.  Nature , Vol. 453, pp. 379-382. doi:10.1038/nature06949.

Woods Hole Oceanographic Institution. (2015). Introduction to ocean acidification. Accessed October 4, 2017.

Lindsey, R. (2009). Climate and Earth’s energy budget. Accessed October 4, 2017. 

We value your feedback

Help us improve our content

Related Content

News & features, carbon dioxide: earth's hottest topic is just warming up, an upwelling crisis: ocean acidification, increasing ocean acidification threatens alaska’s valuable commercial and subsistence fisheries, how much will earth warm if carbon dioxide doubles pre-industrial levels, maps & data, greenhouse gas concentrations - graphing tool, climate forcing, future climate, teaching climate, toolbox for teaching climate & energy, climate youth engagement, international climate change forum, climate resilience toolkit, annual greenhouse gas index, arctic oceans, sea ice, and coasts, food safety and nutrition.

  • International
  • Schools directory
  • Resources Jobs Schools directory News Search

Full Marks A-Level Biology Essay - Carbon dioxide may affect organisms directly or indirectly.

Full Marks A-Level Biology Essay - Carbon dioxide may affect organisms directly or indirectly.

Subject: Biology

Age range: 16+

Resource type: Unit of work

Louisa_Snape

Last updated

26 September 2018

  • Share through email
  • Share through twitter
  • Share through linkedin
  • Share through facebook
  • Share through pinterest

docx, 16.89 KB

A 100% 25 mark A-Level Biology essay addressing the title: Carbon dioxide may affect organisms directly or indirectly. Describe or explain these effects.

Holistic introduction Photosynthesis - Calvin Cycle Photosynthesis - limiting factors Haemoglobin and the Bohr shift Gaseous exchange - Plants and humans Regulation of heart rate The Carbon cycle Environmental impacts of CO2

Contains information from beyond the syllabus. Examples are structured in a clear and logical format.

Useful for revision for this specific topic and to see a sample structure of a high grade essay.

Tes paid licence How can I reuse this?

Get this resource as part of a bundle and save up to 71%

A bundle is a package of resources grouped together to teach a particular topic, or a series of lessons, in one place.

Top mark A-Level Biology Essays

A collection of high mark, sample essays for A-Level Biology, providing helpful revision content and examples of logical structuring. New Specification! Includes essays on the titles: - The Importance of movement in living organisms - Explain the importance of shapes fitting together in cells and organisms - Carbon dioxide may affect organisms directly or indirectly. - How is energy transferred within and between organisms - Explain the importance of shapes fitting together in cells and organisms - Different types of relationships and interactions between organisms - The membranes of different types of cells are involved in many different functions - The importance of DNA in science and technology Save over 70%!

Your rating is required to reflect your happiness.

It's good to leave some feedback.

Something went wrong, please try again later.

jilly pinchin

Empty reply does not make any sense for the end user

Report this resource to let us know if it violates our terms and conditions. Our customer service team will review your report and will be in touch.

Not quite what you were looking for? Search by keyword to find the right resource:

We use cookies to enhance our website for you. Proceed if you agree to this policy or learn more about it.

  • Essay Database >
  • Essays Samples >
  • Essay Types >
  • Argumentative Essay Example

Carbon Dioxide Argumentative Essays Samples For Students

34 samples of this type

Do you feel the need to examine some previously written Argumentative Essays on Carbon Dioxide before you get down to writing an own piece? In this open-access directory of Carbon Dioxide Argumentative Essay examples, you are provided with a thrilling opportunity to examine meaningful topics, content structuring techniques, text flow, formatting styles, and other academically acclaimed writing practices. Exploiting them while composing your own Carbon Dioxide Argumentative Essay will surely allow you to finalize the piece faster.

Presenting superb samples isn't the only way our free essays service can aid students in their writing endeavors – our authors can also create from scratch a fully customized Argumentative Essay on Carbon Dioxide that would make a solid foundation for your own academic work.

Example Of Is Climate Change Man-Made Argumentative Essay

Argumentative essay on global warming, what is global warming.

