100+ Great Chemistry Research Topics

image

Table of contents

  • 1 What are the best chemistry research topics?
  • 2 5 Tips for Writing Chemistry Research Papers
  • 3 Chemical Engineering Research Topics
  • 4 Organic Сhemistry Research Topics
  • 5 Іnorganic Сhemistry Research Topics
  • 6 Biomolecular Сhemistry Research Topics
  • 7 Analytical Chemistry Research Topics
  • 8 Computational Chemistry Research Topics
  • 9 Physical Chemistry Research Topics
  • 10 Innovative Chemistry Research Topics
  • 11 Environmental Chemistry Research Topics
  • 12 Green Chemistry Research Topics
  • 13.1 Conclusion

Do you need a topic for your chemistry research paper? Are you unsure of where to start? Don’t worry – we’re here to help. In this post, we’ll go over a series of the best chemistry research paper topics as well as Tips for Writing Chemistry Research Papers on different topics. By the time you finish reading this post, you’ll have plenty of ideas to get started on your next research project!

There are many different subfields of chemistry, so it can be tough to find interesting chemistry topics to write about. If you’re struggling to narrow down your topic, we’ll go over lists of topics in multiple fields of study.

What are the best chemistry research topics?

Doing research is important to help scientists learn more about the world around us. By researching different compounds and elements, we can learn more about how they interact with one another and how they can be used to create new products or improve existing ones.

There are many different topics that you can choose to research in chemistry. Here are just a few examples:

  • The history of chemistry and how it has evolved over time
  • How different chemicals react with one another
  • How to create new compounds or improve existing ones
  • The role of chemistry in the environment
  • The health effects of different chemicals

5 Tips for Writing Chemistry Research Papers

Once you have chosen a topic for your research paper , it is important to follow some tips to ensure that your paper is well-written and accurate. Here are a few tips to get you started:

  • Start by doing some background research on your topic. This will help you understand the basics of the topic and give you a good foundation to build your paper on.
  • Make sure to cite all of the sources that you use in your paper. This will help to show where you got your information and will also help to add credibility to your work.
  • Be sure to proofread your paper before you submit it. This will ensure that there are no errors and that your paper is clear and concise.
  • Get help from a tutor or friend if you are struggling with your paper. They may be able to offer helpful advice or feedback.
  • Take your time when writing your research paper . This is not a race, and it is important to make sure that you do a good job on your research.

By following these tips, you can be sure that your chemistry research paper will be a success! So what are you waiting for? Let’s go over some of the best research paper topics out there.

Chemical Engineering Research Topics

Chemical Engineering is a branch of engineering that deals with the design and application of chemical processes. If you’re wondering how to choose a paper topic, here are some ideas to inspire you:

  • How to create new alloy compounds or improve existing ones
  • The health effects of the food industry chemicals
  • Chemical engineering and sustainable development
  • The future of chemical engineering
  • Chemical engineering and the food industry
  • Chemical engineering and the pharmaceutical industry
  • Chemical engineering and the cosmetics industry
  • Chemical engineering and the petrochemical industry

These are just a few examples – there are many more possibilities out there! So get started on your research today. Who knows what you might discover!

more_shortcode

Organic Сhemistry Research Topics

Organic chemistry is the study of carbon-containing molecules. There are many different organic chemistry research topics that a student could choose to focus on and here are just a few examples of possible research projects in organic chemistry:

  • Investigating new methods for synthesizing chiral molecules
  • Studying the structure and reactivity of carbon nanotubes
  • Investigating metal complexes with organometallic ligands
  • Designing benzene derivatives with improved thermal stability
  • Exploring new ways to control the stereochemistry of chemical reactions
  • Studying the role of enzymes in organic synthesis
  • Investigating new strategies for combating drug resistance
  • Developing new methods for detecting explosives residues
  • Studying the photochemistry of organic molecules
  • Studying the behavior of organometallic compounds in biological systems

Іnorganic Сhemistry Research Topics

Inorganic Chemistry is the study of the chemistry of materials that do not contain carbon. Unlike other chemistry research topics, these include elements such as metals, minerals, and inorganic compounds. If you are looking for inorganic chemistry research topics on inorganic chemistry, here are some ideas to get you started:

  • How different metals react with one another
  • How to create new alloys or improve existing ones
  • The role of inorganic chemistry in the environment
  • Inorganic chemistry and sustainable development
  • The future of inorganic chemistry
  • Inorganic chemistry and the food industry
  • Inorganic chemistry and the pharmaceutical industry
  • Atomic structure progressive scale grading
  • Inorganiс Сhemistry and the cosmetics industry

Biomolecular Сhemistry Research Topics

Biomolecular chemistry is the study of molecules that are important for life. These molecules can be found in all living things, from tiny bacteria to the largest animals. Researchers who work in this field use a variety of techniques to learn more about how these molecules function and how they interact with each other.

If you are looking for essential biomolecular chemistry research topics, here are some ideas to get you started:

  • The structure and function of DNA
  • The structure and function of proteins
  • The role of carbohydrates in the body
  • The role of lipids in the body
  • How enzymes work
  • The role of biochemistry in heart disease
  • Cyanides and their effect on the body
  • The role of biochemistry in cancer treatment
  • The role of biochemistry in Parkison’s disease treatment
  • The role of biochemistry in the immune system

The possibilities are endless for someone willing to dedicate some time to research.

Analytical Chemistry Research Topics

Analytical Chemistry is a type of chemistry that helps scientists figure out what something is made of. This can be done through a variety of methods, such as spectroscopy or chromatography. If you are looking for research topics, here are some ideas to get you started:

  • How food chemicals react with one another
  • Mass spectrometry
  • Analytical aspects of gas and liquid chromatography
  • Analytical chemistry and sustainable development
  • Atomic absorption spectroscopy methods and best practices
  • Analytical chemistry and the pharmaceutical industry in Ibuprofen consumption
  • Analytical chemistry and the cosmetics industry in UV protectors
  • Dispersive x-ray analysis of damaged tissues

Analytical chemistry is considered by many a complex science and there is a lot yet to be discovered in the field.

more_shortcode

Computational Chemistry Research Topics

Computational chemistry is a way to use computers to help chemists understand chemical reactions. This can be done by simulating reactions or by designing new molecules. If you are looking for essential chemistry research topics in computational chemistry, here are some ideas to get you started:

  • Molecular mechanics simulation
  • Reaction rates of complex chemical reactions
  • Designing new molecules: how can simulation help
  • The role of computers in the study of quantum mechanics
  • How to use computers to predict chemical reactions
  • Using computers to understand organic chemistry
  • The future of computational chemistry in organic reactions
  • The impacts of simulation on the development of new medications
  • Combustion reaction simulation impact on engine development
  • Quantum-chemistry simulation review

Computers are cutting-edge technology in chemical research and this relatively new field of study has a ton yet to be explored.

Physical Chemistry Research Topics

Physical chemistry is the study of how matter behaves. It looks at the physical and chemical properties of atoms and molecules and how they interact with each other. If you are looking for physical chemistry research topics, here are some ideas to get you started:

  • Standardization of pH scales
  • Structure of atom on a quantum scale
  • Bonding across atoms and molecules
  • The effect of temperature on chemical reactions
  • The role of light in in-body chemical reactions
  • Chemical kinetics
  • Surface tension and its effects on mixtures
  • The role of pressure in chemical reactions
  • Rates of diffusion in gases and liquids
  • The role of entropy in chemical reactions

Here are just a few samples, but there are plenty more options! Start your research right now!

Innovative Chemistry Research Topics

Innovative chemistry is all about coming up with new ideas and ways to do things. This can be anything from creating new materials to finding new ways to make existing products. If you are looking for ground-breaking chemistry research topics, here are some ideas to get you started:

  • Amino acids side chain effects in protein folding
  • Chemistry in the production of nanomaterials
  • The role of enzymes in chemical reactions
  • Photocatalysis in 3D printing
  • Avoiding pesticides in agriculture
  • Combining chemical and biological processes
  • Gene modification in medicinal chemistry
  • The role of quantum mechanics in chemical reactions
  • Astrochemical research on extraterrestrial molecules
  • Spectroscopy signatures of pressurized organic components

If you need a hand, there are several sites that also offer research papers for sale and can be a great asset as you work to create your own research papers.

Whatever route you decide to take, good luck! And remember – the sky’s the limit when it comes to research! So get started today and see where your studies may take you. Who knows, you might just make a breakthrough discovery!

Environmental Chemistry Research Topics

Environmental Chemistry is the study of how chemicals interact with the environment. This can include anything from the air we breathe to the water we drink. If you are looking for environmental chemistry research topics, here are some ideas to get you started:

  • Plastic effects on ocean life
  • Urban ecology
  • The role of carbon in climate change
  • Air pollution and its effects
  • Water pollution and its effects
  • Chemicals in food and their effect on the body
  • The effect of chemicals on plant life
  • Earth temperature prediction models

A lot of research on the environment is being conducted at the moment because the environment is in danger. There are a lot of environmental problems that need to be solved, and research is the key to solving them.

Green Chemistry Research Topics

Green chemistry is the study of how to make products and processes that are environmentally friendly. This can include anything from finding new ways to recycle materials to developing new products that are biodegradable. If you are looking for green chemistry research topics, here are some ideas to get you started:

  • Recycling and reuse of materials
  • Developing biodegradable materials
  • Improving existing recycling processes
  • Green chemistry and sustainable development
  • The future of green chemistry
  • Green chemistry and the food industry
  • Green chemistry and the pharmaceutical industry
  • Green chemistry and the cosmetics industry

A more environmentally friendly world is something we all aspire for and a lot of research has been conducted on how we can achieve this, making this one of the most promising areas of study. The results have been varied, but there are a few key things we can do to make a difference.

Controversial Chemistry Research Topics

Controversial chemistry is all about hot-button topics that people are passionate about. This can include anything from the use of chemicals in warfare to the health effects of different chemicals. If you are looking for controversial topics to write about , here are some ideas to get you started:

  • The use of chemicals in warfare
  • Gene modification in human babies
  • Bioengineering
  • How fast food chemicals affect the human brain
  • The role of the government in regulating chemicals
  • Evolution of cigarette chemicals over time
  • Chemical effects of CBD oils
  • Antidepressant chemical reactions
  • Synthetic molecules replication methods
  • Gene analysis

Controversial research papers often appear in the media before it has been peer-reviewed and published in a scientific journal. The reason for this is that the media is interested in stories that are new, exciting, and generate a lot of debate.

Chemistry is an incredibly diverse and interesting field, with many controversial topics to write about. If you are looking for a research topic, consider the examples listed in this article. With a little bit of effort, you are sure to find a topic that is both interesting and within your skillset.

In order to be a good researcher, it is important to be able to think critically and solve problems. However, innovation in chemistry research can be challenging. When thinking about how to innovate, it is important to consider both the practical and theoretical aspects of your research. Additionally, try to build on the work of others in order to create something new and unique. With a little bit of effort, you are sure to be able to find a topic that is both interesting and within your skillset.

Happy writing!

Readers also enjoyed

Exploring Cutting-Edge Trends: Engineering Research Paper Topics

WHY WAIT? PLACE AN ORDER RIGHT NOW!

Just fill out the form, press the button, and have no worries!

We use cookies to give you the best experience possible. By continuing we’ll assume you board with our cookie policy.

chemistry quantitative research topics

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

100+ Quantitative Research Topics For Students

Quantitative Research Topics

Quantitative research is a research strategy focusing on quantified data collection and analysis processes. This research strategy emphasizes testing theories on various subjects. It also includes collecting and analyzing non-numerical data.

Quantitative research is a common approach in the natural and social sciences , like marketing, business, sociology, chemistry, biology, economics, and psychology. So, if you are fond of statistics and figures, a quantitative research title would be an excellent option for your research proposal or project.

How to Get a Title of Quantitative Research

How to make quantitative research title, what is the best title for quantitative research, amazing quantitative research topics for students, creative quantitative research topics, perfect quantitative research title examples, unique quantitative research titles, outstanding quantitative research title examples for students, creative example title of quantitative research samples, outstanding quantitative research problems examples, fantastic quantitative research topic examples, the best quantitative research topics, grade 12 quantitative research title for students, list of quantitative research titles for high school, easy quantitative research topics for students, trending topics for quantitative research, quantitative research proposal topics, samples of quantitative research titles, research title about business quantitative.

Finding a great title is the key to writing a great quantitative research proposal or paper. A title for quantitative research prepares you for success, failure, or mediocre grades. This post features examples of quantitative research titles for all students.

Putting together a research title and quantitative research design is not as easy as some students assume. So, an example topic of quantitative research can help you craft your own. However, even with the examples, you may need some guidelines for personalizing your research project or proposal topics.

So, here are some tips for getting a title for quantitative research:

  • Consider your area of studies
  • Look out for relevant subjects in the area
  • Expert advice may come in handy
  • Check out some sample quantitative research titles

Making a quantitative research title is easy if you know the qualities of a good title in quantitative research. Reading about how to make a quantitative research title may not help as much as looking at some samples. Looking at a quantitative research example title will give you an idea of where to start.

However, let’s look at some tips for how to make a quantitative research title:

  • The title should seem interesting to readers
  • Ensure that the title represents the content of the research paper
  • Reflect on the tone of the writing in the title
  • The title should contain important keywords in your chosen subject to help readers find your paper
  • The title should not be too lengthy
  • It should be grammatically correct and creative
  • It must generate curiosity

An excellent quantitative title should be clear, which implies that it should effectively explain the paper and what readers can expect. A research title for quantitative research is the gateway to your article or proposal. So, it should be well thought out. Additionally, it should give you room for extensive topic research.

A sample of quantitative research titles will give you an idea of what a good title for quantitative research looks like. Here are some examples:

  • What is the correlation between inflation rates and unemployment rates?
  • Has climate adaptation influenced the mitigation of funds allocation?
  • Job satisfaction and employee turnover: What is the link?
  • A look at the relationship between poor households and the development of entrepreneurship skills
  • Urbanization and economic growth: What is the link between these elements?
  • Does education achievement influence people’s economic status?
  • What is the impact of solar electricity on the wholesale energy market?
  • Debt accumulation and retirement: What is the relationship between these concepts?
  • Can people with psychiatric disorders develop independent living skills?
  • Children’s nutrition and its impact on cognitive development

Quantitative research applies to various subjects in the natural and social sciences. Therefore, depending on your intended subject, you have numerous options. Below are some good quantitative research topics for students:

  • The difference between the colorific intake of men and women in your country
  • Top strategies used to measure customer satisfaction and how they work
  • Black Friday sales: are they profitable?
  • The correlation between estimated target market and practical competitive risk assignment
  • Are smartphones making us brighter or dumber?
  • Nuclear families Vs. Joint families: Is there a difference?
  • What will society look like in the absence of organized religion?
  • A comparison between carbohydrate weight loss benefits and high carbohydrate diets?
  • How does emotional stability influence your overall well-being?
  • The extent of the impact of technology in the communications sector

Creativity is the key to creating a good research topic in quantitative research. Find a good quantitative research topic below:

  • How much exercise is good for lasting physical well-being?
  • A comparison of the nutritional therapy uses and contemporary medical approaches
  • Does sugar intake have a direct impact on diabetes diagnosis?
  • Education attainment: Does it influence crime rates in society?
  • Is there an actual link between obesity and cancer rates?
  • Do kids with siblings have better social skills than those without?
  • Computer games and their impact on the young generation
  • Has social media marketing taken over conventional marketing strategies?
  • The impact of technology development on human relationships and communication
  • What is the link between drug addiction and age?

Need more quantitative research title examples to inspire you? Here are some quantitative research title examples to look at:

  • Habitation fragmentation and biodiversity loss: What is the link?
  • Radiation has affected biodiversity: Assessing its effects
  • An assessment of the impact of the CORONA virus on global population growth
  • Is the pandemic truly over, or have human bodies built resistance against the virus?
  • The ozone hole and its impact on the environment
  • The greenhouse gas effect: What is it and how has it impacted the atmosphere
  • GMO crops: are they good or bad for your health?
  • Is there a direct link between education quality and job attainment?
  • How have education systems changed from traditional to modern times?
  • The good and bad impacts of technology on education qualities

Your examiner will give you excellent grades if you come up with a unique title and outstanding content. Here are some quantitative research examples titles.

  • Online classes: are they helpful or not?
  • What changes has the global CORONA pandemic had on the population growth curve?
  • Daily habits influenced by the global pandemic
  • An analysis of the impact of culture on people’s personalities
  • How has feminism influenced the education system’s approach to the girl child’s education?
  • Academic competition: what are its benefits and downsides for students?
  • Is there a link between education and student integrity?
  • An analysis of how the education sector can influence a country’s economy
  • An overview of the link between crime rates and concern for crime
  • Is there a link between education and obesity?

Research title example quantitative topics when well-thought guarantees a paper that is a good read. Look at the examples below to get started.

  • What are the impacts of online games on students?
  • Sex education in schools: how important is it?
  • Should schools be teaching about safe sex in their sex education classes?
  • The correlation between extreme parent interference on student academic performance
  • Is there a real link between academic marks and intelligence?
  • Teacher feedback: How necessary is it, and how does it help students?
  • An analysis of modern education systems and their impact on student performance
  • An overview of the link between academic performance/marks and intelligence
  • Are grading systems helpful or harmful to students?
  • What was the impact of the pandemic on students?

Irrespective of the course you take, here are some titles that can fit diverse subjects pretty well. Here are some creative quantitative research title ideas:

  • A look at the pre-corona and post-corona economy
  • How are conventional retail businesses fairing against eCommerce sites like Amazon and Shopify?
  • An evaluation of mortality rates of heart attacks
  • Effective treatments for cardiovascular issues and their prevention
  • A comparison of the effectiveness of home care and nursing home care
  • Strategies for managing effective dissemination of information to modern students
  • How does educational discrimination influence students’ futures?
  • The impacts of unfavorable classroom environment and bullying on students and teachers
  • An overview of the implementation of STEM education to K-12 students
  • How effective is digital learning?

If your paper addresses a problem, you must present facts that solve the question or tell more about the question. Here are examples of quantitative research titles that will inspire you.

  • An elaborate study of the influence of telemedicine in healthcare practices
  • How has scientific innovation influenced the defense or military system?
  • The link between technology and people’s mental health
  • Has social media helped create awareness or worsened people’s mental health?
  • How do engineers promote green technology?
  • How can engineers raise sustainability in building and structural infrastructures?
  • An analysis of how decision-making is dependent on someone’s sub-conscious
  • A comprehensive study of ADHD and its impact on students’ capabilities
  • The impact of racism on people’s mental health and overall wellbeing
  • How has the current surge in social activism helped shape people’s relationships?

Are you looking for an example of a quantitative research title? These ten examples below will get you started.

  • The prevalence of nonverbal communication in social control and people’s interactions
  • The impacts of stress on people’s behavior in society
  • A study of the connection between capital structures and corporate strategies
  • How do changes in credit ratings impact equality returns?
  • A quantitative analysis of the effect of bond rating changes on stock prices
  • The impact of semantics on web technology
  • An analysis of persuasion, propaganda, and marketing impact on individuals
  • The dominant-firm model: what is it, and how does it apply to your country’s retail sector?
  • The role of income inequality in economy growth
  • An examination of juvenile delinquents’ treatment in your country

Excellent Topics For Quantitative Research

Here are some titles for quantitative research you should consider:

  • Does studying mathematics help implement data safety for businesses
  • How are art-related subjects interdependent with mathematics?
  • How do eco-friendly practices in the hospitality industry influence tourism rates?
  • A deep insight into how people view eco-tourisms
  • Religion vs. hospitality: Details on their correlation
  • Has your country’s tourist sector revived after the pandemic?
  • How effective is non-verbal communication in conveying emotions?
  • Are there similarities between the English and French vocabulary?
  • How do politicians use persuasive language in political speeches?
  • The correlation between popular culture and translation

Here are some quantitative research titles examples for your consideration:

  • How do world leaders use language to change the emotional climate in their nations?
  • Extensive research on how linguistics cultivate political buzzwords
  • The impact of globalization on the global tourism sector
  • An analysis of the effects of the pandemic on the worldwide hospitality sector
  • The influence of social media platforms on people’s choice of tourism destinations
  • Educational tourism: What is it and what you should know about it
  • Why do college students experience math anxiety?
  • Is math anxiety a phenomenon?
  • A guide on effective ways to fight cultural bias in modern society
  • Creative ways to solve the overpopulation issue

An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones:

  • The link between global warming and climate change
  • What is the greenhouse gas impact on biodiversity and the atmosphere
  • Has the internet successfully influenced literacy rates in society
  • The value and downsides of competition for students
  • A comparison of the education system in first-world and third-world countries
  • The impact of alcohol addiction on the younger generation
  • How has social media influenced human relationships?
  • Has education helped boost feminism among men and women?
  • Are computers in classrooms beneficial or detrimental to students?
  • How has social media improved bullying rates among teenagers?

High school students can apply research titles on social issues  or other elements, depending on the subject. Let’s look at some quantitative topics for students:

  • What is the right age to introduce sex education for students
  • Can extreme punishment help reduce alcohol consumption among teenagers?
  • Should the government increase the age of sexual consent?
  • The link between globalization and the local economy collapses
  • How are global companies influencing local economies?

There are numerous possible quantitative research topics you can write about. Here are some great quantitative research topics examples:

  • The correlation between video games and crime rates
  • Do college studies impact future job satisfaction?
  • What can the education sector do to encourage more college enrollment?
  • The impact of education on self-esteem
  • The relationship between income and occupation

You can find inspiration for your research topic from trending affairs on social media or in the news. Such topics will make your research enticing. Find a trending topic for quantitative research example from the list below:

  • How the country’s economy is fairing after the pandemic
  • An analysis of the riots by women in Iran and what the women gain to achieve
  • Is the current US government living up to the voter’s expectations?
  • How is the war in Ukraine affecting the global economy?
  • Can social media riots affect political decisions?

A proposal is a paper you write proposing the subject you would like to cover for your research and the research techniques you will apply. If the proposal is approved, it turns to your research topic. Here are some quantitative titles you should consider for your research proposal:

  • Military support and economic development: What is the impact in developing nations?
  • How does gun ownership influence crime rates in developed countries?
  • How can the US government reduce gun violence without influencing people’s rights?
  • What is the link between school prestige and academic standards?
  • Is there a scientific link between abortion and the definition of viability?

You can never have too many sample titles. The samples allow you to find a unique title you’re your research or proposal. Find a sample quantitative research title here:

  • Does weight loss indicate good or poor health?
  • Should schools do away with grading systems?
  • The impact of culture on student interactions and personalities
  • How can parents successfully protect their kids from the dangers of the internet?
  • Is the US education system better or worse than Europe’s?

If you’re a business major, then you must choose a research title quantitative about business. Let’s look at some research title examples quantitative in business:

  • Creating shareholder value in business: How important is it?
  • The changes in credit ratings and their impact on equity returns
  • The importance of data privacy laws in business operations
  • How do businesses benefit from e-waste and carbon footprint reduction?
  • Organizational culture in business: what is its importance?

