example of research design problem

Writing about Design

Principles and tips for design-oriented research.

Writing about Design

How to define a research question or a design problem

Introduction.

Many texts state that identifying a good research question (or, equivalently, a design problem) is important for research. Wikipedia, for example, starts (as of writing this text, at least) with the following two sentences:

“A research question is ‘a question that a research project sets out to answer’. Choosing a research question is an essential element of both quantitative and qualitative research.” (Wikipedia, 2020)

However, finding a good research question (RQ) can be a painful experience. It may feel impossible to understand what are the criteria for a good RQ, how a good RQ can be found, and to notice when there are problems with some RQ candidate.

In this text, I will address the pains described above. I start by presenting a scenario of a project that has problems with its RQ. The analysis of that scenario allows me then to describe how to turn the situation described in the scenario for a better research or design project.

Scenario of a problematic project

Let us consider a scenario that you are starting a new research or design project. You have already an idea: your work will be related to communication with instant messaging (IM). Because you are a design-minded person, you are planning to design and develop a new IM feature: a possibility to send predefined replies on a mobile IM app. Your idea is that this feature will allow the user to communicate quickly with others in difficult situations where the they can only connect with others through their mobile phone. Your plan is to supply the mobile IM app with messages like “I’m late by 10 minutes but see you soon”, “I can’t answer back now but will do that later today”, and so on.

Therefore, your plan involves designing such an app, maybe first by sketching it and then illustrating its interaction with a prototyping software like Figma or Adobe XD. You may also decide to make your design functional by programming it and letting a selected number of participants to use it. These kinds of activities will let you demonstrate your skills as a designer-researcher.

Although predefined messages for a mobile IM app can be a topic of a great study, there are some problems with this project that require you to think more about it before you start. As the project is currently defined, it is difficult to provide convincing answers to these challenges:

  • Challenge 1: Why would this be a relevant topic for research or design? Good studies address topics that may interest also other people than the author only. The current research topic, however, does not do that self-evidently yet: it lacks an explanation why it would make sense to equip mobile IM apps with predefined replies. There is only a guess that this could be useful in some situations, but this may not convince the reader about the ingenuity of this project.
  • Challenge 2: How do you demonstrate that your solution is particularly good? For an outsider who will see the project’s outcome, it may not be clear why your final design would be the best one among the other possible designs. If you propose one interaction design for such a feature, what makes that a good one? In other words, the project lacks a yardstick by which its quality should be measured.
  • Challenge 3: How does this project lead to learning or new knowledge? Even if you can show that the topic is relevant (point 1) and that the solution works well (2), the solution may feel too “particularized” – not usable in any other design context. This is an important matter in applied research fields like design and human–computer interaction, because these fields require some form of generalizability from their studies. Findings of a study should result in some kind of knowledge, such as skills, sensitivity to important matters, design solutions or patterns, etc. that could be used also at a later time in other projects, preferably by other people too.

All these problems relate to a problem that this study does not have a RQ yet . Identifying a good research question will help clarify all the above matters, as we will see below.

Adding a research question / design problem

RQs are of many kinds, and they are closely tied to the intended finding of the study: what contribution  should the study deliver. A contribution can be, for example, a solution to a problem or creation of novel information or knowledge. Novel information, in turn, can be a new theory, model or hypothesis, analysis that offers deeper understanding, identification of an unattended problem, description about poorly understood phenomenon, a new viewpoint, or many other things.

The researcher or thesis author usually has a lot of freedom in choosing the exact type of contribution that they want to make. This can feel difficult to the author: there may be no-one telling what they should study. In a way, in such a situation, the thesis/article author is the client of their own research: they both define what needs to be done, and then accomplish that work. Some starting points for narrowing down the space of possibilities is offered here.

Most importantly, the RQ needs to be focused on a topic that the author genuinely does not know, and which is important to find out on the path to the intended contribution. In our scenario about a mobile IM app’s predefined replies, there are currently too many alternatives for an intended contribution, and an outsider would not be able to know which one of them to expect:

  • Demonstration that mobile IM apps will be better to use when they have this new feature.
  • Report on the ways by which people would use the new feature, if their mobile IM apps would have such a feature.
  • Requirements analysis for the specific design and detailed features by which the feature should be designed.
  • Analysis of the situations where the feature would be most needed, and user groups who would most often be in such situations.

All of these are valid contributions, and the author can choose to focus on any one of them. This depends also on the author’s personal interests. This gives a possibility for formulating a RQ for the project. It is important to notice that each one of the possible contributions listed above calls for a different corresponding RQ:

RQ1: Do predefined replies in mobile IM apps improve their usability?

RQ2: How will users start using the predefined replies in mobile IM apps?

RQ3: How should the interaction in the IM app be designed, and what kind of predefined replies need to be offered to the users?

RQ4: When are predefined replies in IM apps needed?

This list of four RQs, matched with the four possible contributions, shows why the scenario presented in the beginning of this text was problematic. Only after asking these kinds of questions one is able to seek to answer to the earlier-presented three challenges in the end of the previous section. Also, each of the RQs needs a different research or design method, and its own kind of background research.

The choice and fine-tuning of the research question / design problem

Which one of the above RQs should our hypothetical researcher/designer choose? Lists of basic requisites for good RQs have been presented in many websites. They can help identify RQs that will still need refinement. Monash University offers the following kind of helpful list:

  • Clear and focused.  In other words, the question should clearly state what the writer needs to do.
  • Not too broad and not too narrow.  The question should have an appropriate scope. If the question is too broad it will not be possible to answer it thoroughly within the word limit. If it is too narrow you will not have enough to write about and you will struggle to develop a strong argument.
  • Not too easy to answer.  For example, the question should require more than a simple yes or no answer.
  • Not too difficult to answer.  You must be able to answer the question thoroughly within the given timeframe and word limit.
  • Researchable.  You must have access to a suitable amount of quality research materials, such as academic books and refereed journal articles.
  • Analytical rather than descriptive.  In other words, your research question should allow you to produce an analysis of an issue or problem rather than a simple description of it.

If a study meets the above criteria, it has a good chance of avoiding a problem of presenting a “non-contribution” : A laboriously produced finding that nonetheless does not provide new, interesting information. The points 3 and 6 above particularly guard against such studies: they warn the readers from focusing their efforts on something that is already known (3) and only describing what was done or what observations were made, instead of analysing them in more detail (6).

In fine-tuning a possible RQ, it is important to situate it to the right scope. The first possible RQ that comes to one’s mind is often too broad and needs to be narrowed. RQ4 above (“ When are predefined replies in IM apps most needed? ”), for example, is a very relevant question, but it is probably too broad.

Why is RQ4 too broad? The reason is that RQs are usually considered very literally. If you leave an aspect in your RQ unspecified, then it means that you intend that your RQ and your findings will be generalisable (i.e., applicable) to all the possible contexts and cases that your RQ can be applied to. Consider the following diagram:

With a question “ When are predefined replies in IM apps most needed?”, you are asking a question that covers both leisure-oriented and work-oriented IM apps which can be of very different kinds. Some of the IM apps are mobile-oriented (such as WhatsApp) and others are desktop-oriented (such as Slack or Teams). Unless you specify your RQ more narrowly, your findings should be applicable to all these kinds of apps. Also, RQ4 is unspecific also about the people that you are thinking as communication partners. It may be impossible for you to make a study so broad that it applies to all of these cases.

Therefore, a more manageable-sized scoping could be something like this:

RQ4 (version 2): In which away-from-desktop leisure life situations are predefined replies in IM apps most needed?

Furthermore, you can also narrow down your focus theoretically. In our example scenario, the researcher/designer can decide, for example, that they will consider predefined IM replies from the viewpoint of “face-work” in social interaction. By adopting this viewpoint, the researcher/designer can decide that they will design the IM’s replies with a goal that they help the user to maintain an active, positive image in the eyes of others. When they start designing the reply feature, they can now ask much more specific questions. For example: how could my design help a user in doing face-work in cases where they are in a hurry and can only send a short and blunt message to another person? How could the predefined replies help in situations where the users would not have time to answer but they know they should? Ultimately, would the predefined replies make it easier for users to do face-work in computer-mediated communications (CMC)?

You can therefore further specify RQ4 into this:

RQ4 (version 3): In which away-from-desktop leisure life situations are predefined replies in IM apps most needed when it is important to react quickly to arriving messages?

As you may notice, it is possible to scope the RQ too narrowly so that it starts to be close to absurd. But if that does not become a problem, the choice of methods (i.e., the research design ) becomes much easier to do.

The benefit of theoretically narrowed-down RQs (in this case, building on the concept of face-work in RQ4 version 3) have the benefit that they point you to useful background literature. Non-theoretical RQs (e.g., RQ4 version 2), in contrast, require that you identify the relevant literature more independently, relying on your own judgment. In the present case, you can base your thinking about IM apps’ on sociological research on interpersonal interaction and self-presentation (e.g., Goffman 1967) and its earlier applications to CMC (Nardi et al., 2000; Salovaara et al., 2011). Such a literature provides the starting points for deeper design considerations. Deeper considerations, in turn, increase the contribution of the research, and make it interesting for the readers.

As said, the first RQ that one comes to think of is not necessarily the best and final one. The RQ may need to be adapted (and also can be adapted) over the course of the research. In qualitative research this is very typical, and the same applies to exploratory design projects that proceed through small design experiments (i.e., through their own smaller RQs).

This text promised to address the pains that definition of a RQ or a design problem may pose for a student or a researcher. The main points of the answer may be summarized as follows:

  • The search for a good RQ is a negotiation process between three objectives : what is personally motivating, what is realistically possible to do (e.g., that the work can be built on some earlier literature and there is a method that can answer to the RQ), and what motivates its relevance (i.e., can it lead to interesting findings).
  • The search for a RQ or a design problem is a process and not a task that must be fixed immediately . It is, however, good to get started somewhere, since a RQ gives a lot of focus for future activities: what to read and what methods to choose, for example.

With the presentation of the scenario and its analysis, I sought to demonstrate why and how choosing an additional analytical viewpoint can be a useful strategy. With it, a project whose meaningfulness may be otherwise questionable for an outsider can become interesting when its underpinnings and assumptions are explicated. That helps ensure that the reader will appreciate the work that the author has done with their research.

In the problematization of the scenario, I presented the three challenges related to it. I can now offer possible answers to them, by highlighting why a RQ can serve as a tool for finding them:  

  • Why would this be a relevant topic for research or design? Choice of a RQ often requires some amount of background research that helps the researcher/designer to understand how much about the problem has already been solved by others. This awareness helps shape the RQ to focus on a topic where information is not yet known and more information is needed for a high-quality outcome.
  • How do you demonstrate that your solution is particularly good? By having a question, it is possible to analyse what are the right methods for answering it. The quality of executing these becomes then evaluatable. The focus on a particular question also will permit that the author compromises optimality in other, less central outcomes. For example, if smoothness of interaction is in the focus, then it is easy to explain why long-term robustness and durability of a prototype may not be critical.
  • How does this project lead to learning or new knowledge? Presentation of the results or findings allows the researcher/design to devote their Discussion section (see the IMRaD article format ) to topics that would have been impossible to predict before the study. That will demonstrate that the project has generated novel understanding: it has generated knowledge that can be considered insightful.

If and when the researcher/designer pursues further in design and research, the experience of thinking about RQs and design problems accumulates. As one reads literature , the ability to consider different research questions becomes better too. Similarly, as one carries out projects with different RQs and problems, and notices how adjusting them along the way helps shape one’s work, the experience similarly grows. Eventually, one may even learn to enjoy the analytical process of identifying a good research question.

