Subscribe or renew today

Every print subscription comes with full digital access

Science News

Environment.

trees creating shade in New York City

Heat waves cause more illness and death in U.S. cities with fewer trees

There are usually fewer trees in neighborhoods with higher populations of people of color. Planting trees could save hundreds of lives every year.

‘On the Move’ examines how climate change will alter where people live

Eavesdropping on fish could help us keep better tabs on underwater worlds, more stories in environment.

Against a night-black background, a hawkmoth hovers over a paper filter cone that is designed to mimic a night-blooming flower. The hawkmoth's long proboscis is reaching into the center of the cone.

How air pollution may make it harder for pollinators to find flowers

Certain air pollutants that build up at night can break down the same fragrance molecules that attract pollinators like hawk moths to primroses.

mountain pines in Pyrenees

Ancient trees’ gnarled, twisted shapes provide irreplaceable habitats

Traits that help trees live for hundreds of years also foster forest life, one reason why old growth forest conservation is crucial.

Picture of land slumping near Tehran, Iran.

Many but not all of the world’s aquifers are losing water

Many aquifers are quickly disappearing due to climate change and overuse, but some are rising because of improved resource management.

landscape change native prairie (left); cropland (right)

Landscape Explorer shows how much the American West has changed

The online tool stitches together historical images into a map that’s helping land managers make decisions about preservation and restoration.

an illustration of the purple-winged ground dove

This bird hasn’t been seen in 38 years. Its song may help track it down

Using bioacoustics, South American scientists are eavesdropping on a forest in hopes of hearing the song of the long-missing purple-winged ground dove.

A photo showing the flames of the Marshall Fire burning homes in a neighborhood at night.

Grassland and shrubland fires destroy more U.S. homes than forest fires

Grassland and shrubland fires destroyed nearly 11,000 homes in the contiguous United States from 1990 to 2020.

an underwater nursery made of metal bars in a tree-like shape holds pieces of corals on strings

Fake fog, ‘re-skinning’ and ‘sea-weeding’ could help coral reefs survive

Coral reefs are in global peril, but scientists around the world are working hard to find ways to help them survive the Anthropocene.

An underwater photo of three Atlantic salmon swimming in a river.

Pumping cold water into rivers could act as ‘air conditioning’ for fish

Hundreds of salmon, trout and other fish sought shelter from summer heat in human-made shelters, suggesting a way to help fish adapt to river warming.

A photo of Róisín Commane standing in front of a DC-8 aircraft.

Róisín Commane sleuths out greenhouse gas leaks to fight climate change

From New York City to the Arctic, atmospheric chemist Róisín Commane tries to account for the greenhouse gases in the air.

Subscribers, enter your e-mail address for full access to the Science News archives and digital editions.

Not a subscriber? Become one now .

Sustainable Environment Research

Call for papers: upcoming collection, nature-based solutions for climate change adaptation, guest edited by: pierre-antoine versini, amy oen, natalia rodriguez and daniela rizzi.

  • Most accessed

A novel multicriteria assessment framework for evaluating the performance of the EU in dealing with challenges of the low-carbon energy transition: an integrated Fermatean fuzzy approach

Authors: Mahyar Kamali Saraji and Dalia Streimikiene

Improving household water treatment: using zeolite to remove lead, fluoride and arsenic following optimized turbidity reduction in slow sand filtration

Authors: Charles Onyutha, Emmanuel Okello, Rebecca Atukwase, Pamella Nduhukiire, Michael Ecodu and Japheth Nkiriyehe Kwiringira

Enhancing solar still performance with Plexiglas and jute cloth additions: experimental study

Authors: Pankaj Dumka, Dhananjay R. Mishra, Bharat Singh, Rishika Chauhan, Md Irfanul Haque Siddiqui, L Natrayan and Mohd Asif Shah

The Correction to this article has been published in Sustainable Environment Research 2024 34 :5

Multicriteria decision-making tool for investigating the feasibility of the green roof systems in Egypt

Authors: Mahmoud Desouki, Mai Madkour, Ahmed Abdeen and Bahaa Elboshy

Hydrothermal synthesis of zeolites from residual waste generated via indirect carbonation of coal fly ash

Authors: Seonmi Shin and Myoung-Jin Kim

Most recent articles RSS

View all articles

Biological wastewater treatment and bioreactor design: a review

Authors: C. M. Narayanan and Vikas Narayan

A system for monitoring water quality in a large aquatic area using wireless sensor network technology

Authors: Alexander T. Demetillo, Michelle V. Japitana and Evelyn B. Taboada

A comprehensive review on indoor air quality monitoring systems for enhanced public health

Authors: Jagriti Saini, Maitreyee Dutta and Gonçalo Marques

Study of the feasibility of a rice husk recycling scheme in Japan to produce silica fertilizer for rice plants

Authors: Ryoko Sekifuji and Masafumi Tateda

Near infrared band of Landsat 8 as water index: a case study around Cordova and Lapu-Lapu City, Cebu, Philippines

Authors: Jeremy P. Mondejar and Alejandro F. Tongco

Most accessed articles RSS

Journal Announcement

2020-2022 Editor's Choice Articles

Archival Content

The archival content of Sustainable Environment Research can be located here . 

Aims and scope

The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to:

1. Water and Wastewater

• Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment

2. Soil and Groundwater Pollution

• Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites

3. Air Pollution and Climate Change

• Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control

4. Waste Management

• Waste reduction and minimization • Resource recovery and conservation • Solid waste treatment technology and disposal

5. Energy and Resources

• Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments • Techno-economic assessment

journal cover

  • Editorial Board
  • Instructions for Editors
  • Sign up for article alerts and news from this journal
  • Follow SER on Linkedin

Affiliated with

New Content Item

Sustainable Environment Research  is affiliated with the  Chinese Institute of Environmental Engineering

Annual Journal Metrics

2022 Citation Impact 4.9 - 2-year Impact Factor 6.4 - 5-year Impact Factor 1.899 - SNIP (Source Normalized Impact per Paper) 0.865 - SJR (SCImago Journal Rank)

2023 Speed 23 days submission to first editorial decision for all manuscripts (Median) 147 days submission to accept (Median)

2023 Usage  354,574 downloads 25 Altmetric mentions 

ISSN: 2468-2039

  • Submission enquiries: Access here and click Contact Us
  • General enquiries: [email protected]

PRESENTED BY HELLMANN'S

  • Environment

The Future of Sandwiches

At the current rate of soil erosion, sandwich ingredients like mayo could no longer be easily available by 2043. Hellmann’s is investing $30 million to help American farmers switch to regenerative agriculture. That way, farmers can keep growing the soybeans that are used in Hellmann’s mayo–and keep making sandwiches delicious.

Latest Videos

Scattered by climate change, a family stays close, what mud from glacial lakes can tell us about our history and future, these peatlands could be critical to fighting climate change, amazon fires 'so much worse than before' say locals, what a sea snail die-off means for californians—and the climate, see the crack splitting an antarctic ice shelf in two.

  • Perpetual Planet
  • History & Culture
  • Paid Content

History & Culture

  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

Grad Coach

Research Topics & Ideas: Environment

100+ Environmental Science Research Topics & Ideas

Research topics and ideas within the environmental sciences

Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. Here, we’ll explore a variety research ideas and topic thought-starters related to various environmental science disciplines, including ecology, oceanography, hydrology, geology, soil science, environmental chemistry, environmental economics, and environmental ethics.

NB – This is just the start…

The topic ideation and evaluation process has multiple steps . In this post, we’ll kickstart the process by sharing some research topic ideas within the environmental sciences. This is the starting point though. To develop a well-defined research topic, you’ll need to identify a clear and convincing research gap , along with a well-justified plan of action to fill that gap.

If you’re new to the oftentimes perplexing world of research, or if this is your first time undertaking a formal academic research project, be sure to check out our free dissertation mini-course. Also be sure to also sign up for our free webinar that explores how to develop a high-quality research topic from scratch.

Overview: Environmental Topics

  • Ecology /ecological science
  • Atmospheric science
  • Oceanography
  • Soil science
  • Environmental chemistry
  • Environmental economics
  • Environmental ethics
  • Examples  of dissertations and theses

Topics & Ideas: Ecological Science

  • The impact of land-use change on species diversity and ecosystem functioning in agricultural landscapes
  • The role of disturbances such as fire and drought in shaping arid ecosystems
  • The impact of climate change on the distribution of migratory marine species
  • Investigating the role of mutualistic plant-insect relationships in maintaining ecosystem stability
  • The effects of invasive plant species on ecosystem structure and function
  • The impact of habitat fragmentation caused by road construction on species diversity and population dynamics in the tropics
  • The role of ecosystem services in urban areas and their economic value to a developing nation
  • The effectiveness of different grassland restoration techniques in degraded ecosystems
  • The impact of land-use change through agriculture and urbanisation on soil microbial communities in a temperate environment
  • The role of microbial diversity in ecosystem health and nutrient cycling in an African savannah

Topics & Ideas: Atmospheric Science

  • The impact of climate change on atmospheric circulation patterns above tropical rainforests
  • The role of atmospheric aerosols in cloud formation and precipitation above cities with high pollution levels
  • The impact of agricultural land-use change on global atmospheric composition
  • Investigating the role of atmospheric convection in severe weather events in the tropics
  • The impact of urbanisation on regional and global atmospheric ozone levels
  • The impact of sea surface temperature on atmospheric circulation and tropical cyclones
  • The impact of solar flares on the Earth’s atmospheric composition
  • The impact of climate change on atmospheric turbulence and air transportation safety
  • The impact of stratospheric ozone depletion on atmospheric circulation and climate change
  • The role of atmospheric rivers in global water supply and sea-ice formation

Research topic evaluator

Topics & Ideas: Oceanography

  • The impact of ocean acidification on kelp forests and biogeochemical cycles
  • The role of ocean currents in distributing heat and regulating desert rain
  • The impact of carbon monoxide pollution on ocean chemistry and biogeochemical cycles
  • Investigating the role of ocean mixing in regulating coastal climates
  • The impact of sea level rise on the resource availability of low-income coastal communities
  • The impact of ocean warming on the distribution and migration patterns of marine mammals
  • The impact of ocean deoxygenation on biogeochemical cycles in the arctic
  • The role of ocean-atmosphere interactions in regulating rainfall in arid regions
  • The impact of ocean eddies on global ocean circulation and plankton distribution
  • The role of ocean-ice interactions in regulating the Earth’s climate and sea level

Research topic idea mega list

Tops & Ideas: Hydrology

  • The impact of agricultural land-use change on water resources and hydrologic cycles in temperate regions
  • The impact of agricultural groundwater availability on irrigation practices in the global south
  • The impact of rising sea-surface temperatures on global precipitation patterns and water availability
  • Investigating the role of wetlands in regulating water resources for riparian forests
  • The impact of tropical ranches on river and stream ecosystems and water quality
  • The impact of urbanisation on regional and local hydrologic cycles and water resources for agriculture
  • The role of snow cover and mountain hydrology in regulating regional agricultural water resources
  • The impact of drought on food security in arid and semi-arid regions
  • The role of groundwater recharge in sustaining water resources in arid and semi-arid environments
  • The impact of sea level rise on coastal hydrology and the quality of water resources

Research Topic Kickstarter - Need Help Finding A Research Topic?

Topics & Ideas: Geology

  • The impact of tectonic activity on the East African rift valley
  • The role of mineral deposits in shaping ancient human societies
  • The impact of sea-level rise on coastal geomorphology and shoreline evolution
  • Investigating the role of erosion in shaping the landscape and impacting desertification
  • The impact of mining on soil stability and landslide potential
  • The impact of volcanic activity on incoming solar radiation and climate
  • The role of geothermal energy in decarbonising the energy mix of megacities
  • The impact of Earth’s magnetic field on geological processes and solar wind
  • The impact of plate tectonics on the evolution of mammals
  • The role of the distribution of mineral resources in shaping human societies and economies, with emphasis on sustainability

Topics & Ideas: Soil Science

  • The impact of dam building on soil quality and fertility
  • The role of soil organic matter in regulating nutrient cycles in agricultural land
  • The impact of climate change on soil erosion and soil organic carbon storage in peatlands
  • Investigating the role of above-below-ground interactions in nutrient cycling and soil health
  • The impact of deforestation on soil degradation and soil fertility
  • The role of soil texture and structure in regulating water and nutrient availability in boreal forests
  • The impact of sustainable land management practices on soil health and soil organic matter
  • The impact of wetland modification on soil structure and function
  • The role of soil-atmosphere exchange and carbon sequestration in regulating regional and global climate
  • The impact of salinization on soil health and crop productivity in coastal communities

Topics & Ideas: Environmental Chemistry

  • The impact of cobalt mining on water quality and the fate of contaminants in the environment
  • The role of atmospheric chemistry in shaping air quality and climate change
  • The impact of soil chemistry on nutrient availability and plant growth in wheat monoculture
  • Investigating the fate and transport of heavy metal contaminants in the environment
  • The impact of climate change on biochemical cycling in tropical rainforests
  • The impact of various types of land-use change on biochemical cycling
  • The role of soil microbes in mediating contaminant degradation in the environment
  • The impact of chemical and oil spills on freshwater and soil chemistry
  • The role of atmospheric nitrogen deposition in shaping water and soil chemistry
  • The impact of over-irrigation on the cycling and fate of persistent organic pollutants in the environment

Topics & Ideas: Environmental Economics

  • The impact of climate change on the economies of developing nations
  • The role of market-based mechanisms in promoting sustainable use of forest resources
  • The impact of environmental regulations on economic growth and competitiveness
  • Investigating the economic benefits and costs of ecosystem services for African countries
  • The impact of renewable energy policies on regional and global energy markets
  • The role of water markets in promoting sustainable water use in southern Africa
  • The impact of land-use change in rural areas on regional and global economies
  • The impact of environmental disasters on local and national economies
  • The role of green technologies and innovation in shaping the zero-carbon transition and the knock-on effects for local economies
  • The impact of environmental and natural resource policies on income distribution and poverty of rural communities

Topics & Ideas: Environmental Ethics

  • The ethical foundations of environmentalism and the environmental movement regarding renewable energy
  • The role of values and ethics in shaping environmental policy and decision-making in the mining industry
  • The impact of cultural and religious beliefs on environmental attitudes and behaviours in first world countries
  • Investigating the ethics of biodiversity conservation and the protection of endangered species in palm oil plantations
  • The ethical implications of sea-level rise for future generations and vulnerable coastal populations
  • The role of ethical considerations in shaping sustainable use of natural forest resources
  • The impact of environmental justice on marginalized communities and environmental policies in Asia
  • The ethical implications of environmental risks and decision-making under uncertainty
  • The role of ethics in shaping the transition to a low-carbon, sustainable future for the construction industry
  • The impact of environmental values on consumer behaviour and the marketplace: a case study of the ‘bring your own shopping bag’ policy

Examples: Real Dissertation & Thesis Topics

While the ideas we’ve presented above are a decent starting point for finding a research topic, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses to see how this all comes together.

Below, we’ve included a selection of research projects from various environmental science-related degree programs to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • The physiology of microorganisms in enhanced biological phosphorous removal (Saunders, 2014)
  • The influence of the coastal front on heavy rainfall events along the east coast (Henson, 2019)
  • Forage production and diversification for climate-smart tropical and temperate silvopastures (Dibala, 2019)
  • Advancing spectral induced polarization for near surface geophysical characterization (Wang, 2021)
  • Assessment of Chromophoric Dissolved Organic Matter and Thamnocephalus platyurus as Tools to Monitor Cyanobacterial Bloom Development and Toxicity (Hipsher, 2019)
  • Evaluating the Removal of Microcystin Variants with Powdered Activated Carbon (Juang, 2020)
  • The effect of hydrological restoration on nutrient concentrations, macroinvertebrate communities, and amphibian populations in Lake Erie coastal wetlands (Berg, 2019)
  • Utilizing hydrologic soil grouping to estimate corn nitrogen rate recommendations (Bean, 2019)
  • Fungal Function in House Dust and Dust from the International Space Station (Bope, 2021)
  • Assessing Vulnerability and the Potential for Ecosystem-based Adaptation (EbA) in Sudan’s Blue Nile Basin (Mohamed, 2022)
  • A Microbial Water Quality Analysis of the Recreational Zones in the Los Angeles River of Elysian Valley, CA (Nguyen, 2019)
  • Dry Season Water Quality Study on Three Recreational Sites in the San Gabriel Mountains (Vallejo, 2019)
  • Wastewater Treatment Plan for Unix Packaging Adjustment of the Potential Hydrogen (PH) Evaluation of Enzymatic Activity After the Addition of Cycle Disgestase Enzyme (Miessi, 2020)
  • Laying the Genetic Foundation for the Conservation of Longhorn Fairy Shrimp (Kyle, 2021).

Looking at these titles, you can probably pick up that the research topics here are quite specific and narrowly-focused , compared to the generic ones presented earlier. To create a top-notch research topic, you will need to be precise and target a specific context with specific variables of interest . In other words, you’ll need to identify a clear, well-justified research gap.

Need more help?

If you’re still feeling a bit unsure about how to find a research topic for your environmental science dissertation or research project, be sure to check out our private coaching services below, as well as our Research Topic Kickstarter .

Need a helping hand?

research about environment

You Might Also Like:

Topic Kickstarter: Research topics in education

research topics on climate change and environment

Masango Dieudonne

I wish to learn things in a more advanced but simple way and with the hopes that I am in the right place.

Olusegunbukola Olubukola janet

Thank so much for the research topics. It really helped

saheed

the guides were really helpful

Nandir Elaine shelbut

Research topics on environmental geology

Blessing

Thanks for the research topics….I need a research topic on Geography

jeanne uwamahoro

I want the research on environmental planning and management

Mvuyisi

I want a topic on environmental sustainability

Micah Evelyn Joshua

It good coaching

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Tools and Resources
  • Customer Services
  • Agriculture and the Environment
  • Case Studies
  • Chemistry and Toxicology
  • Environment and Human Health
  • Environmental Biology
  • Environmental Economics
  • Environmental Engineering
  • Environmental Ethics and Philosophy
  • Environmental History
  • Environmental Issues and Problems
  • Environmental Processes and Systems
  • Environmental Sociology and Psychology
  • Environments
  • Framing Concepts in Environmental Science
  • Management and Planning
  • Policy, Governance, and Law
  • Quantitative Analysis and Tools
  • Sustainability and Solutions
  • Share This Facebook LinkedIn Twitter

Article contents

The environment in health and well-being.

  • George Morris George Morris European Centre for Environment and Human Health, University of Exeter Medical School, Truro, United Kingdom
  •  and  Patrick Saunders Patrick Saunders University of Staffordshire, University of Birmingham, and WHO Collaborating Centre
  • https://doi.org/10.1093/acrefore/9780199389414.013.101
  • Published online: 29 March 2017

Most people today readily accept that their health and disease are products of personal characteristics such as their age, gender, and genetic inheritance; the choices they make; and, of course, a complex array of factors operating at the level of society. Individuals frequently have little or no control over the cultural, economic, and social influences that shape their lives and their health and well-being. The environment that forms the physical context for their lives is one such influence and comprises the places where people live, learn work, play, and socialize, the air they breathe, and the food and water they consume. Interest in the physical environment as a component of human health goes back many thousands of years and when, around two and a half millennia ago, humans started to write down ideas about health, disease, and their determinants, many of these ideas centered on the physical environment.

The modern public health movement came into existence in the 19th century as a response to the dreadful unsanitary conditions endured by the urban poor of the Industrial Revolution. These conditions nurtured disease, dramatically shortening life. Thus, a public health movement that was ultimately to change the health and prosperity of millions of people across the world was launched on an “environmental conceptualization” of health. Yet, although the physical environment, especially in towns and cities, has changed dramatically in the 200 years since the Industrial Revolution, so too has our understanding of the relationship between the environment and human health and the importance we attach to it.

The decades immediately following World War II were distinguished by declining influence for public health as a discipline. Health and disease were increasingly “individualized”—a trend that served to further diminish interest in the environment, which was no longer seen as an important component in the health concerns of the day. Yet, as the 20th century wore on, a range of factors emerged to r-establish a belief in the environment as a key issue in the health of Western society. These included new toxic and infectious threats acting at the population level but also the renaissance of a “socioecological model” of public health that demanded a much richer and often more subtle understanding of how local surroundings might act to both improve and damage human health and well-being.

Yet, just as society has begun to shape a much more sophisticated response to reunite health with place and, with this, shape new policies to address complex contemporary challenges, such as obesity, diminished mental health, and well-being and inequities, a new challenge has emerged. In its simplest terms, human activity now seriously threatens the planetary processes and systems on which humankind depends for health and well-being and, ultimately, survival. Ecological public health—the need to build health and well-being, henceforth on ecological principles—may be seen as the society’s greatest 21st-century imperative. Success will involve nothing less than a fundamental rethink of the interplay between society, the economy, and the environment. Importantly, it will demand an environmental conceptualization of the public health as no less radical than the environmental conceptualization that launched modern public health in the 19th century, only now the challenge presents on a vastly extended temporal and spatial scale.

  • environmental and human health
  • environment
  • environmental epidemiology
  • environmental health inequalities
  • ecological public health

Introduction

This article traces the development of ideas about the environment in human health and well-being over time. Our primary focus is the period since the early 19th century , sometimes termed the “modern public health era.” This has been not only a time of unprecedented scientific, technological, and societal transition but also a time during which perspectives on the relationship of humans to their environment, and its implications for their health and well-being, have undergone significant change.

Curiosity about the environment as a factor in human health and well-being, and indeed health-motivated interventions to manage the physical context for life, substantially predate the modern public health era. The archaeological record provides evidence of sewer lines, primitive toilets, and water-supply arrangements in settlements in Asia, the Middle East, South America, and Southern Europe, dating back many thousands of years (Rosen, 1993 ). Some religious traditions also imply recognition of the importance of environmental factors in health. For example, restrictions on the consumption of certain foods probably derive from a belief that these foods carried risks to health; a passage in the book of Leviticus conveys the existence of a belief in the relationship between the internal state of a house and the health of its occupants (Leviticus [14:33–45], quoted in Frumkin, 2005 ).