We Are A Call Away

Interesting, creative, unique, and easy quantitative research topics allow you to explain your paper and make research easy. Therefore, you should not take choosing a research paper or proposal topic lightly. With your topic ready, reach out to us today for excellent research paper writing services .

Leave a Reply Cancel reply

logo

240 Best Chemistry Research Topics and Ideas to Get Started

Table of Contents

Are you looking for unique chemistry research topics for your assignment? If yes, then this blog post is for you. We know how strenuous it is to gather interesting research ideas. However, more than collecting ideas, selecting one perfect topic from plenty of Chemistry research prompts is even tougher. Therefore, to ease your topic selection process, here, we have explained how to choose a good topic for your chemistry research paper. In addition to that, we have also recommended 200+ outstanding research topics on different branches of Chemistry. Continue reading this blog and get exclusive ideas for writing a brilliant chemistry thesis.

Chemistry Research Paper Writing

Chemistry is a branch of science that deals with the structure, composition, and properties of elements and compounds, the changes they undergo, and the natural laws that describe those changes. It is a complex subject that uses various study methods and contains a lot of chemical reactions and experiments. If you are a high school student or college student pursuing a degree in chemistry, then you can’t escape from submitting a chemistry project assignment or research paper.

Chemistry Research Topics

To write a brilliant chemistry research paper and score top grades, a good chemistry research paper topic is what you need first. Generally, identifying a topic for chemistry research is challenging, and most importantly, it requires a lot of effort and time. But, once you identify the right chemistry research topic and are clear with your objectives, then you can confidently structure and write an excellent chemistry research paper by including the introduction, methods, results, and discussion related to your topic.

How to Select a Chemistry Research Topic?

As said earlier, for writing a research paper, you must have a good topic. In general, chemistry is a broad subject that contains a lot of research topics and areas. So, while you are in the topic selection phase, narrow down your research and try to choose the chemistry research topic that is

  • Interesting to you
  • Unique and informative for your readers
  • Analytical and Researchable
  • Contains a lot of supporting academic references and evidence

Most importantly, before finalizing your topic, check whether or not the research topic you have selected meets the research paper writing requirements shared by your instructor.

List of Interesting Chemistry Research Paper Topics

For writing a chemistry research paper, there are plenty of research topics on various branches of chemistry such as analytical, physical, organic, inorganic, and biochemistry.

List of Chemistry Research Topics Ideas

Listed below are a few interesting chemical research topics that will help you to get top grades. Go through the complete list of ideas and pick a topic of your interest.

Simple Chemistry Research Paper Topics

  • Why is it essential to study chemistry in high school?
  • How does acid rain form?
  • Explain how heavy metals are detected in plants.
  • Explain the formation of dry ice.
  • Why is Sodium Azide used in car airbags?
  • Explain how military applications use Nanophotonics.
  • Explain why Ibuprofen is considered dangerous.
  • Discuss the ionization methods for the mass spectrometry process.
  • How do chemicals in our brains create moods?
  • Air pollution measurements
  • Practical Implications of Thermodynamics Laws
  • Water purification systems
  • Chemical applications in industries
  • Thermochemistry Experiments
  • How to calculate pH Level?
  • Acid-Base Neutralization Process
  • Thermal effects of various chemical reactions
  • Chemical Kinetics Experiments
  • Molecular Polarity Analysis
  • Acids and Salts in Oxidation Interaction
  • Detection of heavy metal in plants.
  • Air pollution measurements.
  • Optimizing indoor plants’ life through chemistry.
  • Oxygen discovery.

Physical Chemistry Research Topics

  • Discuss chemistry and quantum mechanics
  • Discuss the entropy laws.
  • How do catalysts work?
  • Discuss the Schrodinger Equation
  • What is electronic spectroscopy?
  • Explain vibrational spectroscopy
  • What is the Time-of-Flight principle?
  • What are the gas laws?
  • How do internal combustion engines work?
  • When is the reaction reversible?
  • When does a collision not cause a reaction?
  • Discuss the harmonic and anharmonic oscillators.
  • Explain applications in Kinetics
  • Define successive ionization energies.
  • Reasons why molecules with polar bonds might not have a permanent dipole.
  • Describe the major gas properties.
  • What are the applications of Hess’s law?
  • Vibrational spectroscopy.
  • Electronic spectroscopy.
  • Harmonic and anharmonic oscillator.
  • Multielectron atoms.
  • How do intermolecular forces affect the melting point of a substance?

Also read: Outstanding Physics Research Topics To Explore and Write About

Organic Chemistry Research Topics

  • What is nucleic acid stability?
  • What are the benefits of chemoenzymatic synthesis?
  • Explain Phenol as a form of acid
  • What is snow pollution? Explain how dangerous it is.
  • Describe the properties of a chiral molecule.
  • Describe the production of hydrocarbon fuel
  • Define and explain what nucleophiles are.
  • Isomerism types in organic compounds
  • Chemical composition of vitamins
  • How do free-radical reactions work?
  • Mechanisms of aerosol formation.
  • How do you identify organic compounds using infrared spectroscopy?
  • What defines a compound as aromatic?
  • Chemical warfare: the dark side of organic chemistry.
  • Discuss the chemical composition of pain relief medicine.
  • What makes aromatic compounds unreactive?
  • What makes a plant poisonous?
  • Identify factors that influence proton chemical shifts.
  • Composition, use, and effects of additional polymers or plastics
  • The production of chemicals using carbon-carbon bond-forming reactions.

Inorganic Chemistry Research Topics

  • How are organic materials affected by sulfuric acid?
  • How do organic compounds differ from inorganic compounds?
  • Explain Dalton’s Law of Partial Pressures
  • Why do solar cells use silicon dioxide?
  • Explain the importance of inorganic chemistry.
  • Explain the Multiple Proportions Law
  • The peculiarities of hydrogen bonds and polarity.
  • What are the types of nucleosynthesis?
  • What is lattice energy, and how can you measure it?
  • How do you use the angular overlap model?
  • How does the chemical structure of a gemstone determine its color?
  • What causes phosphorescence?
  • How do ligand substitution reactions work?
  • The use of chemistry in jewelry manufacturing.
  • Define the selection rules for vibrational transitions.
  • What are the uses of point groups in inorganic chemistry?
  • In which ways are chemicals able to bond?
  • How does molecular symmetry predict the chemical properties of a molecule?
  • How does HSAB explain reaction mechanisms?
  • What is the most effective way to grow synthetic diamonds?

Chemistry Research Topics

Biochemistry Research Ideas

  • Describe the cell metabolism processes
  • What role do lipids play in biological systems?
  • What is enzyme kinetics?
  • Explain fatty acid metabolism
  • Explain the special properties that water has.
  • Describe the structure and role of carbohydrates.
  • Explain the DNA replication & repair processes
  • Glycolysis: how does it convert glucose?
  • Explain the structure and function of proteins
  • Explain enzyme inhibitors and their mechanisms.
  • How does the Citric Acid Cycle work?
  • Obtaining protein structures with X-ray crystallography.
  • How do you treat hemophilia?
  • The legacy of Dolly the sheep.
  • How does the body react to chlorine exposure?
  • How do solutes move through biological membranes?
  • Dietary supplements: help or hazard?
  • Understanding the role of lipase in pathophysiological processes.
  • What are the benefits of epigenetics ?
  • Amino acids: industrial applications.

Analytical Chemistry Research Topics

  • Isomerism Framework Advantages
  • Why is analytical chemistry important for the environment?
  • What are the ways to measure the amount of a specific substance in a compound?
  • The best techniques for quantitative chemical analysis.
  • Explain how to determine PAH sources in soil.
  • Electroanalytical techniques
  • Electrodes and Potentiometry
  • Identifying hazardous substances in cheese.
  • Chemical Equilibrium Effect
  • How do you detect pesticides using immunoassays?
  • Ways to find adulterants in drugs.
  • Examine how analytical chemistry is used in forensic science.
  • Mass-based analysis: gravimetric analysis.
  • A simple way to separate chemical compounds: gas chromatography.
  • How does activation analysis work?
  • How do you find iron in a mixture of metals?
  • Genetically modified foods and their impact on human health.
  • Drug safety approach in administration and nursing.
  • How do you identify the shelf life of medicine?
  • Miniaturization: how does it advance analytical chemistry?

Nuclear Chemistry Research Topics

  • What are the common uses of radioactive elements?
  • How do you calculate an element’s half-life?
  • Cold fusion: will it ever be possible?
  • Mass spectrometry: ionization techniques.
  • Nuclear waste: reprocessing, disposal, and transportation.
  • The Big Bang: how did it create the Universe as we know it?
  • The relevance of hydrogen in nuclear fusion.
  • Compare the efficiency of different extraction methods.
  • Henri Becquerel and the discovery of radioactivity.
  • What are the biological applications of radiochemistry?
  • Interactions between water and radioactive elements.
  • How is nuclear chemistry used in medicine?
  • How do we know that a nucleus is stable?
  • Compare the three different types of radiation.
  • How do elements transmute in the process of nuclear fission?
  • Radiation: how does it harm biological systems?
  • Ways to destroy toxic organic compounds using irradiation.
  • The adverse effects of ionizing vs. non-ionizing radiation.
  • How does radiocarbon dating work?
  • How are chemosensors used in radiation chemistry?

Green Chemistry Research Topics

  • Discuss the twelve principles of green chemistry.
  • Discuss the most pressing issues in green chemistry today.
  • Is biomimicry the best way to sustainability?
  • What are the advantages of molar efficiency?
  • Are bioplastics beneficial for the environment?
  • Compare the effectiveness of various materials used in solar cells.
  • How efficient is artificial photosynthesis?
  • Describe the advantages of Levulinic Acid use.
  • What are efficient ways to extract and use critical elements more sustainably?
  • Electrocatalysis is a way to generate and consume fuels.
  • How can the toxicity of paint be reduced?
  • Will cultivated meat become a green alternative to traditional farming?
  • Computer chips: how do we make them more sustainable?
  • Innovative ways to avoid pesticides in agriculture.
  • Eco-friendly packaging and its issues.
  • What are the types of bio-based renewable feedstocks?
  • How do metathesis reactions help reduce greenhouse gas emissions?
  • Is carbon capture effective?
  • What are the best ways to remove carbon pollution?
  • Developments in green energy

Advanced Chemistry Topics for Research

  • What chemical information can we find in meteorites?
  • Compare the types of noncovalent bonding.
  • Describe the impact of nanotechnology.
  • Magnetism and coordination compounds.
  • How does water recycling work?
  • Examine the dopamine hypothesis of schizophrenia.
  • Cloud seeding: when is it useful?
  • How does nanoscience change our lives?
  • Polymers: what do we use them for?
  • Examine the properties of imino-disaccharides.
  • What link exists between chemistry and cosmetics?
  • What exactly is organic food and is it safe to eat?
  • What effect do chemicals have on the long-distance delivery of goods?
  • Compare the efficiency of various vegetable oils in the production of biodiesel.
  • Analyze the pesticide traces in vegetables from different marketplaces.
  • Calculate soft drink density. What impact does sugar have?
  • What kinds of solutions make the finest electrical conduits in terms of conductivity?
  • How much energy is produced when nuts and chips are burned?
  • What health hazards does radon pose and how can it be avoided in buildings, please?
  • Describe the innovations made by the chemical scientist who made the greatest contributions

Read also: Interesting Science Research Paper Topics To Deal With your Paper

Innovative Chemistry Research Paper Topics

  • Science research on Bacteria found Electron highway for Hydrogen and Carbon Dioxide Storage.
  • Bacteria-Based Biohybrid Microrobots with an objective to One-day fight Cancer.
  • A New Test System was introduced for Passive Cooling Materials to Cut Energy Consumption.
  • Researchers create a Computer Model to determine whether a Pesticide Will affect Bees.
  • Instant, Efficient COVID -19 biosensor under Progress.
  • Why does Photochemical smog rises when Particle Pollution is reduced?
  • Framework for Prioritizing Drinking Water System Investment.
  • First-ever view of a hidden quantum phase is captured by researchers.
  • Discovering new ways to control the stereochemistry of chemical reactions
  • Creating new ways of identifying explosive residues
  • Inspecting the photochemistry of organic molecules
  • Effects of amino acids’ side chains on protein folding
  • Quantum mechanics use for chemical reactions.
  • Study of extraterrestrial molecular chemistry in astrochemistry.
  • Integrating biological and chemical processes.

Excellent Chemistry Research Ideas

  • Pharmaceutical Industry and Green Chemistry.
  • Transformation of Cigarette chemicals over a period of time.
  • Climate change with emission of Carbon.
  • How intake of fast food chemicals impacts the human brain
  • Enhance the existing recycling processes.
  • Compare and contrast the applications and benefits of Organic chemistry and Analytical Chemistry
  • Explore the preparations and properties of metal complexes with organometallic ligands
  • Develop a conceptive study on inorganic chemistry and its role in the environment
  • What is called hydrodynamics of soft active matter and the effects of sulfuric acid on organic materials?
  • Describe a rational molecular design for achieving persistence and reducing toxicity
  • Develop a brief understanding of the targeted thermostat schemes and molecular dynamics
  • Provide an overview and an update on the clinical pharmacology of ibuprofen
  • Identify and analyze the significance of astrochemical research on extraterrestrial molecules
  • Describe the role of metal ions in enzyme systems (activation or inhibition of enzyme activity through the ions)
  • What is called plasmonic nanomaterials for photo-energy conversion applications and the benefits of such applications?
  • Synthesis and evaluation of the biological activity of the metal complexes
  • Discuss some plasmonic nanostructures and nanomaterials and their use in plasmonic metal-semiconductor systems.

Captivating Chemistry Research Topics

  • Write about the discovery of aniline dyes.
  • Explore the effects of cell-surface sugars on health, illness, and aging.
  • Discuss the method of creating new alloys and suggest effective ways to improve the existing ones.
  • Write about the recent advancements in mechanistic organic photochemistry.
  • Explain the influence of surface tension and its effects on mixtures.
  • Describe the properties of mesoscopic structure at ultrafast time scales.
  • Explain the fast dynamics of water droplets upon freezing.
  • Conduct a meta-analysis on the biological synthesis of cholesterol.
  • Write about chiral class drug analysis in forensic laboratories.
  • Application of electrochemical biosensor for toxic detections.

Final Words

From the list of ideas suggested in this blog, choose an ideal topic and draft a high-quality chemistry research paper deserving of an A+ grade. But remember, writing a chemistry research paper is not an easy task because you must have reliable academic sources and strong analytical and research knowledge to work on your chosen topic.

In case, you are unsure of what topic to choose and how to write a detailed chemistry research paper, then contact us as soon as possible. To offer you cheap and the best chemistry assignment help online, on our platform, we have numerous academic writers who are experts in all branches of chemistry. Especially, according to the requirements you share with us, our chemistry assignment helpers will prepare and deliver you a plagiarism-free research paper ahead of the deadline and will help you in achieving the grades you desire.

Simply, book your order and earn the scholastic advantages that our chemistry research paper help service provides.

chemistry quantitative research topics

Related Post

Religious Research Paper Topics

220 Amazing Religious Research Paper Topics and Ideas

Research Proposal

Read and Understand How to Write a Research Proposal

Controversial Research Topics

100+ Controversial Research Topics and Ideas to Focus On

About author.

' src=

Jacob Smith

I am an Academic Writer and have affection to share my knowledge through posts’. I do not feel tiredness while research and analyzing the things. Sometime, I write down hundred of research topics as per the students requirements. I want to share solution oriented content to the students.

Leave a Reply Cancel reply

You must be logged in to post a comment.

  • Featured Posts

140 Unique Geology Research Topics to Focus On

200+ outstanding world history topics and ideas 2023, 190 excellent ap research topics and ideas, 150+ trending group discussion topics and ideas, 170 funny speech topics to blow the minds of audience, who invented exams learn the history of examination, how to focus on reading 15 effective tips for better concentration, what is a rhetorical analysis essay and how to write it, primary school teacher in australia- eligibility, job role, career options, and salary, 4 steps to build a flawless business letter format, get help instantly.

Raise Your Grades with Assignment Help Pro

Illustration

  • Research Paper Guides
  • Research Paper Topics

200+ Chemistry Research Topics for Papers

  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

Chemistry_Research_Topics

Table of contents

Illustration

Use our free Readability checker

Do you find identifying suitable chemistry research topics difficult? You are not alone! Many students consider it challenging and time-consuming to choose an interesting chemistry topic for a research paper. In this blog post, we will discuss various research topics in chemistry to help simplify your research process. Continue reading to familiarize yourself with ideas from different fields and academic levels. Apart from defining research topics and discussing how to select one, we have provided examples to help kick-start your research project or assignments. Got a deadline approaching fast? Entrust your chemistry research paper to professional writers. Our academic service proceeds all ‘ write my paper for me ’ inquiries quickly and efficiently. Get your paper written now by an expert!

What Are Chemistry Research Topics?

Chemistry is a field of science that covers the structure, composition, and properties of elements and compounds. As a student taking this subject, you will encounter multiple experiments, chemical reactions, and analytical study methods. This branch of science can be subdivided into multiple areas, including organic, inorganic, biochemistry, physical, analytical, and nuclear science, among others. Chemistry research paper topics are talking points related to the branches of science outlined above. To ensure that all learning objectives are met, instructors may require students to work on various topics in chemistry. You would be expected to source your chemistry research topics ideas from all possible branches. In one instance, your topic could be associated with analytical science, in another - with practical discussions, which is an entirely different thing despite both areas being categorized as chemistry subfields.

Characteristics of Good Chemistry Research Topics

Selecting a good research topic for chemistry plays a vital role in determining the probability of success when writing your paper. It is, therefore, important to know the characteristics of good chemistry topics for a research paper. Although you can derive discussions from many sub-areas, these research topic ideas share many common characteristics. A great research topic should be:

  • Precise, meaningful, clear, and straightforward
  • Analytical and researchable using logical methodologies
  • Of theoretical or practical significance
  • Supported by numerous academic evidence and sources.

How to Choose a Chemistry Research Topic?

Chemistry is a broad subject with multiple research areas. If you are not keen enough, you may easily get lost in its variety and fail to select a congenial title. So, how do you deal with this issue? In a nutshell, the process comes down to two aspects – your passion and competence. Below are step-by-step guidelines that you can follow to determine interesting topics about chemistry:

  • Pick chemistry research topics with your knowledge capabilities in mind. Do not choose a topic that is beyond your academic level.
  • Choose something that is interesting to you. If you are fascinated with the selected topic, you will find responding to the research questions to be much simpler.
  • Select a research title that is convenient to work on due to the sufficient amount and availability of existing evidence and references.
  • Ensure that the chosen chemistry topics for research paper are within the subfield you are majoring in and that it meets your instructor’s requirements.

Once you select the most appropriate title, see how to write a research paper like an expert.

Chemistry Research Paper Topics List

There are many research topics for chemistry to choose from. In this section, we have compiled examples of the best topics from various sub-areas. Below is a list of chemistry research topics for papers:

  • Latest developments in DNA technology.
  • Negative effects of using pesticides in food production.
  • Importance and potential drawbacks of using fertilizer in commercial agriculture.
  • Acids and bases: composition, properties, and applications.
  • Industrial chemicals and environmental pollution.
  • Dangers and side effects of using ibuprofen.
  • Acid-base neutralization process.
  • Air pollution implication on global warming and climate change.
  • Ageing and the brain.
  • Catalytic reaction mechanisms.

The chemistry research topics list above is created by drawing ideas from different sub-areas, thus covering a significant part of scholars’ inquiries.

Interesting Topics in Chemistry

In some instances, one may select a research topic because it is just fascinating. There are interesting chemistry topics that can explain intriguing phenomena in your day-to-day life. Alternatively, you can also opt for something related to essential issues in the current society. Here are sample chemistry interesting topics you can research into:

  • Composition and effects of e-cigarettes.
  • Food dye composition.
  • Measuring electrical conductivity in a salt solution.
  • How to change a penny’s color to gold.
  • The scientific explanation of foam formation.
  • Silicon usage in cosmetic surgery.
  • Evidence and application of surface tension in day-to-day life.
  • Examining pesticide residue in farm products from different grocery stores.
  • How does molecule composition affect the physical appearance of things?
  • Sodium metal reaction on water surfaces.
  • How to separate dissolved sugar from water.
  • How to clean up oil spills at sea.
  • Rust formation on metal surfaces.
  • How to chemically remove rust from stainless steel.
  • The science behind turning boiling water into “snow” in a cold winter.

Easy Chemistry Research Topics

The science studied in high schools is way simpler compared to postgraduate one. You can find easy chemistry topics to research if you focus on certain academic levels and sub-areas. For example, physical chemistry has easy chemistry topics to do research paper on. On the other side, inorganic or analytical sub-areas tend to offer scientific research research topics that are more technical. The list below outlines easy topic examples you can pick from:

  • Determining the percentage composition of oxygen in the air.
  • Patterns in the periodic table.
  • Atomic theory: primary principles and applications.
  • Chemical and physical properties of starch.
  • Determining the pH level of various liquids.
  • Properties of acids and bases.
  • Why is glass the preferred material in laboratories?
  • Balancing chemical equations.
  • Analyzing different chemical bonds.
  • Alkali metals and their properties.
  • General characteristics of metals.
  • Noble gasses: properties and reaction characteristics.
  • Water purification methods.
  • The periodic table: its historical background.
  • Alkaline earth metals: properties and reactivity.

Innovative Research Topics in Chemistry

Innovative chemistry topics for research paper relate to new ideas and ways to go about things. Using these ground-breaking topics related to chemistry, you can discuss new materials or methodologies. If you are interested in innovative research topics, here are some examples you can borrow from:

  • Gene modification in medical chemistry .
  • Improved cancer treatment using bacteria-based biohybrid microrobots.
  • New methods used to detect explosive residues.
  • Studying the molecular makeup of particles in space.
  • Substitute for pesticides in farming.
  • Nanophotonics in aeronautics.
  • Nanomaterials production process and techniques.
  • Clean energy alternatives for fossil fuels.
  • Photocatalysis usage in 3D printing technology.
  • Biodegradable polymers as alternatives for plastics.
  • Silicon dioxide usage in solar cells.
  • Chemical reactions in lithium-ion batteries.
  • Self-healing concrete: basic principles.
  • New materials for lightweight planes and vehicles.
  • Polymer analysis in a restricted environment.

Cool Chemistry Research Topics

Sometimes, our title selection might be guided by how cool and fun the study results will be. If you are looking for cool chemistry topics to research on, you are in the right place. We have compiled some cool chemistry topics for you to choose from.

