U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Recent quantitative research on determinants of health in high income countries: A scoping review

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Software, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliation Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium

ORCID logo

Roles Conceptualization, Data curation, Funding acquisition, Project administration, Resources, Supervision, Validation, Visualization, Writing – review & editing

  • Vladimira Varbanova, 
  • Philippe Beutels

PLOS

  • Published: September 17, 2020
  • https://doi.org/10.1371/journal.pone.0239031
  • Peer Review
  • Reader Comments

Fig 1

Identifying determinants of health and understanding their role in health production constitutes an important research theme. We aimed to document the state of recent multi-country research on this theme in the literature.

We followed the PRISMA-ScR guidelines to systematically identify, triage and review literature (January 2013—July 2019). We searched for studies that performed cross-national statistical analyses aiming to evaluate the impact of one or more aggregate level determinants on one or more general population health outcomes in high-income countries. To assess in which combinations and to what extent individual (or thematically linked) determinants had been studied together, we performed multidimensional scaling and cluster analysis.

Sixty studies were selected, out of an original yield of 3686. Life-expectancy and overall mortality were the most widely used population health indicators, while determinants came from the areas of healthcare, culture, politics, socio-economics, environment, labor, fertility, demographics, life-style, and psychology. The family of regression models was the predominant statistical approach. Results from our multidimensional scaling showed that a relatively tight core of determinants have received much attention, as main covariates of interest or controls, whereas the majority of other determinants were studied in very limited contexts. We consider findings from these studies regarding the importance of any given health determinant inconclusive at present. Across a multitude of model specifications, different country samples, and varying time periods, effects fluctuated between statistically significant and not significant, and between beneficial and detrimental to health.

Conclusions

We conclude that efforts to understand the underlying mechanisms of population health are far from settled, and the present state of research on the topic leaves much to be desired. It is essential that future research considers multiple factors simultaneously and takes advantage of more sophisticated methodology with regards to quantifying health as well as analyzing determinants’ influence.

Citation: Varbanova V, Beutels P (2020) Recent quantitative research on determinants of health in high income countries: A scoping review. PLoS ONE 15(9): e0239031. https://doi.org/10.1371/journal.pone.0239031

Editor: Amir Radfar, University of Central Florida, UNITED STATES

Received: November 14, 2019; Accepted: August 28, 2020; Published: September 17, 2020

Copyright: © 2020 Varbanova, Beutels. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: All relevant data are within the manuscript and its Supporting Information files.

Funding: This study (and VV) is funded by the Research Foundation Flanders ( https://www.fwo.be/en/ ), FWO project number G0D5917N, award obtained by PB. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.

Introduction

Identifying the key drivers of population health is a core subject in public health and health economics research. Between-country comparative research on the topic is challenging. In order to be relevant for policy, it requires disentangling different interrelated drivers of “good health”, each having different degrees of importance in different contexts.

“Good health”–physical and psychological, subjective and objective–can be defined and measured using a variety of approaches, depending on which aspect of health is the focus. A major distinction can be made between health measurements at the individual level or some aggregate level, such as a neighborhood, a region or a country. In view of this, a great diversity of specific research topics exists on the drivers of what constitutes individual or aggregate “good health”, including those focusing on health inequalities, the gender gap in longevity, and regional mortality and longevity differences.

The current scoping review focuses on determinants of population health. Stated as such, this topic is quite broad. Indeed, we are interested in the very general question of what methods have been used to make the most of increasingly available region or country-specific databases to understand the drivers of population health through inter-country comparisons. Existing reviews indicate that researchers thus far tend to adopt a narrower focus. Usually, attention is given to only one health outcome at a time, with further geographical and/or population [ 1 , 2 ] restrictions. In some cases, the impact of one or more interventions is at the core of the review [ 3 – 7 ], while in others it is the relationship between health and just one particular predictor, e.g., income inequality, access to healthcare, government mechanisms [ 8 – 13 ]. Some relatively recent reviews on the subject of social determinants of health [ 4 – 6 , 14 – 17 ] have considered a number of indicators potentially influencing health as opposed to a single one. One review defines “social determinants” as “the social, economic, and political conditions that influence the health of individuals and populations” [ 17 ] while another refers even more broadly to “the factors apart from medical care” [ 15 ].

In the present work, we aimed to be more inclusive, setting no limitations on the nature of possible health correlates, as well as making use of a multitude of commonly accepted measures of general population health. The goal of this scoping review was to document the state of the art in the recent published literature on determinants of population health, with a particular focus on the types of determinants selected and the methodology used. In doing so, we also report the main characteristics of the results these studies found. The materials collected in this review are intended to inform our (and potentially other researchers’) future analyses on this topic. Since the production of health is subject to the law of diminishing marginal returns, we focused our review on those studies that included countries where a high standard of wealth has been achieved for some time, i.e., high-income countries belonging to the Organisation for Economic Co-operation and Development (OECD) or Europe. Adding similar reviews for other country income groups is of limited interest to the research we plan to do in this area.

In view of its focus on data and methods, rather than results, a formal protocol was not registered prior to undertaking this review, but the procedure followed the guidelines of the PRISMA statement for scoping reviews [ 18 ].

We focused on multi-country studies investigating the potential associations between any aggregate level (region/city/country) determinant and general measures of population health (e.g., life expectancy, mortality rate).

Within the query itself, we listed well-established population health indicators as well as the six world regions, as defined by the World Health Organization (WHO). We searched only in the publications’ titles in order to keep the number of hits manageable, and the ratio of broadly relevant abstracts over all abstracts in the order of magnitude of 10% (based on a series of time-focused trial runs). The search strategy was developed iteratively between the two authors and is presented in S1 Appendix . The search was performed by VV in PubMed and Web of Science on the 16 th of July, 2019, without any language restrictions, and with a start date set to the 1 st of January, 2013, as we were interested in the latest developments in this area of research.

Eligibility criteria

Records obtained via the search methods described above were screened independently by the two authors. Consistency between inclusion/exclusion decisions was approximately 90% and the 43 instances where uncertainty existed were judged through discussion. Articles were included subject to meeting the following requirements: (a) the paper was a full published report of an original empirical study investigating the impact of at least one aggregate level (city/region/country) factor on at least one health indicator (or self-reported health) of the general population (the only admissible “sub-populations” were those based on gender and/or age); (b) the study employed statistical techniques (calculating correlations, at the very least) and was not purely descriptive or theoretical in nature; (c) the analysis involved at least two countries or at least two regions or cities (or another aggregate level) in at least two different countries; (d) the health outcome was not differentiated according to some socio-economic factor and thus studied in terms of inequality (with the exception of gender and age differentiations); (e) mortality, in case it was one of the health indicators under investigation, was strictly “total” or “all-cause” (no cause-specific or determinant-attributable mortality).

Data extraction

The following pieces of information were extracted in an Excel table from the full text of each eligible study (primarily by VV, consulting with PB in case of doubt): health outcome(s), determinants, statistical methodology, level of analysis, results, type of data, data sources, time period, countries. The evidence is synthesized according to these extracted data (often directly reflected in the section headings), using a narrative form accompanied by a “summary-of-findings” table and a graph.

Search and selection

The initial yield contained 4583 records, reduced to 3686 after removal of duplicates ( Fig 1 ). Based on title and abstract screening, 3271 records were excluded because they focused on specific medical condition(s) or specific populations (based on morbidity or some other factor), dealt with intervention effectiveness, with theoretical or non-health related issues, or with animals or plants. Of the remaining 415 papers, roughly half were disqualified upon full-text consideration, mostly due to using an outcome not of interest to us (e.g., health inequality), measuring and analyzing determinants and outcomes exclusively at the individual level, performing analyses one country at a time, employing indices that are a mixture of both health indicators and health determinants, or not utilizing potential health determinants at all. After this second stage of the screening process, 202 papers were deemed eligible for inclusion. This group was further dichotomized according to level of economic development of the countries or regions under study, using membership of the OECD or Europe as a reference “cut-off” point. Sixty papers were judged to include high-income countries, and the remaining 142 included either low- or middle-income countries or a mix of both these levels of development. The rest of this report outlines findings in relation to high-income countries only, reflecting our own primary research interests. Nonetheless, we chose to report our search yield for the other income groups for two reasons. First, to gauge the relative interest in applied published research for these different income levels; and second, to enable other researchers with a focus on determinants of health in other countries to use the extraction we made here.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0239031.g001

Health outcomes

The most frequent population health indicator, life expectancy (LE), was present in 24 of the 60 studies. Apart from “life expectancy at birth” (representing the average life-span a newborn is expected to have if current mortality rates remain constant), also called “period LE” by some [ 19 , 20 ], we encountered as well LE at 40 years of age [ 21 ], at 60 [ 22 ], and at 65 [ 21 , 23 , 24 ]. In two papers, the age-specificity of life expectancy (be it at birth or another age) was not stated [ 25 , 26 ].

Some studies considered male and female LE separately [ 21 , 24 , 25 , 27 – 33 ]. This consideration was also often observed with the second most commonly used health index [ 28 – 30 , 34 – 38 ]–termed “total”, or “overall”, or “all-cause”, mortality rate (MR)–included in 22 of the 60 studies. In addition to gender, this index was also sometimes broken down according to age group [ 30 , 39 , 40 ], as well as gender-age group [ 38 ].

While the majority of studies under review here focused on a single health indicator, 23 out of the 60 studies made use of multiple outcomes, although these outcomes were always considered one at a time, and sometimes not all of them fell within the scope of our review. An easily discernable group of indices that typically went together [ 25 , 37 , 41 ] was that of neonatal (deaths occurring within 28 days postpartum), perinatal (fetal or early neonatal / first-7-days deaths), and post-neonatal (deaths between the 29 th day and completion of one year of life) mortality. More often than not, these indices were also accompanied by “stand-alone” indicators, such as infant mortality (deaths within the first year of life; our third most common index found in 16 of the 60 studies), maternal mortality (deaths during pregnancy or within 42 days of termination of pregnancy), and child mortality rates. Child mortality has conventionally been defined as mortality within the first 5 years of life, thus often also called “under-5 mortality”. Nonetheless, Pritchard & Wallace used the term “child mortality” to denote deaths of children younger than 14 years [ 42 ].

As previously stated, inclusion criteria did allow for self-reported health status to be used as a general measure of population health. Within our final selection of studies, seven utilized some form of subjective health as an outcome variable [ 25 , 43 – 48 ]. Additionally, the Health Human Development Index [ 49 ], healthy life expectancy [ 50 ], old-age survival [ 51 ], potential years of life lost [ 52 ], and disability-adjusted life expectancy [ 25 ] were also used.

We note that while in most cases the indicators mentioned above (and/or the covariates considered, see below) were taken in their absolute or logarithmic form, as a—typically annual—number, sometimes they were used in the form of differences, change rates, averages over a given time period, or even z-scores of rankings [ 19 , 22 , 40 , 42 , 44 , 53 – 57 ].

Regions, countries, and populations

Despite our decision to confine this review to high-income countries, some variation in the countries and regions studied was still present. Selection seemed to be most often conditioned on the European Union, or the European continent more generally, and the Organisation of Economic Co-operation and Development (OECD), though, typically, not all member nations–based on the instances where these were also explicitly listed—were included in a given study. Some of the stated reasons for omitting certain nations included data unavailability [ 30 , 45 , 54 ] or inconsistency [ 20 , 58 ], Gross Domestic Product (GDP) too low [ 40 ], differences in economic development and political stability with the rest of the sampled countries [ 59 ], and national population too small [ 24 , 40 ]. On the other hand, the rationales for selecting a group of countries included having similar above-average infant mortality [ 60 ], similar healthcare systems [ 23 ], and being randomly drawn from a social spending category [ 61 ]. Some researchers were interested explicitly in a specific geographical region, such as Eastern Europe [ 50 ], Central and Eastern Europe [ 48 , 60 ], the Visegrad (V4) group [ 62 ], or the Asia/Pacific area [ 32 ]. In certain instances, national regions or cities, rather than countries, constituted the units of investigation instead [ 31 , 51 , 56 , 62 – 66 ]. In two particular cases, a mix of countries and cities was used [ 35 , 57 ]. In another two [ 28 , 29 ], due to the long time periods under study, some of the included countries no longer exist. Finally, besides “European” and “OECD”, the terms “developed”, “Western”, and “industrialized” were also used to describe the group of selected nations [ 30 , 42 , 52 , 53 , 67 ].

As stated above, it was the health status of the general population that we were interested in, and during screening we made a concerted effort to exclude research using data based on a more narrowly defined group of individuals. All studies included in this review adhere to this general rule, albeit with two caveats. First, as cities (even neighborhoods) were the unit of analysis in three of the studies that made the selection [ 56 , 64 , 65 ], the populations under investigation there can be more accurately described as general urban , instead of just general. Second, oftentimes health indicators were stratified based on gender and/or age, therefore we also admitted one study that, due to its specific research question, focused on men and women of early retirement age [ 35 ] and another that considered adult males only [ 68 ].

Data types and sources

A great diversity of sources was utilized for data collection purposes. The accessible reference databases of the OECD ( https://www.oecd.org/ ), WHO ( https://www.who.int/ ), World Bank ( https://www.worldbank.org/ ), United Nations ( https://www.un.org/en/ ), and Eurostat ( https://ec.europa.eu/eurostat ) were among the top choices. The other international databases included Human Mortality [ 30 , 39 , 50 ], Transparency International [ 40 , 48 , 50 ], Quality of Government [ 28 , 69 ], World Income Inequality [ 30 ], International Labor Organization [ 41 ], International Monetary Fund [ 70 ]. A number of national databases were referred to as well, for example the US Bureau of Statistics [ 42 , 53 ], Korean Statistical Information Services [ 67 ], Statistics Canada [ 67 ], Australian Bureau of Statistics [ 67 ], and Health New Zealand Tobacco control and Health New Zealand Food and Nutrition [ 19 ]. Well-known surveys, such as the World Values Survey [ 25 , 55 ], the European Social Survey [ 25 , 39 , 44 ], the Eurobarometer [ 46 , 56 ], the European Value Survey [ 25 ], and the European Statistics of Income and Living Condition Survey [ 43 , 47 , 70 ] were used as data sources, too. Finally, in some cases [ 25 , 28 , 29 , 35 , 36 , 41 , 69 ], built-for-purpose datasets from previous studies were re-used.

In most of the studies, the level of the data (and analysis) was national. The exceptions were six papers that dealt with Nomenclature of Territorial Units of Statistics (NUTS2) regions [ 31 , 62 , 63 , 66 ], otherwise defined areas [ 51 ] or cities [ 56 ], and seven others that were multilevel designs and utilized both country- and region-level data [ 57 ], individual- and city- or country-level [ 35 ], individual- and country-level [ 44 , 45 , 48 ], individual- and neighborhood-level [ 64 ], and city-region- (NUTS3) and country-level data [ 65 ]. Parallel to that, the data type was predominantly longitudinal, with only a few studies using purely cross-sectional data [ 25 , 33 , 43 , 45 – 48 , 50 , 62 , 67 , 68 , 71 , 72 ], albeit in four of those [ 43 , 48 , 68 , 72 ] two separate points in time were taken (thus resulting in a kind of “double cross-section”), while in another the averages across survey waves were used [ 56 ].

In studies using longitudinal data, the length of the covered time periods varied greatly. Although this was almost always less than 40 years, in one study it covered the entire 20 th century [ 29 ]. Longitudinal data, typically in the form of annual records, was sometimes transformed before usage. For example, some researchers considered data points at 5- [ 34 , 36 , 49 ] or 10-year [ 27 , 29 , 35 ] intervals instead of the traditional 1, or took averages over 3-year periods [ 42 , 53 , 73 ]. In one study concerned with the effect of the Great Recession all data were in a “recession minus expansion change in trends”-form [ 57 ]. Furthermore, there were a few instances where two different time periods were compared to each other [ 42 , 53 ] or when data was divided into 2 to 4 (possibly overlapping) periods which were then analyzed separately [ 24 , 26 , 28 , 29 , 31 , 65 ]. Lastly, owing to data availability issues, discrepancies between the time points or periods of data on the different variables were occasionally observed [ 22 , 35 , 42 , 53 – 55 , 63 ].

Health determinants

Together with other essential details, Table 1 lists the health correlates considered in the selected studies. Several general categories for these correlates can be discerned, including health care, political stability, socio-economics, demographics, psychology, environment, fertility, life-style, culture, labor. All of these, directly or implicitly, have been recognized as holding importance for population health by existing theoretical models of (social) determinants of health [ 74 – 77 ].

thumbnail

https://doi.org/10.1371/journal.pone.0239031.t001

It is worth noting that in a few studies there was just a single aggregate-level covariate investigated in relation to a health outcome of interest to us. In one instance, this was life satisfaction [ 44 ], in another–welfare system typology [ 45 ], but also gender inequality [ 33 ], austerity level [ 70 , 78 ], and deprivation [ 51 ]. Most often though, attention went exclusively to GDP [ 27 , 29 , 46 , 57 , 65 , 71 ]. It was often the case that research had a more particular focus. Among others, minimum wages [ 79 ], hospital payment schemes [ 23 ], cigarette prices [ 63 ], social expenditure [ 20 ], residents’ dissatisfaction [ 56 ], income inequality [ 30 , 69 ], and work leave [ 41 , 58 ] took center stage. Whenever variables outside of these specific areas were also included, they were usually identified as confounders or controls, moderators or mediators.

We visualized the combinations in which the different determinants have been studied in Fig 2 , which was obtained via multidimensional scaling and a subsequent cluster analysis (details outlined in S2 Appendix ). It depicts the spatial positioning of each determinant relative to all others, based on the number of times the effects of each pair of determinants have been studied simultaneously. When interpreting Fig 2 , one should keep in mind that determinants marked with an asterisk represent, in fact, collectives of variables.

thumbnail

Groups of determinants are marked by asterisks (see S1 Table in S1 Appendix ). Diminishing color intensity reflects a decrease in the total number of “connections” for a given determinant. Noteworthy pairwise “connections” are emphasized via lines (solid-dashed-dotted indicates decreasing frequency). Grey contour lines encircle groups of variables that were identified via cluster analysis. Abbreviations: age = population age distribution, associations = membership in associations, AT-index = atherogenic-thrombogenic index, BR = birth rate, CAPB = Cyclically Adjusted Primary Balance, civilian-labor = civilian labor force, C-section = Cesarean delivery rate, credit-info = depth of credit information, dissatisf = residents’ dissatisfaction, distrib.orient = distributional orientation, EDU = education, eHealth = eHealth index at GP-level, exch.rate = exchange rate, fat = fat consumption, GDP = gross domestic product, GFCF = Gross Fixed Capital Formation/Creation, GH-gas = greenhouse gas, GII = gender inequality index, gov = governance index, gov.revenue = government revenues, HC-coverage = healthcare coverage, HE = health(care) expenditure, HHconsump = household consumption, hosp.beds = hospital beds, hosp.payment = hospital payment scheme, hosp.stay = length of hospital stay, IDI = ICT development index, inc.ineq = income inequality, industry-labor = industrial labor force, infant-sex = infant sex ratio, labor-product = labor production, LBW = low birth weight, leave = work leave, life-satisf = life satisfaction, M-age = maternal age, marginal-tax = marginal tax rate, MDs = physicians, mult.preg = multiple pregnancy, NHS = Nation Health System, NO = nitrous oxide emissions, PM10 = particulate matter (PM10) emissions, pop = population size, pop.density = population density, pre-term = pre-term birth rate, prison = prison population, researchE = research&development expenditure, school.ref = compulsory schooling reform, smoke-free = smoke-free places, SO = sulfur oxide emissions, soc.E = social expenditure, soc.workers = social workers, sugar = sugar consumption, terror = terrorism, union = union density, UR = unemployment rate, urban = urbanization, veg-fr = vegetable-and-fruit consumption, welfare = welfare regime, Wwater = wastewater treatment.

https://doi.org/10.1371/journal.pone.0239031.g002

Distances between determinants in Fig 2 are indicative of determinants’ “connectedness” with each other. While the statistical procedure called for higher dimensionality of the model, for demonstration purposes we show here a two-dimensional solution. This simplification unfortunately comes with a caveat. To use the factor smoking as an example, it would appear it stands at a much greater distance from GDP than it does from alcohol. In reality however, smoking was considered together with alcohol consumption [ 21 , 25 , 26 , 52 , 68 ] in just as many studies as it was with GDP [ 21 , 25 , 26 , 52 , 59 ], five. To aid with respect to this apparent shortcoming, we have emphasized the strongest pairwise links. Solid lines connect GDP with health expenditure (HE), unemployment rate (UR), and education (EDU), indicating that the effect of GDP on health, taking into account the effects of the other three determinants as well, was evaluated in between 12 to 16 studies of the 60 included in this review. Tracing the dashed lines, we can also tell that GDP appeared jointly with income inequality, and HE together with either EDU or UR, in anywhere between 8 to 10 of our selected studies. Finally, some weaker but still worth-mentioning “connections” between variables are displayed as well via the dotted lines.

The fact that all notable pairwise “connections” are concentrated within a relatively small region of the plot may be interpreted as low overall “connectedness” among the health indicators studied. GDP is the most widely investigated determinant in relation to general population health. Its total number of “connections” is disproportionately high (159) compared to its runner-up–HE (with 113 “connections”), and then subsequently EDU (with 90) and UR (with 86). In fact, all of these determinants could be thought of as outliers, given that none of the remaining factors have a total count of pairings above 52. This decrease in individual determinants’ overall “connectedness” can be tracked on the graph via the change of color intensity as we move outwards from the symbolic center of GDP and its closest “co-determinants”, to finally reach the other extreme of the ten indicators (welfare regime, household consumption, compulsory school reform, life satisfaction, government revenues, literacy, research expenditure, multiple pregnancy, Cyclically Adjusted Primary Balance, and residents’ dissatisfaction; in white) the effects on health of which were only studied in isolation.

Lastly, we point to the few small but stable clusters of covariates encircled by the grey bubbles on Fig 2 . These groups of determinants were identified as “close” by both statistical procedures used for the production of the graph (see details in S2 Appendix ).

Statistical methodology

There was great variation in the level of statistical detail reported. Some authors provided too vague a description of their analytical approach, necessitating some inference in this section.

The issue of missing data is a challenging reality in this field of research, but few of the studies under review (12/60) explain how they dealt with it. Among the ones that do, three general approaches to handling missingness can be identified, listed in increasing level of sophistication: case-wise deletion, i.e., removal of countries from the sample [ 20 , 45 , 48 , 58 , 59 ], (linear) interpolation [ 28 , 30 , 34 , 58 , 59 , 63 ], and multiple imputation [ 26 , 41 , 52 ].

Correlations, Pearson, Spearman, or unspecified, were the only technique applied with respect to the health outcomes of interest in eight analyses [ 33 , 42 – 44 , 46 , 53 , 57 , 61 ]. Among the more advanced statistical methods, the family of regression models proved to be, by and large, predominant. Before examining this closer, we note the techniques that were, in a way, “unique” within this selection of studies: meta-analyses were performed (random and fixed effects, respectively) on the reduced form and 2-sample two stage least squares (2SLS) estimations done within countries [ 39 ]; difference-in-difference (DiD) analysis was applied in one case [ 23 ]; dynamic time-series methods, among which co-integration, impulse-response function (IRF), and panel vector autoregressive (VAR) modeling, were utilized in one study [ 80 ]; longitudinal generalized estimating equation (GEE) models were developed on two occasions [ 70 , 78 ]; hierarchical Bayesian spatial models [ 51 ] and special autoregressive regression [ 62 ] were also implemented.

Purely cross-sectional data analyses were performed in eight studies [ 25 , 45 , 47 , 50 , 55 , 56 , 67 , 71 ]. These consisted of linear regression (assumed ordinary least squares (OLS)), generalized least squares (GLS) regression, and multilevel analyses. However, six other studies that used longitudinal data in fact had a cross-sectional design, through which they applied regression at multiple time-points separately [ 27 , 29 , 36 , 48 , 68 , 72 ].

Apart from these “multi-point cross-sectional studies”, some other simplistic approaches to longitudinal data analysis were found, involving calculating and regressing 3-year averages of both the response and the predictor variables [ 54 ], taking the average of a few data-points (i.e., survey waves) [ 56 ] or using difference scores over 10-year [ 19 , 29 ] or unspecified time intervals [ 40 , 55 ].

Moving further in the direction of more sensible longitudinal data usage, we turn to the methods widely known among (health) economists as “panel data analysis” or “panel regression”. Most often seen were models with fixed effects for country/region and sometimes also time-point (occasionally including a country-specific trend as well), with robust standard errors for the parameter estimates to take into account correlations among clustered observations [ 20 , 21 , 24 , 28 , 30 , 32 , 34 , 37 , 38 , 41 , 52 , 59 , 60 , 63 , 66 , 69 , 73 , 79 , 81 , 82 ]. The Hausman test [ 83 ] was sometimes mentioned as the tool used to decide between fixed and random effects [ 26 , 49 , 63 , 66 , 73 , 82 ]. A few studies considered the latter more appropriate for their particular analyses, with some further specifying that (feasible) GLS estimation was employed [ 26 , 34 , 49 , 58 , 60 , 73 ]. Apart from these two types of models, the first differences method was encountered once as well [ 31 ]. Across all, the error terms were sometimes assumed to come from a first-order autoregressive process (AR(1)), i.e., they were allowed to be serially correlated [ 20 , 30 , 38 , 58 – 60 , 73 ], and lags of (typically) predictor variables were included in the model specification, too [ 20 , 21 , 37 , 38 , 48 , 69 , 81 ]. Lastly, a somewhat different approach to longitudinal data analysis was undertaken in four studies [ 22 , 35 , 48 , 65 ] in which multilevel–linear or Poisson–models were developed.