What is global warming, and how is it affecting the Earth and its inhabitants? Global warming is sometimes referred to as the greenhouse effect. The greenhouse effect is the absorption of energy radiated from the Earth's surface by carbon dioxide and other gases in the atmosphere, causing the atmosphere to become warmer. The greenhouse effect is what is causing the temperature on the Earth to rise, and creating many problems that will begin to occur in the coming decades.

Effects of Global Warming

Example of argumentative essay on increased release of carbon dioxide to the atmosphere, introduction.

In the recent past, the increased release of carbon dioxide has been a very controversial issue in the world. This is due to the adverse effects of this gas to the atmosphere. Human activities have driven the concentration of carbon dioxide in the atmosphere upwards over the last 50 years. For instance, it is estimated that U.S. releases 1.4 billion tons of carbon dioxide every year. The increased carbon dioxide has enhanced the natural 'greenhouse effect' causing climate change and global warming.

Thesis statement

Don't waste your time searching for a sample.

Get your argumentative essay done by professional writers!

Just from $10/page

Good Argumentative Essay About Environmental Studies

Oceanic acidification argumentative essay examples, climate change man-made argumentative essay sample, example of argumentative essay on is global climate change man-made, post university, climate change argument essay: it's happening and fast.

Please note that this essay is an example for you to base your own piece on. You can also get an essay from our  essay writer free of plagiarism.

Exemplar Argumentative Essay On There Are Many Benefits Of War On Coal And One Of Them Is A Significant Reduction Of Health Risks. To Write After

Free anthropogenic climate argumentative essay example, the car ate my food argumentative essay sample, example of recycling: is it worth the waste argumentative essay, climate change argumentative essay sample, the myth of global cooling argumentative essay examples.

<Student’s name> <Professor’s name>

Argumentative Essay On Green Energy And Global Warming

Introduction Since the 90s of last century, the European Union as a whole and each of the participating countries have begun to implement various initiatives in the area of ​​climate change. In early 2000, the Commission launches the European Climate Change Programme (ECCP), in which collaboration has been initiated with the industries, organizations for the protection of the environment and other concerned agencies. The purpose of co-operation - identify cost-effective measures to reduce CO2 emissions into the atmosphere.

Why it is Important to Reduce CO2 Emissions?

Our patient argumentative essay example, sample argumentative essay on extended argument on global warming, example of possible outline for extended argument argumentative essay.

Introduction (can be more than one paragraph if you want, but the thesis should still come towards the end of the introduction)

Global Warming Argumentative Essay Samples

Is anthropogenic climate change a problem that needs immediate and or/ long term argumentative essay examples, draw topic & writing ideas from this argumentative essay on finance, gross national product or gross national happiness, argumentative essay on is anthropogenic climate change a problem that needs immediate and or/ long term, hsbc holdings environmental performance management in australia argumentative essay, good argumentative essay about electric energy waste and climate change.

Through their activities, commercial organizations generate waste that contributes to climate change. Although effort is being made to limit human impact on the environment, the commercial waste is still one of the major problems for the environment that results into climate change. Electric energy is an important resource that is wasted across most commercial organizations. Further on, the wasted resources facilitate climate change. This paper argues that commercial organizations’ wasted electric energy contributes to the climate change.

Good Argumentative Essay On Australians Role

Air pollution argumentative essay example, argumentative essay on education, is global climate change man-made, example of argumentative essay on reducing the carbon footprint at home, why it is better to buy food locally than from large companies argumentative essays example, example of environmental studies argumentative academic essay, the importance of an emergency management plan: mitigation, preparedness, response and recovery, example of argumentative essay on the effects of meat consumption on global climate change, free argumentative essay on nuclear energy as an alternate power source, example of argumentative essay on effectiveness of the kyoto protocol, argumentative essay on toulmin model global warming.

Password recovery email has been sent to [email protected]

Use your new password to log in

You are not register!

By clicking Register, you agree to our Terms of Service and that you have read our Privacy Policy .

Now you can download documents directly to your device!

Check your email! An email with your password has already been sent to you! Now you can download documents directly to your device.

or Use the QR code to Save this Paper to Your Phone

The sample is NOT original!

Short on a deadline?