The sixty-two books of the “Hippocratic Corpus” dating from 430–330 bc are the accepted bedrock of Western medicine (Lloyd, 1983 ), not least because they departed from the purely supernatural explanations for health and disease which hitherto held sway. For the first time, ideas about medicine, diseases, and their causes were being written down. Among these were ideas about the environment and its relationship to mental and physical health (Lloyd, 1983 ; Rosen, 1993 ; Kessel, 2006 ). While scarcely a template for how societies would come to think about environment and health in the modern era, one Hippocratic text in particular, On Airs, Waters and Places , introduces several ideas that do retain currency. For example, the simple message that good health is unlikely to be achieved and maintained in poor environmental conditions is enduring. Also, through specific reference to the health relevance of changes in water, soil, vegetation, sunlight, winds, climate, and seasonality, On Airs, Waters and Places conceives an environment made up of distinct compartments and spatial scales from local to global, recognizing that perturbations in these compartments, and on these scales, may result in disease. Such thinking remains conceptually and operationally relevant today. Hazardous agents are still frequently addressed in “environmental compartments” such as water, soil, air, and food or by developing and applying environmental standards for the different categories of place where people work, live, learn, and socialize. In parts, the Hippocratic Corpus also presages the ecological perspectives now coloring 21st-century public health thinking. These include an understanding of the potential for human activity to impact negatively on the natural world and the importance of viewing the body within its environment as a composite whole.

Environment and Health in the Modern Public Health Era

Epidemiology is the basic science of public health and is concerned with the distribution of health and disease in populations across time and spaces, together with the determinants of that distribution. Environmental epidemiology is a subspecialty dealing with the effects of environmental exposures on health and disease, again, in populations. Since the early 19th century , the outputs of epidemiology have been key components of a “mixed economy of evidence” that has shaped and reshaped priorities and informed the decisions society takes to protect and improve population health (Petticrew et al., 2004 ; Baker & Nieuwenhuijsen, 2008 ).

In a classic paper from the 1990s, the respected epidemiologists, Mervyn and Ezra Susser, helpfully described different “epidemiological eras” in modern public health, each driven by a dominant paradigm concerning the causes of disease and supported by a particular analytical approach (Susser & Susser, 1996 ). This differentiation offers a useful framework within which to consider changing perspectives on the role of environment in health since the early 1900s.

The Environment in an “Era of Sanitary Statistics”

The Industrial Revolution came first to 19th-century Britain driven by technological innovation, abundant coal supplies, and supportive political/economic conditions. Also influential was a post-Reformation philosophy that extolled the work ethic and self-sufficiency. The events were to resonate throughout the world, bringing great prosperity to some, but others, especially the urban poor, endured poor housing, severe overcrowding, and an absence of wholesome water or sanitation. The growing industrial cities became crucibles of squalor, disease, and severely reduced life expectancy as their citizens suffered the ravages of typhus, tuberculosis, and successive cholera epidemics. Unhealthy working conditions and grossly polluted air also damaged health and compounded the misery of urban life at this time. Such challenges were common to all locations touched by the Industrial Revolution and became the catalyst for a new public health movement across Europe and North America (Rayner & Lang, 2012 ; Rosen, 1993 ).

Using the new science of medical statistics, investigators quickly established the locations with the poorest living conditions to be also those where disease and early death were most prevalent (Chadwick, 1842 ), fueling an ultimately transformational societal response—a “sanitary revolution” (Rosen, 1993 ). Such was the impact of this mix of slum clearance with the introduction of waterborne sewerage and piped water supplies that readers of the British Medical Journal , voting almost two centuries later, still chose it, from a shortlist of 15, as the most important medical milestone since the Journal was first published in 1840 . The 11,300 readers who voted even placed it above the discovery of antibiotics and the development of anaesthesia (Ferriman, 2007 ).

Despite its impact, the “sanitary revolution” was famously initiated and sustained on a biologically flawed paradigm regarding the mechanistic causes of disease. Yet “miasma” (the transmission of disease through noxious vapors), because it served as a metaphor for squalid insanitary conditions, still drove effective intervention (Morris et al., 2006 ; Nash, 2006 ). During this time, however, the emergence of epidemiology as the primary mode of inquiry of public health was also pivotal to success. Endorsing this view, Susser and Susser labeled the first half of the 19th century an “Era of Sanitary Statistics,” citing the frequent use of district-level data to link disease to, for example: filthy and degraded urban environments; overcrowding and poor housing and working conditions; and social factors like infant care (Susser & Susser, 1996 )).

Thus, recognition that the environment (physical and social) mattered for health and notions of a “permeable” human body in close connection with other organisms and the abiotic environment were embedded at the launch of the 19th-century public health movement. It is notable that the perspective of the reformers was quite properly “proximal,” that is, rooted in an acceptance of the importance of the local environment, physical and social. While the term “ecology” would not be coined until 1866 (Haekel, 1866 ) and “social ecology” much later still (Bookchin, 1990 ), the public health pioneers embraced what, in today’s terms, we would understand as a broadly socioecological perspective and discerned no conflict in this with their efforts to understand the immediate causes of disease and intervene in a focused way to prevent it (Nash, 2006 ).

Especially through the efforts to stop cholera, the sanitarians affirmed the pathogenic potential of unsanitary conditions and pioneered the epidemiological approach, initially as “environmental epidemiology” (Baker & Nieuwenhuijsen, 2008 ). Other legacies of the Era of Sanitary Statistics have been less enduring. Despite recent advocacy of a “precautionary principle” (see, e.g., Martuzzi, 2007 ; European Environment Agency, 2013 ), the willingness to act on the basis of strong suspicion of a societal-level environmental threat to population health has diminished, perhaps an inevitable casualty of increasing sophistication and “evidence-based” approaches in medicine and policy (Kessel, 2006 ; Brownson et al., 2009 ). Many of public health’s greatest triumphs have flowed from interventions that would have struggled to satisfy today’s evidential criteria. Also, despite a recent reconnection with such arguments, the inherent logic of seeing and tackling disease in its social and environmental context, so obvious to the pioneers of public health, has periodically been less visible in the rhetoric and actions of their successors.

It is appropriate at this point to emphasize the international character of the 19th-century public health movement. This movement can all too easily be presented as a British phenomenon, with seminal contributions from John Snow ( 1813–1858 ) on the investigation of cholera (Vinten-Johansen et al., 2003 ); William Farr ( 1807–1883 ), also on cholera but more widely on medical statistics (Susser & Adelstein,, 1975 ); Edward Jenner ( 1749–1823 ) on vaccination (Baxby, 2004 ), and Edwin Chadwick ( 1800–1890 ) on the assembly of data relating disease to the filth and squalor that came with poverty (Chadwick, 1842 ). In reality, public health, then as now, advanced through the contribution of many individuals in many nations. For example, the German pioneer of cellular biology, Rudolf Virchow ( 1821–1902 ), and his fellow countryman, the hygienist Johan Peter Frank ( 1745–1821 ), were hugely important (Rather, 1985 ). In France, Louis-Rene Vilerme ( 1782–1863 ), the doctor and pioneer of social epidemiology, highlighted links between poverty and death rates (Rosen, 1993 ) and, in the United States, the meticulous work of Lemuel Shattuck ( 1793–1859 ) bears direct comparison with that of Chadwick (Rayner & Lang, 2012 ).

It might be supposed that the consolidated outputs of European laboratories, especially in the decades between 1830 and 1870 , would have quickly expunged the miasmic paradigm from 19th-century medicine and public health. Yet, the concept of miasma was so inculcated in Western thought that, for many, it retained significant explanatory power. Thus, for much of the 19th century there was not a single settled view on disease contagion (e.g., see Kokayeff, 2013 ). Indeed, as late as 1869 some distinguished Medical Officers of Health in England still attributed diseases such as typhoid to “the insidious miasma of sewer gases” and dismissed germs as “pure nonsense.”

The Environment in an “Era of Infectious Disease Epidemiology”

Increasingly contested, the miasmic theory of disease was effectively supplanted in the 1880s by broad acceptance of the germ theory, ushering a new “Era of Infectious Disease Epidemiology” (Susser & Susser, 1996 ). In 1882 , Louis Pasteur’s techniques for growing organisms made it possible for Robert Koch ( 1843–1910 ) to demonstrate that a mycobacterium was the cause of tuberculosis and, shortly thereafter, to provide scientific proof that cholera was waterborne (Foster, 1970 ; Collard, 1976 ; Brock, 1999 ). In so doing, Koch established, what had been hypothesized by his teacher, Jacob Henle ( 1809–1885 ), some 40 years earlier that disease was microbial. Henle, Snow, Koch, and the biologist Ferdinand Cohn ( 1828–1898 ) are rightly seen as fathers of the science of medical microbiology that for a time would come to dominate thinking in medicine and public health (Rayner & Lang, 2012 ).

Initially at least, the germ theory did little to diminish interest in the environment as a determinant of health. Indeed, by revealing causal linkages between organisms isolated from their environmental carriers and specific diseases, it conferred scientific coherence on the established sanitary model and vindicated efforts to secure hygienic water, food, and housing. As Lesley Nash has observed, the germ theorists were initially content to meld the insights of bacteriology with longstanding environmental beliefs. Notions of a body in constant interaction with, and closely dependent on, its local social and physical context (in today’s terms a socioecological perspective) did not conflict with the narrower perspectives of laboratory science (Nash, 2006 ).

While relative contributions may be debated, over a short timeframe medical microbiology, isolation, immunization, and improving social/environmental conditions combined to sharply reduce the burden of infectious disease for Western society. Yet, by the early years of the 20th century , the capacity to examine disease at the microscopic level, which was the engine of diagnostics and therapeutics, was beginning to act on the very foundations that support public health. Medical science gradually made its focus the pathogenic agents of disease, moving attention away from the environment and eroding socioecological perspectives. Doctors seemed quite content to express health as an absence of disease, and medical science to project its role as the maintenance and reinforcement of “self-contained” human bodies (Nash, 2006 ). Through a growing tendency to see health, disease, and their determinants as attributes of individuals rather than characteristics of communities, wider society seemed almost complicit in an ‘individualization’ of health status. One implication of this blunting of a social/environmental thrust of public health was to divorce health from place, a development that would have profound implications in the very different epidemiological context that emerged following World War II.

The Environment in an Era of Chronic Disease Epidemiology

The dramatic reduction in infectious disease was certainly one reason why the epidemiological climate in Western society changed substantially in the mid- 20th century . But just as important was the emergence of a quite disparate set of pathologies believed to be of noncommunicable etiology. Coronary heart disease, cancers, and peptic ulcers, which became the targets in a new “Era of Chronic Disease Epidemiology” (Susser & Susser, 1996 ), were thought rather unlikely to have origins in exposure to what was an increasingly regulated and ostensibly improving physical environment. While the outputs of much postwar epidemiology seemed to endorse this view, it is useful, with hindsight, to recognize the influence of what might be seen as “fashions” in epidemiological inquiry. These fashions would influence how medical science and the wider society would come to regard diseases and their causes for a generation.

The response of the public health community to the new and alarming “noncommunicable” threats was, logically, to deploy descriptive epidemiology to reveal those most likely to be affected. Perhaps surprisingly, those who traditionally were most vulnerable to disease (the young, the old, the immunocompromised, etc.) did not appear to be at increased risk. Rather, the new epidemics disproportionately affected men in their middle years (Nabel & Braunwald, 2012 ). Supported by enhanced computing power and methodological advance (Susser & Susser, 1996 ), researchers began to converge on specific risk factors that correlated with diseases of greatest concern. Many, it seemed, were aspects of individual lifestyle and behaviors, ostensibly freely chosen. A particular attraction for the proponents of what was to become known as “risk factor epidemiology” was its capacity to represent, mathematically, the “relative risk” of contracting a disease between people exposed to a putative risk and those who were not. Some have dubbed this epidemiological approach to noncommunicable or chronic disease “black box epidemiology” because it can relate exposure to outcomes “without any necessary obligation to interpolate either intervening factors or even pathogenesis” (Susser & Susser, 1996 ). Another unfortunate characteristic of this approach to epidemiology is that, despite its laudable intent to understand and address disease in populations , its focus is on individuals within those populations. As a result, it fails to elucidate the societal forces whose influence and interplay shape the health and health-relevant choices of those individuals. When viewed through a policy lens, this mitigates in favor of simplistic solutions that target individuals divorced from context and that lack the traction to produce meaningful change.

In summary, the desire to create a mathematical measure of relative risk for a specific factor is understandable. However, risk factor epidemiology uses an approach that is much more flexible than material reality. In the real world, many different factors coexist and interact to create and destroy health. This is not, however, to deny risk factor epidemiology’s capacity, particularly in synergy with laboratory-based research, to break new ground. Notably, these methodologically driven approaches were key to elucidating links between smoking and lung cancer, heart disease and serum cholesterol, and between levels of prenatal folic acid intake and neural tube defects (Susser & Susser, 1996 ; Kessel, 2006 ; Perry, 1997 ).

The same basic criticism is voiced where similar “black box” epidemiological approaches are used to explore the contribution of a specific environmental agent, as in the case of much recent air pollution epidemiology (see below) (Kessel, 2006 ). Any specific pollutant under epidemiological investigation inevitably coexists with other pollutants and in a specific exposure context (e.g., prevailing climatic conditions). These coexisting factors may be critical in determining the health outcomes from exposure to the pollutant under investigation. Because the outputs of black box epidemiology are abstractions, the relative risk calculation represents an abstraction that can be limited in its capacity to inform policy.

The decades following World War II were a time of declining influence for public health and population perspectives, largely for reasons we have outlined. Yet, in its rhetoric and activities, the discipline of public health seemed at times almost complicit. Even its defining science of epidemiology seemed for a time more concerned to reinforce the insights of clinical medicine than to play the exploratory role on which its reputation had been founded (Susser & Susser, 1996 ). On the face of it, academic public health and the wider public health discipline had little to say about environment, no longer presenting it as an active component in the then current health challenges for Western society. As Nash has observed, physical environments were “recast as homogenous spaces which were traversed by pathogenic agents.” Nevertheless, divorced from the prevailing rhetoric, in many locations there was a parallel narrative depicting a workforce that continued to work at a local level, within established legal and administrative frameworks, to protect and maintain health-relevant environmental quality standards. However, the environmental health function was often set in the narrow, hazard-focused, and compartmentalized terms framed for it by laboratory science. The task was largely confined to identifying, monitoring, and controlling a limited set of toxic or infectious threats in their environmental carriers. Only when pathogenic organisms or toxic agents demonstrably escaped their industrial, agricultural, or marine confines to damage health and reinforce the porosity of the human body did environment briefly assume a higher profile.

Against this backdrop, it was not necessarily predictable or inevitable that environment would regain a central place in public health. Yet, by the end of the 20th century , a much richer understanding of the environmental contribution to human health and well-being had indeed emerged. This change cannot be attributed to a single factor in isolation. Some point to the key influence of Rachel Carson’s Silent Spring in 1962 (Carson, 1962 ), which expressed grave concern for the ecosystem effects of DDT, the linkage to potential human health effects, and the implications of a growing disconnect between humankind and nature. We do not deny the status of Carson’s work as a seminal text of a modern “environmentalism” that would rapidly gather pace and influence (Nash, 2006 ). However, we submit that it is only now, in the 21st century , when the reality of unprecedented anthropogenic damage to global processes and systems and its health implications is self-evident, that the health sector has fully made common cause with the environmentalist movement (e.g., see Butler et al., 2005 ; Butler & Harley, 2010 ) (We discuss this development later in this article under Ecological Public Health.

However, for reasons that are distinct from a mounting concern over anthropogenic threats to global environmental systems and processes, we argue that the closing decades of the 20th century and the early years of this century did see a rekindling of public health and societal interest in the local or proximal environment. This interest has continued into the 21st century . Developing interest in well-being as a concept, the belief that it is important and that it might be enhanced through the organized efforts of society, continues to engage the attention of academics and policymakers. Although well-being demonstrably impacts health and vice versa, well-being is about much more than health. Rather, it is a measure of what matters to people in every sphere of their lives. Despite its importance, well-being has proved a challenging target for policy. Some of its components are beyond the reach of policy. However, others, including aspects of the built and natural environment and people’s connection to it, are amenable to manipulation. Accordingly, research has been especially concerned to identify the qualities of their environment that are important for different people’s well-being, quality of life, and health at various life stages (Royal College of Physicians, 2016 ). Also, on a practical level, integrating the various well-being frameworks and indices that continue to emerge is an ongoing challenge. However, it is sufficient at this point simply to recognize that elevated concern for well-being and its connection to environment can only broaden and deepen concern for the environment in public health. It will continue to drive renewed interest in matters such as landscape, natural beauty and scenery; crime free, clean places; green, blue, and natural environments; and so on.

Reconnecting Health with Place

Five issues/developments merit particular mention for their role in reestablishing the local environment as a mainstream consideration in health in the developed world in the late 20th century . While recognizing that there is an interrelationship among some of the factors discussed, for simplicity, we discuss them separately here.

Air Pollution

In citing air pollution as a key factor in a late- 20th-century resurgence of interest in the environment, we recognize its much longer history as a contributor to ill health (Evelyn, 1661 ; Lloyd, 1983 ). We acknowledge, too, that accounts of the modern public health era since its inception have been suffused with references to air pollution events, their health implications, and the political and professional campaigns that have sought to mitigate risk (Kessel, 2006 ). However, despite a compelling case for action, the need for urgent intervention was only fully accepted after a number of high-profile air pollution episodes in the 20th century . In 1930 , a severe smog incident in Belgium’s Meuse Valley resulted in the death of sixty people. Prophetically, investigators were quick to highlight the potential for many more deaths, were such an incident to be repeated in a more highly populated area (Bell & Samet, 2005 ). In 1948 , a further twenty people were to die and many more suffer injury after an industrial pollution incident in Donora, Pennsylvania (Hamil, 2008 ), but the tipping point came four years later, with the London Smog of 1952 .

Between December 5 and December 9, a dense fog descended on London where it mixed with air, polluted by domestic and industrial emissions. The resulting thick smog was familiar to many urban dwellers, but in this case, a combination of cold weather and stagnant atmospheric conditions caused sulfur dioxide and smoke concentrations to reach and maintain extremely high levels for a sustained period. The smog had a paralyzing effect on the city’s transport system, and many other aspects of daily life were severely disrupted. But the most dramatic effects were on health. Death rates were to reach three times the normal level for the time of year, and demand for hospital beds far exceeded supply (Baker & Nieuwenhuijsen, 2008 ). While the smog dissipated after a few days, deaths rates remained high for several months thereafter. Subsequent analysis has revealed that, rather than the 3,000–4,000 deaths linked to the episode in at the time, a figure of 10,000–12,000 deaths is more probable (Bell et al., 2004 ).

The London smog is historically important, obviously because of the distressing toll in morbidity and mortality and because it catalyzed long-overdue legislative intervention in the UK in the form of the Clean Air Act of 1956 and the U.S. Clean Air Act 1963 . Critically, however, it reminded the public and politicians of the reality that, given the right conditions, population-level environmental exposures were still entirely capable of producing significant morbidity and mortality.

In combination with other factors, the clean air legislation that emerged in the wake of the smog reduced domestic and industrial fossil fuel emissions, and helped to secure significant reductions in background concentrations of smoke and sulfur dioxide (Royal College of Physicians, 2016 ). However, by the late 1980s, a new, more insidious, urban air pollution threat had begun to emerge. This pollution had its origins not in fixed-point emissions, but in the rapidly increasing numbers of motor vehicles and other fossil fuel-driven forms of transport in towns and cities. The pollutants of concern here, which lacked the visibility of the earlier sulfurous smogs, were fine particles, oxides of nitrogen, and ozone. So-called time-series analyses, using data on the temporal variation in environmental exposure and in health, aggregated over the same time period, were now applied to explore the issue of urban air pollution and health (e.g., see Pope et al., 1995 ; Dockery & Pope, 1996 ; Kessel, 2006 ). The studies revealed the cardiopulmonary effects of long-term exposure to much lower levels of ambient air pollution and, later, following further investigation, the absence of a threshold level for causing health effects. Recent outputs of ‘life-course’ epidemiology have also shown that air pollution affects health, not only through the exacerbation of symptoms in the elderly, but through various processes that have impacts from the womb, through childhood to adolescence, early adulthood, and on into middle and older age (Royal College of Physicians, 2016 ). Also, appreciation that air pollutants can be resident in the air for days or even weeks makes air pollution not simply a local problem, but one that demands source control at city, regional, and international levels. In the UK, for example, the equivalent of around 40,000 deaths every year can be attributed to fine particulates and NO 2 exposure from outdoor air (Royal College of Physicians, 2016 ).

Air pollution is probably the most thoroughly investigated of all environmental threats to health and well-being. Revelations about the true extent of its impact on health keep the issue in the headlines and emphasize the centrality of the physical environment within the public health project. Despite being a focus for academic interest and research fundings, the problem of urban air pollution is a very long way from resolution and is one factor that demands a fundamental reappraisal of how, as a species, we live, consume, and travel. (We discuss a wider, global dimension of the air pollution challenge later in this article.)

Everything Matters: The Environment as an Ingredient in Social Complexity

Another important and often overlooked reason for the late- 20th-century rekindling of interest in the environment and human health can be traced to developments within the wider discipline of public health. Ironically, the thinking behind what, by the 1990s, was being termed the “new public health” had its origins in much older ideas that gave prominence to the social structures in which health is created and destroyed (Baum, 1998 ; Awefeso, 2004 ). If we accept that health, disease, and social patterning in these matters are products of a complex interaction of influences at the level of society with the characteristics of individuals, then such complexity ought to be reflected in the policies and partnerships formed to address them. A growing number of analyses, beginning in the 1970s, would turn a spotlight on this complexity and fundamentally challenge the dominance of the biomedical/health care model and its capacity to solve the problems that beset public. These problems included the intractable burden of noncommunicable disease; growing levels of obesity; diminished psychological well-being; and, not least, stubborn and widening inequalities in the health and well-being of different social groups. Concern also mounted over containing rising, and potentially bankrupting, health care costs.