Regardless of the exact techniques used, most studies included in this review presented multiple model applications within their main analysis. None attempted to formally compare models in order to identify the “best”, even if goodness-of-fit statistics were occasionally reported. As indicated above, many studies investigated women’s and men’s health separately [ 19 , 21 , 22 , 27 – 29 , 31 , 33 , 35 , 36 , 38 , 39 , 45 , 50 , 51 , 64 , 65 , 69 , 82 ], and covariates were often tested one at a time, including other covariates only incrementally [ 20 , 25 , 28 , 36 , 40 , 50 , 55 , 67 , 73 ]. Furthermore, there were a few instances where analyses within countries were performed as well [ 32 , 39 , 51 ] or where the full time period of interest was divided into a few sub-periods [ 24 , 26 , 28 , 31 ]. There were also cases where different statistical techniques were applied in parallel [ 29 , 55 , 60 , 66 , 69 , 73 , 82 ], sometimes as a form of sensitivity analysis [ 24 , 26 , 30 , 58 , 73 ]. However, the most common approach to sensitivity analysis was to re-run models with somewhat different samples [ 39 , 50 , 59 , 67 , 69 , 80 , 82 ]. Other strategies included different categorization of variables or adding (more/other) controls [ 21 , 23 , 25 , 28 , 37 , 50 , 63 , 69 ], using an alternative main covariate measure [ 59 , 82 ], including lags for predictors or outcomes [ 28 , 30 , 58 , 63 , 65 , 79 ], using weights [ 24 , 67 ] or alternative data sources [ 37 , 69 ], or using non-imputed data [ 41 ].

As the methods and not the findings are the main focus of the current review, and because generic checklists cannot discern the underlying quality in this application field (see also below), we opted to pool all reported findings together, regardless of individual study characteristics or particular outcome(s) used, and speak generally of positive and negative effects on health. For this summary we have adopted the 0.05-significance level and only considered results from multivariate analyses. Strictly birth-related factors are omitted since these potentially only relate to the group of infant mortality indicators and not to any of the other general population health measures.

Starting with the determinants most often studied, higher GDP levels [ 21 , 26 , 27 , 29 , 30 , 32 , 43 , 48 , 52 , 58 , 60 , 66 , 67 , 73 , 79 , 81 , 82 ], higher health [ 21 , 37 , 47 , 49 , 52 , 58 , 59 , 68 , 72 , 82 ] and social [ 20 , 21 , 26 , 38 , 79 ] expenditures, higher education [ 26 , 39 , 52 , 62 , 72 , 73 ], lower unemployment [ 60 , 61 , 66 ], and lower income inequality [ 30 , 42 , 53 , 55 , 73 ] were found to be significantly associated with better population health on a number of occasions. In addition to that, there was also some evidence that democracy [ 36 ] and freedom [ 50 ], higher work compensation [ 43 , 79 ], distributional orientation [ 54 ], cigarette prices [ 63 ], gross national income [ 22 , 72 ], labor productivity [ 26 ], exchange rates [ 32 ], marginal tax rates [ 79 ], vaccination rates [ 52 ], total fertility [ 59 , 66 ], fruit and vegetable [ 68 ], fat [ 52 ] and sugar consumption [ 52 ], as well as bigger depth of credit information [ 22 ] and percentage of civilian labor force [ 79 ], longer work leaves [ 41 , 58 ], more physicians [ 37 , 52 , 72 ], nurses [ 72 ], and hospital beds [ 79 , 82 ], and also membership in associations, perceived corruption and societal trust [ 48 ] were beneficial to health. Higher nitrous oxide (NO) levels [ 52 ], longer average hospital stay [ 48 ], deprivation [ 51 ], dissatisfaction with healthcare and the social environment [ 56 ], corruption [ 40 , 50 ], smoking [ 19 , 26 , 52 , 68 ], alcohol consumption [ 26 , 52 , 68 ] and illegal drug use [ 68 ], poverty [ 64 ], higher percentage of industrial workers [ 26 ], Gross Fixed Capital creation [ 66 ] and older population [ 38 , 66 , 79 ], gender inequality [ 22 ], and fertility [ 26 , 66 ] were detrimental.

It is important to point out that the above-mentioned effects could not be considered stable either across or within studies. Very often, statistical significance of a given covariate fluctuated between the different model specifications tried out within the same study [ 20 , 49 , 59 , 66 , 68 , 69 , 73 , 80 , 82 ], testifying to the importance of control variables and multivariate research (i.e., analyzing multiple independent variables simultaneously) in general. Furthermore, conflicting results were observed even with regards to the “core” determinants given special attention, so to speak, throughout this text. Thus, some studies reported negative effects of health expenditure [ 32 , 82 ], social expenditure [ 58 ], GDP [ 49 , 66 ], and education [ 82 ], and positive effects of income inequality [ 82 ] and unemployment [ 24 , 31 , 32 , 52 , 66 , 68 ]. Interestingly, one study [ 34 ] differentiated between temporary and long-term effects of GDP and unemployment, alluding to possibly much greater complexity of the association with health. It is also worth noting that some gender differences were found, with determinants being more influential for males than for females, or only having statistically significant effects for male health [ 19 , 21 , 28 , 34 , 36 , 37 , 39 , 64 , 65 , 69 ].

The purpose of this scoping review was to examine recent quantitative work on the topic of multi-country analyses of determinants of population health in high-income countries.

Measuring population health via relatively simple mortality-based indicators still seems to be the state of the art. What is more, these indicators are routinely considered one at a time, instead of, for example, employing existing statistical procedures to devise a more general, composite, index of population health, or using some of the established indices, such as disability-adjusted life expectancy (DALE) or quality-adjusted life expectancy (QALE). Although strong arguments for their wider use were already voiced decades ago [ 84 ], such summary measures surface only rarely in this research field.

On a related note, the greater data availability and accessibility that we enjoy today does not automatically equate to data quality. Nonetheless, this is routinely assumed in aggregate level studies. We almost never encountered a discussion on the topic. The non-mundane issue of data missingness, too, goes largely underappreciated. With all recent methodological advancements in this area [ 85 – 88 ], there is no excuse for ignorance; and still, too few of the reviewed studies tackled the matter in any adequate fashion.

Much optimism can be gained considering the abundance of different determinants that have attracted researchers’ attention in relation to population health. We took on a visual approach with regards to these determinants and presented a graph that links spatial distances between determinants with frequencies of being studies together. To facilitate interpretation, we grouped some variables, which resulted in some loss of finer detail. Nevertheless, the graph is helpful in exemplifying how many effects continue to be studied in a very limited context, if any. Since in reality no factor acts in isolation, this oversimplification practice threatens to render the whole exercise meaningless from the outset. The importance of multivariate analysis cannot be stressed enough. While there is no “best method” to be recommended and appropriate techniques vary according to the specifics of the research question and the characteristics of the data at hand [ 89 – 93 ], in the future, in addition to abandoning simplistic univariate approaches, we hope to see a shift from the currently dominating fixed effects to the more flexible random/mixed effects models [ 94 ], as well as wider application of more sophisticated methods, such as principle component regression, partial least squares, covariance structure models (e.g., structural equations), canonical correlations, time-series, and generalized estimating equations.

Finally, there are some limitations of the current scoping review. We searched the two main databases for published research in medical and non-medical sciences (PubMed and Web of Science) since 2013, thus potentially excluding publications and reports that are not indexed in these databases, as well as older indexed publications. These choices were guided by our interest in the most recent (i.e., the current state-of-the-art) and arguably the highest-quality research (i.e., peer-reviewed articles, primarily in indexed non-predatory journals). Furthermore, despite holding a critical stance with regards to some aspects of how determinants-of-health research is currently conducted, we opted out of formally assessing the quality of the individual studies included. The reason for that is two-fold. On the one hand, we are unaware of the existence of a formal and standard tool for quality assessment of ecological designs. And on the other, we consider trying to score the quality of these diverse studies (in terms of regional setting, specific topic, outcome indices, and methodology) undesirable and misleading, particularly since we would sometimes have been rating the quality of only a (small) part of the original studies—the part that was relevant to our review’s goal.

Our aim was to investigate the current state of research on the very broad and general topic of population health, specifically, the way it has been examined in a multi-country context. We learned that data treatment and analytical approach were, in the majority of these recent studies, ill-equipped or insufficiently transparent to provide clarity regarding the underlying mechanisms of population health in high-income countries. Whether due to methodological shortcomings or the inherent complexity of the topic, research so far fails to provide any definitive answers. It is our sincere belief that with the application of more advanced analytical techniques this continuous quest could come to fruition sooner.

Supporting information

S1 checklist. preferred reporting items for systematic reviews and meta-analyses extension for scoping reviews (prisma-scr) checklist..

https://doi.org/10.1371/journal.pone.0239031.s001

S1 Appendix.

https://doi.org/10.1371/journal.pone.0239031.s002

S2 Appendix.

https://doi.org/10.1371/journal.pone.0239031.s003

  • View Article
  • Google Scholar
  • PubMed/NCBI
  • 75. Dahlgren G, Whitehead M. Policies and Strategies to Promote Equity in Health. Stockholm, Sweden: Institute for Future Studies; 1991.
  • 76. Brunner E, Marmot M. Social Organization, Stress, and Health. In: Marmot M, Wilkinson RG, editors. Social Determinants of Health. Oxford, England: Oxford University Press; 1999.
  • 77. Najman JM. A General Model of the Social Origins of Health and Well-being. In: Eckersley R, Dixon J, Douglas B, editors. The Social Origins of Health and Well-being. Cambridge, England: Cambridge University Press; 2001.
  • 85. Carpenter JR, Kenward MG. Multiple Imputation and its Application. New York: John Wiley & Sons; 2013.
  • 86. Molenberghs G, Fitzmaurice G, Kenward MG, Verbeke G, Tsiatis AA. Handbook of Missing Data Methodology. Boca Raton: Chapman & Hall/CRC; 2014.
  • 87. van Buuren S. Flexible Imputation of Missing Data. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2018.
  • 88. Enders CK. Applied Missing Data Analysis. New York: Guilford; 2010.
  • 89. Shayle R. Searle GC, Charles E. McCulloch. Variance Components: John Wiley & Sons, Inc.; 1992.
  • 90. Agresti A. Foundations of Linear and Generalized Linear Models. Hoboken, New Jersey: John Wiley & Sons Inc.; 2015.
  • 91. Leyland A. H. (Editor) HGE. Multilevel Modelling of Health Statistics: John Wiley & Sons Inc; 2001.
  • 92. Garrett Fitzmaurice MD, Geert Verbeke, Geert Molenberghs. Longitudinal Data Analysis. New York: Chapman and Hall/CRC; 2008.
  • 93. Wolfgang Karl Härdle LS. Applied Multivariate Statistical Analysis. Berlin, Heidelberg: Springer; 2015.

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: Dec 8, 2023 10:05 PM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation

articles quantitative research

  • Back to parent navigation item
  • Primary teacher
  • Secondary/FE teacher
  • Early career or student teacher
  • Higher education
  • Curriculum support
  • Literacy in science teaching
  • Periodic table
  • Interactive periodic table
  • Climate change and sustainability
  • Resources shop
  • Collections
  • Post-lockdown teaching support
  • Remote teaching support
  • Starters for ten
  • Screen experiments
  • Assessment for learning
  • Microscale chemistry
  • Faces of chemistry
  • Classic chemistry experiments
  • Nuffield practical collection
  • Anecdotes for chemistry teachers
  • On this day in chemistry
  • Global experiments
  • PhET interactive simulations
  • Chemistry vignettes
  • Context and problem based learning
  • Journal of the month
  • Chemistry and art
  • Art analysis
  • Pigments and colours
  • Ancient art: today's technology
  • Psychology and art theory
  • Art and archaeology
  • Artists as chemists
  • The physics of restoration and conservation
  • Ancient Egyptian art
  • Ancient Greek art
  • Ancient Roman art
  • Classic chemistry demonstrations
  • In search of solutions
  • In search of more solutions
  • Creative problem-solving in chemistry
  • Solar spark
  • Chemistry for non-specialists
  • Health and safety in higher education
  • Analytical chemistry introductions
  • Exhibition chemistry
  • Introductory maths for higher education
  • Commercial skills for chemists
  • Kitchen chemistry
  • Journals how to guides
  • Chemistry in health
  • Chemistry in sport
  • Chemistry in your cupboard
  • Chocolate chemistry
  • Adnoddau addysgu cemeg Cymraeg
  • The chemistry of fireworks
  • Festive chemistry
  • Education in Chemistry
  • Teach Chemistry
  • On-demand online
  • Live online
  • Selected PD articles
  • PD for primary teachers
  • PD for secondary teachers
  • What we offer
  • Chartered Science Teacher (CSciTeach)
  • Teacher mentoring
  • UK Chemistry Olympiad
  • Who can enter?
  • How does it work?
  • Resources and past papers
  • Top of the Bench
  • Schools' Analyst
  • Regional support
  • Education coordinators
  • RSC Yusuf Hamied Inspirational Science Programme
  • RSC Education News
  • Supporting teacher training
  • Interest groups

A primary school child raises their hand in a classroom

  • More from navigation items

All Quantitative research articles

An illustration showing four people piecing a box together

Harness self-regulation to nurture independent study skills

2020-10-29T10:15:00Z

Follow these tips to engage students with learning processes

An image showing a percentage sign built out of a pencil and two pie charts overlaid on an empty notebook

Why declining science scores are no reason to panic

2020-02-05T10:31:00Z

PISA provides an interesting background to teaching, but is it only for policymakers?

A pawn before a mirror, reflected as a king

Dunning-Kruger: the gap between prediction and performance

2018-03-19T14:15:00Z

Improve expectations to improve learning

Ed-Res-News-1Alamy-GA9C2F300tb

Encouraging inquiry-based approaches

2016-09-28T00:00:00Z

Manage the load for students

Transforming-educational-research-in-UKshutterstock376152052300tb

Transforming education research

2016-09-14T00:00:00Z

New project to investigate the opportunities and challenges for teachers and researchers

0516EiCEd-Res-News-2ModelsiStock67203999300tb

The value of modelling molecules

2016-08-10T00:00:00Z

Challenge of visual-spatial representations

Education research shutterstock 139305425 300tb[1]

Why don't teachers use education research in teaching?

2016-08-09T07:57:00Z

Paul MacLellan digs into the problem with research from Durham, a secondary school teacher and a journal editor

0516EiCEd-Res-News-1ConfidenceiStock66853949300tb

What influences future science study?

2016-07-27T00:00:00Z

Study beyond GCSE linked to confidence and perceptions

0416EiCEdResNewsPeer-work300tb

It’s good to talk

2016-06-08T00:00:00Z

Facilitating peer group learning

Micer shutterstock 348717923 300tb[1]

The community of chemistry education research

2016-03-03T15:11:00Z

Michael Seery talks about being part of the chemistry education research community in the UK and Ireland

0615EiCReviewsTools300tb

Tools of chemistry education research

2015-11-09T00:00:00Z

Methods and strategies

EDITORIAL-PICKaren-Ogilvie300tb

Understanding education

2015-11-06T00:00:00Z

Raising awareness of teaching and learning opportunities all around us

Organic reaction mechanisms

Organic confusion

Rote memorising v deep understanding

Img 0013 300tb[1]

Variety in Chemistry Education 2015

2015-08-24T16:14:00Z

Michael Seery reports from the conference for chemistry teaching and learning in higher education

Students in a chemistry lab

The case against inquiry-based learning

2015-05-26T10:44:00Z

Michael Seery takes a critical look at inquiry-based learning

Go-kart

Rationalising reasoning

2015-05-11T00:00:00Z

Is contextualisation the best solution?

0315EiCEdResNewsAnalogy300tb

Analysing analogies

Teacher CPD could support analogical thinking

shutterstock132457238300tb

Flipped chemistry revisited

2015-03-05T00:00:00Z

Successful organic chemistry teaching

Sl india 300tb[1]

International Conference on Education in Chemistry, 2014

2015-01-20T13:20:00Z

Simon Lancaster reports on his visit to ICEC-2014 in Mumbai

0115EICCPDThumb300tb

Moles and titrations

2015-01-06T00:00:00Z

Dorothy Warren describes some of the difficulties with teaching this topic and shows how you can help your students to master aspects of quantitative chemistry

  • Previous Page
  • Contributors
  • Email alerts

Site powered by Webvision Cloud

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Questionnaire

Questionnaire – Definition, Types, and Examples

Case Study Research

Case Study – Methods, Examples and Guide

Observational Research

Observational Research – Methods and Guide

Qualitative Research Methods

Qualitative Research Methods

Explanatory Research

Explanatory Research – Types, Methods, Guide

Survey Research

Survey Research – Types, Methods, Examples

'Qualitative' and 'quantitative' methods and approaches across subject fields: implications for research values, assumptions, and practices

  • Open access
  • Published: 30 September 2023

Cite this article

You have full access to this open access article

  • Nick Pilcher   ORCID: orcid.org/0000-0002-5093-9345 1 &
  • Martin Cortazzi 2  

5845 Accesses

Explore all metrics

There is considerable literature showing the complexity, connectivity and blurring of 'qualitative' and 'quantitative' methods in research. Yet these concepts are often represented in a binary way as independent dichotomous categories. This is evident in many key textbooks which are used in research methods courses to guide students and newer researchers in their research training. This paper analyses such textbook representations of 'qualitative' and 'quantitative' in 25 key resources published in English (supported by an outline survey of 23 textbooks written in German, Spanish and French). We then compare these with the perceptions, gathered through semi-structured interviews, of university researchers (n = 31) who work in a wide range of arts and science disciplines. The analysis of what the textbooks say compared to what the participants report they do in their practice shows some common features, as might be assumed, but there are significant contrasts and contradictions. The differences tend to align with some other recent literature to underline the complexity and connectivity associated with the terms. We suggest ways in which future research methods courses and newer researchers could question and positively deconstruct such binary representations in order to free up directions for research in practice, so that investigations can use both quantitative or qualitative approaches in more nuanced practices that are appropriate to the specific field and given context of investigations.

Similar content being viewed by others

articles quantitative research

Designing a Research Question

articles quantitative research

“Qualitative Research” Is a Moving Target

Paul Lichterman

articles quantitative research

What Now and How? Publishing the Qualitative Journal Article

Avoid common mistakes on your manuscript.

1 Introduction: qualitative and quantitative methods, presentations, and practices

Teaching in research methods courses for undergraduates, postgraduates and newer researchers is commonly supported or guided through textbooks with explanations of 'qualitative' and 'quantitative' methods and cases of how these methods are employed. Student dissertations and theses commonly include methodology chapters closely aligned with these textbook representations. Unexceptionally, dissertations and theses we supervise and examine internationally have methodology chapters and frequently these consider rationales and methods associated with positivist or interpretivist paradigms. Within such positivist or interpretivist frameworks, research approaches are amplified with elaborations of the rationale, the methods, and reasons for their choice over likely alternatives. In an apparent convention, related data are assigned as quantitative or qualitative in nature, with associated labelling as ‘numerical’ or ‘textual'. The different types of data yield different values and interpretive directions, and are clustered conceptually with particular research traditions, approaches, and fields or disciplines. Frequently, these clusters are oriented around 'quantitative' and 'qualitative' conceptualizations.

This paper seeks to show how ‘qualitative’ and ‘quantitative’, whether stereotyped or more nuanced, as binary divisions as presented in textbooks and published resources describing research methods may not always accord with the perceptions and day-to-day practices of university researchers. Such common binary representations of quantitative and qualitative and their associated concepts may hide complexities, some of which are outlined below. Any binary divide between ‘qualitative’ and ‘quantitative’ needs caution to show complexity and awareness of disparities with some researchers’ practices.

To date, as far as the present authors are aware, no study has first identified a range of binary representations of ‘quantitative’ and ‘qualitative’ methods and approaches in a literature review study of the many research methods textbooks and sources which guide students and then, secondly, undertaken an interview study with a range of established participant researchers in widely divergent fields to seek their understandings of ‘quantitative’ and ‘qualitative’ in their own fields. The findings related here complement and extend the complexities and convergences of understanding the concepts in different disciplines. Arguably, this paper demonstrates how students and novice researchers should not be constrained in their studies by any binary representations of ‘quantitative’ and ‘qualitative’ the terms. They should feel free to use either (or neither) or both in strategic combinations, as appropriate to their fields.

1.1 Presentations

Characteristically, presentations in research methods textbooks distinguish postivist and interpretivist approaches or paradigms (e.g. Guba and Lincoln 1994 ; Howe 1988 ; Denzin and Lincoln 2011 ) or ‘two cultures’ (Goertz and Mahoney 2012 ) with associated debates or ‘wars’ (e.g. Creswell 1995 ; Morse 1991 ). Quantitative data are shown as ‘numbers’ gathered through experiments (Moore 2006 ) or mathematical models (Denzin and Lincoln 1998 ), whereas qualitative data are usually words or texts (Punch 2005 ; Goertz and Mahoney 2012 ), characteristically gathered through interviews or life stories (Denzin and Lincoln 2011 ). Regarding analysis, some sources claim that establishing objective causal relationships is key in quantitative analysis (e.g. Goertz and Mahoney 2012 ) whereas qualitative analysis uses more discursive and interpretative procedures.

Thus, much literature presents research in terms of two generally distinct methods—quantitative and qualitative—which many students are taught in research methods courses. The binary divide may seem to be legitimated in the titles of many academic journals. This division prevails as designated strands of separated research methods in courses which apparently handle both (cf. Onwuegbuzie and Leech 2005 ). Consequently, students may follow this seemingly stereotyped binary view or feel uncomfortable to deviate from it. Arguably, PhD candidates need to demonstrate understanding of such concepts and procedures in a viva—or risk failure (cf. Trafford and Leshem 2002 ). The Cambridge Dictionary defines ‘quality’ as “how good or bad something is”; while ‘quantity' is “the amount or number of something, especially that can be measured” (Cambridge 2022 ). But definitions of ‘Qualitative' can be elusive, since “a precise definition of qualitative research, and specifically… its distinctive feature of being “qualitative”, the literature is meager” (Aspers and Corte 2019 , p.139). Some observe a “paradox… that researchers act as if they know what it is, but they cannot formulate a definition” and that “there is no consensus about specific qualitative methods nor… data” (Aspers and Corte 2019 , p40). In general, ‘qualitative research’ is an iterative process to discover more about a phenomenon (ibid.). Elsewhere, 'qualitative’ is defined negatively: "It is research that does not use numbers” (Seale 1999b , p.119). But this oversimplifies and hides possible disciplinary variation. For example, when investigating criminal action, numeric information (quantity) always follows an interpretation (De Gregorio 2014 ), and consequently this is a quantity of a quality (cf. Uher 2022 ).

Indeed, many authorities note the presence of elements of one in the other. For example, in analysis specifically, that what are considered to be quantitative elements such as statistics are used in qualitative analysis (Miles and Huberman 1994 ). More generically, that “a qualitative dimension is present in quantitative work as well” (Aspers and Corte 2019 , p.139). In ‘mixed methods’ research (cf. Tashakkori et al. 1998 ; Johnson et al. 2007 ; Teddlie and Tashakkori 2011 ) many researchers ‘mix’ the two approaches (Seale 1999a ; Mason 2006 ; Dawson 2019 ), either using multiple methods concurrently, or doing so sequentially. Mixed method research logically depends on prior understandings of quantitative and qualitative concepts but this is not always obvious (e.g. De Gregorio 2014 ); for instance Heyvaert et al. ( 2013 ) define mixed methods as combining quantitative and qualitative items, but these key terms are left undefined. Some commentators characterize such mixing as a skin, not a sweater to be changed every day (Marsh and Furlong 2002 , cited in Grix 2004 ). In some disciplines, these terms are often blurred, interchanged or conjoined. In sociology, for instance, “any quality can be quantified. Any quantity is a quality of a social context, quantity versus quality is therefore not a separation” (Hanson 2008 , p.102) and characterizing quantitative as ‘objective’ and qualitative as ‘subjective’ is held to be false when seeking triangulation (Hanson 2008 ). Additionally, approaches to measuring and generating quantitative numerical information can differ in social sciences compared to physics (Uher 2022 ). Indeed, quantity may consist of ‘a multitude’ of divisible aspects and a ‘magnitude’ for indivisible aspects (Uher 2022 ). Notably, “the terms ‘measurement’ and ‘quantification’ have different meanings and are therefore prone to jingle-jangle fallacies” (Uher 2022 ) where individuals use the same words to denote different understandings (cf. Bakhtin 1986 ). Comparatively, the words ‘unit’ and ‘scale’ are multitudinous in different sciences, and the key principles of numerical traceability and data generation traceability arguably need to be applied more to social sciences and psychology (Uher 2022 ). The interdependence of the terms means any quantity is grounded in a quality of something, even if the inverse does not always apply (Uher 2022 ).

1.2 Practices

The present paper compares representations found in research methods textbooks with the reported practices of established researchers given in semi-structured interviews. The differences revealed between what the literature review of methods texts showed and what the interview study showed both underlines and extends this complexity, with implications for how such methodologies are approached and taught. The interview study data (analysed below) show that many participant researchers in disciplines commonly located within an ostensibly ‘positivist’ scientific tradition (e.g. chemistry) are, in fact, using qualitative methods as scientific procedures (contra Tashakkori et al 1998 ; Guba and Lincoln 1994 ; Howe 1988 ; Lincoln and Guba 1985 ; Teddlie and Tashakkori 2011 ; Creswell 1995 ; Morse 1991 ). These interview study data also show that many participant researchers use what they describe as qualitative approaches to provide initial measurements (geotechnics; chemistry) of phenomena before later using quantitative procedures to measure the quantity of a quality (cf. Uher 2022 ). Some participant researchers also say they use quantitative procedures to reveal data for which they subsequently use qualitative approaches to interpret and understand (biology; dendrology) through their creative imaginations or experience (contra e.g. Hammersley, 2013 ). Participant researchers in ostensibly ‘positivist’ areas describe themselves as doubting ‘facts’ measured by machines programmed by humans (thus showing they feel researchers are not outside the world looking in (contra. e.g. Punch 2005 )) or doubting the certainty of quantitative data over time (contra e.g. Punch 2005 ). Critically, the interview study data show that these participant researchers often engage in debate over what a ‘number’ is and the extent to which ‘numbers’ can be considered ‘quantitative’. For example the data show how a mathematician considers that many individuals do not know what they mean by the word ‘quantitative’, and an engineer interprets any numbers involving human judgements as ‘qualitative’. Further, both a chemist and a geotechnician routinely define and use ‘qualitative’ methods and analysis to arrive at numerical values (contra. Davies and Hughes 2014 ; Denzin and Lincoln 2011 ).

