Common News

By a man of good hope.

Common News

Critical Thinking Journal/Weak-sene, Strong-sense, and Probabilities

That’s right. It’s time for another installment of “What has Josh been writing for class?” This week I responded mostly to an old article by Richard Paul —who, I think, bears a striking resemblance to Walker Texas Ranger: hold on to that.

He differentiates mainly between two types of styles of problem evaluation: weak-sense and strong-sense critical thinking. To paraphrase, perhaps unfairly, weak-sense is marred by an overly narrow subproblem formulation. It’s atomistic. First you take a big problem, chop it up into smaller problems, and then solve each of the bite-sized pieces one at a time. Paul rightly notes that oftentimes this method misses the larger problem that arrise from the interplay of the otherwise well-behaved subproblems. The mathematician in me has to note that the local-behavior-does-not-imply-global-behavior phenomenon has been a central theme in differential geometry from about its beginning. The same problem creeps up just about everywhere else you look for it. I’ve tried to talk about this before in vague terms relating to urban planning and chaos theory. Maybe I should try again sometime. But for now:

References Paul, Richard. “Teaching critical thinking in the ‘strong’ sense: A focus on self-deception, world views, and a dialectical mode of analysis.” Informal Logic Newsletter, 1982.

Technorati Tags: richard paul , critical thinking , strong-sense , weak-sense , probability , quantum information theory , logic , gleason , hilbert space , information retrieval , ir , education , learning , stereotypes , marketing , linear algebra , coordinate , dialectic , education , teaching , classroom

Warren Berger

A Crash Course in Critical Thinking

What you need to know—and read—about one of the essential skills needed today..

Posted April 8, 2024 | Reviewed by Michelle Quirk

  • In research for "A More Beautiful Question," I did a deep dive into the current crisis in critical thinking.
  • Many people may think of themselves as critical thinkers, but they actually are not.
  • Here is a series of questions you can ask yourself to try to ensure that you are thinking critically.

Conspiracy theories. Inability to distinguish facts from falsehoods. Widespread confusion about who and what to believe.

These are some of the hallmarks of the current crisis in critical thinking—which just might be the issue of our times. Because if people aren’t willing or able to think critically as they choose potential leaders, they’re apt to choose bad ones. And if they can’t judge whether the information they’re receiving is sound, they may follow faulty advice while ignoring recommendations that are science-based and solid (and perhaps life-saving).

Moreover, as a society, if we can’t think critically about the many serious challenges we face, it becomes more difficult to agree on what those challenges are—much less solve them.

On a personal level, critical thinking can enable you to make better everyday decisions. It can help you make sense of an increasingly complex and confusing world.

In the new expanded edition of my book A More Beautiful Question ( AMBQ ), I took a deep dive into critical thinking. Here are a few key things I learned.

First off, before you can get better at critical thinking, you should understand what it is. It’s not just about being a skeptic. When thinking critically, we are thoughtfully reasoning, evaluating, and making decisions based on evidence and logic. And—perhaps most important—while doing this, a critical thinker always strives to be open-minded and fair-minded . That’s not easy: It demands that you constantly question your assumptions and biases and that you always remain open to considering opposing views.

In today’s polarized environment, many people think of themselves as critical thinkers simply because they ask skeptical questions—often directed at, say, certain government policies or ideas espoused by those on the “other side” of the political divide. The problem is, they may not be asking these questions with an open mind or a willingness to fairly consider opposing views.

When people do this, they’re engaging in “weak-sense critical thinking”—a term popularized by the late Richard Paul, a co-founder of The Foundation for Critical Thinking . “Weak-sense critical thinking” means applying the tools and practices of critical thinking—questioning, investigating, evaluating—but with the sole purpose of confirming one’s own bias or serving an agenda.

In AMBQ , I lay out a series of questions you can ask yourself to try to ensure that you’re thinking critically. Here are some of the questions to consider:

  • Why do I believe what I believe?
  • Are my views based on evidence?
  • Have I fairly and thoughtfully considered differing viewpoints?
  • Am I truly open to changing my mind?

Of course, becoming a better critical thinker is not as simple as just asking yourself a few questions. Critical thinking is a habit of mind that must be developed and strengthened over time. In effect, you must train yourself to think in a manner that is more effortful, aware, grounded, and balanced.

For those interested in giving themselves a crash course in critical thinking—something I did myself, as I was working on my book—I thought it might be helpful to share a list of some of the books that have shaped my own thinking on this subject. As a self-interested author, I naturally would suggest that you start with the new 10th-anniversary edition of A More Beautiful Question , but beyond that, here are the top eight critical-thinking books I’d recommend.

The Demon-Haunted World: Science as a Candle in the Dark , by Carl Sagan

This book simply must top the list, because the late scientist and author Carl Sagan continues to be such a bright shining light in the critical thinking universe. Chapter 12 includes the details on Sagan’s famous “baloney detection kit,” a collection of lessons and tips on how to deal with bogus arguments and logical fallacies.

weak vs strong critical thinking

Clear Thinking: Turning Ordinary Moments Into Extraordinary Results , by Shane Parrish

The creator of the Farnham Street website and host of the “Knowledge Project” podcast explains how to contend with biases and unconscious reactions so you can make better everyday decisions. It contains insights from many of the brilliant thinkers Shane has studied.

Good Thinking: Why Flawed Logic Puts Us All at Risk and How Critical Thinking Can Save the World , by David Robert Grimes

A brilliant, comprehensive 2021 book on critical thinking that, to my mind, hasn’t received nearly enough attention . The scientist Grimes dissects bad thinking, shows why it persists, and offers the tools to defeat it.

Think Again: The Power of Knowing What You Don't Know , by Adam Grant

Intellectual humility—being willing to admit that you might be wrong—is what this book is primarily about. But Adam, the renowned Wharton psychology professor and bestselling author, takes the reader on a mind-opening journey with colorful stories and characters.

Think Like a Detective: A Kid's Guide to Critical Thinking , by David Pakman

The popular YouTuber and podcast host Pakman—normally known for talking politics —has written a terrific primer on critical thinking for children. The illustrated book presents critical thinking as a “superpower” that enables kids to unlock mysteries and dig for truth. (I also recommend Pakman’s second kids’ book called Think Like a Scientist .)

Rationality: What It Is, Why It Seems Scarce, Why It Matters , by Steven Pinker

The Harvard psychology professor Pinker tackles conspiracy theories head-on but also explores concepts involving risk/reward, probability and randomness, and correlation/causation. And if that strikes you as daunting, be assured that Pinker makes it lively and accessible.

How Minds Change: The Surprising Science of Belief, Opinion and Persuasion , by David McRaney

David is a science writer who hosts the popular podcast “You Are Not So Smart” (and his ideas are featured in A More Beautiful Question ). His well-written book looks at ways you can actually get through to people who see the world very differently than you (hint: bludgeoning them with facts definitely won’t work).

A Healthy Democracy's Best Hope: Building the Critical Thinking Habit , by M Neil Browne and Chelsea Kulhanek

Neil Browne, author of the seminal Asking the Right Questions: A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the world around us. His newest book, co-authored with Chelsea Kulhanek, breaks down critical thinking into “11 explosive questions”—including the “priors question” (which challenges us to question assumptions), the “evidence question” (focusing on how to evaluate and weigh evidence), and the “humility question” (which reminds us that a critical thinker must be humble enough to consider the possibility of being wrong).

Warren Berger

Warren Berger is a longtime journalist and author of A More Beautiful Question .

  • Find a Therapist
  • Find a Treatment Center
  • Find a Support Group
  • International
  • New Zealand
  • South Africa
  • Switzerland
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

Table of Contents, Thinking Tools

Westside Toastmasters is located in Los Angeles and Santa Monica, California

Chapter 3. evolving into a balanced critical thinker, chapter 3. evolving into an evenhanded thinker, weak versus strong critical thinking.

Critical thinking involves basic intellectual skills, but these skills can be used to serve two incompatible ends: self-centeredness or fair-mindedness. As we develop the basic intellectual skills that critical thinking entails, we can begin to use those skills in a selfish or in a fair-minded way. In other words, we can develop in such a way that we learn to see mistakes in our own thinking, as well as the thinking of others. Or we can merely develop some proficiency in making our opponent's thinking look bad.

Typically, people see mistakes in other's thinking without being able to credit the strengths in those opposing views. Liberals see mistakes in the arguments of conservatives; conservatives see mistakes in the arguments of liberals. Believers see mistakes in the thinking of nonbelievers; nonbelievers see mistakes in the thinking of believers. Those who oppose abortion readily see mistakes in the arguments for abortion; those who favor abortion readily see mistakes in the arguments against it.

We call these thinkers weak-sense critical thinkers. We call the thinking "weak" because, though it is working well for the thinker in some respects, it is missing certain important higher-level skills and values of critical thinking. Most significantly, it fails to consider, in good faith, viewpoints that contradict its own viewpoint. It lacks fair-mindedness.

Another traditional name for the weak-sense thinker is found in the word sophist. Sophistry is the art of winning arguments regardless of whether there are obvious problems in the thinking being used. There is a set of lower-level skills of rhetoric, or argumentation, by which one can make bad thinking look good and good thinking look bad. We see this often in unethical lawyers and politicians who are merely concerned with winning. They use emotionalism and trickery in an intellectually skilled way.

Sophistic thinkers succeed only if they do not come up against what we call strong-sense critical thinkers. Strong-sense critical thinkers are not easily tricked by slick argumentation. As William Graham Sumner ( -->1906) said almost a century ago, they

cannot be stampeded ... are slow to believe ... can hold things as possible or probable in all degrees, without certainty and without pain ... can wait for evidence and weigh evidence ... can resist appeals to their dearest prejudices....

Perhaps even more important, strong-sense critical thinkers strive to be fair-minded. They use thinking in an ethically responsible manner. They work to understand and appreciate the viewpoints of others. They are willing to listen to arguments they do not necessarily hold. They change their views when faced with better reasoning. Rather than using their thinking to manipulate others and to hide from the truth (in a weak-sense way), they use thinking in an ethical, reasonable manner.

We believe that the world already has too many skilled selfish thinkers, too many sophists and intellectual con artists, too many unscrupulous lawyers and politicians who specialize in twisting information and evidence to support their selfish interests and the vested interests of those who pay them. We hope that you, the reader, will develop as a highly skilled, fair-minded thinker, one capable of exposing those who are masters at playing intellectual games at the expense of the well-being of innocent people. We hope as well that you develop the intellectual courage to argue publicly against what is unethical in human thinking. We write this resource with the assumption that you will take seriously the fair-mindedness implied by strong-sense critical thinking.

To think critically in the strong sense requires that we develop fair-mindedness at the same time that we learn basic critical thinking skills, and thus begin to "practice" fair-mindedness in our thinking. If we do, we avoid using our skills to gain unfair advantage over others. We avoid using our thinking to get what we want at the expense of the rights and needs of others. We treat all thinking by the same high standards. We expect good reasoning from those who support us as well as those who oppose us. We subject our own reasoning to the same criteria we apply to reasoning to which we are unsympathetic. We question our own purposes, evidence, conclusions, implications, and points of view with the same vigor that we question those of others.

Developing fair-minded thinkers try to see the actual strengths and weaknesses of any reasoning they assess. This is the kind of thinker we hope this resource will help you become. So, right from the beginning, we are going to explore the characteristics that are required for the strongest, most fair-minded thinking. As you read through the rest of the book, we hope you will notice how we are attempting to foster "strong-sense" critical thinking. Indeed, unless we indicate otherwise, every time we now use the words "critical thinking," from this point onward, we will mean critical thinking in the strong sense.

In the remainder of this chapter, we will explore the various intellectual "virtues" that fair-minded thinking requires (Figure 3.1) . Figure 3.1 ).--> There is much more to fair-mindedness than most people realize. Fair-mindedness requires a family of interrelated and interdependent states of mind.

Figure 3.1. Critical thinkers strive to develop essential traits or characteristics of mind. These are interrelated intellectual habits that lead to disciplined self-command.

In addition to fair-mindedness, strong-sense critical thinking implies higher-order thinking. As you develop as a thinker and internalize the traits of mind that we shall soon discuss, you will develop a variety of skills and insights that are absent in the weak-sense critical thinker.

As we examine how the various traits of mind are conducive to fair-mindedness, we will also look at the manner in which the traits contribute to quality of thought (in general). In addition to the fairness that strong-sense critical thinking implies, depth of thinking and high quality of thinking are also implied. Weak-sense critical thinkers develop a range of intellectual skills (for example, skills of argumentation) and may achieve some success in getting what they want, but they do not develop any of the traits highlighted in this chapter.

It is important to note that many people considered successful in business or in their profession are, in fact, selfish thinkers. In self-indulgent and materialistic cultures, the idea "if it is good for me it is good for everyone" is tacitly assumed when not overtly stated. The pursuit of money, often at the expense of the rights and needs of others, is considered not only acceptable, but also commendable. Nevertheless when the pursuit of wealth and power is unbridled, injustice often results. The human mind is readily able to justify its own selfishness and lack of consideration for others. The powerful find many reasons to ignore the interests of the weak (Figure 3.2) . Figure 3.2 ).-->

Figure 3.2. These are the opposites of the intellectual virtues. They occur naturally in the mind and can only be countered through culturalization of intellectual virtues.

True critical thinkers, in the strong sense, realize the ease with which the mind can ignore the rights and needs of others. They recognize that to be reasonable and just is not to comply with nature but to defy it. They recognize the difficulty of entering into points of view different from our own. They are willing to do the work that is required to go beyond selfish thinking.

Let us turn to the component traits of the strong-sense critical thinker. After we take up each individual trait as it stands in relation to fair-mindedness, we will highlight its significance as a contributor to the general development of high levels of thinking.

What Does Fair-Mindedness Require?

First, the basic concept:

Fair-mindedness entails a consciousness of the need to treat all viewpoints alike, without reference to one's own feelings or selfish interests, or the feelings or selfish interests of one's friends, company, community, or nation. It implies adherence to intellectual standards (such as accuracy and sound logic), uninfluenced by one's own advantage or the advantage of one's group.

To be fair-minded is to strive to treat every viewpoint relevant to a situation in an unbiased, unprejudiced way. It entails a consciousness of the fact that we, by nature, tend to prejudge the views of others, placing them into "favorable" (agrees with us) and "unfavorable" (disagrees with us) categories. We tend to give less weight to contrary views than to our own. This is especially true when we have selfish reasons for opposing views. For example, the manufacturers of asbestos advocated its use in homes and schools, and made large profits on its use, even though they knew for many years that the product was carcinogenic. They ignored the viewpoint and welfare of the innocent users of their product. If we can ignore the potentially harmful effects of a product we manufacture, we can reap the benefits that come with large profits without experiencing pangs of conscience. Thus, fair-mindedness is especially important when the situation calls on us to consider the point of view of those who welfare is in conflict with our short-term vested interest.

The opposite of fair-mindedness is intellectual self-centeredness. It is demonstrated by the failure of thinkers to treat points of view that differ significantly from their own by the same standards that they treat their own.

Achieving a truly fair-minded state of mind is challenging. It requires us to simultaneously become intellectually humble, intellectually courageous, intellectually empathetic, intellectually honest, intellectually perseverant, confident in reason (as a tool of discovery and learning), and intellectually autonomous.

Without this family of traits in an integrated constellation, there is no true fair-mindedness. But these traits, singly and in combination, are not commonly discussed in everyday life, and are rarely taught. They are not discussed on television. Your friends and colleagues will not ask you questions about them.

In truth, because they are largely unrecognized, these traits are not commonly valued. Yet each of them is essential to fair-mindedness and the development of critical thinking. Let us see how and why this is so.

Intellectual Humility: Having Knowledge of Ignorance

We will begin with the fair-minded trait of intellectual humility:

Intellectual humility may be defined as having a consciousness of the limits of one's knowledge, including a sensitivity to circumstances in which one's native egocentrism is likely to function self-deceptively. This entails being aware of one's biases, one's prejudices, the limitations of one's viewpoint, and the extent of one's ignorance. Intellectual humility depends on recognizing that one should not claim more than one actually knows. It does not imply spinelessness or submissiveness. It implies the lack of intellectual pretentiousness, boastfulness, or conceit, combined with insight into the logical foundations, or lack of such foundations, of one's beliefs.

The opposite of intellectual humility is intellectual arrogance, a lack of consciousness of the limits of one's knowledge, with little or no insight into self-deception or the limitations of one's point of view. Intellectually arrogant people often fall prey to their own bias and prejudice, and frequently claim to know more than they actually know.

When we think of intellectual arrogance, we are not necessarily implying a person who is outwardly smug, haughty, insolent, or pompous. Outwardly, the person may appear humble. For example, a person who uncritically believes in a cult leader may be outwardly self-effacing ("I am nothing. You are everything"), but intellectually he or she is making a sweeping generalization that is not well founded, and has complete faith in that generalization.

Unfortunately, in human life people of the full range of personality types are capable of believing they know what they don't know. Our own false beliefs, misconceptions, prejudices, illusions, myths, propaganda, and ignorance appear to us as the plain, unvarnished truth. What is more, when challenged, we often resist admitting that our thinking is "defective." We then are intellectually arrogant, even though we might feel humble. Rather than recognizing the limits of our knowledge, we ignore and obscure those limits. From such arrogance, much suffering and waste result.

It is not uncommon for the police, for example, to assume a man is guilty of a crime because of his appearance, because he is black for example, or because he wears an earring, or because he has a disheveled and unkempt look about him. Owing to the prejudices driving their thinking, the police are often incapable of intellectual humility. In a similar way, prosecutors have been known to withhold exculpatory evidence against a defendant in order to "prove" their case. Intellectually righteous in their views, they feel confident that the defendant is guilty. Why, therefore, shouldn't they suppress evidence that will help this "guilty" person go free?

Intellectual arrogance is incompatible with fair-mindedness because we cannot judge fairly when we are in a state of ignorance about the object of our judgment. If we are ignorant about a religion (say, Buddhism), we cannot be fair in judging it. And if we have misconceptions, prejudices, or illusions about it, we will distort it (unfairly) in our judgment. We will misrepresent it and make it appear to be other than it is. Our false knowledge, misconceptions, prejudices, and illusions stand in the way of the possibility of our being fair. Or if we are intellectually arrogant, we will be inclined to judge too quickly and be overly confident in our judgment. Clearly, these tendencies are incompatible with being fair (to that which we are judging).

Why is intellectual humility essential to higher-level thinking? In addition to helping us become fair-minded thinkers, knowledge of our ignorance can improve our thinking in a variety of ways. It can enable us to recognize the prejudices, false beliefs, and habits of mind that lead to flawed learning. Consider, for example, our tendency to accept superficial learning. Much human learning is superficial. We learn a little and think we know a lot. We get limited information and generalize hastily from it. We confuse cutesy phrases with deep insights. We uncritically accept much that we hear and read - especially when what we hear or read agrees with our intensely held beliefs or the beliefs of groups to which we belong.

The discussion in the chapters that follow encourages intellectual humility and will help to raise your awareness of intellectual arrogance. See if you, from this moment, can begin to develop in yourself a growing awareness of the limitations of your knowledge and an increasing sensitivity to instances of your inadvertent intellectual arrogance. When you do, celebrate that sensitivity. Reward yourself for finding weaknesses in your thinking. Consider recognition of weakness an important strength, not a weakness. As a starter, answer the following questions:

Can you construct a list of your most significant prejudices? (Think of what you believe about your country, your religion, your company, your friends, your family, simply because others - colleagues, parents, friends, peer group, media - conveyed these to you.)

Do you ever argue for or against views when you have little evidence upon which to base your judgment?

Do you ever assume that your group (your company, your family, your religion, your nation, your friends) is correct (when it is in conflict with others) even though you have not looked at the situation from the point of view of the others with which you disagree?

Intellectual Courage: Being Willing to Challenge Beliefs

Now let's consider intellectual courage:

Intellectual courage may be defined as having a consciousness of the need to face and fairly address ideas, beliefs, or viewpoints toward which one has strong negative emotions and to which one has not given a serious hearing. Intellectual courage is connected to the recognition that ideas that society considers dangerous or absurd are sometimes rationally justified (in whole or in part). Conclusions and beliefs inculcated in people are sometimes false or misleading. To determine for oneself what makes sense, one must not passively and uncritically accept what one has learned. Intellectual courage comes into play here because there is some truth in some ideas considered dangerous and absurd, and distortion or falsity in some ideas strongly held by social groups to which we belong. People need courage to be fair-minded thinkers in these circumstances. The penalties for nonconformity can be severe.