As a suggestion for further reading, Carsten Sørensen’s text  (2002) about writing and planning an article in information systems research field is a highly recommended one. It combines the question of choosing the RQ with the question on how to write a paper about it.

Goffman, E. (1967). On face-work: An analysis of ritual elements in social interaction. Psychiatry , 18 (3), 213–231.  https://doi.org/10.1080/00332747.1955.11023008

Nardi, B. A., Whittaker, S., & Bradner, E. (2000). Interaction and outeraction: Instant messaging in action. In Proceedings of the 2000 ACM Conference on Computer Supported Cooperative Work (CSCW 2000) (pp. 79–88). New York, NY: ACM Press. https://doi.org/10.1145/358916.358975

Salovaara, A., Lindqvist, A., Hasu, T., & Häkkilä, J. (2011). The phone rings but the user doesn’t answer: unavailability in mobile communication. In Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services (MobileHCI 2011) (pp. 503–512). New York, NY: ACM Press. https://doi.org/10.1145/2037373.2037448

Sørensen, C. (2002): This is Not an Article — Just Some Food for Thoughts on How to Write One. Working Paper. Department of Information Systems, The London School of Economics and Political Science. No. 121.

Wikipedia (2020). Research question. Retrieved from https://en.wikipedia.org/wiki/Research_question (30 November 2020).

One thought on “ How to define a research question or a design problem ”

Pingback: From table of contents to a finished text | Writing about Design

Comments are closed.

  • How it works

How to Write a Research Design – Guide with Examples

Published by Alaxendra Bets at August 14th, 2021 , Revised On October 3, 2023

A research design is a structure that combines different components of research. It involves the use of different data collection and data analysis techniques logically to answer the  research questions .

It would be best to make some decisions about addressing the research questions adequately before starting the research process, which is achieved with the help of the research design.

Below are the key aspects of the decision-making process:

  • Data type required for research
  • Research resources
  • Participants required for research
  • Hypothesis based upon research question(s)
  • Data analysis  methodologies
  • Variables (Independent, dependent, and confounding)
  • The location and timescale for conducting the data
  • The time period required for research

The research design provides the strategy of investigation for your project. Furthermore, it defines the parameters and criteria to compile the data to evaluate results and conclude.

Your project’s validity depends on the data collection and  interpretation techniques.  A strong research design reflects a strong  dissertation , scientific paper, or research proposal .

Steps of research design

Step 1: Establish Priorities for Research Design

Before conducting any research study, you must address an important question: “how to create a research design.”

The research design depends on the researcher’s priorities and choices because every research has different priorities. For a complex research study involving multiple methods, you may choose to have more than one research design.

Multimethodology or multimethod research includes using more than one data collection method or research in a research study or set of related studies.

If one research design is weak in one area, then another research design can cover that weakness. For instance, a  dissertation analyzing different situations or cases will have more than one research design.

For example:

  • Experimental research involves experimental investigation and laboratory experience, but it does not accurately investigate the real world.
  • Quantitative research is good for the  statistical part of the project, but it may not provide an in-depth understanding of the  topic .
  • Also, correlational research will not provide experimental results because it is a technique that assesses the statistical relationship between two variables.

While scientific considerations are a fundamental aspect of the research design, It is equally important that the researcher think practically before deciding on its structure. Here are some questions that you should think of;

  • Do you have enough time to gather data and complete the write-up?
  • Will you be able to collect the necessary data by interviewing a specific person or visiting a specific location?
  • Do you have in-depth knowledge about the  different statistical analysis and data collection techniques to address the research questions  or test the  hypothesis ?

If you think that the chosen research design cannot answer the research questions properly, you can refine your research questions to gain better insight.

Step 2: Data Type you Need for Research

Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions:

Primary Data Vs. Secondary Data

Qualitative vs. quantitative data.

Also, see; Research methods, design, and analysis .

Need help with a thesis chapter?

  • Hire an expert from ResearchProspect today!
  • Statistical analysis, research methodology, discussion of the results or conclusion – our experts can help you no matter how complex the requirements are.

analysis image

Step 3: Data Collection Techniques

Once you have selected the type of research to answer your research question, you need to decide where and how to collect the data.

It is time to determine your research method to address the  research problem . Research methods involve procedures, techniques, materials, and tools used for the study.

For instance, a dissertation research design includes the different resources and data collection techniques and helps establish your  dissertation’s structure .

The following table shows the characteristics of the most popularly employed research methods.

Research Methods

Step 4: Procedure of Data Analysis

Use of the  correct data and statistical analysis technique is necessary for the validity of your research. Therefore, you need to be certain about the data type that would best address the research problem. Choosing an appropriate analysis method is the final step for the research design. It can be split into two main categories;

Quantitative Data Analysis

The quantitative data analysis technique involves analyzing the numerical data with the help of different applications such as; SPSS, STATA, Excel, origin lab, etc.

This data analysis strategy tests different variables such as spectrum, frequencies, averages, and more. The research question and the hypothesis must be established to identify the variables for testing.

Qualitative Data Analysis

Qualitative data analysis of figures, themes, and words allows for flexibility and the researcher’s subjective opinions. This means that the researcher’s primary focus will be interpreting patterns, tendencies, and accounts and understanding the implications and social framework.

You should be clear about your research objectives before starting to analyze the data. For example, you should ask yourself whether you need to explain respondents’ experiences and insights or do you also need to evaluate their responses with reference to a certain social framework.

Step 5: Write your Research Proposal

The research design is an important component of a research proposal because it plans the project’s execution. You can share it with the supervisor, who would evaluate the feasibility and capacity of the results  and  conclusion .

Read our guidelines to write a research proposal  if you have already formulated your research design. The research proposal is written in the future tense because you are writing your proposal before conducting research.

The  research methodology  or research design, on the other hand, is generally written in the past tense.

How to Write a Research Design – Conclusion

A research design is the plan, structure, strategy of investigation conceived to answer the research question and test the hypothesis. The dissertation research design can be classified based on the type of data and the type of analysis.

Above mentioned five steps are the answer to how to write a research design. So, follow these steps to  formulate the perfect research design for your dissertation .

ResearchProspect writers have years of experience creating research designs that align with the dissertation’s aim and objectives. If you are struggling with your dissertation methodology chapter, you might want to look at our dissertation part-writing service.

Our dissertation writers can also help you with the full dissertation paper . No matter how urgent or complex your need may be, ResearchProspect can help. We also offer PhD level research paper writing services.

Frequently Asked Questions

What is research design.

Research design is a systematic plan that guides the research process, outlining the methodology and procedures for collecting and analysing data. It determines the structure of the study, ensuring the research question is answered effectively, reliably, and validly. It serves as the blueprint for the entire research project.

How to write a research design?

To write a research design, define your research question, identify the research method (qualitative, quantitative, or mixed), choose data collection techniques (e.g., surveys, interviews), determine the sample size and sampling method, outline data analysis procedures, and highlight potential limitations and ethical considerations for the study.

How to write the design section of a research paper?

In the design section of a research paper, describe the research methodology chosen and justify its selection. Outline the data collection methods, participants or samples, instruments used, and procedures followed. Detail any experimental controls, if applicable. Ensure clarity and precision to enable replication of the study by other researchers.

How to write a research design in methodology?

To write a research design in methodology, clearly outline the research strategy (e.g., experimental, survey, case study). Describe the sampling technique, participants, and data collection methods. Detail the procedures for data collection and analysis. Justify choices by linking them to research objectives, addressing reliability and validity.

You May Also Like

To help students organise their dissertation proposal paper correctly, we have put together detailed guidelines on how to structure a dissertation proposal.

Struggling to find relevant and up-to-date topics for your dissertation? Here is all you need to know if unsure about how to choose dissertation topic.

How to write a hypothesis for dissertation,? A hypothesis is a statement that can be tested with the help of experimental or theoretical research.

USEFUL LINKS

LEARNING RESOURCES

DMCA.com Protection Status

COMPANY DETAILS

Research-Prospect-Writing-Service

  • How It Works
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

About the author.

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Paper Citation

How to Cite Research Paper – All Formats and...

Data collection

Data Collection – Methods Types and Examples

Delimitations

Delimitations in Research – Types, Examples and...

Research Paper Formats

Research Paper Format – Types, Examples and...

Research Process

Research Process – Steps, Examples and Tips

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

helpful professor logo

45 Research Problem Examples & Inspiration

research problems examples and definition, explained below

A research problem is an issue of concern that is the catalyst for your research. It demonstrates why the research problem needs to take place in the first place.

Generally, you will write your research problem as a clear, concise, and focused statement that identifies an issue or gap in current knowledge that requires investigation.

The problem will likely also guide the direction and purpose of a study. Depending on the problem, you will identify a suitable methodology that will help address the problem and bring solutions to light.

Research Problem Examples

In the following examples, I’ll present some problems worth addressing, and some suggested theoretical frameworks and research methodologies that might fit with the study. Note, however, that these aren’t the only ways to approach the problems. Keep an open mind and consult with your dissertation supervisor!

chris

Psychology Problems

1. Social Media and Self-Esteem: “How does prolonged exposure to social media platforms influence the self-esteem of adolescents?”

  • Theoretical Framework : Social Comparison Theory
  • Methodology : Longitudinal study tracking adolescents’ social media usage and self-esteem measures over time, combined with qualitative interviews.

2. Sleep and Cognitive Performance: “How does sleep quality and duration impact cognitive performance in adults?”

  • Theoretical Framework : Cognitive Psychology
  • Methodology : Experimental design with controlled sleep conditions, followed by cognitive tests. Participant sleep patterns can also be monitored using actigraphy.

3. Childhood Trauma and Adult Relationships: “How does unresolved childhood trauma influence attachment styles and relationship dynamics in adulthood?

  • Theoretical Framework : Attachment Theory
  • Methodology : Mixed methods, combining quantitative measures of attachment styles with qualitative in-depth interviews exploring past trauma and current relationship dynamics.

4. Mindfulness and Stress Reduction: “How effective is mindfulness meditation in reducing perceived stress and physiological markers of stress in working professionals?”

  • Theoretical Framework : Humanist Psychology
  • Methodology : Randomized controlled trial comparing a group practicing mindfulness meditation to a control group, measuring both self-reported stress and physiological markers (e.g., cortisol levels).

5. Implicit Bias and Decision Making: “To what extent do implicit biases influence decision-making processes in hiring practices?

  • Theoretical Framework : Cognitive Dissonance Theory
  • Methodology : Experimental design using Implicit Association Tests (IAT) to measure implicit biases, followed by simulated hiring tasks to observe decision-making behaviors.

6. Emotional Regulation and Academic Performance: “How does the ability to regulate emotions impact academic performance in college students?”

  • Theoretical Framework : Cognitive Theory of Emotion
  • Methodology : Quantitative surveys measuring emotional regulation strategies, combined with academic performance metrics (e.g., GPA).

7. Nature Exposure and Mental Well-being: “Does regular exposure to natural environments improve mental well-being and reduce symptoms of anxiety and depression?”

  • Theoretical Framework : Biophilia Hypothesis
  • Methodology : Longitudinal study comparing mental health measures of individuals with regular nature exposure to those without, possibly using ecological momentary assessment for real-time data collection.

8. Video Games and Cognitive Skills: “How do action video games influence cognitive skills such as attention, spatial reasoning, and problem-solving?”

  • Theoretical Framework : Cognitive Load Theory
  • Methodology : Experimental design with pre- and post-tests, comparing cognitive skills of participants before and after a period of action video game play.