Such data refute many textbook and key source representations of quantitative and qualitative as being binary and separately ringfenced entities as shown in the literature review study below (contra e.g. Punch 2005 ; Goertz and Mahoney 2012 ). Nevertheless, they resonate with much recent and current literature in the field (e.g. Uher 2022 ; De Gregorio 2014 ). They also arguably extend the complexities of the terms and approaches. In some disciplines, these participant researchers only do a particular type of research and never need anything other than clear ‘quantitative’ definitions (Mathematics), and some only ever conduct research involving text and never numbers (Literature). Moreover, some participant researchers consider certain aspects lie outside the ‘qualitative’ or ‘quantitative’ (the theoretical in German Literature), or do research which they maintain does not contain ‘knowledge’ (Fine-Art Sculpture), while others outline how they feel they do foundational conceptual research which they believe comes at a stage before any quantity or quality can be assessed (Philosophy). Indeed, of the 31 participant researchers we spoke to, nine of them considered the terms ‘quantitative’ and ‘qualitative’ to be of little relevance for their subject.

1.3 Outline of the two studies

This paper reports and discusses findings from a constructivist grounded approach interview study that interviewed experienced participant researchers (N = 31) in various disciplines (see Table 1 below) about their understandings of ‘qualitative’ and ‘quantitative’ in their subject areas. Findings from this interview study were compared with findings from a research methods literature review study that revealed many disparities with received and often binary presentations of the concepts in much key literature that informs student research methods courses. In this section we outline the review criteria, the method of analysis, and our findings. The findings are grouped according to how the sources reviewed consider ‘quantitative’ and ‘qualitative’ approaches the aspects of positivism and constructivism; the nature of research questions; research methods; analysis; issues of reliability, validity and generalizability; and the value and worth of the different approaches. Following this. We outline the approach, method, and procedure adopted for the interviews with research participants; sampling and saturation; and analysis; beside details of the participant researchers. Subsequently, Theme 2 focuses on contrasts of the interview data with ‘binary’ textbook and key source representations. Theme 3 focuses on what the interview data show about participant researcher perceptions of the value of ‘quantitative’ and ‘qualitative’ methods and approaches. This section outlines where, how, and sometimes why, participant researchers considered ‘quantitative’ and ‘qualitative’ methods approaches to be (or to not be) useful to them. These interview study findings show a surprising range of understandings, usage, and often perceived irrelevance of the terms. In the Discussion section, these findings form the focus of comparison with the literature as well as a consideration of possible implications for approaching and teaching research methods. In the conclusion we summarise the implications for research methods courses, for researchers in different disciplines and interdisciplinary contexts and discuss limitations and suggest future research. Besides adding to the debate on how ‘quantitative’ and ‘qualitative’ are conceptualized and how they are related, the paper appeals to those delivering research methods courses and to novice researchers to consider the concepts as highly complex and overlapping, to loosen constraints, and elaborate nuances of the commonplace binary representations of the terms.

2 Literature review study: some key textbooks and sources for teaching Research Methods.

2.1 review criteria.

To identify how concepts are presented in key materials we undertook a literature review study by consulting research methods course reading lists, library search engines, physically available shelves in institutional libraries, and Google Scholar. We wanted to encompass textbooks and some key texts which are recommended to UG, PG Masters and PhD students., for example, ‘textbooks’ like ‘Doing Your Research Project: A Guide for first-time researchers’ (Bell and Waters 2014 ) and ‘Introduction to Research Methods: A Practical Guide for Anyone Undertaking a Research project (5th Edition)’ (Dawson 2019 ). Such sources were frequently mentioned on reading lists and are freely available in many institutional libraries. We consulted seminal thinkers who have published widely on research methods, such as Denzin and Lincoln, or Cresswell, but we also considered texts which are likely less known such as ‘A tale of two cultures’ (Goertz and Mahoney 2012 ) and key articles such as ‘Five misunderstandings about case-study research’ (Flyvbjerg 2006 ). Students can freely find such sources, and are easily directed to them by supervisors. Although a more comprehensively robust search is possible, we nevertheless followed procedures and standard criteria for literature reviews (Atkinson et al. 2015 ).

3 Method of analysis

We assembled a total of 25 sources to look for a number of key tenets. We examined the sources for occurrence of the following: whether quantitative was described as positivist and qualitative was described as constructivist; whether quantitative was said to be science-based and qualitative was more reflective and non-science based; whether the research questions were presented as predetermined in quantitative methods and initially less focused in qualitative methods; whether quantitative methods were structured and qualitative methods were discussed as less structured; whether quantitative analysis focused on cause-effect type relationships and qualitative analysis was more exploratory; whether reliability, validity and generalizability were achieved through large numbers in quantitative research and through in-depth study in qualitative research; whether for particular subjects such as the sciences quantitative approaches were perceived to be of value (and qualitative was implied to have less value) and whether the converse was the case for other subjects such as history and anthropology; and whether mixed methods were considered possible or not possible. The 25 sources are detailed in Appendix 1 . As a confirmatory but less detailed exercise, and also detailed in Appendix 1 , we checked a further 23 research methods textbooks in German, Spanish and French, authored in those languages (rather than translations from English).

3.1 Findings

Overall, related to what quantitative and qualitative approaches, methods and analysis are, we found many key, often binary representations in this literature review. We outline these here below.

3.2 Positivism and constructivism

Firstly, 20 of the sources we reviewed stated that quantitative is considered positivist, and qualitative constructivist (e.g. Tashakkori et al 1998 ; Guba and Lincoln 1994 ; Howe 1988 ; Lincoln and Guba 1985 ; Teddlie and Tashakkori 2011 ; Creswell 1995 ; Morse 1991 ). Even if not everyone doing quantitative research (e.g. in sociology) consider themselves positivists (Marsh 1979 ), it is generally held quantitative research is positivist. Here, 12 of the sources noted that quantitative is considered ‘scientific’, situating observers outside the world looking in, e.g. through gathering numerical data (Punch 2005 ; Davis and Hughes 2014 ) whereas qualitative “locates the observer in the world” (Denzin and Lincoln 2011 , p.3). Quantitative researchers “collect facts and study the relationship of one set of facts to another”, whereas qualitative researchers “doubt whether social ‘facts’ exist and question whether a ‘scientific’ approach can be used when dealing with human beings” (Bell and Waters 2014 , p. 9).

3.3 The nature of research questions

Secondly, regarding research questions, “qualitative research… typically has… questions and methods… more general at the start, and… more focused as the study progresses” (Punch 2005 , p.28). In contrast, quantitative research uses “numerical data and typically… structured and predetermined research questions, conceptual frameworks and designs” (Punch 2005 , p.28). Of the sources we reviewed, 16 made such assertions. This understanding relates to type, and nature, of data, which is in turn anchored to particular worldviews. Punch ( 2005 , p 3–4) writes of how “in teaching about research, I find it useful to approach the qualitative-quantitative distinction primarily through…. the nature of the data. Later, the distinction can be broadened to include …. ways of conceptualising the reality being studied, and methods.” Here, the nature of data influences approach: numbers are for quantitative, and not-numbers (commonly words) for qualitative. Similarly, for Miles et al. ( 2018 ) “the nature of qualitative data” is “primarily on data in the form of words, that is, language in the form of extended text” (Miles et al. 2018 , no page). These understandings in turn relate to methods used.

Commonly, specific types of methods are said to be related to the type of approach adopted, and 18 of the sources we reviewed presented quantitative methods as being structured, and qualitative methods as less structured. For example, Davies and Hughes ( 2014 , p.23) claim “there are two principal options open to you: 1… quantitative research methods, using the traditions of science. 2… qualitative research, employing a more reflective or exploratory approach.” Here, quantitative methods are “questionnaires or structured interviews” whereas qualitative methods are “such as interviews or focus groups” (Dawson 2019 , no page given). Quantitative methods are more scientific, involve controlling a set of variables, and may involve experiments, something which, “qualitative researchers are agreed in their opposition to this definition of scientific research, or at least its application to social inquiry” (Hammersley 2013 , p. ix). As Punch notes ( 2005 , p.208), “the experiment was seen as the basis for establishing cause-effect relationships between variables, and its outcome (and control) variables had to be measured.”

4.1 Analysis

Such understandings often relate to analysis, and 16 of the sources we reviewed presented quantitative analysis as being statistical and number related, and qualitative analysis as being text based. With quantitative methods, “the data is subjected to statistical analysis, using techniques… likely to produce quantified, and, if possible, generalizable conclusions” (Bell and Waters 2014 , p.281). With qualitative research, however, this “calls for advanced skills in data management and text-driven creativity during the analysis and write-up” (Davies and Hughes 2014 ). Again, the data’s nature is key, and whilst qualitative analysis may condense data, it does not seek numbers. Indeed, “by data condensation, we do not necessarily mean quantification”, however, “occasionally, it may be helpful to convert the data into magnitudes… but this is not always necessary” (Miles et al. 2018 , npg). Qualitative analysis may involve stages such as assigning codes, subsequently sorting and sifting them, isolating patterns, then gradually refining any assertions made and comparing them to other literature (Miles et al. 2018 ). This could involve condensing, displaying, then drawing conclusions from the data (Miles et al. 2018 ). In this respect, some sources consider qualitative and quantitative analysis broadly similar in overall goals, yet different because quantitative analyses use “well-defined, familiar methods; are guided by canons; and are usually more sequential than iterative or cyclical” (Miles et al. 2018 , npg). In contrast, “qualitative researchers are… more fluid and… humanistic” in meaning making (Miles et al. 2018 , npg). Here, both approaches seek causation and may attempt to reveal ‘cause and effect’ but qualitative approaches often seek multiple and interacting influences, and effects and are less rigid (Miles et al. 2018 ). In quantitative inquiry search for causation relates to “causal mechanisms (i.e. how did X cause Y)” whereas in “the human sciences, this distinction relates to causal effects (i.e. whether X causes Y)” (Teddlie and Tashakkori 2011 , p.286). Similarly, that “scientific research in any area… seeks to trace out cause-effect relationships” (Punch 2005 , p.78). In contrast, qualitative research seeks interpretative understandings of human behaviour, “not ‘caused’ in any mechanical way, but… continually constructed and reconstructed” (Punch 2005 , p.126).

4.2 Issues of reliability, validity and generalizability

Regarding reliability, validity and generalizability, 19 of the sources we reviewed presented ideas along the lines that quantitative research is understood to seek large numbers, so quantitative researchers, “use techniques… likely to produce quantified and, if possible, generalizable conclusions (Bell and Waters 2014 , p.9). This means quantitative “research researches many more people” (Dawson 2019 , npg). Given quantitative researchers aim, “to discover answers to questions through the application of scientific procedures” it is anticipated these procedures will “increase the likelihood that the information… will be reliable and unbiased” (Davies and Hughes 2014 , p.9). Conversely, qualitative researchers are considered “more concerned to understand individuals’ perceptions of the world” (Bell and Waters 2014 , p.281) and consequently aim for in-depth data with smaller numbers, “as it is attitudes, behaviour and experiences that are important” (Dawson 2019 , npg). Consequently, generalizability of data is not key, as qualitative research has its “emphasis on a specific case, a focused and bounded phenomenon embedded in its context” (Miles et al. 2018 , npg). Yet, such research is considered generalizable in theoretical insight if not actual data (Flyvbjerg 2006 ).

4.3 The value and worth of the different approaches

Regarding ‘value’ and ‘worth’, many see this related with appropriacy to the question being researched. Thus, if questions involve more quantitative approaches, then these are of value, and if more qualitative, then these are of value, and 6 of the sources we reviewed presented these views (e.g. Bell and Waters 2014 ; Punch 2005 ; Dawson 2019 ). This resonates with disciplinary orientations where choices between given approaches are valued more in specific disciplines. History and Anthropology are seen more qualitative, whereas Economics and Epidemiology may be more quantitative (Kumar 1996 ). Qualitative approaches are valuable to study human behaviour and reveal in-depth pictures of peoples’ lived experience (e.g. Denzin and Lincoln 2011 ; Miles et al. 2018 ). Many consider there to be no real inherent superiority for one approach over another, and “asking whether quantitative or qualitative research is superior to the other is not a useful question” (Goertz and Mahoney 2012 , p.2).

Nevertheless, some give higher pragmatic value to quantitative research for studying individuals and people; neoliberal governments consistently value quantitative over qualitative research (Barone 2007 ; Bloch 2004 ; St Pierre 2004 ). Concomitantly, data produced by qualitative research is criticised by quantitative proponents “because of their problematic generalizability” (Bloor and Wood 2006 , p.179). However, other studies find quantitative researchers see qualitative methods and approaches positively (Pilcher and Cortazzi 2016 ). Some even question the qualitative/quantitative divide, and suggest “a more subtle and realistic set of distinctions that capture variation in research practice better” (Hammersley 2013 , p.99).

The above literature review study of key texts is hardly exhaustive, but shows a general outline of the binary divisions and categorizations that exist in many sources students and newer researchers encounter. Thus, despite the complex and blurred picture as outlined in the introduction above, many key texts students consult and that inform research methods courses often present a binary understanding that quantitative is positivist, focused on determining cause and effect, numerical or magnitude focused, uses experiments, and is grounded in an understanding the world can be observed from the outside in. Conversely, qualitative tends to be constructivist, focused on determining why events occur, is word or textual based (even if these elements are measured by their magnitude in a number or numerical format) and grounded in understanding the researcher is part of the world. The sciences and areas such as economics are said to tend towards the quantitative, and areas such as history and anthropology towards the qualitative.

We also note that in our literature review study we focused on English language textbooks, but we also looked at outline details, descriptions, and contents lists of texts in the languages of German, Spanish and French. We find that these broadly confirm the perception of a division between quantitative and qualitative research, and we detail a number of these in Appendix 1 . These examples are all research methods handbooks and student guides intended for under and post-graduates in social sciences and humanities; many are inter-disciplinary but some are more specifically books devoted to psychology, health care, education, politics, and management. Among the textbooks and handbooks examined in other languages, more recent books pay attention to online research and uses of the internet, social media and sometimes to big data and software for data analysis.

In these sources in languages other than English we find massive predominance of two (quantitative/qualitative) or three approaches (mixed). These are invariably introduced and examined with related theories, examples and cases in exactly that order: quantitative; qualitative; mixed. Here there is perhaps the unexamined implication that this is a historical order of research method development and also of acceptability of use (depending on research purposes). Notably, Molina Marin (2020) is oriented to Latin America and makes the point that most European writing about research methods is in English or German, while there are far fewer publications in Spanish and few with Latin American contextual relevance, which may limit epistemological perspectives. This point is evident in French and Spanish publications (much less the case in German) where bibliographic details seem dominated by English language publications (or translations from them). We now turn to outline our interview study.

5 Interview study

5.1 approach and choice of method.

We approached our interview study from a constructivist standpoint of exploring and investigating different subject specialists’ understandings of quantitative and qualitative. Critically, we were guided by the key constructivist tenet that knowledge is not independent of subjects seeking it (Olssen 1996 ), nor of subjects using it. Extending from this we considered interviews more appropriate than narratives or focus groups. Given the exploratory nature of our study, we considered interviews most suited as we wanted to have a free dialogue (cf. Bakhtin 1981 ) regarding how the terms are understood in their subject contexts as opposed to their neutral dictionary definitions (Bakhtin 1986 ), and not to focus on a specific point with many individuals. Specifically, we used ‘semi’-structured interviews. ‘Semi’ can mean both ‘half in quantity or value’ but also ‘to some extent: partly: incompletely’ (e.g. Merriam Webster 2022 ). Our interviews, following our constructionist and exploratory approach, aligned with the latter definition (see Appendix 2 for the Interview study schedule). This loose ‘semi’ structure was deliberately designed to (and did) lead to interviews directed by the participants, who themselves often specifically asked what was meant by the questions. This created a highly technical dialogue (Buber, 1947) focused on the subject.

5.2 Sampling and saturation

Our sampling combined purposive and snowball sampling (Sharma 2017 ; Levitt et al. 2018 ). Initially, participants were purposively identified by subject given the project sought to understand different subject perspectives of ‘qualitative’ and ‘quantitative.’ Later, a combined purposive and snowball sampling technique was used whereby participants interviewed were asked if they knew others teaching particular subjects. Regarding priorities for participant eligibility, this was done according to subject, although generally participants also had extensive experience (see Table 1 ). For most, English was their first language, where it was not, participants were proficient in English. The language of interview choice was English as it was most familiar to both participants and interviewer (Cortazzi et al. 2011 ).

Regarding saturation, some argue saturation occurs within 12 interviews (Guest et al. 2006 ), others within 17 (Francis et al. 2010 ). Arguably, however, saturation cannot be determined in advance of analysis and is “inescapably situated and subjective” (Braun and Clarke 2021 , p.201). This critical role of subjectivity and context guided how we approached saturation, whereby it was “operationalized in a way consistent with the research question(s) and the theoretical position and analytic framework adopted” (Saunders et al. 2018 , p.1893). We recognise that more could always be found but are satisfied that 31 participants provided sufficient data for our investigation. Indeed, our original intention was to recruit 20 participants, feeling this would provide sufficient saturation (Francis et al. 2010 ; Guest et al. 2006 ) but when we reached 20, and as we had already started analysis (cf. Braun and Clarke 2021 ) as we ourselves transcribed the interviews (Bird 2005 ) we wanted to explore understandings of ‘qualitative’ and ‘quantitative’ with other subject fields. As Table 1 shows, ‘English Literature’, ‘Philosophy, and ‘Sculpture’ were only explored after interview 20. These additional subject fields added significantly (see below) to our data.

5.3 Analysis and participant researcher details

Our analysis followed Braun and Clarke’s ( 2006 ) thematic analysis. Given the study’s exploratory constructionist nature, we combined ‘top down’ deductive type analysis for anticipated themes, and ‘bottom up’ inductive type analysis for any unexpected themes. The latter was similar to a constructivist grounded theory analysis (Charmaz 2010 ) whereby the transcripts were explored through close repeated reading for themes to emerge from the bottom up. We deliberately did not use any CAQDAS software such as NVivo as we wanted to manually read the scripts in one lengthy word document. We recognise that such software could allow us to do this but we were familiar with the approach we used and have found it effective for a number of years. We thus continued to use it here as well. We counted instances of themes through cross-checking after reading transcripts and discussing them, thereby heightening reliability and validity (Golafshani 2003 ). All interviews were undertaken with informed consent and participants were assured all representation was anonymous (Christians 2011 ). The study was approved by relevant ethics committees. Table 1 above shows the subject area, years of experience, and first language of the participant researchers. We also bracket after each subject area whether we consider it to be ‘Science’ or ‘Arts’ or whether we consider them as ‘Arts/Science’ or ‘Science/Arts’. This is of course subjective and in many ways not possible to do, but we were guided in how we categorised these subjects by doing so according to how we feel the methodology sources form the literature review study would categorize them.

5.4 Presentation of the interview study data compared with data from the literature review study

We present our interview study data in the three broad areas that emerged through analysis. Our approach to thematic analysis was to deductively code the interview transcripts manually under the three broad areas of: where data aligns with textbook and key source ‘binary’ representations; where the data contrasts with such representations; and where the data relates to interviewee perceptions of the value of ‘qualitative’ and ‘quantitative’. The latter relates to whether participant researchers expressed views that suggested they considered each approach to be useful, valuable, or not. We also read through the transcripts inductively with a view to being open to emerging and unanticipated themes. For each data citation, we note the subject field to show the range of subject areas. We later discuss these data in terms of their implications for research values, assumptions and practices and for their use when teaching about different methods. We provide illustrative citations and numbers of participant researchers who commented in relation to the key points below, but first provide an overview in Table 2 .

5.4.1 Theme 1: Alignments with ‘binary’ textbook and key source representations

The data often aligned with textbook representations. Seven participant researchers explicitly said, or alluded to the representation that ‘quantitative’ is positivist and seeks objectivity whereas ‘qualitative’ is more constructivist and subjective. For example: “the main distinction… is that qualitative is associated with subjectivity and quantitative being objective.” This was because “traditionally quantitative methods they’ve been associated with the positivist scientific model of research whereas qualitative methods are rooted in the constructivist and interpretivist model” (Psychology). Similarly, “quantitative methods… I see that as more… logical to a scientific mode of generating knowledge so… largely depends on numbers to establish causal relations… qualitative, I want to more broadly summarize that as anything other than numbers” (Communication Studies). One Statistics researcher had “always associated quantitative research more with statistics and numbers… you measure something… I think qualitative… you make a statement… without saying to what extent so… so you run fast but it’s not clear how fast you actually run…. that doesn’t tell you much because it doesn’t tell you how fast.” One mathematics participant researcher said mathematics was “ super quantitative… more beyond quantitative in the sense that not only is there a measurement of size in everything but everything is defined in… really careful terms… in how that quantity kind of interacts with other quantities that are defined so in that sense it’s kind of beyond quantitative.” Further, this applied at pre-data and data integration stages. Conversely, ‘qualitative’ “would be more a kind of verbalistic form of reasoning or… logic.”

Another representation four participant researchers noted was that ‘quantitative ‘ has structured predetermined questions whereas ‘qualitative’ has initially general questions that became more focused as research proceeded. For example, in Tourism, “with qualitative research I would go with open ended questions whereas with quantitative research I would go with closed questions.” This was because ‘qualitative’ was more exploratory: “quantitative methods… I would use when the parameters… are well understood, qualitative research is when I’m dealing with topics where I’m not entirely sure about… the answers.” As one Psychology participant researcher commented: “the main assumption in quantitative… is one single answer… whereas qualitative approaches embrace… multiplicity.”

Nineteen participant researchers considered ‘quantitative’ numbers whereas ‘qualitative’ was anything except numbers. For example, “quantitative research… you’re generating numbers and the analysis is involving numbers… qualitative is… usually… text-based looking for something else… not condensing it down to numbers” (Psychology). Similarly, ‘quantitative’ was “largely… numeric… the arrangement of larger scale patterns” whereas, “in design field, the idea of qualitative…is about the measure… people put against something… not [a] numerical measure” (Design). One participant researcher elaborated about Biology and Ecology, noting that “quantitative it’s a number it’s an amount of something… associated with a numerical dimension… whereas… qualitative data and… observations… in biology…. you’re looking at electron micrographs… you may want to describe those things… purely in… QUALitative terms… and you can do the same in… Ecology” (Human Computer Interaction). One participant researcher also commented on the magnitude of ‘quantitative’ data often involving more than numbers, or having a complex involvement with numbers: “I was thinking… quantitative… just involves numbers…. but it’s not… if… NVivo… counts the occurrence of a word… it’s done in a very structured way…. to the point that you can even… then do statistical analysis” (Logistics).

Regarding mixed methods, data aligned with the textbook representations that there are two distinct ‘camps’ but also that these could be crossed. Six participants felt opposing camps and paradigms existed. For example, in Nursing, that “it does feel quite divided in Nursing I think you’re either a qualitative or a quantitative researcher there’s two different schools… yeah some people in our school would be very anti-qualitative.” Similarly, in Music one participant researcher felt “it is very split and you’ll find… some people position themselves in one or the other of those camps and are reluctant to consider the other side. In Psychology, “yes… they’re quite… territorial and passionately defensive about the rightness of their own approaches so there’s this… narrative that these two paradigms… of positivistic and interpretivist type… cannot be crossed… you need to belong to one camp.” Also, in Communication Studies, “I do think they are kind of mutually exclusive although I accept… they can be combined… but I don’t think they, they fundamentally… speak to each other.” One Linguistics participant researcher felt some Linguists were highly qualitative and never used numbers, but “then you have… the corpus analysts who quantify everything and always under the headline ‘Corpus linguistics finally gets to the point… where we get rid of researcher bias; it objectifies the analysis’ because you have big numbers and you have statistical values and therefore… it’s led by the data not by the researcher.” This participant researcher found such striving for objectivity a “very strange thing” as any choice was based on previously argued ideas, which themselves could not be objective: “because all the decisions that you need to put into which software am I using, which algorithm am I using, which text do I put in…. this is all driven by ideas.”

Nevertheless, three participant researchers felt the approaches not diametrically opposed. For example, the same Psychology participant researcher cited immediately above felt people’s views could change: “some people although highly defensive over time… may soften their view as mixed method approaches become more prominent.” Comparatively flexibly, a Historian commented “I don’t feel very concerned by the division between qualitative and quantitative; I think they’re just two that are separate sometimes complementary approaches to study history.” In Translation and Interpreting, one participant researcher said methods could be quantitative, but have qualitative analysis, saying one project had: “an excellent use of quantitative tools… followed by not a qualitative method but qualitative analysis of what that implied.” Thus, much of the data did align with the binary representations of the key textbooks reviewed above and also the representation that approaches could be combined.

5.4.2 Theme 2: Contrasts with ‘binary’ textbook and key source representations

One recurrent contrast with common textbook representations was where both qualitative and quantitative were used in some sciences; nine participant researchers felt this. For example, in Geotechnics, when ascertaining soil behaviour: “the first check, the Qualitative check is to look whether those [the traditional and new paths of soil direction] bear resemblance, [be] coz if that doesn’t have that shape how can I expect there to be a quantitative comparison or… fit.” Both qualitative and quantitative approaches combined helped “rule out coincidence” and using both represented “a check which moves through qualitative… to quantitative.” Quantitative was a “capital Q for want of a better expression” and consisted of ‘bigger numbers’, which constituted “the quantitative or calculated strength.” However, this ‘capital Q’ quantitative data aimed to quantify a qualitatively measured numerically estimated phenomenon. So both were numerical. Nevertheless, over the long-term, even the quantitative became less certain because: “when you introduce that time element… you create… circumstances in which you need to be careful with the way you define the strength… different people have come up with different values… so the quantitative match has to be done with an element of uncertainty.”

Similarly, in Chemistry, both qualitative and quantitative methods and analysis were used, where “ the qualitative is the first one, and after you have the other ones [I—Right to kind of verify] if… if you need that.” Both were used because, “we need to know what is there and how much of each component is there… and a knowledge of what is there is a qualitative one, how much of each one is a quantitative one.” Moreover, “they are analysed sometimes by the same technique ” which could be quantitative or qualitative: “[I—and chromatography, again… would that be qualitative or quantitative or both?] Both, both… the quantitative is the area of the peak, the qualitative is the position in which this characteristic appears.” Here, both were key, and depending on the research goal: “we… use them according to what we need… sometimes it’s enough to detect [qualitative] … other times you need to know how much [quantitative] ”.