The opposite of intellectual courage, intellectual cowardice, is the fear of ideas that do not conform to one's own. If we lack intellectual courage, we are afraid of giving serious consideration to ideas, beliefs, or viewpoints that we perceive as dangerous. We feel personally threatened by some ideas when they conflict significantly with our personal identity - when we feel that an attack on the ideas is an attack on us as a person.

All of the following ideas are "sacred" in the minds of some people: being a conservative, being a liberal; believing in God, disbelieving in God; believing in capitalism, believing in socialism; believing in abortion, disbelieving in abortion; believing in capital punishment, disbelieving in capital punishment. No matter what side we are on, we often say of ourselves: "I am a (an) [insert sacred belief here; for example, I am a Christian. I am a conservative. I am a socialist. I am an atheist]."

Once we define who we are in relation to an emotional commitment to a belief, we are likely to experience inner fear when that idea or belief is questioned. Questioning the belief seems to be questioning us. The intensely personal fear that we feel operates as a barrier in our minds to being fair (to the opposing belief). When we do seem to consider the opposing idea, we subconsciously undermine it, presenting it in its weakest form, in order to reject it. This is one form of intellectual cowardice. Sometimes, then, we need intellectual courage to overcome our self-created inner fear - the fear we ourselves have created by linking our identity to a specific set of beliefs.

Intellectual courage is just as important in our professional as in our personal lives. If, for example, we are unable to analyze the work-related beliefs we hold, then we are essentially trapped by those beliefs. We do not have the courage to question what we have always taken for granted. We are unable to question the beliefs collectively held by our co-workers. We are unable to question, for example, the ethics of our decisions and our behavior at work. But fair-minded managers, employers, and employees do not hesitate to question what has always been considered "sacred" or what is taken for granted by others in their group. It is not uncommon, for example, for employees to think within a sort of "mob mentality" against management, which often includes routinely gossiping to one another about management practices, especially those practices that impact them. Those with intellectual courage, rather than participating in such gossip in a mindless way, will begin to question the source of the gossip. They will question whether there is good reason for the group to be disgruntled, or whether the group is irrational in its expectations of management.

Another important reason to acquire intellectual courage is to overcome the fear of rejection by others because they hold certain beliefs and are likely to reject us if we challenge those beliefs. This is where we invest the group with the power to intimidate us, and such power is destructive. Many people live their lives in the eyes of others and cannot approve of themselves unless others approve of them. Fear of rejection is often lurking in the back of their minds. Few people challenge the ideologies or belief systems of the groups to which they belong. This is the second form of intellectual cowardice. Both make it impossible to be fair to the ideas that are contrary to our, or our group's, identity.

You might note in passing an alternative way to form your personal identity. This is not in terms of the content of any given idea (what you actually believe) but, instead, in terms of the process by which you came to it. This is what it means to take on the identity of a critical thinker. Consider the following resolution:

I will not identify with the content of any belief. I will identify only with the way I come to my beliefs. I am a critical thinker and, as such, am ready to abandon any belief that cannot be supported by evidence and rational considerations. I am ready to follow evidence and reason wherever they lead. My true identity is that of being a critical thinker, a lifelong learner, and a person always looking to improve my thinking by becoming more reasonable in my beliefs.

With such an identity, intellectual courage becomes more meaningful to us, and fair-mindedness more essential. We are no longer afraid to consider beliefs that are contrary to our present beliefs. We are not afraid of being proven wrong. We freely admit to having made mistakes in the past. We are happy to correct any mistakes we are still making: Tell me what you believe and why you believe it, and maybe I can learn from your thinking. I have cast off many early beliefs. I am ready to abandon as many of the present beliefs as are not consistent with the way things are.

Intellectual Empathy: Entertaining Opposing Views

Next let's consider intellectual empathy, another trait of mind necessary to fair-mindedness:

Intellectual empathy is an awareness of the need to imaginatively put oneself in the place of others so as to genuinely understand them. To have intellectual empathy is to be able to accurately reconstruct the viewpoints and reasoning of others and to reason from premises, assumptions, and ideas other than one's own. This trait also correlates with the willingness to remember occasions when one was wrong in the past despite an intense conviction of being right, and with the ability to imagine being similarly deceived in a case at hand.

The opposite of intellectual empathy is intellectual self-centeredness. It is thinking centered on self. When we think from a self-centered perspective, we are unable to understand others' thoughts, feelings, and emotions. From this natural perspective, we are the recipients of most of our attention. Our pain, our desires, and our hopes are most pressing. The needs of others pale into insignificance before the domination of our own needs and desires. We are unable to consider issues, problems, and questions from a viewpoint that differs from our own and that, when considered, would force us to change our perspective.

How can we be fair to the thinking of others if we have not learned to put ourselves in their intellectual shoes? Fair-minded judgment requires a good-faith effort to acquire accurate knowledge. Human thinking emerges from the conditions of human life, from very different contexts and situations. If we do not learn how to take on the perspectives of others and to accurately think as they think, we will not be able to fairly judge their ideas and beliefs. Actually trying to think within the viewpoint of others is not easy, though. It is one of the most difficult skills to acquire.The extent to which you have intellectual empathy has direct implications for the quality of your life. If you cannot think within the viewpoint of your supervisor, for example, you will have difficulty functioning successfully in your job and you may often feel frustrated. If you cannot think within the viewpoints of your subordinates, you will have difficulty understanding why they behave as they do. If you cannot think within the viewpoint of your spouse, the quality of your marriage will be adversely affected. If you cannot think within the viewpoints of your children, they will feel misunderstood and alienated from you.

Intellectual Integrity: Holding Ourselves to the Same Standards to Which We Hold Others

Let us now consider intellectual integrity:

Intellectual integrity is defined as recognition of the need to be true to one's own thinking and to hold oneself to the same standards one expects others to meet. It means to hold oneself to the same rigorous standards of evidence and proof to which one holds one's antagonists - to practice what one advocates for others. It also means to honestly admit discrepancies and inconsistencies in one's own thought and action, and to be able to identify inconsistencies in one's own thinking.

The opposite of intellectual integrity is intellectual hypocrisy, a state of mind unconcerned with genuine integrity. It is often marked by deep-seated contradictions and inconsistencies. The appearance of integrity means a lot because it affects our image with others. Therefore, hypocrisy is often implicit in the thinking and action behind human behavior as a function of natural egocentric thinking. Our hypocrisy is hidden from us. Though we expect others to adhere to standards to which we refuse to adhere, we see ourselves as fair. Though we profess certain beliefs, we often fail to behave in accordance with those beliefs.

To the extent that we have intellectual integrity, our beliefs and actions are consistent. We practice what we preach, so to speak. We don't say one thing and do another.

Suppose I were to say to you that our relationship is really important to me, but you find out that I have lied to you about something important to you. My behavior lacks integrity. I have acted hypocritically.

Clearly, we cannot be fair to others if we are justified in thinking and acting in contradictory ways. Hypocrisy by its very nature is a form of injustice. In addition, if we are not sensitive to contradictions and inconsistencies in our own thinking and behavior, we cannot think well about ethical questions involving ourselves.

Consider this political example. From time to time the U.S. media discloses highly questionable practices by the CIA. These practices run anywhere from documentation of attempted assassinations of foreign political leaders (say, attempts to assassinate President Castro of Cuba) to the practice of teaching police or military representatives in other countries (say, Central America or South America) how to torture prisoners to get them to disclose information about their associates. To appreciate how such disclosures reveal a lack of intellectual integrity, we only have to imagine how the U.S. government and citizenry would respond if another nation were to attempt to assassinate the president of the U.S or trained U.S. police or military in methods of torture. Once we imagine this, we recognize a basic inconsistency common in human behavior and a lack of intellectual integrity on the part of those who plan, engage in, or approve of, such activities.

All humans sometimes fail to act with intellectual integrity. When we do, we reveal a lack of fair-mindedness on our part, and a failure to think well enough as to grasp the internal contradictions in our thought or life.

Intellectual Perseverance: Working Through Complexity and Frustration

Let us now consider intellectual perseverance:

Intellectual perseverance can be defined as the disposition to work one's way through intellectual complexities despite the frustration inherent in the task. Some intellectual problems are complex and cannot be easily solved. One has intellectual perseverance when one does not give up in the face of intellectual complexity or frustration. The intellectually perseverant person displays firm adherence to rational principles despite the irrational opposition of others, and has a realistic sense of the need to struggle with confusion and unsettled questions over an extended time to achieve understanding or insight.

The opposite of intellectual perseverance is intellectual laziness, demonstrated in the tendency to give up quickly when faced with an intellectually challenging task. The intellectually indolent, or lazy, person has a low tolerance for intellectual pain or frustration.

How does a lack of intellectual perseverance impede fair-mindedness? Understanding the views of others requires that we do the intellectual work to achieve that understanding. That takes intellectual perseverance-insofar as those views are very different from ours or are complex in nature. For example, suppose you are a Christian wanting to be fair to the views of an atheist. Unless you read and understand the reasoning of intelligent and insightful atheists, you are not being fair to those views. Some intelligent and insightful atheists have written books to explain how and why they think as they do. Some of their reasoning is complicated or deals with issues of some complexity. It follows that only those Christians who have the intellectual perseverance to read and/or understand atheists can be fair to atheist views. Of course, a parallel case could be developed with respect to atheists' understanding the views of intelligent and insightful Christians.

Finally, it should be clear how intellectual perseverance is essential to all areas of higher-level thinking. Virtually all higher-level thinking requires some intellectual perseverance to overcome. It takes intellectual perseverance to reason well through complex questions on the job, to work through complex problems in intimate relationships, to solve problems in parenting. Many give up during early stages of working through a problem. Lacking intellectual perseverance, they cut themselves off from all the insights that thinking through an issue at a deep level provides. They avoid intellectual frustration, no doubt, but they end up with the everyday frustrations of not being able to solve complex problems.

Confidence in Reason: Recognizing that Good Reasoning Has Proven Its Worth

Let us now consider the trait of confidence in reason:

Confidence in reason is based on the belief that one's own higher interests and those of humankind will be best served by giving the freest play to reason. Reason encourages people to come to their own conclusions by developing their own rational faculties. It is the faith that, with proper encouragement and cultivation, people can learn to think for themselves. As such, they can form insightful viewpoints, draw reasonable conclusions, and develop clear, accurate, relevant, and logical thought processes., In turn, they can persuade each other by appealing to good reason and sound evidence, and become reasonable persons, despite the deep-seated obstacles in human nature and social life. When one has confidence in reason, one is "moved" by reason in appropriate ways. The very idea of reasonability becomes one of the most important values and a focal point in one's life. In short, to have confidence in reason is to use good reasoning as the fundamental criterion by which to judge whether to accept or reject any belief or position.

The opposite of confidence in reason is intellectual distrust of reason, given by the threat that reasoning and rational analysis pose to the undisciplined thinker. Being prone toward emotional reactions that validate present thinking, egocentric thinkers often express little confidence in reason. They do not understand what it means to have faith in reason. Instead, they have confidence in the truth of their own belief systems, however flawed their beliefs might be.

In many ways we live in an irrational world surrounded by many forms of irrational beliefs and behaviors. For example, despite the success of science in providing plausible explanations based on careful study of evidence gathered through disciplined observations, many people still believe in unsubstantiated systems such as astrology. Many people, when faced with a problem, follow their "gut" impulses. Many follow leaders whose only claim to credibility is that they are skilled in manipulating a crowd and whipping up enthusiasm. Few people seem to recognize the power of sound thinking in helping us to solves our problems and live a fulfilling life. Few people, in short, have genuine confidence in reason. In the place of faith in reason, people tend to have uncritical or "blind" faith in one or more of the following (often as a result of irrational drives and emotions):

  • Faith in charismatic national leaders (think of leaders such as Hitler, able to excite millions of people and manipulate them into supporting genocide of an entire religious group).
  • Faith in charismatic cult leaders.
  • Faith in the father as the traditional head of the family (as defined by religious or social tradition).
  • Faith in institutional authorities (employers, "the company," police, social workers, judges, priests, evangelical preachers, and so forth).
  • Faith in spiritual powers (such as a "holy spirit," as defined by various religious belief systems).
  • Faith in some social group, official or unofficial (faith in a gang, in the business community, in a church, in a political party, and so on).
  • Faith in a political ideology (such as communism, capitalism, Fascism).
  • Faith in intuition.
  • Faith in one's unanalyzed emotions.
  • Faith in one's gut impulses.
  • Faith in fate (some unnamed force that supposedly guides the destiny of us all).
  • Faith in social institutions (the courts, schools, charities, business communities, governments).
  • Faith in the folkways or mores of a social group or culture.
  • Faith in one's own unanalyzed experience.
  • Faith in people who have social status or position (the rich, the famous, the powerful).

Some of the above are compatible, under some conditions, with faith in reason. The key factor is the extent to which some form of faith is based on sound reasoning and evidence. The acid test, then, is: Are there good grounds for having that faith? For example, it makes sense to have faith in a friend if that friend has consistently acted as a friend over an extended time. On the other hand, it does not make sense to have faith in a new acquaintance, even if one finds oneself emotionally attracted to that individual and that person professes his or her friendship.

As you examine and evaluate your own thinking on the nature of different kinds of faith, and the extent to which you have appropriate confidence in reason and evidence, ask yourself to what extent you can be moved by well-reasoned appeals. Suppose you meet someone who shows so much of an interest in your significant other that you feel intensely jealous and negative toward that person. Would you shift your view if you receive evidence by a dependable friend that the person you are negative about is actually exceptionally kind, thoughtful, and generous? Do you think you could shift your view, even when, deep down, you want your significant other to reject this person in favor of you? Have you ever given up a belief you held dear because, through your reading, experience, and reflection, you became persuaded that it was not reasonable to believe as you did? Are you ready and willing to admit that some of your most passionate beliefs (for example, your religious or political beliefs) may in fact be "wrong?"

Intellectual Autonomy: Being an Independent Thinker

The final intellectual trait we will consider here is intellectual autonomy:

Intellectual autonomy may be defined as internal motivation based on the ideal of thinking for oneself; having rational self-authorship of one's beliefs, values, and way of thinking; not being dependent on others for the direction and control of one's thinking.

Autonomous persons are persons in charge of their lives. They are not irrationally dependent on others and not controlled by infantile emotions. They have self-control. They are competent. They complete what they begin. In forming beliefs, critical thinkers do not passively accept the beliefs of others. Rather, they think through situations and issues for themselves and reject unjustified authorities while recognizing the contributions of reasonable authority. They mindfully form principles of thought and action and do not mindlessly accept those presented to them. They are not limited by the accepted way of doing things. They evaluate the traditions and practices that others often accept unquestioningly. Independent thinkers strive to incorporate knowledge and insight into their thinking, independent of the social status of the source. They are not willful, stubborn, or unresponsive to the reasonable suggestions of others. They are self-monitoring thinkers who strive to amend their own mistakes. They function from values they themselves have freely chosen.

Of course, intellectual autonomy must be understood not as a thing-in-itself. Instead, we must recognize it as a dimension of our minds working in conjunction with, and tempered by, the other intellectual virtues.

The opposite of intellectual autonomy is intellectual conformity, or intellectual or emotional dependence. Intellectual autonomy is difficult to develop because social institutions, as they now stand, depend heavily on passive acceptance of the status quo, whether intellectual, political, or economic. Thinking for oneself almost certainly leads to unpopular conclusions not sanctioned by dominant groups. There are always many rewards for those who simply conform in thought and action to social pressure.

Consequently, the large masses of people are unknowing conformists in thought and deed. They are like mirrors reflecting the belief systems and values of those who surround them. They lack the intellectual skills and the incentive to think for themselves. They are intellectually conforming thinkers (Figure 3.3).

Even those who spend years getting a Ph.D. may be intellectually dependent, both academically and personally. They may uncritically accept faulty practices in the discipline as it stands, uncritically defending the discipline against legitimate critics. The result often is unwarranted human harm and suffering.

One cannot be fair-minded and lack intellectual autonomy, for independent thinking is a prerequisite to thinking within multiple perspectives. When we intellectually conform, we are only able to think within "accepted" viewpoints. But to be fair-minded is to refuse to uncritically accept beliefs without thinking through the merits (and demerits) of those beliefs for oneself.

Recognizing the Interdependence of Intellectual Virtues

The traits of mind essential for critical thinking are interdependent. Consider intellectual humility. To become aware of the limits of our knowledge, we need the intellectual courage to face our own prejudices and ignorance. To discover our own prejudices, in turn, we often must intellectually empathize with and reason within points of view with which we fundamentally disagree. To achieve this end, we typically must engage in intellectual perseverance, as learning to empathically enter a point of view against which we are biased takes time and significant effort. That effort will not seem justified unless we have the necessary confidence in reason to believe we will not be tainted or "taken in" by whatever is false or misleading in the opposing viewpoint.

Furthermore, merely believing we won't be harmed considering "alien" viewpoints is not enough to motivate most of us to consider them seriously. We also must be motivated by an intellectual sense of justice. We must recognize an intellectual responsibility to be fair to views we oppose. We must feel obliged to hear them in their strongest form to ensure that we are not condemning them out of ignorance or bias on our part. At this point, we come full circle to where we began: the need for intellectual humility.

To begin at another point, consider intellectual integrity or good faith. Intellectual integrity is clearly a difficult trait to develop. We are often motivated - generally without admitting to or being aware of this motivation - to set up inconsistent standards in thinking. Our egocentric or sociocentric tendencies, for example, make us ready to believe positive information about those that we like and negative information about those that we dislike. We likewise are strongly inclined to believe what serves to justify our selfish interests or validate our strongest desires. Hence, all humans have some innate mental tendencies to operate with double standards, which is typical of intellectual bad faith. These modes of thinking sometimes correlate well with getting ahead in the world, maximizing our power or advantage, and getting more of what we selfishly want.

Nevertheless, it is difficult to operate explicitly or overtly with a double standard. We therefore need to avoid looking at the evidence too closely. We need to avoid scrutinizing our own inferences and interpretations too carefully. At this point, a certain amount of intellectual arrogance is quite useful. I may assume, for example, that I know just what you're going to say (before you say it), precisely what you are really after (before the evidence demonstrates it), and what actually is going on (before I have studied the situation carefully). My intellectual arrogance makes it easier for me to avoid noticing the unjustifiable discrepancy between the standards I apply to you and the standards I apply to myself. Not having to empathize with you makes it easier to avoid seeing my self-deception. I also am better positioned if I lack a need to be fair to your point of view. A little background fear of what I might discover if I seriously consider the inconsistency of my own judgments can be quite useful as well. In this case, my lack of intellectual integrity is supported by my lack of intellectual humility, empathy, and fair-mindedness.

Going in the other direction, it will be difficult to use a double standard if I feel a responsibility to be fair to your point of view. This responsibility requires me to empathetically view things from your perspective, and to do so with some humility, recognizing that I could be wrong, and that you could be right. The more I dislike you personally, or feel wronged in the past by you or by others who share your way of thinking, the more pronounced in my character the trait of intellectual integrity and good faith must be to compel me to be fair.

We can begin to analyze the extent to which we have developed these interdependent traits of mind by focusing on our reactions to situations in the workplace. Imagine, for example, that your company decides to reorganize your division and some people lose their jobs. To what extent are you able to intellectually empathize, not only with your colleagues who lost their jobs, but also with the managers who made the decision? To what extent do you see intellectual humility operating in your thinking, so that you recognize what you do know and what you do not know about the situation? To what extent are you able to think autonomously so that you are not trapped in the group's reaction to the situation? To what extent is your thinking driven by an intellectual sense of justice to all parties involved? To what extent are you able to think with integrity so that you apply the same standards to all parties involved in the situation?