“A New Perspective on the Health of Canadians,” more commonly referred to as the Lalonde Report, after Canada’s then health minister Marc Lalonde, was published in 1974 (Lalonde, 1974 ). Despite its national focus, the report assumed wider relevance because of its analysis of one of public health’s greatest generic challenges, that of navigating among the many complex and interacting determinants of health to identify effective policies and actions. Implicitly offering a socioecological perspective, the Lalonde Report spoke of a “Health Field,” which included all matters that affect health and comprised four core elements: human biology, environment, lifestyle, and health care organization. Any issue, it was proposed, could be traced to one, or a combination, of these elements, allowing the creation of a “map of the health territory” for any problem (Lalonde, 1974 ). In this way, the contribution and interaction of the elements could be assessed. The analysis affirmed the health relevance of a complex environment comprising interacting physical and social dimensions in interaction with the human body. Lalonde’s message was logical and important, yet more than just an echo of an earlier, more inclusive, understanding of the determinants of health and disease. It recast these largely abandoned perspectives for a more scientific and sophisticated era. The proposal that thousands of “pieces” relevant to health and its determinants could be organized in “an orderly pattern” was alluring and progressive, as was the notion that the exercise alone would allow all contributors to more fully appreciate their roles and influence (Morris et al., 2006 ). In the ensuing years, Lalonde’s proposals for understanding and addressing complexity in the determinants of health have been refined and given greater policy relevance by others. In part, this has been through the development of conceptual models of the socioecological determinants of health. These models have been promoted as tools for presenting evidence that can make their implications more apparent (Evans & Stoddart, 1990 ; Dahlgren & Whitehead, 1991 ). In most of these representations, the local environment is accepted as a key driver of health and well-being (Morris et al., 2006 ).

Despite its inherent logic, the socioecological perspectives that emerged in the closing decades of the 20th century created scientific and policy challenges for all constituencies concerned with public health. There were obvious generic challenges, for example, around which of the models (each, necessarily, a gross simplification of a complex reality) might point to solutions (Morris et al., 2006 ; Evans & Stoddart, 1990 ; Reis et al., 2015 ); around the nature of evidence and its interpretation (Petticrew et al., 2004 ; Tannahill, 2008 ); and how, in practice, to traverse professional and policy silos to produce the interdisciplinary approaches that are inevitably required. In this connection, the task of motivating, supporting, and delivering effective intersectoral working, an abiding challenge for public health policy and practice, assumed a much higher profile in the late 20th century with the emergence of the socioecological model of health.

We emphasize that the continuing failure to adequately confront this challenge has the gravest implications for global public health. As Prüss-Üstün et al. recently observed, “Tackling environmental risks requires intersectoral collaboration. After nearly 50 years of actively promoting this concept, whether referred to as intersectoral action, breaking down silos or the nexus approach, it remains elusive as ever. The statement ‘intersectoral collaboration: loved by all, funded by no-one’ points to obstacles, mainly vested interests, that have burdened this approach ever since it was included as part of the WHO/UNICEF Alma Ata Declaration on Primary Health Care in 1978 . Environmental health, quintessentially intersectoral, has suffered most from this lack of progress” (Prüss-Üstün et al., 2016a ).

With specific reference to the role of the local environment, the recognition of socioecological complexity as the determinant of health meant that strict adherence to narrow hazard-focused and compartmentalized approaches became intellectually unsustainable. Yet, acceptance of the dynamic interaction of environment with other determinants of health demands a richer understanding of the environmental contribution than can be provided by toxicology or microbiology in isolation.

The Role of the Environment in Health Inequalities

The fact that the poorest, most degraded urban neighborhoods were those most blighted by disease and reduced life expectancy was clear even to the public health pioneers of the 19th century . Indeed, throughout much of the modern public health era, an acceptance of the importance of the environment for health and well-being has been accompanied by a recognition of the interplay between sociodemographic, economic, and physical factors in creating and sustaining health inequalities.

The term “health inequalities” refers to general differences in health, however caused. Where the differences in health are unfair, unjust, and avoidable, as they often are when linked to social variables, they should more properly be termed “health inequities.” However, in the extensive literature on the topic and in common usage, inequities are termed inequalities, and we adopt this convention here. Despite their importance, the emphasis on tackling health inequalities has varied considerably over time and according to place.

In 2008 , the final report of the Commission on the Social Determinants of Health (CSDH, 2008 ) elevated the global profile of health inequalities and emphasized the interplay of many societal-level factors in their creation in the 21st century . The significant achievements in public health across the world over nearly two centuries have not been shared equally between countries or by all social groups within countries. An important component has been the health-relevant differences in the physical context for people’s lives—the quality of the physical environment. Sometimes expressed in terms of environmental justice , or elsewhere as environmental health inequalities, attention to this area is key to tackling health inequalities across the world (CSDH, 2008 ; Morris & Braubach, 2012 ).

Estimates of the impact of environmental quality on health and well-being vary widely, depending on the definition of environment used. However, that impact is undeniable. Over a billion people in developing countries, for example, have inadequate access to water, and 2.6 billion lack basic sanitation . The World Health Organization estimates that environmental factors were responsible for 12.6 million deaths worldwide in 2012 , 23 percent of all deaths, and 22 percent of the total burden of disease. Addressing environmental risks could prevent 26 percent of all deaths of children under the age of 5 (Prüss-Üstün et al., 2016b ).

In addition, there is clear evidence that a “good” environment empowers health through access to environmental assets such as green spaces, access to a healthy diet, and safe environments in which to walk, cycle, play, and socialize. However, as these data suggest, there is also a fundamental equity dimension to the distribution of both the cause and distribution of environmental stressors, the susceptibility to exposure, and the adverse effects of those exposures. Deprived communities almost invariably live in poorer quality environments, with higher levels of indoor and outdoor air pollution, contaminated land, polluting industrial processes, overcrowded and poor quality housing, and lower levels of environmental assets (Prüss-Üstün et al., 2016a ; 2016b ; Royal College of Physicians, 2016 ; The Marmot Review Team, 2010 ). Populations in developed countries, including the former communist states of eastern Europe living in areas of high air pollution, are disproportionately deprived, for example (Kriger et al, 2014 ; Bell & Ebisu, 2012 ; Branis & Linhartova, 2012 ; Goodman et al., 2011 ). Poor indoor air quality is associated with unfit or inadequate housing standards, conditions that overwhelmingly affect the deprived (The Marmot Review Team, 2010 ). There is evidence that deprived communities are not only more exposed to environmental hazards but are also more susceptible to the effects of those exposures (Goodman et al., 2011 ; Carder et al., 2008 ; Richardson et al., 2011 ; 2013 ; Vinikoor-Imler et al., 2012 ). There are also concerns that stress, at both the individual and community level, can weaken the body’s defenses against external insult and influence the internal dose of toxicants (Gee & Payne-Sturges, 2004 ).

This effect is also seen in social and physical environments. An adequate and nutritious diet is essential to a healthy, productive, and fulfilling life, and it is a fundamental right predicated by a range of factors including personal knowledge, choice, convenience, availability, quality, cost, and social norms. The evidence is clear that deprivation compounds all these factors, with poorer people buying more unhealthy foods with fewer healthy components while being exposed to circumstances that make such “choices” inevitable (Rudge et al., 2013 ). The proportion of adults considered overweight or obese in 2008 in the 19 EU member states for which data were available ranged between 37 and 57 percent for women and between 51 and 69 percent for men ( EUROSTAT ). English children from deprived areas are almost twice as likely to be obese than those in affluent areas, and adult obesity is also associated with deprivation, particularly in women (Public Health England, 2016 ; National Obesity Observatory, 2013 ).

The poor in developed countries are adept at sourcing cheap calories and are exposed to a large numbers of local outlets selling cheap, calorie-dense takeaway food (Saunders et al., 2015 ). These meals are often super-sized and contain high levels of fats, sugar, and salt. At the same time, many of these areas provide limited access to healthy food options, creating a highly compromised public health environment (Saunders et al., 2015 ).

In addition, environmental stressors seem to have a cumulative impact, exacerbating this inequality. It is evident that poorer people have multiple health, social, and environmental stressors. It is entirely plausible that these stressors modify the effect of exposure to pollutants, as is reflected in the increased vulnerability of obese people to the effects of exposure to air pollutants, including increased risk of diseases such as cardiovascular events and respiratory symptoms (WHO, 2013 ; Jung et al., 2014 ). Long-term exposure to airborne pollutants has also been reported to increase the risk of obesity, and being overweight or obese is associated with an increased susceptibility to indoor air pollution in urban children with asthma (Lu et al., 2013 ).

The responsibility for, and relative benefits and costs of, environmental contamination are also important components of inequality. Environmental contamination may be tolerated by communities living in the vicinity of dirty industrial processes if they perceive a benefit in terms of local employment, although that trade-off has largely broken down in developed countries as those industries have declined in the 20th and 21st centuries. On a wider scale, the environmental consequences of contemporary affluent nations’ fuel economies are borne by those populations least able to bear them and with little or no responsibility for their causation (Patz et al., 2005 ). UNICEF has projected that 75–250 million Africans will be exposed to increased water stress due to climate change by 2020 (UNICEF, 2008 ), a phenomenon overwhelmingly caused by the First World. This is a gross injustice. These are also the same people with limited powers to prevent the dumping of rich countries’ waste in their communities. One appalling example is that of the “disposal” of 500 tons of toxic waste in and around Abidjan, the capital of Cote D’Ivoire, in 2006 . This poisonous cocktail of waste oil and contaminants was the result of the trading in, and processing of, hydrocarbon fuels by multinational commodity and shipping companies, criminal levels of cost cutting, and local political corruption, which led to 17 deaths and over 30,000 injuries in one of the poorest communities in the world (Bohand et al., 2007 ) There are many other examples, including the export, often illegally, of hundreds of thousands of tons of e-waste from Western countries to Africa, China, and Asia for recycling or disposal—transferring the costs and dangerous consequences of exposure to workers, including children, and local communities in these countries that do not have the technical or regulatory systems to deal safely with these toxic materials (ILO, 2012 ). Inuit mothers in northern Canada have elevated levels of chemicals such as PCBs—generated many hundreds, if not thousands, of miles away—in their breast milk (Johansen, 2002 ).

The redistribution of the environmental injustices historically endured by the poor also perversely appears to be affecting more affluent communities in the West. The huge expansion of “fracking” in North America, for example, may be leading to an export of risks from traditional “national sacrifice zones” to areas with no previous experience of such industry, creating “profound social, cultural, and economic shocks for middle class communities losing control over their environments” (Lave & Lutz, 2014 ). Despite their relative affluence, this would nonetheless be an injustice given the constraints on local democratic input and highly questionable direct economic benefits to those communities (Kinnaman, 2011 ; Lave & Lutz, 2014 ; Sovacool, 2014 ).

During a period when environmental catalysts for distress migrations are becoming more frequent (Thomas-Hope, 2011 ), there is a moral as well as a professional duty for the Environmental Health community to tackle these inequalities, which otherwise are likely to both widen and deepen.

The Health-Promoting Environment: Green, Blue, and Natural Spaces

While human communities have long valued access to natural resources such as green spaces, the industrialization of the 19th and early 20th centuries saw millions of people deprived of this access. This era did witness some far-sighted philanthropic gifting of areas of open recreational space for the working classes driven by a moral rather than evidence-based imperative. Though welcome, the distribution of, and access to, such resources was limited, inconsistent, unplanned, and vulnerable to the insecurities of voluntary funding. Subsequent local municipal development of parks and other open spaces increased access, and a greater understanding of the benefits of such access blossomed during the late 20th century as research demonstrated and quantified the public health dividends. Access to good-quality green spaces not only makes the places in which we live, work, and play more attractive, but also has a demonstrable effect on improving health and well-being. Green space is linked to lower levels of several diseases and conditions, including lower rates of mortality (Villeneuve et al., 2012 ), increased longevity in older people (Faculty of Public Health, 2011 ), improved mental health (Faculty of Public Health, 2011 ), better outcomes in disease treatment, and reduced medication (Faculty of Public Health, 2011 ), and it also helps reduce health inequalities (Mitchell & Popham, 2008 ; CABE, 2010 ). Plausible mechanisms for these benefits include the provision of a venue for physical activity, promotion of social contact, and the direct impacts of green spaces on psychological and physical health. Natural spaces also promote greater community cohesion and reduce social isolation, providing a platform for community activities, social interaction, physical activity, and recreation (Public Health England, 2014 ). Research from the United States has identified powerful associations between green space and major reductions in aggressive behavior, domestic abuse, and other crime in deprived urban areas (Kuo et al., 2001a , 2001b ).

And yet, there remain great inequalities in the distribution, use, and quality of this empowering resource. People living in the most deprived areas are less likely to live in the greenest areas and therefore have less opportunity to gain the health benefits of green space compared with people living in the least deprived areas (Public Health England, 2014 ). Children living in poor areas, for example, are nine times less likely than those living in affluent areas to have access to green space and places to play (National Children’s Bureau, 2013 ). It is entirely plausible that that this contributes to the sobering reality that children from deprived communities are up to three times as likely to be obese than those children growing up in affluent areas (National Children’s Bureau, 2013 ).

Accessibility, however, is not the same as availability or utility, nor is it simply a function of proximity. It is strongly impacted by the cost of access, whether it is actually physically available, opening times, and the ease of being able to get to it, for example, walking and good public transport. Deprived communities in particular appreciate the value of such spaces, but they tend to underuse them due to concerns about the safety and quality of the spaces (CABE, 2010 ). Experience has shown that quality of the green space is just as important, if not more so, than its size. Post-World War II urban developments in many countries have included large grassy areas, and substantially derelict former industrial sites have often been entirely grassed over. The sterility and sheer size of these sites, the cost of maintenance, and the lack of facilities have often led to misuse and subsequent abandonment by both communities and local municipalities.

The provision, maintenance, and promotion of good-quality and safe , publicly available spaces is not a subsidy; it is an investment delivering economic, health, and regeneration benefits . Research on Philadelphia estimated that maintaining city parks could achieve huge annual savings in health care costs, stormwater management, air pollution mitigation, and social cohesion benefits (The Trust for Public Land, 2008 ). The improved social cohesion associated with natural spaces also has economic benefits. A 2009 Scottish study estimated a £7.36 dividend for every £1 invested in conservation volunteering projects (Greenspace Scotland, 2009 ). It is clear from the evidence that increasing the use of good-quality green space for all social groups is likely to improve health outcomes and reduce health inequalities.

The Reemergence of the Infectious Threat

Among the developments that, for Western societies, consigned environment to the periphery of medical and public health interest in the post–World War II era, we highlighted the epidemiological transition in the mid- 20th century . Indeed, for a period in the 1960s and 1970s it seemed that infectious disease in the developed world had effectively been conquered (Fauci, 2001 ). It was even tempting to suggest that the developing world might eventually follow suit. Yet, within a relatively few years, the twin threats of emerging infectious disease and antibiotic resistance would shatter the earlier confidence and reestablish infection as a live threat to individuals, communities, and populations and one that presented, increasingly, on a global scale.

The term “emerging infectious disease” (EID) denotes an infectious disease, newly recognized as occurring in humans; one that has been previously recognized but is appearing for the first time in a new population or a different geographic area; one that now affects many more people; and/or one that is displaying new attributes, for example, in terms of its resistance or virulence ( adapted from The US Government & Global Emerging Infectious Disease Preparedness and Response ). Although the return of infection was not necessarily anticipated by a confident global community, many predisposing factors were clearly present. Changes in land use, growth and movement of populations, contacts between people and animals, international trade and travel, and, often, an absence of a public health infrastructure all played a part. Where such influences coincided, as in sub-Saharan Africa or parts of Asia, hotspots were created that were conducive to the emergence of infectious disease. Several hundred new infectious diseases appeared across the globe in the period between 1940 and 2004 , with the greatest number emerging in the 1980s (Jones et al., 2008 ). The 1980s was also the decade that notoriously witnessed the late 20th century ’s most sentinel infection event, the first reported cases of Human Immunodeficiency Virus/Acquired Immune Deficiency Syndrome (HIV/AIDS). By 2014 , AIDS alone would result in approximately 78 million cases worldwide . Although HIV/AIDS engendered particular alarm, the list of late- 20th-century EIDs of medical and public health significance is extensive. Variant Creutzfeldt-Jacob disease (vCJD), H5N1 Influenza and Ebola Virus Disease, the Northern Hemisphere debut of the mosquito-borne zoonotic viral disease, and West Nile Fever in New York City in 1999 were all public health and media events. The process continues unabated in the 21st century with the arrival of Severe Acute Respiratory Syndrome (SARS), H1N1 Influenza (“swine flu”), H7N9 Influenza (“bird flu”), and, despite having surfaced some 40 years earlier, Ebola revealed its potential as a global threat with the West African Outbreak of 2014–2015 . More recently still, the distressing incidence of microcephaly in South America putatively linked to the Zika virus simply emphasizes the abiding challenge posed by infection for public health and global economics (European Centre for Disease Control, 2016 ).

Antibiotic resistance has been a developing public health horror story over, perhaps, 50 years. The therapeutic use of antimicrobials and especially antibiotics was a key factor in slashing the burden of illness from infection in Western countries in the latter half of the 20th century . Yet all classes of organisms—fungi, protozoa, viruses, and bacteria—can develop antimicrobial resistance. Through their genetic processes, bacteria have derived multiple resistance mechanisms to antibiotics used in medicine and agriculture. The threat renders humankind vulnerable to a host of infections, notably in hospital settings where treatment options for many infections are now severely limited. As a consequence, even at the dawn of the 21st century , drug resistance was already being perceived as an increasing threat to global public health, involving all major microbial pathogens and antimicrobial drugs (Levy & Marshall, 2004 )

The challenges of EIDs and antimicrobial resistance are, unquestionably, game changers for medicine and public health in the 21st century . Importantly, they are among the factors that have revealed the true limitations of the biomedical model of health and disease in the 20th century and rekindled interest in the socioeconomic and environmental determinants of disease. HIV/AIDS merits special mention in this regard. Although it is believed to have origins in nonhuman primates in West Africa, it is not an environmental disease in the sense that there is a specific environmental reservoir. Medical sciences and epidemiology have shown transmission of the virus via unprotected sex, contaminated blood transfusions, hypodermic needles, and mother to child transmission during pregnancy, delivery, and breastfeeding. HIV (the infection) and AIDS (the disease) have shown the capacity to extend beyond the initially identified high-risk groups, potentially placing whole populations at risk. In some areas of sub-Saharan Africa where the infection is widespread, it impacts negatively on almost every aspect of society and the economy.

Over 30 years after it first emerged and despite concerted efforts, there is still no cure. In addition to banishing complacency, the infection and the disease call for a much wider perspective than that which took root in the postwar era of scientific positivism and medical paternalism. The failure to manage the threat stems in part from an incapacity to understand where to intervene to change behaviors and to see the disease in its social and environmental context.

Ecological Public Health

Earlier in this article, we identified five issues that helped reestablish awareness of the environment as a key component in the production of human health and well-being in the late 20th century . These issues, and our understanding of them, continue to evolve to challenge the public health community and wider society in the 21st century . In the most general terms, progress seems most likely where issues and challenges are framed with reference to a much wider range of pertinent factors by developing new approaches to evidence and its synthesis; by aligning institutional, physical, and educational infrastructures to the task; and by building governance structures in which all players are accountable and yet are encouraged to unite in common cause.

However, society must now embrace an additional and potentially more devastating threat to health and well-being. Human activity, including economic activity, is now directly and indirectly driving changes to the ecosystems and planetary processes on which we rely for health, well-being, and existence. For too long, human beings have lived, moved, consumed, and pursued health and well-being as if humankind is distinct and separate from nature rather than integral to it. The consequences of this disconnect for the natural world were graphically expressed by Rachel Carson in the 1960s and many others in the ensuing years (e.g., see Rockström et al., 2009 ; Steffen et al., 2015 ). However, developments in science and technology now reveal the true extent of the crisis, its accelerating nature, and its consequences both now and in the medium and longer term.

The term “ecological public health” is increasingly being used to encapsulate a need to build health and well-being, henceforth, on ecological principles. Rayner and Lang ( 2012 ) observe that, despite appearing difficult and complex, Ecological public health “is now the 21st century ’s unavoidable task.” Thus, the already complex challenge of navigating human social complexity to deliver health, well-being, and greater equity, which has defined public health in Western society for several decades, is made more challenging still. The relationship of the environment and human health and well-being must be understood and addressed on vastly extended temporal and spatial scales.

The notion that the planet is a finite resource on which human activity can place intolerable pressure and that the consequences of doing so are potentially catastrophic has been around for some time (e.g., see Carson, 1962 ; Meadows et al., 1972 ). A contemporary evolution of this thinking is expressed by Rockstrom and colleagues. Their sentinel paper, first published in 2009 (Rockström et al., 2009 ) and updated in 2015 (Steffen et al., 2015 ), lists the large earth system processes that are urgently in need of stewardship if humanity is to remain safe into the future. Where applicable, it proposes thresholds beyond which nonlinear, abrupt, and potentially catastrophic changes in these systems might be expected. This thinking is used as a basis for defining a “safe operating space for humanity.” The authors propose nine “planetary boundaries.” Three of these—climate change, ocean acidification, and stratospheric ozone depletion—are major planetary systems where evidence exists of large-scale thresholds in the history of the planet history of the planet. Also included are systems of a rather different sort. These are the slow variables that buffer and regulate planetary resilience. These slow variables comprise interference with the nitrogen and phosphorus cycles; land-use change; rate of biodiversity loss; and freshwater use. Two parameters, air pollution and chemical pollution, are especially difficult to quantify, meaning that thresholds cannot yet be defined. It is emphasized that, while for understandable reasons, the nine systems are often discussed independently, they are interrelated in ways meaning that changes in one system have profound implications for the others. Rockstrom and colleagues observe that in the preindustrial era, all nine parameters were within the safe operating boundaries, and yet by the 1950s, change was underway, most evidently in the nitrogen cycle. By 2009 , according to their analysis, three planetary boundaries had been transgressed: climate change; rate of biodiversity loss; and the nitrogen cycle.