9. Parenting Styles and Child Resilience: “How do different parenting styles influence the development of resilience in children facing adversities?”

  • Theoretical Framework : Baumrind’s Parenting Styles Inventory
  • Methodology : Mixed methods, combining quantitative measures of resilience and parenting styles with qualitative interviews exploring children’s experiences and perceptions.

10. Memory and Aging: “How does the aging process impact episodic memory , and what strategies can mitigate age-related memory decline?

  • Theoretical Framework : Information Processing Theory
  • Methodology : Cross-sectional study comparing episodic memory performance across different age groups, combined with interventions like memory training or mnemonic strategies to assess potential improvements.

Education Problems

11. Equity and Access : “How do socioeconomic factors influence students’ access to quality education, and what interventions can bridge the gap?

  • Theoretical Framework : Critical Pedagogy
  • Methodology : Mixed methods, combining quantitative data on student outcomes with qualitative interviews and focus groups with students, parents, and educators.

12. Digital Divide : How does the lack of access to technology and the internet affect remote learning outcomes, and how can this divide be addressed?

  • Theoretical Framework : Social Construction of Technology Theory
  • Methodology : Survey research to gather data on access to technology, followed by case studies in selected areas.

13. Teacher Efficacy : “What factors contribute to teacher self-efficacy, and how does it impact student achievement?”

  • Theoretical Framework : Bandura’s Self-Efficacy Theory
  • Methodology : Quantitative surveys to measure teacher self-efficacy, combined with qualitative interviews to explore factors affecting it.

14. Curriculum Relevance : “How can curricula be made more relevant to diverse student populations, incorporating cultural and local contexts?”

  • Theoretical Framework : Sociocultural Theory
  • Methodology : Content analysis of curricula, combined with focus groups with students and teachers.

15. Special Education : “What are the most effective instructional strategies for students with specific learning disabilities?

  • Theoretical Framework : Social Learning Theory
  • Methodology : Experimental design comparing different instructional strategies, with pre- and post-tests to measure student achievement.

16. Dropout Rates : “What factors contribute to high school dropout rates, and what interventions can help retain students?”

  • Methodology : Longitudinal study tracking students over time, combined with interviews with dropouts.

17. Bilingual Education : “How does bilingual education impact cognitive development and academic achievement?

  • Methodology : Comparative study of students in bilingual vs. monolingual programs, using standardized tests and qualitative interviews.

18. Classroom Management: “What reward strategies are most effective in managing diverse classrooms and promoting a positive learning environment?

  • Theoretical Framework : Behaviorism (e.g., Skinner’s Operant Conditioning)
  • Methodology : Observational research in classrooms , combined with teacher interviews.

19. Standardized Testing : “How do standardized tests affect student motivation, learning, and curriculum design?”

  • Theoretical Framework : Critical Theory
  • Methodology : Quantitative analysis of test scores and student outcomes, combined with qualitative interviews with educators and students.

20. STEM Education : “What methods can be employed to increase interest and proficiency in STEM (Science, Technology, Engineering, and Mathematics) fields among underrepresented student groups?”

  • Theoretical Framework : Constructivist Learning Theory
  • Methodology : Experimental design comparing different instructional methods, with pre- and post-tests.

21. Social-Emotional Learning : “How can social-emotional learning be effectively integrated into the curriculum, and what are its impacts on student well-being and academic outcomes?”

  • Theoretical Framework : Goleman’s Emotional Intelligence Theory
  • Methodology : Mixed methods, combining quantitative measures of student well-being with qualitative interviews.

22. Parental Involvement : “How does parental involvement influence student achievement, and what strategies can schools use to increase it?”

  • Theoretical Framework : Reggio Emilia’s Model (Community Engagement Focus)
  • Methodology : Survey research with parents and teachers, combined with case studies in selected schools.

23. Early Childhood Education : “What are the long-term impacts of quality early childhood education on academic and life outcomes?”

  • Theoretical Framework : Erikson’s Stages of Psychosocial Development
  • Methodology : Longitudinal study comparing students with and without early childhood education, combined with observational research.

24. Teacher Training and Professional Development : “How can teacher training programs be improved to address the evolving needs of the 21st-century classroom?”

  • Theoretical Framework : Adult Learning Theory (Andragogy)
  • Methodology : Pre- and post-assessments of teacher competencies, combined with focus groups.

25. Educational Technology : “How can technology be effectively integrated into the classroom to enhance learning, and what are the potential drawbacks or challenges?”

  • Theoretical Framework : Technological Pedagogical Content Knowledge (TPACK)
  • Methodology : Experimental design comparing classrooms with and without specific technologies, combined with teacher and student interviews.

Sociology Problems

26. Urbanization and Social Ties: “How does rapid urbanization impact the strength and nature of social ties in communities?”

  • Theoretical Framework : Structural Functionalism
  • Methodology : Mixed methods, combining quantitative surveys on social ties with qualitative interviews in urbanizing areas.

27. Gender Roles in Modern Families: “How have traditional gender roles evolved in families with dual-income households?”

  • Theoretical Framework : Gender Schema Theory
  • Methodology : Qualitative interviews with dual-income families, combined with historical data analysis.

28. Social Media and Collective Behavior: “How does social media influence collective behaviors and the formation of social movements?”

  • Theoretical Framework : Emergent Norm Theory
  • Methodology : Content analysis of social media platforms, combined with quantitative surveys on participation in social movements.

29. Education and Social Mobility: “To what extent does access to quality education influence social mobility in socioeconomically diverse settings?”

  • Methodology : Longitudinal study tracking educational access and subsequent socioeconomic status, combined with qualitative interviews.

30. Religion and Social Cohesion: “How do religious beliefs and practices contribute to social cohesion in multicultural societies?”

  • Methodology : Quantitative surveys on religious beliefs and perceptions of social cohesion, combined with ethnographic studies.

31. Consumer Culture and Identity Formation: “How does consumer culture influence individual identity formation and personal values?”

  • Theoretical Framework : Social Identity Theory
  • Methodology : Mixed methods, combining content analysis of advertising with qualitative interviews on identity and values.

32. Migration and Cultural Assimilation: “How do migrants negotiate cultural assimilation and preservation of their original cultural identities in their host countries?”

  • Theoretical Framework : Post-Structuralism
  • Methodology : Qualitative interviews with migrants, combined with observational studies in multicultural communities.

33. Social Networks and Mental Health: “How do social networks, both online and offline, impact mental health and well-being?”

  • Theoretical Framework : Social Network Theory
  • Methodology : Quantitative surveys assessing social network characteristics and mental health metrics, combined with qualitative interviews.

34. Crime, Deviance, and Social Control: “How do societal norms and values shape definitions of crime and deviance, and how are these definitions enforced?”

  • Theoretical Framework : Labeling Theory
  • Methodology : Content analysis of legal documents and media, combined with ethnographic studies in diverse communities.

35. Technology and Social Interaction: “How has the proliferation of digital technology influenced face-to-face social interactions and community building?”

  • Theoretical Framework : Technological Determinism
  • Methodology : Mixed methods, combining quantitative surveys on technology use with qualitative observations of social interactions in various settings.

Nursing Problems

36. Patient Communication and Recovery: “How does effective nurse-patient communication influence patient recovery rates and overall satisfaction with care?”

  • Methodology : Quantitative surveys assessing patient satisfaction and recovery metrics, combined with observational studies on nurse-patient interactions.

37. Stress Management in Nursing: “What are the primary sources of occupational stress for nurses, and how can they be effectively managed to prevent burnout?”

  • Methodology : Mixed methods, combining quantitative measures of stress and burnout with qualitative interviews exploring personal experiences and coping mechanisms.

38. Hand Hygiene Compliance: “How effective are different interventions in improving hand hygiene compliance among nursing staff, and what are the barriers to consistent hand hygiene?”

  • Methodology : Experimental design comparing hand hygiene rates before and after specific interventions, combined with focus groups to understand barriers.

39. Nurse-Patient Ratios and Patient Outcomes: “How do nurse-patient ratios impact patient outcomes, including recovery rates, complications, and hospital readmissions?”

  • Methodology : Quantitative study analyzing patient outcomes in relation to staffing levels, possibly using retrospective chart reviews.

40. Continuing Education and Clinical Competence: “How does regular continuing education influence clinical competence and confidence among nurses?”

  • Methodology : Longitudinal study tracking nurses’ clinical skills and confidence over time as they engage in continuing education, combined with patient outcome measures to assess potential impacts on care quality.

Communication Studies Problems

41. Media Representation and Public Perception: “How does media representation of minority groups influence public perceptions and biases?”

  • Theoretical Framework : Cultivation Theory
  • Methodology : Content analysis of media representations combined with quantitative surveys assessing public perceptions and attitudes.

42. Digital Communication and Relationship Building: “How has the rise of digital communication platforms impacted the way individuals build and maintain personal relationships?”

  • Theoretical Framework : Social Penetration Theory
  • Methodology : Mixed methods, combining quantitative surveys on digital communication habits with qualitative interviews exploring personal relationship dynamics.

43. Crisis Communication Effectiveness: “What strategies are most effective in managing public relations during organizational crises, and how do they influence public trust?”

  • Theoretical Framework : Situational Crisis Communication Theory (SCCT)
  • Methodology : Case study analysis of past organizational crises, assessing communication strategies used and subsequent public trust metrics.

44. Nonverbal Cues in Virtual Communication: “How do nonverbal cues, such as facial expressions and gestures, influence message interpretation in virtual communication platforms?”

  • Theoretical Framework : Social Semiotics
  • Methodology : Experimental design using video conferencing tools, analyzing participants’ interpretations of messages with varying nonverbal cues.

45. Influence of Social Media on Political Engagement: “How does exposure to political content on social media platforms influence individuals’ political engagement and activism?”

  • Theoretical Framework : Uses and Gratifications Theory
  • Methodology : Quantitative surveys assessing social media habits and political engagement levels, combined with content analysis of political posts on popular platforms.

Before you Go: Tips and Tricks for Writing a Research Problem

This is an incredibly stressful time for research students. The research problem is going to lock you into a specific line of inquiry for the rest of your studies.

So, here’s what I tend to suggest to my students:

  • Start with something you find intellectually stimulating – Too many students choose projects because they think it hasn’t been studies or they’ve found a research gap. Don’t over-estimate the importance of finding a research gap. There are gaps in every line of inquiry. For now, just find a topic you think you can really sink your teeth into and will enjoy learning about.
  • Take 5 ideas to your supervisor – Approach your research supervisor, professor, lecturer, TA, our course leader with 5 research problem ideas and run each by them. The supervisor will have valuable insights that you didn’t consider that will help you narrow-down and refine your problem even more.
  • Trust your supervisor – The supervisor-student relationship is often very strained and stressful. While of course this is your project, your supervisor knows the internal politics and conventions of academic research. The depth of knowledge about how to navigate academia and get you out the other end with your degree is invaluable. Don’t underestimate their advice.

I’ve got a full article on all my tips and tricks for doing research projects right here – I recommend reading it:

  • 9 Tips on How to Choose a Dissertation Topic

Chris

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 5 Top Tips for Succeeding at University
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 50 Durable Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 100 Consumer Goods Examples
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd/ 30 Globalization Pros and Cons

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Logo for University of Southern Queensland

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Research design

Research design is a comprehensive plan for data collection in an empirical research project. It is a ‘blueprint’ for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process. The instrument development and sampling processes are described in the next two chapters, and the data collection process—which is often loosely called ‘research design’—is introduced in this chapter and is described in further detail in Chapters 9–12.