True excellence in thinking is not simply the result of isolated intellectual skills. There are inevitable problems in the thinking of persons who, without knowing it, lack intellectual virtues. Instead, they frequently display the traits of the undisciplined mind. To the extent one is unconsciously motivated to believe what one wants to believe, what is most comfortable to believe, what puts one in a good light, what serves one's selfish interest, one is unable to function as a rational person. As you work through this resource, we hope you find yourself internalizing the essential traits. We hope you will resist the influence of both the conformist thinkers around you and the egocentric thinker within you. We hope you will recognize that skilled thinking can be used for good or for ill. We hope you will see that it is the intellectual virtues that guide thinking toward fair-mindedness. Such virtues enable us to enter, in good faith, all viewpoints relevant to a complex issue before coming to final conclusions, to seek out weaknesses in our thinking, to be moved by reasoning that is superior to our own. When possible we have the advantage in seeing all sides and are able to work with them, supporting in each what we see as sound and respectfully disagreeing with that which we see as flawed.

Natural versus Critical Thinking

As humans we think; as critical thinkers we analyze our thinking.

As humans we think egocentrically; as critical thinkers we expose the egocentric roots of our thinking to close scrutiny.

As humans we are drawn to standards of thinking unworthy of belief; as critical thinkers we expose inappropriate standards and replace them with sound ones.

As humans we live in systems of meanings that typically entrap us; as critical thinkers we learn how to raise our thinking to conscious examination, enabling us to free ourselves from many of the traps of undisciplined, instinctive thought.

As humans we use logical systems whose root structures are not apparent to us; as critical thinkers we develop tools for explicating and assessing our participation in the logical systems in which we live.

As humans we live with the illusion of intellectual and emotion freedom; as critical thinkers we take explicit intellectual and emotional command of who we are, what we are, and the ends to which our lives are tending.

As human thinkers we are governed by our thoughts; as critical thinkers we learn how to govern the thoughts that govern us.

Westside Toastmasters on Meetup

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

5.2: Cogency and Strong Arguments

  • Last updated
  • Save as PDF
  • Page ID 29610

  • Golden West College via NGE Far Press

Strength and Weakness

Inductive arguments are said to be either strong or weak. There’s no absolute cut-off between strength and weakness, but some arguments will be very strong and others very weak, so the distinction is still useful even if it is not precise. A strong argument is one where, if the premises were true, the conclusion would be very likely to be true. A weak argument is one where the conclusion does not follow from the premises (i.e. even if the premises were true, there would still be a good chance that the conclusion could be false.)

Most arguments in courts of law attempt to be strong arguments; they are generally not attempts at valid arguments.

So, the following example is a strong argument.

John was found with a gun in his hand, running from the apartment where Tom's body was found. Three witnesses heard a gunshot right before they saw John run out. The gun in John's possession matched the ballistics on the bullet pulled from Tom's head. John had written a series of threatening letters to Tom. In prison, John confessed to his cellmate that he had killed Tom. Therefore, John is the murder of Tom.

Given that all the premises were true, it would be very likely that the conclusion would be true.

Importantly, strength has nothing to do with the actual truth of the premises!

This is something people frequently forget, so it’s worth repeating: A STRONG ARGUMENT NEEDN’T HAVE ANY TRUE PREMISES! ALL THE PREMISES OF A STRONG ARGUMENT CAN BE FALSE!

The argument is strong because: if the premises WERE true, the conclusion would be likely to be true.

So the following arguments are strong:

98% of Dominicans have superpowers. Lucy is Dominican. I saw Lucy leap from the top of a tall building last week and walk away unscathed. Lucy has superpowers.

People from the lost continent of Atlantis have been manipulating the world’s governments for years by placing Atlantean wizards in positions of power. Whenever possible, they place an Atlantean wizard in the executive position of the most powerful government on earth. They did this in the Roman empire, the Mongol empire, and the British empire. Currently, the United States is the most powerful country on earth. Barack Obama was born in Hawai’i, where about 45% of the people are actually Atlanteans. While he was a Senator from Illinois, he received over 10 billion dollars in funds from a mysterious holding company called “Atlantis Incorporated.” Several journalists claim that they have seen Barack Obama perform feats of magic. For example, Shep Smith of Fox News said he saw Barack Obama walk on water. Barack Obama is clearly an Atlantean wizard.

Two leading researchers in genetics have found that, in every sample of DNA they looked at, there were traces of kryptonite. They examined 1600 samples, from 1600 separate individuals, including an equal distribution from all continents. The results were then replicated in another, larger study of 2700 samples, also taken from all continents. We conclude, then, that normal DNA contains kryptonite.

Cogency: If an argument is strong and all its premises are true, the argument is said to be cogent.

The following arguments are weak. The premises provide little, if any, evidence for the conclusions:

I saw your boyfriend last night and he was talking to another girl. So he’s cheating on you.

Senator Bonham served 8 years in military, whereas his opponent, Mr. Malham never served one day of military service. So you should vote for Senator Bonham.

More people buy Juff ™ brand peanut butter than any other brand, so you should by Juff ™!

It’s notable, again, that the truth of the premises is irrelevant. A weak argument can have true premises and a true conclusion. What makes it weak is that the premises do not provide good reason to believe the conclusion.

Induction 45

All of the argument forms we have looked at so far have been deductively valid. That meant, we said, that the conclusion follows from necessity if the premises are true. But to what extent can we ever be sure of the truth of those premises? Inductive argumentation is a less certain, more realistic, more familiar way of reasoning that we all do, all the time. Inductive argumentation recognizes, for instance, that a premise like “All horses have four legs” comes from our previous experience of horses. If one day we were to encounter a three-legged horse, deductive logic would tell us that “All horses have four legs” is false, at which point the premise becomes rather useless for a deducer. In fact, deductive logic tells us that if the premise “All horses have four legs” is false, even if we know there are many, many four-legged horses in the world, when we go to the track and see hordes of four-legged horses, all we can really be certain of is that “There is at least one four-legged horse.”

Inductive logic allows for the more realistic premise, “The vast majority of horses have four legs”. And inductive logic can use this premise to infer other useful information, like “If I’m going to get Chestnut booties for Christmas, I should probably get four of them.” The trick is to recognize a certain amount of uncertainty in the truth of the conclusion, something for which deductive logic does not allow. In real life, however, inductive logic is used much more frequently and (hopefully) with some success. Let’s take a look at some of the uses of inductive reasoning.

Predicting the Future

We constantly use inductive reasoning to predict the future. We do this by compiling evidence based on past observations, and by assuming that the future will resemble the past. For instance, I make the observation that every other time I have gone to sleep at night, I have woken up in the morning. There is actually no certainty that this will happen, but I make the inference because of the fact that this is what has happened every other time. In fact, it is not the case that “All people who go to sleep at night wake up in the morning”. But I’m not going to lose any sleep over that. And we do the same thing when our experience has been less consistent. For instance, I might make the assumption that, if there’s someone at the door, the dog will bark. But it’s not outside the realm of possibility that the dog is asleep, has gone out for a walk, or has been persuaded not to bark by a clever intruder with sedative-laced bacon. I make the assumption that if there’s someone at the door, the dog will bark, because that is what usually happens.

Explaining Common Occurrences

We also use inductive reasoning to explain things that commonly happen. For instance, if I’m about to start an exam and notice that Bill is not here, I might explain this to myself with the reason that Bill is stuck in traffic. I might base this on the reasoning that being stuck in traffic is a common excuse for being late, or because I know that Bill never accounts for traffic when he’s estimating how long it will take him to get somewhere. Again, that Bill is actually stuck in traffic is not certain, but I have some good reasons to think it’s probable. We use this kind of reasoning to explain past events as well. For instance, if I read somewhere that 1986 was a particularly good year for tomatoes, I assume that 1986 also had some ideal combination of rainfall, sun, and consistently warm temperatures. Although it’s possible that a scientific madman circled the globe planting tomatoes wherever he could in 1986, inductive reasoning would tell me that the former, environmental explanation is more likely. (But I could be wrong.)

Generalizing

Often we would like to make general claims, but in fact it would be very difficult to prove any general claim with any certainty. The only way to do so would be to observe every single case of something about which we wanted to make an observation. This would be, in fact, the only way to prove such assertions as, “All swans are white”. Without being able to observe every single swan in the universe, I can never make that claim with certainty. Inductive logic, on the other hand, allows us to make the claim, with a certain amount of modesty.

Inductive Generalization

Inductive generalization allows us to make general claims, despite being unable to actually observe every single member of a class in order to make a certainly true general statement. We see this in scientific studies, population surveys, and in our own everyday reasoning. Take for example a drug study. Some doctor or other wants to know how many people will go blind if they take a certain amount of some drug for so many years. If they determine that 5% of people in the study go blind, they then assume that 5% of all people who take the drug for that many years will go blind. Likewise, if I survey a random group of people and ask them what their favourite colour is, and 75% of them say “purple”, then I assume that purple is the favourite colour of 75% of people. But we have to be careful when we make an inductive generalization. When you tell me that 75% of people really like purple, I’m going to want to know whether you took that survey outside a Justin Bieber concert.

Let’s take an example. Let’s say I asked a class of 400 students whether or not they think logic is a valuable course, and 90% of them said yes. I can make an inductive argument like this:

(P1) 90% of 400 students believe that logic is a valuable course.

(C) Therefore 90% of students believe that logic is a valuable course.

There are certain things I need to take into account in judging the quality of this argument. For instance, did I ask this in a logic course? Did the respondents have to raise their hands so that the professor could see them, or was the survey taken anonymously? Are there enough students in the course to justify using them as a representative group for students in general?

If I did, in fact, make a class of 400 logic students raise their hands in response to the question of whether logic is valuable course, then we can identify a couple of problems with this argument. The first is bias. We can assume that anyone enrolled in a logic course is more likely to see it as valuable than any random student. I have therefore skewed the argument in favour of logic courses. I can also question whether the students were answering the question honestly. Perhaps if they are trying to save the professor’s feelings, they are more likely to raise their hands and assure her that the logic course is a valuable one.

Now let’s say I’ve avoided those problems. I have assured that the 400 students I have asked are randomly selected, say, by soliciting email responses from randomly selected students from the university’s entire student population. Then the argument looks stronger.

Another problem we might have with the argument is whether I have asked enough students so that the whole population is well-represented. If the student body as a whole consists of 400 students, my argument is very strong. If the student body numbers in the tens of thousands, I might want to ask a few more before assuming that the opinions of a few mirror those of the many. This would be a problem with my sample size.

Let’s take another example. Now I’m going to run a scientific study, in which I will pay someone $50 to take a drug with unknown effects and see if it makes them blind. In order to control for other variables, I open the study only to white males between the ages of 18 and 25.

A bad inductive argument would say:

(P1) 40% of 1000 people who took the drug went blind.

(C) Therefore 40% of people who take the drug will go blind.

A better inductive argument would make a more modest claim:

(P1) 40% of the 1000 people who took the drug went blind.

(C) Therefore 40% of white males between the ages of 18 and 25 who take the drug will go blind.

The point behind this example is to show how inductive reasoning imposes an important limitation on the possible conclusions a study or a survey can make. In order to make good generalizations, we need to ensure that our sample is representative, non-biased, and sufficiently sized.

Statistical Syllogism

Where in an inductive generalization we saw statement expressing a statistic applied to a more general group, we can also use statistics to go from the general to the particular. For instance, if I know that most computer science majors are male, and that some random individual with the androgynous name “Cameron” is an computer science major, then we can be reasonably certain that Cameron is a male. We tend to represent the uncertainty by qualifying the conclusion with the word “probably”. If, on the other hand, we wanted to say that something is unlikely, like that Cameron were a female, we could use “probably not”. It is also possible to temper our conclusion with other similar qualifying words.

Let’s take an example.

(P1) Of the 133 people found guilty of homicide last year in Canada, 79% were jailed.

(P2) Socrates was found guilty of homicide last year in Canada.

(C) Therefore, Socrates was probably jailed.

In this case we can be reasonably sure that Socrates is currently rotting in prison. Now the certainty of our conclusion seems to be dependent on the statistics we’re dealing with. There are definitely more certain and more uncertain cases.

(P1) In the last election, 50% of voting Americans voted for Obama, while 48% voted for Romney.

(P2) Jim is a voting American.

(C) Therefore, Jim probably voted for Obama.

Clearly, this argument is not as strong as the first. It is only slightly more likely than not that Jim voted for Obama. In this case we might want to revise our conclusion to say:

(C) Therefore, it is slightly more likely than not that Jim voted for Obama.

In other cases, the likelihood that something is or is not the case approaches certainty. For example:

(P1) There is a 0.00000059% chance you will die on any single flight, assuming you use one of the most poorly rated airlines.

(P2) I’m flying to Paris next week.

(C) There’s more than a million to one chance that I will die on my flight.

Note that in all of these examples, nothing is ever stated with absolute certainty. It is possible to improve the chances that our conclusions will be accurate by being more specific, or finding out more information. We would know more about Jim’s voting strategy, for instance, if we knew where he lived, his previous voting habits, or if we simply asked him for whom he voted (in which case, we might also want to know how often Jim lies).

Induction by Shared Properties

Induction by shared properties involves noting the similarity between two things with respect to their properties, and inferring from this that they may share other properties.

A familiar example of this is how a company might recommend products to you based on other customers’ purchases. Amazon.com tells me, for instance, that customers who bought the complete Sex and the City DVD series also bought Lipstick Jungle and Twilight.

Assuming that people buy things because they like them, we can rephrase this as:

(P1) There are a large number of people who, if they like Sex and the City and Twilight, will also like Lipstick Jungle.

I could also make the following observation:

(P2) I like Sex and the City and Twilight.

And then infer from there two premises that:

(C) I would also like Lipstick Jungle.

And I did. In general, induction by shared properties assumes that if something has properties w, x, y, and z, and if something else has properties w, x, and y, then it’s reasonable to assume that that something else also has property z. Note that in the above example all of the properties were actually preferences with regard to entertainment. The kinds of properties involved in the comparison can and will make an argument better or worse. Let’s consider a worse induction.

(P1) Lisa is tall, has blonde hair, has blue eyes, and rocks out to Nirvana on weekends.

(P2) Gina is tall, has blonde hair, and has blue eyes.

(C) Therefore Gina probably rocks out to Nirvana on weekends.

In this case the properties don’t seem to be related in the same way as in the first example. While the first three are physical characteristics, the last property instead indicates to us that Lisa is stuck in a 90’s grunge phase. Gina, though she shares several properties with Lisa, might not share the same undying love for Kurt Cobain. Let’s try a stronger argument.

(P1) Bob and Dick both wear plaid shirts all the time, wear large plastic-rimmed glasses, and listen to bands you’ve never heard of.

(P2) Bob drinks PBR.

(C) Dick probably also drinks PBR.

Here we can identify the qualities that Bob and Dick have in common as symptoms of hipsterism. The fact that Bob drinks PBR is another symptom of this affectation. Given that Dick is exhibiting most of the same symptoms, the idea that Dick would also drink PBR is a reasonable assumption to make.

Practical Uses

A procedure very much like Induction by Shared Properties is performed by nurses and doctors when they diagnose a patient’s condition. Their thinking goes like this:

(P1) Patients who have elephantitus display an increased heart rate, elevated blood pressure, a rash on their skin, and a strong desire to visit the elephant pen at the zoo.

(P2) The patient here in front of me has an increased heart rate, elevated blood pressure, and a strong desire to visit the elephant pen at the zoo.

(C) It is probable, therefore, that the patient here in front of me has elephantitus.

The more that a patient’s symptoms match the ‘textbook definition’ of a given disease, then the more likely it is that the patient has that disease. Caregivers then treat the patient for the

disease that they think the patient probably has. If the disease doesn’t respond to the treatment, or the patient starts to present different symptoms, then they consider other conditions with similar symptoms that the patient is likely to have.

Induction by Shared Relations

Induction by shared relations is much like induction by shared properties, except insofar that what is shared are not properties, but relations. A simple example is the causal relation, from which we might make an inductive argument like this:

(P1) Percocet, Oxycontin and Morphine reduce pain, cause drowsiness, and may be habit forming.

(P2) Heroin also reduces pain and causes drowsiness.

(C) Heroin is probably also habit forming.

In this case the effects of reducing pain, drowsiness, and addiction are all assumed to be caused by the drugs listed. We can use an induction by shared relation to make the probable conclusion that if heroin, like the other drugs, reduces pain and causes drowsiness, it is probably also habit forming.

Another interesting example are the relations we have with other people. For instance, Facebook knows everything about you. But let’s focus on the “friends with” relation. They compare who your friends are with the friends of your friends in order to determine who else you might actually know. The induction goes a little like this:

(P1) Donna is friends with Brandon, Kelly, Steve, and Brenda.

(P2) David is friends with Brandon, Kelly, and Steve.

(C) David probably also knows Brenda.

We could strengthen that argument if we knew that Brandon, Kelly, Steve, and Brenda were all friends with each other as well. We could also make an alternate conclusion based on the same argument above:

(C) David probably also knows Donna.

They do, after all, know at least three of the same people. They’ve probably run into each other at some point.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • CBE Life Sci Educ
  • v.17(1); Spring 2018

Understanding the Complex Relationship between Critical Thinking and Science Reasoning among Undergraduate Thesis Writers

Jason e. dowd.

† Department of Biology, Duke University, Durham, NC 27708

Robert J. Thompson, Jr.

‡ Department of Psychology and Neuroscience, Duke University, Durham, NC 27708

Leslie A. Schiff

§ Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN 55455

Julie A. Reynolds

Associated data.

This study empirically examines the relationship between students’ critical-thinking skills and scientific reasoning as reflected in undergraduate thesis writing in biology. Writing offers a unique window into studying this relationship, and the findings raise potential implications for instruction.

Developing critical-thinking and scientific reasoning skills are core learning objectives of science education, but little empirical evidence exists regarding the interrelationships between these constructs. Writing effectively fosters students’ development of these constructs, and it offers a unique window into studying how they relate. In this study of undergraduate thesis writing in biology at two universities, we examine how scientific reasoning exhibited in writing (assessed using the Biology Thesis Assessment Protocol) relates to general and specific critical-thinking skills (assessed using the California Critical Thinking Skills Test), and we consider implications for instruction. We find that scientific reasoning in writing is strongly related to inference , while other aspects of science reasoning that emerge in writing (epistemological considerations, writing conventions, etc.) are not significantly related to critical-thinking skills. Science reasoning in writing is not merely a proxy for critical thinking. In linking features of students’ writing to their critical-thinking skills, this study 1) provides a bridge to prior work suggesting that engagement in science writing enhances critical thinking and 2) serves as a foundational step for subsequently determining whether instruction focused explicitly on developing critical-thinking skills (particularly inference ) can actually improve students’ scientific reasoning in their writing.

INTRODUCTION

Critical-thinking and scientific reasoning skills are core learning objectives of science education for all students, regardless of whether or not they intend to pursue a career in science or engineering. Consistent with the view of learning as construction of understanding and meaning ( National Research Council, 2000 ), the pedagogical practice of writing has been found to be effective not only in fostering the development of students’ conceptual and procedural knowledge ( Gerdeman et al. , 2007 ) and communication skills ( Clase et al. , 2010 ), but also scientific reasoning ( Reynolds et al. , 2012 ) and critical-thinking skills ( Quitadamo and Kurtz, 2007 ).

Critical thinking and scientific reasoning are similar but different constructs that include various types of higher-order cognitive processes, metacognitive strategies, and dispositions involved in making meaning of information. Critical thinking is generally understood as the broader construct ( Holyoak and Morrison, 2005 ), comprising an array of cognitive processes and dispostions that are drawn upon differentially in everyday life and across domains of inquiry such as the natural sciences, social sciences, and humanities. Scientific reasoning, then, may be interpreted as the subset of critical-thinking skills (cognitive and metacognitive processes and dispositions) that 1) are involved in making meaning of information in scientific domains and 2) support the epistemological commitment to scientific methodology and paradigm(s).

Although there has been an enduring focus in higher education on promoting critical thinking and reasoning as general or “transferable” skills, research evidence provides increasing support for the view that reasoning and critical thinking are also situational or domain specific ( Beyer et al. , 2013 ). Some researchers, such as Lawson (2010) , present frameworks in which science reasoning is characterized explicitly in terms of critical-thinking skills. There are, however, limited coherent frameworks and empirical evidence regarding either the general or domain-specific interrelationships of scientific reasoning, as it is most broadly defined, and critical-thinking skills.

