Essay on Greenhouse Effect for Students and Children

500 words essay on greenhouse effect.

The past month, July of 2019, has been the hottest month in the records of human history. This means on a global scale, the average climate and temperatures are now seen a steady rise year-on-year. The culprits of this climate change phenomenon are mainly pollution , overpopulation and general disregard for the environment by the human race. However, we can specifically point to two phenomenons that contribute to the rising temperatures – global warming and the greenhouse effect. Let us see more about them in this essay on the greenhouse effect.

The earth’s surface is surrounded by an envelope of the air we call the atmosphere. Gasses in this atmosphere trap the infrared radiation of the sun which generates heat on the surface of the earth. In an ideal scenario, this effect causes the temperature on the earth to be around 15c. And without such a phenomenon life could not sustain on earth.

However, due to rapid industrialization and rising pollution, the emission of greenhouse gases has increased multifold over the last few centuries. This, in turn, causes more radiation to be trapped in the earth’s atmosphere. And as a consequence, the temperature on the surface of the planet steadily rises. This is what we refer to when we talk about the man-made greenhouse effect.

Essay on Greenhouse Effect

Causes of Greenhouse Effect

As we saw earlier in this essay on the greenhouse effect, the phenomenon itself is naturally occurring and an important one to sustain life on our planet. However, there is an anthropogenic part of this effect. This is caused due to the activities of man.

The most prominent among this is the burning of fossil fuels . Our industries, vehicles, factories, etc are overly reliant on fossil fuels for their energy and power. This has caused an immense increase in emissions of harmful greenhouse gasses such as carbon dioxide, carbon monoxide, sulfides, etc. This has multiplied the greenhouse effect and we have seen a steady rise in surface temperatures.

Other harmful activities such as deforestation, excessive urbanization, harmful agricultural practices, etc. have also led to the release of excess carbon dioxide and made the greenhouse effect more prominent. Another harmful element that causes harm to the environment is CFC (chlorofluorocarbon).

Get the huge list of more than 500 Essay Topics and Ideas

Some Effects of Greenhouse Effect

Even after overwhelming proof, there are still people who deny the existence of climate change and its devastating pitfalls. However, there are so many effects and pieces of evidence of climate change it is now undeniable. The surface temperature of the planet has risen by 1c since the 19th century. This change is largely due to the increased emissions of carbon dioxide. The most harm has been seen in the past 35 years in particular.

The oceans and the seas have absorbed a lot of this increased heat. The surfaces of these oceans have seen a rise in temperatures of 0.4c. The ice sheets and glaciers are also rapidly shrinking. The rate at which the ice caps melt in Antartica has tripled in the last decade itself. These alarming statistics and facts are proof of the major disaster we face in the form of climate change.

600 Words Essay on Greenhouse Effect

A Greenhouse , as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back. The greenhouse gases or the molecules present in the atmosphere of the Earth trap the heat of the Sun. This is what we know as the Greenhouse effect.

greenhouse effect essay

Greenhouse Gases

These gases or molecules are naturally present in the atmosphere of the Earth. However, they are also released due to human activities. These gases play a vital role in trapping the heat of the Sun and thereby gradually warming the temperature of Earth. The Earth is habitable for humans due to the equilibrium of the energy it receives and the energy that it reflects back to space.

Global Warming and the Greenhouse Effect

The trapping and emission of radiation by the greenhouse gases present in the atmosphere is known as the Greenhouse effect. Without this process, Earth will either be very cold or very hot, which will make life impossible on Earth.

The greenhouse effect is a natural phenomenon. Due to wrong human activities such as clearing forests, burning fossil fuels, releasing industrial gas in the atmosphere, etc., the emission of greenhouse gases is increasing.

Thus, this has, in turn, resulted in global warming . We can see the effects due to these like extreme droughts, floods, hurricanes, landslides, rise in sea levels, etc. Global warming is adversely affecting our biodiversity, ecosystem and the life of the people. Also, the Himalayan glaciers are melting due to this.

There are broadly two causes of the greenhouse effect:

I. Natural Causes

  • Some components that are present on the Earth naturally produce greenhouse gases. For example, carbon dioxide is present in the oceans, decaying of plants due to forest fires and the manure of some animals produces methane , and nitrogen oxide is present in water and soil.
  • Water Vapour raises the temperature by absorbing energy when there is a rise in the humidity.
  • Humans and animals breathe oxygen and release carbon dioxide in the atmosphere.

II. Man-made Causes

  • Burning of fossil fuels such as oil and coal emits carbon dioxide in the atmosphere which causes an excessive greenhouse effect. Also, while digging a coal mine or an oil well, methane is released from the Earth, which pollutes it.
  • Trees with the help of the process of photosynthesis absorb the carbon dioxide and release oxygen. Due to deforestation the carbon dioxide level is continuously increasing. This is also a major cause of the increase in the greenhouse effect.
  • In order to get maximum yield, the farmers use artificial nitrogen in their fields. This releases nitrogen oxide in the atmosphere.
  • Industries release harmful gases in the atmosphere like methane, carbon dioxide , and fluorine gas. These also enhance global warming.

All the countries of the world are facing the ill effects of global warming. The Government and non-governmental organizations need to take appropriate and concrete measures to control the emission of toxic greenhouse gases. They need to promote the greater use of renewable energy and forestation. Also, it is the duty of every individual to protect the environment and not use such means that harm the atmosphere. It is the need of the hour to protect our environment else that day is not far away when life on Earth will also become difficult.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

November 26, 2007

10 Solutions for Climate Change

Ten possibilities for staving off catastrophic climate change

By David Biello

how to prevent greenhouse effect essay

Mark Garlick Getty Images

The enormity of global warming can be daunting and dispiriting. What can one person, or even one nation, do on their own to slow and reverse climate change ? But just as ecologist Stephen Pacala and physicist Robert Socolow, both at Princeton University, came up with 15 so-called " wedges " for nations to utilize toward this goal—each of which is challenging but feasible and, in some combination, could reduce greenhouse gas emissions to safer levels —there are personal lifestyle changes that you can make too that, in some combination, can help reduce your carbon impact. Not all are right for everybody. Some you may already be doing or absolutely abhor. But implementing just a few of them could make a difference.

Forego Fossil Fuels —The first challenge is eliminating the burning of coal , oil and, eventually, natural gas. This is perhaps the most daunting challenge as denizens of richer nations literally eat, wear, work, play and even sleep on the products made from such fossilized sunshine. And citizens of developing nations want and arguably deserve the same comforts, which are largely thanks to the energy stored in such fuels.

On supporting science journalism

If you're enjoying this article, consider supporting our award-winning journalism by subscribing . By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today.

Oil is the lubricant of the global economy, hidden inside such ubiquitous items as plastic and corn, and fundamental to the transportation of both consumers and goods. Coal is the substrate, supplying roughly half of the electricity used in the U.S. and nearly that much worldwide—a percentage that is likely to grow, according to the International Energy Agency. There are no perfect solutions for reducing dependence on fossil fuels (for example, carbon neutral biofuels can drive up the price of food and lead to forest destruction, and while nuclear power does not emit greenhouse gases, it does produce radioactive waste), but every bit counts.

So try to employ alternatives when possible—plant-derived plastics, biodiesel, wind power—and to invest in the change, be it by divesting from oil stocks or investing in companies practicing carbon capture and storage.