  • How World War II influenced computational chemistry.
  • How do chemicals in our brains create different moods?
  • Composition and properties of laughing gas.
  • European alchemy: historical background and its impact on modern science.
  • Developing a film at home: chemicals required and process.
  • Why lemon juice stops apples from browning.
  • Different flame colors and their scientific explanation.
  • Using a potato to light a bulb.
  • Principles of chromatography.
  • Utilizing cloud seeding in alleviating drought conditions.
  • Finding iron in a mixture of metals.
  • Gas chromatography: how it works and its applications.
  • Application of vibrational spectroscopy.
  • Surface tension and the dish soap experiment.
  • How to make a homemade water filter.

Have you spotted any ideas but can’t get the research process started? Contact our professional writing service where you can pay for research paper and be sure that you will get outstanding results within your deadline. 

Intriguing Chemistry Topics for Research

There are many chemistry topics to write about. However, not all topics are intriguing (and frankly, most are the other way around). Below are topic examples that can instantly draw readers’ attention:

  • Non-existing chemical compounds.
  • Molecular structure of artificial honey as compared to natural honey.
  • Stem cell studies: ethical implications.
  • Principles of polymerase chain reaction and DNA replication.
  • Organic chemistry applications in our daily living.
  • Chemicals as weapons of mass destruction.
  • How does adding sugar to a soft drink affect its density?
  • Synthetic molecules in the pharmaceutical industry .
  • Aerosol formation and its application in body spray manufacture.
  • Analyzing the gasoline production process.
  • Benzene molecular structure and its use in the cosmetic industry.
  • Why are 96,000,000 black balls dumped into the LA reservoir?
  • Water recycling methods.
  • The discovery of oxygen.
  • Importance of esters in our day-to-day living.

If you closely review the research topics for chemistry paper above, you will find them arousing your curiosity much more than the ones in other sections. These topics will challenge your initial line of thinking or introduce you to the concepts that just stand out.

Unique Chemistry Research Topics

There are some chemistry paper topics that are rarely worked on by students. People ignore these topics because they are either complex or lack adequate conclusive information from previous studies. If you are brave enough and wish to have a unique presentation, you can consider the research topics in chemistry below:

  • Organosilicon compounds and their use.
  • Nucleophiles and electrophiles.
  • Molecular structure of Teflon and its industrial application.
  • Sodium azide usage in automobile airbags.
  • Dangers of COVID-19 tests that use sodium azide as the reaction reagent.
  • Chemical composition of steroids and their effects on human beings.
  • Artificial diamond production process.
  • Insulin production biotechnology.
  • Evolution of lethal injection.
  • Effects of chiral class drugs on human health.
  • Chemical residues in livestock.
  • Artificial organs and their potential implication on transplantation.
  • Role of nanoreactors in nanotechnology and biotechnology.
  • Dangers of phosgene to human health.
  • Production of dry ice.

Popular Chemistry Research Paper Topics

Unlike the unique study subjects discussed in the previous section, popular topics relating to chemistry are widely researched. Students favor these topics due to reasons like their simplicity, availability of adequate evidence, and their relevance to current issues. You can pick a hot topic in chemistry from the list below:

  • Metal oxide usage in electronics.
  • Importance of nitrogen to human survival.
  • How do temperature changes affect chemical reactions?
  • Lewis structure for ionic compounds.
  • Analysis of the hydrophobic effect.
  • Hydrogen as an alternative to fossil fuel.
  • Application of thermodynamics law in our lives.
  • pH level calculations and analysis.
  • Gas laws and their application.
  • Why is Earth viewed as a closed thermodynamic system?
  • Redox reactions and their industrial applications.
  • Decomposition process of polymers.
  • The anomalous expansion of water.
  • Impact of fluoride ion on dental health .
  • The use of lithium, magnesium, and calcium compounds in clinical medicine.

>> View more: Medical Research Paper Topics

Controversial Chemistry Topics for Papers

Just like in any other subject, there exist chemistry project topics that are controversial in nature. People are understandably more passionate about some subject matters compared to others. Discussions related to, for instance, chemical usage in battlefields and the health effects of using certain chemicals tend to attract heated debates. Below are some controversial topics in chemistry that you can write about:

  • Biochemicals usage in warfare.
  • Impact of fast-food chemicals on the human brain.
  • Gene modification in human embryos.
  • Bioconjugation techniques and how they are used in drug delivery.
  • Synthetic molecules replication techniques.
  • Use of lethal injection in execution of criminals.
  • Ethical justification for euthanasia.
  • Manufacture of chemical poisons.
  • Fritz Haber’s controversial inventions.
  • Artificial organs and their role in healthcare.
  • Electromagnetic energy conversion to chemical energy.
  • Dangers of using fertilizer in farming.
  • Analyzing the water memory effect.
  • Synthesis of food from non-edible items.
  • Bio-inspired molecular machines and their applications.

Chemistry Research Ideas for Students

Students are often required to work on some chemistry project ideas to successfully complete their course. Depending on the sub-area one specializes in, and the academic level, research matters will vary significantly. For instance, chemistry undergraduate research project ideas are incomparable to highschool research titles. Some subject matters are only suitable for professional research. This section sorts the research ideas into their respective academic levels.

Chemistry Research Topics for High School

Chemistry research project ideas for highschool students are relatively easy compared to higher academic levels. The tasks are not very demanding in terms of the research methodologies used and the time required to complete them. At this level, students are introduced to the basic concepts of the subject. Common chemistry topics for high school are outlined in the list below.

  • Acids and bases in the reduction-oxidation reaction.
  • Importance of studying chemicals and chemical processes in high school.
  • Ionization techniques for the mass spectrometry process.
  • Avogadro’s Law: analysis, formulae, and application.
  • Thermochemistry lab experiments.
  • Laboratory safety rules.
  • The hydrolysis analysis.
  • Acids: structural composition, properties, and use.
  • Noble gasses configuration.
  • States of matter and their characteristics.
  • Optimizing indoor plants life through chemistry.
  • Role of enzymes in chemical and biological reactions.
  • Thermal effects of chemical reactions.
  • The law of multiple proportions in chemical reactions.
  • Constant and changing variables in Boyle’s law .

Chemistry Research Topics for College Students

Chemistry project ideas for college often require students to dive deep into a subject. Rather than explaining the basic concepts, you may be instructed to apply them in addressing problems. A college chemistry project will require you to dedicate more time and conduct more research. Below are some of the title ideas for college students and undergraduates:

  • How much energy is produced from burning nuts and chips?
  • Dangers of using radon in construction and potential solutions.
  • Chemical composition of aspirin and its effect on human physiology.
  • Green chemistry application in the food industry.
  • Phosphorescence versus fluorescence.
  • Dihydroxyacetone phosphate conversion.
  • Big data and biocomputing in chemical studies.
  • Thermoelectric properties of materials.
  • Artificial organic tissue development in laboratories.
  • Nuclear fusion: primary concepts and applications.
  • Power production process in lithium nickel batteries.
  • Medico-biological importance of group 3B and 4B elements.
  • Global cycle of biologically active elements.
  • Importance of chemical knowledge in cancer treatment.
  • Inorganic materials usage in the military.

Chemistry Research Topics in Different Fields

Chemistry can be divided into many sub-areas. Each subfield has interesting chemistry topics to research into. To choose a research topic in chemistry, you need to first determine a sub-area you would wish to specialize in. However, even within these fields, there are still many title options to choose from. To help reduce the confusion and simplify the selection process, we have categorized potential research discussions into their respective sub-areas.

Organic Chemistry Research Topics

Organic chemistry mainly involves studying the structure, composition, properties, and reaction of carbon-based compounds. It is among the most commercially applied subfields, which makes organic chemistry research paper topics very common. I am sure you must have encountered products manufactured using organic chemistry principles within your surroundings. If you wish to learn more about these products, you can explore these latest research topics in organic chemistry:

  • Pain relief medicine: chemical structure and composition.
  • Composition, use, and effects of polymers.
  • Retin-A usage in acne treatment.
  • Organic chemistry usage and application in daily life.
  • Types of organic compounds isomerism.
  • Aromatic hydrocarbons as industrial raw materials.
  • Alcohol hydrophilicity in aqueous solutions.
  • Physical and chemical properties of polyhydric alcohols.
  • Synthetic polymer applications: synthetic fiber, Teflon, and isoprene rubber.
  • Fetal alcohol syndrome: types and symptoms.
  • Structure and properties of phenols.
  • The application of organic chemistry in birth control.
  • Nucleic acid stability.
  • Parameters affecting proton chemical shifts.
  • Structure and properties of lipids.

Inorganic Chemistry Research Topics

This branch deals with the study of structure, composition, and properties of materials that do not contain carbon. Research paper topics for inorganic chemistry focus on metals, minerals, and inorganic compounds. The list below compiles chemistry projects topics and ideas related to inorganic chemistry.

  • How to create new and improve existing alloys.
  • Implication of inorganic chemistry on the environment.
  • Application of inorganic chemistry in the cosmetic industry.
  • Interaction between sulfuric acid and organic materials.
  • Lattice energy and enthalpy for different ionic bonds.
  • Characteristics of different types of nucleosyntheses.
  • Uniqueness of hydrogen bonds and polarity.
  • Hard and soft acids and bases ( HSAB ) theory.
  • Dalton’s Law: principles and applications.
  • Structure of a gemstone and how it impacts its appearance.
  • Relationship between inorganic and biochemistry.
  • Parameters affecting Bronsted-Lowry acidity.
  • Crystal field theory: analysis and disadvantages.
  • Application of angular overlap model.
  • Primary laws of photochemistry.

Analytical Chemistry Research Topics

The determination of the objects’ primary makeup of objects is the main interest of this branch. Various analytical methods, including spectroscopy, chromatography, and electroanalytical techniques, are often discussed in the subfield. As such, many analytical chemistry research paper topics focus on these or other analysis techniques. Below is a list of research topics on analytical chemistry:

  • Analytical techniques used in forensic science.
  • Examining the electroanalytical techniques.
  • Importance of analytical chemistry to the environment.
  • Miniaturization and its use in analyzing pharmaceutical substances.
  • Evaluating the working principles of activation analysis.
  • Gravimetric analysis principles.
  • GMOs usage and their potential hazards to human health.
  • Potentiometric measurement methods.
  • Liquid and gas chromatography.
  • Spectroscopy methods and their use in detecting and quantifying molecular and structural composition of samples.
  • Dispersive X-ray analysis of tissues.
  • Analytical methods for determining the side effects of ibuprofen usage.
  • Benefits of the isomerism framework.
  • Acid-base titration as a quantitative analysis technique.
  • Application of spectroscopy in medicine.

Environment Chemistry Topics for Research

The apparent global warming and climate change threats have led to the development of a new area of study. This sub-area has project topics in chemistry that explore the impact of human activity on the environment and the potential solutions for slowing down and reversing the climate change process. Common environmental chemistry related topics include:

  • Negative effects of deep-sea mining.
  • Ground water contamination: causes, dangers, and potential solutions.
  • Oil spillage and its effect on marine life.
  • Effect of heat engines on the environment.
  • Safe disposal of toxic waste.
  • Global warming: causes and potential remedies.
  • Potential alternatives to fossil fuels.
  • Innovative methods to minimize pesticide usage in agriculture.
  • Cultivated meat as an alternative to livestock farming.
  • How efficient is artificial photosynthesis.
  • The Chernobyl ecological disaster.
  • Analysis of life-cycle assessment (LCA).
  • Environmental benefits of using energy-saving lamps.
  • Environmental pollution by nano toxins.
  • Potential solutions for global warming.

Need more ideas on the environment? Check our list of the best environmental research topics for students. 

Physical Chemistry Research Topics

Physical chemistry is the study of the behavior of matter. Physical chemistry topics for research papers focus on analyzing the physical and chemical properties of atoms and molecules and how they interact with each other. You can use a project topic on chemistry from the list below:

  • Surface tension and its impact on mixtures.
  • Diffusion of liquid and gasses.
  • Reaction of bromine under UV rays.
  • Pressure effect in chemical reactions.
  • Bonding between atoms and molecules.
  • Analyzing Schrodinger’s equation.
  • Hess’s laws: principles and application.
  • Effects of intermolecular forces on the melting point of a material.
  • Entropy law of thermodynamics.
  • Relationship between quantum mechanics and atomic orbitals.
  • Chemical kinetics in pharmacy.
  • Analyzing the physical and chemical indicators of milk.
  • How to determine atoms’ electron configuration.
  • Why isotopes exist.
  • Determining the group based on its successive ionization energies.

Chemical Engineering Research Topics

In this section, we will discuss research topics of chemistry related to the design and application of chemical processes. Here are some of the chemical research project ideas that will impress your instructor:

  • Chemical engineering concepts in the food production industry.
  • Analyzing wastewater treatment techniques.
  • Conversion of rocket fuel to energy.
  • Analyzing different mixture separation techniques.
  • Industrial application of chemical engineering concepts.
  • Non-reactive mass balances and mass balance with reaction.
  • Binary distillation and its application.
  • Gas absorption usage in the chemical industry.
  • Reaction kinetics in a plug flow reactor.
  • Water splitting for hydrogen production.
  • The application of MIMO theory in the control of chemical process operation.
  • Chemical engineering applications in the healthcare sector.
  • Nanofiltration member usages in pharmaceutical wastewater treatment.
  • General overview of microfluidics.
  • Production of high-quality foam.

Nuclear Chemistry Research Topics

A nuclear chemistry research project deals with radioactivity-related processes. You may encounter this branch of science in nuclear energy production, military applications, and even in the hospital. Some of the researchable topics in chemistry of nuclei transformation include:

  • Computation of an element’s half-life.
  • Radioactive elements in real life and how they are being used.
  • Nuclear fusion: the process and its function.
  • Types of radioactive decay.
  • Effects of radiation on biological systems.
  • Safe radioactive waste disposal.
  • Application of nuclear science in the healthcare sector.
  • Analyzing the three types of radiation.
  • How to destroy toxic organic compounds using irradiation.
  • Is there a possibility of cold fusion ever happening?
  • Biological application of radiochemistry.
  • Dangerous consequences of ionizing versus non-ionizing radiation.
  • Optical chemo sensors: principles and applications.
  • Interaction between water and radioactive materials.
  • Radiation accident cases in human history.

There is a vast assortment of research ideas for your study on our platform. Be it biology research topics or nursing research paper topics , we have all of them here.

Bottom Line on Chemistry Research Topics

In sum, chemistry is a broad subject with multiple sub-areas. Depending on your preference, you can choose interesting chemistry research topics for papers from the many subfields. Apart from selecting a good research subject, also remember that is always mandatory to adhere to proper writing procedures! Besides, select chemistry essay topics that will keep you excited till the end of research, as you wouldn’t want to quit in the middle and switch to another topic. If you combine all provided tips together, you will definitely find it easy to select and work on research in chemistry topics.

Illustration

Our academic writing service is always happy to help. Our platform was created by students who also struggled. So the writers deliver excellent papers focusing on fast and high-quality writing. 

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

thumbnail@2x.png

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Chemistry LibreTexts

4.5: Quantitative Chemical Analysis

  • Last updated
  • Save as PDF
  • Page ID 414623

Learning Objectives

By the end of this section, you will be able to:

  • Describe the fundamental aspects of titrations and gravimetric analysis.
  • Perform stoichiometric calculations using typical titration and gravimetric data.

In the 18th century, the strength (actually the concentration) of vinegar samples was determined by noting the amount of potassium carbonate, K 2 CO 3 , which had to be added, a little at a time, before bubbling ceased. The greater the weight of potassium carbonate added to reach the point where the bubbling ended, the more concentrated the vinegar.

We now know that the effervescence that occurred during this process was due to reaction with acetic acid, CH 3 CO 2 H, the compound primarily responsible for the odor and taste of vinegar. Acetic acid reacts with potassium carbonate according to the following equation:

The bubbling was due to the production of CO 2 .

The test of vinegar with potassium carbonate is one type of quantitative analysis —the determination of the amount or concentration of a substance in a sample. In the analysis of vinegar, the concentration of the solute (acetic acid) was determined from the amount of reactant that combined with the solute present in a known volume of the solution. In other types of chemical analyses, the amount of a substance present in a sample is determined by measuring the amount of product that results.

The described approach to measuring vinegar strength was an early version of the analytical technique known as titration analysis . A typical titration analysis involves the use of a buret (Figure \(\PageIndex{1}\)) to make incremental additions of a solution containing a known concentration of some substance (the titrant ) to a sample solution containing the substance whose concentration is to be measured (the analyte ). The titrant and analyte undergo a chemical reaction of known stoichiometry, and so measuring the volume of titrant solution required for complete reaction with the analyte (the equivalence point of the titration) allows calculation of the analyte concentration. The equivalence point of a titration may be detected visually if a distinct change in the appearance of the sample solution accompanies the completion of the reaction. The halt of bubble formation in the classic vinegar analysis is one such example, though, more commonly, special dyes called indicators are added to the sample solutions to impart a change in color at or very near the equivalence point of the titration. Equivalence points may also be detected by measuring some solution property that changes in a predictable way during the course of the titration. Regardless of the approach taken to detect a titration’s equivalence point, the volume of titrant actually measured is called the end point . Properly designed titration methods typically ensure that the difference between the equivalence and end points is negligible. Though any type of chemical reaction may serve as the basis for a titration analysis, the three described in this chapter (precipitation, acid-base, and redox) are most common. Additional details regarding titration analysis are provided in the chapter on acid-base equilibria.

Two pictures are shown. In a, a person is shown pouring a liquid from a small beaker into a buret. The person is wearing goggles and gloves as she transfers the solution into the buret. In b, a close up view of the markings on the side of the buret is shown. The markings for 10, 15, and 20 are clearly shown with horizontal rings printed on the buret. Between each of these whole number markings, half markings are also clearly shown with horizontal line segment markings.

Example 4.14: Titration Analysis

The end point in a titration of a 50.00-mL sample of aqueous HCl was reached by addition of 35.23 mL of 0.250 M NaOH titrant. The titration reaction is:

What is the molarity of the HCl?

As for all reaction stoichiometry calculations, the key issue is the relation between the molar amounts of the chemical species of interest as depicted in the balanced chemical equation. The approach outlined in previous modules of this chapter is followed, with additional considerations required, since the amounts of reactants provided and requested are expressed as solution concentrations.

For this exercise, the calculation will follow the following outlined steps:

This figure shows four rectangles. The first is shaded lavender and is labeled, “Volume of N a O H.” This rectangle is followed by an arrow pointing right which is labeled, “Molar concentration,” to a second rectangle. This second rectangle is shaded pink and is labeled, “Moles of N a O H.” This rectangle is followed by an arrow pointing right which is labeled, “Stoichiometric factor,” to a third rectangle which is shaded pink and is labeled, “Moles of H C l.” This rectangle is followed by an arrow labeled, “Solution volume,” which points right to a fourth rectangle. This fourth rectangle is shaded lavender and is labeled, “Concentration of H C l.”

The molar amount of HCl is calculated to be:

Using the provided volume of HCl solution and the definition of molarity, the HCl concentration is:

Note: For these types of titration calculations, it is convenient to recognize that solution molarity is also equal to the number of milli moles of solute per milli liter of solution:

Using this version of the molarity unit will shorten the calculation by eliminating two conversion factors:

Exercise \(\PageIndex{1}\)

A 20.00-mL sample of aqueous oxalic acid, H 2 C 2 O 4 , was titrated with a 0.09113- M solution of potassium permanganate, KMnO 4 (see net ionic equation below).

A volume of 23.24 mL was required to reach the end point. What is the oxalic acid molarity?

Gravimetric Analysis

A gravimetric analysis is one in which a sample is subjected to some treatment that causes a change in the physical state of the analyte that permits its separation from the other components of the sample. Mass measurements of the sample, the isolated analyte, or some other component of the analysis system, used along with the known stoichiometry of the compounds involved, permit calculation of the analyte concentration. Gravimetric methods were the first techniques used for quantitative chemical analysis, and they remain important tools in the modern chemistry laboratory.

The required change of state in a gravimetric analysis may be achieved by various physical and chemical processes. For example, the moisture (water) content of a sample is routinely determined by measuring the mass of a sample before and after it is subjected to a controlled heating process that evaporates the water. Also common are gravimetric techniques in which the analyte is subjected to a precipitation reaction of the sort described earlier in this chapter. The precipitate is typically isolated from the reaction mixture by filtration, carefully dried, and then weighed (Figure \(\PageIndex{2}\)). The mass of the precipitate may then be used, along with relevant stoichiometric relationships, to calculate analyte concentration.

A photo is shown of a flask and funnel used for filtration. The flask contains a slightly opaque liquid filtrate with a slight yellow tint. A funnel, which contains a bright yellow and orange material, sits atop the flask. The flask is held in place by a clamp and is connected to a vacuum line. The connection between the funnel and flask is sealed with a rubber bung or gasket.

Example 4.15: Gravimetric Analysis

A 0.4550-g solid mixture containing MgSO 4 is dissolved in water and treated with an excess of Ba(NO 3 ) 2 , resulting in the precipitation of 0.6168 g of BaSO 4 .

What is the concentration (mass percent) of MgSO 4 in the mixture?

The plan for this calculation is similar to others used in stoichiometric calculations, the central step being the connection between the moles of BaSO 4 and MgSO 4 through their stoichiometric factor. Once the mass of MgSO 4 is computed, it may be used along with the mass of the sample mixture to calculate the requested percentage concentration.

This figure shows five rectangles. The first is shaded yellow and is labeled “Mass of B a S O subscript 4.” This rectangle is followed by an arrow pointing right to a second rectangle. The arrow is labeled, “Molar mass.” The second rectangle is shaded pink and is labeled, “Moles of B a S O subscript 4.” This rectangle is followed by an arrow pointing right to a third rectangle. The arrow is labeled, “Stoichiometric factor.” This third rectangle is shaded pink and is labeled, “Moles of M g S O subscript 4.” This rectangle is followed by an arrow labeled, “Molar mass,” which points downward to a fourth rectangle. This fourth rectangle is shaded yellow and is labeled, “Mass of M g S O subscript 4.” This rectangle is followed by an arrow labeled, “Sample mass,” which points left to a fifth rectangle. This fifth rectangle is shaded lavender and is labeled, “Percent M g S O subscript 4.

The mass of MgSO 4 that would yield the provided precipitate mass is

The concentration of MgSO 4 in the sample mixture is then calculated to be

What is the percent of chloride ion in a sample if 1.1324 g of the sample produces 1.0881 g of AgCl when treated with excess Ag + ?

The elemental composition of hydrocarbons and related compounds may be determined via a gravimetric method known as combustion analysis . In a combustion analysis, a weighed sample of the compound is heated to a high temperature under a stream of oxygen gas, resulting in its complete combustion to yield gaseous products of known identities. The complete combustion of hydrocarbons, for example, will yield carbon dioxide and water as the only products. The gaseous combustion products are swept through separate, preweighed collection devices containing compounds that selectively absorb each product (Figure \(\PageIndex{3}\)). The mass increase of each device corresponds to the mass of the absorbed product and may be used in an appropriate stoichiometric calculation to derive the mass of the relevant element.