Don't waste time. Get help with 11% off using code - GETWOWED

No, thanks! I'm fine with missing my deadline

Back to Top

News and Events

Search

Research and Programs

Work with Us

business researcher image

Explore our Library

business researcher image

  • Point Source Carbon Capture
  • Carbon Dioxide Removal
  • Carbon Conversion
  • Carbon Transport & Storage
  • Hydrogen with Carbon Management
  • Computational Science and Engineering
  • Energy Conversion Engineering
  • Geological and Environmental Systems
  • Materials Engineering and Manufacturing
  • Strategic Systems Analysis and Engineering
  • Program Execution and Integration
  • Methane Mitigation Technologies
  • Minerals Sustainability
  • Natural Gas Decarbonization and Hydrogen Technologies
  • Advanced Remediation Technologies
  • Energy Asset Transformation
  • Historically Black Colleges and Universities and Minority Serving Institutions Program
  • University Carbon Research Program
  • Advanced Alloys Signature Center (AASC)
  • Science-based Artificial Intelligence and Machine Learning Institute (SAMI)
  • Center for Microwave Chemistry (CMC)
  • Center for Sustainable Fuels and Chemicals (CSFC)
  • Office of Energy Efficiency and Renewable Energy
  • Battery Workforce Initiative
  • Cybersecurity, Energy Security, and Emergency Response
  • Office of Electricity
  • Grid Resilience
  • Direct Air Capture Center
  • Net-Zero Laboratory
  • Solicitations and Funding Opportunities
  • Prizes and Challenges
  • Business Forms
  • Site Support Electronic Reading Room
  • Market Research
  • Unsolicited Proposals
  • Available Property
  • Partnerting with NETL
  • Regional Workforce Initiative
  • City of Pittsburgh MOU
  • Small Business Corner
  • Success Stories
  • Available Technologies
  • Key Contacts
  • Approved Categorical Exclusions
  • Environmental Assessments
  • Environmental Impact Statements
  • Oil and Gas Projects Summaries
  • NETL Fact Sheets
  • NETL Newsletters
  • Publication Search
  • Energy Data Exchange (EDX)
  • FECM Extramural R&D Final Technical Reports
  • Summary Information for Extramural R&D Awards
  • Technical Reports Series (TRS)
  • Peer Review Reports
  • Interagency Working Group Initial Report
  • Search Energy Analysis
  • Search Unit Process Library
  • Mission and Overview
  • Contact NETL
  • Organization
  • Awards and Recognition
  • Site Environmental Quality
  • News Stories
  • Conference Proceedings
  • Internship Opportunities
  • STEM Education and Outreach

Carbon Dioxide 101

What is carbon dioxide.

Carbon Dioxide molecule

Carbon dioxide (commonly abbreviated as CO 2 ) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many molecules where carbon is commonly found on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04 percent) in the Earth's atmosphere.

HUMANS BREATHE IT

Carbon dioxide is a minor part of the air that humans breathe. It is also a byproduct of our body’s metabolism and is subsequently exhaled from the lungs.

PLANTS NEED IT

Despite the minor amount of CO 2  in the air, it is essential to plant life and is a key part of the global carbon cycle. Plants take in CO 2 , break down the CO 2  into carbon and oxygen, release the oxygen to the atmosphere, and then retain the carbon to live and grow. When the plant dies or is burned, the carbon recombines with O 2  in the air and CO 2  is formed again, completing the cycle.

Myth:  The presence of CO 2  in the atmosphere is bad and only comes from the burning of fossil fuels.

Reality:  Carbon dioxide is derived from both natural and anthropogenic sources, is essential to plant life, and is a key part of the Earth’s carbon lifecycle.

Natural and Anthropogenic Carbon Fluxes

WHAT IS THE CARBON CYCLE?

The carbon cycle is the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide (CO 2 ), while plants absorb CO 2  for photosynthesis and emit oxygen back into the atmosphere. Carbon dioxide is also exchanged between the atmosphere and the oceans. This natural system of processes keeps CO 2  levels in the atmosphere stable over time. The figure below depicts the carbon cycle by showing how carbon moves between land, the atmosphere, and the ocean through various natural- and human-initiated processes. On land, carbon is contained within formations, the soil, plants, and animals. When these decompose, the carbon can be emitted to the atmosphere as CO 2 . Once in the atmosphere, the carbon can then be absorbed by the oceans or by a land/ocean-based plant or shell-bearing animal. It is important to note that only a small amount of the Earth’s carbon moves through the carbon cycle each year.