Infrastructure Upgrade —Buildings worldwide contribute around one third of all greenhouse gas emissions (43 percent in the U.S. alone), even though investing in thicker insulation and other cost-effective, temperature-regulating steps can save money in the long run. Electric grids are at capacity or overloaded, but power demands continue to rise. And bad roads can lower the fuel economy of even the most efficient vehicle. Investing in new infrastructure, or radically upgrading existing highways and transmission lines, would help cut greenhouse gas emissions and drive economic growth in developing countries.

Of course, it takes a lot of cement, a major source of greenhouse gas emissions, to construct new buildings and roads. The U.S. alone contributed 50.7 million metric tons of carbon dioxide to the atmosphere in 2005 from cement production, which requires heating limestone and other ingredients to 1,450 degrees Celsius (2,642 degrees Fahrenheit). Mining copper and other elements needed for electrical wiring and transmission also causes globe-warming pollution.

But energy-efficient buildings and improved cement-making processes (such as using alternative fuels to fire up the kiln) could reduce greenhouse gas emissions in the developed world and prevent them in the developing world.

Move Closer to Work —Transportation is the second leading source of greenhouse gas emissions in the U.S. (burning a single gallon of gasoline produces 20 pounds of CO 2 ). But it doesn't have to be that way.

One way to dramatically curtail transportation fuel needs is to move closer to work, use mass transit, or switch to walking, cycling or some other mode of transport that does not require anything other than human energy. There is also the option of working from home and telecommuting several days a week.

Cutting down on long-distance travel would also help, most notably airplane flights, which are one of the fastest growing sources of greenhouse gas emissions and a source that arguably releases such emissions in the worst possible spot (higher in the atmosphere). Flights are also one of the few sources of globe-warming pollution for which there isn't already a viable alternative: jets rely on kerosene, because it packs the most energy per pound, allowing them to travel far and fast, yet it takes roughly 10 gallons of oil to make one gallon of JetA fuel. Restricting flying to only critical, long-distance trips—in many parts of the world, trains can replace planes for short- to medium-distance trips—would help curb airplane emissions.

Consume Less —The easiest way to cut back on greenhouse gas emissions is simply to buy less stuff. Whether by forgoing an automobile or employing a reusable grocery sack, cutting back on consumption results in fewer fossil fuels being burned to extract, produce and ship products around the globe.

Think green when making purchases. For instance, if you are in the market for a new car, buy one that will last the longest and have the least impact on the environment. Thus, a used vehicle with a hybrid engine offers superior fuel efficiency over the long haul while saving the environmental impact of new car manufacture.

Paradoxically, when purchasing essentials, such as groceries, buying in bulk can reduce the amount of packaging—plastic wrapping, cardboard boxes and other unnecessary materials. Sometimes buying more means consuming less.

Be Efficient —A potentially simpler and even bigger impact can be made by doing more with less. Citizens of many developed countries are profligate wasters of energy, whether by speeding in a gas-guzzling sport-utility vehicle or leaving the lights on when not in a room.

Good driving—and good car maintenance, such as making sure tires are properly inflated—can limit the amount of greenhouse gas emissions from a vehicle and, perhaps more importantly, lower the frequency of payment at the pump.

Similarly, employing more efficient refrigerators, air conditioners and other appliances, such as those rated highly under the U.S. Environmental Protection Agency's Energy Star program, can cut electric bills while something as simple as weatherproofing the windows of a home can reduce heating and cooling bills. Such efforts can also be usefully employed at work, whether that means installing more efficient turbines at the power plant or turning the lights off when you leave the office .

Eat Smart, Go Vegetarian? —Corn grown in the U.S. requires barrels of oil for the fertilizer to grow it and the diesel fuel to harvest and transport it. Some grocery stores stock organic produce that do not require such fertilizers, but it is often shipped from halfway across the globe. And meat, whether beef, chicken or pork, requires pounds of feed to produce a pound of protein.

Choosing food items that balance nutrition, taste and ecological impact is no easy task. Foodstuffs often bear some nutritional information, but there is little to reveal how far a head of lettuce, for example, has traveled.

University of Chicago researchers estimate that each meat-eating American produces 1.5 tons more greenhouse gases through their food choice than do their vegetarian peers. It would also take far less land to grow the crops necessary to feed humans than livestock, allowing more room for planting trees.

Stop Cutting Down Trees —Every year, 33 million acres of forests are cut down . Timber harvesting in the tropics alone contributes 1.5 billion metric tons of carbon to the atmosphere. That represents 20 percent of human-made greenhouse gas emissions and a source that could be avoided relatively easily.

Improved agricultural practices along with paper recycling and forest management—balancing the amount of wood taken out with the amount of new trees growing—could quickly eliminate this significant chunk of emissions.

And when purchasing wood products, such as furniture or flooring, buy used goods or, failing that, wood certified to have been sustainably harvested. The Amazon and other forests are not just the lungs of the earth, they may also be humanity's best short-term hope for limiting climate change.

Unplug —Believe it or not, U.S. citizens spend more money on electricity to power devices when off than when on. Televisions, stereo equipment, computers, battery chargers and a host of other gadgets and appliances consume more energy when seemingly switched off, so unplug them instead.

Purchasing energy-efficient gadgets can also save both energy and money—and thus prevent more greenhouse gas emissions. To take but one example, efficient battery chargers could save more than one billion kilowatt-hours of electricity—$100 million at today's electricity prices—and thus prevent the release of more than one million metric tons of greenhouse gases.

Swapping old incandescent lightbulbs for more efficient replacements, such as compact fluorescents (warning: these lightbulbs contain mercury and must be properly disposed of at the end of their long life), would save billions of kilowatt-hours. In fact, according to the EPA, replacing just one incandescent lightbulb in every American home would save enough energy to provide electricity to three million American homes.

One Child —There are at least 6.6 billion people living today, a number that is predicted by the United Nations to grow to at least nine billion by mid-century. The U.N. Environmental Program estimates that it requires 54 acres to sustain an average human being today—food, clothing and other resources extracted from the planet. Continuing such population growth seems unsustainable.

Falling birth rates in some developed and developing countries (a significant portion of which are due to government-imposed limits on the number of children a couple can have) have begun to reduce or reverse the population explosion. It remains unclear how many people the planet can comfortably sustain, but it is clear that per capita energy consumption must go down if climate change is to be controlled.

Ultimately, a one child per couple rule is not sustainable either and there is no perfect number for human population. But it is clear that more humans means more greenhouse gas emissions.

Future Fuels —Replacing fossil fuels may prove the great challenge of the 21st century. Many contenders exist, ranging from ethanol derived from crops to hydrogen electrolyzed out of water, but all of them have some drawbacks, too, and none are immediately available at the scale needed.

Biofuels can have a host of negative impacts, from driving up food prices to sucking up more energy than they produce. Hydrogen must be created, requiring either reforming natural gas or electricity to crack water molecules. Biodiesel hybrid electric vehicles (that can plug into the grid overnight) may offer the best transportation solution in the short term, given the energy density of diesel and the carbon neutral ramifications of fuel from plants as well as the emissions of electric engines. A recent study found that the present amount of electricity generation in the U.S. could provide enough energy for the country's entire fleet of automobiles to switch to plug-in hybrids , reducing greenhouse gas emissions in the process.