For Biology also, both were key: “quantitative is the facts and… qualitative is the theory you’re trying to make fit to the facts you can’t do it the other way around… the quantitative data… just doesn’t tell you anything without the qualitative imagination of what does it mean?” Inversely, in an area commonly understood as quantitative, Statistics, the qualitative was an initial, hypothetical stage requiring later quantitative testing. For example: “very often the hypothesis is a qualitative hypothesis” and then, “you would test it by putting in all sorts of data and then the test result would give you a p-value… and the p-value of course is quantitative because that’s a number.”

In Engineering, both helped research sound frequencies: “we need to measure the spectrum of the different frequencies… created… all those things were quantifiable, but then we need to get participants to listen and tell us… which one do you prefer?… this is a qualitative answer.” Mathematical Biology also used both: qualitative for change in nature of a state, and quantitative for the magnitude of that change. Here: “quantitative changes the numerical value of the steady state but it doesn’t change its stability… but qualitative change is when you… change the parameters and you either change its stability or you change whether it exists or not… and that point over which you cross to change it from being stable to unstable is called a bifurcation point… that’s where I use quantitative and qualitative the most in my research.”

The idea of ‘quantitative’ involving large data sets was expressed; however, the ‘qualitative’ could help represent these. In Computing Mathematics one participant researcher commented that: “quantitative… I do almost 90% of the time…. calculating metrics… and using significance testing to determine whether the numbers mean anything.” Yet, this participant researcher also used qualitative representations for simplified visual representation of large number sets: “I think for me QUALitative work is almost always about visualizing things in a way that tries to illustrate the trends… so I’m not actually calculating numbers but I’m just saying if I somehow present it in in this way.” Concomitantly, ‘quantitative’ could be smaller scale. For example, in Architecture: “my expectation is it wouldn’t be valid until you have a certain quantity of response but that said [I] have had students use… quantitative analysis on a small sample.” Similarly, in History: “you could have a quantitative study of a small data set or a small… number of statistics I really think it’s determined by the questions… you’re asking.”

Interestingly, two participant researchers questioned their colleagues’ understandings of ‘quantitative’ and of ‘numbers’. For example, one Mathematician considered some researchers did not know what ‘quantitative’ meant, because “when they say quantitative… I think what they mean is the same as qualitative except it’s got numbers in it somewhere.” For example, “I’m talking to a guy who does research in pain and, so I do know now what he means by quantitative research, and what he means is that he doesn’t know what he means [both laugh] and he wants me to define what it means… I think he means he wants some form of modelling with data and… he’s not quite sure how to go about doing that.” For this Mathematician, engineers would, “Mean that purposefully when they talk about quantitative modelling” whereas, “generically you know when politicians [consider these things] quantitative just means there’s a number in it somewhere.”

Three participant researchers felt that when ‘quantitative’ involved human elements or decisions, subjectivity was inevitable. One Logistics participant researcher felt someone doing materials research was “Doing these highly quantitative analyses still there is a degree of subjectivity because… this involves human assessment… they’re using different photometric equipment… taking photos… what is the angle.” Another researcher in Sciences similarly noted, “I don’t know why people believe in machines so much because they’re built by humans and there’s so many errors.” An Engineer commented: “To me, just the involvement of humans… gives it a qualitative element no matter what.” For this researcher, with people’s ‘quantitative’ reaction times and memory recall, “I would call that again qualitative you know… yes we did quantify the reaction time… the correct number of answers, but… it’s a person… I could get somebody else now doing it and not get exactly the same answer, so that uncertainty of human participants to me make it a qualitative approach.” For this participant researcher, anything involving human participants was ‘qualitative’: “I would say anything that is measurable, but by measurable I mean physically measurable… or predictable through numbers is quantitative [and] anything that involves a judgment, therefore human participants… is qualitative.”

‘Qualitative’ was often highly subject-specific. For example, in Film Studies and Media—English, ‘qualitative’ was: “about… the qualities of particular texts…. I’ve read a lot about silence as a texture and a technique in cinema… so silence is a quality, and also what are the qualities of that silence.” One Sciences researcher felt ‘qualitative’ involved experience applied to interpreting data: “Qualitative I would define as using your own experience to see if the data makes sense… and… something that… cannot be measured so far by machine… like the shape of a tree.” One Historian also highlighted the importance of subject-sub-branches, saying, “I’d situate myself in history but I guess you’d probably get a different response depending on… whether that historian saw themselves as a cultural historian or as a social and economic historian or… an intellectual historian.”

A fluidity regarding ‘quantitative’ and ‘qualitative’ was characterized. One Human Computer Interaction participant researcher commented, “I think sometimes people can use both terms quite loosely without really sort of thinking about [them] .” Comparatively, one Psychology participant researcher commented that “even within the Qual[itative] people they disagree about how to do things [laughs] … so you have people talking about doing IPA [Interpretative Phenomenological Analysis] and they’re doing… and presenting it in completely different ways.” Another Psychologist felt using ‘quantitative’ and ‘qualitative’ as an ‘either/or’ binary division erroneously suggested all questions were answerable, whereas: “no method… can… answer this question… and this is something… many people I don’t think are getting is that those different methodologies come with huge limitations… and as a researcher you need… to appreciate… how far your work can go.” One Communication Studies participant researcher even perceived the terms were becoming less used in all disciplines, and that, “we’re certainly in a phase where even these labels now are becoming so arbitrary almost… that they’re not, not carrying a lot of meaning.” However, the terms were considered very context dependent: “I think I’d be very hesitant about… pigeonholing any particular method I’d want to look very closely at the specific context in which that particular method or methodology is being used.” Further, some concepts were considered challenging to align with textbook representations. One German Literature participant researcher, reflecting on how the ‘theoretical’ worked, concluded, “… the theoretical… I’m not sure whether… that is actually within the terms quantitative or qualitative or whether that’s a term… on a different level altogether .” Indeed, many participant researchers (nine in total across many subject areas e.g. Design, Film and Media, Philosophy, Mathematical Biology) confirmed they were fully aware of the commonplace representations, but felt they did not apply to their own research, only using them to communicate with particular audiences (see below).

5.4.3 Theme 3: Perceptions on the value of ‘Quantitative’ and ‘Qualitative’ methods and approaches

As the data above show, many participant researchers valued both ‘quantitative’ and ‘qualitative’, including many scientists (in Geotechnics; Biology, Chemistry, Engineering). Many considered the specific research question key. For example: “I certainly don’t think quantitative bad, qualitative good: it’s horses for courses, yeah” (Tourism). Participant researchers in History and Music Education felt similarly; the latter commenting how “I do feel it’s about using the right tools which is why I wouldn’t want to… enter into this kind of vitriolic negative mud-slinging thing that does happen within the fields because I think people… get too entrenched in one or the other and forget about the fact that these are just various ways to approach inquiry.” Similarly, one Psychologist observed, “I’m always slightly irritated [laughs] when I hear people you know say ‘Oh I’m only doing… qualitative research’ or ‘I’m only doing quantitative research’… I think it’s the research question that should drive the methodological choices.” This participant researcher had “seen good quality in both quantitative and qualitative research.”

Five participant researchers considered quantitative approaches to be of little value if they were applied inappropriately. For example, a Translation and Interpreting participant researcher felt quantitative data-generating eye tracking technology was useful “for marketing,… product placement,… [or] surgeons.” However, for Translation and Interpreting, “I don’t think… it is a method that would yield results… you could find better in a more nuanced manner through other methods, interviews or focus groups, or even ethnographic observation.” One Chemist questioned the value of quantitative methods when the sample was too small. For example, when students were asked about their feedback on classes, and one student in 16 evaluated the classes badly, “4% it was one person [laughs] in 16, one person, but I received that evaluation and I think this is not correct… because sometimes…. I think that one person probably he or she didn’t like me… well, it’s life, so I think these aspects… may happen also but it’s with the precision of the system… the capacity of the system to detect and to measure.” Meaningfulness was held to be key: “When we do the analysis the sample has meaning” . Similarly, a Theoretical Physicist felt quantitative approaches unsuited to education: “in the context of education… we all produce data all the time… we grade students… we assess creativity… people will say… ‘you measure somebody's IQ using this made-up test and you get this kind of statis[tic]..’ and then you realize that all of those things are just bogus… or at least… doesn't measure anything of any real serious significance.” Comparatively, one participant researcher in Design felt ‘quantitative’ had a danger to “lead to stereotypes”; for example, when modern search engines use quantitative data to direct people to particular choices, “There’s potential there to constrain kind of broader behaviours and thinking… and therefore it can become a programmer in its own right.” One Mathematical Biologist commented how statistics can be misused, and how a popular Maths book related “How statistics are a light shone on a particular story from a particular angle to paint a picture that people want you to see but… it’s almost never the whole picture, it’s a half-truth, if you like, at best.”

Seven participant researchers considered that their disciplines valued quantitative over qualitative. This could be non-judgmental, and perhaps inherent in major areas of a discipline, as in Theoretical Physics, where precision is crucial, although this was said not to be ‘disparaging’: “theoretical physics… or physics in general… we… tend to think of ourselves as being very, very quantitative and very precise, and we think of qualitative, I guess… as being a bit vague, right?… which is not disparaging, because sometimes… we have to be a bit vague… and we're working things out.” In Psychology, however, despite “a call to advocate for more qualitative methods”, there, “definitely… is a bias toward quantitative… measures in psychology; all the high impact factor journals advocate for quantitative measures.” In Nursing, quantitative was also deemed paramount, with “the randomized control trial seen as being… you know the apex and… some researchers in our school would absolutely say it’s the only reliable thing… would be very anti-qualitative.”

Yet, four participant researchers were positively oriented towards anything qualitative. For example, one Tourism researcher felt that, “in an uncertain world, such as the one we’re living in today, qualitative research is the way forward.” Also, an Architect highlighted that in one of their studies, “I think the most important finding of my questionnaires was in the subjective comments.” One Music education participant researcher personally favoured qualitative approaches but regretted how their field was biased toward quantitative data, saying they had been informed: “ ‘what journals really care about is that p-value…’ and I remember… thinking… that’s a whole area of humanity… you’re failing to acknowledge.”

Nevertheless, side-stepping this debate, nine researchers considered the terms of little value, and simply irrelevant for their own research. One Film and Media—English participant researcher commented: “I have to say… these are terms I’m obviously familiar with, but… not terms… I… tend to really use in my own research… to describe what I do … mainly because everything that I do is qualitative.” As an English Literature participant researcher noted in email correspondence: “they are not terms we use in literary research, probably because most of what we do is interpretation of texts and substantiating arguments through examples. I have really only encountered these terms in the context of teaching and have never used them myself.” In the interview, this participant researcher commented that “I can imagine… they would be terms… quite common in the sciences and mathematics, but not Social Sciences and Arts.” A German Literature participant researcher felt similarly, commenting that in “German Literature… the term quantitative hadn’t even entered my vocabulary all the way through the PhD [laughs] … because… you could argue the methods in literary research are always qualitative.”

Complementing such perspectives, in Theoretical Physics ‘qualitative’ and ‘quantitative’ was: “not something that ever comes up… I don’t think I read a paper ever that will say we do qualitative research in any way, but I never… or hardly ever handle any data… I just have a bunch of principles that are sort of either taken to be true or are… a model… we’re exploring.” In Mathematics, ‘quantitative’ was simply never used as all mathematics research was quantitative: “I never use the word in the company of my colleagues, never, it’s a non-vocabulary word, for the simple reason that when everything is so well defined why do you need a generic term when you’ve got very specific reference points in the language that you’re using?”.

One Philosopher felt the terms did not fit conceptual analysis in philosophy, given that the object of consideration was uncertain: “I guess… I thought it didn’t fit conceptual analysis… you need to know what you’re dealing with in order to then do the quantitative or qualitative whereas in philosophy it feels like… you don’t quite know what you’re dealing with you’re trying to work out… what are rights?… What is knowledge? What is love?… and then look at its qualities.” For this researcher, Philosophy was tentatively pre-quantitative or pre-qualitative, because philosophy “feels like it’s before then.” The terms were not considered valuable for Philosophy or for the humanities generally: “in philosophy we wouldn’t use the term qualitative or quantitative research… you just use the tools… you need… to develop your argument and so you don’t see the distinction… I would say in the humanities that’s relatively similar.” Further, a Fine Art—Sculpture participant researcher said: “they’re not words I would use… partly because… I’m engaged with… through… research and… teaching… what I’d call practice research… and… my background’s in fine art, predominantly in making sculpture and that doesn’t contain knowledge.” Here, the participant researcher related how they may consider a student’s work hideous but if the student had learned a lot through creating the work, they should be rewarded. This participant researcher spoke of a famous sound artist, concluding, “if you asked him about qualitative and quantitative… it just wouldn’t come into his thing at all…. He doesn’t need to say well there were a thousand visitors plus you know it’s just ‘bang’… he wouldn’t think about those things… not as an artist.”

Six participant researchers said they only ever used the terms for particular audiences. For example, for ‘quantitative’ in Film and Media: “the only time is when it’s been related to public engagement that we’ve ever sort of produced anything that is more along quantitative lines,” and that “it was not complex data we were giving them.” In Fine-Art Sculpture, too, the terms were solely used with a funder, for example, to measure attendance at an exhibition for impact, but “that’s not the type of research that I’m involved with necessarily.” One Logistics participant researcher commented that “it really depends on the audience how you define qualitative or quantitative.” For this researcher, if communicating with “statisticians econometricians or a bunch of people who are number crunchers” then “they will be very precise on what quantitative is and what qualitative is” and would only recognise mathematical techniques as quantitative. Indeed, “they wouldn’t even recognize Excel as quantitative because it’s not that hard.” In contrast, for social scientists, Excel would be quantitative, as would “anything to do with numbers… I suppose you know a questionnaire where you have to analyse responses would be probably classed as quantitative.”

Conversely, a Mathematical Biology participant researcher commented they had been doing far more public outreach work, “using quantitative data so numbers… even with things that might often be treated in a qualitative way… so stuff which… is often treated I think qualitatively we try to quantify… I think partly because it’s easier to make those comparisons when you quantify something.” One researcher in Communication Studies said they advised a student that “it depends on your research objectives; if you are focusing on individual experiences… I think naturally that’s going towards qualitative, but if you’re … doing this research oriented to a leader of … [a] big number of people… for informing policy… then you need some sort of insights that can be standardized… so it’s a choice.”

Another Communication participant researcher felt political shifts in the 1990s and 2000s meant that a ‘third way’ now dominated with a move towards hybridity and a breakdown in ‘qualitative’ and ‘quantitative’ with everything now tied to neoliberalism. Therefore, since “the late 90s and early noughties I’ve seen this kind of hybridity in research methods almost as being in parallel with the third way there seems to be… no longer opposition between left and right everything… just happens to buy into neoliberalism so likewise… with research methods… there’s a breakdown of qual and quant.” Comparatively, a Historian felt underpinning power structures informed approaches, commenting that “the problem is not the terminology it’s the way in which power is working in the society in which we live in that’s the root problem it seems to me and what’s valued and what’s not.” A Philosopher felt numbers appealed to management even when qualitative data were more suitable: “I think management partly… are always more willing to listen to numbers… finding the right number can persuade people of things that actually… you think really a better persuasion would do something more qualitative and in context.” One Fine Art participant researcher felt ‘quantitative’ and ‘qualitative’ only became important when they focused on processes related to the Research Excellence Framework but not for their research as such: “I guess we are using qualitative and quantitative things in the sense of moving ourselves through the process as academics but that’s not what I’d call research.”

6 Discussion: implications for teaching research methods

Research Methods teaching for undergraduate, postgraduate and newer researchers is commonly guided by textbook and seminal text understandings of what constitutes ‘qualitative’ and ‘quantitative’. Often, the two are treated in parallel, or interlinked, and used in combination or sequentially in research. But the relations between these are complex. The above analysis of the interview study with established participant researchers underlines and often extends this complexity, with implications for how such methodologies are approached and taught. Many of these participant researchers in disciplines commonly located within an ostensibly ‘positivist’ scientific tradition are, in fact, using qualitative methods as scientific procedures. They do so to provide initial measurements of phenomena before later using quantitative procedures to measure the quantity of a quality. They also use quantitative procedures to reveal data for which they subsequently use qualitative approaches to interpret and understand through their creative imaginations or experience. Participant researchers in ostensibly positivist disciplines describe themselves as doubting ‘facts’ measured by machines programmed by humans or doubting the certainty of quantitative data over time. Critically, these participant researchers engage in debate over what a ‘number’ is and the extent to which ‘numbers’ can be considered ‘quantitative’. One mathematician spoke of how many individuals do not know what they mean by the word ‘quantitative’, and an engineer interpreted any numbers involving human judgements as ‘qualitative’. Both a chemist and a geotechnician routinely defined and use ‘qualitative’ methods and analysis to arrive at numerical values.

Although this analysis of participant researchers’ reported practices refutes many textbook and key research methods source representations of quantitative and qualitative as being binary and separately ringfenced entities (contra e.g. Punch 2005 ; Goertz and Mahoney 2012 ), they resonate with much recent and current literature in the field (e.g. Uher 2022 ; De Gregorio 2014 ). In some disciplines, participant researchers only do a particular type of research and never need anything other than clear ‘quantitative’ definitions (Mathematics); others only ever conduct research involving text and never numbers (Literature). Further, other participant researchers considered how certain aspects lie outside the ‘qualitative’ or ‘quantitative’ (the ‘theoretical’ in German Literature), or they did research which they maintain does not contain ‘knowledge’ (Fine-Art Sculpture), while others do foundational ‘conceptual’ research which they claim comes at a stage before any quantity or quality can be assessed (Philosophy). Nine researchers considered the terms of little relevance at all to their subject areas.

This leads to subsequent questions. Firstly, do the apparently emerging tensions and contradictions between commonplace textbook and key source presentations and on-the-ground participant researcher practices matter? Secondly, what kind of discourse might reframe the more conventional one?

Regarding whether tensions and contradictions matter: in one practical way, perhaps not, since participant researchers in all these areas continue to be productive in their current research practices. Nevertheless, the foundations of the binary quantitative and qualitative divide are discourse expressions common to research methods courses. These expressions frame how the two terms are understood as the guide for novices to do research. This guiding discourse is evident in specifically designated chapters in research handbooks, in session titles in university research methods modules, and in entries for explanations of research terms within glossaries. The literature review study detailed above illustrates this. ‘Quantitative’ means numbers, ‘qualitative’ means words. ‘Quantitative’ connotes positivist, objective, scientific; ‘qualitative’ implies constructivist, subjective, non-science-based. Arguably, any acceptance of the commonplace research method understanding gives an apparent solidity which can sometimes be a false basis that masks the complexities or inadequacies involved. Such masking can, in turn, allow certain agencies or individuals to claim their policies and practices are based on ‘objective’ numerical data when they are merely framing something as ‘quantitative’ when, as a cited Mathematician participant researcher observed above, it is simply something with a number in it somewhere. Conventionally, limitations are mentioned in research studies, but often they seem ritualized remarks which refer to insufficient numbers, or restricted types of participants, or a constrained focus on a particular area. Rarely do research studies (let alone handbooks and guides for postgraduates) question a taken-for-granted understanding, such as whether the very idea of using numbers with human participants may mean the number is not objective. Ironically, it is the field of Qualitative Inquiry itself in which occasionally some of these issues are mentioned. Concurrently, while the quantitative is promoted as ‘scientific’ and ‘objective evidence’, we find some scientists researching in sciences often question the terms, or consciously set them aside in their practices.

Concerning what could replace the commonplace terms and reframe the research discourse environment: arguably, any discussion of ‘quantitative’/‘qualitative’ should be preceded by key questions of how they are understood by researchers. Hammersley ( 2013 ) has suggested the value of a more nuanced approach. As the Communication Studies participant researcher here commented, the two terms seem to be breaking down somewhat. Nevertheless, alongside the data and arguments here, we see some value in considering things as being ‘quantitative’ or ‘qualitative’, and other value in viewing them as separate. The terms can still be simply outlined, not just as methodological listings of characteristics, but as a critical point, Outlines of methods should include insider practitioner views—illustrations of how they are used and understood by practising researchers in different disciplines (as in Table 2 above). This simple suggestion has benefits. When outlining approaches as qualitative or quantitative, we suggest space is devoted to how this is understood in disciplines, together with the opportunity to question the issues raised by these understandings. This would help to position the understandings of qualitative and quantitative within specific disciplinary contexts, especially in inter-disciplinary fields and, implicitly, it encourages reflection on the objectivity and subjectivity evoked by the terms. Such discussion can be included in research methods texts and in research methods courses, dissertations and frameworks for viva examinations (Cortazzi and Jin 2021 ). Here, rather than start with outlining what the terms mean by using concrete definitions such as ‘Quantitative means X’ the terms should be outlined using subject contextualised phrases such as ‘In the field of X quantitative is understood to mean Y’. In this way, quantitative and qualitative methods and approaches can be seen, understood and contextualised within their subject areas, rather than prescriptively outlined in a generic or common form. Furthermore, if the field is one that has no use for such terms, this can also be stated, to prevent any unnecessary need for their use. Discourse around the terms can be extended if they are seen in line with much current literature and the data above that shows their complexities and overlaps, and goes beyond the binary choices and representations of many textbooks.

7 Conclusion

This paper has presented and discussed data from an interview study with experienced participant researchers (n = 31) regarding their perceptions of ‘qualitative’ and ‘quantitative’ in their research areas. This interview study data was compared with findings from a literature review study of common textbooks and research methods publications (n = 25) that showed often binary and reified representations of the terms and related concepts. The interview study data show many participant researcher understandings do in some ways align with the binary and commonplace representations of ‘qualitative ‘and ‘quantitative’ as shown to be presented in many research methods textbooks and sources from the literature review study. However, the interview study data more often illustrate how such representations are somewhat inaccurate regarding how research is undertaken in the different areas researched by the participant researchers. Rather, they corroborate much of the current literature that shows the blurring and complexity of the terms. Often, they extend this complexity. Sometimes they bypass complexity when these terms are considered irrelevant to their research fields by many researcher participants. For some researchers, the terms are simply valueless. We propose that future research methods courses could present and discuss the data above, perhaps using something akin to Table 2 as a starting point, so that students and novice researchers are able to loosen or break free of the chains of any stereotypical representations of such terms or use them reflectively with awareness of disciplinary specific usage. This could help them to advance their research, recognizing complex caveats related to the boundaries of what they do, what methods they use, and how to conduct research using both quantitative and qualitative approaches, as interpreted and used in their own fields. In multi- or inter-disciplinary research, such reflective awareness seems essential. Future research could also study the impact of the use of the data here in research methods courses so that such courses encompass both qualitative and quantitative methods (cf. Onwuegbuzie and Leech 2005 ) yet also question and contextualise such terms in specific subject areas order to free research from any constraints created by binary representations of the terms.

Whilst we interviewed 31 participant researchers to approach what seems a reasonable level of saturation, clearly future research could add to what we have found here by speaking to a wider range and larger number of researchers. The 25 research methods sources in English (supplemented by 23 sources in German, Spanish and French) examined here can clearly be expanded for a wider analysis of ‘quantitative’ and ‘qualitative’ in other languages for a more comprehensive European perspective. This strategy might ascertain likely asymmetries between the numerous English language texts (and their translations) and relatively smaller numbers of texts written by national or local experts in other languages. As a world-wide consideration, given the relative paucity of published research guidance in many languages, this point is especially significant related to fitting research methods to local contexts and cultures without imposition. Translating and discussing the terms ‘qualitative’ and ‘quantitative’, in and beyond European languages, will need care to avoid binary stereotyped or formulaic expression and to maintain some of the insight, resonances and complexities shown here.