WHAT IS THE GREENHOUSE EFFECT?

Schematic of the Greenhouse Effect

The greenhouse effect is used to describe the phenomenon whereby the Earth's atmosphere traps solar radiation, caused by the presence of gases, such as carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and water vapor (H 2 O). Collectively, these gases are referred to as greenhouse gases (GHGs). The greenhouse effect gets its name from the process that actually occurs in a greenhouse. In a greenhouse, short wavelength visible sunlight shines through the glass panes and warms the air and the plants inside. The radiation emitted from the heated objects inside the greenhouse are of longer wavelength and therefore are unable to pass through the glass barrier, maintaining a warm temperature in the greenhouse.

greenhouse effect

The Earth's natural greenhouse effect acts similarly. Sunlight that enters the atmosphere is either reflected, absorbed, or simply passes through. The sunlight that passes through the atmosphere is either absorbed by the Earth's surface or reflected back into space. The Earth's surface heats up after absorbing this sunlight, and emits long wavelength radiation back into the atmosphere. Some of this radiation passes through the atmosphere and into space, but the rest of it is either reflected back to the Earth’s surface or absorbed by atmospheric GHGs that re-radiate longer wavelengths back to Earth's surface. These GHGs trap the sun’s energy within the atmosphere, warming the planet.

GHGs can be compared to the glass panes in the greenhouse example, since they trap indirect heat from the sun. Carbon dioxide and other GHGs help create and maintain the natural greenhouse effect that keeps Earth hospitable to life. GHGs do not have a negative effect when present in natural amounts; in fact, the Earth’s average temperatures would be much cooler without them.

Myth:  GHGs like CO 2  should be completely removed from the atmosphere.

Reality:  GHGs like CO 2 , within certain concentration ranges, help to maintain a global temperature hospitable to life.

WHAT ARE THE PRIMARY SOURCES OF CO 2 ?

There are both natural carbon dioxide (CO 2 ) sources and man-made (anthropogenic) CO 2  sources.  NATURAL CO 2  SOURCES

Natural CO 2  sources account for the majority of CO 2  released into the atmosphere. Oceans provide the greatest annual amount of CO 2  of any natural or anthropogenic source. Other sources of natural CO 2  include animal and plant respiration, decomposition of organic matter, forest fires, and emissions from volcanic eruptions. There are also naturally occurring CO 2  deposits found in formation layers within the Earth’s crust that could serve as CO 2  sources. ANTHROPOGENIC CO 2  SOURCES

Anthropogenic CO 2  sources are part of our everyday activities and include those from power generation, transportation, industrial sources, chemical production, petroleum production, and agricultural practices. Many of these source types burn fossil fuels (coal, oil, and natural gas), with CO 2  emissions as a byproduct. Of these CO 2  sources, electric power generation contributes the greatest amount of anthropogenic CO 2  to the atmosphere. 

Myth:  Carbon dioxide comes only from anthropogenic sources, especially from the burning of fossil fuels.

Reality:  Carbon dioxide comes from both natural and anthropogenic sources; natural sources are predominant.

WHAT ARE PEOPLE DOING NOW TO MANAGE CO 2 ?

Monitoring well at the an NETL-sponsored CO2 storage project.

A combined portfolio of carbon management options is being implemented to reduce current emission levels of carbon dioxide (CO 2 ) associated with energy production while maintaining energy security and building the technologies and knowledge base needed to mitigate carbon emissions. The U.S. portfolio includes:

  • Use fuels with reduced carbon emission intensity – renewables, nuclear, and natural gas.
  • Adopt more efficient technologies on both the energy demand and supply sides.
  • Develop and implement carbon capture and storage (CCS) technology.