But plug-in hybrids would still rely on electricity, now predominantly generated by burning dirty coal. Massive investment in low-emission energy generation, whether solar-thermal power or nuclear fission , would be required to radically reduce greenhouse gas emissions. And even more speculative energy sources—hyperefficient photovoltaic cells, solar energy stations in orbit or even fusion—may ultimately be required.

The solutions above offer the outline of a plan to personally avoid contributing to global warming. But should such individual and national efforts fail, there is another, potentially desperate solution:

Experiment Earth —Climate change represents humanity's first planetwide experiment. But, if all else fails, it may not be the last. So-called geoengineering , radical interventions to either block sunlight or reduce greenhouse gases, is a potential last resort for addressing the challenge of climate change.

Among the ideas: releasing sulfate particles in the air to mimic the cooling effects of a massive volcanic eruption; placing millions of small mirrors or lenses in space to deflect sunlight; covering portions of the planet with reflective films to bounce sunlight back into space; fertilizing the oceans with iron or other nutrients to enable plankton to absorb more carbon; and increasing cloud cover or the reflectivity of clouds that already form.

All may have unintended consequences, making the solution worse than the original problem. But it is clear that at least some form of geoengineering will likely be required: capturing carbon dioxide before it is released and storing it in some fashion, either deep beneath the earth, at the bottom of the ocean or in carbonate minerals. Such carbon capture and storage is critical to any serious effort to combat climate change.

Additional reporting by Larry Greenemeier and Nikhil Swaminathan .

The Greenhouse Effect and our Planet

The greenhouse effect happens when certain gases, which are known as greenhouse gases, accumulate in Earth’s atmosphere. Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases.

Biology, Ecology, Earth Science, Geography, Human Geography

Loading ...

Newsela

The greenhouse effect happens when certain gases , which are known as greenhouse gases , accumulate in Earth’s atmosphere . Greenhouse gases include carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), ozone (O 3 ), and fluorinated gases.

Greenhouse gases allow the sun’s light to shine onto Earth’s surface, and then the gases , such as ozone , trap the heat that reflects back from the surface inside Earth’s atmosphere . The gases act like the glass walls of a  greenhouse —thus the name, greenhouse gas .

According to scientists, the average temperature of Earth would drop from 14˚C (57˚F) to as low as –18˚C (–0.4˚F), without the greenhouse effect .

Some greenhouse gases come from natural sources, for example, evaporation  adds water vapor to the atmosphere . Animals and plants release carbon dioxide when they respire, or breathe. Methane is released naturally from decomposition. There is evidence that suggests methane is released in low-oxygen environments , such as  swamps or landfills . Volcanoes —both on land and under the ocean —release greenhouse gases , so periods of high volcanic activity tend to be warmer.

Since the  Industrial Revolution  of the late 1700s and early 1800s, people have been releasing larger quantities of greenhouse gases into the atmosphere. That amount has skyrocketed in the past century. Greenhouse gas emissions increased 70 percent between 1970 and 2004. Emissions of CO 2 , rose by about 80 percent during that time.

The amount of CO 2 in the atmosphere far exceeds the naturally occurring range seen during the last 650,000 years.

Most of the CO 2 that people put into the atmosphere comes from burning  fossil fuels . Cars, trucks, t rains , and planes all burn fossil fuels. Many electric power plants do as well. Another way humans release CO 2 into the atmosphere is by cutting down  forests , because trees contain large amounts of carbon.

People add methane to the atmosphere through  livestock  farming, landfills , and fossil fuel production such as  coal mining  and natural gas processing. Nitrous oxide comes from  agriculture  and fossil fuel burning. Fluorinated gases include chlorofluoro carbons (CFCs),  hydrochlorofluorocarbons (HCFCs), and hydrofluorocarbons (HFCs). They are produced during the manufacturing of refrigeration and cooling products and through aerosols.

All of these human activities add greenhouse gases to the atmosphere . As the level of these gases rises, so does the  temperature  of Earth. The rise in Earth’s average temperature contributed to by human activity is known as  global warming .

The Greenhouse Effect and Climate Change Even slight increases in average global temperatures can have huge effects.

Perhaps the biggest, most obvious effect is that  glaciers and  ice caps melt faster than usual. The  meltwater  d rains into the oceans , causing  sea levels to rise.

Glaciers and ice caps cover about 10 percent of the world’s landmasses. They hold between 70 and 75 percent of the world’s  freshwater . If all of this ice melted, sea levels would rise by about 70 meters (230 feet).

The Intergovernmental Panel on Climate Change states that the global sea level rose about 1.8 millimeters (0.07 inches) per year from 1961 to 1993, and about 3.1 millimeters (0.12 inches) per year since 1993.

Rising sea levels cause  flooding in  coastal cities, which could displace millions of people in low-lying areas such as Bangladesh, the U.S. state of Florida, and the Netherlands.

Millions more people in countries like Bolivia, Peru, and India depend on glacial meltwater for drinking,  irrigation , and  hydroelectric power . Rapid loss of these glaciers would devastate those countries.

Greenhouse gas emissions affect more than just temperature . Another effect involves changes in  precipitation , such as  rain  and  snow .

Over the course of the 20th century, precipitation increased in eastern parts of North and South America, northern Europe, and northern and central Asia. However, it has decreased in parts of Africa, the Mediterranean, and southern Asia.

As climates change, so do the habitats for living things. Animals that are adapted to a certain  climate  may become threatened. Many human societies depend on predictable rain patterns in order to grow specific  crops for food, clothing, and trade. If the climate of an area changes, the people who live there may no longer be able to grow the crops they depend on for survival. Some scientists also worry that tropical diseases will expand their ranges into what are now more temperate regions if the temperatures of those areas increase.

Most climate scientists agree that we must reduce the amount of greenhouse gases released into the atmosphere. Ways to do this, include:

  • driving less, using public transportation , carpooling, walking, or riding a bike.
  • flying less—airplanes produce huge amounts of greenhouse gas emissions.
  • reducing, reusing, and recycling.
  • planting a tree—trees absorb carbon dioxide, keeping it out of the atmosphere.
  • using less  electricity .
  • eating less meat—cows are one of the biggest methane producers.
  • supporting alternative energy sources that don’t burn fossil fuels.

Artificial Gas

Chlorofluorocarbons (CFCs) are the only greenhouse gases not created by nature. They are created through refrigeration and aerosol cans.

CFCs, used mostly as refrigerants, are chemicals that were developed in the late 19th century and came into wide use in the mid-20th century.

Other greenhouse gases, such as carbon dioxide, are emitted by human activity, at an unnatural and unsustainable level, but the molecules do occur naturally in Earth's atmosphere.

Audio & Video

Media credits.

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

October 19, 2023

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Biology LibreTexts

21.1: The Greenhouse Effect and Climate Change

  • Last updated
  • Save as PDF
  • Page ID 47008

  • Melissa Ha and Rachel Schleiger
  • Yuba College & Butte College via ASCCC Open Educational Resources Initiative

Earth’s Temperature is a Balancing Act

Earth’s temperature depends on the balance between energy entering and leaving the planet. When incoming energy from the sun is absorbed, Earth warms. When the sun’s energy is reflected back into space, Earth avoids warming. When energy is released from Earth into space, the planet cools. Many factors, both natural and human, can cause changes in Earth’s energy balance, including:

  • Changes in the greenhouse effect, which affects the amount of heat retained by Earth’s atmosphere;
  • Variations in the sun’s energy reaching Earth;
  • Changes in the reflectivity of Earth’s atmosphere and surface.