The Vision and Change in Undergraduate Biology Education Initiative provides a framework for thinking about these constructs and their interrelationship in the context of the core competencies and disciplinary practice they describe ( American Association for the Advancement of Science, 2011 ). These learning objectives aim for undergraduates to “understand the process of science, the interdisciplinary nature of the new biology and how science is closely integrated within society; be competent in communication and collaboration; have quantitative competency and a basic ability to interpret data; and have some experience with modeling, simulation and computational and systems level approaches as well as with using large databases” ( Woodin et al. , 2010 , pp. 71–72). This framework makes clear that science reasoning and critical-thinking skills play key roles in major learning outcomes; for example, “understanding the process of science” requires students to engage in (and be metacognitive about) scientific reasoning, and having the “ability to interpret data” requires critical-thinking skills. To help students better achieve these core competencies, we must better understand the interrelationships of their composite parts. Thus, the next step is to determine which specific critical-thinking skills are drawn upon when students engage in science reasoning in general and with regard to the particular scientific domain being studied. Such a determination could be applied to improve science education for both majors and nonmajors through pedagogical approaches that foster critical-thinking skills that are most relevant to science reasoning.

Writing affords one of the most effective means for making thinking visible ( Reynolds et al. , 2012 ) and learning how to “think like” and “write like” disciplinary experts ( Meizlish et al. , 2013 ). As a result, student writing affords the opportunities to both foster and examine the interrelationship of scientific reasoning and critical-thinking skills within and across disciplinary contexts. The purpose of this study was to better understand the relationship between students’ critical-thinking skills and scientific reasoning skills as reflected in the genre of undergraduate thesis writing in biology departments at two research universities, the University of Minnesota and Duke University.

In the following subsections, we discuss in greater detail the constructs of scientific reasoning and critical thinking, as well as the assessment of scientific reasoning in students’ thesis writing. In subsequent sections, we discuss our study design, findings, and the implications for enhancing educational practices.

Critical Thinking

The advances in cognitive science in the 21st century have increased our understanding of the mental processes involved in thinking and reasoning, as well as memory, learning, and problem solving. Critical thinking is understood to include both a cognitive dimension and a disposition dimension (e.g., reflective thinking) and is defined as “purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considera­tions upon which that judgment is based” ( Facione, 1990, p. 3 ). Although various other definitions of critical thinking have been proposed, researchers have generally coalesced on this consensus: expert view ( Blattner and Frazier, 2002 ; Condon and Kelly-Riley, 2004 ; Bissell and Lemons, 2006 ; Quitadamo and Kurtz, 2007 ) and the corresponding measures of critical-­thinking skills ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ).

Both the cognitive skills and dispositional components of critical thinking have been recognized as important to science education ( Quitadamo and Kurtz, 2007 ). Empirical research demonstrates that specific pedagogical practices in science courses are effective in fostering students’ critical-thinking skills. Quitadamo and Kurtz (2007) found that students who engaged in a laboratory writing component in the context of a general education biology course significantly improved their overall critical-thinking skills (and their analytical and inference skills, in particular), whereas students engaged in a traditional quiz-based laboratory did not improve their critical-thinking skills. In related work, Quitadamo et al. (2008) found that a community-based inquiry experience, involving inquiry, writing, research, and analysis, was associated with improved critical thinking in a biology course for nonmajors, compared with traditionally taught sections. In both studies, students who exhibited stronger presemester critical-thinking skills exhibited stronger gains, suggesting that “students who have not been explicitly taught how to think critically may not reach the same potential as peers who have been taught these skills” ( Quitadamo and Kurtz, 2007 , p. 151).

Recently, Stephenson and Sadler-McKnight (2016) found that first-year general chemistry students who engaged in a science writing heuristic laboratory, which is an inquiry-based, writing-to-learn approach to instruction ( Hand and Keys, 1999 ), had significantly greater gains in total critical-thinking scores than students who received traditional laboratory instruction. Each of the four components—inquiry, writing, collaboration, and reflection—have been linked to critical thinking ( Stephenson and Sadler-McKnight, 2016 ). Like the other studies, this work highlights the value of targeting critical-thinking skills and the effectiveness of an inquiry-based, writing-to-learn approach to enhance critical thinking. Across studies, authors advocate adopting critical thinking as the course framework ( Pukkila, 2004 ) and developing explicit examples of how critical thinking relates to the scientific method ( Miri et al. , 2007 ).

In these examples, the important connection between writing and critical thinking is highlighted by the fact that each intervention involves the incorporation of writing into science, technology, engineering, and mathematics education (either alone or in combination with other pedagogical practices). However, critical-thinking skills are not always the primary learning outcome; in some contexts, scientific reasoning is the primary outcome that is assessed.

Scientific Reasoning

Scientific reasoning is a complex process that is broadly defined as “the skills involved in inquiry, experimentation, evidence evaluation, and inference that are done in the service of conceptual change or scientific understanding” ( Zimmerman, 2007 , p. 172). Scientific reasoning is understood to include both conceptual knowledge and the cognitive processes involved with generation of hypotheses (i.e., inductive processes involved in the generation of hypotheses and the deductive processes used in the testing of hypotheses), experimentation strategies, and evidence evaluation strategies. These dimensions are interrelated, in that “experimentation and inference strategies are selected based on prior conceptual knowledge of the domain” ( Zimmerman, 2000 , p. 139). Furthermore, conceptual and procedural knowledge and cognitive process dimensions can be general and domain specific (or discipline specific).

With regard to conceptual knowledge, attention has been focused on the acquisition of core methodological concepts fundamental to scientists’ causal reasoning and metacognitive distancing (or decontextualized thinking), which is the ability to reason independently of prior knowledge or beliefs ( Greenhoot et al. , 2004 ). The latter involves what Kuhn and Dean (2004) refer to as the coordination of theory and evidence, which requires that one question existing theories (i.e., prior knowledge and beliefs), seek contradictory evidence, eliminate alternative explanations, and revise one’s prior beliefs in the face of contradictory evidence. Kuhn and colleagues (2008) further elaborate that scientific thinking requires “a mature understanding of the epistemological foundations of science, recognizing scientific knowledge as constructed by humans rather than simply discovered in the world,” and “the ability to engage in skilled argumentation in the scientific domain, with an appreciation of argumentation as entailing the coordination of theory and evidence” ( Kuhn et al. , 2008 , p. 435). “This approach to scientific reasoning not only highlights the skills of generating and evaluating evidence-based inferences, but also encompasses epistemological appreciation of the functions of evidence and theory” ( Ding et al. , 2016 , p. 616). Evaluating evidence-based inferences involves epistemic cognition, which Moshman (2015) defines as the subset of metacognition that is concerned with justification, truth, and associated forms of reasoning. Epistemic cognition is both general and domain specific (or discipline specific; Moshman, 2015 ).

There is empirical support for the contributions of both prior knowledge and an understanding of the epistemological foundations of science to scientific reasoning. In a study of undergraduate science students, advanced scientific reasoning was most often accompanied by accurate prior knowledge as well as sophisticated epistemological commitments; additionally, for students who had comparable levels of prior knowledge, skillful reasoning was associated with a strong epistemological commitment to the consistency of theory with evidence ( Zeineddin and Abd-El-Khalick, 2010 ). These findings highlight the importance of the need for instructional activities that intentionally help learners develop sophisticated epistemological commitments focused on the nature of knowledge and the role of evidence in supporting knowledge claims ( Zeineddin and Abd-El-Khalick, 2010 ).

Scientific Reasoning in Students’ Thesis Writing

Pedagogical approaches that incorporate writing have also focused on enhancing scientific reasoning. Many rubrics have been developed to assess aspects of scientific reasoning in written artifacts. For example, Timmerman and colleagues (2011) , in the course of describing their own rubric for assessing scientific reasoning, highlight several examples of scientific reasoning assessment criteria ( Haaga, 1993 ; Tariq et al. , 1998 ; Topping et al. , 2000 ; Kelly and Takao, 2002 ; Halonen et al. , 2003 ; Willison and O’Regan, 2007 ).

At both the University of Minnesota and Duke University, we have focused on the genre of the undergraduate honors thesis as the rhetorical context in which to study and improve students’ scientific reasoning and writing. We view the process of writing an undergraduate honors thesis as a form of professional development in the sciences (i.e., a way of engaging students in the practices of a community of discourse). We have found that structured courses designed to scaffold the thesis-­writing process and promote metacognition can improve writing and reasoning skills in biology, chemistry, and economics ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In the context of this prior work, we have defined scientific reasoning in writing as the emergent, underlying construct measured across distinct aspects of students’ written discussion of independent research in their undergraduate theses.

The Biology Thesis Assessment Protocol (BioTAP) was developed at Duke University as a tool for systematically guiding students and faculty through a “draft–feedback–revision” writing process, modeled after professional scientific peer-review processes ( Reynolds et al. , 2009 ). BioTAP includes activities and worksheets that allow students to engage in critical peer review and provides detailed descriptions, presented as rubrics, of the questions (i.e., dimensions, shown in Table 1 ) upon which such review should focus. Nine rubric dimensions focus on communication to the broader scientific community, and four rubric dimensions focus on the accuracy and appropriateness of the research. These rubric dimensions provide criteria by which the thesis is assessed, and therefore allow BioTAP to be used as an assessment tool as well as a teaching resource ( Reynolds et al. , 2009 ). Full details are available at www.science-writing.org/biotap.html .

Theses assessment protocol dimensions

In previous work, we have used BioTAP to quantitatively assess students’ undergraduate honors theses and explore the relationship between thesis-writing courses (or specific interventions within the courses) and the strength of students’ science reasoning in writing across different science disciplines: biology ( Reynolds and Thompson, 2011 ); chemistry ( Dowd et al. , 2015b ); and economics ( Dowd et al. , 2015a ). We have focused exclusively on the nine dimensions related to reasoning and writing (questions 1–9), as the other four dimensions (questions 10–13) require topic-specific expertise and are intended to be used by the student’s thesis supervisor.

Beyond considering individual dimensions, we have investigated whether meaningful constructs underlie students’ thesis scores. We conducted exploratory factor analysis of students’ theses in biology, economics, and chemistry and found one dominant underlying factor in each discipline; we termed the factor “scientific reasoning in writing” ( Dowd et al. , 2015a , b , 2016 ). That is, each of the nine dimensions could be understood as reflecting, in different ways and to different degrees, the construct of scientific reasoning in writing. The findings indicated evidence of both general and discipline-specific components to scientific reasoning in writing that relate to epistemic beliefs and paradigms, in keeping with broader ideas about science reasoning discussed earlier. Specifically, scientific reasoning in writing is more strongly associated with formulating a compelling argument for the significance of the research in the context of current literature in biology, making meaning regarding the implications of the findings in chemistry, and providing an organizational framework for interpreting the thesis in economics. We suggested that instruction, whether occurring in writing studios or in writing courses to facilitate thesis preparation, should attend to both components.

Research Question and Study Design

The genre of thesis writing combines the pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-­McKnight, 2016 ). However, there is no empirical evidence regarding the general or domain-specific interrelationships of scientific reasoning and critical-thinking skills, particularly in the rhetorical context of the undergraduate thesis. The BioTAP studies discussed earlier indicate that the rubric-based assessment produces evidence of scientific reasoning in the undergraduate thesis, but it was not designed to foster or measure critical thinking. The current study was undertaken to address the research question: How are students’ critical-thinking skills related to scientific reasoning as reflected in the genre of undergraduate thesis writing in biology? Determining these interrelationships could guide efforts to enhance students’ scientific reasoning and writing skills through focusing instruction on specific critical-thinking skills as well as disciplinary conventions.

To address this research question, we focused on undergraduate thesis writers in biology courses at two institutions, Duke University and the University of Minnesota, and examined the extent to which students’ scientific reasoning in writing, assessed in the undergraduate thesis using BioTAP, corresponds to students’ critical-thinking skills, assessed using the California Critical Thinking Skills Test (CCTST; August, 2016 ).

Study Sample

The study sample was composed of students enrolled in courses designed to scaffold the thesis-writing process in the Department of Biology at Duke University and the College of Biological Sciences at the University of Minnesota. Both courses complement students’ individual work with research advisors. The course is required for thesis writers at the University of Minnesota and optional for writers at Duke University. Not all students are required to complete a thesis, though it is required for students to graduate with honors; at the University of Minnesota, such students are enrolled in an honors program within the college. In total, 28 students were enrolled in the course at Duke University and 44 students were enrolled in the course at the University of Minnesota. Of those students, two students did not consent to participate in the study; additionally, five students did not validly complete the CCTST (i.e., attempted fewer than 60% of items or completed the test in less than 15 minutes). Thus, our overall rate of valid participation is 90%, with 27 students from Duke University and 38 students from the University of Minnesota. We found no statistically significant differences in thesis assessment between students with valid CCTST scores and invalid CCTST scores. Therefore, we focus on the 65 students who consented to participate and for whom we have complete and valid data in most of this study. Additionally, in asking students for their consent to participate, we allowed them to choose whether to provide or decline access to academic and demographic background data. Of the 65 students who consented to participate, 52 students granted access to such data. Therefore, for additional analyses involving academic and background data, we focus on the 52 students who consented. We note that the 13 students who participated but declined to share additional data performed slightly lower on the CCTST than the 52 others (perhaps suggesting that they differ by other measures, but we cannot determine this with certainty). Among the 52 students, 60% identified as female and 10% identified as being from underrepresented ethnicities.

In both courses, students completed the CCTST online, either in class or on their own, late in the Spring 2016 semester. This is the same assessment that was used in prior studies of critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). It is “an objective measure of the core reasoning skills needed for reflective decision making concerning what to believe or what to do” ( Insight Assessment, 2016a ). In the test, students are asked to read and consider information as they answer multiple-choice questions. The questions are intended to be appropriate for all users, so there is no expectation of prior disciplinary knowledge in biology (or any other subject). Although actual test items are protected, sample items are available on the Insight Assessment website ( Insight Assessment, 2016b ). We have included one sample item in the Supplemental Material.

The CCTST is based on a consensus definition of critical thinking, measures cognitive and metacognitive skills associated with critical thinking, and has been evaluated for validity and reliability at the college level ( August, 2016 ; Stephenson and Sadler-McKnight, 2016 ). In addition to providing overall critical-thinking score, the CCTST assesses seven dimensions of critical thinking: analysis, interpretation, inference, evaluation, explanation, induction, and deduction. Scores on each dimension are calculated based on students’ performance on items related to that dimension. Analysis focuses on identifying assumptions, reasons, and claims and examining how they interact to form arguments. Interpretation, related to analysis, focuses on determining the precise meaning and significance of information. Inference focuses on drawing conclusions from reasons and evidence. Evaluation focuses on assessing the credibility of sources of information and claims they make. Explanation, related to evaluation, focuses on describing the evidence, assumptions, or rationale for beliefs and conclusions. Induction focuses on drawing inferences about what is probably true based on evidence. Deduction focuses on drawing conclusions about what must be true when the context completely determines the outcome. These are not independent dimensions; the fact that they are related supports their collective interpretation as critical thinking. Together, the CCTST dimensions provide a basis for evaluating students’ overall strength in using reasoning to form reflective judgments about what to believe or what to do ( August, 2016 ). Each of the seven dimensions and the overall CCTST score are measured on a scale of 0–100, where higher scores indicate superior performance. Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and below) skills.

Scientific Reasoning in Writing

At the end of the semester, students’ final, submitted undergraduate theses were assessed using BioTAP, which consists of nine rubric dimensions that focus on communication to the broader scientific community and four additional dimensions that focus on the exhibition of topic-specific expertise ( Reynolds et al. , 2009 ). These dimensions, framed as questions, are displayed in Table 1 .

Student theses were assessed on questions 1–9 of BioTAP using the same procedures described in previous studies ( Reynolds and Thompson, 2011 ; Dowd et al. , 2015a , b ). In this study, six raters were trained in the valid, reliable use of BioTAP rubrics. Each dimension was rated on a five-point scale: 1 indicates the dimension is missing, incomplete, or below acceptable standards; 3 indicates that the dimension is adequate but not exhibiting mastery; and 5 indicates that the dimension is excellent and exhibits mastery (intermediate ratings of 2 and 4 are appropriate when different parts of the thesis make a single category challenging). After training, two raters independently assessed each thesis and then discussed their independent ratings with one another to form a consensus rating. The consensus score is not an average score, but rather an agreed-upon, discussion-based score. On a five-point scale, raters independently assessed dimensions to be within 1 point of each other 82.4% of the time before discussion and formed consensus ratings 100% of the time after discussion.

In this study, we consider both categorical (mastery/nonmastery, where a score of 5 corresponds to mastery) and numerical treatments of individual BioTAP scores to better relate the manifestation of critical thinking in BioTAP assessment to all of the prior studies. For comprehensive/cumulative measures of BioTAP, we focus on the partial sum of questions 1–5, as these questions relate to higher-order scientific reasoning (whereas questions 6–9 relate to mid- and lower-order writing mechanics [ Reynolds et al. , 2009 ]), and the factor scores (i.e., numerical representations of the extent to which each student exhibits the underlying factor), which are calculated from the factor loadings published by Dowd et al. (2016) . We do not focus on questions 6–9 individually in statistical analyses, because we do not expect critical-thinking skills to relate to mid- and lower-order writing skills.

The final, submitted thesis reflects the student’s writing, the student’s scientific reasoning, the quality of feedback provided to the student by peers and mentors, and the student’s ability to incorporate that feedback into his or her work. Therefore, our assessment is not the same as an assessment of unpolished, unrevised samples of students’ written work. While one might imagine that such an unpolished sample may be more strongly correlated with critical-thinking skills measured by the CCTST, we argue that the complete, submitted thesis, assessed using BioTAP, is ultimately a more appropriate reflection of how students exhibit science reasoning in the scientific community.

Statistical Analyses

We took several steps to analyze the collected data. First, to provide context for subsequent interpretations, we generated descriptive statistics for the CCTST scores of the participants based on the norms for undergraduate CCTST test takers. To determine the strength of relationships among CCTST dimensions (including overall score) and the BioTAP dimensions, partial-sum score (questions 1–5), and factor score, we calculated Pearson’s correlations for each pair of measures. To examine whether falling on one side of the nonmastery/mastery threshold (as opposed to a linear scale of performance) was related to critical thinking, we grouped BioTAP dimensions into categories (mastery/nonmastery) and conducted Student’s t tests to compare the means scores of the two groups on each of the seven dimensions and overall score of the CCTST. Finally, for the strongest relationship that emerged, we included additional academic and background variables as covariates in multiple linear-regression analysis to explore questions about how much observed relationships between critical-thinking skills and science reasoning in writing might be explained by variation in these other factors.

Although BioTAP scores represent discreet, ordinal bins, the five-point scale is intended to capture an underlying continuous construct (from inadequate to exhibiting mastery). It has been argued that five categories is an appropriate cutoff for treating ordinal variables as pseudo-continuous ( Rhemtulla et al. , 2012 )—and therefore using continuous-variable statistical methods (e.g., Pearson’s correlations)—as long as the underlying assumption that ordinal scores are linearly distributed is valid. Although we have no way to statistically test this assumption, we interpret adequate scores to be approximately halfway between inadequate and mastery scores, resulting in a linear scale. In part because this assumption is subject to disagreement, we also consider and interpret a categorical (mastery/nonmastery) treatment of BioTAP variables.

We corrected for multiple comparisons using the Holm-Bonferroni method ( Holm, 1979 ). At the most general level, where we consider the single, comprehensive measures for BioTAP (partial-sum and factor score) and the CCTST (overall score), there is no need to correct for multiple comparisons, because the multiple, individual dimensions are collapsed into single dimensions. When we considered individual CCTST dimensions in relation to comprehensive measures for BioTAP, we accounted for seven comparisons; similarly, when we considered individual dimensions of BioTAP in relation to overall CCTST score, we accounted for five comparisons. When all seven CCTST and five BioTAP dimensions were examined individually and without prior knowledge, we accounted for 35 comparisons; such a rigorous threshold is likely to reject weak and moderate relationships, but it is appropriate if there are no specific pre-existing hypotheses. All p values are presented in tables for complete transparency, and we carefully consider the implications of our interpretation of these data in the Discussion section.