Broadly speaking, data collection methods can be grouped into two categories: positivist and interpretive. Positivist methods , such as laboratory experiments and survey research, are aimed at theory (or hypotheses) testing, while interpretive methods, such as action research and ethnography, are aimed at theory building. Positivist methods employ a deductive approach to research, starting with a theory and testing theoretical postulates using empirical data. In contrast, interpretive methods employ an inductive approach that starts with data and tries to derive a theory about the phenomenon of interest from the observed data. Often times, these methods are incorrectly equated with quantitative and qualitative research. Quantitative and qualitative methods refers to the type of data being collected—quantitative data involve numeric scores, metrics, and so on, while qualitative data includes interviews, observations, and so forth—and analysed (i.e., using quantitative techniques such as regression or qualitative techniques such as coding). Positivist research uses predominantly quantitative data, but can also use qualitative data. Interpretive research relies heavily on qualitative data, but can sometimes benefit from including quantitative data as well. Sometimes, joint use of qualitative and quantitative data may help generate unique insight into a complex social phenomenon that is not available from either type of data alone, and hence, mixed-mode designs that combine qualitative and quantitative data are often highly desirable.

Key attributes of a research design

The quality of research designs can be defined in terms of four key design attributes: internal validity, external validity, construct validity, and statistical conclusion validity.

Internal validity , also called causality, examines whether the observed change in a dependent variable is indeed caused by a corresponding change in a hypothesised independent variable, and not by variables extraneous to the research context. Causality requires three conditions: covariation of cause and effect (i.e., if cause happens, then effect also happens; if cause does not happen, effect does not happen), temporal precedence (cause must precede effect in time), and spurious correlation, or there is no plausible alternative explanation for the change. Certain research designs, such as laboratory experiments, are strong in internal validity by virtue of their ability to manipulate the independent variable (cause) via a treatment and observe the effect (dependent variable) of that treatment after a certain point in time, while controlling for the effects of extraneous variables. Other designs, such as field surveys, are poor in internal validity because of their inability to manipulate the independent variable (cause), and because cause and effect are measured at the same point in time which defeats temporal precedence making it equally likely that the expected effect might have influenced the expected cause rather than the reverse. Although higher in internal validity compared to other methods, laboratory experiments are by no means immune to threats of internal validity, and are susceptible to history, testing, instrumentation, regression, and other threats that are discussed later in the chapter on experimental designs. Nonetheless, different research designs vary considerably in their respective level of internal validity.

External validity or generalisability refers to whether the observed associations can be generalised from the sample to the population (population validity), or to other people, organisations, contexts, or time (ecological validity). For instance, can results drawn from a sample of financial firms in the United States be generalised to the population of financial firms (population validity) or to other firms within the United States (ecological validity)? Survey research, where data is sourced from a wide variety of individuals, firms, or other units of analysis, tends to have broader generalisability than laboratory experiments where treatments and extraneous variables are more controlled. The variation in internal and external validity for a wide range of research designs is shown in Figure 5.1.

Internal and external validity

Some researchers claim that there is a trade-off between internal and external validity—higher external validity can come only at the cost of internal validity and vice versa. But this is not always the case. Research designs such as field experiments, longitudinal field surveys, and multiple case studies have higher degrees of both internal and external validities. Personally, I prefer research designs that have reasonable degrees of both internal and external validities, i.e., those that fall within the cone of validity shown in Figure 5.1. But this should not suggest that designs outside this cone are any less useful or valuable. Researchers’ choice of designs are ultimately a matter of their personal preference and competence, and the level of internal and external validity they desire.

Construct validity examines how well a given measurement scale is measuring the theoretical construct that it is expected to measure. Many constructs used in social science research such as empathy, resistance to change, and organisational learning are difficult to define, much less measure. For instance, construct validity must ensure that a measure of empathy is indeed measuring empathy and not compassion, which may be difficult since these constructs are somewhat similar in meaning. Construct validity is assessed in positivist research based on correlational or factor analysis of pilot test data, as described in the next chapter.

Statistical conclusion validity examines the extent to which conclusions derived using a statistical procedure are valid. For example, it examines whether the right statistical method was used for hypotheses testing, whether the variables used meet the assumptions of that statistical test (such as sample size or distributional requirements), and so forth. Because interpretive research designs do not employ statistical tests, statistical conclusion validity is not applicable for such analysis. The different kinds of validity and where they exist at the theoretical/empirical levels are illustrated in Figure 5.2.

Different types of validity in scientific research

Improving internal and external validity

The best research designs are those that can ensure high levels of internal and external validity. Such designs would guard against spurious correlations, inspire greater faith in the hypotheses testing, and ensure that the results drawn from a small sample are generalisable to the population at large. Controls are required to ensure internal validity (causality) of research designs, and can be accomplished in five ways: manipulation, elimination, inclusion, and statistical control, and randomisation.

In manipulation , the researcher manipulates the independent variables in one or more levels (called ‘treatments’), and compares the effects of the treatments against a control group where subjects do not receive the treatment. Treatments may include a new drug or different dosage of drug (for treating a medical condition), a teaching style (for students), and so forth. This type of control is achieved in experimental or quasi-experimental designs, but not in non-experimental designs such as surveys. Note that if subjects cannot distinguish adequately between different levels of treatment manipulations, their responses across treatments may not be different, and manipulation would fail.

The elimination technique relies on eliminating extraneous variables by holding them constant across treatments, such as by restricting the study to a single gender or a single socioeconomic status. In the inclusion technique, the role of extraneous variables is considered by including them in the research design and separately estimating their effects on the dependent variable, such as via factorial designs where one factor is gender (male versus female). Such technique allows for greater generalisability, but also requires substantially larger samples. In statistical control , extraneous variables are measured and used as covariates during the statistical testing process.

Finally, the randomisation technique is aimed at cancelling out the effects of extraneous variables through a process of random sampling, if it can be assured that these effects are of a random (non-systematic) nature. Two types of randomisation are: random selection , where a sample is selected randomly from a population, and random assignment , where subjects selected in a non-random manner are randomly assigned to treatment groups.

Randomisation also ensures external validity, allowing inferences drawn from the sample to be generalised to the population from which the sample is drawn. Note that random assignment is mandatory when random selection is not possible because of resource or access constraints. However, generalisability across populations is harder to ascertain since populations may differ on multiple dimensions and you can only control for a few of those dimensions.

Popular research designs

As noted earlier, research designs can be classified into two categories—positivist and interpretive—depending on the goal of the research. Positivist designs are meant for theory testing, while interpretive designs are meant for theory building. Positivist designs seek generalised patterns based on an objective view of reality, while interpretive designs seek subjective interpretations of social phenomena from the perspectives of the subjects involved. Some popular examples of positivist designs include laboratory experiments, field experiments, field surveys, secondary data analysis, and case research, while examples of interpretive designs include case research, phenomenology, and ethnography. Note that case research can be used for theory building or theory testing, though not at the same time. Not all techniques are suited for all kinds of scientific research. Some techniques such as focus groups are best suited for exploratory research, others such as ethnography are best for descriptive research, and still others such as laboratory experiments are ideal for explanatory research. Following are brief descriptions of some of these designs. Additional details are provided in Chapters 9–12.

Experimental studies are those that are intended to test cause-effect relationships (hypotheses) in a tightly controlled setting by separating the cause from the effect in time, administering the cause to one group of subjects (the ‘treatment group’) but not to another group (‘control group’), and observing how the mean effects vary between subjects in these two groups. For instance, if we design a laboratory experiment to test the efficacy of a new drug in treating a certain ailment, we can get a random sample of people afflicted with that ailment, randomly assign them to one of two groups (treatment and control groups), administer the drug to subjects in the treatment group, but only give a placebo (e.g., a sugar pill with no medicinal value) to subjects in the control group. More complex designs may include multiple treatment groups, such as low versus high dosage of the drug or combining drug administration with dietary interventions. In a true experimental design , subjects must be randomly assigned to each group. If random assignment is not followed, then the design becomes quasi-experimental . Experiments can be conducted in an artificial or laboratory setting such as at a university (laboratory experiments) or in field settings such as in an organisation where the phenomenon of interest is actually occurring (field experiments). Laboratory experiments allow the researcher to isolate the variables of interest and control for extraneous variables, which may not be possible in field experiments. Hence, inferences drawn from laboratory experiments tend to be stronger in internal validity, but those from field experiments tend to be stronger in external validity. Experimental data is analysed using quantitative statistical techniques. The primary strength of the experimental design is its strong internal validity due to its ability to isolate, control, and intensively examine a small number of variables, while its primary weakness is limited external generalisability since real life is often more complex (i.e., involving more extraneous variables) than contrived lab settings. Furthermore, if the research does not identify ex ante relevant extraneous variables and control for such variables, such lack of controls may hurt internal validity and may lead to spurious correlations.

Field surveys are non-experimental designs that do not control for or manipulate independent variables or treatments, but measure these variables and test their effects using statistical methods. Field surveys capture snapshots of practices, beliefs, or situations from a random sample of subjects in field settings through a survey questionnaire or less frequently, through a structured interview. In cross-sectional field surveys , independent and dependent variables are measured at the same point in time (e.g., using a single questionnaire), while in longitudinal field surveys , dependent variables are measured at a later point in time than the independent variables. The strengths of field surveys are their external validity (since data is collected in field settings), their ability to capture and control for a large number of variables, and their ability to study a problem from multiple perspectives or using multiple theories. However, because of their non-temporal nature, internal validity (cause-effect relationships) are difficult to infer, and surveys may be subject to respondent biases (e.g., subjects may provide a ‘socially desirable’ response rather than their true response) which further hurts internal validity.

Secondary data analysis is an analysis of data that has previously been collected and tabulated by other sources. Such data may include data from government agencies such as employment statistics from the U.S. Bureau of Labor Services or development statistics by countries from the United Nations Development Program, data collected by other researchers (often used in meta-analytic studies), or publicly available third-party data, such as financial data from stock markets or real-time auction data from eBay. This is in contrast to most other research designs where collecting primary data for research is part of the researcher’s job. Secondary data analysis may be an effective means of research where primary data collection is too costly or infeasible, and secondary data is available at a level of analysis suitable for answering the researcher’s questions. The limitations of this design are that the data might not have been collected in a systematic or scientific manner and hence unsuitable for scientific research, since the data was collected for a presumably different purpose, they may not adequately address the research questions of interest to the researcher, and interval validity is problematic if the temporal precedence between cause and effect is unclear.

Case research is an in-depth investigation of a problem in one or more real-life settings (case sites) over an extended period of time. Data may be collected using a combination of interviews, personal observations, and internal or external documents. Case studies can be positivist in nature (for hypotheses testing) or interpretive (for theory building). The strength of this research method is its ability to discover a wide variety of social, cultural, and political factors potentially related to the phenomenon of interest that may not be known in advance. Analysis tends to be qualitative in nature, but heavily contextualised and nuanced. However, interpretation of findings may depend on the observational and integrative ability of the researcher, lack of control may make it difficult to establish causality, and findings from a single case site may not be readily generalised to other case sites. Generalisability can be improved by replicating and comparing the analysis in other case sites in a multiple case design .

Focus group research is a type of research that involves bringing in a small group of subjects (typically six to ten people) at one location, and having them discuss a phenomenon of interest for a period of one and a half to two hours. The discussion is moderated and led by a trained facilitator, who sets the agenda and poses an initial set of questions for participants, makes sure that the ideas and experiences of all participants are represented, and attempts to build a holistic understanding of the problem situation based on participants’ comments and experiences. Internal validity cannot be established due to lack of controls and the findings may not be generalised to other settings because of the small sample size. Hence, focus groups are not generally used for explanatory or descriptive research, but are more suited for exploratory research.