Scientists have pieced together a picture of Earth’s climate, dating back hundreds of thousands of years, by analyzing a number of indirect measures of climate such as ice cores, tree rings, glacier size, pollen counts, and ocean sediments. Scientists have also studied changes in Earth’s orbit around the sun and the activity of the sun itself.

The historical record shows that the climate varies naturally over a wide range of time scales. In general, climate changes prior to the Industrial Revolution in the 1700s can be explained by natural causes, such as changes in solar energy, volcanic eruptions, and natural changes in greenhouse gas (GHG) concentrations. Recent changes in climate , however, cannot be explained by natural causes alone. Research indicates that natural causes are very unlikely to explain most observed warming, especially warming since the mid-20th century. Rather, human activities, especially our combustion of fossil fuels, explains the current warming (figure \(\PageIndex{a}\)). The scientific consensus is clear: through alterations of the carbon cycle, humans are changing the global climate by increasing the effects of something known as the greenhouse effect.

The Greenhouse Effect Causes the Atmosphere to Retain Heat

Gardeners that live in moderate or cool environments use greenhouses because they trap heat and create an environment that is warmer than outside temperatures. This is great for plants that like heat, or are sensitive to cold temperatures, such as tomato and pepper plants. Greenhouses contain glass or plastic that allow visible light from the sun to pass. This light, which is a form of energy, is absorbed by plants, soil, and surfaces and heats them. Some of that heat energy is then radiated outwards in the form of infrared radiation, a different form of energy. Unlike with visible light, the glass of the greenhouse blocks the infrared radiation, thereby trapping the heat energy, causing the temperature within the greenhouse to increase.

The same phenomenon happens inside a car on a sunny day. Have you ever noticed how much hotter a car can get compared to the outside temperature? Light energy from the sun passes through the windows and is absorbed by the surfaces in the car such as seats and the dashboard. Those warm surfaces then radiate infrared radiation, which cannot pass through the glass. This trapped infrared energy causes the air temperatures in the car to increase. This process is commonly known as the greenhouse effect .

The video below made for kids, but provides a clear and simple introduction to the greenhouse effect.

The greenhouse effect also happens with the entire Earth. Of course, our planet is not surrounded by glass windows. Instead, the Earth is wrapped with an atmosphere that contains greenhouse gases (GHGs). Much like the glass in a greenhouse, GHGs allow incoming visible light energy from the sun to pass, but they block infrared radiation that is radiated from the Earth towards space (figure \(\PageIndex{b}\)). In this way, they help trap heat energy that subsequently raises air temperature. Being a greenhouse gas is a physical property of certain types of gases; because of their molecular structure they absorb wavelengths of infrared radiation, but are transparent to visible light. Some notable greenhouse gases are water vapor (H 2 O), carbon dioxide (CO 2 ), and methane (CH 4 ). GHGs act like a blanket, making Earth significantly warmer than it would otherwise be. Scientists estimate that average temperature on Earth would be -18º C without naturally-occurring GHGs.

 Heat from solar radiation is trapped by the atmosphere. Human activities increase greenhouse gases resulting in an enhanced greenhouse effect.

What is Global Warming?

Global warming refers to the recent and ongoing rise in global average temperature near Earth’s surface. It is caused mostly by increasing concentrations of greenhouse gases in the atmosphere. Global warming is causing climate patterns to change. However, global warming itself represents only one aspect of climate change.

What is Climate Change?

Climate change refers to any significant change in the measures of climate lasting for an extended period of time. In other words, climate change includes major changes in temperature, precipitation, or wind patterns, among other effects, that occur over several decades or longer.

The Main Greenhouse Gasses

The most important GHGs directly emitted by humans include CO 2 and methane. Carbon dioxide  (CO 2 ) is the primary greenhouse gas that is contributing to recent global climate change. CO 2 is a natural component of the carbon cycle, involved in such activities as photosynthesis, respiration, volcanic eruptions, and ocean-atmosphere exchange. Human activities, primarily the burning of fossil fuels and changes in land use, release very large amounts of CO 2 to the atmosphere, causing its concentration in the atmosphere to rise.

Atmospheric CO 2 concentrations have increased by 45% since pre-industrial times, from approximately 280 parts per million (ppm) in the 18th century to 409.8 ppm in 2019 (figure \(\PageIndex{c}\)). The current CO 2 level is higher than it has been in at least 800,000 years, based on evidence from ice cores that preserve ancient atmospheric gases (figure \(\PageIndex{d-f}\)). Human activities currently release over 30 billion tons of CO 2 into the atmosphere every year. While some volcanic eruptions released large quantities of CO 2 in the distant past, the U.S. Geological Survey (USGS) reports that human activities now emit more than 135 times as much CO 2 as volcanoes each year. This human-caused build-up of CO 2 in the atmosphere is like a tub filling with water, where more water flows from the faucet than the drain can take away.

Line graph shows an increase in atmospheric carbon dioxide over time with fluctuations between seasons each year

Other Greenhouse Gasses

Although this concentration is far less than that of CO 2 , methane (CH 4 ) is 28 times as potent a greenhouse gas. Methane is produced when bacteria break down organic matter under anaerobic conditions and can be released due to natural or anthropogenic processes. Anaerobic conditions can happen when organic matter is trapped underwater (such as in rice paddies) or in the intestines of herbivores. Anthropogenic causes now account for 60% of total methane release. Examples include agriculture, fossil fuel extraction and transport, mining, landfill use, and burning of forests. Specifically, raising cattle releases methane due to fermentation in their rumens produces methane that is expelled from their GI tract. Methane is more abundant in Earth’s atmosphere now than at any time in at least the past 650,000 years, and CH 4 concentrations increased sharply during most of the 20th century. They are now more than two and-a-half times pre-industrial levels (1.9 ppm), but the rate of increase has slowed considerably in recent decades.

Water vapor is the most abundant greenhouse gas and also the most important in terms of its contribution to the natural greenhouse effect, despite having a short atmospheric lifetime. Some human activities can influence local water vapor levels. However, on a global scale, the concentration of water vapor is controlled by temperature, which influences overall rates of evaporation and precipitation. Therefore, the global concentration of water vapor is not substantially affected by direct human emissions.

Ground-level ozone (O 3 ), which also has a short atmospheric lifetime, is a potent greenhouse gas. Chemical reactions create ozone from emissions of nitrogen oxides and volatile organic compounds from automobiles, power plants, and other industrial and commercial sources in the presence of sunlight (as discussed in section 10.1). In addition to trapping heat, ozone is a pollutant that can cause respiratory health problems and damage crops and ecosystems.

Changes in the Sun’s Energy Affect how Much Energy Reaches Earth

Climate can be influenced by natural changes that affect how much solar energy reaches Earth. These changes include changes within the sun and changes in Earth’s orbit. Changes occurring in the sun itself can affect the intensity of the sunlight that reaches Earth’s surface. The intensity of the sunlight can cause either warming (during periods of stronger solar intensity) or cooling (during periods of weaker solar intensity). The sun follows a natural 11-year cycle of small ups and downs in intensity, but the effect on Earth’s climate is small. Changes in the shape of Earth’s orbit as well as the tilt and position of Earth’s axis can also affect the amount of sunlight reaching Earth’s surface.