Aspers, P., Corte, U.: What is qualitative in qualitative research. Qual. Sociol. 42 (2), 139–160 (2019)

Article   Google Scholar  

Atkinson, K.M., Koenka, A.C., Sanchez, C.E., Moshontz, H., Cooper, H.: Reporting standards for literature searches and report inclusion criteria: making research syntheses more transparent and easy to replicate. Res. Synth. Methods 6 (1), 87–95 (2015)

Autran, D., Bassel, G.W., Chae, E., Ezer, D., Ferjani, A., Fleck, C., Wolf, S.: What is quantitative plant biology? Quant. Plant Biol. (2021). https://doi.org/10.1017/qpb.2021.8

Bakhtin, M.: The dialogic imagination. University of Texas Press, Austin (1981)

Google Scholar  

Bakhtin, M. M. Speech genres and other late essays. In: Trans. Vern W. McGee; Ed. Caryl Emerson and Michael Holquist. University of Texas Press, Austin, (1986)

Barone, T.: A return to the gold standard? Questioning the future of narrative construction as educational research. Qual. Inq. 13 (4), 454–470 (2007)

Bell, J., Waters, S.: Doing your research project: a guide for first-time researchers (6 th edit.). McGraw-Hill Education, London, (2014)

Bird, C.M.: How I stopped dreading and learned to love transcription. Qual. Inq. 11 (2), 226–248 (2005)

Bloch, M.: A discourse that disciplines, governs, and regulates: The national research c report on scientific research in education. Qual. Inq. 10 (1), 96–110 (2004)

Bloor, M., Wood, F.: Keywords in qualitative methods: A vocabulary of research concepts. Sage, London (2006)

Book   Google Scholar  

Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol. 3 (2), 77–101 (2006). https://doi.org/10.1191/1478088706qp063oa

Braun, V., Clarke, V.: To saturate or not to saturate? Questioning data saturation as a useful concept for thematic analysis and sample-size rationales. Qualit. Res. Sport Exer. Health 13 (2), 201–216 (2021)

Cambridge: Cambridge Dictionary. English Dictionary. Available at: https://dictionary.cambridge.org/dictionary/english/ Last Accessed January 2023. (2022)

Chan, E.S., Okumus, F., Chan, W.: What hinders hotels’ adoption of environmental technologies: a quantitative study. Int. J. Hosp. Manag. 84 , 102324 (2020)

Charmaz, K.: Grounded theory. Objectivist and constructivist methods. In W. Luttrell (Ed.), Qualitative educational research: Readings in reflexive methodology and transformative practice (pp. 183–207). Routledge, New York. (2010)

Christians, C.G.: Ethics and politics in qualitative research. In: Denzin, N.K., Lincoln, Y.S. (eds.) The Sage handbook of qualitative research, pp. 61–80. Sage, Thousand Oaks, CA (2011)

Cortazzi, M., Pilcher, N., Jin, L.: Language choices and ‘blind shadows’: investigating interviews with Chinese participants. Qual. Res. 11 (5), 505–535 (2011)

Cortazzi, M., Jin, L.: The doctoral viva: questions for, with and to candidates (or supervisors). Int. J. Educat. Lit. Stud. 9 (4), 2–15 (2021)

Creswell, J.W.: Research design: Qualitative & quantitative approaches. Sage, Thousand Oaks, CA (1995)

Davies, M.B., Hughes, N.: Doing a successful research project: Using qualitative or quantitative methods. Macmillan International Higher Education, London (2014)

Dawson, C.: Introduction to Research Methods: A Practical Guide for Anyone Undertaking a Research Project, 5th edn. Robinson, London (2019)

De Gregorio, E.: Bridging “quality” and “quantity” in the study of criminal action. Qual. Quant. 48 (1), 197–215 (2014)

Denzin, N.K., Lincoln, Y.S. (eds.): The landscape of qualitative research: Theories and issues. Sage, Thousand Oaks (1998)

Denzin, N.K., Lincoln, Y.S. (eds.): The SAGE handbook of qualitative research (4th edit). Sage, Thousand Oaks (2011)

Flyvbjerg, B.: Five misunderstandings about case-study research. Qual. Inq. 12 (2), 219–245 (2006)

Francis, J.J., Johnston, M., Robertson, C., Glidewell, L., Entwistle, V., Eccles, M.P., Grimshaw, J.M.: What is an adequate sample size? Operationalising data saturation for theory-based interview studies. Psychol. Health 25 (10), 1229–1245 (2010)

Goertz, G., Mahoney, J.: A tale of two cultures. Princeton University Press, New Jersey (2012)

Golafshani, N.: Understanding reliability and validity in qualitative research the qualitative report, vol. 8 no. 4 597–607. (2003). http://www.nova.edu/ssss/QR/QR8-4/golafshani.pd

Grix, J.: The undations of research. Palgrave Macmillan, New York (2004)

Guba, E.G, Lincoln, Y.S: Competing paradigms in qualitative research. In: Denzin, N.K. Lincoln, Y.S. (eds.) Handbook of qualitative research, pp. 105–117. Sage, Thousand Oaks, 1994

Guest, G., Bunce, A., Johnson, L.: How many interviews are enough? An experiment with data saturation and variability. Field Methods 18 (1), 59–82 (2006)

Hammersley, M.: What is qualitative research? Bloomsbury Academic, London (2013)

Hanson, B.: Wither qualitative/quantitative? Grounds for methodological convergence. Qual. Quant. 42 , 97–111 (2008)

Heyvaert, M., Maes, B., Onghena, P.: Mixed methods research synthesis: definition, framework, and potential. Qual. Quant. 47 (2), 659–676 (2013)

Howe, K.R.: Against the quantitative-qualitative incompatibility thesis or dogmas die hard. Educ. Res. 17 (8), 10–16 (1988)

Johnson, R.B., Onwuegbuzie, A.J., Turner, L.A.: Toward a definition of mixed methods research. J. Mixed Methods Res. 1 (2), 112–133 (2007)

Kumar, R.: Research methodologies: a step-by-step guide for beginners. Sage, London (1996)

Levitt, H.M., Bamberg, M., Creswell, J.W., Frost, D.M., Josselson, R., Suarez-Orozco, C.: Journal article reporting standards for qualitative research in psychology: The APA publications and communications board task force report. Am. Psychol. 73 (1), 26–46 (2018)

Lincoln, Y.S., Guba, E.G.: Naturalistic inquiry. Sage, Thousand Oaks (1985)

Marsh, C.: Problems with surveys: method or epistemology? Sociology 13 (2), 293–305 (1979)

Marsh, D., Furlong, P.: A skin, not a sweater: ontology and epistemology in political science. Theory Methods Polit. Sci. 2 (1), 17–41 (2002)

Mason, J.: Mixing methods in a qualitatively driven way. Qual. Res. 6 (1), 9–25 (2006)

Miles, M. B., Huberman, A. M., Saldaña, J.: Qualitative data analysis: A methods sourcebook (4th edit.). Sage, Los Angeles, (2018)

Miles, M.B., Huberman, A.M.: Qualitative data analysis: An expanded sourcebook. Sage, Thousand Oaks (1994)

Moore, N.: How to do research: a practical guide to designing and managing research projects, 3rd edn. Facet, London (2006)

Morse, J.M.: Approaches to qualitative-quantitative methodological triangulation. Nurs. Res. 40 (2), 120–123 (1991)

Olssen, M.: Radical constructivism and its failings: anti-realism and individualism. Br. J. Educ. Stud. 44 (3), 275–295 (1996)

Onwuegbuzie, A.J., Leech, N.L.: Taking the “Q” out of research: teaching research methodology courses without the divide between quantitative and qualitative paradigms. Qual. Quant. 39 (3), 267–295 (2005)

Pilcher, N., Cortazzi, M.: Dialogues: QUANT researchers on QUAL methods. Qual. Report 21 (3), 450–473 (2016)

Punch, K.: Introduction to social research quantitative and qualitative approaches. Sage, Thousand Oaks (2005)

Saunders, B., Sim, J., Kingstone, T., Baker, S., Waterfield, J., Bartlam, B., Jinks, C.: Saturation in qualitative research: exploring its conceptualization and operationalization. Qualit. Quant. 52 (4), 1893–1907 (2018)

Seale, C.: Quality in qualitative research. Qual. Inq. 5 , 465–478 (1999a)

Seale, C.: The Quality of Qualitative Research. Sage, London (1999b)

Sharma, G.: Pros and cons of different sampling techniques. Int. J. Appl. Res. 3 (7), 749–752 (2017)

St Pierre, E.A.: Refusing alternatives: a science of contestation. Qual. Inq. 10 (1), 130–139 (2004)

Tashakkori, A., Teddlie, C., Teddlie, C.B.: Mixed methodology: Combining qualitative and quantitative approaches. Sage, Thousand Oaks (1998)

Teddlie, C., Tashakkori, A. Mixed methods research. Contemporary Issues in an emerging Field. In Denzin, N.K., Lincoln, Y.S. (eds.) The Sage handbook of qualitative research (4 th edit.), pp. 285–300. Sage, Thousand Oaks, (2011)

Trafford, V., Leshem, S.: Starting at the end to undertake doctoral research: predictable questions as stepping stones. High. Educ. Rev. 35 (1), 31–49 (2002)

Uher, J.: Functions of units, scales and quantitative data: fundamental differences in numerical traceability between sciences. Qual. Quant. 56 (4), 2519–2548 (2022)

Merriam Webster: Definition of ‘semi’. (2022). Available at https://www.merriam-webster.com/dictionary/semi

Download references

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and affiliations.

The Business School, Edinburgh Napier University, Edinburgh, UK

Nick Pilcher

University of Warwick, Coventry, UK

Martin Cortazzi

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Nick Pilcher and Martin Cortazzi. The first draft of the manuscript was written by NP along with MC and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nick Pilcher .

Ethics declarations

Conflict of interest.

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Literature review study

The table below contains details of the binary representations and possibilities in the two columns on the left and in the right it contains the numbers of the key sources that conveyed or adhered to these binary representations. The details of these sources and their respective numbers are listed below.

Table: Textbook and key source binary representations

Bell, J., & Waters, S. (2014). Doing your research Project: A Guide for first-time researchers. McGraw-Hill Education (UK). 6 th edn

Bloor, M., & Wood, F. (2006). Keywords in qualitative methods: A vocabulary of research concepts. London, UK: Sage Publications.

Bryman, A. (2008). Social research methods. Oxford, UK: Oxford University Press. [with caveats for many but still using the divide as ‘useful’]

Bryman, A., & Cramer, D. (2009). Quantitative data analysis with SPSS 14, 15 and 16: A guide for social scientists. London, UK: Routledge.

Ceglowski, D., Bacigalupa, C., & Peck, E. (2011). Aced out: Censorship of qualitative research in the age of "scientifically based research." Qualitative Inquiry, 17(8), 679–686.

Daly, K. J. (2007). Qualitative Methods for Family Studies and Human Development. London, UK: Sage.

Davies, M. B., & Hughes, N. (2014).  Doing a successful research project: Using qualitative or quantitative methods . Bloomsbury Publishing.

Dawson, C. (2019).  Introduction to Research Methods 5th Edition: A Practical Guide for Anyone Undertaking a Research Project . Robinson.

Denzin, N. K., & Lincoln, Y. S. (Eds.). (1998). The landscape of qualitative research: Theories and issues. Thousand Oaks, CA: Sage Publications. [with caveat that original qual was positivist in root but not now]

Denzin and Lincoln (2011) Introduction: The Discipline and Practice of Qualitative Research. In Denzin, N. K., & Lincoln, Y. S. (2011). The Sage handbook of qualitative research . Thousand Oaks, Calif: Sage. Pp1-20

Goertz, G., & Mahoney, J. (2012).  A tale of two cultures . Princeton University Press.

Grix, J. (2004). The foundations of research. New York, NY: Palgrave Macmillan.

Hammersley, M. (2007). The issue of quality in qualitative research. International Journal of Research & Method in Education, 30(3), 287–305.

Hammersley, M. (2013). What is qualitative research? London, UK: Bloomsbury Academic. [caveat that some qual do use causal analysis – and if you mix you abandon key assumptions associated with qualitative work]

Harman, W. W. (1996). The shortcomings of western science. Qualitative Inquiry, 2(1), 30–38.

Howe, K. R. (2011). Mixed methods, mixed causes? Qualitative Inquiry, 17(2), 166–171.

Mason, J. (2006). Mixing methods in a qualitatively driven way. Qualitative Research, 6(1), 9–25.

Miles, M. B., Huberman, A. M., & Saldaña, J. (2018).  Qualitative data analysis: A methods sourcebook . Sage publications.

Punch, K. (2005). Introduction to Social Research Quantitative and Qualitative Approaches. Sage.

Sandelowski, M. (1997). "To be of use": Enhancing the utility of qualitative research. Nursing Outlook, 45(3), 125–132 [caveat – does rebut many of the ideas but nevertheless outlines them as how the two are seen – e.g. of generalizability]

Seale, C. (1999). Quality in qualitative research. Qualitative Inquiry, 5, 465–478.

Silverman, D. (2016). Introducing qualitative research.  Qualitative research ,  3 (3), 14–25.

Tashakkori, A., Teddlie, C., & Teddlie, C. B. (1998).  Mixed methodology: Combining qualitative and quantitative approaches  (Vol. 46). sage. [with the caveat that they talk about the differences as existing even though say they are not that wide]

Teddlie, C., & Tashakkori, A. (2011). Mixed methods research. Contemporary Issues in an emerging Field. in The Sage handbook of qualitative research ,  4 , 285–300.

Torrance, H. (2008). Building confidence in qualitative research: Engaging the demands of policy. Qualitative Inquiry, 14(4), 507–527.

1.1 Sources in languages other than English, and brief notes regarding their focus and content

Whilst not part of the literature review study, we also consulted the outline details, abstracts and contents lists of a number of sources in languages other than English. We put brief notes about after each source. Each source, unless specifically noted, adhered to similar binary treatment of quantitative and qualitative methods and approaches as the English language sources outlined above.

1.1.1 German

Blandz, M. (2021) Forschungsmethoden und Statistik für die Soziale Arbeit : Grundlage und Anwendingen. 2 nd . edit. Stuttgart: Kohlhammer Verlag. – this is a multidisciplinary source that focuses mostly on quantitative and mixed methods. It follows the suggestion that a qualitative study can be a preliminary study for the main quantitative study.

Caspari, D; Klippel, F; Legutke, M. & Schram, K. (2022) Forschungsmethoden: in der Fremdsprachendidaktik; Ein Handbuch. Tübingen: Narr Franke Altempo Verlag. [Focused on foreign language teaching, details quantitative, then qualitative and then mixed; all separately]

Dōring, N. (2023) Forschungsmethoden und Evaluation in den Sozial- und Humanwissenschaften. 6. th edit. Berlin: Springer. [Focused on the Social Sciences and humanities; as with the previous source it has separate chapters on quantitative and qualitative and a section on mixed, and contains some critical commentary]

Frankenberger, N. (Ed.) (2022) Grundlagen der Politikwissenschaft : Forschungsmethoden und Forschendes Lernen. Stuttgart: Kohlhammer Verlag. [Political science focused and based around distinctions between quantitative and qualitative approaches, each of which is elaborated with different methods; there is no obvious section on mixed methods]

Hussy, W; Schiener, M; Echterhoff, G. (2013) Forschungsmethoden in Psychologie und Sozialwissenschaften für Bachelor. Berlin: Springer. [This book is focused on psychology and social sciences for undergraduates. It has separate parts to focus on quantitative and on qualitative and then a chapter on mixed, identifying mixed methods as an emerging trend]

Niederberger, M. & Finne, E. (Eds.) (2021) Forschungsmethoden in der Gesundsheitsfōrderung und Prävention. Berlin: Springer. [Focused on Health and wellbeing; develops the roles of quantitative, qualitative and mixed (in combinations) in multidisciplinary, interdisciplinary and transdisciplinary research. Notes much research is exclusively quantitative and that social sciences are more qualitative or mixed. Makes the argument that the quantitative versus qualitative divide was surpassed by ‘post-positivist’ versus ‘combined’ thinking and that integrated approaches are now widely accepted]

1.1.2 Spanish

Campos-Arenas, A. (2014) Métodos mixtos de investigación. Bogota: Magisterio Editorial. [Social science focused; devoted to mixed or combined approaches in Latin American contexts]

Hernandez-Sampieri, R. & Mendoza Torres, C. P. (2018) Metodología de investigación: Las rutas cuantitativa , cualitativa y mixta. Mexico: McGrw-Hill. [Social science focused with an introduction and conclusion focused on ‘three routes to research’ that are exceptionally and thoroughly elaborated; quantitative given 8 chapters; qualitative 3 and mixed just one]

Léon-García, O. G. & Carda-Celay, I. M. (2020) Méthodos de investigación en psicología y educación: Las tradiciones cuantitativas y qualitativas. 5. th edit. Barcelona : McGraw-Hill, España. [Psychology and education focused; based on relatively clearly cut distinctinos between ‘the two traditions’ of quantitative and qualitative]

Molina Marin, G. (Ed.) (2020) Integración de métodos de investigación : Estrategias metodológicas u experiencias en salud pública. Bogotá: Universidad de Antioquia. [Public health focused; gives most attention to multi-method combinations and asks questions about the epistemological integrity of integrating different approaches]

Ortega-Sanchez, D, (Ed.) (2023) ¿Como investigar en didáctica de las ciencias sociales? Fundamentos metodológicos , técnicas e instrumentos de investigación. Barcelona: Octaedro. [Education, research, pedagogy of teaching social sciences; focused on quantitative, qualitative and mixed methods in Spanish contexts]

Páramo-Reales, D. (2020) Métodos de investigación caulitativa : Fundamentos y aplicaciones . Bogota: Editorial Unimagdalena. [Social sciences: basic applications of qualitative approaches in Latin America]

Ponce, O. A. (2014) Investigación de métodos mixtos en educación, 2. nd edit. San Jaun: Publicaciones Puertoriqueñas. [Education and Pedagogy; Puerto Rican context and entirely about mixed methods]

Vasilachis de Giradino, I. (Ed.) (2009) Estrategias de investigación cauitativa. Barcelona: Editorial Gedisa. [Social sciences; much detail on research design; focus exclusively on qualitative methods in Spanish contexts]

1.1.3 French

Bouchard, S. & Cyr, C. (Eds.) (2005) Reserche psycosocial pour harmoniser reserche st pratique. Quebec: Prese de la Université de Quebec. [Focused on psychology and sociology. Despite its title about ‘harmonizing’ research it is mainly focused on quantitative approaches, with a small section on qualitative and nothing on mixed approaches]

Corbière, M. & Lamviere, N. (2021) Méthodes quantitatives , qualitatives et mixtes , dans la reserche en sciences humaines et de la santé. 2. nd edit. Quebec : PU Quebec. [Focused on Humanities and health care; highlights the division between quantitative, qualitative and mixed methods]

Devin, G. (Ed.) (2016) Méthodes de recherche en relations internationals. Paris: Sciences Po. [Focused on politics and international relations; mostly wholly focused on quantitative; only a little on qualitative]

Gavard-Perret, M.L; Gotteland, D; Haon, C. & Jolibert, A. (2018) Methodologie de la recherche en sciences de gestion : Réussir son mémoire ou sa these. Paris: Pearson. [Business and management focused and geared towards thesis research; notes clear distinctions between quantitative and qualitative approaches with nothing on mixed]

Komu, S. C. S. (2020) Le receuil des méthodes en sciences sociales : Mèthodo;ogies en reserche. Manitoba: Sciences Script. [Social sciences focused; mostly quantitative methods with some attention to focus groups and participatory research]

Lepillier, O; Fournier, T; Bricas, N. & Figuié, M. (2011 ) Méthodes d’investigation de l’alimentation et des mangeurs. Versailles: Editions Quae. [Focused on nutrition, health studies and diet; details quantitative and qualitative methods and has very little on mixed]

Millette, M; Millerand, F; Myles, D. & Latako-Toth, T. (2021) Méthodes de reserches en contexte humanique , une orientation qualiificative. Montreal: PU Montreal. [Humanities focused; outlines quantitative and qualitative methods and, unusually, attends to ‘qualitative investigations in numerical contexts’ in Canada]

Moscarda, J. (2018) Faire parler les donées: Méthodologies quantitatives et qualitatives. Caen: Editions EMS. [Has a multidisciplinary focus on ‘let the data talk’; deals with quantitative methods and then qualitative methods and also mixed]

Vallerand, R. J. (2000) Méthodes de recherche en psychologie. Quebec: Gaetan Morin. [Focused on psychology; emphasis on quantitative research; brief section on qualitative; Canadian contexts]

Appendix 2: Interview study schedule

2.1 understandings of ‘qualitative’ and ‘quantitative’.

This research project is exploratory and intends to delve into understandings of the specific terms ‘quantitative’ and ‘qualitative’ as they are perceived, used, and interpreted by researchers in very different fields. Such research is intended to shed light on the fields of quantitative and qualitative research. The idea for the research arises from a previous project where the researcher interviewed quantitative focused researchers and saw the use of qualitative and quantitative being used and interpreted very differently to how the terms are presented and understood in the research methods literature. It is expected that exploring these understandings further will add to the field by shedding light on the subtleties of how they are used and also in turn help researchers make informed decisions about the optimum approaches and methods to use in their own research.

2.2 Interview questions

figure a

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Pilcher, N., Cortazzi, M. 'Qualitative' and 'quantitative' methods and approaches across subject fields: implications for research values, assumptions, and practices. Qual Quant (2023). https://doi.org/10.1007/s11135-023-01734-4

Download citation

Accepted : 21 August 2023

Published : 30 September 2023

DOI : https://doi.org/10.1007/s11135-023-01734-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Qualitative
  • Quantitative
  • Assumptions
  • Disciplines
  • Semi-structured interviews
  • Find a journal
  • Publish with us
  • Track your research

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 26 March 2024

Predicting and improving complex beer flavor through machine learning

  • Michiel Schreurs   ORCID: orcid.org/0000-0002-9449-5619 1 , 2 , 3   na1 ,
  • Supinya Piampongsant 1 , 2 , 3   na1 ,
  • Miguel Roncoroni   ORCID: orcid.org/0000-0001-7461-1427 1 , 2 , 3   na1 ,
  • Lloyd Cool   ORCID: orcid.org/0000-0001-9936-3124 1 , 2 , 3 , 4 ,
  • Beatriz Herrera-Malaver   ORCID: orcid.org/0000-0002-5096-9974 1 , 2 , 3 ,
  • Christophe Vanderaa   ORCID: orcid.org/0000-0001-7443-5427 4 ,
  • Florian A. Theßeling 1 , 2 , 3 ,
  • Łukasz Kreft   ORCID: orcid.org/0000-0001-7620-4657 5 ,
  • Alexander Botzki   ORCID: orcid.org/0000-0001-6691-4233 5 ,
  • Philippe Malcorps 6 ,
  • Luk Daenen 6 ,
  • Tom Wenseleers   ORCID: orcid.org/0000-0002-1434-861X 4 &
  • Kevin J. Verstrepen   ORCID: orcid.org/0000-0002-3077-6219 1 , 2 , 3  

Nature Communications volume  15 , Article number:  2368 ( 2024 ) Cite this article

39k Accesses

749 Altmetric

Metrics details

  • Chemical engineering
  • Gas chromatography
  • Machine learning
  • Metabolomics
  • Taste receptors

The perception and appreciation of food flavor depends on many interacting chemical compounds and external factors, and therefore proves challenging to understand and predict. Here, we combine extensive chemical and sensory analyses of 250 different beers to train machine learning models that allow predicting flavor and consumer appreciation. For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 different machine learning models. The best-performing algorithm, Gradient Boosting, yields models that significantly outperform predictions based on conventional statistics and accurately predict complex food features and consumer appreciation from chemical profiles. Model dissection allows identifying specific and unexpected compounds as drivers of beer flavor and appreciation. Adding these compounds results in variants of commercial alcoholic and non-alcoholic beers with improved consumer appreciation. Together, our study reveals how big data and machine learning uncover complex links between food chemistry, flavor and consumer perception, and lays the foundation to develop novel, tailored foods with superior flavors.

Similar content being viewed by others

articles quantitative research

BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules

Rudraksh Tuwani, Somin Wadhwa & Ganesh Bagler

articles quantitative research

Sensory lexicon and aroma volatiles analysis of brewing malt

Xiaoxia Su, Miao Yu, … Tianyi Du

articles quantitative research

Predicting odor from molecular structure: a multi-label classification approach

Kushagra Saini & Venkatnarayan Ramanathan

Introduction

Predicting and understanding food perception and appreciation is one of the major challenges in food science. Accurate modeling of food flavor and appreciation could yield important opportunities for both producers and consumers, including quality control, product fingerprinting, counterfeit detection, spoilage detection, and the development of new products and product combinations (food pairing) 1 , 2 , 3 , 4 , 5 , 6 . Accurate models for flavor and consumer appreciation would contribute greatly to our scientific understanding of how humans perceive and appreciate flavor. Moreover, accurate predictive models would also facilitate and standardize existing food assessment methods and could supplement or replace assessments by trained and consumer tasting panels, which are variable, expensive and time-consuming 7 , 8 , 9 . Lastly, apart from providing objective, quantitative, accurate and contextual information that can help producers, models can also guide consumers in understanding their personal preferences 10 .

Despite the myriad of applications, predicting food flavor and appreciation from its chemical properties remains a largely elusive goal in sensory science, especially for complex food and beverages 11 , 12 . A key obstacle is the immense number of flavor-active chemicals underlying food flavor. Flavor compounds can vary widely in chemical structure and concentration, making them technically challenging and labor-intensive to quantify, even in the face of innovations in metabolomics, such as non-targeted metabolic fingerprinting 13 , 14 . Moreover, sensory analysis is perhaps even more complicated. Flavor perception is highly complex, resulting from hundreds of different molecules interacting at the physiochemical and sensorial level. Sensory perception is often non-linear, characterized by complex and concentration-dependent synergistic and antagonistic effects 15 , 16 , 17 , 18 , 19 , 20 , 21 that are further convoluted by the genetics, environment, culture and psychology of consumers 22 , 23 , 24 . Perceived flavor is therefore difficult to measure, with problems of sensitivity, accuracy, and reproducibility that can only be resolved by gathering sufficiently large datasets 25 . Trained tasting panels are considered the prime source of quality sensory data, but require meticulous training, are low throughput and high cost. Public databases containing consumer reviews of food products could provide a valuable alternative, especially for studying appreciation scores, which do not require formal training 25 . Public databases offer the advantage of amassing large amounts of data, increasing the statistical power to identify potential drivers of appreciation. However, public datasets suffer from biases, including a bias in the volunteers that contribute to the database, as well as confounding factors such as price, cult status and psychological conformity towards previous ratings of the product.

Classical multivariate statistics and machine learning methods have been used to predict flavor of specific compounds by, for example, linking structural properties of a compound to its potential biological activities or linking concentrations of specific compounds to sensory profiles 1 , 26 . Importantly, most previous studies focused on predicting organoleptic properties of single compounds (often based on their chemical structure) 27 , 28 , 29 , 30 , 31 , 32 , 33 , thus ignoring the fact that these compounds are present in a complex matrix in food or beverages and excluding complex interactions between compounds. Moreover, the classical statistics commonly used in sensory science 34 , 35 , 36 , 37 , 38 , 39 require a large sample size and sufficient variance amongst predictors to create accurate models. They are not fit for studying an extensive set of hundreds of interacting flavor compounds, since they are sensitive to outliers, have a high tendency to overfit and are less suited for non-linear and discontinuous relationships 40 .

In this study, we combine extensive chemical analyses and sensory data of a set of different commercial beers with machine learning approaches to develop models that predict taste, smell, mouthfeel and appreciation from compound concentrations. Beer is particularly suited to model the relationship between chemistry, flavor and appreciation. First, beer is a complex product, consisting of thousands of flavor compounds that partake in complex sensory interactions 41 , 42 , 43 . This chemical diversity arises from the raw materials (malt, yeast, hops, water and spices) and biochemical conversions during the brewing process (kilning, mashing, boiling, fermentation, maturation and aging) 44 , 45 . Second, the advent of the internet saw beer consumers embrace online review platforms, such as RateBeer (ZX Ventures, Anheuser-Busch InBev SA/NV) and BeerAdvocate (Next Glass, inc.). In this way, the beer community provides massive data sets of beer flavor and appreciation scores, creating extraordinarily large sensory databases to complement the analyses of our professional sensory panel. Specifically, we characterize over 200 chemical properties of 250 commercial beers, spread across 22 beer styles, and link these to the descriptive sensory profiling data of a 16-person in-house trained tasting panel and data acquired from over 180,000 public consumer reviews. These unique and extensive datasets enable us to train a suite of machine learning models to predict flavor and appreciation from a beer’s chemical profile. Dissection of the best-performing models allows us to pinpoint specific compounds as potential drivers of beer flavor and appreciation. Follow-up experiments confirm the importance of these compounds and ultimately allow us to significantly improve the flavor and appreciation of selected commercial beers. Together, our study represents a significant step towards understanding complex flavors and reinforces the value of machine learning to develop and refine complex foods. In this way, it represents a stepping stone for further computer-aided food engineering applications 46 .