An implicit challenge in limiting global ecosystem damage and its multiple implications is how to achieve recognition among the public and policymakers that the choices they make either directly or indirectly cause ecosystem damage and related environmental change (Morris et al., 2015 ). Climate change is simply the most striking example, but comparable challenges over communication exist in relation to other planetary process and systems. The fundamental rethink of society, the economy, and the environment, which is necessary if health and well-being are to be built on ecological principles, will happen only if the true implications for health and well-being of a “business as usual” approach are understood, communicated, and challenged. For any population, the environmental changes that may ultimately have profound implications may take place in countries and regions well beyond their borders or may not occur for some time, conferring a temporal and/or spatial remoteness that diminishes the sense of urgency. Appreciating the importance of these “distal” pathways of ecosystem damage to human health and well-being demands a greater understanding of ecosystem services (the benefits human beings get from the natural environment) and of why they matter. It also demands a much fuller appreciation of the global connectivity of social, economic, and ecological systems (Morris et al., 2015 ; Adger et al., 2009 ).

When initiating our discussion of the role of environment in health, we observed that the modern public health era was built on an environmental conceptualization of public health. It is now inconceivable that health, well-being, health care, and equity in any of these domains can be delivered without rediscovering an environmental conceptualization of public health for the 21st century .

For Western society, ecological public health is likely to require a rethink of society, the economy, and our stewardship of the natural environment (Rayner & Lang, 2012 ). At the very least, it will demand pursuit, through policy and action, of outcomes that recognize a ‘quadruple bottom line’ measured in health and well-being, environmental quality, equity, and sustainability. The extent to which we embrace ecological principles will be evidenced in policies that address how we live (for example, the energy efficiency of our homes), how we move (particularly our reluctance to substitute travel in fossil-fueled cars with more active forms of travel); how we consume (notably how we source and produce food) and, of course how we obtain and conserve energy.

Taking Stock

Despite being necessarily selective, this article has sought to illustrate how perspectives on the role of the environment in human health and well-being have evolved over the course of the modern public health era. Perspectives can be seen to shift owing to changes in the nature of environmental hazards and risks that are themselves products of the evolution of how societies live, move around, consume, source their energy, and so on. Our understanding of the health relevance of the built and natural environments is also shaped by advances in scientific understanding and technology and a much wider economic, social, cultural, and even political context. In structuring our account, we have adopted a loose framework based on the “epidemiological eras,” elegantly articulated by two of the 20th century ’s leading epidemiologists (Susser & Susser, 1996 ). These eras are differentiated according to the dominant paradigm of the time concerning the causes of disease, each underpinned by analytical approaches to understand and prioritize risk.

The importance accorded to the environment as a mainstream public health issue arguably reached its lowest point in the decades following World War II when the tendency to regard health and disease as characteristics of individuals, rather than communities or populations, gained prominence. This approach diverted attention from social and environmental factors, divorcing health from place. Notions that humans are self-contained and impervious to context have now been largely swept away, not least because denial of a socioecological perspective hugely undermined attempts to address the most serious contemporary health challenges. Also instrumental in challenging the notion of the self-contained body has been an environmentalist movement with a particular interest in pesticide and other chemical contamination of the biosphere. The toxic effects of chemical contamination reinforce the reality of a body that is permeable and invariably in a state of intimate exchange with its surroundings. As Nash ( 2006 ) has observed, “ the singular and self-contained body of the early 20th century came, by the end of that century to seem distressingly porous and vulnerable to the modern landscape” (p. 13). We would simply add that humans exhibit comparable porosity and vulnerability to the social and economic context in which they exist.

We recognize that our account contains only limited reference to the regulatory context that has been so central to controlling the environment for public health. We consider it appropriate to sound a warning in this regard. The processes through which environment is monitored and regulated to protect human health and well-being are sometimes taken for granted. Yet, since the 1980s, pressures have mounted in most Western nations to ‘deregulate’ markets to maximize profit. These pressures have led to environmental and public health regulation being increasingly perceived by governments and markets as “red tape” and a barrier to economic enterprise. Pressure to loosen or even abandon aspects of environmental regulation has weakened formal controls, leaving society vulnerable to corporate excess and irresponsibility, with often serious impacts on public health (Oldenkamp et al., 2016 ). This is not to argue that regulation should be static. Rather, it should adapt to changing technological, social, and economic circumstances and should be appropriately funded whether it relates to the quality of the air we breathe, the water we drink, the buildings we live, learn, and work in, or the nutritional aspects of the food we eat. Neither do we deny the potential to exploit citizen science and the power of new technology to supplement conventional regulation (e.g., enabling vulnerable individuals to avoid hazardous exposures and the opportunities for personal pollution monitoring to improve research).

Mainly anthropogenic damage to planetary resources and ecosystems demands that, wherever we are in the world, public health agencies must understand not just the proximal threats to health and well-being that have been the targets of public health intervention throughout the modern public health era. They must also understand and move to prevent, counteract, and contain more distal threats to health and well-being. The distal threats derive from changes to environments that appear remote in space or time or involve a complex interaction of social, environmental, and economic influences. These are no longer abstract considerations. The unprecedented global connectivity of economic and social systems and the growing understanding of ecosystem interdependencies demand that the implications of human activity for health and well-being be recognized, understood, and addressed on a vastly extended temporal and spatial scale.

Only by build health and well-being on ecological principles (Ecological Public Health) will society effectively address the more distal threats to health and well-being from global ecosystem damage; the socioecological complexity of the proximal environment and the interconnections between these.

Conclusions

In this necessarily brief and artificially linear account, our intention has been to reinforce the enduring importance of the environment for health and well-being. Along the way, we have identified three factors that have marginalized the environment as a component of health and disease. We suggest that they continue to represent clear and present threats, undermining public health and, in the case of the latter, an existential threat to humankind.

The Threat from Medical Reductionism

This tendency to think of disease almost exclusively in terms of pathogenic agents and organic dysfunction marginalizes any influence outside the crucible of the laboratory. This trend was most evident in the decades following World War II but remains an ever-present threat.

The Separation of Health from Place

Closely related to medical reductionism is the tendency to downplay the importance of local context for life. The idea that if local environment matters, it does not matter much and, that when it comes to health and disease, the real action is not out there in the neighborhood and among the community but “over here” in the laboratory and at the level of the individual. Such perspectives are divisive. They create artificial barriers between many academic disciplines, including some medical specialties, and those working to manage and improve the local social and environmental context within which “permeable” human beings live out their lives.

The Denial of Ecology

Science now permits humans to understand the true extent to which their activities are plundering natural resources and harming the planetary systems and processes on which they depend. The pace of change is such that health, well-being, heath care, or anything approaching equity in these things will not be sustained in the medium to longer term without radically rethinking society, the environment, and the economy. The global connectivity of social, economic, and environmental systems means, ultimately, that no one is insulated from the threat whether by distance or socioeconomic circumstance. Ecological public health, the pursuit of health and well-being on ecological principles, has been described as the 21st century ’s unavoidable task. It demands recognition of the dynamic interconnections between people and their environment. Manifestly, we depend on the environment we inhabit, and we powerfully affect it. Among the clearest impediments to delivering ecological public health and preserving a viable environment for future generations are the belief that we can manipulate and conquer the natural environment without consequence, and the irresponsible capitalist imperative that subverts regulatory standards and damages and exploits the environment for profit. Both are revealed as transparent absurdities by an ecological understanding and analysis.

  • Adger, W. N. , Eakin, H. , & Winkels, A. (2009). Nested and teleconnected vulnerabilities to environmental change . Frontiers in Ecology and the Environment , 7 (3), 150–157.
  • Awefeso, N. (2004). What’s new about the new public health? American Journal of Public Health , 94 , 705–709.
  • Baker, D. , & Nieuwenhuijsen, M. J. (Eds.). (2008). Environmental epidemiology: Study methods and application . New York: Oxford University Press.
  • Baum, F. (1998). The new public health: An Australian perspective . Oxford: Oxford University Press.
  • Baxby, D. (2004). Jenner, Edward (1749–1823). In Oxford Dictionary of National Biography . Oxford: Oxford University Press. Retrieved from http://www.oxforddnb.com/view/article/14749 .
  • Bell, M. L. , & Davis D. L. (2001). Reassessment of the lethal London fog of 1952: Novel indicators of acute and chronic consequences of acute exposure to air pollution. Environmental Health Perspectives , 109 (Suppl. 3), 389–394.
  • Bell, M. L. , Davis, D. L. , & Fletcher, T. (2004). A retrospective assessment of mortality from the London smog episode of 1952: The role of influenza and pollution. Environmental Health Perspectives , 112 , 6–8.
  • Bell, M. L. , & Ebisu, K. (2012). Environmental inequality in exposures to airborne particulate matter components in the United States. Environmental Health Perspectives , 120 , 1699–1704.
  • Bell, M. L. , & Samet, M. J. (2005). Air pollution in environmental health. In H. Frumkin (Ed.), From Global to Local (pp. 387–415). San Francisco: Jossey-Bass.
  • Bohand, X. , Monpeurt, C. , Bohand, S. , et al. (2007). Toxic waste and health effects in Abidjan City, Ivory Coast. Medecine Tropicale , 67 , 620–624.
  • Bookchin, M. (1990). The philosophy of social ecology: Essays on dialectical naturalism . Montreal: Black Rose Books.
  • Branis, M. , & Linhartova, M. (2012). Association between unemployment, income, education level, population size and air pollution in Czech cities: evidence for environmental inequality? A pilot national scale analysis. Health and Place , 18 , 1110–1114.
  • Brock, T. D. (1999). Robert Koch: A life in medicine and bacteriology . Washington, DC: ASM Press.
  • Brownson, R. C , Fielding, J. E. , & Maylahn, C. M. (2009). Evidence-based public health: A fundamental concept for public health practice. Annual Review of Public Health , 30 , 175–201.
  • Butler, C. D. , Corvalán, C. F. , & Koren, H. S. (2005): Human health and well-being in global ecological scenarios . Ecosystems , 8 (2), 153–164.
  • Butler, C. D. , & Harley, D. (2010) Primary, secondary and tertiary effects of eco-climatic change: The medical response . Postgraduate Medical Journal , 86 : 230–234.
  • CABE . (2010). Community green: Using local spaces to tackle inequality and improve health . London: CABE.
  • Carder, M. , McNamee, R. , Beverland, I. , et al. (2008). Does deprivation index modify the acute effect of black smoke on cardiorespiratory mortality? Occupational and Environmental Medicine , 67 , 104–110.
  • Carson, R. (1962). Silent spring . Boston: Houghton Mifflin.
  • Chadwick, E. (1842). Report to her majesty’s principal secretary of state for the Home Department from the Poor Law commissioners on an inquiry into the sanitary conditions of the labouring classes of Great Britain. London: HMSO.
  • Collard, P. (1976). The development of microbiology . Cambridge: Cambridge University Press.
  • Commission on Social Determinants of Health . (2008). Closing the gap in a generation: health equity through action on the social determinants of health. Final Report of the Commission on Social Determinants of Health. Retrieved from http://whqlibdoc.who.int/publications/2008/9789241563703_eng.pdf .
  • Dahlgren, G. , & Whitehead, M. (1991). Policies and strategies to promote social equity in health . Institute of Futures Studies. Department for Education and Skills, Stockholm.
  • Dockery, D. , & Pope, A. (1996). Epidemiology of acute health effects: Summary of time-series studies. In R. Wilson & J. D. Spengler (Eds.), Particles in our air. Concentration and health effects (pp. 123–147). Cambridge, MA: Harvard University Press.
  • EPA . Environmental justice . (2016). Retrieved from https://www.epa.gov/environmentaljustice .
  • EPA . Next generation air measuring research . (2016). Retrieved from https://www.epa.gov/sciencematters/epas-next-generation-air-measuring-research .
  • European Centre for Disease Control . (2016). Zika outbreak in the Americas and the Pacific . Retrieved from http://ecdc.europa.eu/en/healthtopics/zika_virus_infection/zika-outbreak/Pages/zika-outbreak.aspx .
  • European Environment Agency . (2013). Late lessons from early warnings: Science, precaution, innovation . Copenhagen: EEA.
  • Eurostat . Overweight and obesity BMI statistics . Retrieved from http://ec.europa.eu/eurostat/statistics-explained/index.php/Overweight_and_obesity_-_BMI_statistics .
  • Evans, R. , & Stoddart, G. (1990). Producing health, consuming health care. Social Science and Medicine , 31 , 1347–1363.
  • Evelyn, J. (1661). Fumifugium, or the inconvenience of aer or the smoake of London dissipated . London: Dorset Press for the National Society of Clean Air.
  • Faculty of Public Health and Natural England . (2011). Great outdoors: How our natural health service uses green space to improve wellbeing briefing statement . London: FPH.
  • Fauci A. S. (2001). Infectious diseases: considerations for the 21st century. Clinical Infectious Diseases , 32 , 675–685.
  • Ferriman, A. (2007). BMJ readers choose the “sanitary revolution” as greatest medical advance since 1840. British Medical Journal , 334 , 111.
  • Foster, W. D. (1970). A history of medical bacteriology and immunology . London: Heinemann.
  • Frumkin, H. (Ed.). (2005). Environmental health: From global to local . San Francisco: Jossey-Bass.
  • Gee, G. C. , & Payne-Sturges, D. C. (2004). Environmental health disparities: A framework integrating psychosocial and environmental concepts. Environmental Health Perspectives , 112 , 1645–1653.
  • Goodman, A. , Wilkinson, P. , Stafford, M. , & Tonne, C. (2011). Characterising socio-economic inequalities in exposure to air pollution: a comparison of socio-economic markers and scales of measurement. Health and Place , 17 , 767–774.
  • Greenspace Scotland . (2009). Social return on investment (SROI) analysis of the Greenlink, A partnership project managed by the Central Scotland Forest Trust (CSFT). Retrieved from http://1068899683.n263075.test.prositehosting.co.uk/wp-content/uploads/2013/04/Greenlink-SROI-Final-report-5-October-2009.pdf .
  • Haekel, E. (1866). Generelle morphologie der organismen . Berlin: Georg Reimer.
  • Hamil, S. D. (2008, November 1). Unveiling a museum, A Pennsylvania town remembers the smog that killed 20. New York Times . Retrieved from http://www.nytimes.com/2008/11/02/us/02smog.html?_r=0 .
  • International Labour Office . (2012). The global impact of e-waste: Addressing the challenge . Geneva: ILO.
  • James Hutton Institute . Greenhealth. Contribution of green and open space to public health and wellbeing. Retrieved from http://www.hutton.ac.uk/sites/default/files/files/projects/GreenHealth-Final-Report.pdf .
  • Johansen, B. E. (2002). The Inuit’s struggle with dioxins and other organic pollutants. American Indian Quarterly , 26 , 479–490.
  • Jones, K. E. , Patel, G. N. , Levy, M. A. , et al. (2008). Global trends in emerging infectious diseases. Nature , 451 , 990–993.
  • Levy, S. B. , & Marshall, B. (2004). Antimicrobial resistance worldwide: Cause. Challenges and responses. Natural Medicine , 12 (Suppl.), S122–S129).
  • Lloyd, G. E. R. (Ed.). (1983). Hippocratic writings (trans. J. Chadwick . & W. N. Mann ). London: Penguin.
  • Jung, K. H. , Perzanowski, M. , Rundle, A. , et al. (2014). Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environmental Research , 128 , 35–41.
  • Kessel, A. (2006). Air, the environment and public health. Cambridge: Cambridge University Press.
  • Kinnaman, T. C. (2011). The economic impact of shale gas extraction: A review of existing studies. Ecological Economics , 70 , 1243–1249.
  • Kokayeff, N. (2013). Dying to be discovered: Miasma vs germ theory. ESSAI , 10: Article 24. Retrieved from http://dc.cod.edu/cgi/viewcontent.cgi?article=1416&context=essai .
  • Kriger, N. , Waterman, P. D. , Gryparis, A. , et al. (2014). Black carbon exposure more strongly associated with census tract poverty compared to household income among US black, white, and Latino working class adults in Boston, MA (2003–2010). Environmental Pollution , 190 , 36–42.
  • Kuo, F. , & Sullivan, W. C. (2001a). Environment and crime in the inner city: Does vegetation reduce crime. Environmental Behavior , 33 , 343–367.
  • Kuo, F. E. , & Sullivan, W. C. (2001b). Aggression and violence in the inner city: Effects of environment via mental fatigue. Environmental Behavior , 33 , 543–571.
  • Lalonde, M. (1974). A new perspective on the health of Canadians. Ministry of Supply and Services Canada. Retrieved from http://www.phac-aspc.gc.ca/ph-sp/pube-pubf/perintrod-eng.php .
  • Lave, R. , & Lutz, B. (2014). Hydraulic fracturing: A critical physical geography review. Geography Compass , 8 , 739–754.
  • Leviticus [14:33–45] quoted in Frumkin, 2005.
  • Lu, K. D. , Breysse, P. N. , Diette, G. B. , et al. (2013). Being overweight increases susceptibility to indoor pollutants among urban children with asthma. Journal of Allergy and Clinical Immunology , 131 , 1017–1023.
  • Martuzzi, M. (2007). The precautionary principle: in action for public health. Occupational and Environmental Medicine , 64 , 569–570.
  • Meadows, D. H. , Meadows, D. L. , Randers, J. , et al. (1972). The limits to growth: A report for the Club of Rome’s project on the predicament of mankind . New York: Universe Books.
  • Mitchell, R. , & Popham, F. (2008). Effect of exposure to natural environment on health inequalities: An observational population study. The Lancet ; 372 , 1655–1660.
  • Morris, G. P. , Beck, S. A. , Hanlon, P , et al. (2006). Getting strategic about the environment and health. Public Health , 120 , 889–907.
  • Morris, G. P. , & Braubach, M. (2012). Environmental health inequalities in Europe. Geneva: World Health Organization. Retrieved from http://whqlibdoc.who.int/publications/2008/9789241563703_eng.pdf .
  • Morris, G. P. , Reis, S. , Beck, S. , Fleming, L. E. , Adger, W. D. , Benton, T. G. , & Depledge, M. H. (2015). Climate change and health in the UK. Scoping and communicating the longer-term “distal” dimensions. In S. Kovats (Eds.), Health Climate Change Impacts Summary Report Card, Living With Environmental Change . Retrieved from http://www.nerc.ac.uk/research/partnerships/ride/lwec/report-cards/health-source10/ .
  • Nabel, E. G. , & Braunwald, E. M. (2012). A tale of coronary heart disease and myocardial infarction. New England Journal of Medicine , 366 , 54–63.
  • Nash, L. (2006). Inescapable ecologies: A history of environment, disease and knowledge . Berkeley, CA: California University Press.
  • National Children’s Bureau . (2013). Greater expectations: Raising aspirations for our children . London: NCB.
  • National Obesity Observatory . (2013). National Child Measurement Programme changes in children’s body mass index between 2006/07 and 2011/12. Retrieved from http://www.noo.org.uk/uploads/doc/vid_17929_NCMP_Changes_children.pdf .
  • Oldenkamp, R. , van Zelm, R. , & Huijbregts, A. J. (2016). Valuing the human health damage caused by the fraud of Volkswagen. Environmental Pollution , 212 , 121–127.
  • Patz, J. A. , Campbell-Lendrum, D. , Holloway, T. , et al. (2005). Impact of regional climate change on human health. Nature , 438 , 310–317.
  • Perry, I. J. (1997). Risk factor epidemiology. The Lancet , 350 , 1256.
  • Petticrew, M. , Whitehead, M. , Macintyre, S. , et al. (2004). Evidence for public health policy on inequalities: 1: The reality according to policymakers. Journal of Epidemiology and Community Health , 58 , 811–816.
  • Pope, C. A. , Dockery, D. W. , & Schwartz, J. (1995). Review of epidemiological evidence of health effects of particulate air pollution . Inhalation Toxicology , 47 , 1–18.
  • Prüss-Üstün, A. , Wolf, J. , Corvalan, C. , Neville, T. , Bos, R. , & Neira, M. (2016a). Diseases due to unhealthy environments: An updated estimate of the global burden of disease attributable to environmental determinants of health . Journal of Public Health . Retrieved from http://jpubhealth.oxfordjournals.org/content/early/2016/09/12/pubmed.fdw085.full .
  • Prüss-Üstün, A. , et al. (2016b). Preventing disease through healthy environments: A global assessment of the burden of disease from environmental risks . Geneva: World Health Organization.
  • Public Health England . (2016). Health Inequalities. Retrieved from http://www.noo.org.uk/NOO_about_obesity/inequalities .
  • Public Health England and UCL Institute of Health Equity . (2014). Local action on health inequalities: Improving access to green spaces . London: PHE.
  • Rather, L. J. (1985). Rudolf Virchow: Collected essays on public health and epidemiology . Canton, MA: Science History Publications.
  • Rayner, G. , & Lang, T. (2012). Ecological public health: Reshaping the conditions for good health . Oxford: Routledge.
  • Reis, S. , Morris, G. , Fleming, L. E. , et al. (2015). “Integrating Health and Environmental Impact Analysis.” Public Health , 129 , 1383–1389.
  • Richardson, E. A. , Pearce, J. , & Kingham, S. (2011). Is particulate air pollution associated with health and health inequalities in New Zealand? Health and Place , 17 , 1137–1143.
  • Richardson, E. A. , Pearce, J. , Tunstall, H. , et al. (2013). Particulate air pollution and health inequalities: A Europe-wide ecological analysis. International Journal of Health Geographics , 12 , 34.
  • Rockström, J. , Steffen, W. , Noone, K. , et al. (2009). Planetary boundaries: Exploring the Safe Operating Space for Humanity . Ecology and Society 14 , 32.
  • Rosen, G. A. (1993). History of public health (Expanded ed.). Baltimore, MD: Johns Hopkins University Press. Originally published 1958.
  • Royal College of Physicians . (2016). Every breath we take: The lifelong impact of air pollution . Report of a working party. London: RCP.
  • Rudge, G. , Suglani, N. , Jenkinson, D. , et al. (2013). Are fast food outlets concentrated in more deprived areas? A geo-statistical analysis of an urban area in central England. Journal of Epidemiology and Community Health , 67 (Suppl. 1), A14.
  • Saunders, P. , Saunders, A. , & Middleton, J. (2015). Living in a ‘fat swamp’: exposure to multiple sources of accessible, cheap, energy-dense fast foods in a deprived community. British Journal of Nutrition , 113 , 1828–1834.
  • Sovacool, B. K. (2014). Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renewable and Sustainable Energy Reviews , 37 , 249–264.
  • Steffen, W. , et al. (2015). Planetary boundaries: Guiding human development on a changing planet. Science , 349 , 1286–1287.
  • Susser, M. , & Adelstein, A. (1975). An introduction to the work of William Farr. American Journal of Epidemiology , 101 , 469–476.
  • Susser, M. , & Susser, E. (1996). Choosing a future for epidemiology: I. Eras and paradigms. American Journal of Public Health , 86 , 668–673.
  • Tannahill, A. (2008). Beyond evidence to ethics: A decision-making framework for health promotion, public health and health improvement. Health Promotion International , 23 , 380–390.
  • The Marmot Review Team . (2010). Fair society, healthy lives: Strategic review of health inequalities in England post-2010 . Marmot Review Team, London.
  • The Trust for Public Land . (2008). How much value does the city of Philadelphia receive from its park and recreation system? Retrieved from http://cloud.tpl.org/pubs/ccpe_PhilaParkValueReport.pdf .
  • Thomas-Hope E. (2011). People on the move. Managing migration in today’s commonwealth . The second report of the Ramphal Commission on Migration and Development.
  • UNICEF . (2008). Our climate, our children, our responsibility. The implications of climate change for the world’s children . Retrieved from https://www.crin.org/en/docs/climate-change.pdf .
  • Villeneuve, P. J. , Jerrett, M. , Su, J. G. , et al. (2012). A cohort study relating urban green space with mortality in Ontario, Canada. Environmental Research , 115 , 51–58.
  • Vinikoor-Imler, L C. , Gray, S. C. , Edwards, S. E. , et al. (2012). The effects of exposure to particulate matter and neighbourhood deprivation on gestational hypertension. Paediatric and Perinatal Epidemiology , 26 , 91–100.
  • Vinten-Johansen, P. , Brody, H. , Paneth, N. , et al. (2003). Cholera, chloroform and the science of medicine: A life of John Snow . New York: Oxford University Press.
  • World Health Organization . (2013). Review of evidence on health aspects of air pollution—REVIHAAP Project . Bonn: World Health Organization. Retrieved from http://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf .
  • World Health Organization . (2016). Water sanitation and health . Retrieved from http://www.who.int/water_sanitation_health/en/ .
  • World Health Organization . (2016). Global Health Observatory (GHO) data: HIV/AIDS . Retrieved from http://www.who.int/gho/hiv/en .
  • World Health Organization Regional Office for Europe . (2012). Environmental health inequalities in Europe Assessment Report . Copenhagen: WHO.