Changes in the sun’s intensity have influenced Earth’s climate in the past. For example, the so-called “ Little Ice Age ” between the 17th and 19th centuries may have been partially caused by a low solar activity phase from 1645 to 1715, which coincided with cooler temperatures. The Little Ice Age refers to a slight cooling of North America, Europe, and probably other areas around the globe. Changes in Earth’s orbit have had a big impact on climate over tens of thousands of years. These changes appear to be the primary cause of past cycles of ice ages, in which Earth has experienced long periods of cold temperatures (ice ages), as well as shorter interglacial periods (periods between ice ages) of relatively warmer temperatures.

Changes in solar energy continue to affect climate. However, solar activity has been relatively constant, aside from the 11-year cycle, since the mid-20th century and therefore does not explain the recent warming of Earth. Similarly, changes in the shape of Earth’s orbit as well as the tilt and position of Earth’s axis affect temperature on relatively long timescales (tens of thousands of years), and therefore cannot explain the recent warming.

Changes in Reflectivity Affect How Much Energy Enters Earth’s System

When sunlight energy reaches Earth it can be reflected or absorbed. The amount that is reflected or absorbed depends on Earth’s surface and atmosphere. Light-colored objects and surfaces, like snow and clouds, tend to reflect most sunlight, while darker objects and surfaces, like the ocean and forests, tend to absorb more sunlight. The term albedo refers to the amount of solar radiation reflected from an object or surface, often expressed as a percentage. Earth as a whole has an albedo of about 30%, meaning that 70% of the sunlight that reaches the planet is absorbed. Sunlight that is absorbed warms Earth’s land, water, and atmosphere.

Albedo is also affected by aerosols. Aerosols are small particles or liquid droplets in the atmosphere that can absorb or reflect sunlight. Unlike greenhouse gases (GHGs), the climate effects of aerosols vary depending on what they are made of and where they are emitted. Those aerosols that reflect sunlight, such as particles from volcanic eruptions or sulfur emissions from burning coal, have a cooling effect. Those that absorb sunlight, such as black carbon (a part of soot), have a warming effect.

Natural changes in albedo, like the melting of sea ice or increases in cloud cover, have contributed to climate change in the past, often acting as feedbacks to other processes. Volcanoes have played a noticeable role in climate. Volcanic particles that reach the upper atmosphere can reflect enough sunlight back to space to cool the surface of the planet by a few tenths of a degree for several years. Volcanic particles from a single eruption do not produce long-term change because they remain in the atmosphere for a much shorter time than GHGs.

Human changes in land use and land cover have changed Earth’s albedo. Processes such as deforestation, reforestation, desertification, and urbanization often contribute to changes in climate in the places they occur. These effects may be significant regionally, but are smaller when averaged over the entire globe.

Scientific Consensus: Global Climate Change is Real

The Intergovernmental Panel on Climate Change (IPCC) was created in 1988 by the United Nations Environment Programme and the World Meteorological Organization. It is charged with the task of evaluating and synthesizing the scientific evidence surrounding global climate change. The IPCC uses this information to evaluate current impacts and future risks, in addition to providing policymakers with assessments. These assessments are released about once every every six years. The most recent report, the 5th Assessment, was released in 2013. Hundreds of leading scientists from around the world are chosen to author these reports. Over the history of the IPCC, these scientists have reviewed thousands of peer-reviewed, publicly available studies. The scientific consensus is clear: global climate change is real and humans are very likely the cause for this change.

Additionally, the major scientific agencies of the United States, including the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA), also agree that climate change is occurring and that humans are driving it. In 2010, the US National Research Council concluded that “Climate change is occurring, is very likely caused by human activities, and poses significant risks for a broad range of human and natural systems”. Many independent scientific organizations have released similar statements, both in the United States and abroad. This doesn’t necessarily mean that every scientist sees eye to eye on each component of the climate change problem, but broad agreement exists that climate change is happening and is primarily caused by excess greenhouse gases from human activities. Critics of climate change, driven by ideology instead of evidence, try to suggest to the public that there is no scientific consensus on global climate change. Such an assertion is patently false.

Current Status of Global Climate Change and Future Changes

Greenhouse gas concentrations in the atmosphere will continue to increase unless the billions of tons of anthropogenic emissions each year decrease substantially. Increased concentrations are expected to do the following:

  • Increase Earth’s average temperature (figure \(\PageIndex{g}\)),
  • Influence the patterns and amounts of precipitation,
  • Reduce ice and snow cover, as well as permafrost,
  • Raise sea level (figure \(\PageIndex{h}\)),
  • Increase the acidity of the oceans.

Line graph shows overall increases in sea height from 1993 to 2020

Figure \(\PageIndex{h}\):  Sea height variation (mm) over time. Sea height has increased about 3.3 millimeters per year on average since 1993. Data is from satellite sea level observations by the NASA Goddard Space Flight Center. Image by NASA (public domain).

These changes will impact our food supply, water resources, infrastructure, ecosystems, and even our own health. The magnitude and rate of future climate change will primarily depend on the following factors:

  • The rate at which levels of greenhouse gas concentrations in our atmosphere continue to increase,
  • How strongly features of the climate (e.g., temperature, precipitation, and sea level) respond to the expected increase in greenhouse gas concentrations,
  • Natural influences on climate (e.g., from volcanic activity and changes in the sun’s intensity) and natural processes within the climate system (e.g., changes in ocean circulation patterns).

Past and Present-day GHG Emissions Will Affect Climate Far into the Future

Many greenhouse gases stay in the atmosphere for long periods of time. As a result, even if emissions stopped increasing, atmospheric greenhouse gas concentrations would continue to remain elevated for hundreds of years. Moreover, if we stabilized concentrations and the composition of today’s atmosphere remained steady (which would require a dramatic reduction in current greenhouse gas emissions), surface air temperatures would continue to warm. This is because the oceans, which store heat, take many decades to fully respond to higher greenhouse gas concentrations. The ocean’s response to higher greenhouse gas concentrations and higher temperatures will continue to impact climate over the next several decades to hundreds of years.

Future Temperature Changes

Climate models project the following key temperature-related changes:

  • Average global temperatures are expected to increase by 2°F to 11.5°F by 2100, depending on the level of future greenhouse gas emissions, and the outcomes from various climate models.
  • By 2100, global average temperature is expected to warm at least twice as much as it has during the last 100 years.
  • Ground-level air temperatures are expected to continue to warm more rapidly over land than oceans.
  • Some parts of the world are projected to see larger temperature increases than the global average.

Future Precipitation and Storm Events

Patterns of precipitation and storm events, including both rain and snowfall are likely to change. However, some of these changes are less certain than the changes associated with temperature. Projections show that future precipitation and storm changes will vary by season and region. Some regions may have less precipitation, some may have more precipitation, and some may have little or no change. The amount of rain falling in heavy precipitation events is likely to increase in most regions, while storm tracks are projected to shift towards the poles. Climate models project the following precipitation and storm changes:

  • Global average annual precipitation through the end of the century is expected to increase, although changes in the amount and intensity of precipitation will vary by region.
  • The intensity of precipitation events will likely increase on average. This will be particularly pronounced in tropical and high-latitude regions, which are also expected to experience overall increases in precipitation.
  • The strength of the winds associated with tropical storms is likely to increase. The amount of precipitation falling in tropical storms is also likely to increase.
  • Annual average precipitation is projected to increase in some areas and decrease in others.