Action research assumes that complex social phenomena are best understood by introducing interventions or ‘actions’ into those phenomena and observing the effects of those actions. In this method, the researcher is embedded within a social context such as an organisation and initiates an action—such as new organisational procedures or new technologies—in response to a real problem such as declining profitability or operational bottlenecks. The researcher’s choice of actions must be based on theory, which should explain why and how such actions may cause the desired change. The researcher then observes the results of that action, modifying it as necessary, while simultaneously learning from the action and generating theoretical insights about the target problem and interventions. The initial theory is validated by the extent to which the chosen action successfully solves the target problem. Simultaneous problem solving and insight generation is the central feature that distinguishes action research from all other research methods, and hence, action research is an excellent method for bridging research and practice. This method is also suited for studying unique social problems that cannot be replicated outside that context, but it is also subject to researcher bias and subjectivity, and the generalisability of findings is often restricted to the context where the study was conducted.

Ethnography is an interpretive research design inspired by anthropology that emphasises that research phenomenon must be studied within the context of its culture. The researcher is deeply immersed in a certain culture over an extended period of time—eight months to two years—and during that period, engages, observes, and records the daily life of the studied culture, and theorises about the evolution and behaviours in that culture. Data is collected primarily via observational techniques, formal and informal interaction with participants in that culture, and personal field notes, while data analysis involves ‘sense-making’. The researcher must narrate her experience in great detail so that readers may experience that same culture without necessarily being there. The advantages of this approach are its sensitiveness to the context, the rich and nuanced understanding it generates, and minimal respondent bias. However, this is also an extremely time and resource-intensive approach, and findings are specific to a given culture and less generalisable to other cultures.

Selecting research designs

Given the above multitude of research designs, which design should researchers choose for their research? Generally speaking, researchers tend to select those research designs that they are most comfortable with and feel most competent to handle, but ideally, the choice should depend on the nature of the research phenomenon being studied. In the preliminary phases of research, when the research problem is unclear and the researcher wants to scope out the nature and extent of a certain research problem, a focus group (for an individual unit of analysis) or a case study (for an organisational unit of analysis) is an ideal strategy for exploratory research. As one delves further into the research domain, but finds that there are no good theories to explain the phenomenon of interest and wants to build a theory to fill in the unmet gap in that area, interpretive designs such as case research or ethnography may be useful designs. If competing theories exist and the researcher wishes to test these different theories or integrate them into a larger theory, positivist designs such as experimental design, survey research, or secondary data analysis are more appropriate.

Regardless of the specific research design chosen, the researcher should strive to collect quantitative and qualitative data using a combination of techniques such as questionnaires, interviews, observations, documents, or secondary data. For instance, even in a highly structured survey questionnaire, intended to collect quantitative data, the researcher may leave some room for a few open-ended questions to collect qualitative data that may generate unexpected insights not otherwise available from structured quantitative data alone. Likewise, while case research employ mostly face-to-face interviews to collect most qualitative data, the potential and value of collecting quantitative data should not be ignored. As an example, in a study of organisational decision-making processes, the case interviewer can record numeric quantities such as how many months it took to make certain organisational decisions, how many people were involved in that decision process, and how many decision alternatives were considered, which can provide valuable insights not otherwise available from interviewees’ narrative responses. Irrespective of the specific research design employed, the goal of the researcher should be to collect as much and as diverse data as possible that can help generate the best possible insights about the phenomenon of interest.

Social Science Research: Principles, Methods and Practices (Revised edition) Copyright © 2019 by Anol Bhattacherjee is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Grad Coach

The Research Problem & Statement

What they are & how to write them (with examples)

By: Derek Jansen (MBA) | Expert Reviewed By: Eunice Rautenbach (DTech) | March 2023

If you’re new to academic research, you’re bound to encounter the concept of a “ research problem ” or “ problem statement ” fairly early in your learning journey. Having a good research problem is essential, as it provides a foundation for developing high-quality research, from relatively small research papers to a full-length PhD dissertations and theses.

In this post, we’ll unpack what a research problem is and how it’s related to a problem statement . We’ll also share some examples and provide a step-by-step process you can follow to identify and evaluate study-worthy research problems for your own project.

Overview: Research Problem 101

What is a research problem.

  • What is a problem statement?

Where do research problems come from?

  • How to find a suitable research problem
  • Key takeaways

A research problem is, at the simplest level, the core issue that a study will try to solve or (at least) examine. In other words, it’s an explicit declaration about the problem that your dissertation, thesis or research paper will address. More technically, it identifies the research gap that the study will attempt to fill (more on that later).

Let’s look at an example to make the research problem a little more tangible.

To justify a hypothetical study, you might argue that there’s currently a lack of research regarding the challenges experienced by first-generation college students when writing their dissertations [ PROBLEM ] . As a result, these students struggle to successfully complete their dissertations, leading to higher-than-average dropout rates [ CONSEQUENCE ]. Therefore, your study will aim to address this lack of research – i.e., this research problem [ SOLUTION ].

A research problem can be theoretical in nature, focusing on an area of academic research that is lacking in some way. Alternatively, a research problem can be more applied in nature, focused on finding a practical solution to an established problem within an industry or an organisation. In other words, theoretical research problems are motivated by the desire to grow the overall body of knowledge , while applied research problems are motivated by the need to find practical solutions to current real-world problems (such as the one in the example above).

As you can probably see, the research problem acts as the driving force behind any study , as it directly shapes the research aims, objectives and research questions , as well as the research approach. Therefore, it’s really important to develop a very clearly articulated research problem before you even start your research proposal . A vague research problem will lead to unfocused, potentially conflicting research aims, objectives and research questions .

Free Webinar: How To Find A Dissertation Research Topic

What is a research problem statement?

As the name suggests, a problem statement (within a research context, at least) is an explicit statement that clearly and concisely articulates the specific research problem your study will address. While your research problem can span over multiple paragraphs, your problem statement should be brief , ideally no longer than one paragraph . Importantly, it must clearly state what the problem is (whether theoretical or practical in nature) and how the study will address it.

Here’s an example of a statement of the problem in a research context:

Rural communities across Ghana lack access to clean water, leading to high rates of waterborne illnesses and infant mortality. Despite this, there is little research investigating the effectiveness of community-led water supply projects within the Ghanaian context. Therefore, this study aims to investigate the effectiveness of such projects in improving access to clean water and reducing rates of waterborne illnesses in these communities.

As you can see, this problem statement clearly and concisely identifies the issue that needs to be addressed (i.e., a lack of research regarding the effectiveness of community-led water supply projects) and the research question that the study aims to answer (i.e., are community-led water supply projects effective in reducing waterborne illnesses?), all within one short paragraph.

Need a helping hand?

example of research design problem

Wherever there is a lack of well-established and agreed-upon academic literature , there is an opportunity for research problems to arise, since there is a paucity of (credible) knowledge. In other words, research problems are derived from research gaps . These gaps can arise from various sources, including the emergence of new frontiers or new contexts, as well as disagreements within the existing research.

Let’s look at each of these scenarios:

New frontiers – new technologies, discoveries or breakthroughs can open up entirely new frontiers where there is very little existing research, thereby creating fresh research gaps. For example, as generative AI technology became accessible to the general public in 2023, the full implications and knock-on effects of this were (or perhaps, still are) largely unknown and therefore present multiple avenues for researchers to explore.

New contexts – very often, existing research tends to be concentrated on specific contexts and geographies. Therefore, even within well-studied fields, there is often a lack of research within niche contexts. For example, just because a study finds certain results within a western context doesn’t mean that it would necessarily find the same within an eastern context. If there’s reason to believe that results may vary across these geographies, a potential research gap emerges.

Disagreements – within many areas of existing research, there are (quite naturally) conflicting views between researchers, where each side presents strong points that pull in opposing directions. In such cases, it’s still somewhat uncertain as to which viewpoint (if any) is more accurate. As a result, there is room for further research in an attempt to “settle” the debate.

Of course, many other potential scenarios can give rise to research gaps, and consequently, research problems, but these common ones are a useful starting point. If you’re interested in research gaps, you can learn more here .

How to find a research problem

Given that research problems flow from research gaps , finding a strong research problem for your research project means that you’ll need to first identify a clear research gap. Below, we’ll present a four-step process to help you find and evaluate potential research problems.

If you’ve read our other articles about finding a research topic , you’ll find the process below very familiar as the research problem is the foundation of any study . In other words, finding a research problem is much the same as finding a research topic.

Step 1 – Identify your area of interest

Naturally, the starting point is to first identify a general area of interest . Chances are you already have something in mind, but if not, have a look at past dissertations and theses within your institution to get some inspiration. These present a goldmine of information as they’ll not only give you ideas for your own research, but they’ll also help you see exactly what the norms and expectations are for these types of projects.

At this stage, you don’t need to get super specific. The objective is simply to identify a couple of potential research areas that interest you. For example, if you’re undertaking research as part of a business degree, you may be interested in social media marketing strategies for small businesses, leadership strategies for multinational companies, etc.

Depending on the type of project you’re undertaking, there may also be restrictions or requirements regarding what topic areas you’re allowed to investigate, what type of methodology you can utilise, etc. So, be sure to first familiarise yourself with your institution’s specific requirements and keep these front of mind as you explore potential research ideas.

Step 2 – Review the literature and develop a shortlist

Once you’ve decided on an area that interests you, it’s time to sink your teeth into the literature . In other words, you’ll need to familiarise yourself with the existing research regarding your interest area. Google Scholar is a good starting point for this, as you can simply enter a few keywords and quickly get a feel for what’s out there. Keep an eye out for recent literature reviews and systematic review-type journal articles, as these will provide a good overview of the current state of research.

At this stage, you don’t need to read every journal article from start to finish . A good strategy is to pay attention to the abstract, intro and conclusion , as together these provide a snapshot of the key takeaways. As you work your way through the literature, keep an eye out for what’s missing – in other words, what questions does the current research not answer adequately (or at all)? Importantly, pay attention to the section titled “ further research is needed ”, typically found towards the very end of each journal article. This section will specifically outline potential research gaps that you can explore, based on the current state of knowledge (provided the article you’re looking at is recent).

Take the time to engage with the literature and develop a big-picture understanding of the current state of knowledge. Reviewing the literature takes time and is an iterative process , but it’s an essential part of the research process, so don’t cut corners at this stage.

As you work through the review process, take note of any potential research gaps that are of interest to you. From there, develop a shortlist of potential research gaps (and resultant research problems) – ideally 3 – 5 options that interest you.

The relationship between the research problem and research gap

Step 3 – Evaluate your potential options

Once you’ve developed your shortlist, you’ll need to evaluate your options to identify a winner. There are many potential evaluation criteria that you can use, but we’ll outline three common ones here: value, practicality and personal appeal.

Value – a good research problem needs to create value when successfully addressed. Ask yourself:

  • Who will this study benefit (e.g., practitioners, researchers, academia)?
  • How will it benefit them specifically?
  • How much will it benefit them?

Practicality – a good research problem needs to be manageable in light of your resources. Ask yourself:

  • What data will I need access to?
  • What knowledge and skills will I need to undertake the analysis?
  • What equipment or software will I need to process and/or analyse the data?
  • How much time will I need?
  • What costs might I incur?

Personal appeal – a research project is a commitment, so the research problem that you choose needs to be genuinely attractive and interesting to you. Ask yourself:

  • How appealing is the prospect of solving this research problem (on a scale of 1 – 10)?
  • Why, specifically, is it attractive (or unattractive) to me?
  • Does the research align with my longer-term goals (e.g., career goals, educational path, etc)?