CCS is the separation and capture of CO 2  from industrial processes followed by the transportation and safe, permanent storage in deep underground geologic formations. CCS is a viable management option for anthropogenic CO 2  because numerous studies have shown that it can account for up to 55 percent of the emissions mitigation needed to stabilize and ultimately reduce concentrations of CO 2  in the atmosphere. Since 1997, the U.S. Department of Energy's (DOE)  Carbon Storage Program  has significantly advanced CCS through a diverse portfolio of applied research projects that include industry, academia, and other research facilities, as well as through collaborative research through the National Laboratory Network, including the National Energy Technology Laboratory’s (NETL) Research and Innovation Center (RIC). There are numerous projects across the country where CO 2  is being injected into suitable deep formations to demonstrate the process of it being stored safely. There is also the potential to develop approaches that can convert captured CO 2  into useful products, such as a fuel, chemicals, or plastics.

Myth:  Nothing is being done about managing CO 2  emissions from large-scale anthropogenic sources.

Reality:  Advances in carbon capture and storage (CCS) as a CO 2  mitigation option are occurring through research and development (R&D) efforts in the United States and around the world.

Carbon Dioxide Essays

Climate change: causes, impacts and mitigation measures, impact of traffic on temperature, carbon dioxide and particulate matter, emissions of carbon dioxide, electric vehicles will be the future menace to climate change, global warming, hoax or fact, popular essay topics.

  • American Dream
  • Artificial Intelligence
  • Black Lives Matter
  • Bullying Essay
  • Career Goals Essay
  • Causes of the Civil War
  • Child Abusing
  • Civil Rights Movement
  • Community Service
  • Cultural Identity
  • Cyber Bullying
  • Death Penalty
  • Depression Essay
  • Domestic Violence
  • Freedom of Speech
  • Global Warming
  • Gun Control
  • Human Trafficking
  • I Believe Essay
  • Immigration
  • Importance of Education
  • Israel and Palestine Conflict
  • Leadership Essay
  • Legalizing Marijuanas
  • Mental Health
  • National Honor Society
  • Police Brutality
  • Pollution Essay
  • Racism Essay
  • Romeo and Juliet
  • Same Sex Marriages
  • Social Media
  • The Great Gatsby
  • The Yellow Wallpaper
  • Time Management
  • To Kill a Mockingbird
  • Violent Video Games
  • What Makes You Unique
  • Why I Want to Be a Nurse
  • Send us an e-mail

NASA Logo

How Much Carbon Dioxide Are We Emitting?

By Matthew Conlen

Carbon dioxide emission illustration

  • At standard temperature and pressure, one metric ton of carbon dioxide (CO₂) would fill a sphere 32 feet (about 9.8 meters) in diameter. The average car in the U.S. will produce this over a three-month period.
  • For every second you're on this page, about 1,079 metric tons of CO₂ have been released worldwide due to burning fossil fuels.
  • The amount of carbon dioxide released due to burning fossil fuels has been increasing since the start of the Industrial Revolution in the mid-18th century.

In 1900, almost 2 billion metric tons of CO 2 were released due to fossil fuel usage. By 1960, that number had more than quadrupled to over 9 billion metric tons.

The latest data from the Carbon Dioxide Information Analysis Center shows that over 35 billion metric tons of CO 2 were released in 2014. *

Because emissions are only partially reduced by natural land and ocean sinks, the rest of the annual carbon dioxide emissions from the human burning of fossil fuels remains in Earth's atmosphere, resulting in the annual year-over-year rise in atmospheric concentrations of carbon dioxide, as seen here .

Explore NASA's climate vital signs to learn more about carbon dioxide and other factors related to climate change.

* Latest annual data from CDIAC

Data sources: Our World in Data , CDIAC

FAQ: How might Earth’s atmosphere, land, and ocean systems respond to changes in carbon dioxide over time?