Future Ice, Snowpack, and Permafrost

Arctic sea ice is already declining drastically. The area of snow cover in the Northern Hemisphere has decreased since 1970. Permafrost temperature has increased over the last century, making it more susceptible to thawing. Over the next century, it is expected that sea ice will continue to decline, glaciers will continue to shrink, snow cover will continue to decrease, and permafrost will continue to thaw.

For every 2°F of warming, models project about a 15% decrease in the extent of annually averaged sea ice and a 25% decrease in September Arctic sea ice. The coastal sections of the Greenland and Antarctic ice sheets are expected to continue to melt or slide into the ocean. If the rate of this ice melting increases in the 21st century, the ice sheets could add significantly to global sea level rise. Glaciers are expected to continue to decrease in size. The rate of melting is expected to continue to increase, which will contribute to sea level rise.

Future Sea Level Change

Warming temperatures contribute to sea level rise by expanding ocean water, melting mountain glaciers and ice caps, and causing portions of the Greenland and Antarctic ice sheets to melt or flow into the ocean. Since 1870, global sea level has risen by about 8 inches. Estimates of future sea level rise vary for different regions, but global sea level for the next century is expected to rise at a greater rate than during the past 50 years. The contribution of thermal expansion, ice caps, and small glaciers to sea level rise is relatively well-studied, but the impacts of climate change on ice sheets are less understood and represent an active area of research. Thus, it is more difficult to predict how much changes in ice sheets will contribute to sea level rise. Greenland and Antarctic ice sheets could contribute an additional 1 foot of sea level rise, depending on how the ice sheets respond.

Regional and local factors will influence future relative sea level rise for specific coastlines around the world (figure \(\PageIndex{i}\)). For example, relative sea level rise depends on land elevation changes that occur as a result of subsidence (sinking) or uplift (rising), in addition to things such as local currents, winds, salinity, water temperatures, and proximity to thinning ice sheets. Assuming that these historical geological forces continue, a 2-foot rise in global sea level by 2100 would result in the following relative sea level rise:

  • 2.3 feet at New York City
  • 2.9 feet at Hampton Roads, Virginia
  • 3.5 feet at Galveston, Texas
  • 1 foot at Neah Bay in Washington state

The yard of a damaged house is flooded, and a tree stump is submerged

Future Ocean Acidification

Ocean acidification is the process of ocean waters decreasing in pH. Oceans become more acidic as carbon dioxide (CO 2 ) emissions in the atmosphere dissolve in the ocean. This change is measured on the pH scale, with lower values being more acidic. The pH level of the oceans has decreased by approximately 0.1 pH units since pre-industrial times, which is equivalent to a 25% increase in acidity. The pH level of the oceans is projected to decrease even more by the end of the century as CO 2 concentrations are expected to increase for the foreseeable future. Ocean acidification adversely affects many marine species, including plankton, mollusks, shellfish, and corals. As ocean acidification increases, the availability of calcium carbonate will decline. Calcium carbonate is a key building block for the shells and skeletons of many marine organisms. If atmospheric CO 2 concentrations double, coral calcification rates are projected to decline by more than 30%. If CO 2 concentrations continue to rise at their current rate, corals could become rare on tropical and subtropical reefs by 2050.

Mismatched Interactions

Climate change also affects phenology, the study of the effects of climatic conditions on the timing of periodic lifecycle events, such as flowering in plants or migration in birds. Researchers have shown that 385 plant species in Great Britain are flowering 4.5 days sooner than was recorded earlier during the previous 40 years. In addition, insect-pollinated species were more likely to flower earlier than wind-pollinated species. The impact of changes in flowering date would be mitigated if the insect pollinators emerged earlier. This mismatched timing of plants and pollinators could result in injurious ecosystem effects because, for continued survival, insect-pollinated plants must flower when their pollinators are present.

Likewise, migratory birds rely on daylength cues, which are not influenced by climate change. Their insect food sources, however, emerge earlier in the year in response to warmer temperatures. As a result, climate change decreases food availability for migratory bird species.

Spread of Disease

This rise in global temperatures will increase the range of disease-carrying insects and the viruses and pathogenic parasites they harbor. Thus, diseases will spread to new regions of the globe. This spread has already been documented with dengue fever, a disease the affects hundreds of millions per year, according to the World Health Organization. Colder temperatures typically limit the distribution of certain species, such as the mosquitoes that transmit malaria, because freezing temperatures destroy their eggs.

Not only will the range of some disease-causing insects expand, the increasing temperatures will also accelerate their lifecycles, which allows them to breed and multiply quicker, and perhaps evolve pesticide resistance faster. In addition to dengue fever, other diseases are expected to spread to new portions of the world as the global climate warms. These include malaria, yellow fever, West Nile virus, zika virus, and chikungunya.

Climate change does not only increase the spread of diseases in humans. Rising temperatures are associated with greater amphibian mortality due to chytridiomycosis (see Invasive Species ). Similarly, warmer temperatures have exacerbated bark beetle infestations of coniferous trees, such as pine an spruce.

Climate Change Affects Everyone

Our lives are connected to the climate . Human societies have adapted to the relatively stable climate we have enjoyed since the last ice age which ended several thousand years ago. A warming climate will bring changes that can affect our water supplies, agriculture, power and transportation systems, the natural environment, and even our own health and safety.

Carbon dioxide can stay in the atmosphere for nearly a century, on average, so Earth will continue to warm in the coming decades. The warmer it gets, the greater the risk for more severe changes to the climate and Earth’s system. Although it’s difficult to predict the exact impacts of climate change, what’s clear is that the climate we are accustomed to is no longer a reliable guide for what to expect in the future.

We can reduce the risks we will face from climate change . By making choices that reduce greenhouse gas pollution, and preparing for the changes that are already underway, we can reduce risks from climate change. Our decisions today will shape the world our children and grandchildren will live in.

You can take steps at home, on the road, and in your office to reduce greenhouse gas emissions and the risks associated with climate change. Many of these steps can save you money. Some, such as walking or biking to work, can even improve your health! You can also get involved on a local or state level to support energy efficiency, clean energy programs, or other climate programs.

Suggested Supplementary Reading

Intergovernmental Panel on Climate Change. 2013. 5th Assessment: Summary for Policymakers .

NASA. 2018. Global Climate Change: Vital Signs of the Planet . This website by NASA provides a multi-media smorgasbord of engaging content. Learn about climate change using data collected by NASA satellites and more.

Attributions

Modified by Melissa Ha from the following sources:

  • Climate and the Effects of Global Climate Change  from  General Biology  by OpenStax (licensed under  CC-BY )
  • Climate Change  from  Environmental Biology  by Matthew R. Fisher (licensed under  CC-BY )
  • Carbon Cycle from  Biology  by John W. Kimball (licensed under  CC-BY )

Talk to our experts

1800-120-456-456

  • Prevention of Global Warming Essay

ffImage

Essay on Prevention of Global Warming

Global warming is an extremely serious concern and we humans must take immediate measures to control it as soon as possible. Industrialization has led to the fast growth of technology, health, and economy but has been ruining planet Earth for the last few centuries. The monumental increase in the accumulation of greenhouse gasses in the atmosphere has raised an alarm. It will cause a chaotic change that we humans will not be able to survive. This effect also endangers the rest of the species existing harmonically with nature.