Printed from Oxford Research Encyclopedias, Environmental Science. Under the terms of the licence agreement, an individual user may print out a single article for personal use (for details see Privacy Policy and Legal Notice).

date: 20 April 2024

  • Cookie Policy
  • Privacy Policy
  • Legal Notice
  • Accessibility
  • [66.249.64.20|185.66.14.133]
  • 185.66.14.133

Character limit 500 /500

  • Browse All Articles
  • Newsletter Sign-Up

EnvironmentalSustainability →

No results found in working knowledge.

  • Were any results found in one of the other content buckets on the left?
  • Try removing some search filters.
  • Use different search filters.

Kristy Ferraro, '24 PhD

Kristy Ferraro, '24 PhD

Unique Research on Calving Impacts on Nutrient Cycle Earns 2024 Bormann Prize

A study led by YSE doctoral candidate Kristy Ferraro demonstrates how plant-fungal associations in ecosystems can mitigate the impact of calving animals in nitrogen cycling.

In the expanding field of zoogeochemistry, which examines how animals interact with nutrient cycles, Kristy Ferraro had a novel idea. The Yale School of the Environment doctoral candidate developed a field experiment that would look at how plant-fungal ecology interacted with the nutrients introduced by calving animals — white tail deer — during spring green-up.

“Animals interact with ecosystems in so many different ways. They are constantly impacting, and are impacted by, the environments they live in,” Ferraro said. “Untangling the ways in which animals are supporting ecosystems or contributing to ecosystem function is important because it helps us understand their role. While we know that carcasses and waste can accelerate nutrient cycles and create nutrient hotspots, for large mammals, there hasn’t been much work on the role of placenta and natal fluid in ecosystem functions. There also hasn’t been any work on the interactive effects of animal inputs and the underlying plant-fungal associations. The research really extends beyond the question of how animals impact ecosystems to how ecosystems are modulating that impact.”

This groundbreaking interdisciplinary research, which was published in 2023 in the Journal of Animal Ecology, earned Ferraro the 2024 F. Herbert Bormann Prize. The award honors a YSE doctoral student whose work best exemplifies the legacy of Bormann, a plant ecologist who taught at YSE from 1966-1993 and whose research called the world’s attention to the threat of acid rain. Ferraro received the award at the 40th annual Research Day held at YSE April 12.

For the study, Ferraro and a team of YSE researchers placed animal placentas and simulated natal fluid at Yale-Myers Forest in plots dominated by one of two different plant-fungal associations common in northern forests — ericoid mycorrhizal (ErM) or ectomycorrhizal (EcM). They returned to the sites three months later to record nutrient concentrations in the vegetation in the plots, as well as the cycling of nutrients in the soil. They found that the calving materials act as fertilizers and create nutrient hotspots that ultimately create more nutritious plants for animals to eat. They also discovered that while the nutrients introduced by the calving did accelerate nitrogen cycling, in some cases the underlying plant-fungal associations mitigated the effects by slowing it down.

“Our study highlights one newly discovered piece of an infinite feedback loop between animals and ecosystems …  Specifically,  the underlying plant-fungal association can mediate the impacts of calving inputs,”  Ferraro said. 

The study was co-authored by Oswald Schmitz, Oastler Professor of Population and Community Ecology;  Mark Bradford, professor of soils and ecosystem ecology; Les Welker ’22,’24 MESc; and Eli Ward ’18 MFS, ’23 PhD.

Ferraro said she was thrilled to receive the Bormann prize for the research.

welker, ward, ferraro

From left: Les Welker ’22, ’24 MESc; Eli Ward '18 MFS, ’23 PhD; and Kristy Ferraro ’24 PhD conduct field research at Yale-Myers Forest examining how calving animals impact the nutrient cycle and how those impacts can be modulated by plant-fungal associations.

“What is special about the Bormann prize is the legacy it represents. Professor Bormann not only did interdisciplinary work, but he also did impactful work … and that’s the sort of work I want to do. I want to do work that not only brings disciplines together and helps us better understand conservation and ecology, but also makes us do better conservation and ecology,” she said.

Ferraro first had set her sights on studying caribou in Canada, but when the COVID-19 pandemic hit, she restructured her research and worked with Ward, a forest ecologist at the Connecticut Agricultural Experiment Station, to add the component of investigating plant-fungal interactions with zoogeochemistry at a site closer to home.

It wasn’t easy getting the materials for the study, Ferraro noted. Instead of white-tail deer placenta and natal fluid, the team substituted lamb placentas because it was easier to obtain. To get those, she had to call farmers around the state and ask them to freeze the placentas so she could retrieve and place at the forest sites.

“We called about 50 sheep farmers around Connecticut to ask them to keep the materials, and we got a lot of varied responses. Some were like, ‘Absolutely not. That’s weird.’ But we ultimately found three really wonderful farmers who were super interested in the research and were really engaged,” she said.

Crab in a trap

After picking up the placentas from the farmers, sometimes out of buckets, the team then placed the placenta and simulated natal fluid in crab traps at the Yale-Myers plots that had the two different fungal associations (ErM and EcM).

“Not everyone has the stomach for it. I barely had the stomach for it. So that was the first hurdle,” Ferraro said.

They also set up camera traps to record animal interactions. The cameras revealed that some placentas were stolen by animals to nourish themselves.

“Turns out possums are really good at sticking their little hands into the cages,” Ferraro said, adding that racoons, wolves, and turkeys also helped themselves to the placentas.

Despite the scavenging by animals, they found that the natal fluid itself had enough of an impact to bump up nutrient cycling and create nutrition hotspots in the surrounding plant material, but the impact was mediated by both plant-fungal associations, with ErM plant-fungal associations having a slower nutrient cycle compared to EcM.

The findings have important implications. As shrubs move north and spread due to climate change, the ErM plant-fungal associations that are underlyng shrub communities could mute the nutrient hotspots animals create as they did at Yale-Myers Forest, Ferraro said.

“Kristy’s research fits well with the spirit of the Bormann Award. Herb Bormann pioneered the use of experiments at scale to evaluate how human impacts, such as forest harvesting, leads to alterations of biogeochemical cycling across the landscape. Kristy also reports on an experiment, at scale, to evaluate effects of another human impact — forest management that supports deer populations — in boosting biogeochemical cycling. The work gives holistic insight into an animal species’ impact on biogeochemical processes in ecosystems,”  Schmitz said. 

Other Research Day award winners include doctoral students Destiny Treloar, who earned the Schmitz Prize for best oral presentation for her research on “Closing the Gap: Exploring Perspectives and Constraints Amongst African Immigrants in Accessing Outdoor Recreation Opportunities"; Lachlan Byrnes, for Best Poster on “Contrasting patterns of mortality in an Amazon-Cerrado forest edge during exceptional drought”; and Ananya Rao ’25 MESc, who received the Master’s Student Oral Presentation Prize for her research on “Leveraging Community Forest Resources Rights to augment NTFP-based livelihoods in Central India.”

  • Kristy Ferraro
  • Oswald Schmitz
  • Mark Bradford
  • Doctoral Program

Media Contact

Portrait of Fran Silverman

Fran Silverman

Associate Director of Communications

Research in the News

A path in the Sinharaja rainforest in Sri Lanka

Climate Change Threatens Resilience of Sri Lankan Rainforests

 

An Inside Look at Beech Leaf Disease

An uncompleted construction project in India

Achieving Sustainable Urban Growth on a Global Scale

Connect with us.

  • Request Information
  • Register for Events

Climate change damage could cost $38 trillion per year by 2050, study finds

  • Medium Text

French lake dries up due to winter drought, threatening farming and tourism

Make sense of the latest ESG trends affecting companies and governments with the Reuters Sustainable Switch newsletter. Sign up here.

Reporting by Riham Alkousaa, Editing by Rachel More, Katy Daigle and Barbara Lewis

Our Standards: The Thomson Reuters Trust Principles. New Tab , opens new tab

research about environment

Thomson Reuters

Riham Alkousaa is the energy and climate change correspondent for Reuters in Germany, covering Europe’s biggest economy's green transition and Europe’s energy crisis. Alkousaa is a Columbia University Journalism School graduate and has 10 years of experience as a journalist covering Europe’s refugee crisis and the Syrian civil war for publications such Der Spiegel Magazine, USA Today and the Washington Times. Alkousaa was on two teams that won Reuters Journalist of the year awards in 2022 for her coverage of Europe’s energy crisis and the Ukraine war. She has also won the Foreign Press Association Award in 2017 in New York and the White House Correspondent Association Scholarship that year.

The sun sets next to a smoke stack from a coal-burning power station in Beijing

Business Chevron

A view of the Volkswagen plant in Chattanooga, Tennessee

UAW ahead as first ballots counted in union vote at Volkswagen's Tennessee factory

An early tally of ballots on a key unionization vote at Volkswagen's Tennessee plant showed most workers in favor of joining the United Auto Workers union.

IMF and World Bank’s 2024 annual Spring Meetings in Washington

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

Publications

  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Environment & Climate

  • Filtering by:

What the data says about Americans’ views of climate change

Two-thirds of Americans say the United States should prioritize developing renewable energy sources over expanding the production of fossil fuels.

Majorities of Americans Prioritize Renewable Energy, Back Steps to Address Climate Change

Large shares of Americans support the U.S. taking steps to address global climate change and prioritize renewable energy development in the country. Still, fewer than half are ready to phase out fossil fuels completely and 59% oppose ending the production of gas-powered cars.

How Young Adults Want Their Country To Engage With the World

Though younger people tend to be more internationally oriented than older adults, they differ from one another over how they want their country to engage with the world.

What Makes Someone a Good Member of Society?

Most in advanced economies say voting, taking steps to reduce climate change and getting a COVID-19 vaccine are ways to be a good member of society; fewer say this about attending religious services.

Climate Change Remains Top Global Threat Across 19-Country Survey

Despite the many depressing stories dominating the international news cycle, there is also a note of positivity among survey respondents in views of the UN, the benefits of international cooperation for solving problems and the importance of common values for bringing nations together.

A Majority of Americans Favor Expanding Natural Gas Production To Export to Europe

Yet renewable sources, like wind and solar, remain Americans’ overall priority for domestic production.

Americans largely support U.S. joining international efforts to address climate change

Nearly all Democrats (92%) support a U.S. role in international efforts to reduce climate change impacts, as do 53% of Republicans.

Americans Largely Favor U.S. Taking Steps To Become Carbon Neutral by 2050

Majorities of Americans say the United States should prioritize the development of renewable energy sources and take steps toward the country becoming carbon neutral by the year 2050. But just 31% want to phase out fossil fuels completely, and many foresee unexpected problems in a major transition to renewable energy.

How the political typology groups compare

Pew Research Center’s political typology sorts Americans into cohesive, like-minded groups based on their values, beliefs, and views about politics and the political system. Use this tool to compare the groups on some key topics and their demographics.

Fast facts about international views of climate change as Biden attends UN COP26 conference

Recent surveys have documented how people around the world view the issue of climate change and international responses.

REFINE YOUR SELECTION

  • Age & Generations (318)
  • Coronavirus (COVID-19) (185)
  • Economy & Work (119)
  • Family & Relationships (222)
  • Gender & LGBTQ (261)
  • Immigration & Migration (597)
  • International Affairs (582)
  • Internet & Technology (31)
  • Methodological Research (197)
  • News Habits & Media (47)
  • Non-U.S. Governments (93)
  • Other Topics (5)
  • Politics & Policy (754)
  • Race & Ethnicity (476)
  • Religion (396)
  • Science (20)

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

  • International edition
  • Australia edition
  • Europe edition

Man with dogs walks on beach as waves crash nearby

Ocean spray emits more PFAS than industrial polluters, study finds

Research into release of ‘forever chemicals’ raises concerns about contamination and human exposure along world’s coastlines

Ocean waves crashing on the world’s shores emit more PFAS into the air than the world’s industrial polluters, new research has found, raising concerns about environmental contamination and human exposure along coastlines.

The study measured levels of PFAS released from the bubbles that burst when waves crash, spraying aerosols into the air. It found sea spray levels were hundreds of thousands times higher than levels in the water.

The contaminated spray likely affects groundwater, surface water, vegetation, and agricultural products near coastlines that are far from industrial sources of PFAS, said Ian Cousins, a Stockholm University researcher and the study’s lead author.

“There is evidence that the ocean can be an important source [of PFAS air emissions],” Cousins said. “It is definitely impacting the coastline.”

PFAS are a class of 15,000 chemicals used across dozens of industries to make products resistant to water, stains and heat. Though the compounds are highly effective, they are also linked to cancer, kidney disease, birth defects, decreased immunity, liver problems and a range of other serious diseases.

They are dubbed “forever chemicals” because they do not naturally break down and are highly mobile once in the environment, so they continuously move through the ground, water and air. PFAS have been detected in all corners of the globe, from penguin eggs in Antarctica to polar bears in the Arctic.

The Stockholm researchers several years ago found that PFAS from ocean waves crashing are released into the air around shorelines, then can travel thousands of kilometers through the atmosphere before the chemicals return to land.

The new research looked at levels in the sea spray as waves crash by testing ocean samples between Southampton in the UK and Chile. The chemicals’ levels were higher in the northern hemisphere in general because it is more industrialized and there is not much mixing of water across the equator, Cousins said.

It is unclear what the findings mean for human exposure. Inhalation of PFAS is an issue, but how much of the chemicals are breathed in, and air concentrations further from the waves, is still unknown.

Previous non-peer-reviewed research has found a correlation between higher PFAS levels in vegetation samples and proximity to the ocean, Cousin said, and his team is undertaking a similar study.

He said that the results showed how the chemicals are powerful surfactants that concentrate on the surface of water, which helps explain why they move from the ocean to the air and atmosphere.

“We thought PFAS were going to go into the ocean and would disappear, but they cycle around and come back to land, and this could continue for a long time into the future,” he said.

Most viewed

Pollution is the introduction of harmful materials into the environment. These harmful materials are called pollutants.

Biology, Ecology, Health, Earth Science, Geography

Loading ...

Pollution is the introduction of harmful materials into the environment . These harmful materials are called pollutants . Pollutants can be natural, such as volcanic ash . They can also be created by human activity, such as trash or runoff produced by factories. Pollutants damage the quality of air, water, and land. Many things that are useful to people produce pollution. Cars spew pollutants from their exhaust pipes. Burning coal to create electricity pollutes the air. Industries and homes generate garbage and sewage that can pollute the land and water. Pesticides —chemical poisons used to kill weeds and insects— seep into waterways and harm wildlife . All living things—from one-celled microbes to blue whales—depend on Earth ’s supply of air and water. When these resources are polluted, all forms of life are threatened. Pollution is a global problem. Although urban areas are usually more polluted than the countryside, pollution can spread to remote places where no people live. For example, pesticides and other chemicals have been found in the Antarctic ice sheet . In the middle of the northern Pacific Ocean, a huge collection of microscopic plastic particles forms what is known as the Great Pacific Garbage Patch . Air and water currents carry pollution. Ocean currents and migrating fish carry marine pollutants far and wide. Winds can pick up radioactive material accidentally released from a nuclear reactor and scatter it around the world. Smoke from a factory in one country drifts into another country. In the past, visitors to Big Bend National Park in the U.S. state of Texas could see 290 kilometers (180 miles) across the vast landscape . Now, coal-burning power plants in Texas and the neighboring state of Chihuahua, Mexico have spewed so much pollution into the air that visitors to Big Bend can sometimes see only 50 kilometers (30 miles). The three major types of pollution are air pollution , water pollution , and land pollution . Air Pollution Sometimes, air pollution is visible . A person can see dark smoke pour from the exhaust pipes of large trucks or factories, for example. More often, however, air pollution is invisible . Polluted air can be dangerous, even if the pollutants are invisible. It can make people’s eyes burn and make them have difficulty breathing. It can also increase the risk of lung cancer . Sometimes, air pollution kills quickly. In 1984, an accident at a pesticide plant in Bhopal, India, released a deadly gas into the air. At least 8,000 people died within days. Hundreds of thou sands more were permanently injured. Natural disasters can also cause air pollution to increase quickly. When volcanoes erupt , they eject volcanic ash and gases into the atmosphere . Volcanic ash can discolor the sky for months. After the eruption of the Indonesian volcano of Krakatoa in 1883, ash darkened the sky around the world. The dimmer sky caused fewer crops to be harvested as far away as Europe and North America. For years, meteorologists tracked what was known as the “equatorial smoke stream .” In fact, this smoke stream was a jet stream , a wind high in Earth’s atmosphere that Krakatoa’s air pollution made visible. Volcanic gases , such as sulfur dioxide , can kill nearby residents and make the soil infertile for years. Mount Vesuvius, a volcano in Italy, famously erupted in 79, killing hundreds of residents of the nearby towns of Pompeii and Herculaneum. Most victims of Vesuvius were not killed by lava or landslides caused by the eruption. They were choked, or asphyxiated , by deadly volcanic gases. In 1986, a toxic cloud developed over Lake Nyos, Cameroon. Lake Nyos sits in the crater of a volcano. Though the volcano did not erupt, it did eject volcanic gases into the lake. The heated gases passed through the water of the lake and collected as a cloud that descended the slopes of the volcano and into nearby valleys . As the toxic cloud moved across the landscape, it killed birds and other organisms in their natural habitat . This air pollution also killed thousands of cattle and as many as 1,700 people. Most air pollution is not natural, however. It comes from burning fossil fuels —coal, oil , and natural gas . When gasoline is burned to power cars and trucks, it produces carbon monoxide , a colorless, odorless gas. The gas is harmful in high concentrations , or amounts. City traffic produces highly concentrated carbon monoxide. Cars and factories produce other common pollutants, including nitrogen oxide , sulfur dioxide, and hydrocarbons . These chemicals react with sunlight to produce smog , a thick fog or haze of air pollution. The smog is so thick in Linfen, China, that people can seldom see the sun. Smog can be brown or grayish blue, depending on which pollutants are in it. Smog makes breathing difficult, especially for children and older adults. Some cities that suffer from extreme smog issue air pollution warnings. The government of Hong Kong, for example, will warn people not to go outside or engage in strenuous physical activity (such as running or swimming) when smog is very thick.