This diagram shows an arrow pointing from O subscript 2 into a tube that leads into a vessel containing a red material, labeled “Sample.” This vessel is inside a blue container with a red inner lining which is labeled “Furnace.” An arrow points from the tube to the right into the vessel above the red sample material. An arrow leads out of this vessel through a tube into a second vessel outside the furnace. An line points from this tube to a label above the diagram that reads “C O subscript 2, H subscript 2 O, O subscript 2, and other gases.” Many small green spheres are visible in the second vessel which is labeled below, “H subscript 2 O absorber such as M g ( C l O subscript 4 ) subscript 2.” An arrow points to the right through the vessel, and another arrow points right heading out of the vessel through a tube into a third vessel. The third vessel contains many small blue spheres. It is labeled “C O subscript 2 absorber such as N a O H.” An arrow points right through this vessel, and a final arrow points out of a tube at the right end of the vessel. Outside the end of this tube at the end of the arrow is the label, “O subscript 2 and other gases.”

Example 4.16: Combustion Analysis

Polyethylene is a hydrocarbon polymer used to produce food-storage bags and many other flexible plastic items. A combustion analysis of a 0.00126-g sample of polyethylene yields 0.00394 g of CO 2 and 0.00161 g of H 2 O. What is the empirical formula of polyethylene?

The primary assumption in this exercise is that all the carbon in the sample combusted is converted to carbon dioxide, and all the hydrogen in the sample is converted to water:

Note that a balanced equation is not necessary for the task at hand. To derive the empirical formula of the compound, only the subscripts x and y are needed.

First, calculate the molar amounts of carbon and hydrogen in the sample, using the provided masses of the carbon dioxide and water, respectively. With these molar amounts, the empirical formula for the compound may be written as described in the previous chapter of this text. An outline of this approach is given in the following flow chart:

This figure shows two flowcharts. The first row is a single flow chart. In this row, a rectangle at the left is shaded yellow and is labeled, “Mass of C O subscript 2.” This rectangle is followed by an arrow pointing right to a second rectangle. The arrow is labeled, “Molar mass.” The second rectangle is shaded pink and is labeled, “Moles of C O subscript 2.” This rectangle is followed by an arrow pointing right to a third rectangle. The arrow is labeled, “Stoichiometric factor.” The third rectangle is shaded pink and is labeled, “Moles of C.” This rectangle is followed by an arrow labeled “Molar mass” which points right to a fourth rectangle. The fourth rectangle is shaded yellow and is labeled “Mass of C.” Below, is a second flowchart. It begins with a yellow shaded rectangle on the left which is labeled, “Mass of H subscript 2 O.” This rectangle is followed by an arrow labeled, “Molar mass,” which points right to a second rectangle. The second rectangle is shaded pink and is labeled, “Moles of H subscript 2 O.” This rectangle is followed by an arrow pointing right to a third rectangle. The arrow is labeled, “Stoichiometric factor.” The third rectangle is shaded pink and is labeled “Moles of H.” This rectangle is followed to the right by an arrow labeled, “Molar mass,” which points to a fourth rectangle. The fourth rectangle is shaded yellow and is labeled “Mass of H.” An arrow labeled, “Sample mass” points down beneath this rectangle to a green shaded rectangle. This rectangle is labeled, “Percent composition.” An arrow extends beneath the pink rectangle labeled, “Moles of H,” to a green shaded rectangle labeled, “C to H mole ratio.” Beneath this rectangle, an arrow extends to a second green shaded rectangle which is labeled, “Empirical formula.”

The empirical formula for the compound is then derived by identifying the smallest whole-number multiples for these molar amounts. The H-to-C molar ratio is

and the empirical formula for polyethylene is CH 2 .

A 0.00215-g sample of polystyrene, a polymer composed of carbon and hydrogen, produced 0.00726 g of CO 2 and 0.00148 g of H 2 O in a combustion analysis. What is the empirical formula for polystyrene?

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Expert Recommendation
  • Published: 21 April 2022

The case for data science in experimental chemistry: examples and recommendations

  • Junko Yano   ORCID: orcid.org/0000-0001-6308-9071 1 ,
  • Kelly J. Gaffney   ORCID: orcid.org/0000-0002-0525-6465 2 , 3 ,
  • John Gregoire   ORCID: orcid.org/0000-0002-2863-5265 4 ,
  • Linda Hung   ORCID: orcid.org/0000-0002-1578-6152 5 ,
  • Abbas Ourmazd   ORCID: orcid.org/0000-0001-9946-3889 6 ,
  • Joshua Schrier   ORCID: orcid.org/0000-0002-2071-1657 7 ,
  • James A. Sethian   ORCID: orcid.org/0000-0002-7250-7789 8 , 9 &
  • Francesca M. Toma   ORCID: orcid.org/0000-0003-2332-0798 10  

Nature Reviews Chemistry volume  6 ,  pages 357–370 ( 2022 ) Cite this article

4286 Accesses

29 Citations

32 Altmetric

Metrics details

  • Physical chemistry

The physical sciences community is increasingly taking advantage of the possibilities offered by modern data science to solve problems in experimental chemistry and potentially to change the way we design, conduct and understand results from experiments. Successfully exploiting these opportunities involves considerable challenges. In this Expert Recommendation, we focus on experimental co-design and its importance to experimental chemistry. We provide examples of how data science is changing the way we conduct experiments, and we outline opportunities for further integration of data science and experimental chemistry to advance these fields. Our recommendations include establishing stronger links between chemists and data scientists; developing chemistry-specific data science methods; integrating algorithms, software and hardware to ‘co-design’ chemistry experiments from inception; and combining diverse and disparate data sources into a data network for chemistry research.

chemistry quantitative research topics

This is a preview of subscription content, access via your institution

Access options

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

24,99 € / 30 days

cancel any time

Subscribe to this journal

Receive 12 digital issues and online access to articles

111,21 € per year

only 9,27 € per issue

Rent or buy this article

Prices vary by article type

Prices may be subject to local taxes which are calculated during checkout

chemistry quantitative research topics

Similar content being viewed by others

chemistry quantitative research topics

Generative AI for designing and validating easily synthesizable and structurally novel antibiotics

Kyle Swanson, Gary Liu, … Jonathan M. Stokes

chemistry quantitative research topics

SpatialData: an open and universal data framework for spatial omics

Luca Marconato, Giovanni Palla, … Oliver Stegle

chemistry quantitative research topics

Artificial intelligence and illusions of understanding in scientific research

Lisa Messeri & M. J. Crockett

Ourmazd, A. Science in the age of machine learning. Nat. Rev. Phys. 2 , 342–343 (2020).

Article   Google Scholar  

National Science Foundation. Framing the Role of Big Data and Modern Data Science in Chemistry. NSF https://www.nsf.gov/mps/che/workshops/data_chemistry_workshop_report_03262018.pdf (2018).

Mission Innovation (Energy Materials Innovation, 2018); http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-Platform-Jan-2018.pdf .

Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559 , 547–555 (2018).

Article   CAS   PubMed   Google Scholar  

Morgan, D. & Jacobs, R. Opportunities and challenges for machine learning in materials science. Annu. Rev. Mater. Res. 50 , 71–103 (2020).

Article   CAS   Google Scholar  

Janet, J. P. & Kulik, H. J. Machine Learning In Chemistry (American Chemical Society, 2020).

Wang, A. Y.-T. et al. Machine learning for materials scientists: an introductory guide toward best practices. Chem. Mater. 32 , 4954–4965 (2020).

Dashti, A. et al. Retrieving functional pathways of biomolecules from single-particle snapshots. Nat. Commun. 11 , 4734 (2020).

Article   CAS   PubMed   PubMed Central   Google Scholar  

Selvaratnam, B. & Koodali, R. T. Machine learning in experimental materials chemistry. Catal. Today 371 , 77–84 (2021).

Shi, Y., Prieto, P. L., Zepel, T., Grunert, S. & Hein, J. E. Automated experimentation powers data science in chemistry. Acc. Chem. Res. 54 , 546–555 (2021).

Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Meth. Prim. 1 , 23 (2021).

Nichols, P. L. Automated and enabling technologies for medicinal chemistry. Progr. Med. Chem. 60 , 191–272 (2021).

Stein, H. S. & Gregoire, J. M. Progress and prospects for accelerating materials science with automated and autonomous workflows. Chem. Sci. 10 , 9640–9649 (2019).

Flores-Leonar, M. M. et al. Materials acceleration platforms: on the way to autonomous experimentation. Curr. Opin. Green. Sustain. Chem. 25 , 100370 (2020).

Dashti, A. et al. Trajectories of the ribosome as a Brownian nanomachine. Proc. Natl Acad. Sci. USA 111 , 17492 (2014).

Hosseinizadeh, A. et al. Conformational landscape of a virus by single-particle X-ray scattering. Nat. Methods 14 , 877–881 (2017).

Ourmazd, A. Cryo-EM, XFELs and the structure conundrum in structural biology. Nat. Methods 16 , 941–944 (2019).

Fung, R. et al. Dynamics from noisy data with extreme timing uncertainty. Nature 532 , 471–475 (2016).

Coley, C. W., Eyke, N. S. & Jensen, K. F. Autonomous discovery in the chemical sciences. Part I: progress. Angew. Chem. Int. Ed. 59 , 22858–22893 (2020).

Coley, C. W., Eyke, N. S. & Jensen, K. F. Autonomous discovery in the chemical sciences. Part II: Outlook. Angew. Chem. Int. Ed. 59 , 23414–23436 (2020).

Stach, E. et al. Autonomous experimentation systems for materials development: a community perspective. Matter 4 , 2702–2726 (2021).

Cao, L., Russo, D. & Lapkin, A. A. Automated robotic platforms in design and development of formulations. AIChE J. 67 , e17248 (2021).

Oviedo, F. et al. Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks. njp Comput. Mat. 5 , 60 (2019).

Google Scholar  

Epps, R. W. et al. Artificial chemist: an autonomous quantum dot synthesis bot. Adv. Mater. 32 , 2001626 (2020).

Volk, A. A., Epps, R. W. & Abolhasani, M. Accelerated development of colloidal nanomaterials enabled by modular microfluidic reactors: toward autonomous robotic experimentation. Adv. Mater. 33 , 2004495 (2021).

Abdel-Latif, K., Bateni, F., Crouse, S. & Abolhasani, M. Flow synthesis of metal halide perovskite quantum dots: from rapid parameter space mapping to AI-guided modular manufacturing. Matter 3 , 1053–1086 (2020).

Whitacre, J. F. et al. An autonomous electrochemical test stand for machine learning informed electrolyte optimization. J. Electrochem. Soc. 166 , A4181–A4187 (2019).

Dave, A. et al. Autonomous discovery of battery electrolytes with robotic experimentation and machine learning. Cell Rep. Phys. Sci. 1 , 100264 (2020).

Wimmer, E. et al. An autonomous self-optimizing flow machine for the synthesis of pyridine–oxazoline (PyOX) ligands. React. Chem. Eng. 4 , 1608–1615 (2019).

Cortés-Borda, D. et al. An autonomous self-optimizing flow reactor for the synthesis of natural product carpanone. J. Org. Chem. 83 , 14286–14299 (2018).

Article   PubMed   CAS   Google Scholar  

Jeraal, M. I., Sung, S. & Lapkin, A. A. A machine learning-enabled autonomous flow chemistry platform for process optimization of multiple reaction metrics. Chem. Meth. 1 , 71–77 (2021).

Christensen, M. et al. Data-science driven autonomous process optimization. Commun. Chem. 4 , 112 (2021).

Burger, B. et al. A mobile robotic chemist. Nature 583 , 237–241 (2020).

Shiri, P. et al. Automated solubility screening platform using computer vision. iScience 24 , 102176 (2021).

Waldron, C. et al. An autonomous microreactor platform for the rapid identification of kinetic models. React. Chem. Eng. 4 , 1623–1636 (2019).

Noack, M. M. et al. A kriging-based approach to autonomous experimentation with applications to X-ray scattering. Sci. Rep. 9 , 11809 (2019).

Article   PubMed   PubMed Central   CAS   Google Scholar  

Noack, M. M., Doerk, G. S., Li, R., Fukuto, M. & Yager, K. G. Advances in kriging-based autonomous X-ray scattering experiments. Sci. Rep. 10 , 1325 (2020).

Noack, M. M., Zwart, P. H. & Ushizima, D. M. et al. Gaussian processes for autonomous data acquisition at large-scale synchrotron and neutron facilities. Nat. Rev. Phys. 3 , 685–697 (2021).

Cho, S.-Y. et al. Finding hidden signals in chemical sensors using deep learning. Anal. Chem. 92 , 6529–6537 (2020).

Nega, P. W. et al. Using automated serendipity to discover how trace water promotes and inhibits lead halide perovskite crystal formation. Appl. Phys. Lett. 119 , 041903 (2021).

Kayser, Y. et al. Core-level nonlinear spectroscopy triggered by stochastic X-ray pulses. Nat. Commun. 10 , 4761 (2019).

Fuller, F. D. et al. Resonant X-ray emission spectroscopy from broadband stochastic pulses at an X-ray free electron laser. Commun. Chem. 4 , 84 (2021).

Fagnan, K. et al. Data and Models: A Framework for Advancing AI in Science (OSTI, 2019).

Domcke, W. & Yarkony, D. R. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63 , 325–352 (2012).

Hosseinizadeh, A. et al. Single-femtosecond atomic-resolution observation of a protein traversing a conical intersection. Nature 599 , 697–701 (2021).

Takens, F. in Dynamical Systems and Turbulence, Warwick 1980 (eds Rand, D. & Young, L.S.) 366–381 (Springer, 1981).

Packard, N. H., Crutchfield, J. P., Farmer, J. D. & Shaw, R. S. Geometry from a time series. Phys. Rev. Lett. 45 , 712–716 (1980).

Hosseinizadeh, A. et al. Few-fs resolution of a photoactive protein traversing a conical intersection. Nature 599 , 697–701 (2021).

Fung, R. et al. Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study. Lancet Dig. Health 2 , e368–e375 (2020).

Jia, W. et al. in SC20: International Conference for High Performance Computing, Networking, Storage and Analysis 1–14 (IEEE, 2020); https://dl.acm.org/doi/abs/10.5555/3433701.3433707 .

Sun, S. et al. A data fusion approach to optimize compositional stability of halide perovskites. Matter 4 , 1305–1322 (2021).

Jia, X. et al. Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis. Nature 573 , 251–255 (2019).

Krska, S. W., DiRocco, D. A., Dreher, S. D. & Shevlin, M. The evolution of chemical high-throughput experimentation to address challenging problems in pharmaceutical synthesis. Acc. Chem. Res. 50 , 2976–2985 (2017).

Dybowski, R. Interpretable machine learning as a tool for scientific discovery in chemistry. N. J. Chem. 44 , 20914–20920 (2020).

Guan, W. et al. Quantum machine learning in high energy physics. Mach. Learn. Sci. Technol. 2 , 011003 (2021).

Duros, V. et al. Intuition-enabled machine learning beats the competition when joint human-robot teams perform inorganic chemical experiments. J. Chem. Inf. Model. 59 , 2664–2671 (2019).

McNally, A., Prier, C. K. & MacMillan, D. W. C. Discovery of an α-amino C–H arylation reaction using the strategy of accelerated serendipity. Science 334 , 1114 (2011).

Buitrago Santanilla, A. et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules. Science 347 , 49–53 (2015).

Lin, S. et al. Mapping the dark space of chemical reactions with extended nanomole synthesis and MALDI-TOF MS. Science 361 , eaar6236 (2018).

Selekman, J. A. et al. High-throughput automation in chemical process development. Annu. Rev. Chem. Biomol. 8 , 525–547 (2017).

Dragone, V., Sans, V., Henson, A. B., Granda, J. M. & Cronin, L. An autonomous organic reaction search engine for chemical reactivity. Nat. Commun. 8 , 15733 (2017).

Article   PubMed   PubMed Central   Google Scholar  

Sader, J. K. & Wulff, J. E. Reinvestigation of a robotically revealed reaction. Nature 570 , E54–E59 (2019).

Milo, A., Neel, A. J., Toste, F. D. & Sigman, M. S. Organic chemistry. A data-intensive approach to mechanistic elucidation applied to chiral anion catalysis. Science 347 , 737–743 (2015).

Article   PubMed Central   CAS   Google Scholar  

Melodie, C. et al. Data-science driven autonomous process optimization. Comm. Chem. 4 , 112 (2021).

Li, J. et al. AI applications through the whole life cycle of material discovery. Matter 3 , 393–432 (2020).

Kusne, A. G. et al. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets. Sci. Rep. 4 , 6367 (2014).

Kusne, A. G. et al. On-the-fly closed-loop materials discovery via Bayesian active learning. Nat. Commun. 11 , 5966 (2020).

Shi, F., Foster, J. G. & Evans, J. A. Weaving the fabric of science: dynamic network models of science’s unfolding structure. Soc. Netw. 43 , 73–85 (2015).

Bai, J. et al. From platform to knowledge graph: evolution of laboratory automation. J. Am. Chem. Soc. Au 2 , 292–309 (2022).

CAS   Google Scholar  

Gates-Rector, S. & Blanton, T. The Powder Diffraction File: a quality materials characterization database. Powder Diffr. 34 , 352–360 (2019).

Linstrom, P. J. & Mallard, W. G. (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2022).

Berman, H. M. et al. The Protein Data Bank. Nucleic Acids Res. 28 , 235–242 (2000).

Kuhn, S. & Schlörer, N. E. Facilitating quality control for spectra assignments of small organic molecules: nmrshiftdb2 — a free in-house NMR database with integrated LIMS for academic service laboratories. Magn. Reson. Chem. 53 , 582–589 (2015).

Hanson, R. et al. Development Of A Standard For Fair Data Management Of Spectroscopic Data (IUPAC, 2020).

Hanson, R. M. J. et al. FAIR enough? Spectrosc. Eur. World 33 , 25–31 (2021).

Kearnes, S. M. et al. The open reaction database. J. Am. Chem. Soc. 143 , 18820–18826 (2021).

Tremouilhac, P. et al. Chemotion ELN: an open source electronic lab notebook for chemists in academia. J. Cheminform. 9 , 54 (2017).

Mehr, S. H. M., Craven, M., Leonov Artem, I., Keenan, G. & Cronin, L. A universal system for digitization and automatic execution of the chemical synthesis literature. Science 370 , 101–108 (2020).

Vaucher, A. C. et al. Automated extraction of chemical synthesis actions from experimental procedures. Nat. Commun. 11 , 3601 (2020).

Pendleton, I. M. et al. Experiment Specification, Capture and Laboratory Automation Technology (ESCALATE): a software pipeline for automated chemical experimentation and data management. MRS Commun. 9 , 846–859 (2019).

Choudhury, R., Aykol, M., Gratzl, S., Montoya, J. & Hummelshøj, J. S. MaterialNet: a web-based graph explorer for materials science data. J. Opn Src. Softw. 5 , 2105 (2020).

Aykol, M. et al. Network analysis of synthesizable materials discovery. Nat. Commun. 10 , 2018 (2019).

Statt, M. R. et al. ESAMP: event-sourced architecture for materials provenance management and application to accelerated materials discovery. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.14583258.v1 (2021).

Li, Z. et al. Robot-accelerated perovskite investigation and discovery. Chem. Mater. 32 , 5650–5663 (2020).

Ratner, D. et al. Office Of Basic Energy Sciences (BES) roundtable on producing and managing large scientific data with artificial intelligence and machine learning. US DOE OSTI https://doi.org/10.2172/1630823 (2019).

Kwon, H.-K., Gopal, C. B., Kirschner, J., Caicedo, S. & Storey, B. D. A user-centered approach to designing an experimental laboratory data platform. Preprint at arXiv https://arxiv.org/abs/2007.14443 (2020).

Mrdjenovich, D. et al. Propnet: a knowledge graph for materials science. Matter 2 , 464–480 (2020).

Sullivan, K. P., Brennan-Tonetta, P. & Marxen, L. J. Economic Impacts of the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (Rutgers Office of Research Analytics, 2017).

Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596 , 583–589 (2021).

Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373 , 871–876 (2021).

Alshahrani, M. et al. Neuro-symbolic representation learning on biological knowledge graphs. Bioinformatics 33 , 2723–2730 (2017).

Carbone, M. R., Yoo, S., Topsakal, M. & Lu, D. Classification of local chemical environments from X-ray absorption spectra using supervised machine learning. Phys. Rev. Mater. 3 , 033604 (2019).

Zheng, C., Chen, C., Chen, Y. & Ong, S. P. Random forest models for accurate identification of coordination environments from X-ray absorption near-edge structure. Patterns 1 , 100013 (2020).

Torrisi, S. B. et al. Random forest machine learning models for interpretable X-ray absorption near-edge structure spectrum-property relationships. npj Comput. Mater. 6 , 109 (2020).

Carbone, M. R., Topsakal, M., Lu, D. & Yoo, S. Machine-learning X-ray absorption spectra to quantitative accuracy. Phys. Rev. Lett. 124 , 156401 (2020).

Cibin, G. et al. An open access, integrated XAS data repository at diamond light source. Radiat. Phys. Chem. 175 , 108479 (2020).

Musil, F. et al. Physics-inspired structural representations for molecules and materials. Chem. Rev. 121 , 9759–9815 (2021).

Smidt, T. E. Euclidean symmetry and equivariance in machine learning. Trends Chem. 3 , 82–85 (2021).

Ropers, J., Mosca, M. M., Anosova, O., Kurlin, V. & Cooper, A. I. Fast predictions of lattice energies by continuous isometry invariants of crystal structures. Preprint at https://arxiv.org/abs/2108.07233 (2021).

Herr, J. E., Koh, K., Yao, K. & Parkhill, J. Compressing physics with an autoencoder: creating an atomic species representation to improve machine learning models in the chemical sciences. J. Chem. Phys. 151 , 084103 (2019).

Sharma, A. Laboratory glassware identification: supervised machine learning example for science students. J. Comput. Sci. Ed. 12 , 8–15 (2021).

Thrall, E. S., Lee, S. E., Schrier, J. & Zhao, Y. Machine learning for functional group identification in vibrational spectroscopy: a pedagogical lab for undergraduate chemistry students. J. Chem. Educ. 98 , 3269–3276 (2021).

Lafuente, D. et al. A gentle introduction to machine learning for chemists: an undergraduate workshop using python notebooks for visualization, data processing, analysis, modeling. J. Chem. Ed. 98 , 2892–2898 (2021).

Gressling, T. Data Science in Chemistry: Artificial Intelligence, Big Data, Chemometrics and Quantum Computing with Jupyter (Walter de Gruyter, 2020).

Kauwe, S. K., Graser, J., Murdock, R. & Sparks, T. D. Can machine learning find extraordinary materials? Comput. Mat. Sci. 174 , 109498 (2020).

Schwaller, P. et al. “Found in translation”: predicting outcomes of complex organic chemistry reactions using neural sequence-to-sequence models. Chem. Sci. 9 , 6091–6098 (2018).