CCTST scores for students in this sample ranged from the 39th to 99th percentile of the general population of undergraduate CCTST test takers (mean percentile = 84.3, median = 85th percentile; Table 2 ); these percentiles reflect overall scores that range from moderate to superior. Scores on individual dimensions and overall scores were sufficiently normal and far enough from the ceiling of the scale to justify subsequent statistical analyses.

Descriptive statistics of CCTST dimensions a

a Scores correspond to superior (86–100), strong (79–85), moderate (70–78), weak (63–69), or not manifested (62 and lower) skills.

The Pearson’s correlations between students’ cumulative scores on BioTAP (the factor score based on loadings published by Dowd et al. , 2016 , and the partial sum of scores on questions 1–5) and students’ overall scores on the CCTST are presented in Table 3 . We found that the partial-sum measure of BioTAP was significantly related to the overall measure of critical thinking ( r = 0.27, p = 0.03), while the BioTAP factor score was marginally related to overall CCTST ( r = 0.24, p = 0.05). When we looked at relationships between comprehensive BioTAP measures and scores for individual dimensions of the CCTST ( Table 3 ), we found significant positive correlations between the both BioTAP partial-sum and factor scores and CCTST inference ( r = 0.45, p < 0.001, and r = 0.41, p < 0.001, respectively). Although some other relationships have p values below 0.05 (e.g., the correlations between BioTAP partial-sum scores and CCTST induction and interpretation scores), they are not significant when we correct for multiple comparisons.

Correlations between dimensions of CCTST and dimensions of BioTAP a

a In each cell, the top number is the correlation, and the bottom, italicized number is the associated p value. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

b This is the partial sum of BioTAP scores on questions 1–5.

c This is the factor score calculated from factor loadings published by Dowd et al. (2016) .

When we expanded comparisons to include all 35 potential correlations among individual BioTAP and CCTST dimensions—and, accordingly, corrected for 35 comparisons—we did not find any additional statistically significant relationships. The Pearson’s correlations between students’ scores on each dimension of BioTAP and students’ scores on each dimension of the CCTST range from −0.11 to 0.35 ( Table 3 ); although the relationship between discussion of implications (BioTAP question 5) and inference appears to be relatively large ( r = 0.35), it is not significant ( p = 0.005; the Holm-Bonferroni cutoff is 0.00143). We found no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions (unpublished data), regardless of whether we correct for multiple comparisons.

The results of Student’s t tests comparing scores on each dimension of the CCTST of students who exhibit mastery with those of students who do not exhibit mastery on each dimension of BioTAP are presented in Table 4 . Focusing first on the overall CCTST scores, we found that the difference between those who exhibit mastery and those who do not in discussing implications of results (BioTAP question 5) is statistically significant ( t = 2.73, p = 0.008, d = 0.71). When we expanded t tests to include all 35 comparisons—and, like above, corrected for 35 comparisons—we found a significant difference in inference scores between students who exhibit mastery on question 5 and students who do not ( t = 3.41, p = 0.0012, d = 0.88), as well as a marginally significant difference in these students’ induction scores ( t = 3.26, p = 0.0018, d = 0.84; the Holm-Bonferroni cutoff is p = 0.00147). Cohen’s d effect sizes, which reveal the strength of the differences for statistically significant relationships, range from 0.71 to 0.88.

The t statistics and effect sizes of differences in ­dimensions of CCTST across dimensions of BioTAP a

a In each cell, the top number is the t statistic for each comparison, and the middle, italicized number is the associated p value. The bottom number is the effect size. Correlations that are statistically significant after correcting for multiple comparisons are shown in bold.

Finally, we more closely examined the strongest relationship that we observed, which was between the CCTST dimension of inference and the BioTAP partial-sum composite score (shown in Table 3 ), using multiple regression analysis ( Table 5 ). Focusing on the 52 students for whom we have background information, we looked at the simple relationship between BioTAP and inference (model 1), a robust background model including multiple covariates that one might expect to explain some part of the variation in BioTAP (model 2), and a combined model including all variables (model 3). As model 3 shows, the covariates explain very little variation in BioTAP scores, and the relationship between inference and BioTAP persists even in the presence of all of the covariates.

Partial sum (questions 1–5) of BioTAP scores ( n = 52)

** p < 0.01.

*** p < 0.001.

The aim of this study was to examine the extent to which the various components of scientific reasoning—manifested in writing in the genre of undergraduate thesis and assessed using BioTAP—draw on general and specific critical-thinking skills (assessed using CCTST) and to consider the implications for educational practices. Although science reasoning involves critical-thinking skills, it also relates to conceptual knowledge and the epistemological foundations of science disciplines ( Kuhn et al. , 2008 ). Moreover, science reasoning in writing , captured in students’ undergraduate theses, reflects habits, conventions, and the incorporation of feedback that may alter evidence of individuals’ critical-thinking skills. Our findings, however, provide empirical evidence that cumulative measures of science reasoning in writing are nonetheless related to students’ overall critical-thinking skills ( Table 3 ). The particularly significant roles of inference skills ( Table 3 ) and the discussion of implications of results (BioTAP question 5; Table 4 ) provide a basis for more specific ideas about how these constructs relate to one another and what educational interventions may have the most success in fostering these skills.

Our results build on previous findings. The genre of thesis writing combines pedagogies of writing and inquiry found to foster scientific reasoning ( Reynolds et al. , 2012 ) and critical thinking ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ; Stephenson and Sadler-McKnight, 2016 ). Quitadamo and Kurtz (2007) reported that students who engaged in a laboratory writing component in a general education biology course significantly improved their inference and analysis skills, and Quitadamo and colleagues (2008) found that participation in a community-based inquiry biology course (that included a writing component) was associated with significant gains in students’ inference and evaluation skills. The shared focus on inference is noteworthy, because these prior studies actually differ from the current study; the former considered critical-­thinking skills as the primary learning outcome of writing-­focused interventions, whereas the latter focused on emergent links between two learning outcomes (science reasoning in writing and critical thinking). In other words, inference skills are impacted by writing as well as manifested in writing.

Inference focuses on drawing conclusions from argument and evidence. According to the consensus definition of critical thinking, the specific skill of inference includes several processes: querying evidence, conjecturing alternatives, and drawing conclusions. All of these activities are central to the independent research at the core of writing an undergraduate thesis. Indeed, a critical part of what we call “science reasoning in writing” might be characterized as a measure of students’ ability to infer and make meaning of information and findings. Because the cumulative BioTAP measures distill underlying similarities and, to an extent, suppress unique aspects of individual dimensions, we argue that it is appropriate to relate inference to scientific reasoning in writing . Even when we control for other potentially relevant background characteristics, the relationship is strong ( Table 5 ).

In taking the complementary view and focusing on BioTAP, when we compared students who exhibit mastery with those who do not, we found that the specific dimension of “discussing the implications of results” (question 5) differentiates students’ performance on several critical-thinking skills. To achieve mastery on this dimension, students must make connections between their results and other published studies and discuss the future directions of the research; in short, they must demonstrate an understanding of the bigger picture. The specific relationship between question 5 and inference is the strongest observed among all individual comparisons. Altogether, perhaps more than any other BioTAP dimension, this aspect of students’ writing provides a clear view of the role of students’ critical-thinking skills (particularly inference and, marginally, induction) in science reasoning.

While inference and discussion of implications emerge as particularly strongly related dimensions in this work, we note that the strongest contribution to “science reasoning in writing in biology,” as determined through exploratory factor analysis, is “argument for the significance of research” (BioTAP question 2, not question 5; Dowd et al. , 2016 ). Question 2 is not clearly related to critical-thinking skills. These findings are not contradictory, but rather suggest that the epistemological and disciplinary-specific aspects of science reasoning that emerge in writing through BioTAP are not completely aligned with aspects related to critical thinking. In other words, science reasoning in writing is not simply a proxy for those critical-thinking skills that play a role in science reasoning.

In a similar vein, the content-related, epistemological aspects of science reasoning, as well as the conventions associated with writing the undergraduate thesis (including feedback from peers and revision), may explain the lack of significant relationships between some science reasoning dimensions and some critical-thinking skills that might otherwise seem counterintuitive (e.g., BioTAP question 2, which relates to making an argument, and the critical-thinking skill of argument). It is possible that an individual’s critical-thinking skills may explain some variation in a particular BioTAP dimension, but other aspects of science reasoning and practice exert much stronger influence. Although these relationships do not emerge in our analyses, the lack of significant correlation does not mean that there is definitively no correlation. Correcting for multiple comparisons suppresses type 1 error at the expense of exacerbating type 2 error, which, combined with the limited sample size, constrains statistical power and makes weak relationships more difficult to detect. Ultimately, though, the relationships that do emerge highlight places where individuals’ distinct critical-thinking skills emerge most coherently in thesis assessment, which is why we are particularly interested in unpacking those relationships.

We recognize that, because only honors students submit theses at these institutions, this study sample is composed of a selective subset of the larger population of biology majors. Although this is an inherent limitation of focusing on thesis writing, links between our findings and results of other studies (with different populations) suggest that observed relationships may occur more broadly. The goal of improved science reasoning and critical thinking is shared among all biology majors, particularly those engaged in capstone research experiences. So while the implications of this work most directly apply to honors thesis writers, we provisionally suggest that all students could benefit from further study of them.

There are several important implications of this study for science education practices. Students’ inference skills relate to the understanding and effective application of scientific content. The fact that we find no statistically significant relationships between BioTAP questions 6–9 and CCTST dimensions suggests that such mid- to lower-order elements of BioTAP ( Reynolds et al. , 2009 ), which tend to be more structural in nature, do not focus on aspects of the finished thesis that draw strongly on critical thinking. In keeping with prior analyses ( Reynolds and Thompson, 2011 ; Dowd et al. , 2016 ), these findings further reinforce the notion that disciplinary instructors, who are most capable of teaching and assessing scientific reasoning and perhaps least interested in the more mechanical aspects of writing, may nonetheless be best suited to effectively model and assess students’ writing.

The goal of the thesis writing course at both Duke University and the University of Minnesota is not merely to improve thesis scores but to move students’ writing into the category of mastery across BioTAP dimensions. Recognizing that students with differing critical-thinking skills (particularly inference) are more or less likely to achieve mastery in the undergraduate thesis (particularly in discussing implications [question 5]) is important for developing and testing targeted pedagogical interventions to improve learning outcomes for all students.

The competencies characterized by the Vision and Change in Undergraduate Biology Education Initiative provide a general framework for recognizing that science reasoning and critical-thinking skills play key roles in major learning outcomes of science education. Our findings highlight places where science reasoning–related competencies (like “understanding the process of science”) connect to critical-thinking skills and places where critical thinking–related competencies might be manifested in scientific products (such as the ability to discuss implications in scientific writing). We encourage broader efforts to build empirical connections between competencies and pedagogical practices to further improve science education.

One specific implication of this work for science education is to focus on providing opportunities for students to develop their critical-thinking skills (particularly inference). Of course, as this correlational study is not designed to test causality, we do not claim that enhancing students’ inference skills will improve science reasoning in writing. However, as prior work shows that science writing activities influence students’ inference skills ( Quitadamo and Kurtz, 2007 ; Quitadamo et al. , 2008 ), there is reason to test such a hypothesis. Nevertheless, the focus must extend beyond inference as an isolated skill; rather, it is important to relate inference to the foundations of the scientific method ( Miri et al. , 2007 ) in terms of the epistemological appreciation of the functions and coordination of evidence ( Kuhn and Dean, 2004 ; Zeineddin and Abd-El-Khalick, 2010 ; Ding et al. , 2016 ) and disciplinary paradigms of truth and justification ( Moshman, 2015 ).

Although this study is limited to the domain of biology at two institutions with a relatively small number of students, the findings represent a foundational step in the direction of achieving success with more integrated learning outcomes. Hopefully, it will spur greater interest in empirically grounding discussions of the constructs of scientific reasoning and critical-thinking skills.

This study contributes to the efforts to improve science education, for both majors and nonmajors, through an empirically driven analysis of the relationships between scientific reasoning reflected in the genre of thesis writing and critical-thinking skills. This work is rooted in the usefulness of BioTAP as a method 1) to facilitate communication and learning and 2) to assess disciplinary-specific and general dimensions of science reasoning. The findings support the important role of the critical-thinking skill of inference in scientific reasoning in writing, while also highlighting ways in which other aspects of science reasoning (epistemological considerations, writing conventions, etc.) are not significantly related to critical thinking. Future research into the impact of interventions focused on specific critical-thinking skills (i.e., inference) for improved science reasoning in writing will build on this work and its implications for science education.

Supplementary Material

Acknowledgments.

We acknowledge the contributions of Kelaine Haas and Alexander Motten to the implementation and collection of data. We also thank Mine Çetinkaya-­Rundel for her insights regarding our statistical analyses. This research was funded by National Science Foundation award DUE-1525602.

  • American Association for the Advancement of Science. (2011). Vision and change in undergraduate biology education: A call to action . Washington, DC: Retrieved September 26, 2017, from https://visionandchange.org/files/2013/11/aaas-VISchange-web1113.pdf . [ Google Scholar ]
  • August D. (2016). California Critical Thinking Skills Test user manual and resource guide . San Jose: Insight Assessment/California Academic Press. [ Google Scholar ]
  • Beyer C. H., Taylor E., Gillmore G. M. (2013). Inside the undergraduate teaching experience: The University of Washington’s growth in faculty teaching study . Albany, NY: SUNY Press. [ Google Scholar ]
  • Bissell A. N., Lemons P. P. (2006). A new method for assessing critical thinking in the classroom . BioScience , ( 1 ), 66–72. https://doi.org/10.1641/0006-3568(2006)056[0066:ANMFAC]2.0.CO;2 . [ Google Scholar ]
  • Blattner N. H., Frazier C. L. (2002). Developing a performance-based assessment of students’ critical thinking skills . Assessing Writing , ( 1 ), 47–64. [ Google Scholar ]
  • Clase K. L., Gundlach E., Pelaez N. J. (2010). Calibrated peer review for computer-assisted learning of biological research competencies . Biochemistry and Molecular Biology Education , ( 5 ), 290–295. [ PubMed ] [ Google Scholar ]
  • Condon W., Kelly-Riley D. (2004). Assessing and teaching what we value: The relationship between college-level writing and critical thinking abilities . Assessing Writing , ( 1 ), 56–75. https://doi.org/10.1016/j.asw.2004.01.003 . [ Google Scholar ]
  • Ding L., Wei X., Liu X. (2016). Variations in university students’ scientific reasoning skills across majors, years, and types of institutions . Research in Science Education , ( 5 ), 613–632. https://doi.org/10.1007/s11165-015-9473-y . [ Google Scholar ]
  • Dowd J. E., Connolly M. P., Thompson R. J., Jr., Reynolds J. A. (2015a). Improved reasoning in undergraduate writing through structured workshops . Journal of Economic Education , ( 1 ), 14–27. https://doi.org/10.1080/00220485.2014.978924 . [ Google Scholar ]
  • Dowd J. E., Roy C. P., Thompson R. J., Jr., Reynolds J. A. (2015b). “On course” for supporting expanded participation and improving scientific reasoning in undergraduate thesis writing . Journal of Chemical Education , ( 1 ), 39–45. https://doi.org/10.1021/ed500298r . [ Google Scholar ]
  • Dowd J. E., Thompson R. J., Jr., Reynolds J. A. (2016). Quantitative genre analysis of undergraduate theses: Uncovering different ways of writing and thinking in science disciplines . WAC Journal , , 36–51. [ Google Scholar ]
  • Facione P. A. (1990). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations . Newark, DE: American Philosophical Association; Retrieved September 26, 2017, from https://philpapers.org/archive/FACCTA.pdf . [ Google Scholar ]
  • Gerdeman R. D., Russell A. A., Worden K. J., Gerdeman R. D., Russell A. A., Worden K. J. (2007). Web-based student writing and reviewing in a large biology lecture course . Journal of College Science Teaching , ( 5 ), 46–52. [ Google Scholar ]
  • Greenhoot A. F., Semb G., Colombo J., Schreiber T. (2004). Prior beliefs and methodological concepts in scientific reasoning . Applied Cognitive Psychology , ( 2 ), 203–221. https://doi.org/10.1002/acp.959 . [ Google Scholar ]
  • Haaga D. A. F. (1993). Peer review of term papers in graduate psychology courses . Teaching of Psychology , ( 1 ), 28–32. https://doi.org/10.1207/s15328023top2001_5 . [ Google Scholar ]
  • Halonen J. S., Bosack T., Clay S., McCarthy M., Dunn D. S., Hill G. W., Whitlock K. (2003). A rubric for learning, teaching, and assessing scientific inquiry in psychology . Teaching of Psychology , ( 3 ), 196–208. https://doi.org/10.1207/S15328023TOP3003_01 . [ Google Scholar ]
  • Hand B., Keys C. W. (1999). Inquiry investigation . Science Teacher , ( 4 ), 27–29. [ Google Scholar ]
  • Holm S. (1979). A simple sequentially rejective multiple test procedure . Scandinavian Journal of Statistics , ( 2 ), 65–70. [ Google Scholar ]
  • Holyoak K. J., Morrison R. G. (2005). The Cambridge handbook of thinking and reasoning . New York: Cambridge University Press. [ Google Scholar ]
  • Insight Assessment. (2016a). California Critical Thinking Skills Test (CCTST) Retrieved September 26, 2017, from www.insightassessment.com/Products/Products-Summary/Critical-Thinking-Skills-Tests/California-Critical-Thinking-Skills-Test-CCTST .
  • Insight Assessment. (2016b). Sample thinking skills questions. Retrieved September 26, 2017, from www.insightassessment.com/Resources/Teaching-Training-and-Learning-Tools/node_1487 .
  • Kelly G. J., Takao A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing . Science Education , ( 3 ), 314–342. https://doi.org/10.1002/sce.10024 . [ Google Scholar ]
  • Kuhn D., Dean D., Jr. (2004). Connecting scientific reasoning and causal inference . Journal of Cognition and Development , ( 2 ), 261–288. https://doi.org/10.1207/s15327647jcd0502_5 . [ Google Scholar ]
  • Kuhn D., Iordanou K., Pease M., Wirkala C. (2008). Beyond control of variables: What needs to develop to achieve skilled scientific thinking? . Cognitive Development , ( 4 ), 435–451. https://doi.org/10.1016/j.cogdev.2008.09.006 . [ Google Scholar ]
  • Lawson A. E. (2010). Basic inferences of scientific reasoning, argumentation, and discovery . Science Education , ( 2 ), 336–364. https://doi.org/­10.1002/sce.20357 . [ Google Scholar ]
  • Meizlish D., LaVaque-Manty D., Silver N., Kaplan M. (2013). Think like/write like: Metacognitive strategies to foster students’ development as disciplinary thinkers and writers . In Thompson R. J. (Ed.), Changing the conversation about higher education (pp. 53–73). Lanham, MD: Rowman & Littlefield. [ Google Scholar ]
  • Miri B., David B.-C., Uri Z. (2007). Purposely teaching for the promotion of higher-order thinking skills: A case of critical thinking . Research in Science Education , ( 4 ), 353–369. https://doi.org/10.1007/s11165-006-9029-2 . [ Google Scholar ]
  • Moshman D. (2015). Epistemic cognition and development: The psychology of justification and truth . New York: Psychology Press. [ Google Scholar ]
  • National Research Council. (2000). How people learn: Brain, mind, experience, and school . Expanded ed. Washington, DC: National Academies Press. [ Google Scholar ]
  • Pukkila P. J. (2004). Introducing student inquiry in large introductory genetics classes . Genetics , ( 1 ), 11–18. https://doi.org/10.1534/genetics.166.1.11 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Faiola C. L., Johnson J. E., Kurtz M. J. (2008). Community-based inquiry improves critical thinking in general education biology . CBE—Life Sciences Education , ( 3 ), 327–337. https://doi.org/10.1187/cbe.07-11-0097 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Quitadamo I. J., Kurtz M. J. (2007). Learning to improve: Using writing to increase critical thinking performance in general education biology . CBE—Life Sciences Education , ( 2 ), 140–154. https://doi.org/10.1187/cbe.06-11-0203 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Smith R., Moskovitz C., Sayle A. (2009). BioTAP: A systematic approach to teaching scientific writing and evaluating undergraduate theses . BioScience , ( 10 ), 896–903. https://doi.org/10.1525/bio.2009.59.10.11 . [ Google Scholar ]
  • Reynolds J. A., Thaiss C., Katkin W., Thompson R. J. (2012). Writing-to-learn in undergraduate science education: A community-based, conceptually driven approach . CBE—Life Sciences Education , ( 1 ), 17–25. https://doi.org/10.1187/cbe.11-08-0064 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Reynolds J. A., Thompson R. J. (2011). Want to improve undergraduate thesis writing? Engage students and their faculty readers in scientific peer review . CBE—Life Sciences Education , ( 2 ), 209–215. https://doi.org/­10.1187/cbe.10-10-0127 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Rhemtulla M., Brosseau-Liard P. E., Savalei V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions . Psychological Methods , ( 3 ), 354–373. https://doi.org/­10.1037/a0029315 . [ PubMed ] [ Google Scholar ]
  • Stephenson N. S., Sadler-McKnight N. P. (2016). Developing critical thinking skills using the science writing heuristic in the chemistry laboratory . Chemistry Education Research and Practice , ( 1 ), 72–79. https://doi.org/­10.1039/C5RP00102A . [ Google Scholar ]
  • Tariq V. N., Stefani L. A. J., Butcher A. C., Heylings D. J. A. (1998). Developing a new approach to the assessment of project work . Assessment and Evaluation in Higher Education , ( 3 ), 221–240. https://doi.org/­10.1080/0260293980230301 . [ Google Scholar ]
  • Timmerman B. E. C., Strickland D. C., Johnson R. L., Payne J. R. (2011). Development of a “universal” rubric for assessing undergraduates’ scientific reasoning skills using scientific writing . Assessment and Evaluation in Higher Education , ( 5 ), 509–547. https://doi.org/10.1080/­02602930903540991 . [ Google Scholar ]
  • Topping K. J., Smith E. F., Swanson I., Elliot A. (2000). Formative peer assessment of academic writing between postgraduate students . Assessment and Evaluation in Higher Education , ( 2 ), 149–169. https://doi.org/10.1080/713611428 . [ Google Scholar ]
  • Willison J., O’Regan K. (2007). Commonly known, commonly not known, totally unknown: A framework for students becoming researchers . Higher Education Research and Development , ( 4 ), 393–409. https://doi.org/10.1080/07294360701658609 . [ Google Scholar ]
  • Woodin T., Carter V. C., Fletcher L. (2010). Vision and Change in Biology Undergraduate Education: A Call for Action—Initial responses . CBE—Life Sciences Education , ( 2 ), 71–73. https://doi.org/10.1187/cbe.10-03-0044 . [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Zeineddin A., Abd-El-Khalick F. (2010). Scientific reasoning and epistemological commitments: Coordination of theory and evidence among college science students . Journal of Research in Science Teaching , ( 9 ), 1064–1093. https://doi.org/10.1002/tea.20368 . [ Google Scholar ]
  • Zimmerman C. (2000). The development of scientific reasoning skills . Developmental Review , ( 1 ), 99–149. https://doi.org/10.1006/drev.1999.0497 . [ Google Scholar ]
  • Zimmerman C. (2007). The development of scientific thinking skills in elementary and middle school . Developmental Review , ( 2 ), 172–223. https://doi.org/10.1016/j.dr.2006.12.001 . [ Google Scholar ]