Related Terms

  • Climate Science
  • Greenhouse Gases

Explore More

essay on carbon dioxide

Antarctic Sea Ice Near Historic Lows; Arctic Ice Continues Decline

Sea ice at both the top and bottom of the planet continued its decline in 2024. In the waters around Antarctica, ice coverage shrank to near-historic lows for the third year in a row. The recurring loss hints at a long-term shift in conditions in the Southern Ocean, likely resulting from global climate change, according […]

essay on carbon dioxide

This US-Indian Satellite Will Monitor Earth’s Changing Frozen Regions

NISAR will study changes to ice sheets, glaciers, and sea ice in fine detail, as climate change warms the air and ocean. NISAR, the soon-to-launch radar satellite from NASA and the Indian Space Research Organisation (ISRO), will measure some key Earth vital signs, from the health of wetlands to ground deformation by volcanoes to the […]

essay on carbon dioxide

As the Arctic Warms, Its Waters Are Emitting Carbon

Runoff from one of North America’s largest rivers is driving intense carbon dioxide emissions in the Arctic Ocean. When it comes to influencing climate change, the world’s smallest ocean punches above its weight. It’s been estimated that the cold waters of the Arctic absorb as much as 180 million metric tons of carbon per year […]

Discover More Topics From NASA

Explore Earth Science

essay on carbon dioxide

Earth Science in Action

Earth Action

Earth Science Data

The sum of Earth's plants, on land and in the ocean, changes slightly from year to year as weather patterns shift.

Facts About Earth

essay on carbon dioxide

IMAGES

  1. Carbon Dioxide in Organisms and Ecosystems Essay

    essay on carbon dioxide

  2. Full Marks A-Level Biology Essay

    essay on carbon dioxide

  3. Carbon Dioxide Note

    essay on carbon dioxide

  4. PPT

    essay on carbon dioxide

  5. Global emission of carbon dioxide:

    essay on carbon dioxide

  6. Some properties of carbon dioxide

    essay on carbon dioxide

VIDEO

  1. Carbon Dioxide-absorbing Meatballs Exploded! 💣🌼🤨

  2. Carbon Dioxide is Cool

  3. You Should Try the Carbon Dioxide Tolerance Test Now! 😷 #psychology #andrewhuberman #health

  4. carbon dioxide gas ||😂 #shots

  5. CARBON DIOXIDE #carbondioxide#carbon#co2 || WHAT IS CARBON DIOXIDE #shorts#viral#trending

  6. learn about carbon dioxide behavior listen

COMMENTS

  1. Carbon dioxide

    carbon dioxide, (CO 2), a colourless gas having a faint sharp odour and a sour taste. It is one of the most important greenhouse gases linked to global warming, but it is a minor component of Earth's atmosphere (about 3 volumes in 10,000), formed in combustion of carbon-containing materials, in fermentation, and in respiration of animals and employed by plants in the photosynthesis of ...

  2. How Exactly Does Carbon Dioxide Cause Global Warming?

    As of 2023, the CO2 level in the atmosphere is 46% higher than the level in 1800. I've seen this calculated as just over 1 trillion additional tonnes of CO2 now, versus in 1800. The "small" percentage measurement is over 2 trillion tonnes. One is a small number and the other is large. But they describe the same thing.

  3. Essays on Carbon Dioxide

    Essays on Carbon Dioxide. Essay examples. Essay topics. 17 essay samples found. Sort & filter. 1 The Global Problem of Co2 Emission and Its Possible Solution . 6 pages / 2940 words . ... Carbon dioxide is in a gaseous state at normal temperatures and its chemical equation is stated as CO2. Many people associate this with the internal combustion ...

  4. Carbon Dioxide

    Carbon dioxide (CO 2) is an important heat-trapping gas, also known as a greenhouse gas, that comes from the extraction and burning of fossil fuels (such as coal, oil, and natural gas), from wildfires, and natural processes like volcanic eruptions.The first graph shows atmospheric CO 2 levels measured by NOAA at Mauna Loa Observatory, Hawaii, since 1958.

  5. Carbon Dioxide Essay

    Essay On Carbon Dioxide. Carbon dioxide is a naturally occurring gas which is produced by the plants, animals and microorganisms. This gas is continuously being exchanged between the atmosphere, land and ocean's surface in a balanced way (Mader 2011). Various human activities which began after the industrial revolution that took place in the ...

  6. The Effects Of Carbon Dioxide Environmental Sciences Essay

    The Effects Of Carbon Dioxide Environmental Sciences Essay. Carbon dioxide is a simple mixture of exactly what it sounds like; one part carbon with two oxygen atoms attached to it. Carbon dioxide is in a gaseous state at normal temperatures and its chemical equation is stated as CO2. The gas originates from many different sources around the globe.