To generate a comprehensive dataset on beer flavor, we selected 250 commercial Belgian beers across 22 different beer styles (Supplementary Fig.  S1 ). Beers with ≤ 4.2% alcohol by volume (ABV) were classified as non-alcoholic and low-alcoholic. Blonds and Tripels constitute a significant portion of the dataset (12.4% and 11.2%, respectively) reflecting their presence on the Belgian beer market and the heterogeneity of beers within these styles. By contrast, lager beers are less diverse and dominated by a handful of brands. Rare styles such as Brut or Faro make up only a small fraction of the dataset (2% and 1%, respectively) because fewer of these beers are produced and because they are dominated by distinct characteristics in terms of flavor and chemical composition.

Extensive analysis identifies relationships between chemical compounds in beer

For each beer, we measured 226 different chemical properties, including common brewing parameters such as alcohol content, iso-alpha acids, pH, sugar concentration 47 , and over 200 flavor compounds (Methods, Supplementary Table  S1 ). A large portion (37.2%) are terpenoids arising from hopping, responsible for herbal and fruity flavors 16 , 48 . A second major category are yeast metabolites, such as esters and alcohols, that result in fruity and solvent notes 48 , 49 , 50 . Other measured compounds are primarily derived from malt, or other microbes such as non- Saccharomyces yeasts and bacteria (‘wild flora’). Compounds that arise from spices or staling are labeled under ‘Others’. Five attributes (caloric value, total acids and total ester, hop aroma and sulfur compounds) are calculated from multiple individually measured compounds.

As a first step in identifying relationships between chemical properties, we determined correlations between the concentrations of the compounds (Fig.  1 , upper panel, Supplementary Data  1 and 2 , and Supplementary Fig.  S2 . For the sake of clarity, only a subset of the measured compounds is shown in Fig.  1 ). Compounds of the same origin typically show a positive correlation, while absence of correlation hints at parameters varying independently. For example, the hop aroma compounds citronellol, and alpha-terpineol show moderate correlations with each other (Spearman’s rho=0.39 and 0.57), but not with the bittering hop component iso-alpha acids (Spearman’s rho=0.16 and −0.07). This illustrates how brewers can independently modify hop aroma and bitterness by selecting hop varieties and dosage time. If hops are added early in the boiling phase, chemical conversions increase bitterness while aromas evaporate, conversely, late addition of hops preserves aroma but limits bitterness 51 . Similarly, hop-derived iso-alpha acids show a strong anti-correlation with lactic acid and acetic acid, likely reflecting growth inhibition of lactic acid and acetic acid bacteria, or the consequent use of fewer hops in sour beer styles, such as West Flanders ales and Fruit beers, that rely on these bacteria for their distinct flavors 52 . Finally, yeast-derived esters (ethyl acetate, ethyl decanoate, ethyl hexanoate, ethyl octanoate) and alcohols (ethanol, isoamyl alcohol, isobutanol, and glycerol), correlate with Spearman coefficients above 0.5, suggesting that these secondary metabolites are correlated with the yeast genetic background and/or fermentation parameters and may be difficult to influence individually, although the choice of yeast strain may offer some control 53 .

figure 1

Spearman rank correlations are shown. Descriptors are grouped according to their origin (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)), and sensory aspect (aroma, taste, palate, and overall appreciation). Please note that for the chemical compounds, for the sake of clarity, only a subset of the total number of measured compounds is shown, with an emphasis on the key compounds for each source. For more details, see the main text and Methods section. Chemical data can be found in Supplementary Data  1 , correlations between all chemical compounds are depicted in Supplementary Fig.  S2 and correlation values can be found in Supplementary Data  2 . See Supplementary Data  4 for sensory panel assessments and Supplementary Data  5 for correlation values between all sensory descriptors.

Interestingly, different beer styles show distinct patterns for some flavor compounds (Supplementary Fig.  S3 ). These observations agree with expectations for key beer styles, and serve as a control for our measurements. For instance, Stouts generally show high values for color (darker), while hoppy beers contain elevated levels of iso-alpha acids, compounds associated with bitter hop taste. Acetic and lactic acid are not prevalent in most beers, with notable exceptions such as Kriek, Lambic, Faro, West Flanders ales and Flanders Old Brown, which use acid-producing bacteria ( Lactobacillus and Pediococcus ) or unconventional yeast ( Brettanomyces ) 54 , 55 . Glycerol, ethanol and esters show similar distributions across all beer styles, reflecting their common origin as products of yeast metabolism during fermentation 45 , 53 . Finally, low/no-alcohol beers contain low concentrations of glycerol and esters. This is in line with the production process for most of the low/no-alcohol beers in our dataset, which are produced through limiting fermentation or by stripping away alcohol via evaporation or dialysis, with both methods having the unintended side-effect of reducing the amount of flavor compounds in the final beer 56 , 57 .

Besides expected associations, our data also reveals less trivial associations between beer styles and specific parameters. For example, geraniol and citronellol, two monoterpenoids responsible for citrus, floral and rose flavors and characteristic of Citra hops, are found in relatively high amounts in Christmas, Saison, and Brett/co-fermented beers, where they may originate from terpenoid-rich spices such as coriander seeds instead of hops 58 .

Tasting panel assessments reveal sensorial relationships in beer

To assess the sensory profile of each beer, a trained tasting panel evaluated each of the 250 beers for 50 sensory attributes, including different hop, malt and yeast flavors, off-flavors and spices. Panelists used a tasting sheet (Supplementary Data  3 ) to score the different attributes. Panel consistency was evaluated by repeating 12 samples across different sessions and performing ANOVA. In 95% of cases no significant difference was found across sessions ( p  > 0.05), indicating good panel consistency (Supplementary Table  S2 ).

Aroma and taste perception reported by the trained panel are often linked (Fig.  1 , bottom left panel and Supplementary Data  4 and 5 ), with high correlations between hops aroma and taste (Spearman’s rho=0.83). Bitter taste was found to correlate with hop aroma and taste in general (Spearman’s rho=0.80 and 0.69), and particularly with “grassy” noble hops (Spearman’s rho=0.75). Barnyard flavor, most often associated with sour beers, is identified together with stale hops (Spearman’s rho=0.97) that are used in these beers. Lactic and acetic acid, which often co-occur, are correlated (Spearman’s rho=0.66). Interestingly, sweetness and bitterness are anti-correlated (Spearman’s rho = −0.48), confirming the hypothesis that they mask each other 59 , 60 . Beer body is highly correlated with alcohol (Spearman’s rho = 0.79), and overall appreciation is found to correlate with multiple aspects that describe beer mouthfeel (alcohol, carbonation; Spearman’s rho= 0.32, 0.39), as well as with hop and ester aroma intensity (Spearman’s rho=0.39 and 0.35).

Similar to the chemical analyses, sensorial analyses confirmed typical features of specific beer styles (Supplementary Fig.  S4 ). For example, sour beers (Faro, Flanders Old Brown, Fruit beer, Kriek, Lambic, West Flanders ale) were rated acidic, with flavors of both acetic and lactic acid. Hoppy beers were found to be bitter and showed hop-associated aromas like citrus and tropical fruit. Malt taste is most detected among scotch, stout/porters, and strong ales, while low/no-alcohol beers, which often have a reputation for being ‘worty’ (reminiscent of unfermented, sweet malt extract) appear in the middle. Unsurprisingly, hop aromas are most strongly detected among hoppy beers. Like its chemical counterpart (Supplementary Fig.  S3 ), acidity shows a right-skewed distribution, with the most acidic beers being Krieks, Lambics, and West Flanders ales.

Tasting panel assessments of specific flavors correlate with chemical composition

We find that the concentrations of several chemical compounds strongly correlate with specific aroma or taste, as evaluated by the tasting panel (Fig.  2 , Supplementary Fig.  S5 , Supplementary Data  6 ). In some cases, these correlations confirm expectations and serve as a useful control for data quality. For example, iso-alpha acids, the bittering compounds in hops, strongly correlate with bitterness (Spearman’s rho=0.68), while ethanol and glycerol correlate with tasters’ perceptions of alcohol and body, the mouthfeel sensation of fullness (Spearman’s rho=0.82/0.62 and 0.72/0.57 respectively) and darker color from roasted malts is a good indication of malt perception (Spearman’s rho=0.54).

figure 2

Heatmap colors indicate Spearman’s Rho. Axes are organized according to sensory categories (aroma, taste, mouthfeel, overall), chemical categories and chemical sources in beer (malt (blue), hops (green), yeast (red), wild flora (yellow), Others (black)). See Supplementary Data  6 for all correlation values.

Interestingly, for some relationships between chemical compounds and perceived flavor, correlations are weaker than expected. For example, the rose-smelling phenethyl acetate only weakly correlates with floral aroma. This hints at more complex relationships and interactions between compounds and suggests a need for a more complex model than simple correlations. Lastly, we uncovered unexpected correlations. For instance, the esters ethyl decanoate and ethyl octanoate appear to correlate slightly with hop perception and bitterness, possibly due to their fruity flavor. Iron is anti-correlated with hop aromas and bitterness, most likely because it is also anti-correlated with iso-alpha acids. This could be a sign of metal chelation of hop acids 61 , given that our analyses measure unbound hop acids and total iron content, or could result from the higher iron content in dark and Fruit beers, which typically have less hoppy and bitter flavors 62 .

Public consumer reviews complement expert panel data

To complement and expand the sensory data of our trained tasting panel, we collected 180,000 reviews of our 250 beers from the online consumer review platform RateBeer. This provided numerical scores for beer appearance, aroma, taste, palate, overall quality as well as the average overall score.

Public datasets are known to suffer from biases, such as price, cult status and psychological conformity towards previous ratings of a product. For example, prices correlate with appreciation scores for these online consumer reviews (rho=0.49, Supplementary Fig.  S6 ), but not for our trained tasting panel (rho=0.19). This suggests that prices affect consumer appreciation, which has been reported in wine 63 , while blind tastings are unaffected. Moreover, we observe that some beer styles, like lagers and non-alcoholic beers, generally receive lower scores, reflecting that online reviewers are mostly beer aficionados with a preference for specialty beers over lager beers. In general, we find a modest correlation between our trained panel’s overall appreciation score and the online consumer appreciation scores (Fig.  3 , rho=0.29). Apart from the aforementioned biases in the online datasets, serving temperature, sample freshness and surroundings, which are all tightly controlled during the tasting panel sessions, can vary tremendously across online consumers and can further contribute to (among others, appreciation) differences between the two categories of tasters. Importantly, in contrast to the overall appreciation scores, for many sensory aspects the results from the professional panel correlated well with results obtained from RateBeer reviews. Correlations were highest for features that are relatively easy to recognize even for untrained tasters, like bitterness, sweetness, alcohol and malt aroma (Fig.  3 and below).

figure 3

RateBeer text mining results can be found in Supplementary Data  7 . Rho values shown are Spearman correlation values, with asterisks indicating significant correlations ( p  < 0.05, two-sided). All p values were smaller than 0.001, except for Esters aroma (0.0553), Esters taste (0.3275), Esters aroma—banana (0.0019), Coriander (0.0508) and Diacetyl (0.0134).

Besides collecting consumer appreciation from these online reviews, we developed automated text analysis tools to gather additional data from review texts (Supplementary Data  7 ). Processing review texts on the RateBeer database yielded comparable results to the scores given by the trained panel for many common sensory aspects, including acidity, bitterness, sweetness, alcohol, malt, and hop tastes (Fig.  3 ). This is in line with what would be expected, since these attributes require less training for accurate assessment and are less influenced by environmental factors such as temperature, serving glass and odors in the environment. Consumer reviews also correlate well with our trained panel for 4-vinyl guaiacol, a compound associated with a very characteristic aroma. By contrast, correlations for more specific aromas like ester, coriander or diacetyl are underrepresented in the online reviews, underscoring the importance of using a trained tasting panel and standardized tasting sheets with explicit factors to be scored for evaluating specific aspects of a beer. Taken together, our results suggest that public reviews are trustworthy for some, but not all, flavor features and can complement or substitute taste panel data for these sensory aspects.

Models can predict beer sensory profiles from chemical data

The rich datasets of chemical analyses, tasting panel assessments and public reviews gathered in the first part of this study provided us with a unique opportunity to develop predictive models that link chemical data to sensorial features. Given the complexity of beer flavor, basic statistical tools such as correlations or linear regression may not always be the most suitable for making accurate predictions. Instead, we applied different machine learning models that can model both simple linear and complex interactive relationships. Specifically, we constructed a set of regression models to predict (a) trained panel scores for beer flavor and quality and (b) public reviews’ appreciation scores from beer chemical profiles. We trained and tested 10 different models (Methods), 3 linear regression-based models (simple linear regression with first-order interactions (LR), lasso regression with first-order interactions (Lasso), partial least squares regressor (PLSR)), 5 decision tree models (AdaBoost regressor (ABR), extra trees (ET), gradient boosting regressor (GBR), random forest (RF) and XGBoost regressor (XGBR)), 1 support vector regression (SVR), and 1 artificial neural network (ANN) model.

To compare the performance of our machine learning models, the dataset was randomly split into a training and test set, stratified by beer style. After a model was trained on data in the training set, its performance was evaluated on its ability to predict the test dataset obtained from multi-output models (based on the coefficient of determination, see Methods). Additionally, individual-attribute models were ranked per descriptor and the average rank was calculated, as proposed by Korneva et al. 64 . Importantly, both ways of evaluating the models’ performance agreed in general. Performance of the different models varied (Table  1 ). It should be noted that all models perform better at predicting RateBeer results than results from our trained tasting panel. One reason could be that sensory data is inherently variable, and this variability is averaged out with the large number of public reviews from RateBeer. Additionally, all tree-based models perform better at predicting taste than aroma. Linear models (LR) performed particularly poorly, with negative R 2 values, due to severe overfitting (training set R 2  = 1). Overfitting is a common issue in linear models with many parameters and limited samples, especially with interaction terms further amplifying the number of parameters. L1 regularization (Lasso) successfully overcomes this overfitting, out-competing multiple tree-based models on the RateBeer dataset. Similarly, the dimensionality reduction of PLSR avoids overfitting and improves performance, to some extent. Still, tree-based models (ABR, ET, GBR, RF and XGBR) show the best performance, out-competing the linear models (LR, Lasso, PLSR) commonly used in sensory science 65 .

GBR models showed the best overall performance in predicting sensory responses from chemical information, with R 2 values up to 0.75 depending on the predicted sensory feature (Supplementary Table  S4 ). The GBR models predict consumer appreciation (RateBeer) better than our trained panel’s appreciation (R 2 value of 0.67 compared to R 2 value of 0.09) (Supplementary Table  S3 and Supplementary Table  S4 ). ANN models showed intermediate performance, likely because neural networks typically perform best with larger datasets 66 . The SVR shows intermediate performance, mostly due to the weak predictions of specific attributes that lower the overall performance (Supplementary Table  S4 ).

Model dissection identifies specific, unexpected compounds as drivers of consumer appreciation

Next, we leveraged our models to infer important contributors to sensory perception and consumer appreciation. Consumer preference is a crucial sensory aspects, because a product that shows low consumer appreciation scores often does not succeed commercially 25 . Additionally, the requirement for a large number of representative evaluators makes consumer trials one of the more costly and time-consuming aspects of product development. Hence, a model for predicting chemical drivers of overall appreciation would be a welcome addition to the available toolbox for food development and optimization.

Since GBR models on our RateBeer dataset showed the best overall performance, we focused on these models. Specifically, we used two approaches to identify important contributors. First, rankings of the most important predictors for each sensorial trait in the GBR models were obtained based on impurity-based feature importance (mean decrease in impurity). High-ranked parameters were hypothesized to be either the true causal chemical properties underlying the trait, to correlate with the actual causal properties, or to take part in sensory interactions affecting the trait 67 (Fig.  4A ). In a second approach, we used SHAP 68 to determine which parameters contributed most to the model for making predictions of consumer appreciation (Fig.  4B ). SHAP calculates parameter contributions to model predictions on a per-sample basis, which can be aggregated into an importance score.

figure 4

A The impurity-based feature importance (mean deviance in impurity, MDI) calculated from the Gradient Boosting Regression (GBR) model predicting RateBeer appreciation scores. The top 15 highest ranked chemical properties are shown. B SHAP summary plot for the top 15 parameters contributing to our GBR model. Each point on the graph represents a sample from our dataset. The color represents the concentration of that parameter, with bluer colors representing low values and redder colors representing higher values. Greater absolute values on the horizontal axis indicate a higher impact of the parameter on the prediction of the model. C Spearman correlations between the 15 most important chemical properties and consumer overall appreciation. Numbers indicate the Spearman Rho correlation coefficient, and the rank of this correlation compared to all other correlations. The top 15 important compounds were determined using SHAP (panel B).

Both approaches identified ethyl acetate as the most predictive parameter for beer appreciation (Fig.  4 ). Ethyl acetate is the most abundant ester in beer with a typical ‘fruity’, ‘solvent’ and ‘alcoholic’ flavor, but is often considered less important than other esters like isoamyl acetate. The second most important parameter identified by SHAP is ethanol, the most abundant beer compound after water. Apart from directly contributing to beer flavor and mouthfeel, ethanol drastically influences the physical properties of beer, dictating how easily volatile compounds escape the beer matrix to contribute to beer aroma 69 . Importantly, it should also be noted that the importance of ethanol for appreciation is likely inflated by the very low appreciation scores of non-alcoholic beers (Supplementary Fig.  S4 ). Despite not often being considered a driver of beer appreciation, protein level also ranks highly in both approaches, possibly due to its effect on mouthfeel and body 70 . Lactic acid, which contributes to the tart taste of sour beers, is the fourth most important parameter identified by SHAP, possibly due to the generally high appreciation of sour beers in our dataset.

Interestingly, some of the most important predictive parameters for our model are not well-established as beer flavors or are even commonly regarded as being negative for beer quality. For example, our models identify methanethiol and ethyl phenyl acetate, an ester commonly linked to beer staling 71 , as a key factor contributing to beer appreciation. Although there is no doubt that high concentrations of these compounds are considered unpleasant, the positive effects of modest concentrations are not yet known 72 , 73 .

To compare our approach to conventional statistics, we evaluated how well the 15 most important SHAP-derived parameters correlate with consumer appreciation (Fig.  4C ). Interestingly, only 6 of the properties derived by SHAP rank amongst the top 15 most correlated parameters. For some chemical compounds, the correlations are so low that they would have likely been considered unimportant. For example, lactic acid, the fourth most important parameter, shows a bimodal distribution for appreciation, with sour beers forming a separate cluster, that is missed entirely by the Spearman correlation. Additionally, the correlation plots reveal outliers, emphasizing the need for robust analysis tools. Together, this highlights the need for alternative models, like the Gradient Boosting model, that better grasp the complexity of (beer) flavor.

Finally, to observe the relationships between these chemical properties and their predicted targets, partial dependence plots were constructed for the six most important predictors of consumer appreciation 74 , 75 , 76 (Supplementary Fig.  S7 ). One-way partial dependence plots show how a change in concentration affects the predicted appreciation. These plots reveal an important limitation of our models: appreciation predictions remain constant at ever-increasing concentrations. This implies that once a threshold concentration is reached, further increasing the concentration does not affect appreciation. This is false, as it is well-documented that certain compounds become unpleasant at high concentrations, including ethyl acetate (‘nail polish’) 77 and methanethiol (‘sulfury’ and ‘rotten cabbage’) 78 . The inability of our models to grasp that flavor compounds have optimal levels, above which they become negative, is a consequence of working with commercial beer brands where (off-)flavors are rarely too high to negatively impact the product. The two-way partial dependence plots show how changing the concentration of two compounds influences predicted appreciation, visualizing their interactions (Supplementary Fig.  S7 ). In our case, the top 5 parameters are dominated by additive or synergistic interactions, with high concentrations for both compounds resulting in the highest predicted appreciation.

To assess the robustness of our best-performing models and model predictions, we performed 100 iterations of the GBR, RF and ET models. In general, all iterations of the models yielded similar performance (Supplementary Fig.  S8 ). Moreover, the main predictors (including the top predictors ethanol and ethyl acetate) remained virtually the same, especially for GBR and RF. For the iterations of the ET model, we did observe more variation in the top predictors, which is likely a consequence of the model’s inherent random architecture in combination with co-correlations between certain predictors. However, even in this case, several of the top predictors (ethanol and ethyl acetate) remain unchanged, although their rank in importance changes (Supplementary Fig.  S8 ).

Next, we investigated if a combination of RateBeer and trained panel data into one consolidated dataset would lead to stronger models, under the hypothesis that such a model would suffer less from bias in the datasets. A GBR model was trained to predict appreciation on the combined dataset. This model underperformed compared to the RateBeer model, both in the native case and when including a dataset identifier (R 2  = 0.67, 0.26 and 0.42 respectively). For the latter, the dataset identifier is the most important feature (Supplementary Fig.  S9 ), while most of the feature importance remains unchanged, with ethyl acetate and ethanol ranking highest, like in the original model trained only on RateBeer data. It seems that the large variation in the panel dataset introduces noise, weakening the models’ performances and reliability. In addition, it seems reasonable to assume that both datasets are fundamentally different, with the panel dataset obtained by blind tastings by a trained professional panel.

Lastly, we evaluated whether beer style identifiers would further enhance the model’s performance. A GBR model was trained with parameters that explicitly encoded the styles of the samples. This did not improve model performance (R2 = 0.66 with style information vs R2 = 0.67). The most important chemical features are consistent with the model trained without style information (eg. ethanol and ethyl acetate), and with the exception of the most preferred (strong ale) and least preferred (low/no-alcohol) styles, none of the styles were among the most important features (Supplementary Fig.  S9 , Supplementary Table  S5 and S6 ). This is likely due to a combination of style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original models, as well as the low number of samples belonging to some styles, making it difficult for the model to learn style-specific patterns. Moreover, beer styles are not rigorously defined, with some styles overlapping in features and some beers being misattributed to a specific style, all of which leads to more noise in models that use style parameters.

Model validation

To test if our predictive models give insight into beer appreciation, we set up experiments aimed at improving existing commercial beers. We specifically selected overall appreciation as the trait to be examined because of its complexity and commercial relevance. Beer flavor comprises a complex bouquet rather than single aromas and tastes 53 . Hence, adding a single compound to the extent that a difference is noticeable may lead to an unbalanced, artificial flavor. Therefore, we evaluated the effect of combinations of compounds. Because Blond beers represent the most extensive style in our dataset, we selected a beer from this style as the starting material for these experiments (Beer 64 in Supplementary Data  1 ).

In the first set of experiments, we adjusted the concentrations of compounds that made up the most important predictors of overall appreciation (ethyl acetate, ethanol, lactic acid, ethyl phenyl acetate) together with correlated compounds (ethyl hexanoate, isoamyl acetate, glycerol), bringing them up to 95 th percentile ethanol-normalized concentrations (Methods) within the Blond group (‘Spiked’ concentration in Fig.  5A ). Compared to controls, the spiked beers were found to have significantly improved overall appreciation among trained panelists, with panelist noting increased intensity of ester flavors, sweetness, alcohol, and body fullness (Fig.  5B ). To disentangle the contribution of ethanol to these results, a second experiment was performed without the addition of ethanol. This resulted in a similar outcome, including increased perception of alcohol and overall appreciation.

figure 5

Adding the top chemical compounds, identified as best predictors of appreciation by our model, into poorly appreciated beers results in increased appreciation from our trained panel. Results of sensory tests between base beers and those spiked with compounds identified as the best predictors by the model. A Blond and Non/Low-alcohol (0.0% ABV) base beers were brought up to 95th-percentile ethanol-normalized concentrations within each style. B For each sensory attribute, tasters indicated the more intense sample and selected the sample they preferred. The numbers above the bars correspond to the p values that indicate significant changes in perceived flavor (two-sided binomial test: alpha 0.05, n  = 20 or 13).

In a last experiment, we tested whether using the model’s predictions can boost the appreciation of a non-alcoholic beer (beer 223 in Supplementary Data  1 ). Again, the addition of a mixture of predicted compounds (omitting ethanol, in this case) resulted in a significant increase in appreciation, body, ester flavor and sweetness.

Predicting flavor and consumer appreciation from chemical composition is one of the ultimate goals of sensory science. A reliable, systematic and unbiased way to link chemical profiles to flavor and food appreciation would be a significant asset to the food and beverage industry. Such tools would substantially aid in quality control and recipe development, offer an efficient and cost-effective alternative to pilot studies and consumer trials and would ultimately allow food manufacturers to produce superior, tailor-made products that better meet the demands of specific consumer groups more efficiently.

A limited set of studies have previously tried, to varying degrees of success, to predict beer flavor and beer popularity based on (a limited set of) chemical compounds and flavors 79 , 80 . Current sensitive, high-throughput technologies allow measuring an unprecedented number of chemical compounds and properties in a large set of samples, yielding a dataset that can train models that help close the gaps between chemistry and flavor, even for a complex natural product like beer. To our knowledge, no previous research gathered data at this scale (250 samples, 226 chemical parameters, 50 sensory attributes and 5 consumer scores) to disentangle and validate the chemical aspects driving beer preference using various machine-learning techniques. We find that modern machine learning models outperform conventional statistical tools, such as correlations and linear models, and can successfully predict flavor appreciation from chemical composition. This could be attributed to the natural incorporation of interactions and non-linear or discontinuous effects in machine learning models, which are not easily grasped by the linear model architecture. While linear models and partial least squares regression represent the most widespread statistical approaches in sensory science, in part because they allow interpretation 65 , 81 , 82 , modern machine learning methods allow for building better predictive models while preserving the possibility to dissect and exploit the underlying patterns. Of the 10 different models we trained, tree-based models, such as our best performing GBR, showed the best overall performance in predicting sensory responses from chemical information, outcompeting artificial neural networks. This agrees with previous reports for models trained on tabular data 83 . Our results are in line with the findings of Colantonio et al. who also identified the gradient boosting architecture as performing best at predicting appreciation and flavor (of tomatoes and blueberries, in their specific study) 26 . Importantly, besides our larger experimental scale, we were able to directly confirm our models’ predictions in vivo.

Our study confirms that flavor compound concentration does not always correlate with perception, suggesting complex interactions that are often missed by more conventional statistics and simple models. Specifically, we find that tree-based algorithms may perform best in developing models that link complex food chemistry with aroma. Furthermore, we show that massive datasets of untrained consumer reviews provide a valuable source of data, that can complement or even replace trained tasting panels, especially for appreciation and basic flavors, such as sweetness and bitterness. This holds despite biases that are known to occur in such datasets, such as price or conformity bias. Moreover, GBR models predict taste better than aroma. This is likely because taste (e.g. bitterness) often directly relates to the corresponding chemical measurements (e.g., iso-alpha acids), whereas such a link is less clear for aromas, which often result from the interplay between multiple volatile compounds. We also find that our models are best at predicting acidity and alcohol, likely because there is a direct relation between the measured chemical compounds (acids and ethanol) and the corresponding perceived sensorial attribute (acidity and alcohol), and because even untrained consumers are generally able to recognize these flavors and aromas.

The predictions of our final models, trained on review data, hold even for blind tastings with small groups of trained tasters, as demonstrated by our ability to validate specific compounds as drivers of beer flavor and appreciation. Since adding a single compound to the extent of a noticeable difference may result in an unbalanced flavor profile, we specifically tested our identified key drivers as a combination of compounds. While this approach does not allow us to validate if a particular single compound would affect flavor and/or appreciation, our experiments do show that this combination of compounds increases consumer appreciation.

It is important to stress that, while it represents an important step forward, our approach still has several major limitations. A key weakness of the GBR model architecture is that amongst co-correlating variables, the largest main effect is consistently preferred for model building. As a result, co-correlating variables often have artificially low importance scores, both for impurity and SHAP-based methods, like we observed in the comparison to the more randomized Extra Trees models. This implies that chemicals identified as key drivers of a specific sensory feature by GBR might not be the true causative compounds, but rather co-correlate with the actual causative chemical. For example, the high importance of ethyl acetate could be (partially) attributed to the total ester content, ethanol or ethyl hexanoate (rho=0.77, rho=0.72 and rho=0.68), while ethyl phenylacetate could hide the importance of prenyl isobutyrate and ethyl benzoate (rho=0.77 and rho=0.76). Expanding our GBR model to include beer style as a parameter did not yield additional power or insight. This is likely due to style-specific chemical signatures, such as iso-alpha acids and lactic acid, that implicitly convey style information to the original model, as well as the smaller sample size per style, limiting the power to uncover style-specific patterns. This can be partly attributed to the curse of dimensionality, where the high number of parameters results in the models mainly incorporating single parameter effects, rather than complex interactions such as style-dependent effects 67 . A larger number of samples may overcome some of these limitations and offer more insight into style-specific effects. On the other hand, beer style is not a rigid scientific classification, and beers within one style often differ a lot, which further complicates the analysis of style as a model factor.

Our study is limited to beers from Belgian breweries. Although these beers cover a large portion of the beer styles available globally, some beer styles and consumer patterns may be missing, while other features might be overrepresented. For example, many Belgian ales exhibit yeast-driven flavor profiles, which is reflected in the chemical drivers of appreciation discovered by this study. In future work, expanding the scope to include diverse markets and beer styles could lead to the identification of even more drivers of appreciation and better models for special niche products that were not present in our beer set.

In addition to inherent limitations of GBR models, there are also some limitations associated with studying food aroma. Even if our chemical analyses measured most of the known aroma compounds, the total number of flavor compounds in complex foods like beer is still larger than the subset we were able to measure in this study. For example, hop-derived thiols, that influence flavor at very low concentrations, are notoriously difficult to measure in a high-throughput experiment. Moreover, consumer perception remains subjective and prone to biases that are difficult to avoid. It is also important to stress that the models are still immature and that more extensive datasets will be crucial for developing more complete models in the future. Besides more samples and parameters, our dataset does not include any demographic information about the tasters. Including such data could lead to better models that grasp external factors like age and culture. Another limitation is that our set of beers consists of high-quality end-products and lacks beers that are unfit for sale, which limits the current model in accurately predicting products that are appreciated very badly. Finally, while models could be readily applied in quality control, their use in sensory science and product development is restrained by their inability to discern causal relationships. Given that the models cannot distinguish compounds that genuinely drive consumer perception from those that merely correlate, validation experiments are essential to identify true causative compounds.

Despite the inherent limitations, dissection of our models enabled us to pinpoint specific molecules as potential drivers of beer aroma and consumer appreciation, including compounds that were unexpected and would not have been identified using standard approaches. Important drivers of beer appreciation uncovered by our models include protein levels, ethyl acetate, ethyl phenyl acetate and lactic acid. Currently, many brewers already use lactic acid to acidify their brewing water and ensure optimal pH for enzymatic activity during the mashing process. Our results suggest that adding lactic acid can also improve beer appreciation, although its individual effect remains to be tested. Interestingly, ethanol appears to be unnecessary to improve beer appreciation, both for blond beer and alcohol-free beer. Given the growing consumer interest in alcohol-free beer, with a predicted annual market growth of >7% 84 , it is relevant for brewers to know what compounds can further increase consumer appreciation of these beers. Hence, our model may readily provide avenues to further improve the flavor and consumer appreciation of both alcoholic and non-alcoholic beers, which is generally considered one of the key challenges for future beer production.

Whereas we see a direct implementation of our results for the development of superior alcohol-free beverages and other food products, our study can also serve as a stepping stone for the development of novel alcohol-containing beverages. We want to echo the growing body of scientific evidence for the negative effects of alcohol consumption, both on the individual level by the mutagenic, teratogenic and carcinogenic effects of ethanol 85 , 86 , as well as the burden on society caused by alcohol abuse and addiction. We encourage the use of our results for the production of healthier, tastier products, including novel and improved beverages with lower alcohol contents. Furthermore, we strongly discourage the use of these technologies to improve the appreciation or addictive properties of harmful substances.

The present work demonstrates that despite some important remaining hurdles, combining the latest developments in chemical analyses, sensory analysis and modern machine learning methods offers exciting avenues for food chemistry and engineering. Soon, these tools may provide solutions in quality control and recipe development, as well as new approaches to sensory science and flavor research.

Beer selection

250 commercial Belgian beers were selected to cover the broad diversity of beer styles and corresponding diversity in chemical composition and aroma. See Supplementary Fig.  S1 .

Chemical dataset

Sample preparation.

Beers within their expiration date were purchased from commercial retailers. Samples were prepared in biological duplicates at room temperature, unless explicitly stated otherwise. Bottle pressure was measured with a manual pressure device (Steinfurth Mess-Systeme GmbH) and used to calculate CO 2 concentration. The beer was poured through two filter papers (Macherey-Nagel, 500713032 MN 713 ¼) to remove carbon dioxide and prevent spontaneous foaming. Samples were then prepared for measurements by targeted Headspace-Gas Chromatography-Flame Ionization Detector/Flame Photometric Detector (HS-GC-FID/FPD), Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), colorimetric analysis, enzymatic analysis, Near-Infrared (NIR) analysis, as described in the sections below. The mean values of biological duplicates are reported for each compound.

HS-GC-FID/FPD

HS-GC-FID/FPD (Shimadzu GC 2010 Plus) was used to measure higher alcohols, acetaldehyde, esters, 4-vinyl guaicol, and sulfur compounds. Each measurement comprised 5 ml of sample pipetted into a 20 ml glass vial containing 1.75 g NaCl (VWR, 27810.295). 100 µl of 2-heptanol (Sigma-Aldrich, H3003) (internal standard) solution in ethanol (Fisher Chemical, E/0650DF/C17) was added for a final concentration of 2.44 mg/L. Samples were flushed with nitrogen for 10 s, sealed with a silicone septum, stored at −80 °C and analyzed in batches of 20.

The GC was equipped with a DB-WAXetr column (length, 30 m; internal diameter, 0.32 mm; layer thickness, 0.50 µm; Agilent Technologies, Santa Clara, CA, USA) to the FID and an HP-5 column (length, 30 m; internal diameter, 0.25 mm; layer thickness, 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) to the FPD. N 2 was used as the carrier gas. Samples were incubated for 20 min at 70 °C in the headspace autosampler (Flow rate, 35 cm/s; Injection volume, 1000 µL; Injection mode, split; Combi PAL autosampler, CTC analytics, Switzerland). The injector, FID and FPD temperatures were kept at 250 °C. The GC oven temperature was first held at 50 °C for 5 min and then allowed to rise to 80 °C at a rate of 5 °C/min, followed by a second ramp of 4 °C/min until 200 °C kept for 3 min and a final ramp of (4 °C/min) until 230 °C for 1 min. Results were analyzed with the GCSolution software version 2.4 (Shimadzu, Kyoto, Japan). The GC was calibrated with a 5% EtOH solution (VWR International) containing the volatiles under study (Supplementary Table  S7 ).

HS-SPME-GC-MS

HS-SPME-GC-MS (Shimadzu GCMS-QP-2010 Ultra) was used to measure additional volatile compounds, mainly comprising terpenoids and esters. Samples were analyzed by HS-SPME using a triphase DVB/Carboxen/PDMS 50/30 μm SPME fiber (Supelco Co., Bellefonte, PA, USA) followed by gas chromatography (Thermo Fisher Scientific Trace 1300 series, USA) coupled to a mass spectrometer (Thermo Fisher Scientific ISQ series MS) equipped with a TriPlus RSH autosampler. 5 ml of degassed beer sample was placed in 20 ml vials containing 1.75 g NaCl (VWR, 27810.295). 5 µl internal standard mix was added, containing 2-heptanol (1 g/L) (Sigma-Aldrich, H3003), 4-fluorobenzaldehyde (1 g/L) (Sigma-Aldrich, 128376), 2,3-hexanedione (1 g/L) (Sigma-Aldrich, 144169) and guaiacol (1 g/L) (Sigma-Aldrich, W253200) in ethanol (Fisher Chemical, E/0650DF/C17). Each sample was incubated at 60 °C in the autosampler oven with constant agitation. After 5 min equilibration, the SPME fiber was exposed to the sample headspace for 30 min. The compounds trapped on the fiber were thermally desorbed in the injection port of the chromatograph by heating the fiber for 15 min at 270 °C.

The GC-MS was equipped with a low polarity RXi-5Sil MS column (length, 20 m; internal diameter, 0.18 mm; layer thickness, 0.18 µm; Restek, Bellefonte, PA, USA). Injection was performed in splitless mode at 320 °C, a split flow of 9 ml/min, a purge flow of 5 ml/min and an open valve time of 3 min. To obtain a pulsed injection, a programmed gas flow was used whereby the helium gas flow was set at 2.7 mL/min for 0.1 min, followed by a decrease in flow of 20 ml/min to the normal 0.9 mL/min. The temperature was first held at 30 °C for 3 min and then allowed to rise to 80 °C at a rate of 7 °C/min, followed by a second ramp of 2 °C/min till 125 °C and a final ramp of 8 °C/min with a final temperature of 270 °C.

Mass acquisition range was 33 to 550 amu at a scan rate of 5 scans/s. Electron impact ionization energy was 70 eV. The interface and ion source were kept at 275 °C and 250 °C, respectively. A mix of linear n-alkanes (from C7 to C40, Supelco Co.) was injected into the GC-MS under identical conditions to serve as external retention index markers. Identification and quantification of the compounds were performed using an in-house developed R script as described in Goelen et al. and Reher et al. 87 , 88 (for package information, see Supplementary Table  S8 ). Briefly, chromatograms were analyzed using AMDIS (v2.71) 89 to separate overlapping peaks and obtain pure compound spectra. The NIST MS Search software (v2.0 g) in combination with the NIST2017, FFNSC3 and Adams4 libraries were used to manually identify the empirical spectra, taking into account the expected retention time. After background subtraction and correcting for retention time shifts between samples run on different days based on alkane ladders, compound elution profiles were extracted and integrated using a file with 284 target compounds of interest, which were either recovered in our identified AMDIS list of spectra or were known to occur in beer. Compound elution profiles were estimated for every peak in every chromatogram over a time-restricted window using weighted non-negative least square analysis after which peak areas were integrated 87 , 88 . Batch effect correction was performed by normalizing against the most stable internal standard compound, 4-fluorobenzaldehyde. Out of all 284 target compounds that were analyzed, 167 were visually judged to have reliable elution profiles and were used for final analysis.

Discrete photometric and enzymatic analysis

Discrete photometric and enzymatic analysis (Thermo Scientific TM Gallery TM Plus Beermaster Discrete Analyzer) was used to measure acetic acid, ammonia, beta-glucan, iso-alpha acids, color, sugars, glycerol, iron, pH, protein, and sulfite. 2 ml of sample volume was used for the analyses. Information regarding the reagents and standard solutions used for analyses and calibrations is included in Supplementary Table  S7 and Supplementary Table  S9 .

NIR analyses

NIR analysis (Anton Paar Alcolyzer Beer ME System) was used to measure ethanol. Measurements comprised 50 ml of sample, and a 10% EtOH solution was used for calibration.

Correlation calculations

Pairwise Spearman Rank correlations were calculated between all chemical properties.

Sensory dataset

Trained panel.

Our trained tasting panel consisted of volunteers who gave prior verbal informed consent. All compounds used for the validation experiment were of food-grade quality. The tasting sessions were approved by the Social and Societal Ethics Committee of the KU Leuven (G-2022-5677-R2(MAR)). All online reviewers agreed to the Terms and Conditions of the RateBeer website.

Sensory analysis was performed according to the American Society of Brewing Chemists (ASBC) Sensory Analysis Methods 90 . 30 volunteers were screened through a series of triangle tests. The sixteen most sensitive and consistent tasters were retained as taste panel members. The resulting panel was diverse in age [22–42, mean: 29], sex [56% male] and nationality [7 different countries]. The panel developed a consensus vocabulary to describe beer aroma, taste and mouthfeel. Panelists were trained to identify and score 50 different attributes, using a 7-point scale to rate attributes’ intensity. The scoring sheet is included as Supplementary Data  3 . Sensory assessments took place between 10–12 a.m. The beers were served in black-colored glasses. Per session, between 5 and 12 beers of the same style were tasted at 12 °C to 16 °C. Two reference beers were added to each set and indicated as ‘Reference 1 & 2’, allowing panel members to calibrate their ratings. Not all panelists were present at every tasting. Scores were scaled by standard deviation and mean-centered per taster. Values are represented as z-scores and clustered by Euclidean distance. Pairwise Spearman correlations were calculated between taste and aroma sensory attributes. Panel consistency was evaluated by repeating samples on different sessions and performing ANOVA to identify differences, using the ‘stats’ package (v4.2.2) in R (for package information, see Supplementary Table  S8 ).

Online reviews from a public database

The ‘scrapy’ package in Python (v3.6) (for package information, see Supplementary Table  S8 ). was used to collect 232,288 online reviews (mean=922, min=6, max=5343) from RateBeer, an online beer review database. Each review entry comprised 5 numerical scores (appearance, aroma, taste, palate and overall quality) and an optional review text. The total number of reviews per reviewer was collected separately. Numerical scores were scaled and centered per rater, and mean scores were calculated per beer.

For the review texts, the language was estimated using the packages ‘langdetect’ and ‘langid’ in Python. Reviews that were classified as English by both packages were kept. Reviewers with fewer than 100 entries overall were discarded. 181,025 reviews from >6000 reviewers from >40 countries remained. Text processing was done using the ‘nltk’ package in Python. Texts were corrected for slang and misspellings; proper nouns and rare words that are relevant to the beer context were specified and kept as-is (‘Chimay’,’Lambic’, etc.). A dictionary of semantically similar sensorial terms, for example ‘floral’ and ‘flower’, was created and collapsed together into one term. Words were stemmed and lemmatized to avoid identifying words such as ‘acid’ and ‘acidity’ as separate terms. Numbers and punctuation were removed.

Sentences from up to 50 randomly chosen reviews per beer were manually categorized according to the aspect of beer they describe (appearance, aroma, taste, palate, overall quality—not to be confused with the 5 numerical scores described above) or flagged as irrelevant if they contained no useful information. If a beer contained fewer than 50 reviews, all reviews were manually classified. This labeled data set was used to train a model that classified the rest of the sentences for all beers 91 . Sentences describing taste and aroma were extracted, and term frequency–inverse document frequency (TFIDF) was implemented to calculate enrichment scores for sensorial words per beer.

The sex of the tasting subject was not considered when building our sensory database. Instead, results from different panelists were averaged, both for our trained panel (56% male, 44% female) and the RateBeer reviews (70% male, 30% female for RateBeer as a whole).

Beer price collection and processing

Beer prices were collected from the following stores: Colruyt, Delhaize, Total Wine, BeerHawk, The Belgian Beer Shop, The Belgian Shop, and Beer of Belgium. Where applicable, prices were converted to Euros and normalized per liter. Spearman correlations were calculated between these prices and mean overall appreciation scores from RateBeer and the taste panel, respectively.

Pairwise Spearman Rank correlations were calculated between all sensory properties.

Machine learning models

Predictive modeling of sensory profiles from chemical data.

Regression models were constructed to predict (a) trained panel scores for beer flavors and quality from beer chemical profiles and (b) public reviews’ appreciation scores from beer chemical profiles. Z-scores were used to represent sensory attributes in both data sets. Chemical properties with log-normal distributions (Shapiro-Wilk test, p  <  0.05 ) were log-transformed. Missing chemical measurements (0.1% of all data) were replaced with mean values per attribute. Observations from 250 beers were randomly separated into a training set (70%, 175 beers) and a test set (30%, 75 beers), stratified per beer style. Chemical measurements (p = 231) were normalized based on the training set average and standard deviation. In total, three linear regression-based models: linear regression with first-order interaction terms (LR), lasso regression with first-order interaction terms (Lasso) and partial least squares regression (PLSR); five decision tree models, Adaboost regressor (ABR), Extra Trees (ET), Gradient Boosting regressor (GBR), Random Forest (RF) and XGBoost regressor (XGBR); one support vector machine model (SVR) and one artificial neural network model (ANN) were trained. The models were implemented using the ‘scikit-learn’ package (v1.2.2) and ‘xgboost’ package (v1.7.3) in Python (v3.9.16). Models were trained, and hyperparameters optimized, using five-fold cross-validated grid search with the coefficient of determination (R 2 ) as the evaluation metric. The ANN (scikit-learn’s MLPRegressor) was optimized using Bayesian Tree-Structured Parzen Estimator optimization with the ‘Optuna’ Python package (v3.2.0). Individual models were trained per attribute, and a multi-output model was trained on all attributes simultaneously.

Model dissection

GBR was found to outperform other methods, resulting in models with the highest average R 2 values in both trained panel and public review data sets. Impurity-based rankings of the most important predictors for each predicted sensorial trait were obtained using the ‘scikit-learn’ package. To observe the relationships between these chemical properties and their predicted targets, partial dependence plots (PDP) were constructed for the six most important predictors of consumer appreciation 74 , 75 .

The ‘SHAP’ package in Python (v0.41.0) was implemented to provide an alternative ranking of predictor importance and to visualize the predictors’ effects as a function of their concentration 68 .

Validation of causal chemical properties

To validate the effects of the most important model features on predicted sensory attributes, beers were spiked with the chemical compounds identified by the models and descriptive sensory analyses were carried out according to the American Society of Brewing Chemists (ASBC) protocol 90 .

Compound spiking was done 30 min before tasting. Compounds were spiked into fresh beer bottles, that were immediately resealed and inverted three times. Fresh bottles of beer were opened for the same duration, resealed, and inverted thrice, to serve as controls. Pairs of spiked samples and controls were served simultaneously, chilled and in dark glasses as outlined in the Trained panel section above. Tasters were instructed to select the glass with the higher flavor intensity for each attribute (directional difference test 92 ) and to select the glass they prefer.

The final concentration after spiking was equal to the within-style average, after normalizing by ethanol concentration. This was done to ensure balanced flavor profiles in the final spiked beer. The same methods were applied to improve a non-alcoholic beer. Compounds were the following: ethyl acetate (Merck KGaA, W241415), ethyl hexanoate (Merck KGaA, W243906), isoamyl acetate (Merck KGaA, W205508), phenethyl acetate (Merck KGaA, W285706), ethanol (96%, Colruyt), glycerol (Merck KGaA, W252506), lactic acid (Merck KGaA, 261106).

Significant differences in preference or perceived intensity were determined by performing the two-sided binomial test on each attribute.

Reporting summary

Further information on research design is available in the  Nature Portfolio Reporting Summary linked to this article.

Data availability

The data that support the findings of this work are available in the Supplementary Data files and have been deposited to Zenodo under accession code 10653704 93 . The RateBeer scores data are under restricted access, they are not publicly available as they are property of RateBeer (ZX Ventures, USA). Access can be obtained from the authors upon reasonable request and with permission of RateBeer (ZX Ventures, USA).  Source data are provided with this paper.

Code availability

The code for training the machine learning models, analyzing the models, and generating the figures has been deposited to Zenodo under accession code 10653704 93 .

Tieman, D. et al. A chemical genetic roadmap to improved tomato flavor. Science 355 , 391–394 (2017).

Article   ADS   CAS   PubMed   Google Scholar  

Plutowska, B. & Wardencki, W. Application of gas chromatography–olfactometry (GC–O) in analysis and quality assessment of alcoholic beverages – A review. Food Chem. 107 , 449–463 (2008).

Article   CAS   Google Scholar  

Legin, A., Rudnitskaya, A., Seleznev, B. & Vlasov, Y. Electronic tongue for quality assessment of ethanol, vodka and eau-de-vie. Anal. Chim. Acta 534 , 129–135 (2005).

Loutfi, A., Coradeschi, S., Mani, G. K., Shankar, P. & Rayappan, J. B. B. Electronic noses for food quality: A review. J. Food Eng. 144 , 103–111 (2015).

Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. & Barabási, A.-L. Flavor network and the principles of food pairing. Sci. Rep. 1 , 196 (2011).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Bartoshuk, L. M. & Klee, H. J. Better fruits and vegetables through sensory analysis. Curr. Biol. 23 , R374–R378 (2013).

Article   CAS   PubMed   Google Scholar  

Piggott, J. R. Design questions in sensory and consumer science. Food Qual. Prefer. 3293 , 217–220 (1995).

Article   Google Scholar  

Kermit, M. & Lengard, V. Assessing the performance of a sensory panel-panellist monitoring and tracking. J. Chemom. 19 , 154–161 (2005).

Cook, D. J., Hollowood, T. A., Linforth, R. S. T. & Taylor, A. J. Correlating instrumental measurements of texture and flavour release with human perception. Int. J. Food Sci. Technol. 40 , 631–641 (2005).

Chinchanachokchai, S., Thontirawong, P. & Chinchanachokchai, P. A tale of two recommender systems: The moderating role of consumer expertise on artificial intelligence based product recommendations. J. Retail. Consum. Serv. 61 , 1–12 (2021).

Ross, C. F. Sensory science at the human-machine interface. Trends Food Sci. Technol. 20 , 63–72 (2009).

Chambers, E. IV & Koppel, K. Associations of volatile compounds with sensory aroma and flavor: The complex nature of flavor. Molecules 18 , 4887–4905 (2013).

Pinu, F. R. Metabolomics—The new frontier in food safety and quality research. Food Res. Int. 72 , 80–81 (2015).

Danezis, G. P., Tsagkaris, A. S., Brusic, V. & Georgiou, C. A. Food authentication: state of the art and prospects. Curr. Opin. Food Sci. 10 , 22–31 (2016).

Shepherd, G. M. Smell images and the flavour system in the human brain. Nature 444 , 316–321 (2006).

Meilgaard, M. C. Prediction of flavor differences between beers from their chemical composition. J. Agric. Food Chem. 30 , 1009–1017 (1982).

Xu, L. et al. Widespread receptor-driven modulation in peripheral olfactory coding. Science 368 , eaaz5390 (2020).

Kupferschmidt, K. Following the flavor. Science 340 , 808–809 (2013).

Billesbølle, C. B. et al. Structural basis of odorant recognition by a human odorant receptor. Nature 615 , 742–749 (2023).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Smith, B. Perspective: Complexities of flavour. Nature 486 , S6–S6 (2012).

Pfister, P. et al. Odorant receptor inhibition is fundamental to odor encoding. Curr. Biol. 30 , 2574–2587 (2020).

Moskowitz, H. W., Kumaraiah, V., Sharma, K. N., Jacobs, H. L. & Sharma, S. D. Cross-cultural differences in simple taste preferences. Science 190 , 1217–1218 (1975).

Eriksson, N. et al. A genetic variant near olfactory receptor genes influences cilantro preference. Flavour 1 , 22 (2012).

Ferdenzi, C. et al. Variability of affective responses to odors: Culture, gender, and olfactory knowledge. Chem. Senses 38 , 175–186 (2013).

Article   PubMed   Google Scholar  

Lawless, H. T. & Heymann, H. Sensory evaluation of food: Principles and practices. (Springer, New York, NY). https://doi.org/10.1007/978-1-4419-6488-5 (2010).

Colantonio, V. et al. Metabolomic selection for enhanced fruit flavor. Proc. Natl. Acad. Sci. 119 , e2115865119 (2022).

Fritz, F., Preissner, R. & Banerjee, P. VirtualTaste: a web server for the prediction of organoleptic properties of chemical compounds. Nucleic Acids Res 49 , W679–W684 (2021).

Tuwani, R., Wadhwa, S. & Bagler, G. BitterSweet: Building machine learning models for predicting the bitter and sweet taste of small molecules. Sci. Rep. 9 , 1–13 (2019).

Dagan-Wiener, A. et al. Bitter or not? BitterPredict, a tool for predicting taste from chemical structure. Sci. Rep. 7 , 1–13 (2017).

Pallante, L. et al. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Sci. Rep. 12 , 1–11 (2022).

Malavolta, M. et al. A survey on computational taste predictors. Eur. Food Res. Technol. 248 , 2215–2235 (2022).

Lee, B. K. et al. A principal odor map unifies diverse tasks in olfactory perception. Science 381 , 999–1006 (2023).

Mayhew, E. J. et al. Transport features predict if a molecule is odorous. Proc. Natl. Acad. Sci. 119 , e2116576119 (2022).

Niu, Y. et al. Sensory evaluation of the synergism among ester odorants in light aroma-type liquor by odor threshold, aroma intensity and flash GC electronic nose. Food Res. Int. 113 , 102–114 (2018).

Yu, P., Low, M. Y. & Zhou, W. Design of experiments and regression modelling in food flavour and sensory analysis: A review. Trends Food Sci. Technol. 71 , 202–215 (2018).

Oladokun, O. et al. The impact of hop bitter acid and polyphenol profiles on the perceived bitterness of beer. Food Chem. 205 , 212–220 (2016).

Linforth, R., Cabannes, M., Hewson, L., Yang, N. & Taylor, A. Effect of fat content on flavor delivery during consumption: An in vivo model. J. Agric. Food Chem. 58 , 6905–6911 (2010).

Guo, S., Na Jom, K. & Ge, Y. Influence of roasting condition on flavor profile of sunflower seeds: A flavoromics approach. Sci. Rep. 9 , 11295 (2019).

Ren, Q. et al. The changes of microbial community and flavor compound in the fermentation process of Chinese rice wine using Fagopyrum tataricum grain as feedstock. Sci. Rep. 9 , 3365 (2019).

Hastie, T., Friedman, J. & Tibshirani, R. The Elements of Statistical Learning. (Springer, New York, NY). https://doi.org/10.1007/978-0-387-21606-5 (2001).

Dietz, C., Cook, D., Huismann, M., Wilson, C. & Ford, R. The multisensory perception of hop essential oil: a review. J. Inst. Brew. 126 , 320–342 (2020).

CAS   Google Scholar  

Roncoroni, Miguel & Verstrepen, Kevin Joan. Belgian Beer: Tested and Tasted. (Lannoo, 2018).

Meilgaard, M. Flavor chemistry of beer: Part II: Flavor and threshold of 239 aroma volatiles. in (1975).

Bokulich, N. A. & Bamforth, C. W. The microbiology of malting and brewing. Microbiol. Mol. Biol. Rev. MMBR 77 , 157–172 (2013).

Dzialo, M. C., Park, R., Steensels, J., Lievens, B. & Verstrepen, K. J. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 41 , S95–S128 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Datta, A. et al. Computer-aided food engineering. Nat. Food 3 , 894–904 (2022).

American Society of Brewing Chemists. Beer Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A.).

Olaniran, A. O., Hiralal, L., Mokoena, M. P. & Pillay, B. Flavour-active volatile compounds in beer: production, regulation and control. J. Inst. Brew. 123 , 13–23 (2017).

Verstrepen, K. J. et al. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Meilgaard, M. C. Flavour chemistry of beer. part I: flavour interaction between principal volatiles. Master Brew. Assoc. Am. Tech. Q 12 , 107–117 (1975).

Briggs, D. E., Boulton, C. A., Brookes, P. A. & Stevens, R. Brewing 227–254. (Woodhead Publishing). https://doi.org/10.1533/9781855739062.227 (2004).

Bossaert, S., Crauwels, S., De Rouck, G. & Lievens, B. The power of sour - A review: Old traditions, new opportunities. BrewingScience 72 , 78–88 (2019).

Google Scholar  

Verstrepen, K. J. et al. Flavor active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 96 , 110–118 (2003).

Snauwaert, I. et al. Microbial diversity and metabolite composition of Belgian red-brown acidic ales. Int. J. Food Microbiol. 221 , 1–11 (2016).

Spitaels, F. et al. The microbial diversity of traditional spontaneously fermented lambic beer. PLoS ONE 9 , e95384 (2014).

Blanco, C. A., Andrés-Iglesias, C. & Montero, O. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 56 , 1379–1388 (2016).

Jackowski, M. & Trusek, A. Non-Alcohol. beer Prod. – Overv. 20 , 32–38 (2018).

Takoi, K. et al. The contribution of geraniol metabolism to the citrus flavour of beer: Synergy of geraniol and β-citronellol under coexistence with excess linalool. J. Inst. Brew. 116 , 251–260 (2010).

Kroeze, J. H. & Bartoshuk, L. M. Bitterness suppression as revealed by split-tongue taste stimulation in humans. Physiol. Behav. 35 , 779–783 (1985).

Mennella, J. A. et al. A spoonful of sugar helps the medicine go down”: Bitter masking bysucrose among children and adults. Chem. Senses 40 , 17–25 (2015).

Wietstock, P., Kunz, T., Perreira, F. & Methner, F.-J. Metal chelation behavior of hop acids in buffered model systems. BrewingScience 69 , 56–63 (2016).

Sancho, D., Blanco, C. A., Caballero, I. & Pascual, A. Free iron in pale, dark and alcohol-free commercial lager beers. J. Sci. Food Agric. 91 , 1142–1147 (2011).

Rodrigues, H. & Parr, W. V. Contribution of cross-cultural studies to understanding wine appreciation: A review. Food Res. Int. 115 , 251–258 (2019).

Korneva, E. & Blockeel, H. Towards better evaluation of multi-target regression models. in ECML PKDD 2020 Workshops (eds. Koprinska, I. et al.) 353–362 (Springer International Publishing, Cham, 2020). https://doi.org/10.1007/978-3-030-65965-3_23 .

Gastón Ares. Mathematical and Statistical Methods in Food Science and Technology. (Wiley, 2013).

Grinsztajn, L., Oyallon, E. & Varoquaux, G. Why do tree-based models still outperform deep learning on tabular data? Preprint at http://arxiv.org/abs/2207.08815 (2022).

Gries, S. T. Statistics for Linguistics with R: A Practical Introduction. in Statistics for Linguistics with R (De Gruyter Mouton, 2021). https://doi.org/10.1515/9783110718256 .

Lundberg, S. M. et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2 , 56–67 (2020).

Ickes, C. M. & Cadwallader, K. R. Effects of ethanol on flavor perception in alcoholic beverages. Chemosens. Percept. 10 , 119–134 (2017).

Kato, M. et al. Influence of high molecular weight polypeptides on the mouthfeel of commercial beer. J. Inst. Brew. 127 , 27–40 (2021).

Wauters, R. et al. Novel Saccharomyces cerevisiae variants slow down the accumulation of staling aldehydes and improve beer shelf-life. Food Chem. 398 , 1–11 (2023).

Li, H., Jia, S. & Zhang, W. Rapid determination of low-level sulfur compounds in beer by headspace gas chromatography with a pulsed flame photometric detector. J. Am. Soc. Brew. Chem. 66 , 188–191 (2008).

Dercksen, A., Laurens, J., Torline, P., Axcell, B. C. & Rohwer, E. Quantitative analysis of volatile sulfur compounds in beer using a membrane extraction interface. J. Am. Soc. Brew. Chem. 54 , 228–233 (1996).

Molnar, C. Interpretable Machine Learning: A Guide for Making Black-Box Models Interpretable. (2020).

Zhao, Q. & Hastie, T. Causal interpretations of black-box models. J. Bus. Econ. Stat. Publ. Am. Stat. Assoc. 39 , 272–281 (2019).

Article   MathSciNet   Google Scholar  

Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning. (Springer, 2019).

Labrado, D. et al. Identification by NMR of key compounds present in beer distillates and residual phases after dealcoholization by vacuum distillation. J. Sci. Food Agric. 100 , 3971–3978 (2020).

Lusk, L. T., Kay, S. B., Porubcan, A. & Ryder, D. S. Key olfactory cues for beer oxidation. J. Am. Soc. Brew. Chem. 70 , 257–261 (2012).

Gonzalez Viejo, C., Torrico, D. D., Dunshea, F. R. & Fuentes, S. Development of artificial neural network models to assess beer acceptability based on sensory properties using a robotic pourer: A comparative model approach to achieve an artificial intelligence system. Beverages 5 , 33 (2019).

Gonzalez Viejo, C., Fuentes, S., Torrico, D. D., Godbole, A. & Dunshea, F. R. Chemical characterization of aromas in beer and their effect on consumers liking. Food Chem. 293 , 479–485 (2019).

Gilbert, J. L. et al. Identifying breeding priorities for blueberry flavor using biochemical, sensory, and genotype by environment analyses. PLOS ONE 10 , 1–21 (2015).

Goulet, C. et al. Role of an esterase in flavor volatile variation within the tomato clade. Proc. Natl. Acad. Sci. 109 , 19009–19014 (2012).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Borisov, V. et al. Deep Neural Networks and Tabular Data: A Survey. IEEE Trans. Neural Netw. Learn. Syst. 1–21 https://doi.org/10.1109/TNNLS.2022.3229161 (2022).

Statista. Statista Consumer Market Outlook: Beer - Worldwide.

Seitz, H. K. & Stickel, F. Molecular mechanisms of alcoholmediated carcinogenesis. Nat. Rev. Cancer 7 , 599–612 (2007).

Voordeckers, K. et al. Ethanol exposure increases mutation rate through error-prone polymerases. Nat. Commun. 11 , 3664 (2020).

Goelen, T. et al. Bacterial phylogeny predicts volatile organic compound composition and olfactory response of an aphid parasitoid. Oikos 129 , 1415–1428 (2020).

Article   ADS   Google Scholar  

Reher, T. et al. Evaluation of hop (Humulus lupulus) as a repellent for the management of Drosophila suzukii. Crop Prot. 124 , 104839 (2019).

Stein, S. E. An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10 , 770–781 (1999).

American Society of Brewing Chemists. Sensory Analysis Methods. (American Society of Brewing Chemists, St. Paul, MN, U.S.A., 1992).

McAuley, J., Leskovec, J. & Jurafsky, D. Learning Attitudes and Attributes from Multi-Aspect Reviews. Preprint at https://doi.org/10.48550/arXiv.1210.3926 (2012).

Meilgaard, M. C., Carr, B. T. & Carr, B. T. Sensory Evaluation Techniques. (CRC Press, Boca Raton). https://doi.org/10.1201/b16452 (2014).

Schreurs, M. et al. Data from: Predicting and improving complex beer flavor through machine learning. Zenodo https://doi.org/10.5281/zenodo.10653704 (2024).

Download references

Acknowledgements

We thank all lab members for their discussions and thank all tasting panel members for their contributions. Special thanks go out to Dr. Karin Voordeckers for her tremendous help in proofreading and improving the manuscript. M.S. was supported by a Baillet-Latour fellowship, L.C. acknowledges financial support from KU Leuven (C16/17/006), F.A.T. was supported by a PhD fellowship from FWO (1S08821N). Research in the lab of K.J.V. is supported by KU Leuven, FWO, VIB, VLAIO and the Brewing Science Serves Health Fund. Research in the lab of T.W. is supported by FWO (G.0A51.15) and KU Leuven (C16/17/006).

Author information

These authors contributed equally: Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni.

Authors and Affiliations

VIB—KU Leuven Center for Microbiology, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Michiel Schreurs, Supinya Piampongsant, Miguel Roncoroni, Lloyd Cool, Beatriz Herrera-Malaver, Florian A. Theßeling & Kevin J. Verstrepen

CMPG Laboratory of Genetics and Genomics, KU Leuven, Gaston Geenslaan 1, B-3001, Leuven, Belgium

Leuven Institute for Beer Research (LIBR), Gaston Geenslaan 1, B-3001, Leuven, Belgium

Laboratory of Socioecology and Social Evolution, KU Leuven, Naamsestraat 59, B-3000, Leuven, Belgium

Lloyd Cool, Christophe Vanderaa & Tom Wenseleers

VIB Bioinformatics Core, VIB, Rijvisschestraat 120, B-9052, Ghent, Belgium

Łukasz Kreft & Alexander Botzki

AB InBev SA/NV, Brouwerijplein 1, B-3000, Leuven, Belgium

Philippe Malcorps & Luk Daenen

You can also search for this author in PubMed   Google Scholar

Contributions

S.P., M.S. and K.J.V. conceived the experiments. S.P., M.S. and K.J.V. designed the experiments. S.P., M.S., M.R., B.H. and F.A.T. performed the experiments. S.P., M.S., L.C., C.V., L.K., A.B., P.M., L.D., T.W. and K.J.V. contributed analysis ideas. S.P., M.S., L.C., C.V., T.W. and K.J.V. analyzed the data. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Kevin J. Verstrepen .

Ethics declarations

Competing interests.

K.J.V. is affiliated with bar.on. The other authors declare no competing interests.

Peer review

Peer review information.

Nature Communications thanks Florian Bauer, Andrew John Macintosh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, description of additional supplementary files, supplementary data 1, supplementary data 2, supplementary data 3, supplementary data 4, supplementary data 5, supplementary data 6, supplementary data 7, reporting summary, source data, source data, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Schreurs, M., Piampongsant, S., Roncoroni, M. et al. Predicting and improving complex beer flavor through machine learning. Nat Commun 15 , 2368 (2024). https://doi.org/10.1038/s41467-024-46346-0

Download citation

Received : 30 October 2023

Accepted : 21 February 2024

Published : 26 March 2024

DOI : https://doi.org/10.1038/s41467-024-46346-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

articles quantitative research

Study Tracks Shifts in Student Mental Health During College

Dartmouth study followed 200 students all four years, including through the pandemic.

Andrew Campbell seated by a window in a blue t-shirt and glasses

Phone App Uses AI to Detect Depression From Facial Cues

A four-year study by Dartmouth researchers captures the most in-depth data yet on how college students’ self-esteem and mental health fluctuates during their four years in academia, identifying key populations and stressors that the researchers say administrators could target to improve student well-being. 

The study also provides among the first real-time accounts of how the coronavirus pandemic affected students’ behavior and mental health. The stress and uncertainty of COVID-19 resulted in long-lasting behavioral changes that persisted as a “new normal” even as the pandemic diminished, including students feeling more stressed, less socially engaged, and sleeping more.

The researchers tracked more than 200 Dartmouth undergraduates in the classes of 2021 and 2022 for all four years of college. Students volunteered to let a specially developed app called StudentLife tap into the sensors that are built into smartphones. The app cataloged their daily physical and social activity, how long they slept, their location and travel, the time they spent on their phone, and how often they listened to music or watched videos. Students also filled out weekly behavioral surveys, and selected students gave post-study interviews. 

The study—which is the longest mobile-sensing study ever conducted—is published in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies .

The researchers will present it at the Association of Computing Machinery’s UbiComp/ISWC 2024 conference in Melbourne, Australia, in October. 

These sorts of tools will have a tremendous impact on projecting forward and developing much more data-driven ways to intervene and respond exactly when students need it most.

The team made their anonymized data set publicly available —including self-reports, surveys, and phone-sensing and brain-imaging data—to help advance research into the mental health of students during their college years. 

Andrew Campbell , the paper’s senior author and Dartmouth’s Albert Bradley 1915 Third Century Professor of Computer Science, says that the study’s extensive data reinforces the importance of college and university administrators across the country being more attuned to how and when students’ mental well-being changes during the school year.

“For the first time, we’ve produced granular data about the ebb and flow of student mental health. It’s incredibly dynamic—there’s nothing that’s steady state through the term, let alone through the year,” he says. “These sorts of tools will have a tremendous impact on projecting forward and developing much more data-driven ways to intervene and respond exactly when students need it most.”

First-year and female students are especially at risk for high anxiety and low self-esteem, the study finds. Among first-year students, self-esteem dropped to its lowest point in the first weeks of their transition from high school to college but rose steadily every semester until it was about 10% higher by graduation.

“We can see that students came out of high school with a certain level of self-esteem that dropped off to the lowest point of the four years. Some said they started to experience ‘imposter syndrome’ from being around other high-performing students,” Campbell says. “As the years progress, though, we can draw a straight line from low to high as their self-esteem improves. I think we would see a similar trend class over class. To me, that’s a very positive thing.”

Female students—who made up 60% of study participants—experienced on average 5% greater stress levels and 10% lower self-esteem than male students. More significantly, the data show that female students tended to be less active, with male students walking 37% more often.

Sophomores were 40% more socially active compared to their first year, the researchers report. But these students also reported feeling 13% more stressed during their second year than during their first year as their workload increased, they felt pressure to socialize, or as first-year social groups dispersed.

One student in a sorority recalled that having pre-arranged activities “kind of adds stress as I feel like I should be having fun because everyone tells me that it is fun.” Another student noted that after the first year, “students have more access to the whole campus and that is when you start feeling excluded from things.” 

In a novel finding, the researchers identify an “anticipatory stress spike” of 17% experienced in the last two weeks of summer break. While still lower than mid-academic year stress, the spike was consistent across different summers.

In post-study interviews, some students pointed to returning to campus early for team sports as a source of stress. Others specified reconnecting with family and high school friends during their first summer home, saying they felt “a sense of leaving behind the comfort and familiarity of these long-standing friendships” as the break ended, the researchers report. 

“This is a foundational study,” says Subigya Nepal , first author of the study and a PhD candidate in Campbell’s research group. “It has more real-time granular data than anything we or anyone else has provided before. We don’t know yet how it will translate to campuses nationwide, but it can be a template for getting the conversation going.”

The depth and accuracy of the study data suggest that mobile-sensing software could eventually give universities the ability to create proactive mental-health policies specific to certain student populations and times of year, Campbell says.

For example, a paper Campbell’s research group published in 2022 based on StudentLife data showed that first-generation students experienced lower self-esteem and higher levels of depression than other students throughout their four years of college.

“We will be able to look at campus in much more nuanced ways than waiting for the results of an annual mental health study and then developing policy,” Campbell says. “We know that Dartmouth is a small and very tight-knit campus community. But if we applied these same methods to a college with similar attributes, I believe we would find very similar trends.”

Weathering the pandemic

When students returned home at the start of the coronavirus pandemic, the researchers found that self-esteem actually increased during the pandemic by 5% overall and by another 6% afterward when life returned closer to what it was before. One student suggested in their interview that getting older came with more confidence. Others indicated that being home led to them spending more time with friends talking on the phone, on social media, or streaming movies together. 

The data show that phone usage—measured by the duration a phone was unlocked—indeed increased by nearly 33 minutes, or 19%, during the pandemic, while time spent in physical activity dropped by 52 minutes, or 27%. By 2022, phone usage fell from its pandemic peak to just above pre-pandemic levels, while engagement in physical activity had recovered to exceed the pre-pandemic period by three minutes. 

Despite reporting higher self-esteem, students’ feelings of stress increased by more than 10% during the pandemic. By the end of the study in June 2022, stress had fallen by less than 2% of its pandemic peak, indicating that the experience had a lasting impact on student well-being, the researchers report. 

In early 2021, as students returned to campus, their reunion with friends and community was tempered by an overwhelming concern about the still-rampant coronavirus. “There was the first outbreak in winter 2021 and that was terrifying,” one student recalls. Another student adds: “You could be put into isolation for a long time even if you did not have COVID. Everyone was afraid to contact-trace anyone else in case they got mad at each other.”

Female students were especially concerned about the coronavirus, on average 13% more than male students. “Even though the girls might have been hanging out with each other more, they are more aware of the impact,” one female student reported. “I actually had COVID and exposed some friends of mine. All the girls that I told tested as they were worried. They were continually checking up to make sure that they did not have it and take it home to their family.”

Students still learning remotely had social levels 16% higher than students on campus, who engaged in activity an average of 10% less often than when they were learning from home. However, on-campus students used their phones 47% more often. When interviewed after the study, these students reported spending extended periods of time video-calling or streaming movies with friends and family.

Social activity and engagement had not yet returned to pre-pandemic levels by the end of the study in June 2022, recovering by a little less than 3% after a nearly 10% drop during the pandemic. Similarly, the pandemic correlates with students sticking closer to home, with their distance traveled nearly cut in half during the pandemic and holding at that level since then.

Campbell and several of his fellow researchers are now developing a smartphone app known as MoodCapture that uses artificial intelligence paired with facial-image processing software to reliably detect the onset of depression before the user even knows something is wrong.

Morgan Kelly can be reached at [email protected] .

  • Mental Health and Wellness
  • Innovation and Impact
  • Arts and Sciences
  • Class of 2021
  • Class of 2022
  • Department of Computer Science
  • Guarini School of Graduate and Advanced Studies
  • Mental Health

A Q&A With Film Critic and Theorist Vinzenz Hediger

Portrait of Montgomery Fellow Vinzenz Hediger

After a Year of Turmoil, Harvard’s Applications Drop

IMAGES

  1. 10 Easy Steps to Find a Quantitative Article

    articles quantitative research

  2. (PDF) Quantitative Research Method

    articles quantitative research

  3. Lesson 2- The importance of Quantitative Research across fields-2.pdf

    articles quantitative research

  4. How to Read a Quantitative Research Article

    articles quantitative research

  5. Tips on Making a Successful Quantitative Research

    articles quantitative research

  6. Quantitative Research: The Ultimate Guide

    articles quantitative research

VIDEO

  1. Quantitative research process

  2. Quantitative Research Paper Review

  3. Quantitative Research

  4. Quantitative Research, Types and Examples Latest

  5. Quantitative Research

  6. Lecture 41: Quantitative Research

COMMENTS

  1. A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  2. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  3. Recent quantitative research on determinants of health in high ...

    Background Identifying determinants of health and understanding their role in health production constitutes an important research theme. We aimed to document the state of recent multi-country research on this theme in the literature. Methods We followed the PRISMA-ScR guidelines to systematically identify, triage and review literature (January 2013—July 2019). We searched for studies that ...

  4. Quantitative Research

    Quantitative research is relatively uncommon in socio-legal studies, which tend, on the whole, to make use of qualitative methodology or take a mixed methodological approach to empirical research. One exception to this was a large-scale randomised telephone survey carried out in the late 1990s in the United Kingdom. This produced some ...

  5. Advances in quantitative research within the psychological sciences

    The current Editorial presents an overview of the special issue, and describes the underlying, translational issues embedded within the issue. We highlight three main themes that emerged, and describe how this work will help to fuel the future directions of quantitative-based research within the Psychological Sciences.

  6. Quantitative Research

    Quantitative research methods are concerned with the planning, design, and implementation of strategies to collect and analyze data. Descartes, the seventeenth-century philosopher, suggested that how the results are achieved is often more important than the results themselves, as the journey taken along the research path is a journey of discovery. . High-quality quantitative research is ...

  7. Deeper than Wordplay: A Systematic Review of Critical Quantitative

    We share how critical quantitative approaches are definite shifts within the quantitative research paradigm, highlight relevant assumptions, and share strategies and future directions for applied practice in this emergent field. Get full access to this article. View all access and purchase options for this article.

  8. Quantitative and Qualitative Research

    What is Quantitative Research? Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns.Quantitative research gathers a range of numeric data.

  9. Quantifying and addressing the prevalence and bias of study ...

    By design: Planning research on higher education. By design: Planning research on higher education. (Harvard University Press, 1990). Ioannidis, J. P. A. Why most published research findings are ...

  10. Quantitative research

    Quantitative research is a research strategy that focuses on quantifying the collection and analysis of data. It is formed from a deductive approach where emphasis is placed on the testing of theory, shaped by empiricist and positivist philosophies.. Associated with the natural, applied, formal, and social sciences this research strategy promotes the objective empirical investigation of ...

  11. Quantitative Research Excellence: Study Design and Reliable and Valid

    Quantitative Research for the Qualitative Researcher. 2014. SAGE Knowledge. Book chapter . Issues in Validity and Reliability. Show details Hide details. Daniel J. Boudah. Conducting Educational Research: Guide to Completing a Major Project. 2011. SAGE Knowledge. Entry . Quantitative Research.

  12. All Quantitative research articles

    Moles and titrations. 5 January 2015. Dorothy Warren describes some of the difficulties with teaching this topic and shows how you can help your students to master aspects of quantitative chemistry. Previous. 1. 2. Next. All Quantitative research articles in RSC Education.

  13. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  14. What is Quantitative Research? Definition, Methods, Types, and Examples

    Quantitative research is the process of collecting and analyzing numerical data to describe, predict, or control variables of interest. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations. The purpose of quantitative research is to test a predefined ...

  15. Critical Quantitative Literacy: An Educational Foundation for Critical

    Quantitative research in the social sciences is undergoing a change. After years of scholarship on the oppressive history of quantitative methods, quantitative scholars are grappling with the ways that our preferred methodology reinforces social injustices (Zuberi, 2001).Among others, the emerging fields of CritQuant (critical quantitative studies) and QuantCrit (quantitative critical race ...

  16. Quantitative Research

    Quantitative Research. Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions.This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected.

  17. 'Qualitative' and 'quantitative' methods and approaches ...

    There is considerable literature showing the complexity, connectivity and blurring of 'qualitative' and 'quantitative' methods in research. Yet these concepts are often represented in a binary way as independent dichotomous categories. This is evident in many key textbooks which are used in research methods courses to guide students and newer researchers in their research training. This paper ...

  18. Systematic review of quantitative research on digital competences of in

    The research should pertain to in-service school teachers. 3. The research must be situated in the context of school education. 4. The research should encompass both the operationalization and measurement of teacher digital competences. 5. The research should adopt a quantitative or mixed-methods approach. Exclusion criteria: 1.

  19. Predicting and improving complex beer flavor through machine ...

    For each beer, we measure over 200 chemical properties, perform quantitative descriptive sensory analysis with a trained tasting panel and map data from over 180,000 consumer reviews to train 10 ...

  20. The Methodological Underdog: A Review of Quantitative Research in the

    Differences in methodological strengths and weaknesses between quantitative and qualitative research are discussed, followed by a data mining exercise on 1,089 journal articles published in Adult Education Quarterly, Studies in Continuing Education, and International Journal of Lifelong Learning. A categorization of quantitative adult education ...

  21. Study Tracks Shifts in Student Mental Health During College

    The team made their anonymized data set publicly available—including self-reports, surveys, and phone-sensing and brain-imaging data—to help advance research into the mental health of students during their college years.. Andrew Campbell, the paper's senior author and Dartmouth's Albert Bradley 1915 Third Century Professor of Computer Science, says that the study's extensive data ...

  22. QbD Approach to Process Characterization and Quantitative Criticality

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts. The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online.