Depending on how many potential options you have, you may want to consider creating a spreadsheet where you numerically rate each of the options in terms of these criteria. Remember to also include any criteria specified by your institution . From there, tally up the numbers and pick a winner.

Step 4 – Craft your problem statement

Once you’ve selected your research problem, the final step is to craft a problem statement. Remember, your problem statement needs to be a concise outline of what the core issue is and how your study will address it. Aim to fit this within one paragraph – don’t waffle on. Have a look at the problem statement example we mentioned earlier if you need some inspiration.

Key Takeaways

We’ve covered a lot of ground. Let’s do a quick recap of the key takeaways:

  • A research problem is an explanation of the issue that your study will try to solve. This explanation needs to highlight the problem , the consequence and the solution or response.
  • A problem statement is a clear and concise summary of the research problem , typically contained within one paragraph.
  • Research problems emerge from research gaps , which themselves can emerge from multiple potential sources, including new frontiers, new contexts or disagreements within the existing literature.
  • To find a research problem, you need to first identify your area of interest , then review the literature and develop a shortlist, after which you’ll evaluate your options, select a winner and craft a problem statement .

example of research design problem

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Research limitations vs delimitations

I APPRECIATE YOUR CONCISE AND MIND-CAPTIVATING INSIGHTS ON THE STATEMENT OF PROBLEMS. PLEASE I STILL NEED SOME SAMPLES RELATED TO SUICIDES.

Poonam

Very pleased and appreciate clear information.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

example of research design problem

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the methods, such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

FREE TRIAL         LEARN MORE

MORE LIKE THIS

customer experience automation

Customer Experience Automation: Benefits and Best Tools

Apr 1, 2024

market segmentation tools

7 Best Market Segmentation Tools in 2024

in-app feedback tools

In-App Feedback Tools: How to Collect, Uses & 14 Best Tools

Mar 29, 2024

Customer Journey Analytics Software

11 Best Customer Journey Analytics Software in 2024

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • 10 Research Question Examples to Guide Your Research Project

10 Research Question Examples to Guide your Research Project

Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023.

The research question is one of the most important parts of your research paper , thesis or dissertation . It’s important to spend some time assessing and refining your question before you get started.

The exact form of your question will depend on a few things, such as the length of your project, the type of research you’re conducting, the topic , and the research problem . However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue.

Once you’ve read our guide on how to write a research question , you can use these examples to craft your own.

Note that the design of your research question can depend on what method you are pursuing. Here are a few options for qualitative, quantitative, and statistical research questions.

Other interesting articles

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr. Retrieved April 2, 2024, from https://www.scribbr.com/research-process/research-question-examples/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, writing strong research questions | criteria & examples, how to choose a dissertation topic | 8 steps to follow, evaluating sources | methods & examples, what is your plagiarism score.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Research process
  • How to Define a Research Problem | Ideas & Examples

How to Define a Research Problem | Ideas & Examples

Published on 8 November 2022 by Shona McCombes and Tegan George.

A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge.

Some research will do both of these things, but usually the research problem focuses on one or the other. The type of research problem you choose depends on your broad topic of interest and the type of research you think will fit best.

This article helps you identify and refine a research problem. When writing your research proposal or introduction , formulate it as a problem statement and/or research questions .

Table of contents

Why is the research problem important, step 1: identify a broad problem area, step 2: learn more about the problem, frequently asked questions about research problems.

Having an interesting topic isn’t a strong enough basis for academic research. Without a well-defined research problem, you are likely to end up with an unfocused and unmanageable project.

You might end up repeating what other people have already said, trying to say too much, or doing research without a clear purpose and justification. You need a clear problem in order to do research that contributes new and relevant insights.

Whether you’re planning your thesis , starting a research paper , or writing a research proposal , the research problem is the first step towards knowing exactly what you’ll do and why.

Prevent plagiarism, run a free check.

As you read about your topic, look for under-explored aspects or areas of concern, conflict, or controversy. Your goal is to find a gap that your research project can fill.

Practical research problems

If you are doing practical research, you can identify a problem by reading reports, following up on previous research, or talking to people who work in the relevant field or organisation. You might look for:

  • Issues with performance or efficiency
  • Processes that could be improved
  • Areas of concern among practitioners
  • Difficulties faced by specific groups of people

Examples of practical research problems

Voter turnout in New England has been decreasing, in contrast to the rest of the country.

The HR department of a local chain of restaurants has a high staff turnover rate.

A non-profit organisation faces a funding gap that means some of its programs will have to be cut.

Theoretical research problems

If you are doing theoretical research, you can identify a research problem by reading existing research, theory, and debates on your topic to find a gap in what is currently known about it. You might look for:

  • A phenomenon or context that has not been closely studied
  • A contradiction between two or more perspectives
  • A situation or relationship that is not well understood
  • A troubling question that has yet to be resolved

Examples of theoretical research problems

The effects of long-term Vitamin D deficiency on cardiovascular health are not well understood.

The relationship between gender, race, and income inequality has yet to be closely studied in the context of the millennial gig economy.

Historians of Scottish nationalism disagree about the role of the British Empire in the development of Scotland’s national identity.

Next, you have to find out what is already known about the problem, and pinpoint the exact aspect that your research will address.

Context and background

  • Who does the problem affect?
  • Is it a newly-discovered problem, or a well-established one?
  • What research has already been done?
  • What, if any, solutions have been proposed?
  • What are the current debates about the problem? What is missing from these debates?

Specificity and relevance

  • What particular place, time, and/or group of people will you focus on?
  • What aspects will you not be able to tackle?
  • What will the consequences be if the problem is not resolved?

Example of a specific research problem

A local non-profit organisation focused on alleviating food insecurity has always fundraised from its existing support base. It lacks understanding of how best to target potential new donors. To be able to continue its work, the organisation requires research into more effective fundraising strategies.

Once you have narrowed down your research problem, the next step is to formulate a problem statement , as well as your research questions or hypotheses .

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement.

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

The way you present your research problem in your introduction varies depending on the nature of your research paper . A research paper that presents a sustained argument will usually encapsulate this argument in a thesis statement .

A research paper designed to present the results of empirical research tends to present a research question that it seeks to answer. It may also include a hypothesis – a prediction that will be confirmed or disproved by your research.

Research objectives describe what you intend your research project to accomplish.

They summarise the approach and purpose of the project and help to focus your research.

Your objectives should appear in the introduction of your research paper , at the end of your problem statement .

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. & George, T. (2022, November 08). How to Define a Research Problem | Ideas & Examples. Scribbr. Retrieved 2 April 2024, from https://www.scribbr.co.uk/the-research-process/define-research-problem/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, dissertation & thesis outline | example & free templates, example theoretical framework of a dissertation or thesis, how to write a strong hypothesis | guide & examples.

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • The Research Problem/Question
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation. A research problem does not state how to do something, offer a vague or broad proposition, or present a value question. In the social and behavioral sciences, studies are most often framed around examining a problem that needs to be understood and resolved in order to improve society and the human condition.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Guba, Egon G., and Yvonna S. Lincoln. “Competing Paradigms in Qualitative Research.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, editors. (Thousand Oaks, CA: Sage, 1994), pp. 105-117; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

Importance of...

The purpose of a problem statement is to:

  • Introduce the reader to the importance of the topic being studied . The reader is oriented to the significance of the study.
  • Anchors the research questions, hypotheses, or assumptions to follow . It offers a concise statement about the purpose of your paper.
  • Place the topic into a particular context that defines the parameters of what is to be investigated.
  • Provide the framework for reporting the results and indicates what is probably necessary to conduct the study and explain how the findings will present this information.

In the social sciences, the research problem establishes the means by which you must answer the "So What?" question. This declarative question refers to a research problem surviving the relevancy test [the quality of a measurement procedure that provides repeatability and accuracy]. Note that answering the "So What?" question requires a commitment on your part to not only show that you have reviewed the literature, but that you have thoroughly considered the significance of the research problem and its implications applied to creating new knowledge and understanding or informing practice.

To survive the "So What" question, problem statements should possess the following attributes:

  • Clarity and precision [a well-written statement does not make sweeping generalizations and irresponsible pronouncements; it also does include unspecific determinates like "very" or "giant"],
  • Demonstrate a researchable topic or issue [i.e., feasibility of conducting the study is based upon access to information that can be effectively acquired, gathered, interpreted, synthesized, and understood],
  • Identification of what would be studied, while avoiding the use of value-laden words and terms,
  • Identification of an overarching question or small set of questions accompanied by key factors or variables,
  • Identification of key concepts and terms,
  • Articulation of the study's conceptual boundaries or parameters or limitations,
  • Some generalizability in regards to applicability and bringing results into general use,
  • Conveyance of the study's importance, benefits, and justification [i.e., regardless of the type of research, it is important to demonstrate that the research is not trivial],
  • Does not have unnecessary jargon or overly complex sentence constructions; and,
  • Conveyance of more than the mere gathering of descriptive data providing only a snapshot of the issue or phenomenon under investigation.

Bryman, Alan. “The Research Question in Social Research: What is its Role?” International Journal of Social Research Methodology 10 (2007): 5-20; Brown, Perry J., Allen Dyer, and Ross S. Whaley. "Recreation Research—So What?" Journal of Leisure Research 5 (1973): 16-24; Castellanos, Susie. Critical Writing and Thinking. The Writing Center. Dean of the College. Brown University; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Selwyn, Neil. "‘So What?’…A Question that Every Journal Article Needs to Answer." Learning, Media, and Technology 39 (2014): 1-5; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518.

Structure and Writing Style

I.  Types and Content

There are four general conceptualizations of a research problem in the social sciences:

  • Casuist Research Problem -- this type of problem relates to the determination of right and wrong in questions of conduct or conscience by analyzing moral dilemmas through the application of general rules and the careful distinction of special cases.
  • Difference Research Problem -- typically asks the question, “Is there a difference between two or more groups or treatments?” This type of problem statement is used when the researcher compares or contrasts two or more phenomena. This a common approach to defining a problem in the clinical social sciences or behavioral sciences.
  • Descriptive Research Problem -- typically asks the question, "what is...?" with the underlying purpose to describe the significance of a situation, state, or existence of a specific phenomenon. This problem is often associated with revealing hidden or understudied issues.
  • Relational Research Problem -- suggests a relationship of some sort between two or more variables to be investigated. The underlying purpose is to investigate specific qualities or characteristics that may be connected in some way.

A problem statement in the social sciences should contain :

  • A lead-in that helps ensure the reader will maintain interest over the study,
  • A declaration of originality [e.g., mentioning a knowledge void or a lack of clarity about a topic that will be revealed in the literature review of prior research],
  • An indication of the central focus of the study [establishing the boundaries of analysis], and
  • An explanation of the study's significance or the benefits to be derived from investigating the research problem.

NOTE :   A statement describing the research problem of your paper should not be viewed as a thesis statement that you may be familiar with from high school. Given the content listed above, a description of the research problem is usually a short paragraph in length.

II.  Sources of Problems for Investigation

The identification of a problem to study can be challenging, not because there's a lack of issues that could be investigated, but due to the challenge of formulating an academically relevant and researchable problem which is unique and does not simply duplicate the work of others. To facilitate how you might select a problem from which to build a research study, consider these sources of inspiration:

Deductions from Theory This relates to deductions made from social philosophy or generalizations embodied in life and in society that the researcher is familiar with. These deductions from human behavior are then placed within an empirical frame of reference through research. From a theory, the researcher can formulate a research problem or hypothesis stating the expected findings in certain empirical situations. The research asks the question: “What relationship between variables will be observed if theory aptly summarizes the state of affairs?” One can then design and carry out a systematic investigation to assess whether empirical data confirm or reject the hypothesis, and hence, the theory.