When air pollutants such as nitrogen oxide and sulfur dioxide mix with moisture, they change into acids . They then fall back to earth as acid rain . Wind often carries acid rain far from the pollution source. Pollutants produced by factories and power plants in Spain can fall as acid rain in Norway. Acid rain can kill all the trees in a forest . It can also devastate lakes, streams, and other waterways. When lakes become acidic, fish can’t survive . In Sweden, acid rain created thousands of “ dead lakes ,” where fish no longer live. Acid rain also wears away marble and other kinds of stone . It has erased the words on gravestones and damaged many historic buildings and monuments . The Taj Mahal , in Agra, India, was once gleaming white. Years of exposure to acid rain has left it pale. Governments have tried to prevent acid rain by limiting the amount of pollutants released into the air. In Europe and North America, they have had some success, but acid rain remains a major problem in the developing world , especially Asia. Greenhouse gases are another source of air pollution. Greenhouse gases such as carbon dioxide and methane occur naturally in the atmosphere. In fact, they are necessary for life on Earth. They absorb sunlight reflected from Earth, preventing it from escaping into space. By trapping heat in the atmosphere, they keep Earth warm enough for people to live. This is called the greenhouse effect . But human activities such as burning fossil fuels and destroying forests have increased the amount of greenhouse gases in the atmosphere. This has increased the greenhouse effect, and average temperatures across the globe are rising. The decade that began in the year 2000 was the warmest on record. This increase in worldwide average temperatures, caused in part by human activity, is called global warming . Global warming is causing ice sheets and glaciers to melt. The melting ice is causing sea levels to rise at a rate of two millimeters (0.09 inches) per year. The rising seas will eventually flood low-lying coastal regions . Entire nations, such as the islands of Maldives, are threatened by this climate change . Global warming also contributes to the phenomenon of ocean acidification . Ocean acidification is the process of ocean waters absorbing more carbon dioxide from the atmosphere. Fewer organisms can survive in warmer, less salty waters. The ocean food web is threatened as plants and animals such as coral fail to adapt to more acidic oceans. Scientists have predicted that global warming will cause an increase in severe storms . It will also cause more droughts in some regions and more flooding in others. The change in average temperatures is already shrinking some habitats, the regions where plants and animals naturally live. Polar bears hunt seals from sea ice in the Arctic. The melting ice is forcing polar bears to travel farther to find food , and their numbers are shrinking. People and governments can respond quickly and effectively to reduce air pollution. Chemicals called chlorofluorocarbons (CFCs) are a dangerous form of air pollution that governments worked to reduce in the 1980s and 1990s. CFCs are found in gases that cool refrigerators, in foam products, and in aerosol cans . CFCs damage the ozone layer , a region in Earth’s upper atmosphere. The ozone layer protects Earth by absorbing much of the sun’s harmful ultraviolet radiation . When people are exposed to more ultraviolet radiation, they are more likely to develop skin cancer, eye diseases, and other illnesses. In the 1980s, scientists noticed that the ozone layer over Antarctica was thinning. This is often called the “ ozone hole .” No one lives permanently in Antarctica. But Australia, the home of more than 22 million people, lies at the edge of the hole. In the 1990s, the Australian government began an effort to warn people of the dangers of too much sun. Many countries, including the United States, now severely limit the production of CFCs. Water Pollution Some polluted water looks muddy, smells bad, and has garbage floating in it. Some polluted water looks clean, but is filled with harmful chemicals you can’t see or smell. Polluted water is unsafe for drinking and swimming. Some people who drink polluted water are exposed to hazardous chemicals that may make them sick years later. Others consume bacteria and other tiny aquatic organisms that cause disease. The United Nations estimates that 4,000 children die every day from drinking dirty water. Sometimes, polluted water harms people indirectly. They get sick because the fish that live in polluted water are unsafe to eat. They have too many pollutants in their flesh. There are some natural sources of water pollution. Oil and natural gas, for example, can leak into oceans and lakes from natural underground sources. These sites are called petroleum seeps . The world’s largest petroleum seep is the Coal Oil Point Seep, off the coast of the U.S. state of California. The Coal Oil Point Seep releases so much oil that tar balls wash up on nearby beaches . Tar balls are small, sticky pieces of pollution that eventually decompose in the ocean.

Human activity also contributes to water pollution. Chemicals and oils from factories are sometimes dumped or seep into waterways. These chemicals are called runoff. Chemicals in runoff can create a toxic environment for aquatic life. Runoff can also help create a fertile environment for cyanobacteria , also called blue-green algae . Cyanobacteria reproduce rapidly, creating a harmful algal bloom (HAB) . Harmful algal blooms prevent organisms such as plants and fish from living in the ocean. They are associated with “ dead zones ” in the world’s lakes and rivers, places where little life exists below surface water. Mining and drilling can also contribute to water pollution. Acid mine drainage (AMD) is a major contributor to pollution of rivers and streams near coal mines . Acid helps miners remove coal from the surrounding rocks . The acid is washed into streams and rivers, where it reacts with rocks and sand. It releases chemical sulfur from the rocks and sand, creating a river rich in sulfuric acid . Sulfuric acid is toxic to plants, fish, and other aquatic organisms. Sulfuric acid is also toxic to people, making rivers polluted by AMD dangerous sources of water for drinking and hygiene . Oil spills are another source of water pollution. In April 2010, the Deepwater Horizon oil rig exploded in the Gulf of Mexico, causing oil to gush from the ocean floor. In the following months, hundreds of millions of gallons of oil spewed into the gulf waters. The spill produced large plumes of oil under the sea and an oil slick on the surface as large as 24,000 square kilometers (9,100 square miles). The oil slick coated wetlands in the U.S. states of Louisiana and Mississippi, killing marsh plants and aquatic organisms such as crabs and fish. Birds, such as pelicans , became coated in oil and were unable to fly or access food. More than two million animals died as a result of the Deepwater Horizon oil spill. Buried chemical waste can also pollute water supplies. For many years, people disposed of chemical wastes carelessly, not realizing its dangers. In the 1970s, people living in the Love Canal area in Niagara Falls, New York, suffered from extremely high rates of cancer and birth defects . It was discovered that a chemical waste dump had poisoned the area’s water. In 1978, 800 families living in Love Canal had to a bandon their homes. If not disposed of properly, radioactive waste from nuclear power plants can escape into the environment. Radioactive waste can harm living things and pollute the water. Sewage that has not been properly treated is a common source of water pollution. Many cities around the world have poor sewage systems and sewage treatment plants. Delhi, the capital of India, is home to more than 21 million people. More than half the sewage and other waste produced in the city are dumped into the Yamuna River. This pollution makes the river dangerous to use as a source of water for drinking or hygiene. It also reduces the river’s fishery , resulting in less food for the local community. A major source of water pollution is fertilizer used in agriculture . Fertilizer is material added to soil to make plants grow larger and faster. Fertilizers usually contain large amounts of the elements nitrogen and phosphorus , which help plants grow. Rainwater washes fertilizer into streams and lakes. There, the nitrogen and phosphorus cause cyanobacteria to form harmful algal blooms. Rain washes other pollutants into streams and lakes. It picks up animal waste from cattle ranches. Cars drip oil onto the street, and rain carries it into storm drains , which lead to waterways such as rivers and seas. Rain sometimes washes chemical pesticides off of plants and into streams. Pesticides can also seep into groundwater , the water beneath the surface of the Earth. Heat can pollute water. Power plants, for example, produce a huge amount of heat. Power plants are often located on rivers so they can use the water as a coolant . Cool water circulates through the plant, absorbing heat. The heated water is then returned to the river. Aquatic creatures are sensitive to changes in temperature. Some fish, for example, can only live in cold water. Warmer river temperatures prevent fish eggs from hatching. Warmer river water also contributes to harmful algal blooms. Another type of water pollution is simple garbage. The Citarum River in Indonesia, for example, has so much garbage floating in it that you cannot see the water. Floating trash makes the river difficult to fish in. Aquatic animals such as fish and turtles mistake trash, such as plastic bags, for food. Plastic bags and twine can kill many ocean creatures. Chemical pollutants in trash can also pollute the water, making it toxic for fish and people who use the river as a source of drinking water. The fish that are caught in a polluted river often have high levels of chemical toxins in their flesh. People absorb these toxins as they eat the fish. Garbage also fouls the ocean. Many plastic bottles and other pieces of trash are thrown overboard from boats. The wind blows trash out to sea. Ocean currents carry plastics and other floating trash to certain places on the globe, where it cannot escape. The largest of these areas, called the Great Pacific Garbage Patch, is in a remote part of the Pacific Ocean. According to some estimates, this garbage patch is the size of Texas. The trash is a threat to fish and seabirds, which mistake the plastic for food. Many of the plastics are covered with chemical pollutants. Land Pollution Many of the same pollutants that foul the water also harm the land. Mining sometimes leaves the soil contaminated with dangerous chemicals. Pesticides and fertilizers from agricultural fields are blown by the wind. They can harm plants, animals, and sometimes people. Some fruits and vegetables absorb the pesticides that help them grow. When people consume the fruits and vegetables, the pesticides enter their bodies. Some pesticides can cause cancer and other diseases. A pesticide called DDT (dichlorodiphenyltrichloroethane) was once commonly used to kill insects, especially mosquitoes. In many parts of the world, mosquitoes carry a disease called malaria , which kills a million people every year. Swiss chemist Paul Hermann Muller was awarded the Nobel Prize for his understanding of how DDT can control insects and other pests. DDT is responsible for reducing malaria in places such as Taiwan and Sri Lanka. In 1962, American biologist Rachel Carson wrote a book called Silent Spring , which discussed the dangers of DDT. She argued that it could contribute to cancer in humans. She also explained how it was destroying bird eggs, which caused the number of bald eagles, brown pelicans, and ospreys to drop. In 1972, the United States banned the use of DDT. Many other countries also banned it. But DDT didn’t disappear entirely. Today, many governments support the use of DDT because it remains the most effective way to combat malaria. Trash is another form of land pollution. Around the world, paper, cans, glass jars, plastic products, and junked cars and appliances mar the landscape. Litter makes it difficult for plants and other producers in the food web to create nutrients . Animals can die if they mistakenly eat plastic. Garbage often contains dangerous pollutants such as oils, chemicals, and ink. These pollutants can leech into the soil and harm plants, animals, and people. Inefficient garbage collection systems contribute to land pollution. Often, the garbage is picked up and brought to a dump, or landfill . Garbage is buried in landfills. Sometimes, communities produce so much garbage that their landfills are filling up. They are running out of places to dump their trash. A massive landfill near Quezon City, Philippines, was the site of a land pollution tragedy in 2000. Hundreds of people lived on the slopes of the Quezon City landfill. These people made their living from recycling and selling items found in the landfill. However, the landfill was not secure. Heavy rains caused a trash landslide, killing 218 people. Sometimes, landfills are not completely sealed off from the land around them. Pollutants from the landfill leak into the earth in which they are buried. Plants that grow in the earth may be contaminated, and the herbivores that eat the plants also become contaminated. So do the predators that consume the herbivores. This process, where a chemical builds up in each level of the food web, is called bioaccumulation . Pollutants leaked from landfills also leak into local groundwater supplies. There, the aquatic food web (from microscopic algae to fish to predators such as sharks or eagles) can suffer from bioaccumulation of toxic chemicals. Some communities do not have adequate garbage collection systems, and trash lines the side of roads. In other places, garbage washes up on beaches. Kamilo Beach, in the U.S. state of Hawai'i, is littered with plastic bags and bottles carried in by the tide . The trash is dangerous to ocean life and reduces economic activity in the area. Tourism is Hawai'i’s largest industry . Polluted beaches discourage tourists from investing in the area’s hotels, restaurants, and recreational activities. Some cities incinerate , or burn, their garbage. Incinerating trash gets rid of it, but it can release dangerous heavy metals and chemicals into the air. So while trash incinerators can help with the problem of land pollution, they sometimes add to the problem of air pollution. Reducing Pollution Around the world, people and governments are making efforts to combat pollution. Recycling, for instance, is becoming more common. In recycling, trash is processed so its useful materials can be used again. Glass, aluminum cans, and many types of plastic can be melted and reused . Paper can be broken down and turned into new paper. Recycling reduces the amount of garbage that ends up in landfills, incinerators, and waterways. Austria and Switzerland have the highest recycling rates. These nations recycle between 50 and 60 percent of their garbage. The United States recycles about 30 percent of its garbage. Governments can combat pollution by passing laws that limit the amount and types of chemicals factories and agribusinesses are allowed to use. The smoke from coal-burning power plants can be filtered. People and businesses that illegally dump pollutants into the land, water, and air can be fined for millions of dollars. Some government programs, such as the Superfund program in the United States, can force polluters to clean up the sites they polluted. International agreements can also reduce pollution. The Kyoto Protocol , a United Nations agreement to limit the emission of greenhouse gases, has been signed by 191 countries. The United States, the world’s second-largest producer of greenhouse gases, did not sign the agreement. Other countries, such as China, the world’s largest producer of greenhouse gases, have not met their goals. Still, many gains have been made. In 1969, the Cuyahoga River, in the U.S. state of Ohio, was so clogged with oil and trash that it caught on fire. The fire helped spur the Clean Water Act of 1972. This law limited what pollutants could be released into water and set standards for how clean water should be. Today, the Cuyahoga River is much cleaner. Fish have returned to regions of the river where they once could not survive. But even as some rivers are becoming cleaner, others are becoming more polluted. As countries around the world become wealthier, some forms of pollution increase. Countries with growing economies usually need more power plants, which produce more pollutants. Reducing pollution requires environmental, political, and economic leadership. Developed nations must work to reduce and recycle their materials, while developing nations must work to strengthen their economies without destroying the environment. Developed and developing countries must work together toward the common goal of protecting the environment for future use.

How Long Does It Last? Different materials decompose at different rates. How long does it take for these common types of trash to break down?

  • Paper: 2-4 weeks
  • Orange peel: 6 months
  • Milk carton: 5 years
  • Plastic bag: 15 years
  • Tin can: 100 years
  • Plastic bottle: 450 years
  • Glass bottle: 500 years
  • Styrofoam: Never

Indoor Air Pollution The air inside your house can be polluted. Air and carpet cleaners, insect sprays, and cigarettes are all sources of indoor air pollution.

Light Pollution Light pollution is the excess amount of light in the night sky. Light pollution, also called photopollution, is almost always found in urban areas. Light pollution can disrupt ecosystems by confusing the distinction between night and day. Nocturnal animals, those that are active at night, may venture out during the day, while diurnal animals, which are active during daylight hours, may remain active well into the night. Feeding and sleep patterns may be confused. Light pollution also indicates an excess use of energy. The dark-sky movement is a campaign by people to reduce light pollution. This would reduce energy use, allow ecosystems to function more normally, and allow scientists and stargazers to observe the atmosphere.

Noise Pollution Noise pollution is the constant presence of loud, disruptive noises in an area. Usually, noise pollution is caused by construction or nearby transportation facilities, such as airports. Noise pollution is unpleasant, and can be dangerous. Some songbirds, such as robins, are unable to communicate or find food in the presence of heavy noise pollution. The sound waves produced by some noise pollutants can disrupt the sonar used by marine animals to communicate or locate food.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Illustrators

Educator reviewer, last updated.

March 6, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Wiley-Blackwell Online Open

Logo of blackwellopen

What really matters for successful research environments? A realist synthesis

Rola ajjawi.

1 Centre for Research in Assessment and Digital Learning (CRADLE), Deakin University, Geelong, Victoria, Australia

Paul E S Crampton

2 Research Department of Medical Education, University College London, London, UK

3 Monash Centre for Scholarship in Health Education (MCSHE), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia

Charlotte E Rees

Associated data.

Table S2. MeSH terms and a selection of key terms utilised in the database searches.

Table S3. Inclusion and exclusion criteria with respect to topic, recentness and type of article.

Table S4. Refined inclusion and exclusion criteria to include contextual parameters.

Table S5. Studies by type: qualitative, quantitative and mixed‐methods.

Research environments, or cultures, are thought to be the most influential predictors of research productivity. Although several narrative and systematic reviews have begun to identify the characteristics of research‐favourable environments, these reviews have ignored the contextual complexities and multiplicity of environmental characteristics.

The current synthesis adopts a realist approach to explore what interventions work for whom and under what circumstances.

We conducted a realist synthesis of the international literature in medical education, education and medicine from 1992 to 2016, following five stages: (i) clarifying the scope; (ii) searching for evidence; (iii) assessing quality; (iv) extracting data, and (v) synthesising data.

We identified numerous interventions relating to research strategy, people, income, infrastructure and facilities (IIF), and collaboration. These interventions resulted in positive or negative outcomes depending on the context and mechanisms fired. We identified diverse contexts at the individual and institutional levels, but found that disciplinary contexts were less influential. There were a multiplicity of positive and negative mechanisms, along with three cross‐cutting mechanisms that regularly intersected: time; identity, and relationships. Outcomes varied widely and included both positive and negative outcomes across subjective (e.g. researcher identity) and objective (e.g. research quantity and quality) domains.

Conclusions

The interplay among mechanisms and contexts is central to understanding the outcomes of specific interventions, bringing novel insights to the literature. Researchers, research leaders and research organisations should prioritise the protection of time for research, enculturate researcher identities, and develop collaborative relationships to better foster successful research environments. Future research should further explore the interplay among time, identity and relationships.

Short abstract

This realist review shows when and why interventions related to research strategy; people; income, infrastructure and facilities; and collaboration result in positive or negative research environments. Findings indicate that protected time, researcher identities and collaborative relationships are important for fostering successful research environments.

Introduction

Research environments matter. Environmental considerations such as robust cultures of research quality and support for researchers are thought to be the most influential predictors of research productivity. 1 , 2 Over 25 years ago, Bland and Ruffin 1 identified 12 characteristics of research‐favourable environments in the international academic medicine literature spanning the period from the mid‐1960s to 1990 (Box 1 ). Although these characteristics are aspirational in flavour, how they interplay to influence research productivity within increasingly complex institutional structures is not yet known. Indeed, although existing reviews have begun to help us better understand what makes for successful research environments, this research has typically ignored the contextual complexities and multiplicity of environmental characteristics 1 , 3 , 4 , 5 , 6 , 7 and has focused on narrow markers of productivity such as the quantity of research outputs (e.g. ref. 7 ) The current realist synthesis, therefore, aims to address this gap in the research literature by reviewing more recent literature ( 1992–2016 ) and exploring the features of successful research environments in terms of which interventions work, for whom, how and in what circumstances.

Characteristics of successful research environments 1

  • Clear organisational research goals
  • Research productivity as a priority and at least equal priority to other activities
  • A robust research culture with shared research values
  • A positive group climate
  • Participative governance structures
  • Non‐hierarchical and decentralised structures
  • Good communication and professionally meaningful relationships between team members
  • Decent resources such as people, funding, research facilities and time
  • Larger group size, moderately established teams and diversity
  • Rewards for research success
  • Recruitment and selection of talented researchers
  • Research‐oriented leaders with research expertise and skill

The contextual background for understanding successful research environments

Against a backdrop of the mass production of education, reduced government funding for research and ‘new managerialist’ cultures in higher education, 8 , 9 increased scrutiny of the quantity and quality of research, the research environments in which research is produced and the impacts of research has become inevitable. 10 Indeed, in higher education institutions (HEIs) globally, research productivity is being measured as part of individual researcher and research group key performance indicators. 7 In many countries, such as Australia, Hong Kong, New Zealand and the UK, 11 HEI research is measured on a national scale through government‐led research assessments. Such research measurement has contributed to the allocation of funding to universities and differentiation of universities in the competitive marketplace, with some solidifying their institutional identities as ‘research‐intensive’ and others emphasising their relative ‘newcomer‐to‐research’ status (e.g. previously ‘teaching‐intensive’ universities). 9 , 12 , 13 Such institutional differentiation also parallels that of individual academics within universities, who are increasingly encouraged to take either ‘research‐active’ or ‘education‐focused’ career pathways. 8 , 9 It is these broader national and institutional constraints that inevitably impact on research environments at the level of units, centres, departments and schools within universities (the level of ‘research environment’ that we focus on in this paper). Table S1 provides definitions of key terms.

Key features of research environments identified in previous reviews

Evans defines a research environment as including: ‘shared values, assumptions, beliefs, rituals and other forms of behaviour whose central focus is the acceptance and recognition of research practice and output as valued, worthwhile and pre‐eminent activity.’ 14 Previous reviews have tended to focus on interventions aimed at individual researchers, such as research capacity building, 4 , 5 , 7 and with individual‐level outcomes, such as increased numbers of grants or publications. 4 , 5 , 7 These reviews have typically concluded that research capacity‐building interventions lead to positive research outcomes. 4 , 5 , 7 Furthermore, the reviews have identified both individual and institutional enablers to research. Individual enablers included researchers’ intrinsic motivation to conduct research. 6 , 7 Institutional enablers included peer support, encouragement and review, 7 mentoring and collaboration, 4 , 5 research leadership, 5 , 6 institutional structures, processes and systems supporting research, such as clear strategy, 5 , 6 protected time and financial support. 5 Although these reviews have begun to shed light on the features of successful research environments, they have significant limitations: (i) they either include studies of low to moderate quality 4 , 5 or fail to check the quality of studies included, 7 and (ii) they do not explore what works for whom and under what circumstances, but instead focus on what works and ignore the influence of the context in which interventions are implemented and ‘how’ outcomes come about. Indeed, Mazmanian et al. 4 concluded in their review: ‘…little is known about what works best and in what situations.’

Conceptual framework: a realist approach

Given the gaps in the research literature and the importance of promoting successful research environments for individuals’ careers, institutional prestige and the knowledge base of the community, we thought a realist synthesis would be most likely to elucidate how multiple complex interventions can influence success. Realism assumes the existence of an external reality (a real world), but one that is filtered (i.e. perceived, interpreted and responded to) through human senses, volitions, language and culture. 15 A realist approach enables the development and testing of theory for why interventions may or may not work, for whom and under what circumstances. 16 It does this through recognising that interventions do not directly cause outcomes; instead, participants’ reactions and responses to the opportunities provided by the intervention trigger outcomes. This approach can allow researchers to identify causal links in complex situations, such as those between interventions and the contexts in which they work, how they work (mechanisms) and their outcomes. 17 Although the context–mechanism–outcome (CMO) approach is not necessarily linear, it can help to provide explanations that privilege contextual variability. 18

Aligned with the goals of realist research, this synthesis aims to address the following research question: What are the features of successful research environments, for whom, how and in what circumstances?

We followed five stages of realist synthesis: (i) clarifying scope; (ii) searching for evidence; (iii) assessing quality; (iv) extracting data, and (v) synthesising data. 19 Our methods also follow the RAMESES ( r ealist a nd m eta‐narrative e vidence s ynthesis: e volving s tandards) reporting guidelines. 20

Clarifying the scope

We first clarified the scope of our realist synthesis by identifying relevant interventions based on the Research Excellence Framework (REF) 2014 environment assessment criteria. The REF is a national exercise assessing the quality of research produced by UK HEIs, its impact beyond academia, and the environment that supports research. The assessment criteria indicated in the REF2014 environment template included the unit's research strategy , its people (including staffing strategy, staff development and research students), its income, infrastructure and facilities (IIF), as well as features of collaboration . 21 These guided our search terms (see stage 2 below). We chose to use these quality markers as they informed the UK national assessment exercise, upon which other national exercises are often based. In addition, these criteria were explicit, considered and implementable, and were developed through consensus. Like other realist syntheses, 18 , 22 , 23 ours considered a multiplicity of different interventions rather than just one and some of the papers we reviewed combined multiple interventions.