Be As You Are

Critical Thinking – What Does It Really Mean?

Let’s quickly recap the Trivium here, which is the method of truth discovery: It’s based on these 3 pillars, which involve & rely on objective thinking and recognising unconscious cognitive biased:

  • Grammar = Knowledge = Input
  • Logic = Understanding = Processing
  • Rhetoric = Wisdom = Application = Output

Or in other words, to have the output in our life we desire, it all starts & depends with the ‘input’ of information we take in and how we process them. Shitty input or unconscious flawed processing will lead to a shitty output = life experience. (For more context about the Trivium and ‘Why Truth matters!’ read this .)

Therefore its critical, to learn to think critically!

Critical Thinking

To start with, what does ‘Critical Thinking’ mean? Before really digging into it, I equated it to being judgemental and almost something negative. But if you really look at the etymology (the grammar) of it, it means ‘thinking in criteria’ and ‘thinking to find faults’. Or how I translate that: ‘Thinking to find Truth based on Criteria’.

‘Ok sounds good’, but how does that translate to my thinking? And what are the criteria?

Thats what I want to investigate in this article!

WEAK VS. STRONG CRITICAL THINKING

Basically, there are 2 schools of Critical Thinking: Weak Critical Thinking is based on Self-centredness to win regardless of truth, while Strong Critical Thinking is based on Fair-mindedness to find truth regardless of own agenda & believe.

From own experience, I can confirm: It’s so easy to spot flaws in others thinking and overlook in ones own thinking (most of us never learned fair-minded Critical Thinking). However, its crucial to develop for all of us, if we actually want a fair-minded society and find (inner) freedom – not tied to any ideology, doctrine or believe system.

Fair-minded Critical Thinking

Again, it’s about finding truth regardless of own agenda & believe – a noble and truly worthy & liberating intention! However, easily said but difficult to keep that intention when navigating through & facing egocentric (Self centred) and sociocentric (Collective / group centred) beliefs in our minds. Cognitive dissonances, biases, projections, doubts, distortions… keep us in our perceived (limited) comfort zone instead of going for the truth and discover our limitless creative potential and true nature!!

In order to get there, we need a compass keeping us on track!

That’s the great benefit of having standards, values or an ethical framework not just at hand but deeply integrated in our ‘reality filter’!

Here comes a great suggestion ( from the Foundation of Critical Thinking ) to start with – let yourself be inspired to dig into deeper! 😀

The Intellectual Virtues to Critical Thinking

Intellectual humility.

I understand intellectual humility to mean being aware of one’s own ignorance. In other words,  to recognize that one’s thinking is prone to be flawed and either ego or sociocentric. To neither overvalue nor undervalue one’s knowledge. It’s the opposite of intellectual arrogance. It enables us to investigate our biases, distortions, and wrong beliefs.

  • An example of someone exhibiting intellectual humility would be a self empowerment coach, who is open/aware about his own (unconscious) biases and offers his subjective perspectives to the student to chose for himself what he wants to take aboard instead of indoctrinating him with ‘the only approach / the truth’.

Intellectual courage

I understand intellectual courage to mean standing up for what’s true & right instead of what’s easy, rewarding by societies norms & mainstream. In other words, being brave and tackling personal or societies beliefs to find truth and facing the fear tied to those beliefs. With “personal or societies beliefs to find truth and facing the fear tied to those beliefs” I meant, that it is about both internal (personal) beliefs but also external (society’s) beliefs. I implied that our identity is tied to beliefs (as you mentioned: religious, parenting, cultural…) and it seems scary to face or challenge them as that literally means (a part) of our (wrong) identity must die (therefore the fear). You could say, as our identity is the sum of our believes (which lead to our thoughts, emotions, decisions, actions and results) challenging and changing beliefs can have massive implications on our behaviour. And if we act accordingly, based on true understanding instead of based on society’s doctrine, we surely have to face rejection of society. You could even say there is ultimately only one (outside) belief system, which get’s copy pasted into ours growing up, as a starting base belief system. Which we then self reflectively both internally and externally need to investigate & correct to find truth, ourselves and liberation. Therefore we require courage to face those fears & emotions, and also change the way we identify ourselves. Instead of defining an identity based on beliefs (“Im good in xxx, I am yxs, I like yxc, I never asc”), we need to build an identity based on the process of exploring & formulating beliefs. Its the opposite of intellectual cowardice.

  • An example of someone exhibiting intellectual courage could be Mark Passio, who is educating about occult practices sharing the knowledge which has been used to suppress mankind for millenias, challenging and confronting the unconscious slave mindset of wo/men by educating how to think and discover own biases such as belief in governmental mind control.

Intellectual empathy

I understand intellectual empathy to mean to see the world through someone else’s eyes. In other words, it means considering the context, beliefs, thoughts, emotions of the other person and move into their situation, instead of selfishly ‘just’ look through one’s own possibly biased perspective. It’s the opposite of intellectual self centredness.

  • An example of someone exhibiting intellectual empathy could be Ramana Maharshi, a self realized saint from India, he is personified humility and sees through your eyes.

Intellectual integrity

I understand intellectual integrity to mean . .holding oneself accountable to the same standards as others. In other words, to walk the talk, and act on what one says. The opposite of intellectual hypocrisy. Doing to others as you would want to be done to yourself.

  • An example of someone exhibiting intellectual integrity would be leading exactly by example. A reference I can come up with again is Ramana Maharshi. 

Intellectual perseverance

I understand intellectual perseverance to mean to not give up until you understand. In other words, its not about short term reward, grades or external measures but internal – true understanding of also complex perspectives and themes. It’s the opposite of intellectual laziness and enables to really understand others, as they have their reasons to think a certain way and unless we work through their reasons of thinking we cant fairly assess their thinking and understand them. We need to break out from egocentric thinking and school indoctrination rewarding us for superficial or non-thinking.

  • An example of someone exhibiting intellectual perseverance would be Nathan Martin, who is committed to fair minded critical thinking and works through a theme & perspective with such dedication and commitment until he has understood that perspective.

Intellectual confidence in reason

I understand intellectual confidence in reason to mean each individual having the capacity to critical thinking and finding truth. In other words, having the confidence that each individual actually can find truth themselves and has the capacity to build beliefs based on truth (through reasoning) instead of just following a doctrine or faith. And seeking truth being the best outcome for both, the individual but also society.

  • An example of someone exhibiting intellectual confidence in reason would be a participant of this class, who has the confidence that through learning critical thinking and its application one can find truth to move out of egocentric & socicentric beliefs, which then will improve one’s life. 

Intellectual autonomy

I understand intellectual autonomy to mean think for yourself! In other words, question every belief you adopted if it is true based on the intellectual standards, and then decide yourself consciously if you want to keep that or remove it. No matter if that’s what society is believing or not. Its the opposite of intellectual conformity or zombie slave thinking 😉

  • An example of someone exhibiting intellectual autonomy would be Dr Hamer who came up with the GH a teaching to explain any disease as the body’s conflict solution program without hypothesis and statistics. Replicable in anyone, challenging the complete medical establishment.

Intellectual fair mindedness

I understand intellectual fair mindedness to mean to treat all viewpoints with the same unbiased way. In other words, instead of preferring our own biased perspective and prejudging others, to treat all perspectives equally. It’s the opposite of intellectual unfairness and is a continuous striving to develop the intellectual standards.

  • An example of someone exhibiting intellectual fair mindedness would carefully listen to everybodys perspective, arguments, reasons, logic and then make an evaluation & decision based on the most reasonable arguments no matter who is it from.

The 8 elements to Critical Thinking

While the ‘Intellectual Virtues’ above are the ethical foundation to keep us on track to find truth, the 8 ‘Elements of Reasoning’ help us actually explore our thinking. All 8 elements exist in all our thinking, it does not matter if we are conscious about them or not.

It is important to learn about them, because:

  • Dissecting and understanding our thinking improves our thinking!
  • Which then improves our quality of life and internal freedom.

So let’s look at what the ‘Elements of Thought’ actually are!

I would briefly define ‘purpose’ as the motive underlying our thinking. In other words, what are we attempting to accomplish, our intention or the ‘why’ we are after. 

  • For example: I am doing this Critical Thinking exercise because I want to improve my thinking and ultimately my well being.  

Point of view

I would briefly define ‘point of view’ as my individual perspective on the topic at thought. In other words, what is my subjective filter on the topic? My personal background, experience and knowledge influences the way I perceive an object and might be limited.

  • For example: Being a male German with a finance background, my point of view might be tilted towards (over) thinking and analyzing and neglecting intuitive and creative insights.

Implications

I would briefly define ‘implications’ as the truth or logic following from the reasoning. In other words, there are always implications from your thinking and consequences from your actions, if one is aware of them or not. Therefore it’s important to think them through before acting. 

  • For example: One implication of signing up for this Critical Thinking class is that I will have to attribute time and focus to the assignments, and consequences from doing that are that I have less time for other activities but an improved critical thinking capacity.

I would briefly define ‘question’ as what I am attempting to figure out with my reasoning. In other words, the question helps us navigate by defining what we need to figure out through thinking. Therefore being precise and clear about the question is elementary. 

  • For example: In a challenging situation one could ask ‘whats wrong?’ or ‘what’s to improve?’ Each question leads to a very different focus and therefore also outcome = answer. 

Information

I would briefly define ‘information’ as what I base my thinking on. In other words, it’s the evidence, facts, experiences or data I gathered as a basis for my reasoning. I need to remain conscious of the fact that my information might not be accurate, relevant or even correct. 

  • For example: My own experience participating in a Critical Thinking workshop as well as the feedback I have received from others made me confident that it will be worthwhile to participate in this class.

I would briefly define ‘inference’ as the conclusions drawn from the information. In other words, what does my information mean to me logically? What follows from the evidence I gathered? The quality of my inferences determines the quality of my reasoning. 

  • For example: After being together for 13 years, I am inferring that my partner and our relationship is trustworthy.

Assumptions

I would briefly define ‘assumptions’ as our subjective beliefs. In other words, what am I unconsciously believing about a topic or theme or what do I take for granted? If I am not aware of my assumptions and their alignment with evidence, my thinking might be distorted as a consequence. 

  • For example: An assumption might be that the government has our best interest at heart, however that’s just what one was educated to believe, and there are other factual perspectives.

I would briefly define ‘concepts’ as the underlying framework we use to investigate a topic. In other words, these are the ideas, laws or principles we apply in our thinking to investigate a subset of reality. The concepts we use define our perspective & thinking, so we must be conscious about what concepts we use and also how that might impact our subjective perspective. And that other concepts will possibly lead to other perspectives and thinking outcomes.

  • For example: Democracy is a concept ‘we’ use to achieve (illusionary?) representation of the will of the people. If we become aware that there are other concepts, we can compare them and possibly achieve a better representation.

So that’s it for now: A big compliment for being curious & reading through! 🙂 Let me know what you think and drop any question you have in the comments below!

Share this:

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)
  • Click to share on Telegram (Opens in new window)
  • Click to share on WhatsApp (Opens in new window)

' src=

Published by Simon

"All is Love. Fear is Illusion. All beings are Free. Truth can never be destroyed." Time to bring that to life and spread the word. Join me on a journey of discovery, of who we truly are and to make a difference in this world together! Important: Don't believe me or anyone for that matter! They key to empowerment is to find truth yourself. Be critical, but not overly critical. Build hypothesis, gather holistic information, test and evaluate. And take responsibility for your own life and follow your true Self, not blindly any guru, teacher or authority. By giving responsibility and power to others, you just confirm to yourself that you are powerless. Time to claim back our power! ❤️ View all posts by Simon

Leave a Reply Cancel reply

Discover more from be as you are.

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8 Arguments and Critical Thinking

J. anthony blair, introduction [1].

This chapter discusses two different conceptions of argument, and then discusses the role of arguments in critical thinking. It is followed by a chapter in which David Hitchcock carefully analyses one common concept of an argument.

1. Two meanings of ‘argument’

The word ‘argument’ is used in a great many ways. Any thorough understanding of arguments requires understanding ‘argument’ in each of its senses or uses. These may be divided into two large groupings: arguments had or engaged in , and arguments made or used . I begin with the former.

1.1 A n ‘a rgument’ as something two parties have with each othe r, something they get into, the kind of ‘argument’ one has in mind in de scribing two people as “arguing all the time ”

For many people outside academia or the practice of law, an argument is a quarrel . It is usually a verbal quarrel, but it doesn’t have to use words. If dishes are flying or people are glaring at each other in angry silence, it can still be an argument. What makes a quarrel an argument is that it involves a communication between two or more parties (however dysfunctional the communication may be) in which the parties disagree and in which that disagreement and reasons, actual or alleged, motivating it are expressed—usually in words or other communicative gestures.

Quarrels are emotional. The participants experience and express emotions, although that feature is not exclusive to arguments that are quarrels. People can and do argue emotionally, and (or) when inspired by strong emotions, when they are not quarrelling. Heated arguments are not necessarily quarrels; but quarrels tend to be heated.

What makes quarrels emotional in some cases is that at least one party experiences the disagreement as representing some sort of personal attack, and so experiences his or her ego or sense of self-worth as being threatened. Fear is a reaction to a perceived threat, and anger is a way of coping with fear and also with embarrassment and shame. In other cases, the argument about the ostensible disagreement is a reminder of or a pretext for airing another, deeper grievance. Jealousy and resentment fuel quarrels. Traces of ego-involvement often surface even in what are supposed to be more civilized argumentative exchanges, such as scholarly disputes. Quarrels tend not to be efficient ways of resolving the disagreements that gives rise to them because the subject of a disagreement changes as the emotional attacks escalate or because the quarrel was often not really about that ostensible disagreement in the first place.

In teaching that ‘argument’ has different senses, it is misleading to leave the impression (as many textbooks do) that quarrels are the only species of argument of this genus. In fact they are just one instance of a large class of arguments in this sense of extended, expressed, disagreements between or among two or more parties.

A dispute is an argument in this sense that need not be a quarrel. It is a disagreement between usually two parties about the legality, or morality, or the propriety on some other basis, of a particular act or policy. It can be engaged in a civil way by the disputants or their proxies (e.g., their spokespersons or their lawyers). Sometimes only the disputing parties settle their difference; sometimes a third party such as a mediator, arbitrator or judge is called in to impose a settlement.

A debate is another argument of this general kind. Debates are more or less formalized or regimented verbal exchanges between parties who might disagree, but in any case who take up opposing sides on an issue. Procedural rules that govern turn-taking, time available for each turn, and topics that may be addressed are agreed to when political opponents debate one another. Strict and precise rules of order govern who may speak, who must be addressed, sometimes time limits for interventions, in parliamentary or congressional debates in political decision-making bodies, or in formal intercollegiate competitive debates. Usually the “opponent” directly addressed in the debate is not the party that each speaker is trying to influence, so although the expressed goal is to “win” the debate, winning does not entail getting the opponent to concede. Instead, it calls for convincing an on-looking party or audience—the judge of the debate or the jury in a courtroom or the television audience or the press or the electorate as a whole—of the superior merits of one’s case for the opinion being argued for in the debate.

To be distinguished from a debate and a dispute by such factors as scale is a controversy . Think of such issues as the abortion controversy, the climate change controversy, the same-sex marriage controversy, the LGBT rights controversy, the animal rights controversy. The participants are many—often millions. The issues are complex and there are many disputes about details involved, including sometimes even formal debates between representatives of different sides. Typically there is a range of positions, and there might be several different sides each with positions that vary one from another. A controversy typically occurs over an extended period of time, often years and sometime decades long. But an entire controversy can be called an argument, as in, “the argument over climate change.” Controversies tend to be unregulated, unlike debates but like quarrels, although they need not be particularly angry even when they are emotional. Like quarrels, and unlike debates, the conditions under which controversies occur, including any constraints on them, are shaped by the participants.

Somewhere among quarrels, debates and controversies lie the theoretical arguments that theorists in academic disciplines engage in, in academic journals and scholarly monographs. In such arguments theorists take positions, sometimes siding with others and sometimes standing alone, and they argue back and forth about which theoretical position is the correct one. In a related type of argument, just two people argue back and forth about what is the correct position on some issue (including meta-level arguments about what is the correct way to frame the issue in the first place).

The stakes don’t have to be theories and the participants don’t have to be academics. Friends argue about which team will win the championship, where the best fishing spot is located, or what titles to select for the book club. Family members argue about how to spend their income, what school to send the children to, or whether a child is old enough to go on a date without a chaperone. Co-workers argue about the best way to do a job, whether to change service providers, whether to introduce a new product line, and so on. These arguments are usually amicable, whether or not they settle the question in dispute.

All of these kinds of “argument” in this sense of the term—quarrels, friendly disputes, arguments at work, professional arguments about theoretical positions, formal or informal debates, and various kinds of controversy—share several features.