Global warming is a serious environmental issue that we need to concentrate on and solve immediately. It all starts with the identification of its causes. It has become a very threatening man-made disaster for the entire planet. We need to immediately act on the causes and stop them so that we can save our planet.

What Causes Global Warming? 

Man-Made activities such as running industries, using appliances emitting CFCs, have contributed to a humongous increase in the accumulation of global warming gasses. These glasses have an innate physical property to trap heat and cause the average temperature of the earth to increase. The accumulation of these gasses creates an invisible blanket in the earth’s atmosphere. This blanket lets the sun rays enter and heat up the earth’s surface. When the earth’s surface emits heat, this blanket does not allow it to pass through and traps it leading to the elevation of the average temperature of the earth.

It has been found that these gasses tend to accumulate more on the polar ice caps. It has a direct influence on the melting of ice caps causing the global sea level to rise. This is resulting in an increase in the average temperature of marine water and hampering its ecosystem. On the other hand, the coral reefs are getting extremely damaged from the rise in temperature too. Marine animals, as well as, freshwater animals are unable to adjust to such drastic changes and are suffering from the threats of extinction.

The rise in average atmospheric temperature will also cause the islands to drown. Many archipelagos of geographical significance will be underwater within a decade. In fact, the coastal lines are also receding causing turmoil in many countries. Scientists across the world have come to the conclusion that we have only 7 years left in our hands to make a change or this global warming will become irreversible causing a catastrophic change in the entire planet.

What can we do as Responsible Human Beings to Control Climate Change? 

Small changes will have a great impact and will help us to fight against global warming. For instance, if we use LED bulbs instead of light bulbs and CFLs, we can contribute to the cause. We can spread awareness regarding the emission of different global warming gasses from factory chimneys and domestic appliances. These glasses should be treated before they are released into the atmosphere. We can also pledge to use eco-friendly products that show immense responsibility towards our planet’s crises.

We can also stop deforestation and do our part by planting more trees. We need to restrict the use of fossil fuels and seek alternative renewable sources of energy. Our lifestyle should become eco-friendlier and more responsible for Mother Earth. Now is the time to act and make everyone aware. Start small but make it big by including everyone you know to protect our planet. We live in a big harmonious ecosystem. Disturbing its balance with manmade disasters like global warming will not leave a chance to survive if not checked. It is time to act accordingly and do every bit on our part to stop this catastrophe.

Some Facts about Global Warming

Global warming is defined as an increase in the average surface temperature of the Earth as a result of greenhouse gasses that accumulate in the atmosphere like a blanket that traps the sun's heat which causes the globe to warm.

Greenhouse gasses trap heat at the surface of the planet, making it habitable for people and animals. Global warming, on the other hand, is mostly due to an excess of these gasses and fossil fuels (natural oil, gasoline, coal).

The industry started growing in the 1700s, as a result, people began to use more fossil fuels such as coal, oil, and gas to power our automobiles, trucks, and factories. You will save money on petrol and help to avert global warming by driving a "smarter" automobile. 

Today's atmosphere contains more carbon dioxide than at any time in the past 800,000 years.

Global sea levels have risen by around 8 inches since 1870. 

The planet has already been affected by climate change. Glaciers have been shrinking constantly for years now, ice on rivers and lakes has broken up earlier, plant and animal ranges have altered, and trees have begun to bloom earlier.

Heatwaves brought on by global warming increase the risk of heat-related disease and mortality, especially for diabetics who are elderly or very young.

As the water heats, scientists fear that coral reefs may be unable to adapt rapidly enough to the consequent shifting circumstances, leading to an increase in bleaching incidents and illnesses.

arrow-right

FAQs on Prevention of Global Warming Essay

1. What is Global Warming?

Too much carbon dioxide (CO 2 ) in the atmosphere behaves as a blanket, trapping heat and warming the earth, resulting in global warming. Carbon accumulates over time and overloads our atmosphere as we burn fossil fuels like coal, oil, and natural gas for electricity or cut down and burn forests to construct pastures and plantations. Other strong global warming gasses, such as methane and nitrous oxide, are released by certain waste management and agricultural methods, worsening the situation. 

2. What Effects are being Witnessed due to Global Warming?

There has been a drastic change in the climatic conditions over a few decades. Due to heavy industrialization and uncontrolled emission of greenhouse gases, the average temperature of land and water is increasing. It has harmed the survival of many aquatic and terrestrial animals. If a pillar of an ecosystem is affected, the rest will be affected too. It will trigger a chain reaction causing the human species and other animals to go extinct. Marine life is highly affected. Coral reefs are extremely damaged due to an increase in water temperature. The storms and rainfall have become much stronger. These are a few effects of global warming that scientists have concluded.

3. What can We do to Control Global Warming?

We need to plant more trees, stop the emission of greenhouse gasses as soon as possible, and make people aware of the problem. It is our smallest initiative that will make a huge change in the forthcoming years. We need to stop using any product that contributes to this problem. All we have to remember is that we do not have a spare planet to live on.

4. What is the greenhouse effect?

The greenhouse effect describes how "greenhouse gasses" trap heat at the Earth's surface. The gasses are like a blanket wrapped over the earth which traps the heat, keeping it warmer than it would be otherwise. Carbon dioxide, methane, and nitrous oxides are examples of greenhouse gasses. Carbon dioxide's warming impact, according to scientists, aids in the stabilization of the Earth's atmosphere. The terrestrial greenhouse effect would be destroyed if carbon dioxide was removed. The Earth's surface would be 33 degrees Celsius (59 degrees Fahrenheit) colder without carbon dioxide.

5. What is the difference between global warming and climate change?

Although the phrases "global warming" and "climate change" are frequently interchanged, "global warming" is simply one facet of climate change.

Global warming refers to the planet's long-term warming. Since the early 20th century, and especially since the late 1970s, global temperatures have been steadily rising. In comparison to the mid-20th century, the average surface temperature has risen roughly 1 °C (nearly 2 °F) globally since 1880. (of 1951-1980). This comes on top of an extra 0.15 degrees Celsius of warming between 1750 and 1880.

"Climate change" refers to a larger spectrum of changes that are taking place on our planet than just global warming. Sea levels are also rising day by day, mountain glaciers are decreasing constantly, ice melt in Greenland, Antarctica, and the Arctic is increasing, and flower/plant blooming periods are shifting. All of these are results of global warming, which is mostly caused by humans burning fossil fuels and emitting heat-trapping gasses.

6. Is it too late to prevent climate change?

Humans have already triggered massive climatic changes, and we are on the verge of causing many more. But, if we immediately stopped generating greenhouse gasses, the rise in global temperatures would begin to level out within a few years. Temperatures would subsequently reach a plateau but would stay substantially above normal for several centuries. Although there is a lag between what we do and how we feel, it is less than a decade.

While the consequences of human actions on Earth's climate to date are irreversible on the timeframe of today's people, every amount of prevented future temperature increases results in less warming that would otherwise endure indefinitely. Reduced greenhouse gas emissions provide advantages in the same period as the political actions that result in such reductions.

7. Where can I find notes and questions on Global Warming?

Vedantu provides students with notes and questions on global warming. This contains topics such as what is global warming, the effects of global warming, solutions to global warming, climate change, and much more.  Vedantu's content is created by teachers who are experts in their fields. Furthermore, the data is organized in a way that makes it easier for students to understand and remember the principles. Vedantu also offers study materials and a variety of competitive exams to students in grades 1 through 12. The content includes notes, important topics and questions, revision notes, and other things. All of these resources are available for free on Vedantu. To access any of these resources, students must first register on the Vedantu website. You may also join up using the Vedantu smartphone app.

This is an image of large field solar panels arranged in rows, tilted slightly towards the Sun.

Solving Climate Change

We caused the problem but also have the ability to make the tough but necessary changes. Find out how.

the amount of carbon dioxide emissions per year through this century for the four scenarios all have the ability to stop emissions

We caused the problem by increasing the amount of greenhouse gases in the atmosphere, but we have the ability to keep the amount of warming low enough that it is survivable. Communities and nations around the world are taking action to solve climate change.

How Do We Reduce Greenhouse Gases?

How Do We Reduce Greenhouse Gases?

There are two main ways to stop the amount of greenhouse gases from increasing: we can stop adding them to the air, and we can increase the Earth’s ability to pull them out of the air. Doing both will help reduce the amount of greenhouse gases in the atmosphere.

This image shows a large metal barrier across the Thames River in England

Adapting‌ ‌to‌ ‌Climate‌ ‌Change‌

As climate change and its impacts have increased risks to people and communities, taking steps to adapt have become essential. The ability to adapt can help keep us safe while we also take action to stop climate change.

Illustration showing how particles of sea salt or other aerosols released from a ship over the Arctic could help make brighter clouds that reflect incoming solar energy.

Can We Limit the Amount of Sunlight to Stop Climate Change?

Blocking some solar radiation from getting to Earth could involve sending gases or particles into the atmosphere. It could also include methods like making clouds or the Earth’s surface brighter so that they reflect sunlight back out to space. Methods like these could help slow climate change, but there could be risks.

This is an image of a dense temperate forest with lots of undergrowth, moss covered branches, and ferns.

Can We Pull Carbon Dioxide Out‌ ‌Of‌ ‌the‌ ‌Atmosphere?‌ ‌

What if we could pull carbon dioxide out of the atmosphere in order to stop climate change? Learn how researchers are developing ways to do this.

Schematic diagram of possible CCS systems

Carbon Capture and Storage

How do we catch carbon? The possibility of capturing carbon dioxide greenhouse gas (CO2) has become an increasingly attractive idea, especially as people realize that it is unlikely we will stop using fossil fuels entirely in the next hundred years.

highway traffic

What's Your Carbon Footprint?

How much carbon dioxide do you send into the atmosphere? Anytime you do something that requires fossil fuels - like riding in a car, flying in a plane, buying something, eating something, or even just watching TV - you emit carbon dioxide into the atmosphere.

Future Climate: Explore the Possibilities

Future Climate: Explore the Possibilities

Use a simple climate model to peek into the future. You suggest the rate that you think humans will release carbon dioxide into the atmosphere in the future and the model calculates how that would affect temperature.

Climate Solution Activities

Solving Climate Change Activities

Wind turbines

Solving Climate Change Images

Climate Solutions Games and Simulations

Solving Climate Change Games and Simulations

IMAGES

  1. Global Warming and Greenhouse Effect

    how to prevent greenhouse effect essay

  2. Greenhouse Gasses: How You Can Reduce Your Emissions

    how to prevent greenhouse effect essay

  3. ≫ Greenhouse Gases, Climate Change, and Global Warming Free Essay

    how to prevent greenhouse effect essay

  4. Greenhouse effect

    how to prevent greenhouse effect essay

  5. Causes

    how to prevent greenhouse effect essay

  6. The Greenhouse Effect, Simplified

    how to prevent greenhouse effect essay

VIDEO

  1. Greenhouse Effect 2024 03 12

  2. Greenhouse effect LT#3

  3. Best Explaination Greenhouse Effect 😐

  4. Greenhouse effect #ytshorts #science #sciencefacts

  5. Greenhouse Effect IACS Competition

  6. Greenhouse Effect Essay || 10 Lines on Greenhouse Effect and Global Warming

COMMENTS

  1. Essay on Greenhouse Effect for Students and Children - Toppr

    600 Words Essay on Greenhouse Effect. A Greenhouse, as the term suggests, is a structure made of glass which is designed to trap heat inside. Thus, even on cold chilling winter days, there is warmth inside it. Similarly, Earth also traps energy from the Sun and prevents it from escaping back.

  2. How Do We Reduce Greenhouse Gases? - Center for Science Education

    Eating a diet that is mostly or entirely plant-based (such as vegetables, bread, rice, and beans) lowers emissions. According to the Drawdown Project, if half the population worldwide adopts a plant-rich diet by 2050, 65 gigatons of carbon dioxide would be kept out of the atmosphere over about 30 years. (For a sense of scale, 65 gigatons of ...

  3. 10 ways you can help fight the climate crisis - UNEP

    Here are 10 ways you can be part of the climate solution: 1. Spread the word. Encourage your friends, family and co-workers to reduce their carbon pollution. Join a global movement like Count Us In, which aims to inspire 1 billion people to take practical steps and challenge their leaders to act more boldly on climate.

  4. 10 Solutions for Climate Change | Scientific American

    It would also take far less land to grow the crops necessary to feed humans than livestock, allowing more room for planting trees. Stop Cutting Down Trees —Every year, 33 million acres of ...

  5. Greenhouse Effect - National Geographic Society

    greenhouse effect. phenomenon where gases allow sunlight to enter Earth's atmosphere but make it difficult for heat to escape. greenhouse gas. gas in the atmosphere, such as carbon dioxide, methane, water vapor, and ozone, that absorbs solar heat reflected by the surface of the Earth, warming the atmosphere.

  6. The Greenhouse Effect and our Planet

    The gases act like the glass walls of a greenhouse—thus the name, greenhouse gas.According to scientists, the average temperature of Earth would drop from 14˚C (57˚F) to as low as –18˚C (–0.4˚F), without the . greenhouse effect.Some greenhouse gases come from natural sources, for example, evaporation adds water vapor to the atmosphere.

  7. 21.1: The Greenhouse Effect and Climate Change - Biology ...

    The scientific consensus is clear: through alterations of the carbon cycle, humans are changing the global climate by increasing the effects of something known as the greenhouse effect. Figure 21.1.a 21.1. a : This graph shows the predicted temperatures from two climate models and observed temperatures from 1880 to 2020.

  8. Prevention of Global Warming Essay for Students in English

    Global warming is defined as an increase in the average surface temperature of the Earth as a result of greenhouse gasses that accumulate in the atmosphere like a blanket that traps the sun's heat which causes the globe to warm. Greenhouse gasses trap heat at the surface of the planet, making it habitable for people and animals.

  9. Solving Climate Change | Center for Science Education

    Solving Climate Change. We caused the problem by increasing the amount of greenhouse gases in the atmosphere, but we have the ability to keep the amount of warming low enough that it is survivable. Communities and nations around the world are taking action to solve climate change.