Based on previous reviews, 1 , 4 , 5 , 7 our initial programme theory speculated that interventions aligned to having an explicit research strategy, staff development opportunities, funding and establishing research networks would be effective for creating successful research environments (Fig. ​ (Fig.1 1 gives further details of our initial programme theory).

An external file that holds a picture, illustration, etc.
Object name is MEDU-52-936-g001.jpg

Initial programme theory

Searching for empirical evidence

We devised search terms as a team and refined these iteratively with the help of a health librarian experienced in searching. We split the research question into three key concepts: (i) research environment; (ii) discipline, and (iii) research indicator (i.e. positive or negative). We then used variations of these terms to search the most relevant databases including MEDLINE, ProQuest, Scopus, CINAHL (Cumulative Index to Nursing and Allied Health Literature) and Web of Science. Table S2 illustrates the MeSH terms and provides a selection of key terms utilised in the database searches.

We were interested in comparing research cultures across the disciplines of medical education, education and medicine for two key reasons. Firstly, the discipline of medical education consists of a rich tapestry of epistemological approaches including biomedical sciences, social sciences and education, and medicine. 24 , 25 Secondly, there have been disciplinary arguments in the literature about whether medical education should be constructed as medicine or social science. 24 , 26

We agreed various inclusion and exclusion criteria with respect to topic, recentness and type of article (Table S3 ), as well as refined criteria to include contextual parameters (Table S4 ). We chose 1992 as the start date for our search period as 1992 saw the first published literature review about productive research environments in the academic medicine literature. 1

Study selection

The first top‐level search elicited 8527 journal articles across all databases. Once duplicate results had been removed, and ‘topic’ and ‘recentness’ study parameters reinforced, 420 articles remained. The searching and selection process is summarised in a PRISMA ( p referred r eporting i tems for s ystematic reviews and m eta‐ a nalyses) diagram (Fig. ​ (Fig.2). 2 ). Three research assistants and one of the authors (PESC) initially assessed relevance by reviewing abstracts using preliminary inclusion criteria. If any ambiguities were found by any of the reviewers, abstracts were checked by one of the other two researchers (RA and CER). Where divergent views existed, researchers discussed the reasons why and agreed on whether to include or exclude. A 10% sample of these 420 abstracts were double‐checked by an additional two researchers, including a number of articles previously excluded, for quality control purposes.

An external file that holds a picture, illustration, etc.
Object name is MEDU-52-936-g002.jpg

PRISMA flow diagram of the selection process

Assessment of quality

We assessed the journal articles for relevance and rigour. 20 We defined an article's relevance according to ‘whether it can contribute to theory building and/or testing’. 20 Following the relevance check and ‘type’ exclusions to original research papers, 100 articles remained, which were then assessed for rigour. Although we chose to narrow down to original research, we kept relevant articles such as systematic reviews and opinion pieces to inform the introduction and discussion sections of this paper.

We defined rigour as determining ‘whether the method used to generate the particular piece of data is credible and trustworthy’. 20 We used two pre‐validated tools to assess study quality: the Medical Education Research Study Quality Instrument (MERSQI) to assess the quality of quantitative research, 27 , 28 and the Critical Appraisal Skills Programme (CASP) qualitative checklist for qualitative and mixed‐method studies. 29 Both tools are used to consider the rigour of study design, sampling, type of data, data analysis and outcomes/findings, and have been employed in previous reviews. 23 , 30

Following the quality assessment, 47 articles remained and were then subjected to data extraction and synthesis. Five papers were excluded as they did not contribute to our theory building or lacked CMO configurations (CMOCs). We kept notes of the reasons for excluding studies and resolved doubts through discussion (Fig. ​ (Fig.2 2 ).

Data extraction

Two data‐rich articles containing multiple CMOCs were inductively and deductively (based on the initial programme theory) coded by all of us to ensure consistency. We then discussed any similarities and differences in our coding. As is inherent in the challenges of realist approaches, we found differences in our identifications of CMOCs, which often related to how one particular component (e.g. time) could be an outcome at one moment and a mechanism the next. This alerted us to overlapping constructs, which we then explored as we coded remaining papers. To collect data across all remaining papers, we extracted information relating to: study design, methods and sample size; study setting; intervention focus; contexts of the intervention; mechanisms generated in the results, and outcomes. The key CMOCs in all 42 articles were identified primarily from the results sections of the papers. The process of data extraction and analysis was iterative with repeated discussion among the researchers of the demi‐regularities (i.e. patterns of CMOCs) in relation to the initial programme theory and negotiations of any differences of opinion.

Data synthesis

Finally, we interrogated our data extraction to look for patterns across our data/papers. We used an interpretative approach to consider how our data compared with our initial programme theory in order to develop our modified programme theory.

Characteristics of the studies

The 42 papers represented the following disciplines: medical education ( n = 4, 10%); 31 , 32 , 33 , 34 education ( n = 18, 43%), 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 and medicine ( n = 20, 48%). 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 There were 26 (62%) qualitative studies, 11 (26%) quantitative studies and five (12%) mixed‐methods studies (Table S5 ). The studies were from countries across the globe, including Australia ( n = 10, 24%), the USA ( n = 7, 17%), the UK ( n = 6, 14%), Canada ( n = 4, 10%), South Africa ( n = 4, 10%), Denmark ( n = 2, 5%), Turkey ( n = 2, 5%) and others ( n = 7, 17%) (e.g. Belgium, China, Germany, New Zealand and the Philippines). The research designs varied but common approaches included qualitative interviews, surveys, documentary/bibliographic analysis, case studies and mixed‐methods studies. Study participants included academics, teachers, health care professionals, senior directors, PhD students, early‐career researchers (ECRs) and senior researchers. Table S6 lists the individual contexts, interventions, mechanisms and outcomes identified from individual papers.

Extending our initial programme theory

A key finding from our realist synthesis was that the same interventions fired either positive or negative mechanisms leading to positive or negative outcomes, respectively, depending on context. Surprisingly, the CMOCs were mostly consistent across the three disciplines (i.e. medical education, education and medicine) with local contexts seemingly interplaying more strongly with outcomes. Therefore, we present these disciplinary contexts here as merged, but we highlight any differences by disciplinary context where relevant.

Having a research strategy promoted a successful research environment when it enabled appropriate resources (including time) and valuing of research; however, it had negative consequences when it too narrowly focused on outputs, incentives and rewards. In terms of people , individual researchers needed to be internally motivated and to have a sense of belonging, and protected time and access to capacity‐building activities in order to produce research. Lack of knowledge, researcher identity, networks and time, plus limited leadership support, acted as mechanisms leading to negative research outcomes. The presence of IIF was overwhelmingly indicated as necessary for successful research environments and their absence was typically detrimental. Interestingly, a few papers reported that external funding could have negative consequences because short‐term contracts, reduced job security and the use of temporary junior staff can lead to weak research environments. 40 , 67 , 71 Finally, collaboration was crucial for successful research mediated through trusting respectful relationships, supportive leadership and belongingness. Poor communication and competitive cultures, however, worked to undermine collaboration, leading to isolation and low self‐esteem, plus decreased research engagement and productivity. Table ​ Table1 1 highlights illustrative CMOCs for each intervention extending our initial programme theory.

Positive and negative context–mechanism–outcome configurations (CMOCs) for each intervention

CMOCs indicated in bold highlight the three cross‐cutting themes of time, identity and relationships.

ECRs = early‐career researchers.

Key cross‐cutting mechanisms: time, identity and relationships

As Table ​ Table1 1 shows, the same intervention can lead to positive or negative outcomes depending on the particular contexts and mechanisms triggered. This highlights greater complexity than is evident at first glance. Cross‐cutting these four interventions were three mechanisms that were regularly identified as critical to the success (or not) of a research environment: time; researcher identities, and relationships. We now present key findings for each of these cross‐cutting mechanisms and discuss how their inter‐relations lead to our modified programme theory (Fig. ​ (Fig.3). 3 ). Note that although we have tried to separate these three mechanisms for ease of reading, they were often messily entangled. Table ​ Table2 2 presents quotes illustrating the way in which each mechanism mediates outcomes within particular circumstances.

An external file that holds a picture, illustration, etc.
Object name is MEDU-52-936-g003.jpg

Modified programme theory. ECR = early‐career researcher

Time, identity and relationships as cross‐cutting mechanisms mediating successful research environments

Time was identified as an important mechanism for mobilising research outcomes across our three disciplines. Time was conceptualised severally including as: protected time; workload pressures influencing time available; efficient use of time; flexible use of time; making time, and time in career. The two most commonly considered aspects were protected time and workload implications. Protected time was largely talked about in the negative across a variety of contexts and disciplines, with lack of protected time leading to lack of researcher engagement or inactivity and reduced research productivity. 32 , 35 , 37 , 41 , 44 , 47 , 49 , 61 , 62 , 63 , 67 Also across a variety of contexts and disciplines, and acting as a positive mechanism, available protected time was found to lead to increased research productivity and active research engagement. 31 , 36 , 40 , 48 , 49 , 63 , 65 With regard to workload, limitations on the time available for research imposed by excessive other workloads led to reduced research activity, lower research productivity, poor‐quality research and reduced opportunity to attend research training. 40 , 41 , 47 , 49 , 60 , 67 Juggling of multiple responsibilities, such as clinical, teaching, administrative and leadership roles, also inhibited research productivity by diminishing the time available for research. 35 , 40 , 49 The alignment of research with other non‐research work was described as driving efficiencies in the use of time leading to greater research productivity (Table ​ (Table2, 2 , quote 1).

Identity was also an important mechanism for mobilising research outcomes across our three disciplines. Interpretations included personal identities (e.g. gender), professional identity (e.g. as a primary practitioner or a primary researcher), and social identity (e.g. sense of belongingness). Researcher identity was often referred to in relation to first‐career practitioners (and therefore second‐career researchers). Sharp et al. 48 defined these as participants recruited into higher education not directly from doctoral study but on the basis of their extensive ‘first‐order’ knowledge and pedagogical expertise. These were also practitioners conducting research in schools or hospitals. Identities were also referenced in relation to early, mid‐career or senior researchers. Academic staff working in academic institutions needed to develop a sense of researcher identity, belongingness, self‐efficacy for research and autonomy to increase their satisfaction, competence and research activity. 39 , 40 , 44 , 46 , 51 , 67 For first‐career practitioners (i.e. teachers, doctors), the research needed to be highly relevant and aligned to their primary identity work in order to motivate them. 53 , 59 , 62 , 65 This alignment was described as having a strong research–teaching nexus. 40 , 48 Linked to this concept was the need for first‐career practitioners to see the impact of research in relation to their primary work (e.g. patient‐ or student‐oriented) to facilitate motivation and to develop a researcher identity (Table ​ (Table2, 2 , quote 2). 36 , 37 , 41 , 49 , 53 , 54 , 67 Where research was seen as irrelevant to primary identity work (e.g. English language teaching, general practice), there was research disengagement. 37 , 48 , 52 , 59 , 67

Relationships

For all researchers and across our three disciplines, relationships were important in the mediating of successful research environments. 31 , 34 , 38 , 39 , 41 , 44 , 57 , 60 , 66 , 67 Positive research relationships were characterised by mutual trust and respect, 40 , 41 , 42 , 43 , 54 , 66 , 72 whereas others described them as friendships that take time to develop. 51 Mutually supportive relationships seemed to be particularly relevant to ECRs in terms of developing confidence, self‐esteem and research capacity and making identity transitions. 35 , 43 , 48 , 58 , 67 Relationships in the form of networks were considered to improve the quality of research through multicentre research and improved collaboration. 33 , 60 Supportive leadership as a particular form of relationship was an important mechanism in promoting a successful research environment. Supportive leaders needed to monitor workloads, set the vision, raise awareness of the value of research, and provide positive role‐modelling, thereby leading to increased productivity, promoting researcher identities and creating thriving research environments (Table ​ (Table2, 2 , quote 3). 31 , 34 , 37 , 38 , 40 , 41 , 43 , 44 , 46 , 48 , 49 , 53 , 55 , 62 Research leadership, however, could be influenced negatively by the context of compliance and counting in current university cultures damaging relationships, creating a loss of motivation, and raising feelings of devalue. Indeed, the failure of leaders to recognise researcher identities led to negative research productivity. 36 , 37 , 38 , 43 , 46 , 48 , 49

Intersections between time, identity and relationships within successful research environments

Time and identity.

Time and identity intersected in interesting ways. Firstly, time was a necessary enabler for the development of a researcher identity. 37 , 38 , 41 , 48 , 49 , 54 , 59 , 61 , 63 , 65 , 67 , 69 Secondly, those who identified as researchers (thus holding primary researcher identities) used their time efficiently to favour research activity outcomes despite a lack of protected time. 35 , 43 Conversely, for other professors who lacked personal determination and resilience for research, having protected time did not lead to better research activity. 43 This highlights the fact that time alone is insufficient to support a successful research environment, and that it is how time is utilised and prioritised by researchers that really matters (Table ​ (Table2, 2 , quote 4).

Identity and relationships

Interventions aimed at developing researcher identity consistently focused on relationship building across the three disciplines. The interventions that supported identity transitions into research included formal research training, 44 , 48 , 52 , 68 mentoring, 41 , 48 , 57 , 65 , 72 writing groups, 72 and collaboration with peers and other researchers, 39 , 41 , 43 operating through multiple mechanisms including relationships. The mechanisms included self‐esteem/confidence, increased networks, external recognition as a researcher, belongingness, and self‐efficacy. 35 , 41 , 43 , 44 , 45 , 52 , 57 Furthermore, our data suggest that leadership can be an enabler to the development of a researcher identity. In particular, leadership enabled research autonomy, recognition and empowerment, and fostered supportive mentoring environments, leading to researcher identity development and research productivity (Table ​ (Table2, 2 , quote 5). 34 , 38 , 46 , 48

Time and relationships

Relationships were developed and sustained over time (Table ​ (Table2, 2 , quote 6). Across the three disciplines, the role of leaders (managers, directors, deans) was to acknowledge and raise awareness of research, and then to prioritise time for research against competing demands, leading to effective research networks, cohesion and collaboration. 31 , 34 , 38 , 43 , 46 , 48 , 49 , 50 , 53 , 55 , 70 Second‐career PhD students who did not invest time in establishing relationships with researchers in their new disciplines (as they already had strong supportive networks in their original disciplines) found that they had limited research networks following graduation. 48

Summary of key findings

Our initial programme theory was based on previous literature reviews 1 , 4 , 5 , 6 , 7 and on the REF2014 criteria. 10 , 21 However, we were able to develop a modified programme theory on the basis of our realist synthesis, which highlights novel findings in terms of what really matters for successful research environments. Firstly, we found that key interventions led to both positive (subjective and objective) and negative (subjective and objective) outcomes in various contexts. Interestingly, we did not identify any outcomes relating to research impact despite impact nowadays being considered a prominent marker of research success, alongside quantitative metrics such as number of publications, grant income and h‐indices. 21 Secondly, we found that disciplinary contexts appeared to be less influential than individual, local and institutional contexts. Finally, our modified programme theory demonstrates a complex interplay among three cross‐cutting mechanisms (time, researcher identity and relationships) as mechanisms underpinning both successful and unsuccessful research environments.

Key findings and comparisons with the existing literature

Our research supports the findings of earlier reviews 1 , 5 , 6 , 7 regarding the importance of having a clear research strategy, an organisation that values research, research‐oriented leadership, access to resources (such as people, funding, research facilities and time), and meaningful relationships. However, our research extends these findings considerably by flagging up the indication that a clear linear relationship, whereby the presence of these interventions will necessarily result in a successful research environment, does not exist. For example, instituting a research strategy can have negative effects if the indicators are seen as overly narrow in focus or output‐oriented. 38 , 40 , 46 , 47 , 64 Similarly, project money can lead to the employment of more part‐time staff on fixed‐term contracts, which results in instability, turnover and lack of research team expertise. 40 , 67 , 71

Our findings indicate that the interplays among time, identity and relationships are important considerations when implementing interventions promoting research environments. Although time was identified as an important mechanism affecting research outcomes within the majority of papers, researcher identity positively affected research outcomes even in time‐poor situations. Indeed, we found that identity acted as a mechanism for research productivity that could overcome limited time through individuals efficiently finding time to prioritise research through their motivation and resilience. 35 , 43 Time was therefore more than just time spent doing research, but also included investment in developing a researcher identity and relationships with other researchers over time. 37 , 38 , 41 , 48 , 49 , 54 , 59 , 61 , 63 , 67 , 69 Relationship‐building interventions were also found to be effective in supporting difficult identity transitions into research faced by ECRs and those with first‐career practitioner backgrounds. Supportive leadership, as a particular form of relationship, could be seen as an enabler to the provision of protected time and a reasonable workload, allowing time for research and for researcher identity formation. 34 , 38 , 46 , 48 Indeed, our realist synthesis findings highlight the central importance of researcher identity and thus offer a novel explanation for why research environments may not flourish even in the presence of a research strategy, resources (e.g. time) and valuing of research.

Researcher identity is complex and intersects with other identities such as those of practitioner, teacher, leader and so on. Brew et al. 39 , 73 , 74 explored researcher identification and productivity by asking researchers if they considered themselves to be ‘research‐active’ and part of a research team. Those who identified as researchers prioritised their work differently: those who were highly productive prioritised research, whereas those in the low‐productivity group prioritised teaching. 73 Interestingly, highly productive researchers tended to view research as a social phenomenon with publications, presentations and grants being ‘traded’ in academic networks. Brew et al. 39 explain that: ‘…the trading view relates to a self‐generating researcher identity. Researcher identity develops in the act of publication, networks, collaborations and peer review. These activities support a person's identification as a researcher. They also, in turn, influence performance measures and metrics.’ Although the relationships among identity, identification and productivity are clearly complex, we explored a broader range of metrics in our realist synthesis than just productivity.

Methodological strengths and limitations

This is the first study to explore this important topic using realist synthesis to better understand the influence of context and how particular interventions lead to outcomes. We followed RAMESES 20 guidelines and adopted a rigorous team‐based approach to each analytic stage, conducting regular quality checks. The search was not exhaustive as we could have ‘exploded’ the interventions and performed a comprehensive review of each in its own right (e.g. mentoring). However, for pragmatic reasons and to answer our broad research questions, we chose not to do this, as suggested by Wong et al. 20 Although all members of the team had been involved in realist syntheses previously, the process remained messy as we dealt with complex phenomena. The messiness often lies in untangling CMOCs and identifying recurrent patterns in the large amounts of literature reviewed.

Implications for education and research

Our findings suggest that interventions related to research strategy, people, IIF and collaboration are supported under the ‘right’ conditions. We need to focus on time, identity and relationships (including leadership) in order to better mobilise the interventions to promote successful research environments.

Individuals need to reflect on how and why they identify as researchers, including their conceptions of research and their working towards the development of a researcher identity such that research is internally motivated rather than just externally driven. Those who are second‐career researchers or those with significant teaching or practitioner roles could seek to align research with their practice while they establish wider research networks.

We recommend that research leaders support individuals to develop their researcher identity, be seen to value research, recognise that research takes time, and provide access to opportunities promoting research capacity building, strong relationships and collaboration. Leaders, for example, may introduce interventions that promote researcher identities and build research relationships (e.g. collaborations, networking, mentoring, research groups etc.), paying attention to the ways in which competitive or collaborative cultures are fostered. Browne et al. 75 recently recommended discussions around four categories for promoting identity transition: reflection on self (values, experiences and expectations); consideration of the situation (circumstances, concerns); support (what is available and what is needed), and strategies (personal strategies to cope with change and thrive). With the professionalisation of medical education, 76 research units are increasingly likely to contain a mixture of first‐ and second‐career researchers, and our review suggests that discussions about conceptions of research and researcher identity would be valuable.

Finally, organisations need to value research and provide access to resources and research capacity‐building activities. Within the managerialist cultures of HEIs, compliance and counting have already become dominant discourses in terms of promotion and success. Policymakers should therefore consider ways in which HEIs recognise, incentivise and reward research in all its forms (including subjective and objective measures of quantity, quality and impact) to determine the full effects of their policies on research environments.

Future research would benefit from further exploration of the interplay among time, identities and relationships (including leadership) in different contexts using realist evaluation. 77 Specifically, as part of realist approaches, longitudinal audio‐diaries 78 could be employed to explore researcher identity transitions over time, particularly for first‐career practitioners transitioning into second‐career researchers.

Contributors

RA and CER were responsible for the conception of the synthesis. All authors contributed to the protocol development. RA and PESC carried out the database searches. All authors sifted for relevance and rigour, analysed the papers and contributed to the writing of the article. All authors approved the final manuscript for publication.

Conflicts of interest

Ethical approval.

not required.

Supporting information

Table S1. Definitions of key terms.

Table S6. Contexts, interventions, mechanisms and outcomes identified in individual studies.

Acknowledgements

we thank Andy Jackson, Learning and Teaching Librarian, University of Dundee, Dundee, UK, for his advice and help in developing our literature searches. We also thank Laura McDonald, Paul McLean and Eilidh Dear, who were medical students at the University of Dundee, for their help with database searches and with sifting papers for relevance and rigour. We would also like to thank Chau Khuong, Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia, for her work in designing Figs ​ Figs1 1 and ​ and3 3 .

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • NATURE INDEX
  • 11 October 2023

Where is the strongest research focus on the environment?

  • Simon Baker &

You can also search for this author in PubMed   Google Scholar

Senior editor, Nature Index

High-quality research from scientists in Australia, New Zealand and parts of Scandinavia tends to lean the most heavily towards tackling climate and conservation issues, according to an analysis of data in the Nature Index.

Of research published from 2015 to 2022 in 82 natural-science journals tracked by Nature Index, 4.7% of articles align with the four United Nations Sustainable Development Goals (SDGs) that are most closely related to climate change and conservation.

Some of the leading 25 countries and territories for publishing this research, however, are way ahead of this global average (see ‘Green focus’). The interactive chart shows the proportion (climate and conservation %) of a country or territory’s total Nature Index output (measured by the Nature Index metric Share ) that aligns with SDGs on Responsible Consumption and Production (SDG 12), Climate Action (SDG 13), Life Below Water (SDG 14) and Life On Land (SDG15).