Interdisciplinary Perspectives Identifying a problem that forms the basis for a research study can come from academic movements and scholarship originating in disciplines outside of your primary area of study. This can be an intellectually stimulating exercise. A review of pertinent literature should include examining research from related disciplines that can reveal new avenues of exploration and analysis. An interdisciplinary approach to selecting a research problem offers an opportunity to construct a more comprehensive understanding of a very complex issue that any single discipline may be able to provide.

Interviewing Practitioners The identification of research problems about particular topics can arise from formal interviews or informal discussions with practitioners who provide insight into new directions for future research and how to make research findings more relevant to practice. Discussions with experts in the field, such as, teachers, social workers, health care providers, lawyers, business leaders, etc., offers the chance to identify practical, “real world” problems that may be understudied or ignored within academic circles. This approach also provides some practical knowledge which may help in the process of designing and conducting your study.

Personal Experience Don't undervalue your everyday experiences or encounters as worthwhile problems for investigation. Think critically about your own experiences and/or frustrations with an issue facing society or related to your community, your neighborhood, your family, or your personal life. This can be derived, for example, from deliberate observations of certain relationships for which there is no clear explanation or witnessing an event that appears harmful to a person or group or that is out of the ordinary.

Relevant Literature The selection of a research problem can be derived from a thorough review of pertinent research associated with your overall area of interest. This may reveal where gaps exist in understanding a topic or where an issue has been understudied. Research may be conducted to: 1) fill such gaps in knowledge; 2) evaluate if the methodologies employed in prior studies can be adapted to solve other problems; or, 3) determine if a similar study could be conducted in a different subject area or applied in a different context or to different study sample [i.e., different setting or different group of people]. Also, authors frequently conclude their studies by noting implications for further research; read the conclusion of pertinent studies because statements about further research can be a valuable source for identifying new problems to investigate. The fact that a researcher has identified a topic worthy of further exploration validates the fact it is worth pursuing.

III.  What Makes a Good Research Statement?

A good problem statement begins by introducing the broad area in which your research is centered, gradually leading the reader to the more specific issues you are investigating. The statement need not be lengthy, but a good research problem should incorporate the following features:

1.  Compelling Topic The problem chosen should be one that motivates you to address it but simple curiosity is not a good enough reason to pursue a research study because this does not indicate significance. The problem that you choose to explore must be important to you, but it must also be viewed as important by your readers and to a the larger academic and/or social community that could be impacted by the results of your study. 2.  Supports Multiple Perspectives The problem must be phrased in a way that avoids dichotomies and instead supports the generation and exploration of multiple perspectives. A general rule of thumb in the social sciences is that a good research problem is one that would generate a variety of viewpoints from a composite audience made up of reasonable people. 3.  Researchability This isn't a real word but it represents an important aspect of creating a good research statement. It seems a bit obvious, but you don't want to find yourself in the midst of investigating a complex research project and realize that you don't have enough prior research to draw from for your analysis. There's nothing inherently wrong with original research, but you must choose research problems that can be supported, in some way, by the resources available to you. If you are not sure if something is researchable, don't assume that it isn't if you don't find information right away--seek help from a librarian !

NOTE:   Do not confuse a research problem with a research topic. A topic is something to read and obtain information about, whereas a problem is something to be solved or framed as a question raised for inquiry, consideration, or solution, or explained as a source of perplexity, distress, or vexation. In short, a research topic is something to be understood; a research problem is something that needs to be investigated.

IV.  Asking Analytical Questions about the Research Problem

Research problems in the social and behavioral sciences are often analyzed around critical questions that must be investigated. These questions can be explicitly listed in the introduction [i.e., "This study addresses three research questions about women's psychological recovery from domestic abuse in multi-generational home settings..."], or, the questions are implied in the text as specific areas of study related to the research problem. Explicitly listing your research questions at the end of your introduction can help in designing a clear roadmap of what you plan to address in your study, whereas, implicitly integrating them into the text of the introduction allows you to create a more compelling narrative around the key issues under investigation. Either approach is appropriate.

The number of questions you attempt to address should be based on the complexity of the problem you are investigating and what areas of inquiry you find most critical to study. Practical considerations, such as, the length of the paper you are writing or the availability of resources to analyze the issue can also factor in how many questions to ask. In general, however, there should be no more than four research questions underpinning a single research problem.

Given this, well-developed analytical questions can focus on any of the following:

  • Highlights a genuine dilemma, area of ambiguity, or point of confusion about a topic open to interpretation by your readers;
  • Yields an answer that is unexpected and not obvious rather than inevitable and self-evident;
  • Provokes meaningful thought or discussion;
  • Raises the visibility of the key ideas or concepts that may be understudied or hidden;
  • Suggests the need for complex analysis or argument rather than a basic description or summary; and,
  • Offers a specific path of inquiry that avoids eliciting generalizations about the problem.

NOTE:   Questions of how and why concerning a research problem often require more analysis than questions about who, what, where, and when. You should still ask yourself these latter questions, however. Thinking introspectively about the who, what, where, and when of a research problem can help ensure that you have thoroughly considered all aspects of the problem under investigation and helps define the scope of the study in relation to the problem.

V.  Mistakes to Avoid

Beware of circular reasoning! Do not state the research problem as simply the absence of the thing you are suggesting. For example, if you propose the following, "The problem in this community is that there is no hospital," this only leads to a research problem where:

  • The need is for a hospital
  • The objective is to create a hospital
  • The method is to plan for building a hospital, and
  • The evaluation is to measure if there is a hospital or not.

This is an example of a research problem that fails the "So What?" test . In this example, the problem does not reveal the relevance of why you are investigating the fact there is no hospital in the community [e.g., perhaps there's a hospital in the community ten miles away]; it does not elucidate the significance of why one should study the fact there is no hospital in the community [e.g., that hospital in the community ten miles away has no emergency room]; the research problem does not offer an intellectual pathway towards adding new knowledge or clarifying prior knowledge [e.g., the county in which there is no hospital already conducted a study about the need for a hospital, but it was conducted ten years ago]; and, the problem does not offer meaningful outcomes that lead to recommendations that can be generalized for other situations or that could suggest areas for further research [e.g., the challenges of building a new hospital serves as a case study for other communities].

Alvesson, Mats and Jörgen Sandberg. “Generating Research Questions Through Problematization.” Academy of Management Review 36 (April 2011): 247-271 ; Choosing and Refining Topics. Writing@CSU. Colorado State University; D'Souza, Victor S. "Use of Induction and Deduction in Research in Social Sciences: An Illustration." Journal of the Indian Law Institute 24 (1982): 655-661; Ellis, Timothy J. and Yair Levy Nova. "Framework of Problem-Based Research: A Guide for Novice Researchers on the Development of a Research-Worthy Problem." Informing Science: the International Journal of an Emerging Transdiscipline 11 (2008); How to Write a Research Question. The Writing Center. George Mason University; Invention: Developing a Thesis Statement. The Reading/Writing Center. Hunter College; Problem Statements PowerPoint Presentation. The Writing Lab and The OWL. Purdue University; Procter, Margaret. Using Thesis Statements. University College Writing Centre. University of Toronto; Shoket, Mohd. "Research Problem: Identification and Formulation." International Journal of Research 1 (May 2014): 512-518; Trochim, William M.K. Problem Formulation. Research Methods Knowledge Base. 2006; Thesis and Purpose Statements. The Writer’s Handbook. Writing Center. University of Wisconsin, Madison; Thesis Statements. The Writing Center. University of North Carolina; Tips and Examples for Writing Thesis Statements. The Writing Lab and The OWL. Purdue University; Pardede, Parlindungan. “Identifying and Formulating the Research Problem." Research in ELT: Module 4 (October 2018): 1-13; Walk, Kerry. Asking an Analytical Question. [Class handout or worksheet]. Princeton University; White, Patrick. Developing Research Questions: A Guide for Social Scientists . New York: Palgrave McMillan, 2009; Li, Yanmei, and Sumei Zhang. "Identifying the Research Problem." In Applied Research Methods in Urban and Regional Planning . (Cham, Switzerland: Springer International Publishing, 2022), pp. 13-21.

  • << Previous: Background Information
  • Next: Theoretical Framework >>
  • Last Updated: Apr 1, 2024 9:56 AM
  • URL: https://libguides.usc.edu/writingguide

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Home Safety

This Device Saved My House From an Electrical Fire. And You Might Be Able to Get It for Free.

A Ting electricity monitoring device plugged into an electrical wall outlet.

I was in my car, miles from home, when a panicky phone alert shook me out of my NPR haze: An electrical fire hazard had been detected at my house. Immediately I called my wife, who told me the house wasn’t burning. Then I called the number in the alert to determine what it was all about.

The alert came from Ting , an electricity-monitoring service whose device I’d plugged into an outlet a few weeks earlier and almost forgotten about. The Ting agent who answered my call calmed me down a little but also assured me that the device had detected a serious fire hazard. He even told me where the hazard was located and said I should call my utility company right away.

The next morning I had a visit from my electric company. The electrician gave me a skeptical harrumph when I showed him the information on the Ting smartphone app, but he inspected the issue anyway. About 20 minutes later he came back to me, quite surprised, and confirmed that the Ting Sensor had indeed found a big problem. A team returned that day to put a temporary fix on it, and over the next several weeks, contractors dug up my front yard to replace the main power line, at no expense to me.

example of research design problem

Ting by Whisker Labs

Electrical fire protection.

This easy-to-use (and frequently free) device monitors your home for electrical fire hazards and gives you more peace of mind.

Buying Options

What is ting, and what does it do.

Front view of a Ting electricity-monitoring device plugged into an electrical wall outlet.

The Ting Sensor is a device about the size of a smart plug or baby monitor. Once you plug it into a wall outlet, connect it to Wi-Fi, and set it up with the accompanying app, it goes into a learning mode for about a week, where it monitors your home to establish a baseline of electrical activity.

After that it starts looking for fire hazards in the form of electrical arcs, which happen when electricity jumps from one place to another when it isn’t supposed to. Arcs are a leading cause of home electrical fires and can develop in overloaded outlets, in damaged or old wiring, in lamps or light switches, or even (as in my case) in the main connection to your house. Just like other things in your home, components of your electrical system can age and wear out over time from normal use.

After the electric company resolved my incident, I talked to Bob Marshall, CEO of Whisker Labs, the maker of the Ting Sensor. He said that each electrical problem has a unique signature, which the Ting Sensor is designed to detect. For instance, an arc caused by a malfunctioning electric blanket looks different to the Ting Sensor than an arc caused by a faulty neutral connection.

The Ting Sensor takes 30 million measurements a second, looking for anomalies. When it identifies a problem it recognizes, the owner receives an alert through the Ting app that provides advice on what to do. Depending on the issue, a live member of the company’s Fire Safety Team may contact you to walk you through whatever remediation steps might be required.

In addition, if Ting finds a problem, the company will coordinate service by a licensed electrician and cover costs to remedy the problem up to $1,000. In my case, since the problem was the electrical connection to my home, the power company did the work at its own cost.

Screenshot of the Ting app featuring a view of a home’s electrical health.

The simple Ting app features a main view showing your home’s electrical health in the form of a real-time voltage meter—sort of like taking your blood pressure. It tells you whether your home’s voltage is within normal range (the target is 120 volts, but between 108 V and 132 V is considered normal). Voltages outside that range, particularly for long periods, can damage appliances and may be an indication of a fire hazard. The app also shows any notifications from Ting and a history of readings and notifications. That’s about it. For most people, if your electrical system is working properly, you never have to look at the app.