  7. The Greenhouse Effect and our Planet

    The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth's atmosphere. Greenhouse gases include carbon dioxide (CO 2), methane (CH 4), nitrous oxide (N 2 O), ozone (O 3), and fluorinated gases.. Greenhouse gases allow the sun's light to shine onto Earth's surface, and then the gases, such as ozone, trap the heat that reflects back from ...

  8. Essays About Carbon Dioxide ️ Free Examples & Essay Topic Ideas

    These essays discuss the various sources of carbon dioxide, its impact on climate change, global warming, and related issues. They also delve into ways to reduce carbon dioxide emissions and mitigate its harmful effects. Free essays on Carbon Dioxide are a great resource for students, researchers, and anyone interested in studying this ...

  9. It's possible to reach net-zero carbon emissions. Here's how

    How to hit net-zero carbon emissions by 2050. In a 2021 report, the International Energy Agency described the steps necessary to ensure that by 2050 the amount of carbon dioxide emitted into the ...

  10. Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming

    Carbon dioxide (CO2) conversion into more valuable chems. has attracted great research interest in recent years. Compared to homogeneous catalysts, heterogeneous catalysts are advantageous due to their recyclability and the easy sepn. of products from catalysts. Research has proved that photocatalysis, electrocatalysis and photoelectrocatalysis ...

  11. How Do We Reduce Greenhouse Gases?

    To stop climate change, we need to stop the amount of greenhouse gases, like carbon dioxide, from increasing.For the past 150 years, burning fossil fuels and cutting down forests, which naturally pull carbon dioxide out of the air, has caused greenhouse gas levels to increase. There are two main ways to stop the amount of greenhouse gases from increasing: we can stop adding them to the air ...

  12. CO2 Emissions in our planet: [Essay Example], 643 words

    Carbon dioxide is a naturally occurring gas within our atmosphere. Due to this naturally occurring substance there is a natural way for decreasing the levels of CO2. During this process carbon dioxide is drawn in through the leaves and stored within the main mass of the plant/tree. The carbon is then drawn into the soil through the roots of the ...

  13. Carbon Dioxide Essay

    Carbon Dioxide And Its Effect On The Environment. 1. A Carbon dioxide (CO2) absorbs energy from the sun, then releases it back into earth; it is the second largest greenhouse gas after water vapour. Carbon dioxide releases out a harmful gas, which is dissolved out to the atmosphere determined by temperature.

  14. Climate Change: Atmospheric Carbon Dioxide

    The global average carbon dioxide set a new record high in 2022: 417.06 parts per million. Atmospheric carbon dioxide is now 50 percent higher than it was before the Industrial Revolution. The annual rate of increase in atmospheric carbon dioxide over the past 60 years is about 100 times faster than previous natural increases, such as those ...

  15. Full Marks A-Level Biology Essay

    A 100% 25 mark A-Level Biology essay addressing the title: Carbon dioxide may affect organisms directly or indirectly. Describe or explain these effects. Includes: Holistic introduction Photosynthesis - Calvin Cycle Photosynthesis - limiting factors Haemoglobin and the Bohr shift Gaseous exchange - Plants and humans Regulation of heart rate The ...

  16. Climate Change and Carbon Dioxide (CO2) Essay

    Climate Change and Carbon Dioxide (CO2) Essay. Good Essays. 1888 Words. 8 Pages. Open Document. Climate change or colloquially known as global warming, now pose a new threat to civilization as the levels of greenhouse gases (GHG) are soaring to new levels. The most significant contributor to greenhouse gasses would be Carbon Dioxide (Co2).

  17. Carbon Dioxide Argumentative Essay Examples That Really Inspire

    Human activities have driven the concentration of carbon dioxide in the atmosphere upwards over the last 50 years. For instance, it is estimated that U.S. releases 1.4 billion tons of carbon dioxide every year. The increased carbon dioxide has enhanced the natural 'greenhouse effect' causing climate change and global warming.