Bergmann, U. et al. Using X-ray free-electron lasers for spectroscopy of molecular catalysts and metalloenzymes. Nat. Rev. Phys. 3 , 264–282 (2021).

Ayyer, K. et al. Low-signal limit of X-ray single particle diffractive imaging. Opt. Express 27 , 37816–37833 (2019).

Brewster, A. et al. Processing serial crystallographic data from XFELs or synchrotrons using the cctbx.xfel GUI. Comput. Crystallogr. Newsl. 10 , 22–39 (2019).

Young, I. D. et al. Structure of photosystem II and substrate binding at room temperature. Nature 540 , 453–457 (2016).

Ratner, D., Cryan, J. P., Lane, T. J., Li, S. & Stupakov, G. Pump–probe ghost imaging with SASE FELs. Phys. Rev. X 9 , 011045 (2019).

Download references

Acknowledgements

This article evolved from presentations and discussions at the workshop ‘At the Tipping Point: A Future of Fused Chemical and Data Science’ held in September 2020, sponsored by the Council on Chemical Sciences, Geosciences, and Biosciences of the US Department of Energy, Office of Science, Office of Basic Energy Sciences. The authors thank the members of the Council for their encouragement and assistance in developing this workshop. In addition, the authors are indebted to the agencies responsible for funding their individual research efforts, without which this work would not have been possible.

Author information

Authors and affiliations.

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

SLAC National Accelerator Laboratory, Menlo Park, CA, USA

Kelly J. Gaffney

PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Stanford, CA, USA

Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA

John Gregoire

Accelerated Materials Design and Discovery, Toyota Research Institute, Los Altos, CA, USA

University of Wisconsin, Milwaukee, WI, USA

Abbas Ourmazd

Fordham University, Department of Chemistry, The Bronx, NY, USA

Joshua Schrier

Department of Mathematics, University of California, Berkeley, CA, USA

James A. Sethian

Center for Advanced Mathematics for Energy Research Applications (CAMERA), Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Francesca M. Toma

You can also search for this author in PubMed   Google Scholar

Contributions

All authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Junko Yano , Kelly J. Gaffney , John Gregoire , Linda Hung , Abbas Ourmazd , Joshua Schrier , James A. Sethian or Francesca M. Toma .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Reviews Chemistry thanks Martin Green, Venkatasubramanian Viswanathan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Autoprotocol: https://autoprotocol.org/

Cambridge Structural Database: https://www.ccdc.cam.ac.uk/

CAMERA: https://camera.lbl.gov/

Chemotion Repository: https://www.chemotion-repository.net/welcome

FAIR principles: https://www.go-fair.org/fair-principles/

HardwareX: https://www.journals.elsevier.com/hardwarex

IBM RXN: https://rxn.res.ibm.com/

Inorganic Crystal Structure Database: https://www.psds.ac.uk/icsd

MaterialNet: https://maps.matr.io/

NMRShiftDB: https://nmrshiftdb.nmr.uni-koeln.de/

Open Reaction Database: http://open-reaction-database.org

Protein Data Bank: https://www.rcsb.org/

PuRe Data Resources: https://www.energy.gov/science/office-science-pure-data-resources

Reaxys: https://www.elsevier.com/solutions/reaxys

Rights and permissions

Reprints and permissions

About this article

Cite this article.

Yano, J., Gaffney, K.J., Gregoire, J. et al. The case for data science in experimental chemistry: examples and recommendations. Nat Rev Chem 6 , 357–370 (2022). https://doi.org/10.1038/s41570-022-00382-w

Download citation

Accepted : 17 March 2022

Published : 21 April 2022

Issue Date : May 2022

DOI : https://doi.org/10.1038/s41570-022-00382-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Compas-2: a dataset of cata-condensed hetero-polycyclic aromatic systems.

  • Eduardo Mayo Yanes
  • Sabyasachi Chakraborty
  • Renana Gershoni-Poranne

Scientific Data (2024)

The rise of self-driving labs in chemical and materials sciences

  • Milad Abolhasani
  • Eugenia Kumacheva

Nature Synthesis (2023)

The Materials Provenance Store

  • Michael J. Statt
  • Brian A. Rohr
  • John M. Gregoire

Scientific Data (2023)

Rapid planning and analysis of high-throughput experiment arrays for reaction discovery

  • Babak Mahjour

Nature Communications (2023)

Combinatorial synthesis for AI-driven materials discovery

  • Joel A. Haber

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

chemistry quantitative research topics

chemistry quantitative research topics

190+ Best Quantitative Research Topics for STEM Students 2024

Dive into a world of quantitative research topics for STEM students! It’s all about unveiling the secrets of biology, decoding the language of particles, and taking a data-driven ride into the unknown.

Ready for a deep dive into the quantitative wonders of Science, Technology, Engineering, and Math? Our “Quantitative Research Topics for STEM Students” lineup is like a playground for your curious minds.

Imagine it as a buffet of cool ideas waiting for your unique spin. Whether you love crunching numbers to reveal data mysteries or untangling relationships between different things, these topics are your VIP pass to the science party!

So, grab a seat, gear up that brainpower, and let’s turn STEM research into an adventure. Picture these ideas as your scientific rollercoaster – twists, turns, and maybe even a couple of “aha!” moments. Let the quantitative fun kick-off!

Table of Contents

The Importance of Quantitative Research in STEM

Check out the importance of quantitative research in STEM.

chemistry quantitative research topics

1. Get Real with Numbers

Quantitative research in STEM isn’t just about jargon and equations; it’s the cool way of saying, “Let’s measure things objectively!” It gives us the numbers to express complex stuff and makes experiments the rockstars of replicability.

2. Data Detective Work

Ever wanted to be a detective? Well, quantitative research in STEM lets us play detective with data. We dig into big datasets, spot trends, and unveil the secrets that numbers hide. It’s like solving a mystery, but with graphs and charts!

3. Reliability Rocks

Picture this: your research is like a superhero, reliable and always ready for action. Thanks to quantitative methods, experiments can be repeated with superhero-like consistency, making our findings more trustworthy than ever.

4. Math Models – The Superheroes of STEM

Move over, superheroes; mathematical models are here! Quantitative research helps us create these powerful models that predict and explain all the cool and crazy things happening in the natural world. It’s like having a mathematical superhero team!

5. Crack Problems with Quantitative Kung Fu

Forget about traditional problem-solving. In STEM, we use quantitative kung fu! We quantify variables, analyze relationships, and kick problems to the curb with efficient and powerful moves. It’s basically the Bruce Lee of research!

6. Tech Trends Unleashed

Want to be at the forefront of technology? Quantitative research is the ticket. It doesn’t just guide us in designing cool tech; it helps us optimize what we already have. It’s the GPS for navigating the fast-paced world of STEM innovation.

7. Numbers Speak Louder in Policy Land

Policymakers love a good story, especially if it’s told in numbers. Quantitative research speaks their language, helping shape policies based on hard evidence. It’s like turning data into a blockbuster movie with a powerful impact!

8. Theory Testing, Like a Boss

In STEM, we don’t just talk theories; we test them like bosses. Quantitative research brings theories down to earth, making sure they’re not just cool ideas but proven, tested, and ready to roll.

9. Mixing STEM Flavors

STEM isn’t a solo act; it’s a band. Quantitative research lets us mix and match data from different instruments, creating a symphony of insights. It’s like blending different STEM flavors to cook up something amazing!

Choosing the Right Quantitative Research Topic

Choosing the perfect quantitative research topic is like embarking on a thrilling adventure – it’s all about excitement, challenges, and finding something that truly lights up your STEM-loving heart. So, let’s dive into the wild ride of “Choosing the Right Quantitative Research Topic.”

Choosing the Right Quantitative Research Topic

1. Follow Your STEM Heartbeat

First things first, what makes your STEM-loving heart race? Is it the allure of cracking genetic codes or navigating the intricate world of algorithms? Choose a topic that makes you go, “Wow, I want to know more!”

2. Venture into the Unknown

Don’t fear the unknown; embrace it! The most fascinating questions often lurk in uncharted territories. Think of your research topic as a treasure waiting to be discovered in the vast landscape of STEM.

3. Map Out the Data Terrain

A good adventure needs a map, right? Similarly, ensure there’s enough data to guide you. Having solid and accessible data turns your research journey into a well-prepared expedition.

4. Keep It Practical

Consider the practical side. Can you realistically embark on experiments, gather data, or dive into analyses within your available resources and timeframe? Let’s keep this adventure doable!

5. Hunt for Research Gaps

Explore the landscape of existing research. Are there areas where quantitative exploration is scarce? Becoming a gap-filler not only makes you a research superhero but also adds a unique twist to your journey.

6. Get Inspired

Think of reading research papers and attending seminars as your STEM version of gathering allies for your quest. Surround yourself with inspiration – it’s like finding magical artifacts for your research toolkit.

7. Seek Wisdom from the Wise

Wise mentors, professors, or seasoned experts are like the Gandalfs of your STEM journey. Seek their counsel. They’ve been through quests and can guide you with their sage advice.

8. Real-World Impact Check

Consider the real-world impact of your research. How can your findings make a dent in solving problems or pushing the boundaries of knowledge in your STEM realm? It’s like giving your research a superhero cape!

9. Match Your Skills with Your Quest

Choose a topic that aligns with your skills and strengths. Think of it as selecting a character for a video game – you want one that matches your style and abilities for a victorious and enjoyable quest.

Remember, your quantitative research topic isn’t just a research project – it’s your personal STEM expedition, waiting for your unique exploration and discovery. Let the adventure begin!

Quantitative Research Topics for STEM Students

Check out quantitative research topics in physics.

Biology Research Topics 

Chemistry research topics , physics research topics, mathematics research topics, computer science research topics, engineering research topics, environmental science research topics, biomedical engineering research topics, aerospace engineering research topics, mechanical engineering research topics, list of 125+ quantitative research topics for stem students.

Alright, let’s wrap this up in a more laid-back way. So, quantitative research for STEM students? It’s basically like handing them the keys to a scientific playground. These topics aren’t just a snooze-fest of numbers and graphs; think of it as a superhero origin story, but for budding scientists.

Picture this: students diving into data like it’s a treasure map, figuring out the secrets of biology or decoding the funky dance moves of particles. It’s not just studying; it’s like getting a backstage pass to the cool, mysterious world of science.

Why bother? Because this isn’t just about acing exams. It’s about becoming the superhero of your scientific turf. You’re not just learning stuff; you’re becoming a detective—asking the big questions, collecting clues, and maybe stumbling upon some mind-blowing discoveries.

So, cheers to the quantitative research journey! It’s not just a college thing; it’s the ticket to becoming the cool, problem-solving scientist everyone wants on their team. Ready for the adventure? Let’s dive in!

Frequently Asked Questions (FAQs)

Are there specific resources for stem students engaging in quantitative research.

Yes, there are specialized software tools, academic journals, and online platforms dedicated to quantitative research in STEM. Explore these resources for comprehensive support.

How can I overcome common pitfalls in quantitative research?

Mitigating pitfalls involves thorough planning, robust methodology, and staying aware of potential biases. Learning from the experiences of others can also be invaluable.

Related Posts

Qualitative Research Topics for High School Students

100+ Most Qualitative Research Topics For High School Students In 2024

Google Scholar Research Topics

99+ Astonishing Google Scholar Research Topics: The Road Less Traveled

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Continuing Professional Development of Teachers

Quantitative chemistry

Quantitative chemistry

Quantitative chemistry is a very important branch of chemistry because it enables chemists to calculate known quantities of materials. For example, how much product can be made from a known starting material or how much of a given component is present in a sample.

Quantitative analysis is any method used for determining the amount of a chemical in a sample. The amount is always expressed as a number with appropriate units. An acid-base titration is an example of quantitative analysis. In this module you will learn about the core ideas or building blocks that are required for a deep understanding of quantitative chemistry. You will start to appreciate how relatively simple ideas develop and progress to more complex calculations as more knowledge is acquired. This line of progression is clearly seen within the thread of ideas, which may be used as a point of reference.

After working through this module you will be able to:

  • understand the core ideas in quantitative chemistry;
  • explain how the core ideas of quantitative chemistry develop and progress throughout secondary education;
  • identify common misconceptions and know how these can be addressed;
  • confidently and competently teach aspects of quantitative chemistry to secondary aged students; and
  • access a range of activities and resources to support students in their learning of quantitative chemistry.

Download your course development plan to keep a record of your learning and development.

Conservation of mass

Conservation of mass

Elemental symbols

Elemental symbols

Chemical formulae

Chemical formulae

Chemical equations

Chemical equations

Reacting masses

Reacting masses

Understanding the mole

Understanding the mole

Concentration

Concentration

Titrations

Using the mole

  • Acknowledgements
  • Back to CPD for Teachers

50+ Remarkable Chemistry Project Topics for BSC Students: Chemical Kinetics

Chemistry Project Topics for BSC Students

  • Post author By admin
  • October 6, 2023

Explore a comprehensive list of chemistry project topics for BSC students. Enhance your knowledge and excel in your academic pursuits.

Welcome to the captivating world of chemistry! For Bachelor of Science (BSC) students, the journey through the diverse landscapes of chemical science is an exciting adventure.

Central to this journey are chemistry projects—opportunities for hands-on exploration, experimentation, and discovery.

Yet, the secret to a truly rewarding project lies in the choice of the right topic—one that not only aligns with academic goals but also stirs up genuine curiosity and enthusiasm.

In this article, we’re about to embark on an inspiring quest through a specially curated list of chemistry project topics, tailor-made for BSC students like you.

These topics promise not only to enhance your academic journey but also to kindle your passion for the captivating world of chemistry.

So, let’s dive in and explore the boundless possibilities and wonders that await in the realm of chemistry projects!

Table of Contents

What is Chemistry Project Topics ?

Chemistry, often dubbed the central science, has its fingerprints on virtually every facet of our lives. It’s the hidden force behind the scents we love, the reactions that fuel our cars, and even the medicines that keep us healthy.

Now, suppose this: BSC students are at the forefront of this captivating science, armed with a unique chance to dive headfirst into its various branches through project work.

These projects aren’t just your run-of-the-mill assignments; they’re like scientific adventures.

They do much more than boost your knowledge; they’re contributions to the grand tapestry of scientific discovery. So, imagine being part of this world, where you not only learn but also shape the future of chemistry!

The Importance of Choosing the Right Chemistry Project

Have a close look at the importance of choosing the right chemistry project:-

Personal Engagement

A well-suited project captures your interest and keeps you engaged throughout, making your academic journey more enjoyable.

It should align with your coursework and academic goals, ensuring that your efforts contribute meaningfully to your education.

Contribution

Choosing the right project means you’re not just benefiting yourself; you’re also adding to the body of scientific knowledge and benefiting the broader scientific community.

Skill Development

The right project challenges you, helping you acquire and refine valuable skills essential for your academic and professional growth.

When you’re passionate about your project, it transforms the work into a thrilling journey filled with curiosity, discovery, and enthusiasm.

In summary, the importance of selecting the right chemistry project goes beyond academics; it influences your engagement, relevance, contribution, skill development, and passion, enriching your scientific experience and personal growth.

Chemistry Project Topics for BSC Students

Here are Chemistry Project Topics for BSC Students:-

Organic Chemistry Projects

  • Synthesis of Aspirin: Investigate the synthesis process, purity, and properties of this widely used pain reliever.
  • Extraction of Natural Pigments: Explore the extraction of pigments from various plants and assess their applications in dyes and cosmetics.
  • Analysis of Essential Oils: Analyze the chemical composition of essential oils from different sources and study their potential medicinal properties.
  • Green Chemistry: Investigate environmentally friendly synthesis methods and processes in organic chemistry.
  • Organic Synthesis of Pharmaceuticals: Design and synthesize organic compounds with potential pharmaceutical applications.
  • Study of Aromatic Compounds: Explore the properties and reactions of aromatic compounds, such as benzene and its derivatives.
  • Polymer Chemistry: Investigate the synthesis and properties of polymers, including their applications in various industries.
  • Organic Chemistry of Natural Products: Analyze the chemical makeup of natural products like alkaloids, terpenes, and flavonoids.
  • Organometallic Chemistry: Study the bonding and reactivity of compounds containing metal-carbon bonds.
  • Organic Photochemistry: Explore the effects of light on organic compounds and their photochemical reactions.

Inorganic Chemistry Projects

  • Synthesis of Metal Complexes: Investigate the preparation and characterization of metal complexes with ligands of varying structures.
  • Coordination Chemistry: Explore the coordination behavior of transition metal ions with different ligands.
  • Inorganic Synthesis of Nanoparticles: Synthesize and characterize metal or metal oxide nanoparticles with potential applications in catalysis or nanotechnology.
  • Study of Lanthanides and Actinides: Investigate the properties and applications of lanthanide and actinide series elements.
  • Inorganic Reaction Mechanisms: Analyze the reaction mechanisms of various inorganic reactions, such as redox reactions or ligand substitution reactions.
  • Organometallic Synthesis: Study the synthesis and reactivity of organometallic compounds containing metal-carbon bonds.
  • Bioinorganic Chemistry: Explore the role of metal ions in biological systems and their significance in biochemical processes.
  • Main Group Chemistry: Investigate the chemistry of main group elements and their compounds.
  • Inorganic Synthesis of Coordination Polymers: Synthesize and characterize coordination polymers with unique structures and properties.
  • Supramolecular Chemistry: Study non-covalent interactions in inorganic chemistry, such as host-guest complexes and molecular recognition.

Physical Chemistry Projects

  • Chemical Kinetics: Investigate the rate of chemical reactions under different conditions and analyze reaction mechanisms.
  • Electrochemistry: Explore the principles of electrochemical cells, study electrode processes, and investigate applications in energy storage.
  • Thermodynamics of Reactions: Study the thermodynamic parameters of chemical reactions, including enthalpy, entropy, and Gibbs free energy.
  • Quantum Chemistry: Apply quantum mechanical principles to predict molecular structures and electronic properties of chemical compounds.
  • Statistical Mechanics: Explore the statistical behavior of particles in systems, including the Boltzmann distribution and partition functions.
  • Surface Chemistry: Investigate the physical and chemical properties of surfaces and interfaces, including adsorption and catalysis.
  • Chemical Thermodynamics: Study the thermodynamic properties of chemical systems and phase equilibria.
  • Spectroscopy and Molecular Structure: Analyze the interaction of matter with electromagnetic radiation and determine molecular structures.
  • Chemical Equilibrium: Investigate chemical equilibrium and the factors that influence it in various chemical reactions.
  • Photochemistry: Explore the effects of light on chemical reactions, including photochemical mechanisms and applications.

These diverse project topics encompass a wide range of subfields within chemistry, offering BSC students opportunities for hands-on exploration and research in their chosen area of interest.

How to Select the Ideal Chemistry Project Topic?

Selecting the ideal chemistry project topic is a crucial step that can significantly impact your academic journey and research experience. Here’s a guide on how to make the right choice:

Personal Interest

Start by considering your personal interests within the field of chemistry. What topics or areas intrigue you the most? Projects aligned with your passions are more likely to keep you motivated and engaged throughout.

Academic Alignment

Ensure that the chosen topic aligns with your coursework and academic goals. It should complement your studies and contribute to your overall understanding of chemistry.

Research Existing Knowledge

Before finalizing a topic, research existing literature and studies in that area. Understanding what has already been explored can help you identify gaps in knowledge or areas where further investigation is needed.

Consult with Professors

Seek guidance from your professors or mentors. They can provide valuable insights into potential project topics, offer suggestions, and help you refine your ideas.

Available Resources

Consider the resources available to you, including laboratory equipment, chemicals, and access to research materials. Ensure that your chosen project is feasible within your academic environment.

Scope and Complexity

Assess the scope and complexity of the project. It should be challenging enough to stimulate your intellectual growth but not so complex that it becomes unmanageable.

Relevance and Impact

Think about the broader relevance and potential impact of your project. How does it contribute to the field of chemistry or address real-world issues? Projects with practical applications or scientific significance can be particularly rewarding.

Feasibility

Evaluate the feasibility of your project in terms of time, budget, and available support. Ensure that you have a clear plan for conducting experiments and gathering data.

Ethical Considerations

Be aware of any ethical considerations related to your project, especially if it involves human subjects, animals, or hazardous materials. Ensure that your research adheres to ethical guidelines.

Flexibility

Keep some degree of flexibility in your project plan. Research may take unexpected turns, and being adaptable can help you navigate challenges and make the most of unexpected discoveries.

Passion and Curiosity

Choose a topic that genuinely excites your curiosity. A project driven by passion often leads to more enthusiastic and successful research.

Peer Feedback

Discuss your ideas with peers or fellow students. Their perspectives and feedback can offer valuable insights and help you refine your project concept.

By carefully considering these factors and conducting thorough research, you can select an ideal chemistry project topic that not only aligns with your interests and academic goals but also offers a rewarding and enriching research experience.

Tips for Successful Project Execution

Have a close look at the tips for successful project execution:-

Detailed Planning

Start with a well-structured project plan. Define your objectives, set clear goals, and create a timeline outlining each phase of your project.

Research Extensively

Before conducting experiments, thoroughly research the relevant literature to understand existing knowledge and methodologies related to your topic.

Prioritize safety at all times. Familiarize yourself with safety protocols, wear appropriate protective gear, and handle chemicals and equipment with care.

Experimental Design

Design your experiments carefully, considering variables, controls, and potential sources of error. Consult with professors or advisors for input on your experimental setup.

Data Collection

Maintain accurate and organized records of your experiments, including measurements, observations, and any unexpected results.

Analytical Tools

Utilize appropriate analytical tools and techniques for data analysis. This may involve statistical analysis, spectroscopy, chromatography, or other methods depending on your project.

Troubleshooting

Be prepared to encounter challenges during experiments. Develop problem-solving skills and seek guidance from mentors or colleagues when needed.

Regular Updates

Keep your professors or advisors informed of your progress. Regular meetings can provide valuable feedback and help you stay on track.

Documentation

Create a detailed laboratory notebook or digital records that document your procedures, results, and any modifications made during the project.

Data Interpretation

Analyze your data critically and draw meaningful conclusions. Discuss your findings with mentors and peers to gain different perspectives.

Adaptability

Be flexible in your approach. If your initial experiments do not yield the expected results, be open to adjusting your methods or hypotheses.

Time Management

Manage your time effectively to meet project milestones and deadlines. Avoid procrastination and allocate sufficient time for analysis and report writing.

Communication Skills

Develop strong communication skills to convey your research findings clearly and effectively, both in written reports and oral presentations.

Collaboration

Collaborate with colleagues or fellow students when applicable. Sharing ideas and resources can enhance the quality of your research.

Continuous Learning

Stay updated with the latest developments in your field through scientific journals, conferences, and discussions with experts.

Ethical Conduct

Adhere to ethical guidelines and principles in your research. Ensure that your work is conducted with integrity and honesty.

Feedback Incorporation

Embrace constructive feedback from mentors, peers, or reviewers, and use it to improve your project and research skills.

Celebrate Milestones

Acknowledge and celebrate your achievements and milestones throughout the project. It can boost motivation and morale.