In my case, I started getting readings outside the normal voltage range right away, and almost every day I received a notification, but it took a few weeks for Ting to analyze the pattern and discern what the problem was. Small dips and surges aren’t totally unusual, and I had noticed flickering lights in my house for a while (and ignored them).

What Ting doesn’t do

The Ting Sensor isn’t a smoke alarm or a replacement for one. If you knock over a candle or start a cooking fire, it won’t sound an alarm or send an alert to the fire department. Its purpose is to notify you about problems that have the potential start a fire, not to let you know about fires currently in progress. You still need multiple smoke detectors around your home, and we highly recommend a smart smoke detector .

If you live in an apartment, you can use Ting only if your unit has its own utility meter. If you’re not sure, consult with your building’s management.

Ting doesn’t integrate with other smart-home platforms such as Alexa or HomeKit; if you have a lot of smart-home devices and like to group them in one app, keep in mind that you still need the Ting app too. Because you interact with Ting only when the sensor detects a problem, there really isn’t much reason to integrate it with other systems anyway. The Ting Sensor doesn’t have a built-in alarm and can’t integrate with one, so the only way to get notifications is via your smartphone.

Although the device does monitor your electrical system, it doesn’t monitor energy usage, so it can’t tell you, say, that your aging fridge is using too much electricity or that other members of your household never turn the lights off . It also can’t turn your power off if it senses an immediate problem.

Another thing that isn’t a dealbreaker but is something to consider if you don’t have a lot of outlets in your home: The Ting Sensor is large enough to cover both receptacles in an outlet, so you can’t plug a lamp or something else in the same place.

How you can get one

I received my Ting Sensor the way most people do: for free from my homeowner’s insurance provider. My insurer sent me a few emails offering the device plus the monitoring service at no cost. Ting partners with insurers including Liberty Mutual, Nationwide, Pure, and State Farm to offer the devices to customers.

Insurance companies aren’t doing this out of the kindness of their hearts. Prevention is cheaper than rebuilding; the up-front costs are much less than paying out an insurance claim. This business model is similar to how most insurance companies are willing to pay toward the cost of a home security system.

Customers of Pure and State Farm can go to this page on the Ting site to get the device and enroll in the monitoring service. Liberty Mutual and Nationwide customers should contact their agent.

If your insurance company doesn’t offer Ting, you can buy the Ting Sensor directly from the manufacturer for $100, which includes one year of monitoring. After that, monitoring requires a $50 annual fee.

Privacy and security snapshot

  • Whisker Labs requires a unique username and password but does not support two-factor authentication except during initial product registration.
  • Whisker Labs may collect personal information, such as your name, address, email address, and phone number, which it requires to contact you in the event of a fire hazard.
  • The company says that data is stored in a secure cloud environment and fully encrypted, and that access is monitored and limited to key personnel.
  • Customer data is not shared with or sold to third parties.
  • For more, view Whisker Labs’s privacy policy .

This article was edited by Jon Chase.

Meet your guide

example of research design problem

Grant Clauser

Senior Editor

Grant Clauser is the senior editor for the smart-home and audio/video categories. He has been reporting on technology since 1999 and has been an invited speaker at events including CES and CEDIA. He has completed certification classes from THX, ISF, and Control4. He also teaches poetry classes. Really.

Further reading

A smart display with a video call showing a senior citizen on the screen sits on a desk alongside toys and craft supplies.

The Best Smart Home Devices to Help Aging in Place

by Rachel Cericola

Smart-home devices can make it easier for you to help an older loved one age safely and securely in their own home.

A square-shaped Ecobee smart thermostat set to 70 degrees.

The Best Smart Thermostat

by Roy Furchgott

Smart thermostats like our pick, the Ecobee Premium , can make your home’s HVAC more energy efficient without sacrificing your comfort.

The D-Link Wi-Fi Water Leak Sensor and Alarm Starter Kit.

The Best Smart Water-Leak Detector

A smart water-leak detector can alert you to small plumbing leaks before they turn into big, expensive nightmares.

An illustration showing emergency preparedness supplies.

The Best Emergency Preparedness Supplies

by Ellen Airhart

After hundreds of hours of research, we narrowed down the items that could prove indispensable in a natural disaster—and most are helpful in everyday life, too.

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

How Gamification Can Boost Employee Engagement

  • Adrian R. Camilleri
  • Ananta Neelim

example of research design problem

Research on what works — and what to avoid.

Employee disengagement is a persistent problem, and attempts to inject excitement often fall flat. However, gamification — using elements of games to motivate — has serious potential when thoughtfully executed. This article explores the psychology behind gamification, successful examples, and how to leverage probabilistic rewards (like lotteries tied to performance) to increase employee motivation.

A core responsibility of every manager is to motivate and engage their employees. This is because disengaged employees show lower productivity and exhibit higher absenteeism. Traditional approaches to increasing employee engagement include giving workers more  autonomy , a higher sense of  belonging and purpose , and  additional growth opportunities . Nevertheless, employee disengagement in the workplace hit a nine-year high in 2022 in the U.S. ,  with approximately three-fourths of employees reporting being disengaged.

  • AC Adrian Camilleri is an associate professor of marketing at the University of Technology Sydney (UTS) Business School. He uses experimental and survey research methods to understand, explain, and predict the cognitive processes underlying judgment and decision-making, and the application of this knowledge to environmental, financial, managerial, and consumption contexts.
  • AN Ananta Neelim is a senior lecturer in economics at the University of Tasmania. His research specializes in employing behavioral economics to understand and tackle issues of diversity, discrimination, and workplace productivity.

Partner Center

IMAGES

  1. 25 Types of Research Designs (2023)

    example of research design problem

  2. Research problem: Everything a market researcher needs to know

    example of research design problem

  3. Qualitative Research Paper How To Write Statement Of The Problem

    example of research design problem

  4. How to write a research design paper

    example of research design problem

  5. Research Problem Statement Examples

    example of research design problem

  6. Quantitative Research Design Types

    example of research design problem

VIDEO

  1. Types of Research Design- Exploratory Research Design

  2. Needs of Experimental Design

  3. Introduction to research design #researchmethodology #research

  4. Research Design & Question

  5. Implications of sample Design

  6. Research Design

COMMENTS

  1. What Is a Research Design

    A research design is a strategy for answering your research question using empirical data. Creating a research design means making decisions about: Your overall research objectives and approach. Whether you'll rely on primary research or secondary research. Your sampling methods or criteria for selecting subjects. Your data collection methods.

  2. Research Design

    Step 1: Consider your aims and approach. Step 2: Choose a type of research design. Step 3: Identify your population and sampling method. Step 4: Choose your data collection methods. Step 5: Plan your data collection procedures. Step 6: Decide on your data analysis strategies. Frequently asked questions.

  3. What Is Research Design? 8 Types + Examples

    Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data. Research designs for quantitative studies include descriptive, correlational, experimental and quasi-experimenta l designs. Research designs for qualitative studies include phenomenological ...

  4. Research Problem

    Identifying a research problem is important because it helps to establish the direction of the research and sets the stage for the research design, methods, and analysis. It also ensures that the research is relevant and contributes to the existing body of knowledge in the field. A well-formulated research problem should:

  5. Research Design: What is Research Design, Types, Methods, and Examples

    There are various types of research design, each suited to different research questions and objectives: • Quantitative Research: Focuses on numerical data and statistical analysis to quantify relationships and patterns. Common methods include surveys, experiments, and observational studies. • Qualitative Research: Emphasizes understanding ...

  6. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  7. What is a Research Design? Definition, Types, Methods and Examples

    Research design methods refer to the systematic approaches and techniques used to plan, structure, and conduct a research study. The choice of research design method depends on the research questions, objectives, and the nature of the study. Here are some key research design methods commonly used in various fields: 1.

  8. How to define a research question or a design problem

    Introduction. Many texts state that identifying a good research question (or, equivalently, a design problem) is important for research. Wikipedia, for example, starts (as of writing this text, at least) with the following two sentences: "A research question is 'a question that a research project sets out to answer'.

  9. How to Write a Research Design

    Step 2: Data Type you Need for Research. Decide on the type of data you need for your research. The type of data you need to collect depends on your research questions or research hypothesis. Two types of research data can be used to answer the research questions: Primary Data Vs. Secondary Data.

  10. Research Design

    An Example of Research Design could be: Research question: Does the use of social media affect the academic performance of ... and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data ...

  11. Organizing Your Social Sciences Research Paper

    Before beginning your paper, you need to decide how you plan to design the study.. The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection ...

  12. 45 Research Problem Examples & Inspiration (2024)

    45 Research Problem Examples & Inspiration. A research problem is an issue of concern that is the catalyst for your research. It demonstrates why the research problem needs to take place in the first place. Generally, you will write your research problem as a clear, concise, and focused statement that identifies an issue or gap in current ...

  13. Research design

    Research design is a comprehensive plan for data collection in an empirical research project. It is a 'blueprint' for empirical research aimed at answering specific research questions or testing specific hypotheses, and must specify at least three processes: the data collection process, the instrument development process, and the sampling process.

  14. Design Flaws to Avoid

    The research design establishes the decision-making processes, conceptual structure of investigation, and methods of analysis used to address the study's research problem. ... Proximity Sampling-- this refers to using a sample that is based not on the purpose of your study, but rather, is based on the proximity of a particular group of subjects ...

  15. Study designs: Part 1

    The study design used to answer a particular research question depends on the nature of the question and the availability of resources. In this article, which is the first part of a series on "study designs," we provide an overview of research study designs and their classification. The subsequent articles will focus on individual designs.

  16. The Research Problem & Problem Statement

    A research problem can be theoretical in nature, focusing on an area of academic research that is lacking in some way. Alternatively, a research problem can be more applied in nature, focused on finding a practical solution to an established problem within an industry or an organisation. In other words, theoretical research problems are motivated by the desire to grow the overall body of ...

  17. What is a Research Problem? Characteristics, Types, and Examples

    A research problem is a gap in existing knowledge, a contradiction in an established theory, or a real-world challenge that a researcher aims to address in their research. It is at the heart of any scientific inquiry, directing the trajectory of an investigation. The statement of a problem orients the reader to the importance of the topic, sets ...

  18. Research Design: What it is, Elements & Types

    Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success. Creating a research topic explains the type of research (experimental,survey research,correlational ...

  19. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  20. How to Define a Research Problem

    A research problem is a specific issue or gap in existing knowledge that you aim to address in your research. You may choose to look for practical problems aimed at contributing to change, or theoretical problems aimed at expanding knowledge. Some research will do both of these things, but usually the research problem focuses on one or the other.

  21. The Research Problem/Question

    A research problem is a definite or clear expression [statement] about an area of concern, a condition to be improved upon, a difficulty to be eliminated, or a troubling question that exists in scholarly literature, in theory, or within existing practice that points to a need for meaningful understanding and deliberate investigation.

  22. (PDF) Research Design

    Defining a research problem is crucial in defining the quality of the answers and determines the exact research method used. A quantitative experimental design uses deductive reasoning to arrive ...

  23. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  24. This Device Saved My House From an Electrical Fire. And You Might Be

    Electrical problems can silently fester in your house before they turn into fires. Ting helps spot a problem before it's too late.

  25. How Gamification Can Boost Employee Engagement

    He uses experimental and survey research methods to understand, explain, and predict the cognitive processes underlying judgment and decision-making, and the application of this knowledge to ...