  18. The Effects Of Carbon Dioxide On The Environment Essay

    Although there many gases and other compounds that have an effect of the climate change, carbon dioxide seems to be the leading compound that is causing climate change on earth. From 1750 to 2005 carbon dioxide the radiative force of carbon dioxide had increased 1.6 which means it is causing the earth to get warmer.

  19. Carbon Dioxide and It's Impact on Climate

    Carbon dioxide is defined as colourless, odourless gas manufactured by the process of blazing carbon and organic compounds. It also has a molecule that consists of a carbon atom combined with two oxygen atoms. However, carbon dioxide is known as greenhouse gas in the atmosphere. On the other hand, climate is described as the atmospheric ...

  20. Carbon Dioxide 101

    Carbon dioxide (commonly abbreviated as CO 2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many molecules where carbon is commonly found on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic.

  21. Carbon Dioxide Essay Examples

    Emissions of Carbon Dioxide. Introduction Human and natural sources contribute to the release of carbon dioxide. Respiration, decomposition, and ocean discharge are some examples of natural sources. Burning fossil fuels like coal, oil, and natural gas is an everyday human activity, as is making cement. Both are toxic, but whereas emissions from ...

  22. How Much Carbon Dioxide Are We Emitting?

    By 1960, that number had more than quadrupled to over 9 billion metric tons. The latest data from the Carbon Dioxide Information Analysis Center shows that over 35 billion metric tons of CO 2 were released in 2014. Because emissions are only partially reduced by natural land and ocean sinks, the rest of the annual carbon dioxide emissions from ...

  23. Free Essay: Carbon Dioxide

    Carbon Dioxide (CO2), a chemical made up of one carbon atom and two oxygen atoms, is a non-flammable, odorless and colorless gas that exists naturally in the atmosphere. CO2 is one of the greenhouse gases, amongst methane, nitrous oxide and other gases, which keeps the Earth's temperature habitable (UCAR).

  24. Carbon Dioxide Essays: Examples, Topics, & Outlines

    Oxygen and Carbon Dioxide Respiration. Therefore, each hemoglobin molecule can bind four oxygen molecules. In a healthy adult, the concentration of hemoglobin in blood is 150 g/L. Importantly, 1.34 ml of O2 can bind 1 g of hemoglobin. Each liter of blood can therefore carry 3 ml of dissolved CO2 and 201 ml hemoglobin-bound O2.

  25. The Graph Below Shows Average Carbon Dioxide

    Sample essay. The line graph displays average carbon dioxide emissions each person in four different countries produced between 1967 and 2007. Overall, while per-capita carbon emissions in the UK and Sweden went down over the course of this 40-year period, they went up in Italy and Portugal. Despite a steady decline from about 11 to 9 metric ...

  26. Carbon Footprint Essay

    The carbon footprints majorly apply to personnel, product, organizations, villages, cities, countries, etc. A personal carbon footprint can be defined as carbon dioxide caused by each person's daily activities i.e., clothing, food consumption, housing, and uses of vehicles in daily life. Unless a person lives in a cave, he is responsible for ...

  27. Startups aim to curb climate change by pulling carbon dioxide from the

    Every year, hundreds of container ships slide into the Port of Los Angeles, the busiest in the Western Hemisphere. Belching carbon dioxide (CO 2), they deliver some $300 billion in goods to trucks and railcars that add their own pollution to our warming planet.. But one long gray barge docked at the port is doing its part to combat climate change.

  28. Coupling Electrocatalytic Redox-Active Sites in Three-Dimensional

    In neutral electrolyte, the Co/Ni-TPNB-COF exhibits both satisfied oxygen evolution reaction (OER) and carbon dioxide reduction reaction (CDRR) with CO2-to-CO Faradaic efficiency of ∼95% and ultra-high turnover frequency of 4.10 s-1 due to abundant accessible active sites in 3D framework.

  29. Electric power supply structure transformation model of China for

    As the largest developing country in the world, China has promised to peak the carbon dioxide emissions before 2030 and achieve carbon neutrality before 2060 to mitigate the greenhouse effect. In the meantime, the electric power industry is playing a key role in achieving this ambitious target through "electricity substitution" and "clean substitution" strategies and constructing the "new type ...