  • They involve communications between or among two or more people. Something initiates the communication, and either something ends it or there are ways for participants to join and to exit the conversation. They entail turn-taking (less or more regimented), each side addressing the other side and in turn construing and assessing what the other has to say in reply and formulating and communicating a response to the replies of the other side. And, obviously, they involve the expression, usually verbal, of theses and of reasons for them or against alternatives and criticisms.
  • They have a telos or aim, although there seems to be no single end in mind for all of them or even for each of them. In a quarrel the goal might be to have one’s point of view prevail, to get one’s way, but it might instead (or in addition) be to humiliate the other person or to save one’s own self-respect. Some quarrels—think of the ongoing bickering between some long-married spouses—seem to be a way for two people to communicate, merely to acknowledge one another. In a debate, each side seeks to “win,” which can mean different things in different contexts ( cf. a collegiate debate vs. a debate between candidates in an election vs. a parliamentary debate). Some arguments seemed designed to convince the other to give up his position or accept the interlocutor’s position, or to get the other to act in some way or to adopt some policy. Some have the more modest goal of getting a new issue recognized for future deliberation and debate. Still others are clearly aimed not at changing anyone’s mind but at reinforcing or entrenching a point of view already held (as is usually the case with religious sermons or with political speeches to the party faithful). Some are intended to establish or to demonstrate the truth or reasonableness of some position or recommendation and (perhaps) also to get others to “see” that the truth has been established. Some seem designed to maintain disagreement, as when representatives of competing political parties argue with one another.
  • All these various kinds of argument are more or less extended, both in the sense that they occur over time, sometimes long stretches of time, and also in the sense that they typically involved many steps: extensive and complex support for a point of view and critique of its alternatives.
  • In nearly every case, the participants give reasons for the claims they make and they expect the other participants in the argument to give reasons for their claims. This is even a feature of quarrels, at least at the outset, although such arguments can deteriorate into name-calling and worse. (Notice that even the “yes you did; no I didn’t;…; did; didn’t” sequence of the Monty Python “Having an argument” skit breaks down and a reason is sought.)

The kinds of argument listed so far are all versions of having an argument (see Daniel J. O’Keefe, 1977, 1982). Some might think that this is not the sense of ‘argument’ that is pertinent to critical thinking instruction, but such arguments are the habitat of the kinds of argument that critical thinkers need to be able to identify, analyze and evaluate.

1.2 An argument a s something a person makes (or constructs, invents, borrows) consisting of purported reasons alleged to suggest, or support or prove a point and that is used for some purpose such as to persuade someone of some claim, to justify someone in maintaining the position claimed, or to test a claim .

When people have arguments—when they engage in one or another of the activities of arguing described above—one of the things they routinely do is present or allege or offer reasons in support of the claims that they advance, defend, challenge, dispute, question, or consider. That is, in having “arguments,” we typically make and use “arguments.” The latter obviously have to be arguments in different sense from the former. They are often called “reason-claim” complexes. If arguments that someone has had constitute a type of communication or communicative activity, arguments that someone has made or used are actual or potential contributions to such activities. Reason-claim complexes are typically made and used when engaged in an argument in the first sense, trying to convince someone of your point of view during a disagreement or dispute with them. Here is a list of some of the many definitions found in textbooks of ‘argument’ in this second sense.

“… here [the word ‘argument’] … is used in the … logical sense of giving reasons for or against some claim.” Understanding Arguments, Robert Fogelin and Walter Sinnott-Armstrong, 6th ed., p. 1. “Thus an argument is a discourse that contains at least two statements, one of which is asserted to be a reason for the other.” Monroe Beardsley, Practical Logic, p. 9. “An argument is a set of claims a person puts forward in an attempt to show that some further claim is rationally acceptable.” Trudy Govier. A Practical Study of Arguments, 5th ed., p. 3. An argument is “a set of clams some of which are presented as reasons for accepting some further claim.” Alec Fisher, Critical Thinking, An Introduction, p. 235. Argument: “A conclusion about an issue that is supported by reasons.” Sherry Diestler, Becoming a Critical Thinker, 4th ed., p. 403. “ Argument: An attempt to support a conclusion by giving reasons for it.” Robert Ennis, Critical Thinking, p. 396. “Argument – A form of thinking in which certain statements (reasons) are offered in support of another statement (conclusion).” John Chaffee, Thinking Critically, p. 415 “When we use the word argument in this book we mean a message which attempts to establish a statement as true or worthy of belief on the basis of other statements.” James B. Freeman, Thinking Logically, p. 20 “Argument. A sequence of propositions intended to establish the truth of one of the propositions.” Richard Feldman, Reason and Argument, p. 447. “Arguments consist of conclusions and reasons for them, called ‘premises’.” Wayne Grennan, Argument Evaluation, p. 5. Argument: “A set of claims, one of which, the conclusion is supported by [i.e., is supposed to provide a reason for] one or more of the other claims. Reason in the Balance, Sharon Bailin & Mark Battersby, p. 41.

These are not all compatible, and most of them define ‘argument’ using other terms—‘reasons’, ‘claims’, ‘propositions’, ‘statements’, ‘premises’ and ‘conclusions’—that are in no less need of definition than it is. In the next chapter, David Hitchcock offers a careful analysis of this concept of an argument.

Some define argument in this second sense as a kind of communication; others conceive it as a kind of set of propositions that can serve communicative functions, but others as well (such as inquiry). Either way, the communicative character, or function, of arguments has been the subject of much of the research in the past several decades. Most recently what some have called “multi-modal” argument has attracted attention, focusing on the various ways arguments can be communicated, especially visually or in a mix of verbal and visual modes of communication. Some have contended that smells and sounds can play roles in argument communication as well. This area of research interest would seem to have relevance for the analysis of arguments on the web.

1.3 Argumentation

‘Argumentation’ is another slippery term. It is used in several different senses.

Sometimes it is used to mean the communicative activity in which arguments are exchanged: “During their argumentation they took turns advancing their own arguments and criticizing one another’s arguments.” Sometimes ‘argumentation’ denotes the body of arguments used in an argumentative exchange: “The evening’s argumentation was of high quality.” And occasionally you will find it used to refer to the reasons or premises supporting a conclusion, as in: “The argumentation provided weak support for the thesis.” ‘Argumentation theory’ is the term often used to denote theory about the nature of arguments and their uses, including their uses in communications involving exchanges of arguments.

2 The relation between critical thinking and argument

2 .1 arguments are both tools of critical thinking and objects of critical thinking.

In … [one] sense, thought denotes belief resting upon some basis, that is, real or supposed knowledge going beyond what is directly present. … Some beliefs are accepted when their grounds have not themselves been considered …. … such thoughts may mean a supposition accepted without reference to its real grounds. These may be adequate, they may not; but their value with reference to the support they afford the belief has not been considered. Such thoughts grow up unconsciously and without reference to the attainment of correct belief. They are picked up—we know not how. From obscure sources and by unnoticed channels they insinuate themselves into acceptance and become unconsciously a part of our mental furniture. Tradition, instruction, imitation—all of which depend upon authority in some form, or appeal to our advantage, or fall in with strong passions—are responsible for them. Such thoughts are prejudices, that is, prejudgments, not judgments proper that rest upon a survey of evidence. (John Dewey, How We Think , pp. 4-5, emphasis added.)

People—all of us—routinely adopt beliefs and attitudes that are prejudices in Dewey’s sense of being prejudgments, “not judgments proper that rest upon a survey of evidence.” One goal of critical thinking education is to provide our students with the means to be able, when it really matters, to “properly survey” the grounds for beliefs and attitudes.

Arguments supply one such means. The grounds for beliefs and attitudes are often expressed, or expressible, as arguments for them. And the “proper survey” of these arguments is to test them by subjecting them to the critical scrutiny of counter-arguments.

Arguments also come into play when the issue is not what to believe about a contentious issue, but in order just to understand the competing positions. Not only are we not entitled to reject a claim to our belief if we cannot counter the arguments that support it; we are not in possession of an understanding of that claim if we cannot formulate the arguments that support it to the satisfaction of its proponents.

Furthermore, arguments can be used to investigate a candidate for belief by those trying “to make up their own minds” about it. The investigator tries to find and express the most compelling arguments for and against the candidate. Which arguments count as “most compelling” are the ones that survive vigorous attempts, using arguments, to refute or undermine them. These survivors are then compared against one another, the pros weighed against the cons. More arguments come into play in assessing the attributed weights.

In these ways, a facility with arguments serves a critical thinker well. Such a facility includes skill in recognizing, interpreting and evaluating arguments, as well as in formulating them. That includes skill in laying out complex arguments, in recognizing argument strengths and weaknesses, and in making a case for one’s critique. It includes the ability to distinguish the more relevant evidence from the less, and to discriminate between minor, fixable flaws and major, serious problems, in arguments. Thus the critical thinker is at once adept at using arguments in various ways and at the same time sensitive in judging arguments’ merits, applying the appropriate criteria.

Moreover, arguments in the sense of “reasons-claim” complexes surround us in our daily lives. Our “familiars”, as Gilbert (2014) has dubbed them—our family members, the friends we see regularly, shopkeepers and others whose services we patronize daily, our co-workers—engage us constantly in argumentative discussions in which they invoke arguments to try to get us to do things, to agree, to judge, to believe. The public sphere—the worlds of politics, commerce, entertainment, leisure activities, social media (see Jackson’s chapter)—is another domain in which arguments can be found, although (arguably) mere assertion predominates there. In the various roles we play as we go through life—child, parent, spouse or partner, student, worker, patient, subordinate or supervisor, citizen (voter, jurist, community member), observer or participant, etc.—we are invited with arguments to agree or disagree, approve or disapprove, seek or avoid. We see others arguing with one another and are invited to judge the merits of the cases they make. Some of these arguments are cogent and their conclusions merit our assent, but others are not and we should not be influenced by them. Yet others are suggestive and deserve further thought.

We can simply ignore many of these arguments, but others confront us and force us to decide whether or not to accept them. Often it is unclear whether someone has argued or done something else: just vented, perhaps, or explained rather than argued, or merely expressed an opinion without arguing for it, or was confused. So we initially might have to decide whether there is an argument that we need to deal with. When it is an argument, often in order to make up our minds about it we need first to get clear about exactly what the argument consists of. So even before we evaluate this argument we have to identify and analyze it. (These operations are discussed in Chapter 12.)

In the end we have to decide for ourselves whether the argument makes its case or falls short. Does the conclusion really follow from the premises? Is there enough evidence to justify the conclusion? Is it the right kind of evidence? Are there well-known objections or arguments against the conclusion that haven’t been acknowledged and need to be answered satisfactorily? Can they be answered? And are the premises themselves believable or otherwise acceptable? Are there other arguments, as good or better, that support the claim?

Critical thinking can (and should!) come into all of these decisions we need to make in the identification, the analysis and the assessment of arguments.

2 .2  Critical thinking about things other than arguments

Many critical thinking textbooks focus exclusively on the analysis and evaluation of arguments. While the centrality of arguments to the art of critical thinking is unquestionable, a strong case can be made that critical thinking has other objectives in addition to appreciating arguments. In their analysis of the concept of critical thinking, Fisher and Scriven suggest the following definition:

Critical thinking is skilled and active interpretation and evaluation of o b servations and communications , information and argumentation. (1997, p. 21, emphasis added)

We agree with the gist of this claim, but notice what Fisher and Scriven propose as the objects to which critical thinking applies. Not just argumentation, but as well observations, communications and information. About observations, they note that:

What one sees (hears, etc.) are usually things and happenings, and one often has to interpret what one sees, sometimes calling on critical thinking skills to do so, most obviously in cases where the context involves weak lighting, strong emotions, possible drug effects, or putatively magical or parapsychological phenomena. Only after the application of critical thinking—and sometimes not even then—does one know what one “really saw”. … When the filter of critical thinking has been applied to the observations, and only then, one can start reasoning towards further conclusions using these observations as premises. ( Ibid ., p, 37)

An example is the recent large number of convictions in the U.S.A. that originally relied on eyewitness testimony but that have been overturned on the basis of DNA evidence. [2] ,  [3]

The DNA evidence proved that the accused was not the culprit, so the moral certainty of the eyewitness had to have been mistaken. The observation of the eyewitness was flawed. He or she did not think critically about whether the conditions need ed to make a reliable o b servation were present (e.g., were strong emotions like fear involved? was the lighting good? has he or she ordinarily a good memory for faces? was there time to observe carefully? were there distractions present?). Neither, probably, did the lawyers on either side, or else they immorally suppressed what should have been their doubts. As a consequence, innocent people languished in jail for years and guilty parties went free.

Communications are another object for critical thought. When in reply to Harry’s question, “How are you doing?” Morgan says, in a clipped and dull voice and a strained expression on her face, “I’m fine”, Harry needs to be aware that “How are you doing?” often functions as equivalent to a simple greeting, like “Hi” and so the response “Fine” could similarly be functioning as a polite return of the greeting, like “Hi back to you”, and not as an accurate report of the speaker’s condition. Harry needs to notice and interpret other aspects of Morgan’s communication—her lethargic tone of voice and her anxious facial expression—and to recognize the incompatibility between those signals and the interpretation of her response as an accurate depiction of Morgan’s state of well-being. He needs to employ critical interpretive skills to realize that Morgan has communicated that she is not fine at all, but for some reason isn’t offering to talk about it.

If President Trump did in fact say to his then F.B.I. director James Comey, about the F.B.I. investigation of former National Security Advisor Michaell Flynn “I hope you can let this go”, was it legitimate for Comey to interpret the President’s comment as a directive? And was Comey’s response, which was simply to ignore President Trump’s alleged comment, an appropriate response? What was going on? It takes critical thinking to try to sort out these issues. Taking the President’s alleged comment literally, it just expresses his attitude towards the FBI investigation of Flynn. But communications from the President in a tête-à-tête in the White House with the Director of the FBI are not occasions for just sharing attitudes. This was not an occasion on which they could step out of their political roles and chat person-to-person. The President can legitimately be presumed to be communicating his wishes as to what his FBI Director should do, and such expressions of wishes are, in this context, to be normally understood as directives. On the other hand, for the President to direct that an ongoing investigation by the FBI be stopped, or that it come up with a pre-determined finding, is illegal: it’s obstruction of justice. So Comey seemed faced with at least two possible interpretations of what he took the President to be saying: either an out-of-place expression of his attitude towards the outcome of the Flynn investigation or an illegal directive. Which was the President’s intention? However, there are other possibilities.

Was President Trump a political tyro whose lack of political experience might have left him ignorant of the fact that the FBI Director has to keep investigations free of political interference? Or might Trump have thought that the Presidency conveys the authority to influence the outcome of criminal investigations? Or might President Trump have been testing Mr. Comey to see if he could be manipulated? And Mr. Comey could have responded differently. He could have said, “I wish we could let this go too, Mr. President, but there are questions about General Flynn’s conduct that have to be investigated, and as you know, we cannot interfere with an ongoing FBI investigation”. Such a response would have forced the President to take back what he allegedly said, withdrawing any suggestion that his comment was a directive, or else to make it plain that he was indeed directing Comey to obstruct justice. In the event, apparently Mr. Comey did not take this way out, which would at once have displayed loyalty to the President (by protecting him from explicitly obstructing justice) and also have affirmed the independence of the FBI from interference from the White House. Perhaps he thought that the President clearly had directed him to obstruct justice, and judged that giving him an opportunity explicitly to withdraw that directive amounted to overlooking that illegal act, which would be a violation of his responsibilities as Director of the FBI. If so, however, simply not responding to the President’s comment, the path Comey apparently chose, also amounted to turning a blind eye to what he judged to be President Trump’s illegal directive.

As these two examples illustrate, the interpretation of communications, and the appropriate response to them can require critical thinking: recognizing different functions of communication, and being sensitive to the implications of different contexts of communication; being sensitive to the roles communicators occupy and to the rights, obligations, and limits attached to such roles.

As Fisher and Scriven acknowledge, “defining information is itself a difficult task.” They make a useful start by distinguishing information from raw data (“the numbers or bare descriptions obtained from measurements or observations”, op . cit., p. 41). No critical thinking is required for the latter; just the pains necessary to record raw data accurately, In many cases, though, the interpretation of raw data, the meaning or significance that they are said to have, can require critical thinking.

One might go beyond Fisher and Scriven’s list of other things besides arguments to which critical thinking can be applied. A thoughtful appreciation of novels or movies, plays or poetry, paintings or sculptures requires skilled interpretation, imagining alternatives, thoughtful selection of appropriate criteria of evaluation and then the selection and application of appropriate standards, and more. A good interior designer must consider the effects and interactions of space and light and color and fabrics and furniture design, and coordinate these with clients’ lifestyles, habits and preferences. Advanced practical skills in various sciences come into play. A coach of a sports team must think about each individual team member’s skills and deficiencies, personality and life situation; about plays and strategies, opponents’ skills sets; approaches to games; and much more. Conventional approaches need to be reviewed as to their applicability to the current situation. Alternative possibilities need to be creatively imagined and critically assessed. And all of this is time-sensitive, sometimes calling for split-second decisions. The thinking involved in carrying out the tasks of composing a review of some work of literature or art or of coaching a sports team can be routine and conventional, or it can be imaginative, invoking different perspectives and challenging standard criteria.

The list could go on. The present point is that, while argument is central to critical thinking, critical thinking about and using arguments is not all there is to critical thinking. [4]

Bailin, Sharon & Battersby, Mark. (2010). Reason in the Balance , An I n quiry Approach to Critical Thinking , 1 st ed. Toronto: McGraw-Hill Ryerson.

Beardsley, Monroe C. (1950). Practical L ogic . Englewood Cliffs, NJ: Prentice-Hall.

Chaffee, John. 1985. Thinking Critically . Boston: Houghton Mifflin.

Dewey, John. (1910, 1991). How We Think . Lexington, MAD.C. Heath; Buffalo, NY: Prometheus Books.

Diestler, Sherry. (2005). Becoming a Critical Thinker , 4 th ed. Upper Saddle River, NJ: Pearson Education.

Ennis, Robert H. (1996). Critical Thinking . Upper Saddle River, NJ: Prentice-Hall.

Feldman, Richard. (1993). Reason and Argument , 2 nd ed. Upper Saddle River, NJ: Prentice-Hall.

Fisher, Alex.(2001). Critical Thinking, An Introduction . Cambridge: Cambridge University Press.

Fisher, Alec & Scriven, Michael. (1997). Critical Thinking, Its Definition and Assessment . Point

Reyes, CA: EdgePress; Norwich, UK: Center for Research in Critical Thinking.

Fogelin, Robert & Sinnott-Armstrong, Walter. (2001). Understanding A r guments , An Introduction to Informal Logic , 6 th ed. Belmont, CA: Wadsworth.

Freeman, James B. (1988.) Thinking Logically , Basic Concepts of Reaso n ing . Englewood Cliffs, NJ: Prentice-Hall.

Grennan, Wayne . (1984). Argument Evaluation . Lanham, MD: University Press of America.

Govier, Trudy. (2001). A Practical Study of Argument , 5 th ed. Belmont, CA: Wadsworth.

O’Keefe, Daniel J. (1977). Two concepts of argument. Journal of the Amer i can Forensic Association , 13 , 121-128.

O‘Keefe, Daniel J. (1982). The concepts of argument and arguing. In J. R. Cox & C. A. Willard (Eds.), Advances in Argumentation Theory and R e search , pp. 3-23. Carbondale, IL: Southern Illinois University Press.

  • © J. Anthony Blair ↵
  • According to the Innocence Project, “Eyewitness misidentification is the greatest contributing factor to wrongful convictions proven by DNA testing, playing a role in more than 70% of convictions [in the U.S.A.] overturned through DNA testing nationwide.” (https://www.innocenceproject.org/causes/eyewitness-misidentification/, viewed August 2017). ↵
  • I owe the general organization and many of the specific ideas of this chapter to a series of lectures by Jean Goodwin at the Summer Institute on Argumentation sponsored by the Centre for Research in Reasoning, Argumentation and Rhetoric at the University of Windsor. ↵

Studies in Critical Thinking Copyright © by J. Anthony Blair is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Logo for Pressbooks

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

21 Arguments VI: Inductive Arguments

I. Introduction 

The last chapter introduced the distinction between deductive and inductive arguments. Deductive arguments are those whose conclusion is supposed to follow with logical necessity from the premises, while inductive arguments are those that aim to establish a conclusion as only being probably true, given the premises.