Stay Organized

Maintain a well-organized workspace and records. A tidy and systematic approach can save time and prevent errors.

Reflect and Learn

After completing your project, reflect on your experiences and lessons learned. Consider how you can apply these insights to future research endeavors.

By following these tips and maintaining a dedicated and systematic approach, you can enhance the chances of successful project execution in the field of chemistry.

Benefits of Chemistry Projects for BSC Students

Certainly, here are the benefits of chemistry projects for BSC (Bachelor of Science) students:

Hands-On Experience

Chemistry projects provide students with practical, hands-on experience in conducting experiments, handling chemicals, and using laboratory equipment. This experience is invaluable for future careers in science.

Deeper Understanding

Engaging in research projects allows students to delve deeper into specific areas of chemistry, gaining a more profound understanding of concepts and theories.

Problem-Solving Skills

Projects often involve troubleshooting and problem-solving, honing students’ critical thinking and analytical skills . They learn to overcome challenges and adapt their approaches.

BSC students acquire a wide range of laboratory and research skills, including data collection, analysis, and interpretation. These skills are transferable and valuable in various scientific fields.

Research Ethics

Students learn about research ethics, including responsible conduct and the importance of integrity in scientific inquiry.

Scientific Method

Projects follow the scientific method, teaching students how to formulate hypotheses, design experiments, and draw conclusions based on evidence.

Encouragement to explore unique topics fosters creativity and innovation. Students may discover new approaches or solutions to existing problems.

Interdisciplinary Learning

Chemistry projects often intersect with other scientific disciplines, providing opportunities for interdisciplinary learning and collaboration.

Publication and Presentation

Successful projects can lead to publications or presentations at conferences, enhancing students’ academic and professional portfolios.

Career Preparation

The skills and experiences gained from chemistry projects prepare students for careers in research, academia, industry, or healthcare.

Increased Confidence

Completing a project independently or as part of a team boosts students’ confidence in their abilities to tackle complex scientific challenges.

Projects often involve interaction with professors, mentors, and peers, helping students build a professional network within the scientific community.

Resume Enhancement

A well-executed project can serve as a strong addition to a student’s resume or graduate school application, setting them apart from their peers.

Real-World Applications

Many chemistry projects have real-world applications, allowing students to see the practical relevance of their studies.

Contributions to Knowledge

Students may make meaningful contributions to the field of chemistry by generating new data, theories, or insights.

Personal Fulfillment

Successfully completing a challenging project can provide a sense of personal fulfillment and accomplishment.

Preparation for Advanced Degrees

For those considering postgraduate studies, chemistry projects provide valuable research experience and strengthen applications for advanced degrees.

Critical Evaluation

Students learn to critically evaluate existing literature and research, improving their ability to assess scientific claims and findings.

Teamwork and Leadership

Collaborative projects enhance teamwork and leadership skills, important attributes for any career path.

Life-Long Learning: Engaging in research projects fosters a love for learning and encourages students to continue exploring and discovering throughout their careers.

What is the best topic for chemistry project?

Selecting the right chemistry project topic is crucial for a successful project. The ideal topic should align with your interests, offer access to ample research materials, and be suitable for your skill level and experience.

Here are some ideas to consider for chemistry projects:

Chemical Composition Analysis

Investigate the chemical composition of a commonly used household product. This can provide insights into the ingredients and their properties.

Factors Affecting Chemical Reactions

Explore how various factors, such as temperature or pH levels, impact a chemical reaction. This research can reveal the variables influencing reaction outcomes.

Innovative Compound Synthesis

Develop a novel method for synthesizing a chemical compound. This project offers an opportunity to innovate and create something new.

Material Properties Study

Study the properties of a recently discovered material. This can involve characterizing its physical, chemical, and structural attributes.

Experimental Hypothesis Testing

Design and conduct an experiment to test a scientific hypothesis related to chemistry. This approach allows you to apply the scientific method.

If you find yourself unsure about the right topic, consider seeking suggestions from your teacher or browsing the internet for a wealth of chemistry project ideas.

Remember, the key is to choose a topic that sparks your curiosity and aligns with your abilities, ensuring a rewarding and successful project.

What are hot topics in chemistry?

In the realm of chemistry, 2023 brings forth some scintillating and cutting-edge areas of research:

Sustainable Chemistry

With a laser focus on eco-friendliness, sustainable chemistry aims to birth cleaner chemical processes and products. Think novel catalysts for green energy, inventive techniques for recycling and waste reduction, and biodegradable, non-toxic materials.

Materials Science

This arena is all about crafting and scrutinizing new materials, from polymers to metals, ceramics, and composites. Researchers are fashioning materials for advanced batteries, solar cells, medical devices, and robust, lightweight structural applications.

Biochemistry

At the intersection of chemistry and life itself, biochemistry explores the intricate chemistry of living organisms.

Dive into the study of proteins and enzymes, the development of groundbreaking drugs and therapies, and the engineering of microorganisms to yield valuable products.

Quantum Chemistry

The captivating fusion of quantum mechanics and chemistry gives birth to groundbreaking methods for simulating and predicting molecular properties. Think about the design and synthesis of new materials and the rise of quantum computing.

Artificial Intelligence (AI)

AI’s infusion into the chemistry landscape is revolutionary. It’s shaping the development of next-gen drugs that are both potent and gentle, as well as the creation of robust, lightweight materials.

Moreover, AI is predicting chemical reaction outcomes, optimizing processes, and pushing the boundaries of innovation.

These are just a glimpse into the dynamic world of chemistry research in 2023. It’s a vast and swiftly evolving domain, teeming with opportunities for groundbreaking discoveries and scientific progress.

What is an example of a chemistry topic?

A chemistry topic worth exploring is the impact of temperature on chemical reaction rates. This intriguing area can be probed through experimentation.

Imagine having two identical sets of reactants, each subjected to different temperatures, with the reaction rate meticulously measured at each temperature point.

The data collected can then be plotted on a graph, revealing the relationship between reaction rate and temperature.

This graphical representation can unveil critical insights, including the activation energy of the reaction and how the reaction rate fluctuates at varying temperatures.

Another captivating chemistry topic involves the synthesis of aspirin, a widely used pain reliever. Aspirin can be created through the reaction of acetic anhydride and salicylic acid.

Delving into this process entails carefully combining the two reactants in precise proportions and subjecting them to specific conditions.

The resulting product can then undergo purification and rigorous analysis to ascertain its purity and identity.

These examples merely scratch the surface of the diverse world of chemistry topics. The field encompasses an array of areas ripe for exploration, such as:

  • Unraveling the mysteries of matter’s structure and properties.
  • Exploring the intricacies of chemical bonding.
  • Unearthing the mechanisms behind chemical reactions.
  • Probing the fascinating realms of thermodynamics and kinetics.
  • Delving into the electrifying world of electrochemistry.
  • Mastering the art of analytical chemistry.
  • Navigating the intricate pathways of organic and inorganic chemistry.
  • Investigating the physical forces that drive chemical phenomena.
  • Exploring the chemistry of life itself through biochemistry.

The specific chemistry topic you choose to explore should align with your interests and objectives. If you’re keen on delving deeper into a particular facet of chemistry, consider perusing research papers, articles, and discussions on the subject.

Engaging with your teacher or a knowledgeable chemistry professor can also provide valuable guidance and suggestions.

Which is the best project in MSC chemistry?

Selecting the perfect M.Sc. chemistry project is a crucial step in your academic journey. It should both captivate your interest and pose a satisfying challenge.

Equally important is the feasibility of completing the project within the confines of your program’s time constraints.

Consider these ideas for M.Sc. chemistry projects:

Embark on the creation of a groundbreaking method for synthesizing a chemical compound, pushing the boundaries of chemical innovation.

Material Exploration

Dive into the study of a novel material’s properties, shedding light on its characteristics and potential applications.

Design and execute experiments aimed at testing scientific hypotheses, employing meticulous methods and precise data analysis.

Factors Shaping Reactions

Investigate the intricate dance of different factors, such as temperature or pH levels, on the outcomes of chemical reactions, revealing the secrets of chemical kinetics.

Complex Sample Analysis

Analyze the intricate chemical composition of complex samples like plant extracts or biological fluids, offering insights into the mysteries of nature.

Analytical Advancements

Pave the way for cutting-edge analytical methods capable of detecting or quantifying specific chemical compounds with precision.

Therapeutic Innovation

Design and synthesize a new pharmaceutical or therapeutic agent, potentially impacting healthcare and medicine.

Molecular Insights

Delve deep into the molecular mechanisms underlying biological processes like photosynthesis or cell signaling, unraveling nature’s secrets.

Computational Chemistry

Forge new frontiers in computational chemistry by developing methods to predict the properties of molecules or materials.

Environmental Impact Assessment

Scrutinize the environmental consequences of chemicals or chemical processes, contributing to sustainability efforts.

Champion sustainability by crafting novel chemical processes or products that are gentle on the planet.

If you find yourself uncertain about the ideal topic, engage in discussions with your advisor or other seasoned professors within your department.

They possess valuable insights and can help pinpoint a project that aligns seamlessly with your interests and expertise.

Once you’ve chosen your focus, meticulously craft a research plan. Outline your research question, delineate the research methods, establish a timeline for completion, and identify necessary resources, including equipment, materials, and potential funding.

With your advisor’s approval, embark on your project, keeping detailed records of your work and maintaining regular communication with your mentor.

Upon project completion, compile your findings into a comprehensive thesis or dissertation. Additionally, consider presenting your research at seminars or conferences, sharing your discoveries with the scientific community.

Undertaking an M.Sc. chemistry project is a formidable yet gratifying endeavor. It’s an opportunity to cultivate new skills, conduct independent research, and contribute meaningfully to the realm of chemistry.

In wrapping up, the world of chemistry is like an endless playground for BSC students, filled with intriguing possibilities waiting to be explored.

Think of it as your chance to embark on a captivating adventure where every project is a new chapter in your scientific journey.

Choosing the right topic is your compass, guiding you toward a project that not only aligns with your interests but also fuels your academic ambitions. Remember, it’s not just an academic checkbox; it’s your gateway to an exhilarating exploration.

As you dive into your chosen project, consider it a rendezvous with curiosity, a chance to develop invaluable skills, and an opportunity to contribute your unique brushstroke to the canvas of scientific knowledge.

Throughout this adventure, you’ll navigate the twists and turns of experimentation, data analysis, and the thrill of discovery. Your dedication and inquisitiveness will be your trusty companions on this scientific quest.

In the grand scheme of things, every chemistry project is a stepping stone towards a deeper comprehension of the marvelous world of molecules and reactions.

It’s your invitation to join a community of scientists, explorers of the unknown, and seekers of truth.

So, as you venture forth into your chemistry project as a BSC student, do so with a heart full of excitement and a mind buzzing with questions.

Your journey promises not only academic growth but also the potential to make your mark on the ever-evolving landscape of scientific understanding. Enjoy the ride!

Frequently Asked Questions

How do i choose the best chemistry project topic for me.

Consider your interests, available resources, and relevance to your coursework.

Can I collaborate with professors on a project?

Yes, collaborating with professors can provide valuable guidance and resources.

What are the key skills I can gain from a chemistry project?

Skills include research, experimentation, data analysis, and critical thinking.

Are there any online resources for chemistry project ideas?

Yes, various websites and academic journals offer project ideas.

Where can I find more information on project execution and methodology?

University libraries and online databases are excellent sources for project guidance.

  • australia (2)
  • duolingo (13)
  • Education (264)
  • General (62)
  • How To (16)
  • IELTS (127)
  • Latest Updates (162)
  • Malta Visa (6)
  • Permanent residency (1)
  • Programming (31)
  • Scholarship (1)
  • Sponsored (4)
  • Study Abroad (187)
  • Technology (12)
  • work permit (8)

Recent Posts

spring boot project ideas

CodeAvail

Best 151+ Quantitative Research Topics for STEM Students

Quantitative Research Topics for STEM Students

In today’s rapidly evolving world, STEM (Science, Technology, Engineering, and Mathematics) fields have gained immense significance. For STEM students, engaging in quantitative research is a pivotal aspect of their academic journey. Quantitative research involves the systematic collection and interpretation of numerical data to address research questions or test hypotheses. Choosing the right research topic is essential to ensure a successful and meaningful research endeavor. 

In this blog, we will explore 151+ quantitative research topics for STEM students. Whether you are an aspiring scientist, engineer, or mathematician, this comprehensive list will inspire your research journey. But we understand that the journey through STEM education and research can be challenging at times. That’s why we’re here to support you every step of the way with our Engineering Assignment Help service. 

What is Quantitative Research in STEM?

Table of Contents

Quantitative research is a scientific approach that relies on numerical data and statistical analysis to draw conclusions and make predictions. In STEM fields, quantitative research encompasses a wide range of methodologies, including experiments, surveys, and data analysis. The key characteristics of quantitative research in STEM include:

  • Data Collection: Systematic gathering of numerical data through experiments, observations, or surveys.
  • Statistical Analysis: Application of statistical techniques to analyze data and draw meaningful conclusions.
  • Hypothesis Testing: Testing hypotheses and theories using quantitative data.
  • Replicability: The ability to replicate experiments and obtain consistent results.
  • Generalizability: Drawing conclusions that can be applied to larger populations or phenomena.

Importance of Quantitative Research Topics for STEM Students

Quantitative research plays a pivotal role in STEM education and research for several reasons:

1. Empirical Evidence

It provides empirical evidence to support or refute scientific theories and hypotheses.

2. Data-Driven Decision-Making

STEM professionals use quantitative research to make informed decisions, from designing experiments to developing new technologies.

3. Innovation

It fuels innovation by providing data-driven insights that lead to the creation of new products, processes, and technologies.

4. Problem Solving

STEM students learn critical problem-solving skills through quantitative research, which are invaluable in their future careers.

5. Interdisciplinary Applications 

Quantitative research transcends STEM disciplines, facilitating collaboration and the tackling of complex, real-world problems.

Also Read: Google Scholar Research Topics

Quantitative Research Topics for STEM Students

Now, let’s explore important quantitative research topics for STEM students:

Biology and Life Sciences

Here are some quantitative research topics in biology and life science:

1. The impact of climate change on biodiversity.

2. Analyzing the genetic basis of disease susceptibility.

3. Studying the effectiveness of vaccines in preventing infectious diseases.

4. Investigating the ecological consequences of invasive species.

5. Examining the role of genetics in aging.

6. Analyzing the effects of pollution on aquatic ecosystems.

7. Studying the evolution of antibiotic resistance.

8. Investigating the relationship between diet and lifespan.

9. Analyzing the impact of deforestation on wildlife.

10. Studying the genetics of cancer development.

11. Investigating the effectiveness of various plant fertilizers.

12. Analyzing the impact of microplastics on marine life.

13. Studying the genetics of human behavior.

14. Investigating the effects of pollution on plant growth.

15. Analyzing the microbiome’s role in human health.

16. Studying the impact of climate change on crop yields.

17. Investigating the genetics of rare diseases.

Let’s get started with some quantitative research topics for stem students in chemistry:

1. Studying the properties of superconductors at different temperatures.

2. Analyzing the efficiency of various catalysts in chemical reactions.

3. Investigating the synthesis of novel polymers with unique properties.

4. Studying the kinetics of chemical reactions.

5. Analyzing the environmental impact of chemical waste disposal.

6. Investigating the properties of nanomaterials for drug delivery.

7. Studying the behavior of nanoparticles in different solvents.

8. Analyzing the use of renewable energy sources in chemical processes.

9. Investigating the chemistry of atmospheric pollutants.

10. Studying the properties of graphene for electronic applications.

11. Analyzing the use of enzymes in industrial processes.

12. Investigating the chemistry of alternative fuels.

13. Studying the synthesis of pharmaceutical compounds.

14. Analyzing the properties of materials for battery technology.

15. Investigating the chemistry of natural products for drug discovery.

16. Analyzing the effects of chemical additives on food preservation.

17. Investigating the chemistry of carbon capture and utilization technologies.

Here are some quantitative research topics in physics for stem students:

1. Investigating the behavior of subatomic particles in high-energy collisions.

2. Analyzing the properties of dark matter and dark energy.

3. Studying the quantum properties of entangled particles.

4. Investigating the dynamics of black holes and their gravitational effects.

5. Analyzing the behavior of light in different mediums.

6. Studying the properties of superfluids at low temperatures.

7. Investigating the physics of renewable energy sources like solar cells.

8. Analyzing the properties of materials at extreme temperatures and pressures.

9. Studying the behavior of electromagnetic waves in various applications.

10. Investigating the physics of quantum computing.

11. Analyzing the properties of magnetic materials for data storage.

12. Studying the behavior of particles in plasma for fusion energy research.

13. Investigating the physics of nanoscale materials and devices.

14. Analyzing the properties of materials for use in semiconductors.

15. Studying the principles of thermodynamics in energy efficiency.

16. Investigating the physics of gravitational waves.

17. Analyzing the properties of materials for use in quantum technologies.

Engineering

Let’s explore some quantitative research topics for stem students in engineering: 

1. Investigating the efficiency of renewable energy systems in urban environments.

2. Analyzing the impact of 3D printing on manufacturing processes.

3. Studying the structural integrity of materials in aerospace engineering.

4. Investigating the use of artificial intelligence in autonomous vehicles.

5. Analyzing the efficiency of water treatment processes in civil engineering.

6. Studying the impact of robotics in healthcare.

7. Investigating the optimization of supply chain logistics using quantitative methods.

8. Analyzing the energy efficiency of smart buildings.

9. Studying the effects of vibration on structural engineering.

10. Investigating the use of drones in agricultural practices.

11. Analyzing the impact of machine learning in predictive maintenance.

12. Studying the optimization of transportation networks.

13. Investigating the use of nanomaterials in electronic devices.

14. Analyzing the efficiency of renewable energy storage systems.

15. Studying the impact of AI-driven design in architecture.

16. Investigating the optimization of manufacturing processes using Industry 4.0 technologies.

17. Analyzing the use of robotics in underwater exploration.

Environmental Science

Here are some top quantitative research topics in environmental science for students:

1. Investigating the effects of air pollution on respiratory health.

2. Analyzing the impact of deforestation on climate change.

3. Studying the biodiversity of coral reefs and their conservation.

4. Investigating the use of remote sensing in monitoring deforestation.

5. Analyzing the effects of plastic pollution on marine ecosystems.

6. Studying the impact of climate change on glacier retreat.

7. Investigating the use of wetlands for water quality improvement.

8. Analyzing the effects of urbanization on local microclimates.

9. Studying the impact of oil spills on aquatic ecosystems.

10. Investigating the use of renewable energy in mitigating greenhouse gas emissions.

11. Analyzing the effects of soil erosion on agricultural productivity.

12. Studying the impact of invasive species on native ecosystems.

13. Investigating the use of bioremediation for soil cleanup.

14. Analyzing the effects of climate change on migratory bird patterns.

15. Studying the impact of land use changes on water resources.

16. Investigating the use of green infrastructure for urban stormwater management.

17. Analyzing the effects of noise pollution on wildlife behavior.

Computer Science

Let’s get started with some simple quantitative research topics for stem students:

1. Investigating the efficiency of machine learning algorithms for image recognition.

2. Analyzing the security of blockchain technology in financial transactions.

3. Studying the impact of quantum computing on cryptography.

4. Investigating the use of natural language processing in chatbots and virtual assistants.

5. Analyzing the effectiveness of cybersecurity measures in protecting sensitive data.

6. Studying the impact of algorithmic trading in financial markets.

7. Investigating the use of deep learning in autonomous robotics.

8. Analyzing the efficiency of data compression algorithms for large datasets.

9. Studying the impact of virtual reality in medical simulations.

10. Investigating the use of artificial intelligence in personalized medicine.

11. Analyzing the effectiveness of recommendation systems in e-commerce.

12. Studying the impact of cloud computing on data storage and processing.

13. Investigating the use of neural networks in predicting disease outbreaks.

14. Analyzing the efficiency of data mining techniques in customer behavior analysis.

15. Studying the impact of social media algorithms on user behavior.

16. Investigating the use of machine learning in natural language translation.

17. Analyzing the effectiveness of sentiment analysis in social media monitoring.

Mathematics

Let’s explore the quantitative research topics in mathematics for students:

1. Investigating the properties of prime numbers and their distribution.

2. Analyzing the behavior of chaotic systems using differential equations.

3. Studying the optimization of algorithms for solving complex mathematical problems.

4. Investigating the use of graph theory in network analysis.

5. Analyzing the properties of fractals in natural phenomena.

6. Studying the application of probability theory in risk assessment.

7. Investigating the use of numerical methods in solving partial differential equations.

8. Analyzing the properties of mathematical models for population dynamics.

9. Studying the optimization of algorithms for data compression.

10. Investigating the use of topology in data analysis.

11. Analyzing the behavior of mathematical models in financial markets.

12. Studying the application of game theory in strategic decision-making.

13. Investigating the use of mathematical modeling in epidemiology.

14. Analyzing the properties of algebraic structures in coding theory.

15. Studying the optimization of algorithms for image processing.

16. Investigating the use of number theory in cryptography.

17. Analyzing the behavior of mathematical models in climate prediction.

Earth Sciences

Here are some quantitative research topics for stem students in earth science:

1. Investigating the impact of volcanic eruptions on climate patterns.

2. Analyzing the behavior of earthquakes along tectonic plate boundaries.

3. Studying the geomorphology of river systems and erosion.

4. Investigating the use of remote sensing in monitoring wildfires.

5. Analyzing the effects of glacier melt on sea-level rise.

6. Studying the impact of ocean currents on weather patterns.

7. Investigating the use of geothermal energy in renewable power generation.

8. Analyzing the behavior of tsunamis and their destructive potential.

9. Studying the impact of soil erosion on agricultural productivity.

10. Investigating the use of geological data in mineral resource exploration.

11. Analyzing the effects of climate change on coastal erosion.

12. Studying the geomagnetic field and its role in navigation.

13. Investigating the use of radar technology in weather forecasting.

14. Analyzing the behavior of landslides and their triggers.

15. Studying the impact of groundwater depletion on aquifer systems.

16. Investigating the use of GIS (Geographic Information Systems) in land-use planning.

17. Analyzing the effects of urbanization on heat island formation.

Health Sciences and Medicine

Here are some quantitative research topics for stem students in health science and medicine:

1. Investigating the effectiveness of telemedicine in improving healthcare access.

2. Analyzing the impact of personalized medicine in cancer treatment.

3. Studying the epidemiology of infectious diseases and their spread.

4. Investigating the use of wearable devices in monitoring patient health.

5. Analyzing the effects of nutrition and exercise on metabolic health.

6. Studying the impact of genetics in predicting disease susceptibility.

7. Investigating the use of artificial intelligence in medical diagnosis.

8. Analyzing the behavior of pharmaceutical drugs in clinical trials.

9. Studying the effectiveness of mental health interventions in schools.

10. Investigating the use of gene editing technologies in treating genetic disorders.

11. Analyzing the properties of medical imaging techniques for early disease detection.

12. Studying the impact of vaccination campaigns on public health.

13. Investigating the use of regenerative medicine in tissue repair.

14. Analyzing the behavior of pathogens in antimicrobial resistance.

15. Studying the epidemiology of chronic diseases like diabetes and heart disease.

16. Investigating the use of bioinformatics in genomics research.

17. Analyzing the effects of environmental factors on health outcomes.

Quantitative research is the backbone of STEM fields, providing the tools and methodologies needed to explore, understand, and innovate in the world of science and technology . As STEM students, embracing quantitative research not only enhances your analytical skills but also equips you to address complex real-world challenges. With the extensive list of 155+ quantitative research topics for stem students provided in this blog, you have a starting point for your own STEM research journey. Whether you’re interested in biology, chemistry, physics, engineering, or any other STEM discipline, there’s a wealth of quantitative research topics waiting to be explored. So, roll up your sleeves, grab your lab coat or laptop, and embark on your quest for knowledge and discovery in the exciting world of STEM.

I hope you enjoyed this blog post about quantitative research topics for stem students.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

logo

Top 127+ Great Quantitative Research Topics For STEM Students

Are you a STEM enthusiast eager to dive into quantitative research but uncertain about the best topics to explore? Look no further! In this comprehensive guide, we’ll navigate through the top 27+ Quantitative Research Topics for STEM Students. 

There are we give the best topics for future scientists, engineers, and math whizzes! Are you curious about diving into the fantastic world of quantitative research? Well, you’re in for an exciting way! Today, we’re going to explore some super cool Quantitative Research Topics for STEM Students like you. But first, what’s all this talk about “quantitative research”? Don’t worry; it’s not as tricky as it sounds!

Quantitative research simply means using numbers and data to study things. For example, solving a math problem or conducting a science experiment where you count, measure, or analyze stuff to learn more. Cool, right? Now, let’s talk about STEM. No, not the plant stem, but STEM subjects – Science, Technology, Engineering, and Mathematics. These subjects are like the crucial part of knowledge!

So, here’s the exciting part! We’ve got a bunch of fascinating topics lined up for you to explore in these STEM fields using numbers, stats, and math. From studying how robots help doctors predict climate change to finding ways to make renewable energy work better in cities, these topics will make your brain more creative!

Also Like To Know: Sk Project Ideas

Table of Contents

What Is Experimental Quantitative Research Topics For STEM Students

Experimental quantitative research topics for STEM students involve conducting investigations using numbers and measurements to find answers to questions related to science, technology, engineering, and mathematics. These topics help students gather data through controlled experiments and use mathematical analysis to understand how things work or solve problems in subjects like biology, physics, chemistry, or mathematics. For example, they might explore topics like testing how different temperatures affect plant growth or analyzing the relationship between force and motion using simple experiments and numbers.

How Do You Identify A Quantitative Research Title?

Here are 7 easy steps to identify a quantitative research title:

  • Define Your Research Area: Start by identifying the general subject or field you want to study. For instance, it could be related to science, education, psychology, etc.
  • Focus on a Specific Topic: Narrow down your field of interest to a specific area or problem. For example, if you’re interested in psychology, you might want to focus on the effects of social media on teenagers’ mental health.
  • Identify Variables: Determine the variables or factors you want to measure or investigate. In quantitative research, these are typically measurable quantities or numerical data.
  • Formulate a Research Question: Develop a clear and concise research question that reflects what you want to study. Ensure it is specific and can be addressed using quantitative methods.
  • Consider the Population or Sample: Determine the population you want to study or the sample you’ll collect data from. This helps in shaping the scope of your research.
  • Quantifiable Outcome: Ensure that the research title suggests an outcome that can be measured numerically. Quantitative research aims to gather numerical data and analyze it statistically.
  • Review and Refine: After formulating a tentative title, review it to ensure it aligns with the research objectives, is clear and concise, and accurately reflects the focus of your study. Make any necessary refinements to improve clarity and precision.

List of Best 127+ Great Quantitative Research Topics For STEM Students

Here are the 127+ Great Quantitative Research Topics For STEM Students:

Best Mathematics Quantitative Research Topics For STEM Students

  • Applications of Machine Learning in Mathematical Problem Solving
  • Chaos Theory and Its Applications in Nonlinear Systems
  • Algorithmic Trading Strategies and Mathematical Modeling
  • Data Compression Techniques: Efficiency and Accuracy Trade-offs
  • Exploring Applications of Topological Data Analysis
  • Analyzing Random Matrix Theory in Statistical Physics
  • Mathematical Models for Climate Change Predictions
  • Analyzing Cryptocurrency Trends Using Mathematical Models
  • Investigating Mathematical Models for Social Networks
  • Studying Mathematical Foundations of Quantum Computing

Easy Quantitative Research Topics For STEM Students In Physics

  • Quantum Entanglement and Its Applications in Communication
  • Plasma Physics: Understanding Fusion Reactors
  • Superconductivity and Its Practical Applications
  • Statistical Mechanics in Complex Systems
  • Applications of String Theory in Cosmology
  • Gravitational Wave Detection and Interpretation
  • Quantum Field Theory and Particle Interactions
  • Quantum Computing: Designing Error-Correcting Codes
  • Analyzing Exoplanet Data Using Astrophysical Models
  • Studying Black Hole Physics and Information Paradox
  • Computational Chemistry for Drug Design and Discovery
  • Quantum Chemistry: Exploring Molecular Properties
  • Applications of Nanomaterials in Renewable Energy
  • Analyzing Chemical Reaction Kinetics
  • Environmental Impact Assessment of Chemical Pollutants
  • Polymer Chemistry: Designing Advanced Materials
  • Studying Catalysis and Surface Chemistry
  • Exploring Electrochemical Energy Storage Systems
  • Bioinorganic Chemistry: Metalloprotein Modeling
  • Investigating Supramolecular Chemistry for Functional Materials

Biology Quantitative Research Topics For STEM Students

  • Systems Biology: Modeling Cellular Signaling Networks
  • Computational Neuroscience: Brain Network Analysis
  • Population Genetics and Evolutionary Dynamics
  • Mathematical Modeling of Infectious Diseases
  • Studying Protein Folding Using Computational Methods
  • Ecological Niche Modeling for Biodiversity Conservation
  • Quantitative Analysis of Gene Regulatory Networks
  • Metagenomics: Analyzing Microbial Communities
  • Bioinformatics Applications in Personalized Medicine
  • Integrative Biology: Understanding Multi-Omics Data

Engineering

  • Robotics and Autonomous Systems: Motion Planning Algorithms
  • Finite Element Analysis for Structural Engineering
  • Machine Learning in Image Processing and Computer Vision
  • Control Systems Engineering in Autonomous Vehicles
  • Renewable Energy Grid Integration and Optimization
  • Optimization of Transportation Networks
  • Analyzing Fluid Dynamics in Aerospace Engineering
  • Materials Science: Quantum Mechanics in Materials Design
  • Sustainable Infrastructure Planning and Design
  • Cyber-Physical Systems: Security and Resilience

Computer Science Quantitative Research Topics For STEM Students

  • Big Data Analytics: Scalable Algorithms for Data Processing
  • Natural Language Processing for Sentiment Analysis
  • Blockchain Technology: Security and Consensus Algorithms
  • Quantum Computing Algorithms and Complexity
  • Developing Explainable AI Models for Decision Support
  • Privacy-Preserving Techniques in Data Mining
  • Network Security: Intrusion Detection Systems
  • Cloud Computing: Resource Allocation and Optimization
  • Human-Robot Interaction and Collaboration
  • Advancements in Quantum Cryptography Protocols

Earth and Environmental Sciences

  • Climate Modeling: Predicting Regional Climate Changes
  • Geographical Information Systems (GIS) in Environmental Analysis
  • Hydrology and Water Resource Management Modeling
  • Remote Sensing: Image Analysis for Environmental Monitoring
  • Seismology: Studying Earthquake Patterns Using Data Analysis
  • Oceanography: Analyzing Ocean Currents and Climate Impacts
  • Environmental Impact Assessment of Renewable Energy Projects
  • Soil Science: Quantifying Soil Erosion and Nutrient Dynamics
  • Air Quality Modeling and Pollution Analysis
  • Ecosystem Services Valuation Using Quantitative Methods

Agriculture and Food Sciences

  • Precision Agriculture: Using Data Analytics for Crop Management
  • Genetics and Genomics in Crop Improvement Strategies
  • Quantitative Analysis of Food Supply Chains
  • Agricultural Policy Analysis and Economic Modeling
  • Nutritional Analysis Using Quantitative Methods
  • Modeling Pesticide Use and Environmental Impact
  • Aquaculture: Optimization of Fish Farming Practices
  • Soil Fertility Modeling and Nutrient Management
  • Food Safety Assessment Using Quantitative Techniques
  • Sustainable Agriculture: Systems Modeling and Optimization

Health Sciences and Medicine: quantitative research topics in nursing

  • Epidemiology: Modeling Disease Transmission Dynamics
  • Healthcare Analytics: Predictive Modeling for Patient Outcomes
  • Pharmacokinetics and Drug Dosage Optimization
  • Health Informatics: Quantitative Analysis of Electronic Health Records
  • Medical Imaging Analysis Using Quantitative Techniques
  • Health Economics: Cost-Benefit Analysis of Healthcare Policies
  • Genomic Medicine: Analyzing Genetic Data for Disease Risk Prediction
  • Public Health Policy Evaluation Using Quantitative Methods
  • Biostatistics: Designing Clinical Trials and Statistical Analysis
  • Computational Anatomy for Disease Diagnosis and Treatment

Psychology and Social Sciences

  • Quantitative Analysis of Social Network Dynamics
  • Behavioral Economics: Decision-Making Models
  • Psychometrics: Measurement Models in Psychological Testing
  • Quantitative Study of Human Cognition and Memory
  • Social Media Analytics: Sentiment Analysis and Trends
  • Sociology: Modeling Social Movements and Cultural Dynamics
  • Educational Data Mining and Learning Analytics
  • Quantitative Research in Political Science and Policy Analysis
  • Consumer Behavior Analysis Using Quantitative Methods
  • Quantitative Approaches to Studying Emotion and Personality

Astronomy and Astrophysics

  • Cosmic Microwave Background Radiation: Analyzing Anisotropies
  • Time-domain Astronomy: Statistical Analysis of Variable Stars
  • Gravitational Lensing: Quantifying Distortions in Cosmic Images
  • Stellar Evolution Modeling and Simulations
  • Exoplanet Atmosphere Characterization Using Quantitative Methods
  • Galaxy Formation and Evolution: Statistical Approaches
  • Multimessenger Astronomy: Data Fusion Techniques
  • Dark Matter and Dark Energy: Analyzing Cosmological Models
  • Astrophysical Jets: Modeling High-Energy Particle Emissions
  • Supernova Studies: Quantitative Analysis of Stellar Explosions

Linguistics and Language Sciences

  • Computational Linguistics: Natural Language Generation Models
  • Phonetics and Speech Analysis Using Quantitative Techniques
  • Sociolinguistics: Statistical Analysis of Dialect Variation
  • Syntax and Grammar Modeling in Linguistic Theory
  • Quantitative Study of Language Acquisition in Children
  • Corpus Linguistics: Quantifying Textual Data
  • Language Typology and Universals: Cross-Linguistic Analysis
  • Psycholinguistics: Quantitative Study of Language Processing
  • Machine Translation: Improving Accuracy and Efficiency
  • Quantitative Approaches to Historical Linguistics

Business and Economics: quantitative research topics in education

  • Financial Risk Management: Quantitative Modeling of Risks
  • Econometrics: Statistical Methods in Economic Analysis
  • Marketing Analytics: Consumer Behavior Modeling
  • Quantitative Analysis of Macroeconomic Policies
  • Operations Research: Optimization in Supply Chain Management
  • Quantitative Methods in Corporate Finance
  • Labor Economics: Analyzing Employment Trends Using Data
  • Economic Impact Assessment of Policy Interventions
  • Quantitative Analysis of Market Dynamics and Competition
  • Behavioral Finance: Quantifying Psychological Aspects in Financial Decision-Making

Education and Pedagogy

  • Educational Data Mining for Adaptive Learning Systems
  • Quantitative Analysis of Learning Outcomes and Student Performance
  • Technology Integration in Education: Assessing Efficacy
  • Assessment and Evaluation Models in Educational Research
  • Quantitative Study of Teacher Effectiveness and Practices
  • Cognitive Load Theory: Quantifying Learning Processes
  • Educational Psychology: Quantitative Analysis of Motivation
  • Online Education: Analytics for Engagement and Success
  • Curriculum Development: Quantitative Approaches to Design
  • Educational Policy Analysis Using Quantitative Methods

Communication and Media Studies

  • Media Effects Research: Quantitative Analysis of Influence
  • Computational Journalism: Data-driven Storytelling
  • Social Media Influence Metrics and Analysis
  • Quantitative Study of Public Opinion and Opinion Formation
  • Media Content Analysis Using Statistical Methods
  • Communication Network Analysis: Quantifying Connections
  • Quantitative Approaches to Media Bias Assessment
  • Entertainment Analytics: Audience Behavior Modeling
  • Digital Media Consumption Patterns: Statistical Analysis
  • Crisis Communication: Quantitative Assessment of Responses

quantitative research topics for accounting students in the Philippines

Here are ten quantitative research topics suitable for accounting students in the Philippines:

  • “Impact of Tax Reforms on Small and Medium Enterprises (SMEs) in the Philippines: A Quantitative Analysis”
  • “Financial Performance Evaluation of Philippine Banks: A Comparative Study Using Ratios and Metrics”
  • “Effectiveness of Internal Control Systems in Mitigating Fraud: A Quantitative Assessment in Philippine Organizations”
  • “Analysis of Corporate Governance Practices and Financial Performance: Evidence from Philippine Listed Companies”
  • “Determinants of Audit Quality: A Quantitative Study of Auditing Practices in the Philippines”
  • “The Role of Accounting Information Systems in Enhancing Organizational Efficiency: A Quantitative Investigation”
  • “Factors Influencing Financial Reporting Quality in the Philippines: A Quantitative Approach”
  • “Assessing the Impact of International Financial Reporting Standards (IFRS) Adoption on Philippine Firms”
  • “Analysis of Factors Affecting Financial Literacy among Filipino College Students: A Quantitative Study”
  • “Cash Flow Management Practices and Financial Sustainability of SMEs in the Philippines: A Quantitative Analysis”

What are the 10 examples of research titles in school quantitative?

Here are ten examples of quantitative research titles suitable for school-related studies:

  • “Impact of Technology Integration on Academic Performance: A Quantitative Analysis”
  • “Effects of Classroom Size on Student Learning Outcomes: A Quantitative Study”
  • “Parental Involvement and Student Achievement: A Quantitative Investigation”
  • “Assessing the Efficacy of Different Teaching Methods in Mathematics Education”
  • “Correlation between Student Engagement and Standardized Test Scores”
  • “Bullying in Schools: Quantitative Analysis of Prevalence and Impact on Academic Performance”
  • “Examining the Relationship between Socioeconomic Status and Reading Proficiency”
  • “Effectiveness of School Counseling Programs on Student Mental Health: A Quantitative Approach”
  • “Analyzing the Impact of Extracurricular Activities on Student Success Metrics”
  • “Evaluation of a New Grading System: Quantitative Comparison with Traditional Grading Scales”

Best experimental quantitative research topics for stem students in the Philippines

The following are the best quantitative research topics for stem students:

Biology Quantitative Research Topics

In the realm of Biology, quantitative research delves into the numerical aspects of living organisms, ecosystems, and genetics, aiding in understanding diverse biological phenomena.

Chemistry Quantitative Research Topics

Chemistry’s quantitative research explores numerical relationships within chemical reactions, material properties, and various compounds, offering insights into chemical phenomena through measurable data.

Physics Quantitative Research Topics

In Physics, quantitative research scrutinizes measurable physical quantities and their interactions, exploring fundamental principles and phenomena of the natural world.

Mathematics Quantitative Research Topics

Mathematics, in its quantitative research, investigates numerical patterns, structures, and mathematical theories, exploring the quantifiable aspects of various mathematical concepts.

We’ve explored the wonders of using numbers, data, and math to unravel the mysteries of science, technology, engineering, and mathematics. Quantitative research isn’t about mind-boggling formulas or complex theories. It’s about using simple math and statistics to understand the world around us. Whether it’s predicting the impact of climate change, exploring how robots aid healthcare, or figuring out ways to make our cities greener, each topic we’ve discussed holds the potential for groundbreaking discoveries.

Now, as you continue your academic journey, keep this curiosity alive. Embrace the joy of asking questions, experimenting, and exploring. Your passion for STEM subjects can lead to amazing things – from inventing new technologies to finding solutions for global challenges.

So, what’s next for you? Pick a topic that excites you, dive into the world of quantitative research, and let your imagination soar! Who knows, maybe you’ll be the one to discover something incredible that changes the world.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

logo

80 Experimental Quantitative Research Topics for STEM Students

Dive into a captivating world of quantitative research topics for STEM students! Fuel your scientific curiosity and sharpen your analytical skills as you navigate through this carefully curated collection. Picture it as your personal roadmap, guiding you through the thrilling landscapes of Science, Technology, Engineering, and Mathematics.

Picture yourself as a scientific adventurer, standing at the intersection of curiosity and precision. The vast expanse of STEM awaits, and the quantitative research frontier is your ticket to uncharted territories where data becomes your trusted guide. So, fellow scholars, buckle up as we embark on a journey designed to not only pique your curiosity but also propel you into the heart of STEM exploration.

Think of this collection as more than just a list of topics; it’s your backstage pass to a rollercoaster of analytical adventures. Watch as numbers pirouette and graphs spin tales of discovery. Get ready to unravel the mysteries of the quantitative realm, where each topic is a portal to transformative magic for aspiring scientists and researchers.

Consider this your invitation to the captivating universe of quantitative research in STEM—it’s not just a collection; it’s your VIP access to an exploration that promises to be both thrilling and enlightening. Let the journey begin!

Table of Contents

The Power of Experimental Quantitative Research

Here’s an in-depth look at the power of experimental quantitative research for STEM students:

Cause-and-Effect Quest

Ever wonder why things happen? Experimental quantitative research is like the superhero of answers. It dives deep into cause-and-effect relationships, shaking things up in a controlled setting to reveal the real power players.

Stats Showdown

Think of it as a statistical showdown. This research isn’t just crunching numbers; it’s unleashing statistical wizards like ANOVA and regression analysis. These magic tools make sure the conclusions are not just guesses but rock-solid findings.

Precision Masters

Precision is the name of the game. Experimental designs let researchers measure stuff with surgical precision. No blurry lines here—just clear, accurate measurements that make other research methods jealous.

Do It Again, Sam

One experiment, two experiments, three! The cool thing about experimental research is its replay button. When you get similar results over and over, it’s like hitting “repeat” on a killer playlist. It boosts the credibility of your findings and lets you say, “Yep, we’re onto something big.”

No Sneaky Variables Allowed

Ever had unwanted guests crash your party? Experimental research kicks out those sneaky variables that could mess up your results. It’s like having bouncers at the door, ensuring only the main players get in.

Quantify Everything

If you can measure it, you can study it. Experimental research loves turning everything into numbers. It’s not just about changes; it’s about quantifiable, concrete outcomes that you can hold up and say, “Yep, we nailed it.”

Hypothesis Hustle

It’s like a detective story. Researchers cook up hypotheses, design experiments to test them, and then play detective with the results. It’s not just a guessing game; it’s a strategic hunt for answers.

Smart Decision DJ

Picture this: you’re making decisions with a DJ booth of data. The insights from experimental research guide decisions, whether it’s improving a product, tweaking a lesson plan, or steering a business strategy. It’s like having a crystal ball, but way more reliable.

Knowledge Thrill

Ever get a thrill from connecting the dots? Experimental research is the ultimate dot connector. It doesn’t just stop at one study—it builds on existing knowledge, refines theories, and pushes the boundaries of what we know.

Real-World Magic

Finally, it’s not just about fancy theories. Experimental research brings real-world magic. From making better gadgets to crafting smarter policies, it’s the real deal that transforms ideas into practical solutions. So, let the experimental adventure begin!

Quantitative Research Topics for STEM Students

Check out experimental quantitative research topics for stem students:-

  • How does temperature affect plant growth?
  • Exploring urban insect diversity.
  • How does pollution impact fish populations?
  • Studying genetic variations in fruit flies.
  • Which fertilizer boosts tomato yield best?
  • How does climate change affect bird migration?
  • Does diet influence gut bacteria?
  • Testing herbal remedies for headaches.
  • Effects of deforestation on bird habitats.
  • Investigating pesticides’ impact on bees.
  • How fast does sugar dissolve in water?
  • Exploring everyday materials’ properties.
  • Does acidity differ among fruit juices?
  • Testing various cleaning agents’ efficiency.
  • Reaction rates of baking soda and vinegar.
  • Synthesizing aspirin in the lab.
  • Analyzing aspirin purity through titration.
  • How does temperature affect crystal growth?
  • Conductivity testing of different metals.
  • Effects of air pollution on metal corrosion.
  • How does ramp angle affect toy car distance?
  • Exploring solar panel efficiency in various lighting.
  • Studying different magnet strengths.
  • How do sound waves behave in materials?
  • Analyzing water flow through different pipes.
  • Testing friction across various surfaces.
  • How do colors of light differ in properties?
  • Studying engine efficiency across types.
  • Exploring electron behavior in circuits.
  • Analyzing lens properties across types.

Mathematics

  • Patterns in the times tables.
  • Relationship between circle circumference and diameter.
  • Distribution of prime numbers.
  • Efficiency of equation-solving methods.
  • Properties of different triangles.
  • Accuracy of estimating pi methods.
  • Fibonacci sequence’s relationship with nature.
  • Efficiency of Sudoku-solving methods.
  • Properties of different types of graphs.
  • Probability in various games of chance.

Engineering

  • Paper airplane design impact on flight.
  • Strength of different bridge types.
  • Wind turbine efficiency in power generation.
  • Material properties for building bridges.
  • Efficiency of water filtration system designs.
  • Durability testing of building materials.
  • Paper tower design impact on strength.
  • Wing design impact on airplane lift.
  • Roller coaster design efficiency.
  • Properties of different gear types.

Environmental Science

  • pH’s effect on aquatic life.
  • Deforestation’s impact on soil erosion.
  • Recycling program effectiveness in waste reduction.
  • Air pollution’s effect on plant growth.
  • Oil spill cleanup methods’ efficiency.
  • Water quality testing in local water bodies.
  • Climate change’s impact on bird migration.
  • Ocean acidification’s effect on coral reefs.
  • Composting methods’ efficiency.
  • Urbanization’s effect on air quality.

Health Sciences

  • Exercise impact on heart rate.
  • Diet’s effect on blood sugar levels.
  • Sterilization methods’ effectiveness.
  • Sleep’s role in memory retention.
  • Stress’s effect on immune function.
  • Pain relief method comparison.
  • Music’s impact on mood.
  • Diet’s influence on acne.
  • Caffeine’s effect on reaction time.
  • Smoking cessation method effectiveness.

Computer Science

  • File size’s impact on download time.
  • Sorting algorithm efficiency comparison.
  • Antivirus software effectiveness testing.
  • Social media’s effect on mental health.
  • Password security analysis.
  • Programming language efficiency comparison.
  • Screen time’s impact on eye strain.
  • Spam email blocking method comparison.
  • Video game’s effect on cognitive function.
  • Search algorithm efficiency comparison.

These topics offer a plethora of engaging research avenues for STEM students to explore!

What is a quantitative study related to stem strand?

Absolutely, let’s add a touch of excitement and a dash of curiosity to the concept of quantitative studies in STEM:

Ever wondered how effective our STEM superhero training is? Join us on a quest where numbers reveal the superpowers our young heroes are gaining – from learning to engagement, it’s a STEM adventure in the making!

Math Mysteries

Imagine embarking on a quest to crack the code of the most enchanting math teaching methods. We’re using numbers to unlock the secrets and find out which teaching methods make math an epic journey!

Tech Time Warp

Step into a time warp to explore the impact of technology in STEM classrooms. We’re crunching numbers to unveil the connection between tech wizardry and students’ fascinating journey through the STEM universe!

STEM Jam Sessions

Ever been curious about the magic of STEM extracurricular activities? Get ready to rock with the impact – we’re turning up the volume on how these activities groove with students’ interests, skills, and future STEM dreams.

RoboRevolution

Join the revolution and dance with the impact of robotics! We’re using numbers to unravel the story of how our robotic buddies are shaping students’ understanding of engineering, problem-solving, and teamwork.

Physics Fiesta

Picture a fiesta where traditional teaching methods face off against hands-on learning in physics. Get ready for a showdown – we’re crunching the numbers to see which teaching style turns physics into the ultimate party!

STEM Sisters

Lights, camera, mentorship! Discover the magic mentorship brings to aspiring female scientists . We’re using numbers to capture the story of how mentorship shapes dreams and success in the world of STEM.

Chemical Magic

Imagine a magical realm where virtual and real labs compete in chemistry education. We’re diving into the data to see which type of magic – virtual or hands-on – creates the most enchanting learning experience.

Rocket Launchers

Buckle up for an odyssey into the impact of STEM education on career paths. We’re using numbers to capture the essence of how STEM education propels students into exciting career trajectories.

Internship Adventure

Join the internship adventure where STEM students become workplace explorers. We’re using numbers to capture the spirit of how internships prepare our STEM enthusiasts for the real-world adventure.

These engaging examples turn the exploration of STEM concepts into thrilling quests, magical showdowns, and epic adventures, making the world of quantitative studies in STEM feel more like a captivating journey!

Hey future STEM explorers, let’s wrap up this quantitative research journey with some serious excitement! Picture this: you’re in a massive theme park of ideas. From tiny molecular mysteries to epic cosmic adventures, STEM is basically your ultimate rollercoaster ride.

This isn’t your average math class – it’s like being a science superhero. You’re not just learning; you’re decoding secrets, analyzing data like a wizard, and dropping knowledge bombs left and right.

Quantitative research is like your trusty sidekick, helping you navigate the crazy jungle of data. It’s not just about acing tests; it’s about painting your own graffiti on the walls of STEM greatness. Your research isn’t just making you smarter; it’s adding a funky beat to the STEM jam.

So get pumped, future STEM rockstars – every formula you conquer, every discovery you make, it’s like you’re dropping the mic in the concert of science. Game on, champs!

Frequently Asked Questions

What is the key difference between quantitative and qualitative research.

Quantitative research focuses on numerical data and statistical analysis, while qualitative research emphasizes understanding human behavior and motivations.

Are there interdisciplinary research opportunities in STEM?

Absolutely! Many groundbreaking discoveries occur at the intersection of STEM disciplines, so don’t hesitate to explore interdisciplinary topics.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Questions? Call us: 

Email: 

  • How it works
  • Testimonials

Essay Writing

  • Essay service
  • Essay writers
  • College essay service
  • Write my essay
  • Pay for essay
  • Essay topics

Term Paper Writing

  • Term paper service
  • Buy term papers
  • Term paper help
  • Term paper writers
  • College term papers
  • Write my term paper
  • Pay for term paper
  • Term paper topic

Research Paper Writing

  • Research paper service
  • Buy research paper
  • Research paper help
  • Research paper writers
  • College research papers
  • Write my research paper
  • Pay for research paper
  • Research paper topics

Dissertation Writing

  • Dissertation service
  • Buy dissertation
  • Dissertation help
  • Dissertation writers
  • College thesis
  • Write my dissertation
  • Pay for dissertation
  • Dissertation topics

Other Services

  • Custom writing services
  • Speech writing service
  • Movie review writing
  • Editing service
  • Assignment writing
  • Article writing service
  • Book report writing
  • Book review writing

Popular request:

Top 75 chemistry research topics for your paper.

October 10, 2019

Are you looking for the best chemistry research topics on the Internet? We are happy to tell you that you have arrived at the right place. Even though our topics are public and anyone can use them, we are doing our best to keep this list as fresh as possible. However, if you are worried about the originality of your next chemistry research paper topics, we have a great tip on how to find 100% original topics.

Chemistry Research Topics

In this post, we will be discussing why you need interesting chemistry topics for research projects. We will also show you how to find many more topics. Of course, because we are all about helping the student, we will give you 75 interesting chemistry topics to research. You are free to use these topics as you see fit. This means you are allowed to reword them in any way.

The Truth About Chemistry Research Paper Topics

Let’s start with the beginning. Why would you want to find the most interesting chemistry research topics? You are probably well aware that professors are looking carefully at each topic they see. In most cases, students write about the same old topics. And truth be told, teachers are tired and bored of reading the same thing over and over again. This is why, when the professor sees a new topic, he instantly becomes interesting. And an interested academic is much more likely to award your hard work with a top grade. This is why we consider chemistry topics for research papers to be so important.

Finding Awesome Chemistry Topics for Research Papers

When you are looking for chemistry topics for research project, you may be tempted to turn to Google and to the myriad of websites on it. But this is not the best approach. In the beginning of the post, we promised you the best way to get 100% original topics, and we will keep our word. The best way to get research paper topics chemistry professors will be really interested in is to work with a professional. In other words, you should contact an academic writer and ask for a chemistry research topics list. Yes, it will cost you a couple bucks, but this money is well spent. You will get a list of topics that none of your peers has access to. The best way to find a reliable academic writer who will deliver on his promises is to contact an academic writing company. There are several reliable ones on the Internet, of course.

The Best 75 Chemistry Topics for Research

Looking for chemistry research topics high school teachers would love to read about? Are you a college student or an undergrad who is looking for fresh chemistry topics to research? Regardless what you need these topics for, we are here to help! We have asked our experienced chemistry writers to compile a list of the best chemistry topics; chemistry topics that they would recommend to their clients.

Organic Chemistry Research Topics

Of course, no list would be complete without organic chemistry research topics. Organic chemistry is a huge area of chemistry, so there are plenty of things to talk about. Also, new research is being done all the time, so you can easily find fresh ideas and information. Here are some of our best ideas:

  • The types of isomerism in organic compounds.
  • What are nucleophiles?
  • What are aniline dyes?
  • The stability of nucleic acids (DNA and RNA)
  • Describe what an oil is.
  • How is hydrocarbon fuel produced?
  • What are electrophiles?
  • Describe phenol as an acid.
  • How are globular proteins formed?
  • What is an organosilicon compound?
  • How dangerous is snow pollution?

Chemistry Research Topics for High School

We have some of the best chemistry research paper topics for high school students on the Internet. These topics are not very difficult and you can easily find plenty of information online. This means that you can write an essay on any of the following topics in as little as 2 hours:

  • Analyzing the PH effect on plants.
  • How are pearls created?
  • Growing artificial diamonds.
  • How to optimize the brewing of tea?
  • How do we detect heavy metals in plants?
  • Analyzing the air we breathe.
  • The dangers of using petroleum products.
  • Natural versus synthetic detergents.
  • Explain barium toxicity.
  • How can indoor plants benefit from chemistry?
  • How do you clean oil effectively?

Chemistry Research Topics for College

Chemistry research topics for college students are a bit more difficult. After all, college professors expect you to put in a lot more work than a high school student. This doesn’t mean that you can’t write these papers quickly though. Here are some of the best topics we can think of:

  • The hidden dangers of tap water.
  • How did Dmitri Mendeleev discover the Periodic Table?
  • How harmful are electronic cigarettes?
  • Analyzing the water memory effect.
  • What’s in the first aid kit?
  • The effects of carboxylic acids on humans.
  • How can you freeze water fast?
  • Analyzing anti-icing solutions on airports.
  • The classification of chemical reactions.
  • What is a covalent polar bond?
  • How does water purification work?

Inorganic Chemistry Research Topics

Of course, we have to include inorganic chemistry research topics in our list. We can’t have organic topics in here without inorganic topics. There are plenty of topics about inorganic chemistry out there, but we have selected only the best for you:

  • Why is NaCl salty?
  • How are sapphires formed?
  • Explain the Law of Multiple Proportions.
  • Explain the various states of matter.
  • The effect of sulfuric acid on organic material.
  • Why is silicone dioxide used in solar cells?
  • The difference between organic and inorganic compounds.
  • Why is inorganic chemistry important?
  • Discussing Lewis Structures and Electron Dot Models.
  • Explain Dalton’s Law of Partial Pressures.

Chemistry Research Topics for Undergraduates

Yes, chemistry research topics for undergraduates are more difficult than those aimed at college students. However, we’ve made sure to only select topics that you can find a lot of information about. In other words, it’s not impossible to write an essay on one of our topics in one day. Here is what we propose:

  • How do we use hydrogen to discover oxygen?
  • How does an allergy develop?
  • What is surface tension? Any applications?
  • Discussing the ionization methods used in the mass spectrometry process.
  • How can one stabilize lithium?
  • What are food dyes really made of?
  • A study of the Lewis Structure.
  • Why is Ibuprofen considered dangerous?
  • Explaining the chemical equilibrium effect.
  • How are nanophotonics used in military applications?

Most Interesting Chemistry Research Topics

You are probably aware that professors really appreciate interesting chemistry research topics. This is precisely why we have compiled a list of interesting topics. These topics can be picked by both high school students and college students. Some of these topics can even be picked by undergrads:

  • How does photocatalysis work in 3D printers?
  • Who was Fritz Haber?
  • What are nanoreactors in chemistry?
  • Why do glow sticks glow?
  • What is Californium?
  • Why does the Sun burn without the need for oxygen?
  • How do you freeze air?
  • Why is there Sodium Azide in car airbags?
  • How is dry ice made?
  • What is the color of oxygen?

Easy Chemistry Topics

At the very end of our list, you can find the easy chemistry topics. These are perfect for when you need to write an essay quickly (usually in less than an hour). You don’t want to do a lot of research and you want to find all the relevant information with a single Google search. These are the topics for you:

  • Why does water expand upon freezing?
  • What are pesticides made of?
  • How are batteries made?
  • Describe a thermoelectric material.
  • How can we avoid pesticides?
  • How do synthetic molecules replicate?
  • What are the implications of the Thermodynamics Laws?
  • What is cholesterol?
  • How do vitamins act in the human body?
  • Why is aspirin a pain killer?
  • What are steroids?
  • The process of recycling plastics.

Many students have asked us if simply finding chemistry research topics is enough to get an A or an A+. Sadly, the answer is “No.” Your professor will award you some bonus points for an original, interesting topic. However, if you don’t write in the proper academic format, or if you make serious errors, you will get a low grade. This is why we always tell our readers to learn as much as possible about academic paper writing.

For a chemistry paper, the first thing you should do is read about the five paragraph essay structure. It will get you out of a lot of problems, guaranteed. After you know how to write the paper correctly, pick one of our topics and start writing. Good luck!

It’s time to nail your grades! Get your 20% discount on a chemistry writing assignment with promo “ ewriting20 ” – and enjoy your college life!

chemistry quantitative research topics

Take a break from writing.

Top academic experts are here for you.

  • How To Write An Autobiography Guideline And Useful Advice
  • 182 Best Classification Essay Topics To Learn And Write About
  • How To Manage Stress In College: Top Practical Tips  
  • How To Write A Narrative Essay: Definition, Tips, And A Step-by-Step Guide
  • How To Write Article Review Like Professional
  • Great Problem Solution Essay Topics
  • Creating Best Stanford Roommate Essay
  • Costco Essay – Best Writing Guide
  • How To Quote A Dialogue
  • Wonderful Expository Essay Topics
  • Research Paper Topics For 2020
  • Interesting Persuasive Essay Topics

StatAnalytica

201+ Chemistry Project Topics [Updated]

chemistry project topics

Chemistry, often hailed as the “central science,” plays a pivotal role in understanding the world around us. From the composition of substances to the reactions that transform them, chemistry influences nearly every aspect of our lives. One fascinating way to delve deeper into this field is through chemistry projects. These projects offer a hands-on approach to learning, allowing students and enthusiasts alike to explore various concepts and phenomena. In this blog, we’ll journey through a diverse array of chemistry project topics, offering insights into each area’s significance and potential for exploration.

How To Select Relevant Chemistry Project Topics?

Table of Contents

Selecting relevant chemistry project topics requires careful consideration of several factors to ensure that the chosen topic aligns with your interests, goals, and resources. Here’s a step-by-step guide to help you select the most suitable chemistry project topic:

  • Identify Your Interests: Consider your interests within the broad field of chemistry. Are you fascinated by organic synthesis, environmental chemistry, biochemistry, or another sub-discipline? Choosing a topic that aligns with your interests will keep you motivated throughout the project.
  • Assess Your Knowledge and Skills: Evaluate your current knowledge and skills in chemistry. Choose a topic that challenges you without being too overwhelming. If you’re a beginner, opt for a project that allows you to build upon your existing knowledge while learning new concepts.
  • Consider Available Resources: Take stock of the resources available to you, including laboratory equipment, chemicals, reference materials, and access to mentors or experts. Select a project that can be feasibly completed with the resources at your disposal.
  • Review Literature and Current Trends: Conduct a literature review to explore recent advancements, emerging trends, and unresolved questions in your chosen area of interest. This will help you identify gaps in knowledge or areas where further research is needed, guiding your selection of a relevant project topic.
  • Define Your Objectives and Goals: Clearly define your objectives and goals for the project. Determine what you aim to accomplish and what outcomes you hope to achieve. Your project topic should align with these objectives and contribute to fulfilling your academic or personal goals.
  • Consult with Mentors or Advisors: Seek guidance from mentors, advisors, or faculty members who can provide insights and suggestions based on their expertise. Discuss potential project topics with them and solicit their feedback to ensure that your chosen topic is relevant and feasible.
  • Brainstorm and Narrow Down Options: Brainstorm a list of potential project topics based on your interests, knowledge, resources, and goals. Narrow down your options by considering factors such as feasibility, novelty, and potential impact. Choose a topic that excites you and has the potential to make a meaningful contribution to the field of chemistry.
  • Refine Your Topic and Formulate a Research Plan: Once you’ve selected a topic, refine it further by clearly defining your research question or hypothesis. Develop a research plan outlining the specific objectives, methods, and timeline for your project. Be prepared to adapt and refine your plan as you progress with your research.

By following these steps, you can select relevant chemistry project topics that align with your interests, goals, and resources, setting the stage for a successful and rewarding research experience.

201+ Chemistry Project Topics: Beginners To Advanced

Organic chemistry projects.

  • Synthesis and characterization of aspirin.
  • Extraction and analysis of caffeine from tea leaves.
  • Isolation and identification of natural dyes from plants.
  • Synthesis of biodiesel from vegetable oil.
  • Investigating the acidity of fruit juices using titration.
  • Synthesis of esters for fragrance applications.
  • Preparation of soap from vegetable oils.
  • Studying the effect of catalysts on organic reactions.
  • Analysis of essential oils from aromatic plants.
  • Synthesis and purification of acetaminophen.
  • Investigating the properties of polymers.
  • Extraction of DNA from fruits or vegetables.
  • Synthesis of nylon-6,6.
  • Investigating the effects of different solvents on crystallization.
  • Studying the reactions of carbohydrates.
  • Synthesis of biodegradable plastics.
  • Analysis of food additives using chromatography.
  • Investigating the process of fermentation.
  • Synthesis and characterization of bioderived materials.
  • Studying the properties of antioxidants in foods.

Inorganic Chemistry Projects

  • Synthesis and characterization of metal oxides.
  • Investigating the properties of transition metal complexes.
  • Preparation of metal nanoparticles and their applications.
  • Studying the formation and properties of zeolites.
  • Synthesis of coordination compounds.
  • Investigating the redox properties of metal ions.
  • Preparation and characterization of metal alloys.
  • Studying the properties of rare earth elements.
  • Synthesis of metal-organic frameworks (MOFs).
  • Investigating the catalytic properties of metal nanoparticles.
  • Preparation and properties of superconductors.
  • Synthesis of semiconductor materials.
  • Investigating the properties of carbon allotropes (e.g., graphite, diamond).
  • Preparation and characterization of magnetic materials.
  • Studying the properties of chalcogenides.
  • Synthesis of nanocomposites for catalytic applications.
  • Investigating the properties of perovskite materials.
  • Preparation and characterization of phosphors.
  • Studying the properties of metal halides.
  • Synthesis of metal carbonyl complexes.

Analytical Chemistry Projects

  • Development of a method for heavy metal detection in water samples.
  • Analysis of food preservatives using spectroscopic techniques.
  • Determination of vitamin C content in fruit juices.
  • Quantification of caffeine in beverages using chromatography.
  • Development of a method for pesticide analysis in fruits and vegetables.
  • Analysis of air pollutants using gas chromatography.
  • Determination of pH in household products.
  • Quantitative analysis of alcohol content in beverages.
  • Development of a method for drug analysis in pharmaceutical formulations.
  • Analysis of mineral content in water samples.
  • Determination of total dissolved solids (TDS) in water samples.
  • Quantification of sugar content in soft drinks.
  • Development of a method for forensic analysis of trace evidence.
  • Analysis of heavy metals in soil samples.
  • Determination of acidity in vinegar samples.
  • Quantitative analysis of proteins in biological samples.
  • Development of a method for antioxidant analysis in food samples.
  • Analysis of volatile organic compounds (VOCs) in indoor air.
  • Determination of chlorophyll content in plant samples.
  • Quantification of nicotine in tobacco products.

Physical Chemistry Projects

  • Investigation of reaction kinetics using spectrophotometry.
  • Study of gas laws through Boyle’s and Charles’s experiments.
  • Determination of the heat of neutralization using calorimetry.
  • Investigation of solubility equilibria using conductivity measurements.
  • Study of colligative properties through freezing point depression.
  • Determination of molecular weight using vapor pressure measurements.
  • Investigation of electrochemical cells and their applications.
  • Study of phase transitions using differential scanning calorimetry (DSC).
  • Determination of rate constants using the method of initial rates.
  • Investigation of adsorption phenomena using surface area measurements.
  • Study of the behavior of ideal and non-ideal gases.
  • Determination of activation energy using the Arrhenius equation.
  • Investigation of chemical equilibria using Le Chatelier’s principle.
  • Study of reaction mechanisms using isotopic labeling techniques.
  • Determination of the heat capacity of solids using calorimetry.
  • Investigation of diffusion and osmosis phenomena.
  • Study of molecular spectroscopy using UV-Vis spectroscopy.
  • Determination of reaction enthalpy using Hess’s law.
  • Investigation of acid-base titrations and pH indicators.
  • Study of reaction rates using temperature-dependent kinetics.

Biochemistry Projects

  • Isolation and characterization of enzymes from biological sources.
  • Study of enzyme kinetics using spectrophotometry.
  • Investigation of metabolic pathways using biochemical assays.
  • Study of protein structure and function using SDS-PAGE.
  • Analysis of nucleic acids using gel electrophoresis.
  • Investigation of cellular respiration using respirometry.
  • Study of photosynthesis using chlorophyll fluorescence.
  • Analysis of biomolecules using mass spectrometry.
  • Investigation of DNA replication using PCR.
  • Study of gene expression using reporter assays.
  • Analysis of protein-protein interactions using co-immunoprecipitation.
  • Investigation of membrane transport using permeability assays.
  • Study of signal transduction pathways using ELISA.
  • Analysis of enzyme inhibition using kinetic assays.
  • Investigation of DNA damage using comet assays.
  • Study of protein folding using circular dichroism spectroscopy.
  • Analysis of cell viability using MTT assays.
  • Investigation of apoptosis using flow cytometry.
  • Study of protein purification using chromatography techniques.
  • Analysis of lipid metabolism using TLC.

Environmental Chemistry Projects

  • Analysis of heavy metal contamination in urban soils.
  • Study of water quality parameters in local streams.
  • Investigation of air pollution sources using atmospheric sampling.
  • Study of the effects of acid rain on aquatic ecosystems.
  • Analysis of microplastics in marine environments.
  • Investigation of nutrient pollution in freshwater systems.
  • Study of pesticide residues in agricultural soils.
  • Analysis of landfill leachate contaminants.
  • Investigation of emerging contaminants in drinking water.
  • Study of oil spill remediation techniques.
  • Analysis of pharmaceuticals in wastewater treatment plants.
  • Investigation of the effects of climate change on soil microbiota.
  • Study of ozone depletion in the stratosphere.
  • Analysis of indoor air pollutants in residential homes.
  • Investigation of eutrophication in freshwater lakes.
  • Study of bioaccumulation and biomagnification in food chains.
  • Analysis of heavy metal uptake in aquatic plants.
  • Investigation of the effects of deforestation on soil erosion.
  • Study of greenhouse gas emissions from agricultural activities.
  • Analysis of pollutants in urban stormwater runoff.

Interdisciplinary Chemistry Projects

  • Development of nanomaterials for drug delivery applications.
  • Study of the chemistry of art conservation and restoration.
  • Investigation of the role of chemistry in renewable energy technologies.
  • Study of the chemistry of food preservation techniques.
  • Analysis of chemical communication in ecological systems.
  • Investigation of the chemistry of brewing and fermentation.
  • Study of the chemistry of cosmetics and personal care products.
  • Analysis of the chemistry of natural and synthetic dyes.
  • Investigation of the chemistry of perfume formulation.
  • Study of the chemistry of materials science and engineering.
  • Analysis of the chemistry of medicinal plants and herbal remedies.
  • Investigation of the chemistry of wine production and aging.
  • Study of the chemistry of biodegradable plastics.
  • Analysis of the chemistry of flavor compounds in foods.
  • Investigation of the chemistry of natural products and pharmaceuticals.
  • Study of the chemistry of soil fertility and nutrient cycling.
  • Analysis of the chemistry of water treatment technologies.
  • Investigation of the chemistry of alternative fuels.
  • