loading

How it works

For Business

Join Mind Tools

Self-Assessment • 20 min read

How Good Is Your Problem Solving?

Use a systematic approach..

By the Mind Tools Content Team

what systematic approach to problem solving

Good problem solving skills are fundamentally important if you're going to be successful in your career.

But problems are something that we don't particularly like.

They're time-consuming.

They muscle their way into already packed schedules.

They force us to think about an uncertain future.

And they never seem to go away!

That's why, when faced with problems, most of us try to eliminate them as quickly as possible. But have you ever chosen the easiest or most obvious solution – and then realized that you have entirely missed a much better solution? Or have you found yourself fixing just the symptoms of a problem, only for the situation to get much worse?

To be an effective problem-solver, you need to be systematic and logical in your approach. This quiz helps you assess your current approach to problem solving. By improving this, you'll make better overall decisions. And as you increase your confidence with solving problems, you'll be less likely to rush to the first solution – which may not necessarily be the best one.

Once you've completed the quiz, we'll direct you to tools and resources that can help you make the most of your problem-solving skills.

How Good Are You at Solving Problems?

Instructions.

For each statement, click the button in the column that best describes you. Please answer questions as you actually are (rather than how you think you should be), and don't worry if some questions seem to score in the 'wrong direction'. When you are finished, please click the 'Calculate My Total' button at the bottom of the test.

Answering these questions should have helped you recognize the key steps associated with effective problem solving.

This quiz is based on Dr Min Basadur's Simplexity Thinking problem-solving model. This eight-step process follows the circular pattern shown below, within which current problems are solved and new problems are identified on an ongoing basis. This assessment has not been validated and is intended for illustrative purposes only.

Below, we outline the tools and strategies you can use for each stage of the problem-solving process. Enjoy exploring these stages!

Step 1: Find the Problem (Questions 7, 12)

Some problems are very obvious, however others are not so easily identified. As part of an effective problem-solving process, you need to look actively for problems – even when things seem to be running fine. Proactive problem solving helps you avoid emergencies and allows you to be calm and in control when issues arise.

These techniques can help you do this:

PEST Analysis helps you pick up changes to your environment that you should be paying attention to. Make sure too that you're watching changes in customer needs and market dynamics, and that you're monitoring trends that are relevant to your industry.

Risk Analysis helps you identify significant business risks.

Failure Modes and Effects Analysis helps you identify possible points of failure in your business process, so that you can fix these before problems arise.

After Action Reviews help you scan recent performance to identify things that can be done better in the future.

Where you have several problems to solve, our articles on Prioritization and Pareto Analysis help you think about which ones you should focus on first.

Step 2: Find the Facts (Questions 10, 14)

After identifying a potential problem, you need information. What factors contribute to the problem? Who is involved with it? What solutions have been tried before? What do others think about the problem?

If you move forward to find a solution too quickly, you risk relying on imperfect information that's based on assumptions and limited perspectives, so make sure that you research the problem thoroughly.

Step 3: Define the Problem (Questions 3, 9)

Now that you understand the problem, define it clearly and completely. Writing a clear problem definition forces you to establish specific boundaries for the problem. This keeps the scope from growing too large, and it helps you stay focused on the main issues.

A great tool to use at this stage is CATWOE . With this process, you analyze potential problems by looking at them from six perspectives, those of its Customers; Actors (people within the organization); the Transformation, or business process; the World-view, or top-down view of what's going on; the Owner; and the wider organizational Environment. By looking at a situation from these perspectives, you can open your mind and come to a much sharper and more comprehensive definition of the problem.

Cause and Effect Analysis is another good tool to use here, as it helps you think about the many different factors that can contribute to a problem. This helps you separate the symptoms of a problem from its fundamental causes.

Step 4: Find Ideas (Questions 4, 13)

With a clear problem definition, start generating ideas for a solution. The key here is to be flexible in the way you approach a problem. You want to be able to see it from as many perspectives as possible. Looking for patterns or common elements in different parts of the problem can sometimes help. You can also use metaphors and analogies to help analyze the problem, discover similarities to other issues, and think of solutions based on those similarities.

Traditional brainstorming and reverse brainstorming are very useful here. By taking the time to generate a range of creative solutions to the problem, you'll significantly increase the likelihood that you'll find the best possible solution, not just a semi-adequate one. Where appropriate, involve people with different viewpoints to expand the volume of ideas generated.

Tip: Don't evaluate your ideas until step 5. If you do, this will limit your creativity at too early a stage.

Step 5: Select and Evaluate (Questions 6, 15)

After finding ideas, you'll have many options that must be evaluated. It's tempting at this stage to charge in and start discarding ideas immediately. However, if you do this without first determining the criteria for a good solution, you risk rejecting an alternative that has real potential.

Decide what elements are needed for a realistic and practical solution, and think about the criteria you'll use to choose between potential solutions.

Paired Comparison Analysis , Decision Matrix Analysis and Risk Analysis are useful techniques here, as are many of the specialist resources available within our Decision-Making section . Enjoy exploring these!

Step 6: Plan (Questions 1, 16)

You might think that choosing a solution is the end of a problem-solving process. In fact, it's simply the start of the next phase in problem solving: implementation. This involves lots of planning and preparation. If you haven't already developed a full Risk Analysis in the evaluation phase, do so now. It's important to know what to be prepared for as you begin to roll out your proposed solution.

The type of planning that you need to do depends on the size of the implementation project that you need to set up. For small projects, all you'll often need are Action Plans that outline who will do what, when, and how. Larger projects need more sophisticated approaches – you'll find out more about these in the article What is Project Management? And for projects that affect many other people, you'll need to think about Change Management as well.

Here, it can be useful to conduct an Impact Analysis to help you identify potential resistance as well as alert you to problems you may not have anticipated. Force Field Analysis will also help you uncover the various pressures for and against your proposed solution. Once you've done the detailed planning, it can also be useful at this stage to make a final Go/No-Go Decision , making sure that it's actually worth going ahead with the selected option.

Step 7: Sell the Idea (Questions 5, 8)

As part of the planning process, you must convince other stakeholders that your solution is the best one. You'll likely meet with resistance, so before you try to “sell” your idea, make sure you've considered all the consequences.

As you begin communicating your plan, listen to what people say, and make changes as necessary. The better the overall solution meets everyone's needs, the greater its positive impact will be! For more tips on selling your idea, read our article on Creating a Value Proposition and use our Sell Your Idea Skillbook.

Step 8: Act (Questions 2, 11)

Finally, once you've convinced your key stakeholders that your proposed solution is worth running with, you can move on to the implementation stage. This is the exciting and rewarding part of problem solving, which makes the whole process seem worthwhile.

This action stage is an end, but it's also a beginning: once you've completed your implementation, it's time to move into the next cycle of problem solving by returning to the scanning stage. By doing this, you'll continue improving your organization as you move into the future.

Problem solving is an exceptionally important workplace skill.

Being a competent and confident problem solver will create many opportunities for you. By using a well-developed model like Simplexity Thinking for solving problems, you can approach the process systematically, and be comfortable that the decisions you make are solid.

Given the unpredictable nature of problems, it's very reassuring to know that, by following a structured plan, you've done everything you can to resolve the problem to the best of your ability.

This assessment has not been validated and is intended for illustrative purposes only. It is just one of many Mind Tool quizzes that can help you to evaluate your abilities in a wide range of important career skills.

If you want to reproduce this quiz, you can purchase downloadable copies in our Store .

You've accessed 1 of your 2 free resources.

Get unlimited access

Discover more content

4 logical fallacies.

Avoid Common Types of Faulty Reasoning

Problem Solving

Add comment

Comments (2)

Afkar Hashmi

😇 This tool is very useful for me.

over 1 year

Very impactful

what systematic approach to problem solving

Try Mind Tools for FREE

Get unlimited access to all our career-boosting content and member benefits with our 7-day free trial.

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article a72tyz6

Pain Points Podcast - Perfectionism

Article ag9546y

NEW! Pain Points - Managing New Hires

Mind Tools Store

About Mind Tools Content

Discover something new today

How to stop procrastinating.

Overcoming the Habit of Delaying Important Tasks

Employee Satisfaction Surveys

Learning What Your People Think

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

The tows matrix.

Developing Strategic Options by Performing an External-Internal Analysis

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Decision Making

Member Podcast

  • The Art of Effective Problem Solving: A Step-by-Step Guide
  • Learn Lean Sigma
  • Problem Solving

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Table of Contents

Problem solving methodologies.

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Daniel Croft

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

The Evolution of 8D Problem-Solving: From Basics to Excellence

In a world where efficiency and effectiveness are more than just buzzwords, the need for…

8D: Tools and Techniques

Are you grappling with recurring problems in your organization and searching for a structured way…

How to Select the Right Lean Six Sigma Projects: A Comprehensive Guide

Going on a Lean Six Sigma journey is an invigorating experience filled with opportunities for…

Advisory boards aren’t only for executives. Join the LogRocket Content Advisory Board today →

LogRocket blog logo

  • Product Management
  • Solve User-Reported Issues
  • Find Issues Faster
  • Optimize Conversion and Adoption

A guide to problem-solving techniques, steps, and skills

what systematic approach to problem solving

You might associate problem-solving with the math exercises that a seven-year-old would do at school. But problem-solving isn’t just about math — it’s a crucial skill that helps everyone make better decisions in everyday life or work.

A guide to problem-solving techniques, steps, and skills

Problem-solving involves finding effective solutions to address complex challenges, in any context they may arise.

Unfortunately, structured and systematic problem-solving methods aren’t commonly taught. Instead, when solving a problem, PMs tend to rely heavily on intuition. While for simple issues this might work well, solving a complex problem with a straightforward solution is often ineffective and can even create more problems.

In this article, you’ll learn a framework for approaching problem-solving, alongside how you can improve your problem-solving skills.

The 7 steps to problem-solving

When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication.

1. Define the problem

Problem-solving begins with a clear understanding of the issue at hand. Without a well-defined problem statement, confusion and misunderstandings can hinder progress. It’s crucial to ensure that the problem statement is outcome-focused, specific, measurable whenever possible, and time-bound.

Additionally, aligning the problem definition with relevant stakeholders and decision-makers is essential to ensure efforts are directed towards addressing the actual problem rather than side issues.

2. Disaggregate

Complex issues often require deeper analysis. Instead of tackling the entire problem at once, the next step is to break it down into smaller, more manageable components.

Various types of logic trees (also known as issue trees or decision trees) can be used to break down the problem. At each stage where new branches are created, it’s important for them to be “MECE” – mutually exclusive and collectively exhaustive. This process of breaking down continues until manageable components are identified, allowing for individual examination.

The decomposition of the problem demands looking at the problem from various perspectives. That is why collaboration within a team often yields more valuable results, as diverse viewpoints lead to a richer pool of ideas and solutions.

3. Prioritize problem branches

The next step involves prioritization. Not all branches of the problem tree have the same impact, so it’s important to understand the significance of each and focus attention on the most impactful areas. Prioritizing helps streamline efforts and minimize the time required to solve the problem.

what systematic approach to problem solving

Over 200k developers and product managers use LogRocket to create better digital experiences

what systematic approach to problem solving

4. Create an analysis plan

For prioritized components, you may need to conduct in-depth analysis. Before proceeding, a work plan is created for data gathering and analysis. If work is conducted within a team, having a plan provides guidance on what needs to be achieved, who is responsible for which tasks, and the timelines involved.

5. Conduct analysis

Data gathering and analysis are central to the problem-solving process. It’s a good practice to set time limits for this phase to prevent excessive time spent on perfecting details. You can employ heuristics and rule-of-thumb reasoning to improve efficiency and direct efforts towards the most impactful work.

6. Synthesis

After each individual branch component has been researched, the problem isn’t solved yet. The next step is synthesizing the data logically to address the initial question. The synthesis process and the logical relationship between the individual branch results depend on the logic tree used.

7. Communication

The last step is communicating the story and the solution of the problem to the stakeholders and decision-makers. Clear effective communication is necessary to build trust in the solution and facilitates understanding among all parties involved. It ensures that stakeholders grasp the intricacies of the problem and the proposed solution, leading to informed decision-making.

Exploring problem-solving in various contexts

While problem-solving has traditionally been associated with fields like engineering and science, today it has become a fundamental skill for individuals across all professions. In fact, problem-solving consistently ranks as one of the top skills required by employers.

Problem-solving techniques can be applied in diverse contexts:

  • Individuals — What career path should I choose? Where should I live? These are examples of simple and common personal challenges that require effective problem-solving skills
  • Organizations — Businesses also face many decisions that are not trivial to answer. Should we expand into new markets this year? How can we enhance the quality of our product development? Will our office accommodate the upcoming year’s growth in terms of capacity?
  • Societal issues — The biggest world challenges are also complex problems that can be addressed with the same technique. How can we minimize the impact of climate change? How do we fight cancer?

Despite the variation in domains and contexts, the fundamental approach to solving these questions remains the same. It starts with gaining a clear understanding of the problem, followed by decomposition, conducting analysis of the decomposed branches, and synthesizing it into a result that answers the initial problem.

Real-world examples of problem-solving

Let’s now explore some examples where we can apply the problem solving framework.

Problem: In the production of electronic devices, you observe an increasing number of defects. How can you reduce the error rate and improve the quality?

Electric Devices

Before delving into analysis, you can deprioritize branches that you already have information for or ones you deem less important. For instance, while transportation delays may occur, the resulting material degradation is likely negligible. For other branches, additional research and data gathering may be necessary.

Once results are obtained, synthesis is crucial to address the core question: How can you decrease the defect rate?

While all factors listed may play a role, their significance varies. Your task is to prioritize effectively. Through data analysis, you may discover that altering the equipment would bring the most substantial positive outcome. However, executing a solution isn’t always straightforward. In prioritizing, you should consider both the potential impact and the level of effort needed for implementation.

By evaluating impact and effort, you can systematically prioritize areas for improvement, focusing on those with high impact and requiring minimal effort to address. This approach ensures efficient allocation of resources towards improvements that offer the greatest return on investment.

Problem : What should be my next job role?

Next Job

When breaking down this problem, you need to consider various factors that are important for your future happiness in the role. This includes aspects like the company culture, our interest in the work itself, and the lifestyle that you can afford with the role.

However, not all factors carry the same weight for us. To make sense of the results, we can assign a weight factor to each branch. For instance, passion for the job role may have a weight factor of 1, while interest in the industry may have a weight factor of 0.5, because that is less important for you.

By applying these weights to a specific role and summing the values, you can have an estimate of how suitable that role is for you. Moreover, you can compare two roles and make an informed decision based on these weighted indicators.

Key problem-solving skills

This framework provides the foundation and guidance needed to effectively solve problems. However, successfully applying this framework requires the following:

  • Creativity — During the decomposition phase, it’s essential to approach the problem from various perspectives and think outside the box to generate innovative ideas for breaking down the problem tree
  • Decision-making — Throughout the process, decisions must be made, even when full confidence is lacking. Employing rules of thumb to simplify analysis or selecting one tree cut over another requires decisiveness and comfort with choices made
  • Analytical skills — Analytical and research skills are necessary for the phase following decomposition, involving data gathering and analysis on selected tree branches
  • Teamwork — Collaboration and teamwork are crucial when working within a team setting. Solving problems effectively often requires collective effort and shared responsibility
  • Communication — Clear and structured communication is essential to convey the problem solution to stakeholders and decision-makers and build trust

How to enhance your problem-solving skills

Problem-solving requires practice and a certain mindset. The more you practice, the easier it becomes. Here are some strategies to enhance your skills:

  • Practice structured thinking in your daily life — Break down problems or questions into manageable parts. You don’t need to go through the entire problem-solving process and conduct detailed analysis. When conveying a message, simplify the conversation by breaking the message into smaller, more understandable segments
  • Regularly challenging yourself with games and puzzles — Solving puzzles, riddles, or strategy games can boost your problem-solving skills and cognitive agility.
  • Engage with individuals from diverse backgrounds and viewpoints — Conversing with people who offer different perspectives provides fresh insights and alternative solutions to problems. This boosts creativity and helps in approaching challenges from new angles

Final thoughts

Problem-solving extends far beyond mathematics or scientific fields; it’s a critical skill for making informed decisions in every area of life and work. The seven-step framework presented here provides a systematic approach to problem-solving, relevant across various domains.

Now, consider this: What’s one question currently on your mind? Grab a piece of paper and try to apply the problem-solving framework. You might uncover fresh insights you hadn’t considered before.

Featured image source: IconScout

LogRocket generates product insights that lead to meaningful action

Get your teams on the same page — try LogRocket today.

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • #career development
  • #tools and resources

what systematic approach to problem solving

Stop guessing about your digital experience with LogRocket

Recent posts:.

Shane Eleniak Leader Spotlight

Leader Spotlight: Creating value streams in a B2B2C model, with Shane Eleniak

Shane Eleniak discusses seeing value from the lens of subscribers, the service provider, and across the different personas in the platform.

what systematic approach to problem solving

How to connect business metrics to customer opportunities

I often help product teams move from reactive, stakeholder-driven ways of working to strategic, outcome-driven ways. In this process, I […]

what systematic approach to problem solving

Essential leadership traits for modern product managers

Successful product managers are strategic thinkers, customer-focused innovators, adaptive problem solvers, and inspirational motivators.

what systematic approach to problem solving

Leader Spotlight: Understanding the root of the strategy, with Angela Suthrave

Angela Suthrave talks about the importance of understanding the assumptions, foundations, and boundaries behind a strategy.

what systematic approach to problem solving

Leave a Reply Cancel reply

The Systematic Problem-Solving (SPS) Method:

Make better decisions tom g. stevens phd.

Solving problems is important in every area of human thinking. Learning general problem-solving skills can therefore help you improve your ability to cope with every area of your life. All disciplines of philosophy, business, science, and humanities have developed their own approach to solving problems. Remarkably, the problem-solving models developed by each of these areas are strikingly similar. I describe a simple problem-solving process that you can use to solve almost all problems.

Stages of the problem-solving process. The famous psychologist, Dr. Carl Rogers, was one of the first to help us understand how important self-exploration and problem-solving are for overcoming all types of personal, psychological, and daily-living problems. (1);

Consciously going through each of these four stages when solving any complex problem can be very useful. Following are the five stages of the problem-solving method.

STAGE 1: EXPLORATION OF THE PROBLEM

STAGE 2: EXPLORING ALTERNATIVE SOLUTIONS (Routes to Happiness);

STAGE 3: CHOOSING THE BEST ALTERNATIVE

STAGE 4: PLANNING AND ACTION

STAGE 5: EXPERIMENTING AND GATHERING FEEDBACK

During this stage, we gather all of the information we can about both external aspects of the problem and internal aspects. Good information gathering is not an easy process. Scientists spend their whole lives trying to learn about some very small piece of the world. The type of information-gathering process we use will depend upon the type of problem we are trying to solve. For information about the world the following are powerful skills to use.

  •  Library reference skills
  •  Observational skills
  •  Informational interviewing skills
  •  Critical thinking skills
  •  Scientific method skills
  •  Data analysis and statistical skills

Learning how to become an expert at identifying problems and finding causes is essential to become an expert in any field. The above skills are useful in solving many types of problems--even intra-personal ones. However, the focus of this book is how to be happy; and the key to happiness almost always involves not just external causes but internal ones as well.

It is usually much easier for most of us to observe an external event than an internal one. We have our external sensory organs to see and hear external events, but not internal ones. How do we observe that which we cannot see? We can learn to be better observers of our emotions, self-talk, and images.

The self-exploration process described above provides enough information to make you an expert at self-exploration. That is one of the most essential parts of developing your own inner therapist.

STAGE 2: EXPLORING ALTERNATIVE SOLUTIONS OR ROUTES TO HAPPINESS

Gather all the best information you can about possible solutions. Use brainstorming techniques, observe and consult with people who have overcome similar problems, read relevant material, consult experts, and recall your own relevant past experience. Look at both internal and external solutions.

Once you learn so many different routes to happiness, then you will be truly free to choose to be happy in almost any situation you face in life. The actual choice is made in stage 3 of the /problem-solving process. The appendix contains a very useful decision-making model for helping you make complex choices such as choosing a career or relationship. The following is a simple approach to making a decision between alternatives. (See Carkhuff Decision-Making Model, below, for a method for making complex decisions--for career or life planning.);

(1); List all the alternatives you are considering

(2); List all of the values or criteria that will be affected by the decision

(3); Evaluate each alternative by each criteria or value

(4); Choose the alternative which you predict will satisfy the criteria the best and lead to your greatest overall happiness

STAGE 4:  PLANNING AND ACTION (Experimenting);

Many decisions are made, but never implemented. See that you follow-up with good planning. Once you have made your choice, you can use some of the planning methods suggested in the O-PATSM method from chapter 11 to make sure that you follow through with your decision.

This is the stage of acting on your decision. Many people fear making mistakes and failure as if these were some terrible sins that they should never commit. That view of life of life makes every decision and action seem very serious and they often become very timid people who lack creativity and are plagued by guilt and fear of failure. Instead we can view every action as an experiment. If one of our overall goals in life is learning and growth, then we can never fail to learn. All people who have accomplished great happiness for themselves and contributed to others have shared the courage to act on their beliefs.

STAGE 5: GATHERING FEEDBACK

Many people hate to be evaluated and dread finding out the results of what they have done out of fear that the feedback will be negative. These fears can be serious impediments to the growth that can only happen through getting open, accurate feedback.

However, once learning and growth are important goals, then getting feedback becomes highly desirable. How else can we learn? Even negative outcomes can provide valuable information. Of course, almost everyone would rather have outcomes that maximize happiness; but when we don't, we can at least try to maximize our learning. Learning can help maximize happiness in the future.

We can also make the mistakes of dwelling on past mistakes that goes beyond constructive learning and reasonable reparations to victims and of punishing ourselves unnecessarily. Normally, there is no value to punishment--once a lesson has been learned. (2); Keep clear at all times that this problem-solving process is only a tool to serve the overall life goals of increased health, growth, and happiness.

CARKHUFF DECISION-MAKING MODEL:   This particular decision-making model is based upon one by Dr. Robert Carkhuff and follows the general guidelines of a considerable amount of research on how people can make more effective decisions. It can also be used for any other type of decision--from buying a new car to choosing a mate.

EXAMPLE OF USING THE DECISION-MAKING MODEL

The decision-making model will be illustrated in a way which you can use aa an analogy for making your own career decision. In this example, Henry is trying to decide whether to major in psychology or in computer science. Thus he has narrowed his alternatives to the following two:

1); majoring in psychology with a career goal of either going into high school counseling or teaching or 2); majoring in computer science with a possible goal of working as a computer programmer.

These are represented along the top axis of the following matrix.

  ** is the WINNER-it has the most points of the two alternatives

STEPS TO USING THE DECISION-MAKING MODEL--(use above example);

STEP 1-- LIST YOUR CAREER ALTERNATIVES. This is your refined list of alternatives of which majors or occupations you are trying to decide between. Remember, that you can list as many as you want. You can list unusual combinations of simpler alternatives. For Henry those narrowed alternatives were psychology and computer science.

STEP 2--CAREER SELECTION CRITERIA. Review your Career Selection Criteria list and write all the important career selection criteria in the far left column. Note that repeating the same idea or leaving out an important idea can affect the decision outcome.

STEP 3-- CRITERIA WEIGHTS. Evaluate the relative importance to you of each of your Career Selection Criteria on a scale of 1 to 10 (10 being the most important);. Write your answer in the column next to the selection criteria.

STEP 4--ALTERNATIVE EVALUATION SCALE. Each alternative is to be evaluated from the point of view of each selection criterion. You need to think about what this means for each selection criterion. For example Henry determined that for the selection criteria of income , a "minimally acceptable" income would be $25,000 starting with prospects of making up to $50,000 eventually. An outstanding salary would be starting at about $40, 000 with prospects of making up to $100,000.

+5 = Maximum evaluation--outstanding (example: income begin $40,000 go to $100,000 +4, +3, +2, +1 = intermediate values

0 = Minimally acceptable value. (example: income = begin $20,000 go to $45,000);

-1, -2, -3, -4 = intermediate values

-5 = Minimum evaluation--worst possible (example: income < $10,000

STEP 5--EVALUATE EACH ALTERNATIVE BY EACH SELECTION CRITERION. Use the evaluation scale from step 3 to evaluate each alternative from the point of view of each Career Selection Criterion. Give it rating from -5 to +5. In the example above, both alternatives were evaluated on the criterion of "income": Henry gave the psychology income an evaluation of "+2" and computer science income an evaluation of " +4."

STEP 6--MULTIPLY THE CRITERIA WEIGHTS TIMES THE EVALUATIONS. In the example above for the selection criterion of "income," Henry multiplied the criterion weight of "9" times the evaluation of " +2" for "PSYCH" to get a result of "18." That is its SCORE OR POINTS for psychology on the criterion of income. Put it inside of the parentheses. This score of 18 is an overall prediction much Henry's income in psychology will contribute to his overall happiness. Since he had a score of 36 in computer science, he his predicting that he will be much happier with his income in that field.

STEP 7--FIND THE OVERALL SUM OF THE SCORES FOR EACH ALTERNATIVE. Add together the numbers inside the parentheses for each alternative. In the example above, the overall sum for the "PSYCH" alternative is "405."

STEP 8--COMPARE THE ALTERNATIVES WITH EACH OTHER AND WITH THE "IDEAL." The "ideal" is the maximum possible number of points. Once you have determined all the totals and compared them to each other, try to figure out why one alternative came out ahead of another--where it got its points. Play with the points until you think the points match your true feelings and values.

* The alternative with the most points is the one you are predicting will make you the happiest person.

1. 1 Some might argue that Freud was the first. He clearly did describe many helpful techniques. I think that some of his free association techniques are still very useful for helping to find underlying beliefs, images, or cognitive systems which are related to the problem. However, Rogers was the one that more clearly described the stages of self-exploration and problem-solving and the conditions of unconditional positive regard, empathetic understanding, and genuineness on the part of the therapist which seem to be important to the therapeutic process or to any person attempting to feel better.

Robert Carkhuff (one of Roger's pupils); has developed a structured training system for helping people learn these skills. Robert Cash, a personal friend, has further elaborated these skills in his own courses and introduced me to this process. There is a good deal of research supporting the effectiveness of these techniques.

2. 2 This statement does not address the use of punishment as a deterrent to prevent some persons from profiting from their dysfunctional behaviors. For example if behaviors such as murder, robbery, or selling drugs are not given sufficient punishment, some people will engage in these behaviors. A person whose ultimate concern is money and pleasure may deal drugs to make money with little regard to how it affects others. Increasing the cost for a person with those beliefs can reduce the chances they will sell drugs.

Self-Help and other resources on this website (and site map)

Copyright 2021 Tom G. Stevens PhD  

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Mechanics (Essentials) - Class 11th

Course: mechanics (essentials) - class 11th   >   unit 2.

  • Introduction to physics
  • What is physics?

The scientific method

  • Models and Approximations in Physics

Introduction

  • Make an observation.
  • Ask a question.
  • Form a hypothesis , or testable explanation.
  • Make a prediction based on the hypothesis.
  • Test the prediction.
  • Iterate: use the results to make new hypotheses or predictions.

Scientific method example: Failure to toast

1. make an observation..

  • Observation: the toaster won't toast.

2. Ask a question.

  • Question: Why won't my toaster toast?

3. Propose a hypothesis.

  • Hypothesis: Maybe the outlet is broken.

4. Make predictions.

  • Prediction: If I plug the toaster into a different outlet, then it will toast the bread.

5. Test the predictions.

  • Test of prediction: Plug the toaster into a different outlet and try again.
  • If the toaster does toast, then the hypothesis is supported—likely correct.
  • If the toaster doesn't toast, then the hypothesis is not supported—likely wrong.

Logical possibility

Practical possibility, building a body of evidence, 6. iterate..

  • Iteration time!
  • If the hypothesis was supported, we might do additional tests to confirm it, or revise it to be more specific. For instance, we might investigate why the outlet is broken.
  • If the hypothesis was not supported, we would come up with a new hypothesis. For instance, the next hypothesis might be that there's a broken wire in the toaster.

Want to join the conversation?

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

8.5: Problem Solving and Decision-Making in Groups

  • Last updated
  • Save as PDF
  • Page ID 106475

  • Lisa Coleman, Thomas King, & William Turner
  • Southwest Tennessee Community College

Learning Objectives

  • Discuss the common components and characteristics of problems.
  • Explain the five steps of the group problem-solving process.
  • Discuss the various influences on decision-making.

Although the steps of problem-solving and decision-making that we will discuss next may seem obvious, we often don’t think to or choose not to use them. Instead, we start working on a problem and later realize we are lost and have to backtrack. I’m sure we’ve all reached a point in a project or task and had the “OK, now what?” moment. I’ve recently taken up some carpentry projects as a functional hobby, and I have developed a great respect for the importance of advanced planning. It’s frustrating to get to a crucial point in building or fixing something only to realize that you have to unscrew a support board that you already screwed in, have to drive back to the hardware store to get something that you didn’t think to get earlier, or have to completely start over. In this section, we will discuss the group problem-solving process, methods of decision making, and influences on these processes.

14.3.0N.jpg

Group Problem-Solving Process

There are several variations of similar problem-solving models based on US American scholar John Dewey’s reflective thinking process (Bormann & Bormann, 1988). As you read through the steps in the process, think about how we can apply what we have learned regarding the general and specific elements of problems. Some of the following steps are straightforward, and they are things we would logically do when faced with a problem. However, taking a deliberate and systematic approach to problem-solving has been shown to benefit group functioning and performance. A deliberate approach is especially beneficial for groups that do not have an established history of working together and will only be able to meet occasionally. Although a group should attend to each step of the process, group leaders or other group members who facilitate problem-solving should be cautious not to dogmatically follow each element of the process or force a group along. Such a lack of flexibility could limit group member input and negatively affect the group’s cohesion and climate.

Step 1: Define the Problem

Define the problem by considering the three elements shared by every problem: the current undesirable situation , the goal or more desirable situation, and obstacles in the way (Adams & Galanes, 2009). At this stage, group members share what they know about the current situation, without proposing solutions or evaluating the information. Here are some good questions to ask during this stage: What is the current difficulty? How did we come to know that the difficulty exists? Who/what is involved? Why is it meaningful/urgent/important? What have the effects been so far? What, if any, elements of the difficulty require clarification? At the end of this stage, the group should be able to compose a single sentence that summarizes the problem called a problem statement. Avoid wording in the problem statement or question that hints at potential solutions. A small group formed to investigate ethical violations of city officials could use the following problem statement: “Our state does not currently have a mechanism for citizens to report suspected ethical violations by city officials.”

Step 2: Analyze the Problem

During this step, a group should analyze the problem and the group’s relationship to the problem. Whereas the first step involved exploring the “what” related to the problem, this step focuses on the “why.” At this stage, group members can discuss the potential causes of the difficulty. Group members may also want to begin setting out an agenda or timeline for the group’s problem-solving process, looking forward to the other steps. To fully analyze the problem, the group can discuss the five common problem variables discussed before. Here are two examples of questions that the group formed to address ethics violations might ask: Why doesn’t our city have an ethics reporting mechanism? Do cities of similar size have such a mechanism? Once the problem has been analyzed, the group can pose a problem question that will guide the group as it generates possible solutions. “How can citizens report suspected ethical violations of city officials and how will such reports be processed and addressed?” As you can see, the problem question is more complex than the problem statement, since the group has moved on to a more in-depth discussion of the problem during step 2.

Step 3: Generate Possible Solutions

During this step, group members generate possible solutions to the problem. Again, solutions should not be evaluated at this point, only proposed and clarified. The question should be what could we do to address this problem, not what should we do to address it. It is perfectly OK for a group member to question another person’s idea by asking something like “What do you mean?” or “Could you explain your reasoning more?” Discussions at this stage may reveal a need to return to previous steps to better define or more fully analyze a problem. Since many problems are multifaceted, it is necessary for group members to generate solutions for each part of the problem separately, making sure to have multiple solutions for each part. Stopping the solution-generating process prematurely can lead to groupthink. For the problem question previously posed, the group would need to generate solutions for all three parts of the problem included in the question. Possible solutions for the first part of the problem (How can citizens report ethical violations?) may include “online reporting system, e-mail, in-person, anonymously, on-the-record,” and so on. Possible solutions for the second part of the problem (How will reports be processed?) may include “daily by a newly appointed ethics officer, weekly by a nonpartisan nongovernment employee,” and so on. Possible solutions for the third part of the problem (How will reports be addressed?) may include “by a newly appointed ethics commission, by the accused’s supervisor, by the city manager,” and so on.

Step 4: Evaluate Solutions

During this step, solutions can be critically evaluated based on their credibility, completeness, and worth. Once the potential solutions have been narrowed based on more obvious differences in relevance and/or merit, the group should analyze each solution based on its potential effects—especially negative effects. Groups that are required to report the rationale for their decision or whose decisions may be subject to public scrutiny would be wise to make a set list of criteria for evaluating each solution. Additionally, solutions can be evaluated based on how well they fit with the group’s charge and the abilities of the group. To do this, group members may ask, “Does this solution live up to the original purpose or mission of the group?” and “Can the solution actually be implemented with our current resources and connections?” and “How will this solution be supported, funded, enforced, and assessed?” Secondary tensions and substantive conflict, two concepts discussed earlier, emerge during this step of problem-solving, and group members will need to employ effective critical thinking and listening skills.

Decision-making is part of the larger process of problem-solving and it plays a prominent role in this step. While there are several fairly similar models for problem-solving, there are many varied decision-making techniques that groups can use. For example, to narrow the list of proposed solutions, group members may decide by majority vote, by weighing the pros and cons, or by discussing them until a consensus is reached. There are also more complex decision-making models like the “six hats method,” which we will discuss later. Once the final decision is reached, the group leader or facilitator should confirm that the group is in agreement. It may be beneficial to let the group break for a while or even to delay the final decision until a later meeting to allow people time to evaluate it outside of the group context.

Step 5: Implement and Assess the Solution

Implementing the solution requires some advanced planning, and it should not be rushed unless the group is operating under strict time restraints or delay may lead to some kind of harm. Although some solutions can be implemented immediately, others may take days, months, or years. As was noted earlier, it may be beneficial for groups to poll those who will be affected by the solution as to their opinion of it or even do a pilot test to observe the effectiveness of the solution and how people react to it. Before implementation, groups should also determine how and when they would assess the effectiveness of the solution by asking, “How will we know if the solution is working or not?” Since solution assessment will vary based on whether or not the group is disbanded, groups should also consider the following questions: If the group disbands after implementation, who will be responsible for assessing the solution? If the solution fails, will the same group reconvene or will a new group be formed?

14.3.1N-1.jpg

Certain elements of the solution may need to be delegated out to various people inside and outside the group. Group members may also be assigned to implement a particular part of the solution based on their role in the decision-making or because it connects to their area of expertise. Likewise, group members may be tasked with publicizing the solution or “selling” it to a particular group of stakeholders. Last, the group should consider its future. In some cases, the group will get to decide if it will stay together and continue working on other tasks or if it will disband. In other cases, outside forces determine the group’s fate.

“Getting Competent”: Problem Solving and Group Presentations

Giving a group presentation requires that individual group members and the group as a whole solve many problems and make many decisions. Although having more people involved in a presentation increases logistical difficulties and has the potential to create more conflict, a well-prepared and well-delivered group presentation can be more engaging and effective than a typical presentation. The main problems facing a group giving a presentation are (1) dividing responsibilities, (2) coordinating schedules and time management, and (3) working out the logistics of the presentation delivery.

In terms of dividing responsibilities, assigning individual work at the first meeting and then trying to fit it all together before the presentation (which is what many college students do when faced with a group project) is not the recommended method. Integrating content and visual aids created by several different people into a seamless final product takes time and effort, and the person “stuck” with this job at the end usually ends up developing some resentment toward his or her group members. While it’s OK for group members to do work independently outside of group meetings, spend time working together to help set up some standards for content and formatting expectations that will help make later integration of work easier. Taking the time to complete one part of the presentation together can help set those standards for later individual work. Discuss the roles that various group members will play openly so there isn’t role confusion. There could be one point person for keeping track of the group’s progress and schedule, one point person for communication, one point person for content integration, one point person for visual aids, and so on. Each person shouldn’t do all that work on his or her own but help focus the group’s attention on his or her specific area during group meetings (Stanton, 2009).

Scheduling group meetings is one of the most challenging problems groups face, given people’s busy lives. From the beginning, it should be clearly communicated that the group needs to spend considerable time in face-to-face meetings, and group members should know that they may have to make an occasional sacrifice to attend. Especially important is the commitment to scheduling time to rehearse the presentation. Consider creating a contract of group guidelines that include expectations for meeting attendance to increase group members’ commitment.

Group presentations require members to navigate many logistics of their presentation. While it may be easier for a group to assign each member to create a five-minute segment and then transition from one person to the next, this is definitely not the most engaging method. Creating a master presentation and then assigning individual speakers creates a more fluid and dynamic presentation and allows everyone to become familiar with the content, which can help if a person doesn’t show up to present and during the question-and-answer section. Once the content of the presentation is complete, figure out introductions, transitions, visual aids, and the use of time and space (Stanton, 2012). In terms of introductions, figure out if one person will introduce all the speakers at the beginning, if speakers will introduce themselves at the beginning, or if introductions will occur as the presentation progresses. In terms of transitions, make sure each person has included in his or her speaking notes when presentation duties switch from one person to the next. Visual aids have the potential to cause hiccups in a group presentation if they aren’t fluidly integrated. Practicing with visual aids and having one person control them may help prevent this. Know how long your presentation is and know how you’re going to use the space. Presenters should know how long the whole presentation should be and how long each of their segments should be so that everyone can share the responsibility of keeping time. Also, consider the size and layout of the presentation space. You don’t want presenters huddled in a corner until it’s their turn to speak or trapped behind furniture when their turn comes around.

  • Of the three main problems facing group presenters, which do you think is the most challenging and why?
  • Why do you think people tasked with a group presentation (especially students) prefer to divide the parts up and have members work on them independently before coming back together and integrating each part? What problems emerge from this method? In what ways might developing a master presentation and then assign parts to different speakers be better than the more divided method? What are the drawbacks to the master presentation method?

Specific Decision-Making Techniques

Some decision-making techniques involve determining a course of action based on the level of agreement among the group members. These methods include majority , expert , authority , and consensus rule . Figure \(\PageIndex{4}\) “Pros and Cons of Agreement-Based Decision-Making Techniques” reviews the pros and cons of each of these methods.

14.3.2N.jpg

Majority rule is a commonly used decision-making technique in which a majority (one-half plus one) must agree before a decision is made . A show-of-hands vote, a paper ballot, or an electronic voting system can determine the majority choice. Many decision-making bodies, including the US House of Representatives, Senate, and Supreme Court, use majority rule to make decisions, which shows that it is often associated with democratic decision-making since each person gets one vote and each vote counts equally. Of course, other individuals and mediated messages can influence a person’s vote, but since the voting power is spread out over all group members, it is not easy for one person or party to take control of the decision-making process. In some cases—for example, to override a presidential veto or to amend the constitution—a supermajority of two-thirds may be required to make a decision.

Minority rule is a decision-making technique in which a designated authority or expert has the final say over a decision and may or may not consider the input of other group members . When a designated expert makes a decision by minority rule, there may be buy-in from others in the group, especially if the members of the group didn’t have relevant knowledge or expertise. When a designated authority makes decisions, buy-in will vary based on group members’ level of respect for the authority. For example, decisions made by an elected authority may be more accepted by those who elected him or her than by those who didn’t. As with majority rule, this technique can be time-saving. Unlike majority rule, one person or party can have control over the decision-making process. This type of decision-making is more similar to that used by monarchs and dictators. An obvious negative consequence of this method is that the needs or wants of one person can override the needs and wants of the majority. A minority deciding for the majority has led to negative consequences throughout history. The white Afrikaner minority that ruled South Africa for decades instituted apartheid, which was a system of racial segregation that disenfranchised and oppressed the majority population. The quality of the decision and its fairness really depends on the designated expert or authority.

Consensus rule is a decision-making technique in which all members of the group must agree on the same decision . On rare occasions, a decision may be ideal for all group members, which can lead to a unanimous agreement without further debate and discussion. Although this can be positive, be cautious that this isn’t a sign of groupthink. More typically, the consensus is reached only after a lengthy discussion. On the plus side, consensus often leads to high-quality decisions due to the time and effort it takes to get everyone in agreement. Group members are also more likely to be committed to the decision because of their investment in reaching it. On the negative side, the ultimate decision is often one that all group members can live with but not one that’s ideal for all members. Additionally, the process of arriving at a consensus also includes conflict, as people debate ideas and negotiate the interpersonal tensions that may result.

“Getting Critical”: Six Hats Method of Decision Making

Edward de Bono developed the Six Hats method of thinking in the late 1980s, and it has since become a regular feature in decision-making training in business and professional contexts (de Bono, 1985). The method’s popularity lies in its ability to help people get out of habitual ways of thinking and to allow group members to play different roles and see a problem or decision from multiple points of view. The basic idea is that each of the six hats represents a different way of thinking, and when we figuratively switch hats, we switch the way we think. The hats and their style of thinking are as follows:

  • White hat. Objective—focuses on seeking information such as data and facts and then processes that information in a neutral way.
  • Red hat. Emotional—uses intuition, gut reactions, and feelings to judge information and suggestions.
  • Black hat. Negative—focus on potential risks, point out possibilities for failure, and evaluates information cautiously and defensively.
  • Yellow hat. Positive—is optimistic about suggestions and future outcomes gives constructive and positive feedback, points out benefits and advantages.
  • Green hat. Creative—try to generate new ideas and solutions, think “outside the box.”
  • Blue hat. Philosophical—uses metacommunication to organize and reflect on the thinking and communication taking place in the group, facilitates who wears what hat and when group members change hats.

Specific sequences or combinations of hats can be used to encourage strategic thinking. For example, the group leader may start off wearing the Blue Hat and suggest that the group start their decision-making process with some “White Hat thinking” in order to process through facts and other available information. During this stage, the group could also process through what other groups have done when faced with a similar problem. Then the leader could begin an evaluation sequence starting with two minutes of “Yellow Hat thinking” to identify potential positive outcomes, then “Black Hat thinking” to allow group members to express reservations about ideas and point out potential problems, then “Red Hat thinking” to get people’s gut reactions to the previous discussion, then “Green Hat thinking” to identify other possible solutions that are more tailored to the group’s situation or completely new approaches. At the end of a sequence, the Blue Hat would want to summarize what was said and begin a new sequence. To successfully use this method, the person wearing the Blue Hat should be familiar with different sequences and plan some of the thinking patterns ahead of time based on the problem and the group members. Each round of thinking should be limited to a certain time frame (two to five minutes) to keep the discussion moving.

  • This decision-making method has been praised because it allows group members to “switch gears” in their thinking and allows for role-playing, which lets people express ideas more freely. How can this help enhance critical thinking? Which combination of hats do you think would be best for a critical thinking sequence?
  • What combinations of hats might be useful if the leader wanted to break the larger group up into pairs and why? For example, what kind of thinking would result from putting Yellow and Red together, Black and White together, or Red and White together, and so on?
  • Based on your preferred ways of thinking and your personality, which hat would be the best fit for you? Which would be the most challenging? Why?

14.3.5.jpg

Influences on Decision Making

The personalities of group members, especially leaders and other active members, affect the climate of the group. Group member personalities can be categorized based on where they fall on a continuum anchored by the following descriptors: dominant/submissive, friendly/unfriendly, and instrumental/emotional (Cragan & Wright, 1999). The more group members there are in any extreme of these categories, the more likely it that the group climate will also shift to resemble those characteristics.

  • Dominant versus submissive. Group members that are more dominant act more independently and directly, initiate conversations, take up more space, make more direct eye contact, seek leadership positions, and take control over decision-making processes. More submissive members are reserved, contribute to the group only when asked to, avoid eye contact, and leave their personal needs and thoughts unvoiced or give in to the suggestions of others.
  • Friendly versus unfriendly. Group members on the friendly side of the continuum find a balance between talking and listening, don’t try to win at the expense of other group members, are flexible but not weak, and value democratic decision-making. Unfriendly group members are disagreeable, indifferent, withdrawn, and selfish, which leads them to either not invest in decision making or direct it in their own interest rather than in the interest of the group.
  • Instrumental versus emotional. Instrumental group members are emotionally neutral, objective, analytical, task-oriented, and committed followers, which leads them to work hard and contribute to the group’s decision-making as long as it is orderly and follows agreed-on rules. Emotional group members are creative, playful, independent, unpredictable, and expressive, which leads them to make rash decisions, resist group norms or decision-making structures and switch often from relational to task focus.

Domestic Diversity and Group Communication

While it is becoming more likely that we will interact in small groups with international diversity, we are guaranteed to interact in groups that are diverse in terms of the cultural identities found within a single country or the subcultures found within a larger cultural group.

Gender stereotypes sometimes influence the roles that people play within a group. For example, the stereotype that women are more nurturing than men may lead group members (both male and female) to expect that women will play the role of supporters or harmonizers within the group. Since women have primarily performed secretarial work since the 1900s, it may also be expected that women will play the role of the recorder. In both of these cases, stereotypical notions of gender place women in roles that are typically not as valued in group communication. The opposite is true for men. In terms of leadership, despite notable exceptions, research shows that men fill an overwhelmingly disproportionate amount of leadership positions. We are socialized to see certain behaviors by men as indicative of leadership abilities, even though they may not be. For example, men are often perceived to contribute more to a group because they tend to speak first when asked a question or to fill a silence and are perceived to talk more about task-related matters than relationally oriented matters. Both of these tendencies create a perception that men are more engaged with the task. Men are also socialized to be more competitive and self-congratulatory, meaning that their communication may be seen as dedicated and their behaviors seen as powerful, and that when their work isn’t noticed they will be more likely to make it known to the group rather than take silent credit. Even though we know that the relational elements of a group are crucial for success, even in high-performance teams, that work is not as valued in our society as task-related work.

Despite the fact that some communication patterns and behaviors related to our typical (and stereotypical) gender socialization affects how we interact in and form perceptions of others in groups, the differences in group communication that used to be attributed to gender in early group communication research seem to be diminishing. This is likely due to the changing organizational cultures from which much group work emerges, which have now had more than sixty years to adjust to women in the workplace. It is also due to a more nuanced understanding of gender-based research, which doesn’t take a stereotypical view from the beginning as many of the early male researchers did. Now, instead of biological sex being assumed as a factor that creates inherent communication differences, group communication scholars see that men and women both exhibit a range of behaviors that are more or less feminine or masculine. It is these gendered behaviors, and not a person’s gender, that seem to have more of an influence on perceptions of group communication. Interestingly, group interactions are still masculinist in that male and female group members prefer a more masculine communication style for task leaders and that both males and females in this role are more likely to adapt to a more masculine communication style. Conversely, men who take on social-emotional leadership behaviors adopt a more feminine communication style. In short, it seems that although masculine communication traits are more often associated with high-status positions in groups, both men and women adapt to this expectation and are evaluated similarly (Haslett & Ruebush, 1999).

Other demographic categories are also influential in group communication and decision-making. In general, group members have an easier time communicating when they are more similar than different in terms of race and age. This ease of communication can make group work more efficient, but the homogeneity, meaning the members are more similar, may sacrifice some creativity. n general, groups that are culturally heterogeneous have better overall performance than more homogenous groups (Haslett & Ruebush, 1999). These groups benefit from the diversity of perspectives in terms of the quality of decision-making and creativity of output.

The benefits and challenges that come with the diversity of group members are important to consider. Since we will all work in diverse groups, we should be prepared to address potential challenges in order to reap the benefits. Diverse groups may be wise to coordinate social interactions outside of group time in order to find common ground that can help facilitate interaction and increase group cohesion. We should be sensitive but not let sensitivity create fear of “doing something wrong” which then prevents us from having meaningful interactions.

Key Takeaways

  • Every problem has common components: an undesirable situation, the desired situation, and obstacles between the undesirable and desirable situations. Every problem also has a set of characteristics that vary among problems, including task difficulty, number of possible solutions, group member interest in the problem, group familiarity with the problem, and the need for solution acceptance.
  • Define the problem by creating a problem statement that summarizes it.
  • Analyze the problem and create a problem question that can guide solution generation.
  • Generate possible solutions. Possible solutions should be offered and listed without stopping to evaluate each one.
  • Evaluate the solutions based on their credibility, completeness, and worth. Groups should also assess the potential effects of the narrowed list of solutions.
  • Implement and assess the solution. Aside from enacting the solution, groups should determine how they will know the solution is working or not.
  • Common decision-making techniques include majority rule, minority rule, and consensus rule. Only a majority, usually one-half plus one, must agree before a decision is made with majority rule. With minority rule, designated authority or expert has final say over a decision, and the input of group members may or may not be invited or considered. With consensus rule, all members of the group must agree on the same decision.
  • Situational factors include the degree of freedom a group has to make its own decisions, the level of uncertainty facing the group and its task, the size of the group, the group’s access to information, and the origin and urgency of the problem.
  • Personality influences on decision making include a person’s value orientation (economic, aesthetic, theoretical, political, or religious), and personality traits (dominant/submissive, friendly/unfriendly, and instrumental/emotional).
  • Cultural influences on decision making include the heterogeneity or homogeneity of the group makeup; cultural values and characteristics such as individualism/collectivism, power distance, and high-/low-context communication styles; and gender and age differences.
  • Scenario 1. Task difficulty is high, the number of possible solutions is high, group interest in the problem is high, group familiarity with the problem is low, and the need for solution acceptance is high.
  • Scenario 2. Task difficulty is low, the number of possible solutions is low, group interest in the problem is low, group familiarity with the problem is high, and the need for solution acceptance is low.
  • Scenario 1: Academic. A professor asks his or her class to decide whether the final exam should be an in-class or take-home exam.
  • Scenario 2: Professional. A group of coworkers must decide which person from their department to nominate for a company-wide award.
  • Scenario 3: Personal. A family needs to decide how to divide the belongings and estate of a deceased family member who did not leave a will.
  • Scenario 4: Civic. A local branch of a political party needs to decide what five key issues it wants to include in the national party’s platform.
  • Group communication researchers have found that heterogeneous groups (composed of diverse members) have advantages over homogenous (more similar) groups. Discuss a group situation you have been in where diversity enhanced your and/or the group’s experience.

Adams, K., and Gloria G. Galanes, Communicating in Groups: Applications and Skills , 7th ed. (Boston, MA: McGraw-Hill, 2009), 220–21.

Allen, B. J., Difference Matters: Communicating Social Identity , 2nd ed. (Long Grove, IL: Waveland, 2011), 5.

Bormann, E. G., and Nancy C. Bormann, Effective Small Group Communication , 4th ed. (Santa Rosa, CA: Burgess CA, 1988), 112–13.

Clarke, G., “The Silent Generation Revisited,” Time, June 29, 1970, 46.

Cragan, J. F., and David W. Wright, Communication in Small Group Discussions: An Integrated Approach , 3rd ed. (St. Paul, MN: West Publishing, 1991), 77–78.

de Bono, E., Six Thinking Hats (Boston, MA: Little, Brown, 1985).

Delbecq, A. L., and Andrew H. Ven de Ven, “A Group Process Model for Problem Identification and Program Planning,” The Journal of Applied Behavioral Science 7, no. 4 (1971): 466–92.

Haslett, B. B., and Jenn Ruebush, “What Differences Do Individual Differences in Groups Make?: The Effects of Individuals, Culture, and Group Composition,” in The Handbook of Group Communication Theory and Research , ed. Lawrence R. Frey (Thousand Oaks, CA: Sage, 1999), 133.

Napier, R. W., and Matti K. Gershenfeld, Groups: Theory and Experience , 7th ed. (Boston, MA: Houghton Mifflin, 2004), 292.

Osborn, A. F., Applied Imagination (New York: Charles Scribner’s Sons, 1959).

Spranger, E., Types of Men (New York: Steckert, 1928).

Stanton, C., “How to Deliver Group Presentations: The Unified Team Approach,” Six Minutes Speaking and Presentation Skills , November 3, 2009, accessed August 28, 2012, http://sixminutes.dlugan.com/group-presentations-unified-team-approach .

Thomas, D. C., “Cultural Diversity and Work Group Effectiveness: An Experimental Study,” Journal of Cross-Cultural Psychology 30, no. 2 (1999): 242–63.

what systematic approach to problem solving

  • I Want to Learn Project Management
  • Core Project Management Courses
  • I Want to Study Agile Project Management
  • Agile Project Management Courses
  • Project Management Software
  • I Need my Team to be Better at Project Management & Delivery
  • I Want to Study for Project Management Professional (PMP)
  • The Project Manager’s PMP Study Guide
  • PMI Qualifications and PDUs
  • I Want to Study for PRINCE2
  • PRINCE2 Qualifications
  • Agile Qualifications (Scrum and more)
  • ITIL Qualifications
  • Project Management Knowledge Areas
  • Leadership and Management Skills
  • Professional Personal Effectiveness
  • Artificial Intelligence
  • Our Latest Project Management Articles
  • Themed Directory of PM Articles
  • All Our PM Articles: List
  • Our Top ‘Must-Read’ Project Management Guides
  • Project Management Podcasts
  • All our Project Management Tools & Resources
  • Free Online Project Management Resources
  • Project Management Productivity Bundle
  • Project Management Template Kit
  • Project Management Checklists
  • Project Management Bookshop
  • Project Management Domains
  • OnlinePMCourses Kindle-exclusive Project Management eBooks Series
  • What is Your Project Management Personality?
  • Project in a Box
  • The OnlinePMCourses Newsletter
  • About OnlinePMCourses
  • Contact OnlinePMCourses
  • Frequently Asked Questions
  • How it Works
  • Volume Licensing of Project Management Courses for Businesses
  • Become an OnlinePMCourses Affiliate
  • Writing for OnlinePMCourses
  • How to Build OnlinePMCourses
  • OnlinePMCourses Email Whitelisting Instructions
  • OnlinePMCourses Privacy Policy
  • Free Academy of PM

3 December, 2018

2   comments

Problem-Solving: A Systematic Approach

Featured Image without Sidebar

By   Mike Clayton

One of the joys of Project Management is the constant need for problem-solving.

The novelty and uncertainty of a project environment constantly throw up surprises. So, a Project Manager needs to be adept at solving problems.

In this article, we look at problem-solving and offer you a structured, systematic approach.

Problem-Solving Methodologies

Problem Solving: A Systematic Approach

There are a lot of established approaches to structured problem-solving. And there is a good chance that, if you work in a large organization, one of them is in common use. Indeed, some organizations mandate a particular problem-solving methodology.

For example, in automobile manufacturing industries, the 8 Disciplines or 8-D methodology is used widely. And anywhere that Six Sigma is an important part of the toolset, you will probably find the DMAIC method of problem-solving.

Others I like include Simplex and the catchily-named TOSIDPAR. And there are still others that, whilst highly effective, are also assertively protected by copyright, making them hard to discuss in an article like this. I’m thinking of you, Synectics.

Strengths and Weaknesses

All of these methodologies offer great features. And curiously, while each one feels complete, none offers every step you might want. The reason is simple. Each approach is tailored to focus on a part of the problem-solving process. Other parts are either outside their remit or receive less emphasis.

Comparison of Approaches

The consequence is that every structured approach can miss out steps that are important in some contexts. To illustrate, let’s compare the four methodologies I have mentioned.

Comparison of Four Problem-solving Methodologies

Resolving the Gaps

At OnlinePMCourses, we use an 8-step problem-solving approach that covers just about all of the steps that these four methodologies offer. But, before we address these, let’s take a look at some practical approaches to applying problem-solving.

Practical Implementation

Some of the best examples of project problem-solving are in two of my favorite movies:

  • Apollo 13 ‘Let’s work the problem’ (Gene Kranz played by Ed Harris)
  • The Martian ‘In the face of overwhelming odds, I’m left with only one option, I’m gonna have to science the shit out of this.’ (Mark Watney played by Matt Damon)

In the Apollo 13 movie, there’s a scene where one engineer dumps a big pile of stuff onto a table in front of a bunch of his colleagues.

‘The people upstairs handed us this one and we’ve gotta come through. We’ve gotta’ find a way for this {holds up square thing] fit into the hole for this [a round thing] using nothing but that [a pile of random-looking stuff]. Let’s get it organized.’

They all dive in and we hear a hubbub.

Hubbub is about as reasonable a translation of the Japanese onomatopoeic word Waigaya as I can find. The idea behind Honda’s Waigaya approach is that everyone on the team gets to contribute to the conversation. But it isn’t a simple free-for-all. There are rules:

  • Everybody is equal and needs to be able to say what they think.
  • The team must listen to all ideas, and discuss them until they can either prove them to be valid or reject them.
  • Once someone shares an idea, they don’t own it – it belongs to the team, who can do with the idea what it wants.
  • At the end of waigaya, the team has a set of decisions and responsibilities for what to do, by whom, and by when.

There is a fabulous article that is well worth reading, at the Strategy & Business site .

In The Martian, the character Mark Watney is stuck with his problem. This makes it immediate, and also easy to see the context clearly. Another idea from Japanese manufacturing harnesses the value of getting out from behind your desk and going to where the problem is. It’s called ‘ going to the gemba’ – literally, ‘going to the place’ .

There is magic, when we get up, move about, and gather where the problem is happening. Going to the gemba and convening a waigaya is a great way to kick-off even the most complex problem-solving. Unless, that is, the gemba is halfway to the moon, or on Mars.

Recommended 8-Step Problem Solving Method

To reconcile the different methodologies for solving problems on projects, I have developed my own approach. It was tempting just to take the 17 steps in the chart above. But I also found that those four still miss some steps I find important to remember.

Would anyone think a 20-step Problem-solving Process Makes Sense?

I doubt it.

So, I decided to wrap some of the steps into 8 main steps. This gives us an 8-step method, which has everything that I have found you will need for problem-solving in a project context.

In the figure below, you can see those 8 steps as the bold boxes, with the subsidiary elements that form parts of those 8 major steps in fainter type.

Comparison of Four Problem-solving Methodologies with the OnlinePMCourses Approach

So, in the rest of this article, I’ll summarize what I mean by each of these steps.

1. Define the Problem

Defining your problem is vital and takes up four of the 9 steps in the 8 Disciplines approach. But, on a project, this is often clearer than a new problem arising out of the blue in a manufacturing context, where 8D is most popular. So, I have folded the four parts into one step.

Understand the Context

Here’s where you need to find out how the problem impacts the whole of your project, and the circumstances in which it has arisen.

Gather Your Team

On a small project, this is likely to be all or most of your project team. For larger projects, this will center around the team delivering the workstream that the problem affects. For systemic problems, you’ll be asking work-stream leaders to supply expert team members to create a cross-cutting team. We sometimes call these ‘Tiger Teams’ – for reasons I can’t tell you, I’m afraid!

To support you in this stage, you may want to take a look at these articles:

  • What You Need to Know about Building a Great Project Team
  • Effective Teamwork: Do You Know How to Create it?
  • Boost Your Project Team Performance with these Hacks
  • How I Create Exceptional Project Collaboration
  • How to Make Your Next Kick-off Meeting a Huge Success

Define the Problem

It’s often reasonably easy to define your problem in terms of ‘what’s wrong’. But it pays to be a specific as possible. And one thing that will help you with the next main step (setting an objective) is to define it in terms of what you want.

I like the discipline of defining your problem as:

How to…

Safety First

When I first encountered the 8 Disciplines method, the step that blew me away was D3 – Contain the Problem. I’d not thought of that before!

But it’s clear that, in many environments, like manufacturing, engineering, and transportation, solving the problem is not your first priority. You must first ensure that you do everything possible to limit further damage and risk to life and reputation. This may be the case on your project.

2. Set An Objective for Resolving the Problem

With everything safe and the problem not getting worse, you can move forward. This step is about defining what success looks like.

And, taking a leaf out of the TOSIDPAR approach, what standards, criteria, and measurable outcomes will you use to make your objective s precise as possible?

3. Establish the Facts of the Problem

I suppose the first step in solving a problem is getting an understanding of the issues, and gathering facts. This is the research and analysis stage.

And I like the DMAIC method’s approach of separating this into two distinct parts:

  • Fact-finding.  This is where we make measurements in DMAIC, and gather information more generally. Be careful with perceptions and subjective accounts. It may be a fact that this is what I think I saw, but it may not be what actually happened.
  • Analysis Once you have your evidence, you can start to figure out what it tells you. This can be a straightforward discussion, or may rely on sophisticated analytical methods, depending on circumstances. One analytical approach, which the 8D method favors, is root cause analysis. There are a number of ways to carry this out.

4. Find Options for Resolving the Problem

I see this step as the heart of problem-solving. So, it always surprises me how thin some methodologies are, here. I split it into four considerations.

Identify Your Options

The creative part of the problem-solving process is coming up with options that will either solve the problem or address it in part. The general rules are simple:

Rule 1: The more options you have, the greater chance of success. Rule 2: The more diverse your team, the more and better will be the options they find.

So, create an informal environment, brief your team, and use your favorite idea generation methods to create the longest list of ideas you can find. Then, look for some more!

Identify your Decision Criteria

A good decision requires good input – in this case, good ideas to choose from. It also needs a strong process and the right people. The first step in creating a strong process is to refer back to your objectives for resolving the problem and define the criteria against which you will evaluate your options and make your decision.

Determine your Decision-makers

You also need to determine who is well-placed to make the decision. This will be by virtue of their authority to commit the project and their expertise in assessing the relevant considerations. In most cases, this will be you – maybe with the support of one or more work-stream leaders. For substantial issues that have major financial, schedule, reputational, or strategic implications, this may be your Project Sponsor or Project Board.

Evaluate your Options

There are a number of ways to evaluate your problem resolution options that range from highly structured and objective to simple subjective approaches. Whichever you select, be sure that you apply the criteria you chose earlier, and present the outcomes of your evaluation honestly.

It is good practice to offer a measure of the confidence decision-makers can have in the evaluation, and a scenario assessment, based on each option.

5. Make a Decision on How to Resolve the Problem

We have done two major articles like this one about decision-making. For more on this topic, take a look at:

  • The Essential Guide to Robust Project Decision-Making
  • Rapid Decision Making in Projects: How to Get it Right

There are two parts to this step, that are equally important.

  • The first is to make the decision.
  • The second is to document that decision

Documenting your Decision

Good governance demands that you document your decision. But how documentation to provide is a matter of judgment. Doubtless, it will correlate to the scale and implications of that decision.

Things to consider include:

  • What were the options?
  • Who were the decision-makers?
  • What was the evidence they considered?
  • How did they make their decision (process)?
  • What decision did they make?
  • What were the reasons for their choice?

6. Make a Plan for Resolving the Problem

Well, of course, now you need to put together a plan for how you are going to implement your resolution. Unless, of course, the fix is simple enough that you can just ask your team to get on and do it. So, in that case, skip to step 7.

Inform your Stakeholders

But for an extensive change to your project, you will need to plan the fix. And you will also need to communicate the decision and your plan to your stakeholders. Probably, this is nothing more than informing them of what has happened and how you are acting to resolve it. This can be enormously reassuring and the cost of not doing so is often rumours and gossip about how things are going wrong and that you don’t have control of your project.

Sometimes, however, your fix is a big deal. It may involve substantial disruption, delay, or risk, for example. In this case, you may need to persuade some of your stakeholders that it is the right course of action. As always, communication is 80 percent of project management, and stakeholder engagement is critical to the success of your project.

7. Take Action

There’s an old saying: ‘There’s no change without action.’ Indeed.

What more can I say about this step that will give you any value?

Hmmm. Nothing.

8. Review and Evaluate Your Plan

But this step is vital. How you finish something says a lot about your character.

If you consider the problem-solving as a mini-project, this is the close stage. And what you need to do will echo the needs of that stage. I’ll focus on three components.

Review and Evaluate

Clearly, there is always an opportunity to learn from reviewing the problem, the problem-solving, and the implementation, after completion. This is important for your professional development and for that of your team colleagues.

But it is also crucial to keep the effectiveness of your fix under review. So, monitor closely, until you are confident you have completed the next task…

Prevent the Problem from Recurring

Another phrase from the world of Japanese manufacturing: ‘Poka Yoke’ .

This is mistake-proofing. It is about designing something so it can’t fail. What stops you from putting an SD card or a USB stick into your device in the wrong orientation? If you did, the wrong connections of pins would probably either fry the memory device or, worse, damage your device.

The answer is that they are physically designed so they cannot be inserted incorrectly.

What can you do on your project to make a recurrence of this problem impossible? If there is an answer and that answer is cost-effective, then implement it.

Celebrate your Success in Fixing it

Always the last thing you do is celebrate. Now, when Jim Lovell, Jack Swigert, and Fred Haise (the crew of Apollo 13) returned safely to Earth, I’ll bet there was a big celebration. For solving your project problem, something modest is more likely to be in order. But don’t skill this. Even if it’s nothing more than a high five and a coffee break, always ensure that your team knows they have done well.

What Approach Do You Use for Problem-Solving?

How do you tackle solving problems on your projects? Do tell us, or share any thoughts you have, in the comments below. I’ll respond to anything you contribute.

Problem Solving: A Systematic Approach

Never miss an article or video!

Get notified of every new article or video we publish, when we publish it.

Type your email…

OPMC Default Post - Featured Image without Sidebar

Mike Clayton

About the author....

Great structure, Mike. We had a problem once that suited the “contain” step quite well. Lubricating oil and hydraulic fluid, from the same supplier, had been packaged incorrectly. A tech went to add oil to an aircraft’s engine, but dropped the can onto the concrete, and noticed red hydraulic fluid spill out! Obviously there’s now the risk that people have been inadvertently adding hydraulic fluid to aircraft engines… not good. It was actually FAR more important to contain this is real time so that aircraft, some of which could be airborne, could be safely grounded/quarantined. Resolving the subsequent ramifications could then be accomplished in “slow time” with some deliberate planning/execution.

Thank you very much. That’s a powerful illustration and hopefully the incudenbt did not cause any loss of life or serious damage.

 Get notified of every new article or video we publish, when we publish it.

Session expired

Please log in again. The login page will open in a new tab. After logging in you can close it and return to this page.

To read this content please select one of the options below:

Please note you do not have access to teaching notes, systematic problem-solving and its antecedents: a synthesis of the literature.

Management Research Review

ISSN : 2040-8269

Article publication date: 4 February 2020

Issue publication date: 31 August 2020

This study aims at determining the factors that favor a systematic approach to deal with complex operational and strategic problems. Management literature on problem-solving makes a clear distinction between either fixing a problem temporarily by eliminating its symptoms or solving it by diagnosing and altering underlying causes. Adopting a cognitive perspective of the dual-processing theory, this study labels these two approaches intuitive problem-solving and systematic problem-solving (SPS). While the superior effectiveness of SPS in fostering organizational learning is widely documented, existing literature fails to provide an overview of the conditions that support the adoption of SPS.

Design/methodology/approach

This paper presents a systematic literature review to shed light on the main supporting factors of SPS in operational as well as strategic domains.

Seven supporting factors of SPS (namely, nature of the problem, time availability, information availability, collaborative culture, transformational leadership, organizational learning infrastructure and environmental dynamism) are first identified and then discussed in an integrative model.

Originality/value

This work is an original attempt to inclusively address organizational, environmental and problem nature-related factors that favor SPS adoption. By determining the SPS supporting factors, this study highlights why many organizations fail or struggle to implement and sustain SPS over time.

  • Organizational behavior
  • Co-citation analysis
  • Systematic literature review
  • Dual-process theory
  • Intuitive problem-solving
  • Systematic problem-solving

Mohaghegh, M. and Furlan, A. (2020), "Systematic problem-solving and its antecedents: a synthesis of the literature", Management Research Review , Vol. 43 No. 9, pp. 1033-1062. https://doi.org/10.1108/MRR-06-2019-0284

Emerald Publishing Limited

Copyright © 2020, Emerald Publishing Limited

Related articles

We’re listening — tell us what you think, something didn’t work….

Report bugs here

All feedback is valuable

Please share your general feedback

Join us on our journey

Platform update page.

Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

Questions & More Information

Answers to the most commonly asked questions here

Learn Creative Problem Solving Techniques to Stimulate Innovation in Your Organization

By Kate Eby | October 20, 2017 (updated August 27, 2021)

  • Share on Facebook
  • Share on LinkedIn

Link copied

In today’s competitive business landscape, organizations need processes in place to make strong, well-informed, and innovative decisions. Problem solving - in particular creative problem solving (CPS) - is a key skill in learning how to accurately identify problems and their causes, generate potential solutions, and evaluate all the possibilities to arrive at a strong corrective course of action. Every team in any organization, regardless of department or industry, needs to be effective, creative, and quick when solving problems. 

In this article, we’ll discuss traditional and creative problem solving, and define the steps, best practices, and common barriers associated. After that, we’ll provide helpful methods and tools to identify the cause(s) of problematic situations, so you can get to the root of the issue and start to generate solutions. Then, we offer nearly 20 creative problem solving techniques to implement at your organization, or even in your personal life. Along the way, experts weigh in on the importance of problem solving, and offer tips and tricks. 

What Is Problem Solving and Decision Making?

Problem solving is the process of working through every aspect of an issue or challenge to reach a solution. Decision making is choosing one of multiple proposed solutions  — therefore, this process also includes defining and evaluating all potential options. Decision making is often one step of the problem solving process, but the two concepts are distinct. 

Collective problem solving is problem solving that includes many different parties and bridges the knowledge of different groups. Collective problem solving is common in business problem solving because workplace decisions typically affect more than one person. 

Problem solving, especially in business, is a complicated science. Not only are business conflicts multifaceted, but they often involve different personalities, levels of authority, and group dynamics. In recent years, however, there has been a rise in psychology-driven problem solving techniques, especially for the workplace. In fact, the psychology of how people solve problems is now studied formally in academic disciplines such as psychology and cognitive science.

Joe Carella

Joe Carella is the Assistant Dean for Executive Education at the University of Arizona . Joe has over 20 years of experience in helping executives and corporations in managing change and developing successful business strategies. His doctoral research and executive education engagements have seen him focus on corporate strategy, decision making and business performance with a variety of corporate clients including Hershey’s, Chevron, Fender Musical Instruments Corporation, Intel, DP World, Essilor, BBVA Compass Bank.

He explains some of the basic psychology behind problem solving: “When our brain is engaged in the process of solving problems, it is engaged in a series of steps where it processes and organizes the information it receives while developing new knowledge it uses in future steps. Creativity is embedded in this process by incorporating diverse inputs and/or new ways of organizing the information received.”

Laura MacLeod

Laura MacLeod is a Professor of Social Group Work at City University of New York, and the creator of From The Inside Out Project® , a program that coaches managers in team leadership for a variety of workplaces. She has a background in social work and over two decades of experience as a union worker, and currently leads talks on conflict resolution, problem solving, and listening skills at conferences across the country. 

MacLeod thinks of problem solving as an integral practice of successful organizations. “Problem solving is a collaborative process — all voices are heard and connected, and resolution is reached by the group,” she says. “Problems and conflicts occur in all groups and teams in the workplace, but if leaders involve everyone in working through, they will foster cohesion, engagement, and buy in. Everybody wins.”

10 tips that will make you more productive.

Top 3 Productivity Killers Ebook

Uncover the top three factors that are killing your productivity and 10 tips to help you overcome them.

Download the free e-book to overcome my productivity killers

Project Management Guide

Your one-stop shop for everything project management

the 101 guide to project management

Ready to get more out of your project management efforts? Visit our comprehensive project management guide for tips, best practices, and free resources to manage your work more effectively.

View the guide

What Is the First Step in Solving a Problem?

Although problem solving techniques vary procedurally, experts agree that the first step in solving a problem is defining the problem. Without a clear articulation of the problem at stake, it is impossible to analyze all the key factors and actors, generate possible solutions, and then evaluate them to pick the best option. 

Elliott Jaffa

Dr. Elliott Jaffa is a behavioral and management psychologist with over 25 years of problem solving training and management experience. “Start with defining the problem you want to solve,” he says, “And then define where you want to be, what you want to come away with.” He emphasizes these are the first steps in creating an actionable, clear solution. 

Bryan Mattimore

Bryan Mattimore is Co-Founder of Growth Engine, an 18-year old innovation agency based in Norwalk, CT. Bryan has facilitated over 1,000 ideation sessions and managed over 200 successful innovation projects leading to over $3 billion in new sales. His newest book is 21 Days to a Big Idea . When asked about the first critical component to successful problem solving, Mattimore says, “Defining the challenge correctly, or ‘solving the right problem’ … The three creative techniques we use to help our clients ‘identify the right problem to be solved’ are questioning assumptions, 20 questions, and problem redefinition. A good example of this was a new product challenge from a client to help them ‘invent a new iron. We got them to redefine the challenge as first: a) inventing new anti-wrinkle devices, and then b) inventing new garment care devices.”

What Are Problem Solving Skills?

To understand the necessary skills in problem solving, you should first understand the types of thinking often associated with strong decision making. Most problem solving techniques look for a balance between the following binaries:

  • Convergent vs. Divergent Thinking: Convergent thinking is bringing together disparate information or ideas to determine a single best answer or solution. This thinking style values logic, speed, and accuracy, and leaves no chance for ambiguity. Divergent thinking is focused on generating new ideas to identify and evaluate multiple possible solutions, often uniting ideas in unexpected combinations. Divergent thinking is characterized by creativity, complexity, curiosity, flexibility, originality, and risk-taking.
  • Pragmatics vs. Semantics: Pragmatics refer to the logic of the problem at hand, and semantics is how you interpret the problem to solve it. Both are important to yield the best possible solution.
  • Mathematical vs. Personal Problem Solving: Mathematical problem solving involves logic (usually leading to a single correct answer), and is useful for problems that involve numbers or require an objective, clear-cut solution. However, many workplace problems also require personal problem solving, which includes interpersonal, collaborative, and emotional intuition and skills. 

The following basic methods are fundamental problem solving concepts. Implement them to help balance the above thinking models.

  • Reproductive Thinking: Reproductive thinking uses past experience to solve a problem. However, be careful not to rely too heavily on past solutions, and to evaluate current problems individually, with their own factors and parameters. 
  • Idea Generation: The process of generating many possible courses of action to identify a solution. This is most commonly a team exercise because putting everyone’s ideas on the table will yield the greatest number of potential solutions. 

However, many of the most critical problem solving skills are “soft” skills: personal and interpersonal understanding, intuitiveness, and strong listening. 

Mattimore expands on this idea: “The seven key skills to be an effective creative problem solver that I detail in my book Idea Stormers: How to Lead and Inspire Creative Breakthroughs are: 1) curiosity 2) openness 3) a willingness to embrace ambiguity 4) the ability to identify and transfer principles across categories and disciplines 5) the desire to search for integrity in ideas, 6) the ability to trust and exercise “knowingness” and 7) the ability to envision new worlds (think Dr. Seuss, Star Wars, Hunger Games, Harry Potter, etc.).”

“As an individual contributor to problem solving it is important to exercise our curiosity, questioning, and visioning abilities,” advises Carella. “As a facilitator it is essential to allow for diverse ideas to emerge, be able to synthesize and ‘translate’ other people’s thinking, and build an extensive network of available resources.”

MacLeod says the following interpersonal skills are necessary to effectively facilitate group problem solving: “The abilities to invite participation (hear all voices, encourage silent members), not take sides, manage dynamics between the monopolizer, the scapegoat, and the bully, and deal with conflict (not avoiding it or shutting down).” 

Furthermore, Jaffa explains that the skills of a strong problem solver aren’t measurable. The best way to become a creative problem solver, he says, is to do regular creative exercises that keep you sharp and force you to think outside the box. Carella echoes this sentiment: “Neuroscience tells us that creativity comes from creating novel neural paths. Allow a few minutes each day to exercise your brain with novel techniques and brain ‘tricks’ – read something new, drive to work via a different route, count backwards, smell a new fragrance, etc.”

What Is Creative Problem Solving? History, Evolution, and Core Principles

Creative problem solving (CPS) is a method of problem solving in which you approach a problem or challenge in an imaginative, innovative way. The goal of CPS is to come up with innovative solutions, make a decision, and take action quickly. Sidney Parnes and Alex Osborn are credited with developing the creative problem solving process in the 1950s. The concept was further studied and developed at SUNY Buffalo State and the Creative Education Foundation. 

The core principles of CPS include the following:

  • Balance divergent and convergent thinking
  • Ask problems as questions
  • Defer or suspend judgement
  • Focus on “Yes, and…” rather than “No, but…”

According to Carella, “Creative problem solving is the mental process used for generating innovative and imaginative ideas as a solution to a problem or a challenge. Creative problem solving techniques can be pursued by individuals or groups.”

When asked to define CPS, Jaffa explains that it is, by nature, difficult to create boundaries for. “Creative problem solving is not cut and dry,” he says, “If you ask 100 different people the definition of creative problem solving, you’ll get 100 different responses - it’s a non-entity.”

Business presents a unique need for creative problem solving. Especially in today’s competitive landscape, organizations need to iterate quickly, innovate with intention, and constantly be at the cutting-edge of creativity and new ideas to succeed. Developing CPS skills among your workforce not only enables you to make faster, stronger in-the-moment decisions, but also inspires a culture of collaborative work and knowledge sharing. When people work together to generate multiple novel ideas and evaluate solutions, they are also more likely to arrive at an effective decision, which will improve business processes and reduce waste over time. In fact, CPS is so important that some companies now list creative problem solving skills as a job criteria.

MacLeod reiterates the vitality of creative problem solving in the workplace. “Problem solving is crucial for all groups and teams,” she says. “Leaders need to know how to guide the process, hear all voices and involve all members - it’s not easy.”

“This mental process [of CPS] is especially helpful in work environments where individuals and teams continuously struggle with new problems and challenges posed by their continuously changing environment,” adds Carella. 

Problem Solving Best Practices

By nature, creative problem solving does not have a clear-cut set of do’s and don’ts. Rather, creating a culture of strong creative problem solvers requires flexibility, adaptation, and interpersonal skills. However, there are a several best practices that you should incorporate:

  • Use a Systematic Approach: Regardless of the technique you use, choose a systematic method that satisfies your workplace conditions and constraints (time, resources, budget, etc.). Although you want to preserve creativity and openness to new ideas, maintaining a structured approach to the process will help you stay organized and focused. 
  • View Problems as Opportunities: Rather than focusing on the negatives or giving up when you encounter barriers, treat problems as opportunities to enact positive change on the situation. In fact, some experts even recommend defining problems as opportunities, to remain proactive and positive.
  • Change Perspective: Remember that there are multiple ways to solve any problem. If you feel stuck, changing perspective can help generate fresh ideas. A perspective change might entail seeking advice of a mentor or expert, understanding the context of a situation, or taking a break and returning to the problem later. “A sterile or familiar environment can stifle new thinking and new perspectives,” says Carella. “Make sure you get out to draw inspiration from spaces and people out of your usual reach.”
  • Break Down Silos: To invite the greatest possible number of perspectives to any problem, encourage teams to work cross-departmentally. This not only combines diverse expertise, but also creates a more trusting and collaborative environment, which is essential to effective CPS. According to Carella, “Big challenges are always best tackled by a group of people rather than left to a single individual. Make sure you create a space where the team can concentrate and convene.”
  • Employ Strong Leadership or a Facilitator: Some companies choose to hire an external facilitator that teaches problem solving techniques, best practices, and practicums to stimulate creative problem solving. But, internal managers and staff can also oversee these activities. Regardless of whether the facilitator is internal or external, choose a strong leader who will value others’ ideas and make space for creative solutions.  Mattimore has specific advice regarding the role of a facilitator: “When facilitating, get the group to name a promising idea (it will crystalize the idea and make it more memorable), and facilitate deeper rather than broader. Push for not only ideas, but how an idea might specifically work, some of its possible benefits, who and when would be interested in an idea, etc. This fleshing-out process with a group will generate fewer ideas, but at the end of the day will yield more useful concepts that might be profitably pursued.” Additionally, Carella says that “Executives and managers don’t necessarily have to be creative problem solvers, but need to make sure that their teams are equipped with the right tools and resources to make this happen. Also they need to be able to foster an environment where failing fast is accepted and celebrated.”
  • Evaluate Your Current Processes: This practice can help you unlock bottlenecks, and also identify gaps in your data and information management, both of which are common roots of business problems.

MacLeod offers the following additional advice, “Always get the facts. Don’t jump too quickly to a solution – working through [problems] takes time and patience.”

Mattimore also stresses that how you introduce creative problem solving is important. “Do not start by introducing a new company-wide innovation process,” he says. “Instead, encourage smaller teams to pursue specific creative projects, and then build a process from the ground up by emulating these smaller teams’ successful approaches. We say: ‘You don’t innovate by changing the culture, you change the culture by innovating.’”

Barriers to Effective Problem Solving

Learning how to effectively solve problems is difficult and takes time and continual adaptation. There are several common barriers to successful CPS, including:

  • Confirmation Bias: The tendency to only search for or interpret information that confirms a person’s existing ideas. People misinterpret or disregard data that doesn’t align with their beliefs.
  • Mental Set: People’s inclination to solve problems using the same tactics they have used to solve problems in the past. While this can sometimes be a useful strategy (see Analogical Thinking in a later section), it often limits inventiveness and creativity.
  • Functional Fixedness: This is another form of narrow thinking, where people become “stuck” thinking in a certain way and are unable to be flexible or change perspective.
  • Unnecessary Constraints: When people are overwhelmed with a problem, they can invent and impose additional limits on solution avenues. To avoid doing this, maintain a structured, level-headed approach to evaluating causes, effects, and potential solutions.
  • Groupthink: Be wary of the tendency for group members to agree with each other — this might be out of conflict avoidance, path of least resistance, or fear of speaking up. While this agreeableness might make meetings run smoothly, it can actually stunt creativity and idea generation, therefore limiting the success of your chosen solution.
  • Irrelevant Information: The tendency to pile on multiple problems and factors that may not even be related to the challenge at hand. This can cloud the team’s ability to find direct, targeted solutions.
  • Paradigm Blindness: This is found in people who are unwilling to adapt or change their worldview, outlook on a particular problem, or typical way of processing information. This can erode the effectiveness of problem solving techniques because they are not aware of the narrowness of their thinking, and therefore cannot think or act outside of their comfort zone.

According to Jaffa, the primary barrier of effective problem solving is rigidity. “The most common things people say are, ‘We’ve never done it before,’ or ‘We’ve always done it this way.’” While these feelings are natural, Jaffa explains that this rigid thinking actually precludes teams from identifying creative, inventive solutions that result in the greatest benefit.

“The biggest barrier to creative problem solving is a lack of awareness – and commitment to – training employees in state-of-the-art creative problem-solving techniques,” Mattimore explains. “We teach our clients how to use ideation techniques (as many as two-dozen different creative thinking techniques) to help them generate more and better ideas. Ideation techniques use specific and customized stimuli, or ‘thought triggers’ to inspire new thinking and new ideas.” 

MacLeod adds that ineffective or rushed leadership is another common culprit. “We're always in a rush to fix quickly,” she says. “Sometimes leaders just solve problems themselves, making unilateral decisions to save time. But the investment is well worth it — leaders will have less on their plates if they can teach and eventually trust the team to resolve. Teams feel empowered and engagement and investment increases.”

Strategies for Problem Cause Identification

As discussed, most experts agree that the first and most crucial step in problem solving is defining the problem. Once you’ve done this, however, it may not be appropriate to move straight to the solution phase. Rather, it is often helpful to identify the cause(s) of the problem: This will better inform your solution planning and execution, and help ensure that you don’t fall victim to the same challenges in the future. 

Below are some of the most common strategies for identifying the cause of a problem:

  • Root Cause Analysis: This method helps identify the most critical cause of a problem. A factor is considered a root cause if removing it prevents the problem from recurring. Performing a root cause analysis is a 12 step process that includes: define the problem, gather data on the factors contributing to the problem, group the factors based on shared characteristics, and create a cause-and-effect timeline to determine the root cause. After that, you identify and evaluate corrective actions to eliminate the root cause.

Fishbone Diagram Template

‌ Download Fishbone Diagram Template - Excel

Interrelationship Diagrams

Download 5 Whys Template   Excel  |  Word  |  PDF   

Problem Solving Techniques and Strategies

In this section, we’ll explain several traditional and creative problem solving methods that you can use to identify challenges, create actionable goals, and resolve problems as they arise. Although there is often procedural and objective crossover among techniques, they are grouped by theme so you can identify which method works best for your organization.

Divergent Creative Problem Solving Techniques

Brainstorming: One of the most common methods of divergent thinking, brainstorming works best in an open group setting where everyone is encouraged to share their creative ideas. The goal is to generate as many ideas as possible – you analyze, critique, and evaluate the ideas only after the brainstorming session is complete. To learn more specific brainstorming techniques, read this article . 

Mind Mapping: This is a visual thinking tool where you graphically depict concepts and their relation to one another. You can use mind mapping to structure the information you have, analyze and synthesize it, and generate solutions and new ideas from there. The goal of a mind map is to simplify complicated problems so you can more clearly identify solutions.

Appreciative Inquiry (AI): The basic assumption of AI is that “an organization is a mystery to be embraced.” Using this principle, AI takes a positive, inquisitive approach to identifying the problem, analyzing the causes, and presenting possible solutions. The five principles of AI emphasize dialogue, deliberate language and outlook, and social bonding. 

Lateral Thinking: This is an indirect problem solving approach centered on the momentum of idea generation. As opposed to critical thinking, where people value ideas based on their truth and the absence of errors, lateral thinking values the “movement value” of new ideas: This means that you reward team members for producing a large volume of new ideas rapidly. With this approach, you’ll generate many new ideas before approving or rejecting any.

Problem Solving Techniques to Change Perspective

Constructive Controversy: This is a structured approach to group decision making to preserve critical thinking and disagreement while maintaining order. After defining the problem and presenting multiple courses of action, the group divides into small advocacy teams who research, analyze, and refute a particular option. Once each advocacy team has presented its best-case scenario, the group has a discussion (advocacy teams still defend their presented idea). Arguing and playing devil’s advocate is encouraged to reach an understanding of the pros and cons of each option. Next, advocacy teams abandon their cause and evaluate the options openly until they reach a consensus. All team members formally commit to the decision, regardless of whether they advocated for it at the beginning. You can learn more about the goals and steps in constructive controversy here . 

Carella is a fan of this approach. “Create constructive controversy by having two teams argue the pros and cons of a certain idea,” he says. “It forces unconscious biases to surface and gives space for new ideas to formulate.”

Abstraction: In this method, you apply the problem to a fictional model of the current situation. Mapping an issue to an abstract situation can shed extraneous or irrelevant factors, and reveal places where you are overlooking obvious solutions or becoming bogged down by circumstances. 

Analogical Thinking: Also called analogical reasoning , this method relies on an analogy: using information from one problem to solve another problem (these separate problems are called domains). It can be difficult for teams to create analogies among unrelated problems, but it is a strong technique to help you identify repeated issues, zoom out and change perspective, and prevent the problems from occurring in the future. .

CATWOE: This framework ensures that you evaluate the perspectives of those whom your decision will impact. The factors and questions to consider include (which combine to make the acronym CATWOE):

  • Customers: Who is on the receiving end of your decisions? What problem do they currently have, and how will they react to your proposed solution?
  • Actors: Who is acting to bring your solution to fruition? How will they respond and be affected by your decision?
  • Transformation Process: What processes will you employ to transform your current situation and meet your goals? What are the inputs and outputs?
  • World View: What is the larger context of your proposed solution? What is the larger, big-picture problem you are addressing?
  • Owner: Who actually owns the process? How might they influence your proposed solution (positively or negatively), and how can you influence them to help you?
  • Environmental Constraints: What are the limits (environmental, resource- and budget-wise, ethical, legal, etc.) on your ideas? How will you revise or work around these constraints?

Complex Problem Solving

Soft Systems Methodology (SSM): For extremely complex problems, SSM can help you identify how factors interact, and determine the best course of action. SSM was borne out of organizational process modeling and general systems theory, which hold that everything is part of a greater, interconnected system: This idea works well for “hard” problems (where logic and a single correct answer are prioritized), and less so for “soft” problems (i.e., human problems where factors such as personality, emotions, and hierarchy come into play). Therefore, SSM defines a seven step process for problem solving: 

  • Begin with the problem or problematic situation 
  • Express the problem or situation and build a rich picture of the themes of the problem 
  • Identify the root causes of the problem (most commonly with CATWOE)
  • Build conceptual models of human activity surrounding the problem or situation
  • Compare models with real-world happenings
  • Identify changes to the situation that are both feasible and desirable
  • Take action to implement changes and improve the problematic situation

SSM can be used for any complex soft problem, and is also a useful tool in change management . 

Failure Mode and Effects Analysis (FMEA): This method helps teams anticipate potential problems and take steps to mitigate them. Use FMEA when you are designing (redesigning) a complex function, process, product, or service. First, identify the failure modes, which are the possible ways that a project could fail. Then, perform an effects analysis to understand the consequences of each of the potential downfalls. This exercise is useful for internalizing the severity of each potential failure and its effects so you can make adjustments or safeties in your plan. 

FMEA Template

‌ Download FMEA Template  

Problem Solving Based on Data or Logic (Heuristic Methods)

TRIZ: A Russian-developed problem solving technique that values logic, analysis, and forecasting over intuition or soft reasoning. TRIZ (translated to “theory of inventive problem solving” or TIPS in English) is a systematic approach to defining and identifying an inventive solution to difficult problems. The method offers several strategies for arriving at an inventive solution, including a contradictions matrix to assess trade-offs among solutions, a Su-Field analysis which uses formulas to describe a system by its structure, and ARIZ (algorithm of inventive problem solving) which uses algorithms to find inventive solutions. 

Inductive Reasoning: A logical method that uses evidence to conclude that a certain answer is probable (this is opposed to deductive reasoning, where the answer is assumed to be true). Inductive reasoning uses a limited number of observations to make useful, logical conclusions (for example, the Scientific Method is an extreme example of inductive reasoning). However, this method doesn’t always map well to human problems in the workplace — in these instances, managers should employ intuitive inductive reasoning , which allows for more automatic, implicit conclusions so that work can progress. This, of course, retains the principle that these intuitive conclusions are not necessarily the one and only correct answer. 

Process-Oriented Problem Solving Methods

Plan Do Check Act (PDCA): This is an iterative management technique used to ensure continual improvement of products or processes. First, teams plan (establish objectives to meet desired end results), then do (implement the plan, new processes, or produce the output), then check (compare expected with actual results), and finally act (define how the organization will act in the future, based on the performance and knowledge gained in the previous three steps). 

Means-End Analysis (MEA): The MEA strategy is to reduce the difference between the current (problematic) state and the goal state. To do so, teams compile information on the multiple factors that contribute to the disparity between the current and goal states. Then they try to change or eliminate the factors one by one, beginning with the factor responsible for the greatest difference in current and goal state. By systematically tackling the multiple factors that cause disparity between the problem and desired outcome, teams can better focus energy and control each step of the process. 

Hurson’s Productive Thinking Model: This technique was developed by Tim Hurson, and is detailed in his 2007 book Think Better: An Innovator’s Guide to Productive Thinking . The model outlines six steps that are meant to give structure while maintaining creativity and critical thinking: 1) Ask “What is going on?” 2) Ask “What is success?” 3) Ask “What is the question?” 4) Generate answers 5) Forge the solution 6) Align resources. 

Control Influence Accept (CIA): The basic premise of CIA is that how you respond to problems determines how successful you will be in overcoming them. Therefore, this model is both a problem solving technique and stress-management tool that ensures you aren’t responding to problems in a reactive and unproductive way. The steps in CIA include:

  • Control: Identify the aspects of the problem that are within your control.
  • Influence: Identify the aspects of the problem that you cannot control, but that you can influence.
  • Accept: Identify the aspects of the problem that you can neither control nor influence, and react based on this composite information. 

GROW Model: This is a straightforward problem solving method for goal setting that clearly defines your goals and current situation, and then asks you to define the potential solutions and be realistic about your chosen course of action. The steps break down as follows:

  • Goal: What do you want?
  • Reality: Where are you now?
  • Options: What could you do?
  • Will: What will you do?

OODA Loop: This acronym stands for observe, orient, decide, and act. This approach is a decision-making cycle that values agility and flexibility over raw human force. It is framed as a loop because of the understanding that any team will continually encounter problems or opponents to success and have to overcome them.

There are also many un-named creative problem solving techniques that follow a sequenced series of steps. While the exact steps vary slightly, they all follow a similar trajectory and aim to accomplish similar goals of problem, cause, and goal identification, idea generation, and active solution implementation.

MacLeod offers her own problem solving procedure, which echoes the above steps:

“1. Recognize the Problem: State what you see. Sometimes the problem is covert. 2. Identify: Get the facts — What exactly happened? What is the issue? 3. and 4. Explore and Connect: Dig deeper and encourage group members to relate their similar experiences. Now you're getting more into the feelings and background [of the situation], not just the facts.  5. Possible Solutions: Consider and brainstorm ideas for resolution. 6. Implement: Choose a solution and try it out — this could be role play and/or a discussion of how the solution would be put in place.  7. Evaluate: Revisit to see if the solution was successful or not.”

Many of these problem solving techniques can be used in concert with one another, or multiple can be appropriate for any given problem. It’s less about facilitating a perfect CPS session, and more about encouraging team members to continually think outside the box and push beyond personal boundaries that inhibit their innovative thinking. So, try out several methods, find those that resonate best with your team, and continue adopting new techniques and adapting your processes along the way. 

Improve Problem Solving with Work Management in Smartsheet

Empower your people to go above and beyond with a flexible platform designed to match the needs of your team — and adapt as those needs change. 

The Smartsheet platform makes it easy to plan, capture, manage, and report on work from anywhere, helping your team be more effective and get more done. Report on key metrics and get real-time visibility into work as it happens with roll-up reports, dashboards, and automated workflows built to keep your team connected and informed. 

When teams have clarity into the work getting done, there’s no telling how much more they can accomplish in the same amount of time.  Try Smartsheet for free, today.

Discover why over 90% of Fortune 100 companies trust Smartsheet to get work done.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

what systematic approach to problem solving

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

what systematic approach to problem solving

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

what systematic approach to problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

what systematic approach to problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

what systematic approach to problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

what systematic approach to problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Back Home

  • Search Search Search …
  • Search Search …

Taking a systems thinking approach to problem solving

systems thinking approach to problem solving

Systems thinking is an approach that considers a situation or problem holistically and as part of an overall system which is more than the sum of its parts. Taking the big picture perspective, and looking more deeply at underpinnings, systems thinking seeks and offers long-term and fundamental solutions rather than quick fixes and surface change.

Whether in environmental science, organizational change management, or geopolitics, some problems are so large, so complicated and so enduring that it’s hard to know where to begin when seeking a solution.

A systems thinking approach might be the ideal way to tackle essentially systemic problems. Our article sets out the basic concepts and ideas.

What is systems thinking?

Systems thinking is an approach that views an issue or problem as part of a wider, dynamic system. It entails accepting the system as an entity in its own right rather than just the sum of its parts, as well as understanding how individual elements of a system influence one another.

When we consider the concepts of a car, or a human being we are using a systems thinking perspective. A car is not just a collection of nuts, bolts, panels and wheels. A human being is not simply an assembly of bones, muscles, organs and blood.

In a systems thinking approach, as well as the specific issue or problem in question, you must also look at its wider place in an overall system, the nature of relationships between that issue and other elements of the system, and the tensions and synergies that arise from the various elements and their interactions.

The history of systems thinking is itself innately complex, with roots in many important disciplines of the 20th century including biology, computing and data science. As a discipline, systems thinking is still evolving today.

How can systems thinking be applied to problem solving?

A systems thinking approach to problem solving recognizes the problem as part of a wider system and addresses the whole system in any solution rather than just the problem area.

A popular way of applying a systems thinking lens is to examine the issue from multiple perspectives, zooming out from single and visible elements to the bigger and broader picture (e.g. via considering individual events, and then the patterns, structures and mental models which give rise to them).

Systems thinking is best applied in fields where problems and solutions are both high in complexity. There are a number of characteristics that can make an issue particularly compatible with a systems thinking approach:

  • The issue has high impact for many people.
  • The issue is long-term or chronic rather than a one-off incident.
  • There is no obvious solution or answer to the issue and previous attempts to solve it have failed.
  • We have a good knowledge of the issue’s environment and history through which we can sensibly place it in a systems context.

If your problem does not have most of these characteristics, systems thinking analysis may not work well in solving it.

Areas where systems thinking is often useful include health, climate change, urban planning, transport or ecology.

What is an example of a systems thinking approach to problem solving?

A tool called the iceberg mode l can be useful in learning to examine issues from a systems thinking perspective. This model frames an issue as an iceberg floating in a wider sea, with one small section above the water and three large sections unseen below.

The very tip of the iceberg, visible above the waterline, shows discrete events or occurrences which are easily seen and understood. For example, successive failures of a political party to win national elections.

Beneath the waterline and invisible, lie deeper and longer-term trends or patterns of behavior. In our example this might be internal fighting in the political party which overshadows and obstructs its public campaigning and weakens its leadership and reputation.

Even deeper under the water we can find underlying causes and supporting structures which underpin the patterns and trends.

For our failing political party, this could mean party rules and processes which encourage internal conflict and division rather than resolving them, and put off the best potential candidates from standing for the party in elections.

The electoral system in the country may also be problematic or unfair, making the party so fearful and defensive against losing its remaining support base, that it has no energy or cash to campaign on a more positive agenda and win new voters.

Mental models

At the very base of the iceberg, deepest under the water, lie the mental models that allow the rest of the iceberg to persist in this shape. These include the assumptions, attitudes, beliefs and motivations which drive the behaviors, patterns and events seen further up in the iceberg.

In this case, this could be the belief amongst senior party figures that they’ve won in the past and can therefore win again someday by repeating old campaigns. Or a widespread attitude amongst activists in all party wings that with the right party leader, all internal problems will melt away and voter preferences will turn overnight.

When is a systems thinking approach not helpful?

If you are looking for a quick answer to a simple question, or an immediate response to a single event, then systems thinking may overcomplicate the process of solving your problem and provide you with more information than is helpful, and in slower time than you need.

For example, if a volcano erupts and the local area needs to be immediately evacuated, applying a thorough systems thinking approach to life in the vicinity of an active volcano is unlikely to result in a more efficient crisis response or save more lives. After the event, systems thinking might be more constructive when considering town rebuilding, local logistics and transport links.

In general, if a problem is short-term, narrow and/or linear, systems thinking may not be the right model of thinking to use.

A final word…

The biggest problems in the real world are rarely simple in nature and expecting a quick and simple solution to something like climate change or cancer would be naive.

If you’d like to know more about applying systems thinking in real life there are many online resources, books and courses you can access, including in specific fields (e.g. FutureLearn’s course on Understanding Systems Thinking in Healthcare ).

Whether you think of it as zooming out to the big picture while retaining a focus on the small, or looking deeper under the water at the full shape of the iceberg, systems thinking can be a powerful tool for finding solutions that recognize the interactions and interdependence of individual elements in the real world.

You may also like

Critical Thinking vs. Systems Thinking

Exploring Critical Thinking vs. Systems Thinking

There are many differences between Critical Thinking vs Systems Thinking. Critical Thinking involves examining and challenging thoughts or ideas, while Systems Thinking […]

what systematic approach to problem solving

Best Books on Systems Thinking: Top Picks for 2023

Systems thinking is an approach to problem-solving that embraces viewing complex systems as a whole, rather than focusing on individual components. This […]

How Systems Thinking Enhances Decision Making Skills

How Systems Thinking Enhances Decision Making Skills: A Quick Guide

In today’s complex world, effective decision-making skills are more important than ever. One powerful approach to enhance these skills is through the […]

what is system thinking

What is Systems Thinking?

There are various approaches to solving problems that require us to analyze and interpret data. However, complex problems can require different perspectives […]

Creative Problem-Solving

  • First Online: 29 January 2023

Cite this chapter

what systematic approach to problem solving

  • Terence Lee 4 ,
  • Lauren O’Mahony 5 &
  • Pia Lebeck 6  

559 Accesses

This chapter presents Alex Osborn’s 1953 creative problem-solving (CPS) model as a three-procedure approach that can be deployed to problems that emerge in our everyday lives. The three procedures are fact-finding, idea-finding and solution-finding, with each step carefully informed by both divergent and convergent thinking. Using case studies to elaborate on the efficacy of CPS, the chapter also identifies a few common flaws that can impact on creativity and innovation. This chapter explores the challenges posed by ‘wicked problems’ that are particularly challenging in that they are ill-defined, unique, contradictory, multi-causal and recurring; it considers the practical importance of building team environments, of embracing diversity and difference, and other characteristics of effective teams. The chapter builds conceptually and practically on the earlier chapters, especially Chapter 4 , and provides case studies to help make sense of the key principles of creative problem-solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

The creative problem-solving process explored in this chapter is not to be confused with the broader ‘creative process’ that is presented in Chapter 2 of this book. See Chapter 2 to understand what creative process entails.

A general online search of the Osborn-Parnes Creative Problem-Solving (CPS) process will generate many results. One of them is: https://projectbliss.net/osborn-parnes-creative-problem-solving-process/ . Osborn is largely credited as the creator of CPS, hence references are largely made to him (Osborn 1953 , 1957 ).

Founded in 2002, Fahrenheit 212 described itself as “a global innovation consultancy delivering sustainable, profitable growth for companies by pairing business acumen and consumer empathy.” It merged with Capgemini Consulting in 2016 and remains based in New York City, USA. ( https://www.capgemini.com/in-en/news/press-releases/capgemini-acquires-innovation-and-design-consultancy-fahrenheit-212-to-drive/ ).

More information on the NeoNurture incubator can be found in the Design That Matters website ( https://www.designthatmatters.org/ ) and in a TEDx presentation by Timothy Prestero ( https://www.ted.com/talks/timothy_prestero_design_for_people_not_awards ) (Prestero 2012 ).

For more information on the Embrace infant warmer, see Embrace Global: https://www.embraceglobal.org/ .

See also David Alger’s popular descriptions of the ‘Rules of Improv’ (Parts 1 and 2): https://www.pantheater.com/rules-of-improv.html ; and, ‘How to be a better improvisor’: https://www.pantheater.com/how-to-be-a-better-improvisor.html .

For more information about the Bay of Pigs, visit the John F. Kennedy Presidential Library and Museum at Columbia Point, Boston, Massachusetts, USA. Online information can be accessed here: https://www.jfklibrary.org/learn/about-jfk/jfk-in-history/the-bay-of-pigs .

Bhat, R. 2021. Solving Wicked Problems Is What MBA Programs Need to Prepare the Students For? Business World Education . May 20. Available: http://bweducation.businessworld.in/article/Solving-Wicked-Problems-Is-What-MBA-Programs-Need-To-Prepare-The-Students-For-/20-05-2021-390302/. Accessed 30 August 2022.

Bratton, J., et al. 2010. Work and Organizational Behaviour , 2nd ed. Basingstoke: Palgrave.

Book   Google Scholar  

Buzan, T. 1974. Use Your Head . London: BBC Active.

Google Scholar  

Cohen, A.K., and J.R. Cromwell. 2021. How to Respond to the COVID-19 Pandemic with More Creativity and Innovation. Population Health Management 24 (2): 153–155.

Article   Google Scholar  

Cunningham, E., B. Smyth, and D. Greene. 2021. Collaboration in the Time of COVID: A Scientometric Analysis of Multidisciplinary SARSCoV-2 Research. Humanities & Social Sciences Communications. 8 (240): 1–8.

Cunningham, S. 2021. Sitting with Difficult Things: Meaningful Action in Contested Times. Griffith Review 71 (February): 124–133.

De Bono, E. 1985. Six Thinking Hats . Boston: Little, Brown and Company.

Dutta, K. 2018. Solving Wicked Problems: Searching for the Critical Cognitive Trait. The International Journal of Management Education 16 (3): 493–503.

Elia, G., and A. Margherita. 2018. Can we Solve Wicked Problems? A Conceptual Framework and a Collective Intelligence System to Support Problem Analysis and Solution Design for Complex Social Issues. Technological Forecasting & Social Change 133: 279–286.

Engler, J.O., D.J. Abson, and H. von Wehrden. 2021. The Coronavirus Pandemic as an Analogy for Future Sustainability. Sustainability Science 16: 317–319.

Grivas, C., and G. Puccio. 2012. The Innovative Team: Unleashing Creative Potential for Breakthrough Results . San Francisco, CA: Jossey-Bass.

Holmes, K. 2021. Generation Covid: Crafting History and Collective Memory. Griffith Review 71 (February): 79–88.

Kapoor, H., and J.C. Kaufman. 2020. Meaning-Making Through Creativity During COVID-19. Frontiers in Psychology 18 (December): 1–8.

Kelley, T. 2001. The Art of Innovation: Lessons in Creativity from IDEO, America’s Leading Design Firm . New York, NY: Random House.

Kite-Powell, J. 2014. Simple Tech Creates Infant-Warmer to Save Lives in Developing Countries. Forbes , 29 January. Available: https://www.forbes.com/sites/jenniferhicks/2014/01/29/simple-tech-creates-infant-warmer-to-save-lives-in-developing-countries/?sh=df540aa758c1. Accessed 31 August 2022.

May, M. 2009. In Pursuit of Elegance . NY: Broadway Books.

McShane, S., M. Olekalns, and T. Travaglione. 2010. Organisational Behaviour on the Pacific Rim , 3rd ed. Sydney: McGraw Hill.

Osborn, A. 1953. Applied Imagination: Principles and Procedures of Creative Thinking . New York: Scribners.

Osborn, A. 1957. Applied Imagination: Principles and Procedures of Creative Thinking , 10th ed. New York: Scribners.

Page, S.E. 2007. The Difference: How the power of Diversity Creates Better Groups, Firms, Schools, and Societies . Princeton, NJ: Princeton University Press.

Page, S.E. 2011. Diversity and Complexity . Princeton, NJ: Princeton University Press.

Page, S.E. 2012. The Hidden Factor: Why Thinking Differently Is Your Greatest Asset . Chantilly, Virginia: The Great Courses.

Payne, M. 2014. How to Kill a Unicorn: How the World’s Hottest Innovation Factory Builds Bold Ideas That Make It to Market . New York: Crown Business.

Potter, A., M. McClure, and K. Sellers. 2010. Mass Collaboration Problem Solving: A New Approach to Wicked Problems. Proceedings of 2010 International Symposium on Collaborative Technologies and Systems . IEEE Explore, Chicago, Illinois. May 17–21: 398–407.

Prestero, T. 2012. Design for People, Not Awards. TEDxBoston . Available: https://www.ted.com/speakers/timothy_prestero. Accessed 30 August 2022.

Proctor, T. 2013. Creative Problem Solving for Managers: Developing Skills for Decision Making and Managers , 4th ed. New York: Routledge.

Puccio, G.J. 2012. Creativity Rising: Creative Thinking and Creative Problem Solving in the 21st Century . Buffalo, NY: ICSC Press.

Rittel, H.W.J., and M.M. Webber. 1973. Dilemmas in a General Theory of Planning. Policy Sciences 4 (2), June: 155–169.

Roberto, M. 2009. The Art of Critical Decision Making: The Great Courses. Chantilly, Virginia: The Teaching Company.

Roy, A. 2020. Arundhati Roy: “The Pandemic is a Portal”. Financial Times , April 4. Available: https://www.ft.com/content/10d8f5e8-74eb-11ea-95fe-fcd274e920ca . Accessed 28 February 2022.

Ruggiero, V.R. 2009. The Art of Thinking: A Guide to Critical and Creative Thought , 9th ed. New York: Longman.

Sawyer, K. 2007. Group Genius: The Creative Power of Collaboration . New York: Basic Books.

Schuelke-Leech, B. 2021. A Problem Taxonomy for Engineering. IEEE Transactions on Technology and Society 2 (2), June: 105.

Stellar, D. 2010. The PlayPump: What Went Wrong? State of the Planet, Columbia Climate School. Columbia University. Available: https://news.climate.columbia.edu/2010/07/01/the-playpump-what-went-wrong/. Accessed 30 August 2022.

Surowiecki, J. 2004. The Wisdom of Crowds: Why the Many Are Smarter than the Few and How Collective Wisdom Shapes Businesses, Economies, Societies and Nations . New York: Anchor Books.

Sweet, C., H. Blythe, and R. Carpenter. 2021. Creativity in the Time of COVID-19: Three Principles. The National Teaching and Learning Forum. 30 (5): 6–8.

Taibbi, R. 2011. The Tao of Improv: 5 Rules for Improvising Your Life. Psychology Today , 25 January. Available: https://www.psychologytoday.com/us/blog/fixing-families/201101/the-tao-improv-5-rules-improvising-your-life. Accessed 1 September 2022.

Walton, M. 2010. Playpump is Not a Panacea for Africa’s Water Problems. Circle of Blue , July 24. Available: http://www.circleofblue.org/waternews/2010/world/playpump-not-a-panacea-for-africas-water-problems/. Accessed 30 August 2022.

World Health Organization (WHO). 2022. Child Mortality (Under 5 Years). Available: https://www.who.int/news-room/fact-sheets/detail/levels-and-trends-in-child-under-5-mortality-in-2020. Accessed 28 February 2022.

Download references

Author information

Authors and affiliations.

Humanities and Social Sciences, Sheridan Institute of Higher Education, Perth, WA, Australia

Terence Lee

Media and Communication, Murdoch University, Perth, WA, Australia

Lauren O’Mahony

Humanities, Arts and Social Sciences, Murdoch University, Perth, WA, Australia

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Terence Lee .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Lee, T., O’Mahony, L., Lebeck, P. (2023). Creative Problem-Solving. In: Creativity and Innovation. Palgrave Macmillan, Singapore. https://doi.org/10.1007/978-981-19-8880-6_5

Download citation

DOI : https://doi.org/10.1007/978-981-19-8880-6_5

Published : 29 January 2023

Publisher Name : Palgrave Macmillan, Singapore

Print ISBN : 978-981-19-8879-0

Online ISBN : 978-981-19-8880-6

eBook Packages : Business and Management Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Business Essentials
  • Leadership & Management
  • Credential of Leadership, Impact, and Management in Business (CLIMB)
  • Entrepreneurship & Innovation
  • Digital Transformation
  • Finance & Accounting
  • Business in Society
  • For Organizations
  • Support Portal
  • Media Coverage
  • Founding Donors
  • Leadership Team

what systematic approach to problem solving

  • Harvard Business School →
  • HBS Online →
  • Business Insights →

Business Insights

Harvard Business School Online's Business Insights Blog provides the career insights you need to achieve your goals and gain confidence in your business skills.

  • Career Development
  • Communication
  • Decision-Making
  • Earning Your MBA
  • Negotiation
  • News & Events
  • Productivity
  • Staff Spotlight
  • Student Profiles
  • Work-Life Balance
  • AI Essentials for Business
  • Alternative Investments
  • Business Analytics
  • Business Strategy
  • Business and Climate Change
  • Design Thinking and Innovation
  • Digital Marketing Strategy
  • Disruptive Strategy
  • Economics for Managers
  • Entrepreneurship Essentials
  • Financial Accounting
  • Global Business
  • Launching Tech Ventures
  • Leadership Principles
  • Leadership, Ethics, and Corporate Accountability
  • Leading with Finance
  • Management Essentials
  • Negotiation Mastery
  • Organizational Leadership
  • Power and Influence for Positive Impact
  • Strategy Execution
  • Sustainable Business Strategy
  • Sustainable Investing
  • Winning with Digital Platforms

What Is Creative Problem-Solving & Why Is It Important?

Business team using creative problem-solving

  • 01 Feb 2022

One of the biggest hindrances to innovation is complacency—it can be more comfortable to do what you know than venture into the unknown. Business leaders can overcome this barrier by mobilizing creative team members and providing space to innovate.

There are several tools you can use to encourage creativity in the workplace. Creative problem-solving is one of them, which facilitates the development of innovative solutions to difficult problems.

Here’s an overview of creative problem-solving and why it’s important in business.

Access your free e-book today.

What Is Creative Problem-Solving?

Research is necessary when solving a problem. But there are situations where a problem’s specific cause is difficult to pinpoint. This can occur when there’s not enough time to narrow down the problem’s source or there are differing opinions about its root cause.

In such cases, you can use creative problem-solving , which allows you to explore potential solutions regardless of whether a problem has been defined.

Creative problem-solving is less structured than other innovation processes and encourages exploring open-ended solutions. It also focuses on developing new perspectives and fostering creativity in the workplace . Its benefits include:

  • Finding creative solutions to complex problems : User research can insufficiently illustrate a situation’s complexity. While other innovation processes rely on this information, creative problem-solving can yield solutions without it.
  • Adapting to change : Business is constantly changing, and business leaders need to adapt. Creative problem-solving helps overcome unforeseen challenges and find solutions to unconventional problems.
  • Fueling innovation and growth : In addition to solutions, creative problem-solving can spark innovative ideas that drive company growth. These ideas can lead to new product lines, services, or a modified operations structure that improves efficiency.

Design Thinking and Innovation | Uncover creative solutions to your business problems | Learn More

Creative problem-solving is traditionally based on the following key principles :

1. Balance Divergent and Convergent Thinking

Creative problem-solving uses two primary tools to find solutions: divergence and convergence. Divergence generates ideas in response to a problem, while convergence narrows them down to a shortlist. It balances these two practices and turns ideas into concrete solutions.

2. Reframe Problems as Questions

By framing problems as questions, you shift from focusing on obstacles to solutions. This provides the freedom to brainstorm potential ideas.

3. Defer Judgment of Ideas

When brainstorming, it can be natural to reject or accept ideas right away. Yet, immediate judgments interfere with the idea generation process. Even ideas that seem implausible can turn into outstanding innovations upon further exploration and development.

4. Focus on "Yes, And" Instead of "No, But"

Using negative words like "no" discourages creative thinking. Instead, use positive language to build and maintain an environment that fosters the development of creative and innovative ideas.

Creative Problem-Solving and Design Thinking

Whereas creative problem-solving facilitates developing innovative ideas through a less structured workflow, design thinking takes a far more organized approach.

Design thinking is a human-centered, solutions-based process that fosters the ideation and development of solutions. In the online course Design Thinking and Innovation , Harvard Business School Dean Srikant Datar leverages a four-phase framework to explain design thinking.

The four stages are:

The four stages of design thinking: clarify, ideate, develop, and implement

  • Clarify: The clarification stage allows you to empathize with the user and identify problems. Observations and insights are informed by thorough research. Findings are then reframed as problem statements or questions.
  • Ideate: Ideation is the process of coming up with innovative ideas. The divergence of ideas involved with creative problem-solving is a major focus.
  • Develop: In the development stage, ideas evolve into experiments and tests. Ideas converge and are explored through prototyping and open critique.
  • Implement: Implementation involves continuing to test and experiment to refine the solution and encourage its adoption.

Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

Creative Problem-Solving Tools

While there are many useful tools in the creative problem-solving process, here are three you should know:

Creating a Problem Story

One way to innovate is by creating a story about a problem to understand how it affects users and what solutions best fit their needs. Here are the steps you need to take to use this tool properly.

1. Identify a UDP

Create a problem story to identify the undesired phenomena (UDP). For example, consider a company that produces printers that overheat. In this case, the UDP is "our printers overheat."

2. Move Forward in Time

To move forward in time, ask: “Why is this a problem?” For example, minor damage could be one result of the machines overheating. In more extreme cases, printers may catch fire. Don't be afraid to create multiple problem stories if you think of more than one UDP.

3. Move Backward in Time

To move backward in time, ask: “What caused this UDP?” If you can't identify the root problem, think about what typically causes the UDP to occur. For the overheating printers, overuse could be a cause.

Following the three-step framework above helps illustrate a clear problem story:

  • The printer is overused.
  • The printer overheats.
  • The printer breaks down.

You can extend the problem story in either direction if you think of additional cause-and-effect relationships.

4. Break the Chains

By this point, you’ll have multiple UDP storylines. Take two that are similar and focus on breaking the chains connecting them. This can be accomplished through inversion or neutralization.

  • Inversion: Inversion changes the relationship between two UDPs so the cause is the same but the effect is the opposite. For example, if the UDP is "the more X happens, the more likely Y is to happen," inversion changes the equation to "the more X happens, the less likely Y is to happen." Using the printer example, inversion would consider: "What if the more a printer is used, the less likely it’s going to overheat?" Innovation requires an open mind. Just because a solution initially seems unlikely doesn't mean it can't be pursued further or spark additional ideas.
  • Neutralization: Neutralization completely eliminates the cause-and-effect relationship between X and Y. This changes the above equation to "the more or less X happens has no effect on Y." In the case of the printers, neutralization would rephrase the relationship to "the more or less a printer is used has no effect on whether it overheats."

Even if creating a problem story doesn't provide a solution, it can offer useful context to users’ problems and additional ideas to be explored. Given that divergence is one of the fundamental practices of creative problem-solving, it’s a good idea to incorporate it into each tool you use.

Brainstorming

Brainstorming is a tool that can be highly effective when guided by the iterative qualities of the design thinking process. It involves openly discussing and debating ideas and topics in a group setting. This facilitates idea generation and exploration as different team members consider the same concept from multiple perspectives.

Hosting brainstorming sessions can result in problems, such as groupthink or social loafing. To combat this, leverage a three-step brainstorming method involving divergence and convergence :

  • Have each group member come up with as many ideas as possible and write them down to ensure the brainstorming session is productive.
  • Continue the divergence of ideas by collectively sharing and exploring each idea as a group. The goal is to create a setting where new ideas are inspired by open discussion.
  • Begin the convergence of ideas by narrowing them down to a few explorable options. There’s no "right number of ideas." Don't be afraid to consider exploring all of them, as long as you have the resources to do so.

Alternate Worlds

The alternate worlds tool is an empathetic approach to creative problem-solving. It encourages you to consider how someone in another world would approach your situation.

For example, if you’re concerned that the printers you produce overheat and catch fire, consider how a different industry would approach the problem. How would an automotive expert solve it? How would a firefighter?

Be creative as you consider and research alternate worlds. The purpose is not to nail down a solution right away but to continue the ideation process through diverging and exploring ideas.

Which HBS Online Entrepreneurship and Innovation Course is Right for You? | Download Your Free Flowchart

Continue Developing Your Skills

Whether you’re an entrepreneur, marketer, or business leader, learning the ropes of design thinking can be an effective way to build your skills and foster creativity and innovation in any setting.

If you're ready to develop your design thinking and creative problem-solving skills, explore Design Thinking and Innovation , one of our online entrepreneurship and innovation courses. If you aren't sure which course is the right fit, download our free course flowchart to determine which best aligns with your goals.

what systematic approach to problem solving

About the Author

442: Founder and CEO of High Alpha Innovation, Elliott Parker. The Illusion of Innovation The Strategy Skills Podcast: Strategy | Leadership | Critical Thinking | Problem-Solving

Welcome to Strategy Skills episode 442, featuring an interview with the author of The Illusion of Innovation: Escape "Efficiency" and Unleash Radical Progress, Elliott Parker. The Illusion of Innovation tackles the problem with innovation inside big companies, having activities that feel like innovation but lead to value destruction, not progress. This book explains why meaningful innovation naturally emerges from deliberate inefficiency and how large corporations can harness the power of small teams—startups—to drive radical change through systematic experimentation.   Elliott Parker is the founder and CEO of High Alpha Innovation, a venture builder that partners with corporations, universities, and entrepreneurs to co-create startups that solve compelling problems. He built his career in strategy consulting at Innosight, the firm founded by Clayton Christensen, in corporate venturing, and as an entrepreneur bringing new ideas to market. To date, he has launched over 40 venture-backed startups. Originally from California, Elliott currently resides with his family in Indiana. He earned a B.S. in Finance from BYU and an M.B.A. from the UCLA Anderson School of Management.   Get Elliott’s new book here: https://rb.gy/hkcl2w The Illusion of Innovation: Escape "Efficiency" and Unleash Radical Progress   Here are some free gifts for you: Overall Approach Used in Well-Managed Strategy Studies free download: www.firmsconsulting.com/OverallApproach   McKinsey & BCG winning resume free download: www.firmsconsulting.com/resumepdf   Enjoying this episode? Get access to sample advanced training episodes here: www.firmsconsulting.com/promo

  • Episode Website
  • More Episodes
  • © COPYRIGHT 2010 - 2019 THE STRATEGY MEDIA GROUP LLC. ALL RIGHTS RESERVED.

Homebridge Logo

Exploring Options Approach to Problem Solving – 2031

This instructor-led course covers the problem solving strategy of exploring and considering others' opinions and perspectives during decision making.

Live online events

Description

When you are faced with problems, there are many strategies to solve them. One effective strategy is to explore options and consider more than one person’s before coming up with a solution. This course will highlight the importance of taking other people’s perspectives into account, exploring your options, and deciding on a path forward.

By the end of this course, you will be able to:

  • Describe how to explore options when solving problems.
  • List some of the key issues to consider in problem solving.
  • Explain why it is important to consider more than one person’s perspective in problem solving.
  • Explain why it is important to consider more than one option to solving a problem.
  • Demonstrate how to explore options to assist a consumer to solve a problem.

This is course # 2031 in IHSS Career Pathways. It is part of the General Health & Safety Pathway, which is a general pathway.

Please note: Each class can only be taken once. Registrations for additional sessions of the same course are not eligible for payment of training time or incentives and may be deleted. If you wish to change your registration to a different time or date, please cancel your reservation in the User Portal after registering for the new session. If you need help, please contact [email protected].

Similar courses

About & legal, homebridge office.

1035 Market St. Suite 100, San Francisco, CA 94103

Mastering Complexity: A Comprehensive Guide to Big O Complexity and DSA Problem Solving

Publisher description.

Are you ready to unlock the secrets of complexity theory and become a master problem solver? Look no further than "Mastering Complexity"! This comprehensive guide covers everything you need to know about Big O complexity and how to solve difficult algorithms and data structures (DSA) problems. With detailed explanations, practical examples, and interactive exercises, you'll be able to tackle even the toughest challenges in no time. In this book, we'll start by delving into the basics of Big O complexity and how it impacts problem solving. You'll learn about the different types of complexity measures, such as time, space, and probability, and how to analyze them in a systematic way. We'll then dive into the various data structures and algorithms commonly used in DSA problems, including arrays, linked lists, trees, graphs, and more. But "Mastering Complexity" is more than just a dry reference guide. We'll also provide practical tips and tricks for solving DSA problems, as well as real-world examples to illustrate how these concepts are used in industry. By the end of the book, you'll be able to approach any problem with confidence, knowing that you have the tools and techniques necessary to solve it. Whether you're a student looking to improve your understanding of algorithms and data structures or a professional looking to enhance your problem-solving skills, "Mastering Complexity" is the perfect resource for you. So why wait? Dive in and start mastering complexity today!

IMAGES

  1. Systematic Problem-Solving

    what systematic approach to problem solving

  2. problem solving systematic approach

    what systematic approach to problem solving

  3. Stages of Systematic Problem Solving

    what systematic approach to problem solving

  4. 5 step problem solving method

    what systematic approach to problem solving

  5. Problem-Solving Strategies: Definition and 5 Techniques to Try

    what systematic approach to problem solving

  6. problem solving systematic approach

    what systematic approach to problem solving

VIDEO

  1. Systematic problem solving

  2. 7 Step Problem Solving #shorts #problemsolving

  3. 99% Of Your Problems Fixed with These 5 MASCULINE Traits

  4. Clarifying the '5 Whys' Problem-Solving Method #shorts #problemsolving

  5. The Essentials of Problem Solving #shorts #problemsolving

  6. How to Use Systematic Thinking For Creating Anything

COMMENTS

  1. How Good Is Your Problem Solving?

    Problem solving is an exceptionally important workplace skill. Being a competent and confident problem solver will create many opportunities for you. By using a well-developed model like Simplexity Thinking for solving problems, you can approach the process systematically, and be comfortable that the decisions you make are solid.

  2. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  3. The Art of Effective Problem Solving: A Step-by-Step Guide

    The 8D problem solving methodology is a systematic, team-based approach to problem solving. ... Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

  4. A guide to problem-solving techniques, steps, and skills

    The 7 steps to problem-solving. When it comes to problem-solving there are seven key steps that you should follow: define the problem, disaggregate, prioritize problem branches, create an analysis plan, conduct analysis, synthesis, and communication. 1. Define the problem. Problem-solving begins with a clear understanding of the issue at hand.

  5. Make Better Decisions: Use the Systematic Problem-Solving Model

    The Systematic Problem-Solving (SPS) Method: Make Better Decisions ... All disciplines of philosophy, business, science, and humanities have developed their own approach to solving problems. Remarkably, the problem-solving models developed by each of these areas are strikingly similar. I describe a simple problem-solving process that you can ...

  6. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  7. The scientific method (article)

    The scientific method is a systematic approach to problem-solving, and it's the backbone of scientific inquiry in physics, just as it is in the rest of science. In this article, we'll discuss the steps of the scientific method and how they are used, from forming hypotheses to conducting controlled experiments.

  8. How to master the seven-step problem-solving process

    When we do problem definition well in classic problem solving, we are demonstrating the kind of empathy, at the very beginning of our problem, that design thinking asks us to approach. When we ideate—and that's very similar to the disaggregation, prioritization, and work-planning steps—we do precisely the same thing, and often we use ...

  9. Adopting the right problem-solving approach

    In our 2013 classic from the Quarterly, senior partner Olivier Leclerc highlights the value of taking a number of different approaches simultaneously to solve difficult problems. Read on to discover the five flexons, or problem-solving languages, that can be applied to the same problem to generate richer insights and more innovative solutions.

  10. The McKinsey guide to problem solving

    May 14, 2023 - Leaders today are confronted with more problems, of greater magnitude, than ever before. In these volatile times, it's natural to react based on what's worked best in the past. But when you're solving the toughest business challenges on an ongoing basis, it's crucial to start from a place of awareness.

  11. 8.5: Problem Solving and Decision-Making in Groups

    Step 2: Analyze the Problem. During this step, a group should analyze the problem and the group's relationship to the problem. Whereas the first step involved exploring the "what" related to the problem, this step focuses on the "why.". At this stage, group members can discuss the potential causes of the difficulty.

  12. Problem-Solving: A Systematic Approach

    One of the joys of Project Management is the constant need for problem-solving. The novelty and uncertainty of a project environment constantly throw up surprises. So, a Project Manager needs to be adept at solving problems. In this article, we look at problem-solving and offer you a structured, systematic approach. Problem-Solving Methodologies

  13. Systematic problem-solving and its antecedents: a synthesis of the

    Purpose. This study aims at determining the factors that favor a systematic approach to deal with complex operational and strategic problems. Management literature on problem-solving makes a clear distinction between either fixing a problem temporarily by eliminating its symptoms or solving it by diagnosing and altering underlying causes.

  14. 12 Approaches To Problem-Solving for Every Situation

    Brainstorm options to solve the problem. Select an option. Create an implementation plan. Execute the plan and monitor the results. Evaluate the solution. Read more: Effective Problem Solving Steps in the Workplace. 2. Collaborative. This approach involves including multiple people in the problem-solving process.

  15. Definitive Guide to Problem Solving Techniques

    Creative problem solving (CPS) is a method of problem solving in which you approach a problem or challenge in an imaginative, innovative way. The goal of CPS is to come up with innovative solutions, make a decision, and take action quickly. ... is a systematic approach to defining and identifying an inventive solution to difficult problems.

  16. PDF The Six Step Problem Solving Model

    more quickly by using a shared, collaborative, and systematic approach to problem solving. Advantages of Six-Step Problem Solving The Six-Step method provides a focused procedure for the problem solving (PS) group. • It ensures consistency, as everyone understands the approach to be used. • By using data, it helps eliminate bias and ...

  17. Problem-Solving Strategies and Obstacles

    Problem-solving is a vital skill for coping with various challenges in life. This webpage explains the different strategies and obstacles that can affect how you solve problems, and offers tips on how to improve your problem-solving skills. Learn how to identify, analyze, and overcome problems with Verywell Mind.

  18. 35 problem-solving techniques and methods for solving complex problems

    Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team. The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are ...

  19. Taking a systems thinking approach to problem solving

    Systems thinking is an approach that views an issue or problem as part of a wider, dynamic system. It entails accepting the system as an entity in its own right rather than just the sum of its parts, as well as understanding how individual elements of a system influence one another. When we consider the concepts of a car, or a human being we ...

  20. What is systematic thinking and why is it useful at work?

    Systematic thinking, or systems thinking, is an approach to problem-solving that uses a variety of skills. This method approaches a problem holistically, considering every part of the issue. It also involves thinking of a wide range of different solutions before deciding which one is the most appropriate.

  21. Creative Problem-Solving

    The creative problem-solving process Footnote 1 is a systematic approach to problem-solving that was first proposed by Alex Osborn in 1953 in his landmark book Applied Imagination.The approach went through several refinements over a period of five years. Osborn began with a seven-step model that reflected the creative process (orientation, preparation, analysis, hypothesis, incubation ...

  22. What Is Creative Problem-Solving & Why Is It Important?

    Creative problem-solving primarily operates in the ideate phase of design thinking but can be applied to others. This is because design thinking is an iterative process that moves between the stages as ideas are generated and pursued. This is normal and encouraged, as innovation requires exploring multiple ideas.

  23. What is troubleshooting and why is it important?

    Troubleshooting is a systematic approach to problem solving that is often used to find and correct issues with complex machines, electronics, computers and software systems. The first step in troubleshooting is gathering information on the issue, such as an undesired behavior or a lack of expected functionality. Other important information ...

  24. ‎The Strategy Skills Podcast: Strategy

    Welcome to Strategy Skills episode 442, featuring an interview with the author of The Illusion of Innovation: Escape "Efficiency" and Unleash Radical Progress, Elliott Parker. The Illusion of Innovation tackles the problem with innovation inside big companies, having activities that feel like innova…

  25. Exploring Options Approach to Problem Solving

    List some of the key issues to consider in problem solving. Explain why it is important to consider more than one person's perspective in problem solving. Explain why it is important to consider more than one option to solving a problem. Demonstrate how to explore options to assist a consumer to solve a problem.

  26. ‎Mastering Complexity: A Comprehensive Guide to Big O Complexity and

    Download and listen to the audiobook version of Mastering Complexity: A Comprehensive Guide to Big O Complexity and DSA Problem Solving by DSA Shots on Apple Books. Are you ready to unlock the secrets of complexity theory and become a master pro ‎Nonfiction · 2024.

  27. PDF Taking ASCII Drawings Seriously: How Programmers Diagram Code

    We approach these RQs through qualitative interviews with nine ... be integrated simultaneously to amplify problem-solving, learn-ing, and communication [22, 46, 60]. Below, we review prior work ... observations via a systematic investigation into ASCII drawing's media, roles, and content. Other works include Twidale and Nichols