To define arguments in this way is to define them in terms of their aim  or  intent . That means there is a question as to whether the intention succeeds or not. One of the things that marks out inductive from deductive arguments is that there are  degrees of success possible for inductive arguments. That’s because we’re reasoning about claims that involve probability and uncertainty. Deductive arguments, by contrast, are like on-off switches. Either they work logically, or they don’t.

So, let’s start this chapter by defining terms that will let us talk about successful and unsuccessful inductive arguments. For this we use the language of strength and weakness, which, just like real strength and weakness, come in degrees.

  • A strong argument is an inductive argument that succeeds in having its conclusion be probably true, given the truth of the premises.
  • A weak argument is an inductive argument that fails in having its conclusion be probably true, even given the truth of the premises.

With this in mind, let’s next see how we can identify inductive arguments. Then we’ll put these things together and see how we can determine when the arguments we’ve identified are strong or weak.

II. Identifying Inductive Arguments

There’s an art to knowing when you’ve got an inductive argument on your hands, and with practice you can become good at it. The general idea is to think about the reasons being offered for a claim and to ask whether someone offering those reasons is doing so in a way that says or implies that there is some  uncertainty involved, and thus some degree of probability of the conclusion being true. Here are some things to look for that can help you do this.

1. Just as the parts of an argument often have indicator words that clue you in to what you’re looking at, there are certain words and phrases that often – but not always!  – show up to make clear that a conclusion is being inductively rather than deductively drawn. These include the following (but I bet you can think of other words that function in a similar way once you see how these work):

Inductive Argument Indicator Words

there’s a good chance that

in all likelihood

2. Arguments whose conclusion is a claim about the future , where it is made based on t he way things have typically happened in the past , are inductive. That’s because, even if experience provides a good basis for making predictions, the future is not fully knowable and can always surprise us.

Arguments for Claims about the Future

It rained yesterday, and it’s raining today. Therefore, it will rain tomorrow.

The Pirates did not make it to the playoffs the last three years in a row. So, they probably won’t make it to the playoffs next year either.

The sun will rise in the east tomorrow, for it has risen in the east every day for the last 4.5 billion years.

The Democrats will likely pick up seats in Congress, because midterm election years tend to favor the party that’s in the minority.

3. Generalizations are arguments that involve making a claim about a large group if things (or people) based on what is known about a small subset of that group. These are always inductive. Lots of claims in social sciences, health sciences, and the like, are supported by arguments of this kind. We’ll go into these in detail in the next chapter.

Examples of Generalizations

You have shortness of breath, coughing, and have lost your sense of smell. Those are widespread symptoms among people diagnosed with COVID-19. There’s thus a good chance that you are infected with COVID-19.

You should eat more fiber in your diet, for a study of several hundred people on a high-fiber diet showed a variety of improved health outcomes, and you should try to have good health outcomes.

A large survey of people that looked at their salaries and levels of educational achievement found that most of those with higher salaries had completed at least a four-year college degree. Therefore, people who complete a college degree tend to earn more than those who do not.

A vaccine was tested on a sample of several thousand people and it proved effective. Therefore, the vaccine will be effective for the entire population.

I met a person from the Upper Peninsula of Michigan the other day, and she had a very strange accent. I bet all those people up there talk strangely.

4. Analogies/analogical arguments  are arguments in which a prediction is made about how two things (or people or groups) are likely to be similar based on known similarities  between them. These are always inductive. (These will also be dealt with in more detail in the chapter after the one on generalizations.)

Examples of Analogies/Analogical Arguments

Cats have eyes that are physiologically very similar to human eyes. When mascara was put into cats eyes in a study, they became mildly inflamed. Thus, it’s likely that the same mascara will inflame human eyes if it comes into contact with them.

Dogs have four legs and like to bark. Cats have four legs. Therefore, cats probably like to bark too.

McDonalds has inexpensive burgers and fries, and it pays its workers low wages. Burger King has inexpensive burgers and fries. So I bet it pays its workers low wages too.

Note: the first of these examples of analogies is a real-world example of how animals are used to test the safety of cosmetic products. There is a factual issue about the effectiveness  of such testing as well as an ethical issue about whether it is  inhumane or not. The analogical argument given here presumes that such testing is an effective way to determine the truth of non-evaluative claims, such as the conclusion in this argument about mascara and its effect on human eyes. But even if such non-evaluative arguments are strong, they do not settle one way or another the issue of the ethical acceptability of such testing.

Phil-P102 Critical Thinking and Applied Ethics Copyright © 2020 by R. Matthew Shockey is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License , except where otherwise noted.

Share This Book

  • They do not hold themselves or those with whom they ego-identify to the same intellectual standards to which they hold opponents.
  • They do not reason empathically within points of view or frames of reference with which they disagree;
  • They tend to think monologically (within one or more narrow perspectives).
  • They do not genuinely accept, though they may verbally espouse, the values of fairminded critical thinking.
  • They use intellectual skills selectively and self-deceptively to foster and serve their selfish interests at the expense of truth.
  • They use critical thinking skills to identify flaws in the reasoning of others and sophisticated arguments to refute others’ arguments before giving those arguments due consideration.
  • They routinely justify their irrational thinking through highly sophisticated rationalizations.
  • They manipulate others to get what they want, rather than acting in good faith.

weak vs strong critical thinking

Sage-Advices

Collection of recommendatory guides

What is the difference between weak sense and strong-sense critical thinking?

Table of Contents

  • 1 What is the difference between weak sense and strong-sense critical thinking?
  • 2 How would you describe a strong-sense critical thinker?
  • 3 How does critical thinking differ from ordinary thinking?
  • 4 How can you move to having a strong sense of critical thinking?
  • 5 How does critical thinking differ from critical reading?
  • 6 What are the five pillars of critical thinking?
  • 7 What are examples of personal strengths?
  • 8 What is cognitive weakness?

Weak-sense critical thinkers ignore the flaws in their own thinking and often seek to win an argument through intellectual trickery or deceit. Strong-sense critical thinkers strive to be ethical and empathize with others’ viewpoints.

How would you describe a strong-sense critical thinker?

Strong-sense critical thinking is defined by a consistent pursuit or what is intellectually fair and just. Strong-Sense critical thinkers strive to be ethical and empathize with others’ viewpoints. They will entertain arguments with which they do not agree and change their views when confronted with superior reasoning.

What are some weaknesses of critical thinking?

Weak critical thinking skills show themselves in many ways:

  • dangerous and costly errors,
  • repeated mistakes,
  • bad decisions,
  • failed systems,
  • inaction when action is needed, the giving of bad advice,
  • inaccurate assumptions, the poor design of training programs,
  • the poor evaluation of educational curricula,

What are strongest thinking skills?

The key critical thinking skills are: analysis, interpretation, inference, explanation, self-regulation, open-mindedness, and problem-solving.

How does critical thinking differ from ordinary thinking?

What’s the difference? Thinking is the mental process, the act and the ability to produce thoughts. Meanwhile, critical thinking often means “thinking about thinking.” In a sense, it is a deeper form of thinking about a particular issue or situation before actually deciding and acting.

How can you move to having a strong sense of critical thinking?

7 Ways to Think More Critically

  • Ask Basic Questions. “The world is complicated.
  • Question Basic Assumptions.
  • Be Aware of Your Mental Processes.
  • Try Reversing Things.
  • Evaluate the Existing Evidence.
  • Remember to Think for Yourself.
  • Understand That No One Thinks Critically 100% of the Time.

How can you tell if someone is a critical thinker?

Strong critical thinkers demonstrate the following characteristics:

  • inquisitiveness with regard to a wide range of issues.
  • concern to become and remain well-informed.
  • attentive to opportunities to use critical thinking.
  • self-confidence in one’s own abilities to reason.
  • open-mindedness regarding divergent world views.

What are 5 characteristics of critical thinking?

These are: Dispositions: Critical thinkers are skeptical, open-minded, value fair-mindedness, respect evidence and reasoning, respect clarity and precision, look at different points of view, and will change positions when reason leads them to do so. Criteria: To think critically, must apply criteria.

How does critical thinking differ from critical reading?

We can distinguish between critical reading and critical thinking in the following way: Critical reading is a technique for discovering information and ideas within a text. Critical thinking is a technique for evaluating information and ideas, for deciding what to accept and believe.

What are the five pillars of critical thinking?

1. %Introduction 2 2. %Logic%and%Argumentation 6 3. %Logic%for%Critical%Thinkers 11 4.

What are strengths and weakness?

What are personal strengths and weaknesses?

What are examples of personal strengths?

  • Open-Mindedness.
  • Love of Learning.
  • Perspective.
  • Persistence.

What is cognitive weakness?

Begin typing your search term above and press enter to search. Press ESC to cancel.

Privacy Overview

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Critical Thinking Name Institution Describe the difference between weak-sense and strong-sense critical thinkers. (100 words

Profile image of Peter Maingi

Related Papers

halimah Farin

According to Laws of The Republic Indonesia Number 12 in 2012 about Higher Education article 5, one of the main purposes of higher education is to promote the potentially development of students in order to be man of faith and fear of God Almighty and noble, healthy, knowledgeable, skilled, creative, independent, skilled, competent, and cultured for the sake of the nation. Therefore, the students of higher level should be promoted to have critical, reflective and analytical abilities. Although students at university levels should be able to develop this kind of thought, thinking critically is not simply acquired; it ought to be promoted and practiced constantly trough effective aids. A useful mean to foster critical thinking in this context is reading, and more specifically comprehension reading game " Brain Teasers ". Reading without comprehension is simply word calling. Effective comprehends not only make sense of the text, but are also able to use the information it contains. They are able to think thoughtfully or deeply and to make personal connections as they analyze and question what they are reading, hearing, and seeing. Studies showed that developing students' abilities to take critical literacy boldness when reading texts is an important aspect of literacy instruction. Interpreting texts through a critical literacy lens can help students become aware of the messages that texts communicate; who should receive privileges; and who has been or continues to be oppressed. As students learn how to engage in critical

weak vs strong critical thinking

katherine velasquez

Elvis O Kauka

This study sought to philosophically explore the nature of critical thinking in relation to critical pedagogy as a solution to drug abuse among Kenyan secondary school students. The study uses the analytical method alongside the Cartesian methodic doubt in examining the student as an inherent critical thinker, the inefficiencies of current solutions to menace of drug abuse and in proposing a better way out of drug abuse. The first cause of drug abuse has been observed in this study to be the perversion of curiosity and therefore the solution to the problem should be based on addressing 'incorrect thinking' through pedagogies that seriously promote critical thinking. This study recommends that training and in servicing teachers in critical pedagogy and critical thinking should be undertaken by bodies responsible for teacher education.

Mehrshad Ahmadian

Tom Lombardo

Psychological Studies

Jayanti Basu , Oindrila Bhattacharya

The virtue of humility is lauded by most authorities but opinions of what it is, what it includes and what it does not are multifarious. Religious and philosophical traditions in India stress its role in emancipating the ego and providing an understanding for one’s perspective as contrasted against the magnanimity of the Almighty, the Supernatural or the Universe. Most academicians within scientific psychological realm also look upon humility as a virtue. Accredited as a powerful tool for personal, social and organisational well-being, humility, as a moral construct, deserves a thorough and detailed exploration to reveal what it entails, what its corollaries are, and how it can be measured. It is particularly useful in Indian context, as indigenous traditions have always emphasized humility. However, such efforts have remained relatively neglected till recent years. Of course, a few researchers with emphasis on moral and positive psychology have probed and prodded this concept to lay bare its comprising elements and to build tools to measure it. These attempts have been discussed here. Information was culled from surveying the scientific literature of the past four decades from psychological and philosophical journals and handbooks. Its overlap with Indian concept of humility has been discussed, and the unresolved questions about its nuances are put forward for future research endeavor. Keywords: Humility, Positive Psychology, Moral Psychology

Hui Meng Kow

Despite diverse research on critical thinking, there is little empirical research regarding teachers’ perspectives on the infusion of critical thinking, particularly in primary schools. This qualitative multiple case study within the interpretivist paradigm sought to generate explanatory theory on the infusion of critical thinking from the perspectives of six primary school in-service expert teachers of English Language in Singapore. Data collected and analysed using grounded theory methods resulted in theoretical propositions which support the creation of a critical thinking culture in school. Findings of the study will benefit policy makers and provide primary school teachers with insights into more effective strategies for teaching critical thinking.

Educational Theory

Barbara Thayer-Bacon

RELATED PAPERS

Dr. Punam Bansal

… : The Unstable Boundaries of Kristeva's Polis

Bahman Tamaddon

Matthew Etherington

Jason Baehr (ed.), Intellectual Virtues and Education: Essays in Applied Virtue Epistemology (London: Routledge, 2015), 54-70.

Ian James Kidd

Educational Philosophy and Theory

Jennifer W Mulnix

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

COMMENTS

  1. Critical Thinking Journal/Weak-sene, Strong-sense, and Probabilities

    But for now: Journal 3: Weak-sense, Strong-sense, and Probabilities. I agree with Paul. Strong-sense thinking is more appropriate for lots modern problems. International conflict, curricular design, and global warming all require strong-sense critical thinking, for example. (Ordering dinner at a restaurant typically does not.)

  2. A Crash Course in Critical Thinking

    Here is a series of questions you can ask yourself to try to ensure that you are thinking critically. Conspiracy theories. Inability to distinguish facts from falsehoods. Widespread confusion ...

  3. 4. Strong versus Weak Arguments

    The distinction between strong and weak arguments, on the other hand, is a matter of degree. It does make sense to say that an argument is very strong, or moderately strong, or moderately weak or very weak. But the threshold between weak and strong arguments isn't fixed or specified by logic. It is, in fact, a conventional choice that we make.

  4. Thinking Tools

    Weak versus Strong Critical Thinking. Critical thinking involves basic intellectual skills, but these skills can be used to serve two incompatible ends: self-centeredness or fair-mindedness. As we develop the basic intellectual skills that critical thinking entails, we can begin to use those skills in a selfish or in a fair-minded way.

  5. 5.2: Cogency and Strong Arguments

    Inductive arguments are said to be either strong or weak. There's no absolute cut-off between strength and weakness, but some arguments will be very strong and others very weak, so the distinction is still useful even if it is not precise. A strong argument is one where, if the premises were true, the conclusion would be very likely to be true.

  6. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  7. PDF Teaching Critical Thinking in the Strong Sense

    This revised paper, originally published in Informal Logic in (1982), is one of the most influential of Richard Paul's writings among philosophers interested in critical thinking. In it, Paul questions some of the major assumptions that underlie much instruction in critical thinking at the college level. In so doing, Paul implicitly broadens ...

  8. Understanding the Complex Relationship between Critical Thinking and

    Scores correspond to superior (86-100), strong (79-85), moderate (70-78), weak (63-69), or not manifested (62 and below) skills. ... Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. Research findings and recommendations.

  9. On the Invidious Distinction Between Weak and Strong Critical Thinking

    The distinction between weak and strong forms of critical thinking is a hallmark of Richard Paul's pedagogy. He maintains that good reasoning entails a personal commitment to fair-mindedness. In this brief essay, I argue that Paul's conception of fair-mindedness conflates cognitive empathy with empathetic concern and altruism. One's understanding another's perspective by no means ...

  10. ERIC

    The levels of critical thinking proposed by R. Paul are described and his theory is compared with that of the procedural knowing approach of M. F. Belenky, B. M. Clinchy, N. R. Goldberger, and J. M. Tarule (1986). The distinction between strong sense and weak sense critical thinking is unique to Paul and central to his theory. Critical thinking in the strong sense expects a person to have ...

  11. PDF Critical Thinking Asking the Right Questions

    You need critical reading and listening skills to distinguish between clear vs. sloppy thinking. You must always be alert for such sloppyness, this you must be active , by constantly asking questions . 6 Weak vs. Strong Critical Thinking Weak: Critical thinking to defend your current beliefs. Strong: Use the same skills to evaluate all claims ...

  12. PDF Richard William Paul

    strong-sense critical thinking and weak-sense critical thinking. While critical thinking in the weak sense is used in ways that are manipulative, selfish, and in other ways unethical, critical thinking in the strong sense adheres to the standard of fairness. On Paul's view, then, critical thinking is not thinking that is merely skilled; if our

  13. Quiz: Strong vs Weak Arguments

    A strong argument is not valid. Having the phrase "Almost all ... " allows room for the presence of astronauts who do no love hamburgers. If that's the case, then Terry could be a part of that group and, thus, not love hamburgers, making this a weaker argument. Learn the fundamental concepts for identifying and evaluating good and bad arguments.

  14. How to Evaluate Arguments

    There are six faces and the dice is likely to land on any of them. Since six only shows on one face, there's only a one out of six chance that the dice will land on six. And one out of six is a lot less than 50%. It is thus possible for the premise of the argument to be true, but the conclusion false. Arguments can be valid even if they are ...

  15. Critical Thinking

    WEAK VS. STRONG CRITICAL THINKING. Basically, there are 2 schools of Critical Thinking: Weak Critical Thinking is based on Self-centredness to win regardless of truth, while Strong Critical Thinking is based on Fair-mindedness to find truth regardless of own agenda & believe. From own experience, I can confirm: It's so easy to spot flaws in ...

  16. How to Spot and Evaluate Weak Arguments: A Critical Thinking ...

    Once you spot a weak argument, you can evaluate it by asking yourself some questions. Start by considering the main conclusion of the argument and if it is clear and relevant. Then, examine the ...

  17. Arguments and Critical Thinking

    2.2 Critical thinking about things other than arguments. Many critical thinking textbooks focus exclusively on the analysis and evaluation of arguments. While the centrality of arguments to the art of critical thinking is unquestionable, a strong case can be made that critical thinking has other objectives in addition to appreciating arguments.

  18. Arguments VI: Inductive Arguments

    A strong argument is an inductive argument that succeeds in having its conclusion be probably true, given the truth of the premises. A weak argument is an inductive argument that fails in having its conclusion be probably true, even given the truth of the premises. With this in mind, let's next see how we can identify inductive arguments.

  19. Wall of Barriers Activities: Strong Sense Vs. Weak Sense Critical Thinking

    At the heart of the intellectual virtues is the distinction between strong sense critical thinking and weak sense critical thinking: Strong-sense critical thinkers are fundamentally concerned with reasoning at the highest level of skill, considering all the important available evidence, and respecting all relevant viewpoints.

  20. PDF by Browne and Keeley (2007)

    Panning for Gold: Asking Critical Questions • What other people say cannot be taken whole-sale because often they may be based on sloppy arguments and unfounded claims. • You need critical reading and listening skills to distinguish between clear vs. sloppy thinking. • You must always be alert for such sloppyness, this you must be

  21. Distinguishing Strong vs Weak Inductive Reasoning

    Inductive reasoning is a critical thinking skill that involves drawing general conclusions from specific observations. It's a cornerstone of scientific inquiry and everyday decision-making ...

  22. C168 Critical Thinking and Logic Flashcards

    1. Consider all thinking by the same standards. 2. Expect good reasoning from supporters as well as opponents. 3. Apply the same critical criteria to our own logic as to others' reasoning. 4. Recognize the actual strengths and weaknesses of any reasoning we assess. Weak-sense vs. strong-sense thinking.

  23. What is the difference between weak sense and strong-sense critical

    Strong-sense critical thinking is defined by a consistent pursuit or what is intellectually fair and just. Strong-Sense critical thinkers strive to be ethical and empathize with others' viewpoints. They will entertain arguments with which they do not agree and change their views when confronted with superior reasoning.

  24. Strong Vs Weak Thinking

    Strong vs Weak Thinking - Free download as PDF File (.pdf), Text File (.txt) or read online for free. strong vs weak thinking

  25. Critical Thinking Name Institution Describe the difference between weak

    Critical Thinking Name Institution Describe the difference between weak-sense and strong-sense critical thinkers. (100 words) A weak sense critical thinker is not able to recognize the flaws in his/her own thinking. Weak sense critical thinkers notice mistakes in the thinking of others. They can use emotional trickery to win arguments.