Almost one-fifth of Nature Index research published by Norway, for instance, is related to these SDGs, and 14.5% of New Zealand’s output in the database align with the four goals. Finland and Denmark also have a high proportion of their research related to these topics.

research about environment

Nature Index 2023 Climate and conservation

These countries do have a relatively low volume of research output for SDGs 12–15 (as shown by the size of the bubbles), but Australia (10.4%) is notable for having higher output that is also well above the global average.

The biggest publishers of high-quality climate and conservation research — the United States and China — are closer to the global average, but fall either side of this line. Japan, meanwhile, is an example of a country with relatively high volume, but well below the average as a proportion of its total Nature Index output.

Digging into the data shows how this research breaks down between the four SDGs for each country and territory.

The following interactive charts (see ‘Goal specific’) show the proportion of a location’s total climate and conservation output in the Nature Index that relates to each SDG (SDG as proportion of all climate and conservation output), with the size of the bubbles showing the volume (measured by the Nature Index metric Share).

SDG 13 (Climate Action) tends to represent the greatest proportion of research on the wider topic: globally, 62% of all Nature Index output aligned with SDGs 12 to 15 aligns with SDG 13. The United States and China are both ahead of the average, but many countries in Europe lag behind. India has the highest percentage of its climate and conservation research in SDG 13.

Countries with easy access to extensive coastlines are among those with a skew towards SDG 14 (Life Below Water), including Australia, France and the United Kingdom, whereas Brazil, with its research focus on the Amazon rainforest, is an outlier for SDG 15 (Life On Land).

SDG 12 (Responsible Consumption and Production) tends to represent the smallest proportion of climate and conservation research, but Singapore and Belgium are the furthest ahead of the global average.

Data on research articles and their SDG alignment come from Digital Sciences’ Dimensions platform, which uses machine learning to automatically tag research papers if they align to certain SDGs. Some articles are tagged to more than one SDG, so percentages may not add up to 100.

doi: https://doi.org/10.1038/d41586-023-02869-y

This article is part of Nature Index 2023 Climate and conservation , an editorially independent supplement. Advertisers have no influence over the content.

Related Articles

research about environment

Partner content: Northern sentinels track Earth’s fastest-changing regions

Partner content: Climate extremes call for resilience and adaptation, not just repair

Partner content: The biologists mapping out climate-resilient trees for our cities

  • Biodiversity
  • Climate change
  • Atmospheric science
  • Environmental sciences
  • Ocean sciences

Hybrid speciation driven by multilocus introgression of ecological traits

Hybrid speciation driven by multilocus introgression of ecological traits

Article 17 APR 24

FSC-certified forest management benefits large mammals compared to non-FSC

FSC-certified forest management benefits large mammals compared to non-FSC

Article 10 APR 24

Jurassic shuotheriids show earliest dental diversification of mammaliaforms

Jurassic shuotheriids show earliest dental diversification of mammaliaforms

Article 03 APR 24

Australia’s Great Barrier Reef is ‘transforming’ from repeated coral bleaching

Australia’s Great Barrier Reef is ‘transforming’ from repeated coral bleaching

News 19 APR 24

Nearly half of China’s major cities are sinking — some ‘rapidly’

Nearly half of China’s major cities are sinking — some ‘rapidly’

News 18 APR 24

The economic commitment of climate change

The economic commitment of climate change

Lethal dust storms blanket Asia every spring — now AI could help predict them

Lethal dust storms blanket Asia every spring — now AI could help predict them

News 15 APR 24

Sea spray carries huge amounts of ‘forever chemicals’ into the air

Sea spray carries huge amounts of ‘forever chemicals’ into the air

Research Highlight 05 APR 24

Divisive Sun-dimming study at Harvard cancelled: what’s next?

Divisive Sun-dimming study at Harvard cancelled: what’s next?

News Explainer 27 MAR 24

Postdoctoral Position

We are seeking highly motivated and skilled candidates for postdoctoral fellow positions

Boston, Massachusetts (US)

Boston Children's Hospital (BCH)

research about environment

Qiushi Chair Professor

Distinguished scholars with notable achievements and extensive international influence.

Hangzhou, Zhejiang, China

Zhejiang University

research about environment

ZJU 100 Young Professor

Promising young scholars who can independently establish and develop a research direction.

Head of the Thrust of Robotics and Autonomous Systems

Reporting to the Dean of Systems Hub, the Head of ROAS is an executive assuming overall responsibility for the academic, student, human resources...

Guangzhou, Guangdong, China

The Hong Kong University of Science and Technology (Guangzhou)

research about environment

Head of Biology, Bio-island

Head of Biology to lead the discovery biology group.

BeiGene Ltd.

research about environment

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Research: Boards Still Have an ESG Expertise Gap — But They’re Improving

  • Tensie Whelan

research about environment

Over the last five years, the percentage of Fortune 100 board members possessing relevant credentials rose from 29% to 43%.

The role of U.S. public boards in managing environmental, social, and governance (ESG) issues has significantly evolved over the past five years. Initially, boards were largely unprepared to handle materially financial ESG topics, lacking the necessary background and credentials. However, recent developments show a positive shift, with the percentage of Fortune 100 board members possessing relevant ESG credentials rising from 29% to 43%. This increase is primarily in environmental and governance credentials, while social credentials have seen less growth. Despite this progress, major gaps remain, particularly in climate change and worker welfare expertise. Notably, the creation of dedicated ESG/sustainability committees has surged, promoting better oversight of sustainability issues. This shift is crucial as companies increasingly face both regulatory pressures and strategic opportunities in transitioning to a low carbon economy.

Knowing the right questions to ask management on material environmental, social, and governance issues has become an important part of a board’s role. Five years ago, our research at NYU Stern Center for Sustainable Business found U.S. public boards were not fit for this purpose — very few had the background and credentials necessary to provide oversight of  ESG topics such as climate, employee welfare, financial hygiene, and cybersecurity. Today, we find that while boards are still woefully underprepared in certain areas, there has been some important progress .

  • TW Tensie Whelan is a clinical professor of business and society and the director of the NYU Stern Center for Sustainable Business, and she sits on the advisory boards of Arabesque and Inherent Group.

Partner Center

Analyzing decades-long environmental changes in Namibia using archival aerial photography and deep learning

  • Girmaw Abebe Tadesse ,
  • Caleb Robinson ,
  • Gilles Quentin Hacheme ,
  • Akram Zaytar ,
  • Rahul Dodhia ,
  • Tsering Wangyal Shawa ,
  • Juan M. Lavista Ferres ,
  • Emmanuel H. Kreike

This study explores object detection in historical aerial photographs of Namibia to identify long-term environmental changes. Specifically, we aim to identify key objects – Waterholes, Omuti homesteads, and Big trees – around Oshikango in Namibia using sub-meter gray-scale aerial imagery from 1943 and 1972. In this work, we propose a workflow for analyzing historical aerial imagery using a deep semantic segmentation model on sparse hand-labels. To this end, we employ a number of strategies including class-weighting, pseudo-labeling and empirical p-value-based filtering to balance skewed and sparse representations of objects in the ground truth data. Results demonstrate the benefits of these different training strategies resulting in an average F1 = 0.661 and F1 = 0.755 over the three objects of interest for the 1943 and 1972 imagery, respectively. We also identified that the average size of Waterhole and Big trees increased while the average size of Omutis decreased between 1943 and 1972 reflecting some of the local effects of the massive post-Second World War economic, agricultural, demographic, and environmental changes. This work also highlights the untapped potential of historical aerial photographs in understanding long-term environmental changes beyond Namibia (and Africa). With the lack of adequate satellite technology in the past, archival aerial photography offers a great alternative to uncover decades-long environmental changes.

  • Follow on Twitter
  • Like on Facebook
  • Follow on LinkedIn
  • Subscribe on Youtube
  • Follow on Instagram
  • Subscribe to our RSS feed

Share this page:

  • Share on Twitter
  • Share on Facebook
  • Share on LinkedIn
  • Share on Reddit

tag manager container

  • Employee Hub
  • Directories

College of Engineering

LSU Civil, Environmental Engineering Researchers Study Coastal Wetland Root Dynamics

Mohamed Hassan stands outside Pacific Northwest National Laboratory

BATON ROUGE, LA – A team of LSU researchers led by LSU Civil and Environmental Engineering Associate Professor Navid Jafari (principal investigator) and LSU CEE Research Assistant Mohamed Hassan (co-PI) recently received a $50,000 National Science Foundation I-Corps grant to commercialize its algorithms in studying root productivity in Louisiana wetlands. A second grant was awarded by the Environmental Molecular Sciences Laboratory (EMSL), which is part of the Pacific Northwest National Laboratory in Richland, Wash., that allows the team to use X-ray computed tomography (XCT) and optical coherence tomography (OCT) scans to study these roots. 

“Coastal wetlands are valuable ecosystems that improve water quality, provide wildlife habitat and biodiversity, sequester carbon, and protect coastal communities from hurricanes by dampening waves, distancing urban centers from open water, and reducing storm surge heights,” Jafari said. “Understanding how coastal root productivity affects this is essential to preserving land.”

The NSF I-Corps focus of the project is based on the development of X-Roots technology, which utilizes advanced algorithms to analyze XCT, OCT, and SEM scans of belowground root systems. 

“The algorithms enable the segmentation and classification of wetland soil components, including macro-pores, dead roots, live roots, and sediments, with a high degree of precision,” Hassan said. “X-Roots expands understanding root systems and their impact of ecosystems. This, in turn, opens the door for innovation, conservation, and commercial growth in potentially multiple industries. By offering insights into wetland root systems, this technology may address pressing global challenges, such as climate change and land management in these critical environments.”

Picture of magnified roots

“Beyond applications in agriculture, forestry, environmental conservation, and land management, XCT technology has the potential to change how researchers understand and interact with belowground ecosystems, particularly in wetland ecosystems,” Hassan said.

The team will work with LSU’s Office of Innovation & Technology Commercialization (ITC) on patenting their algorithms. 

About LSU ITC

LSU ITC protects and commercializes LSU’s intellectual property. The office focuses on transferring early-stage inventions and works into the marketplace for the greater benefit of society. ITC also handles federal invention reporting, which allows LSU to receive hundreds of millions of dollars each year in federally funded research, and processes confidentiality agreements, material transfer agreements, and other agreements related to intellectual property. To learn more, contact Ted Griggs, assistant director of creative strategies, at 225-288-8840 or [email protected] .

Like us on Facebook (@lsuengineering) or follow us on X (formerly Twitter) and Instagram (@lsuengineering).​

Contact: Libby Haydel Communications Manager 225-578-4840 [email protected]

Two technicians wearing masks and lab coats pipette antibodies at a long desk in a laboratory.

Waldo Swiegers/Bloomberg via Getty Images

Technicians conduct Covid-19 antibody neutralisation testing in a laboratory at the African Health Research Institute (AHRI) in Durban, South Africa.

Research environment: people, culture and openness

Research to solve the urgent health challenges facing everyone depends on thriving research environments that are open, engaged, equitable, ethical and efficient.

  • Share with Facebook
  • Share with X
  • Share with LinkedIn
  • Share with Email

We believe that excellent research happens in environments where people from all backgrounds are treated with respect, supported and enabled to thrive.  

Solving the planet’s most urgent health challenges requires creative and high-quality ideas, that must be open and accessible to everyone, to achieve the greatest impact and save lives more quickly. It also requires ethically sound research that is engaged with the needs of the communities it is addressing.  

We see these as fundamental and necessary changes to the way that research usually happens and they are at the heart of the positive and inclusive research cultures we want to encourage. Only when these approaches are considered can we say that the research we fund is truly for the health challenges facing everyone.

By taking a holistic view of the environmental factors that impact research outcomes, Wellcome can achieve its ambition to be an inclusive funder of research to improve health for everyone.

research about environment

Hannah Hope

Open Research Lead

What we're doing  

Our work cuts across Wellcome’s funding teams, supporting them to deliver their programmes of work on discovery research , climate and health , infectious disease  and mental health . 

Our ambition is that the research we fund and the processes by which we do this are open, engaged, ethical and efficient.  

In addition to our internally focused work, we aim to contribute to the wider research ecosystem to ensure that Wellcome researchers have access to the tools and skills to maximise the impact of their work. This includes convening community events, policy work, supporting infrastructure and occasionally, offering funding for relevant activities.

What do we mean by 'research environment'?

Typically, the strength of a ‘research environment’ is judged by the excellence of the infrastructure it provides for the research taking place.

Wellcome’s definition of the research environment goes beyond this to consider the culture and behaviours that create excellent research practice. For us, this includes research that is inclusive in design and practice, ethical and engaged with relevant community stakeholders. An open and transparent research process is a tool to enable these practices and to enable the outputs of the research to have the maximum impact.

Examples of our work  

  • Europe PMC (PubMed Central) – an online database offering free access to published biomedical research
  • Investigating the effects of open sharing commitments
  • Global Infectious Disease Ethics Collaborative (GLIDE) – a platform for identifying and analysing ethical issues in infectious disease
  • Emerging Cultures – a grant for a sociological and anthropological study of emerging research cultures in Wellcome’s 4-Year PhD Programmes
  • In2Research – a social mobility programme that supports people from low socio-economic backgrounds to progress to postgraduate research

How this applies to your research  

As part of our goal to become a more inclusive funder and support research that is inclusive in design and practice, we made commitments to foster positive and inclusive research cultures as part of the application criteria on most of our awards.  

As part of this, our Discovery Award applications feature elements of the Resume for Research and Innovation (R4RI) , otherwise known as the Narrative CV. This gives researchers more flexibility in how they demonstrate their diverse skills and contributions to research.  

Wellcome has a number of research policies related to open and ethical research and we recommend that researchers consult these when designing funding applications and delivering successful awards. 

Appropriate engagement with key stakeholders throughout the research lifecycle supports the production of high-quality research that is rooted within the needs of those most affected. Wellcome will consider the costs of delivering engaged research within funding applications.

Looking for research funding?

Wellcome does not have a Research Environment funding scheme, however, it is a theme within all research grant funding and may be a criterion within other procurement processes.

research about environment

Dan O’Connor

Head of Research Environment

research about environment

Carleigh Krubiner

Bioethics Lead

research about environment

Shomari Lewis-Wilson

Senior Manager, Research Culture and Communities

If you have general enquiries or ideas related to our Research Environment work, please contact us on

[email protected]

Related content  

research about environment

Diversity and inclusion: helping more ideas thrive

research about environment

Let's reimagine how we work together

research about environment

Open research

IMAGES

  1. What is the Scope of Environmental Studies?

    research about environment

  2. Why Environmental Studies is important?

    research about environment

  3. The Sustainable Development Goals

    research about environment

  4. Actions You Can Take Immediately Towards a More Eco-Friendly Laboratory

    research about environment

  5. Ecology infographic for Save Earth planet concept

    research about environment

  6. Environmental Studies

    research about environment

VIDEO

  1. Revolutions in Biomedicine Summer School

  2. How to choose a lab for starting PhD ?

  3. Climate Change and the Agricultural Adaption

  4. Disparities in Current Genomic Studies with Dr. Jose D. Vargas

  5. Installing an Algorithmic Trading Research Environment using Ubuntu and Python

  6. Research Institutes at the Faculty of Science and Engineering

COMMENTS

  1. Environmental sciences

    Environmental science is the multidisciplinary study of all aspects of the Earth's physical and biological environments. It encompasses environmental chemistry, soil science, ecology ...

  2. Environment

    Environment How air pollution may make it harder for pollinators to find flowers ... membership organization dedicated to public engagement in scientific research and education (EIN 53-0196483 ...

  3. Environmental Research

    Environmental Research is a multi-disciplinary journal publishing high quality and novel information about anthropogenic issues of global relevance and applicability in a wide range of environmental disciplines, and …. View full aims & scope. $3590. Article publishing charge. for open access.

  4. Home

    The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in ...

  5. Sustainable Environment Research

    Hasfalina Che Man. November 2018 View PDF. More opportunities to publish your research: Browse open Calls for Papers. Read the latest articles of Sustainable Environment Research at ScienceDirect.com, Elsevier's leading platform of peer-reviewed scholarly literature.

  6. The Planet

    Get the latest stories that inform, inspire, and enable you to live more lightly on the planet, plus updates from National Geographic and The Walt Disney Family of Companies. Email Address.

  7. Environmental Studies Articles, Journals, & Other Resources

    Addresses environmental concerns and research with coverage from more than 300 environmental studies journals and book reference content. Gale In Context: Opposing Viewpoints Supports science, current events, and language arts and presents all sides of important issues, empowering learners to develop information literacy and critical-thinking ...

  8. 100+ Environmental Science Research Topics

    Finding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. Here, we'll explore a variety research ideas and topic thought-starters related to various environmental science disciplines, including ecology, oceanography, hydrology, geology, soil science, environmental chemistry, environmental ...

  9. The Environment in Health and Well-Being

    Introduction. This article traces the development of ideas about the environment in human health and well-being over time. Our primary focus is the period since the early 19th century, sometimes termed the "modern public health era."This has been not only a time of unprecedented scientific, technological, and societal transition but also a time during which perspectives on the relationship ...

  10. Environmental Sustainability: Articles, Research, & Case Studies on

    New research on environmental sustainability from Harvard Business School faculty on issues including the role of companies to mitigate climate change, corporate social responsibility, reporting to stakeholders, government relations and development of Chief Sustainability Officers.

  11. Unique Research on Calving Impacts on Nutrient Cycle Earns 2024 Bormann

    The research really extends beyond the question of how animals impact ecosystems to how ecosystems are modulating that impact." This groundbreaking interdisciplinary research, which was published in 2023 in the Journal of Animal Ecology, earned Ferraro the 2024 F. Herbert Bormann Prize. The award honors a YSE doctoral student whose work best ...

  12. Environmental issues are health issues: Making a case and setting an

    Increasing demands on ecosystems, decreasing biodiversity, and climate change are among the most pressing environmental issues of our time. As changing weather conditions are leading to increased vector-borne diseases and heat- and flood-related deaths, it is entering collective consciousness: environmental issues are human health issues. In public health, the field addressing these issues is ...

  13. What Is an Environmental Problem?

    Abstract. This paper advances two arguments about environmental problems. First, it interrogates the strength and limitations of empiricist accounts of problems and issues offered by actor-network theory. Drawing on the work of C.S. Peirce, it considers how emerging environmental problems often lead to abductive inferences about the existence ...

  14. Environmental and Health Impacts of Air Pollution: A Review

    Environmental pollution occurs when changes in the physical, chemical, or biological constituents of the environment (air masses, temperature, climate, ... together with information coming from research in order to handle the problem effectively. At this point, international cooperation in terms of research, development, administration policy ...

  15. Top 100 in Earth, Environment and Ecology

    This collection highlights our most downloaded* Earth, environment and ecology papers published in 2022. Featuring authors from aroud the world, these papers showcase valuable research from an ...

  16. Climate change damage could cost $38 trillion per year by 2050, study

    Damage to farming, infrastructure, productivity, and health from climate change will cost an estimated $38 trillion per year by 2050, German government-backed research finds, a figure almost ...

  17. What Is Environmental Research? 15 Topics To Consider

    Environmental research topics refer to conditions of the physical, chemical and biological aspects of the environment. This can include human activity, living organisms, weather and naturally occurring landmarks. Environmental research focuses largely on conservation or prevention. Many professionals may perform environmental research, such as ...

  18. Environment & Climate

    Large shares of Americans support the U.S. taking steps to address global climate change and prioritize renewable energy development in the country. Still, fewer than half are ready to phase out fossil fuels completely and 59% oppose ending the production of gas-powered cars. data essay | Mar 8, 2023.

  19. Ocean spray emits more PFAS than industrial polluters, study finds

    Ocean waves crashing on the world's shores emit more PFAS into the air than the world's industrial polluters, new research has found, raising concerns about environmental contamination and ...

  20. Pollution

    Pollution is the introduction of harmful materials into the environment. These harmful materials are called pollutants. Pollutants can be natural, such as volcanic ash. They can also be created by human activity, such as trash or runoff produced by factories. Pollutants damage the quality of air, water, and land.

  21. What really matters for successful research environments? A realist

    Introduction. Research environments matter. Environmental considerations such as robust cultures of research quality and support for researchers are thought to be the most influential predictors of research productivity.1, 2 Over 25 years ago, Bland and Ruffin1 identified 12 characteristics of research‐favourable environments in the international academic medicine literature spanning the ...

  22. Center for Policy Research on Energy and the Environment (C-PREE)

    With 23% of energy-related carbon emissions coming from transportation, climate change mitigation will require a deep decarbonization of the transport sector. In China, transport contributes 10% to national carbon emissions as well as contributing to particulate matter (PM2.5 ) and ozone formation that damage human health, agriculture, and ecos...

  23. Where is the strongest research focus on the environment?

    By. Simon Baker &. Bec Crew. High-quality research from scientists in Australia, New Zealand and parts of Scandinavia tends to lean the most heavily towards tackling climate and conservation ...

  24. Research: Boards Still Have an ESG Expertise Gap

    Over the last five years, the percentage of Fortune 100 board members possessing relevant credentials rose from 29% to 43%. The role of U.S. public boards in managing environmental, social, and ...

  25. Analyzing decades-long environmental changes in Namibia using archival

    This study explores object detection in historical aerial photographs of Namibia to identify long-term environmental changes. Specifically, we aim to identify key objects - Waterholes, Omuti homesteads, and Big trees - around Oshikango in Namibia using sub-meter gray-scale aerial imagery from 1943 and 1972. In this work, we propose a workflow for analyzing historical aerial […]

  26. LSU Civil, Environmental Engineering Researchers Study Coastal Wetland

    LSU Civil, Environmental Engineering Researchers Study Coastal Wetland Root Dynamics. April 16, 2024 . BATON ROUGE, LA - A team of LSU researchers led by LSU Civil and Environmental Engineering Associate Professor Navid Jafari (principal investigator) and LSU CEE Research Assistant Mohamed Hassan (co-PI) recently received a $50,000 National Science Foundation I-Corps grant to commercialize ...

  27. Research environment

    Wellcome's definition of the research environment goes beyond this to consider the culture and behaviours that create excellent research practice. For us, this includes research that is inclusive in design and practice, ethical and engaged with relevant community stakeholders. An open and transparent research process is a tool to enable these ...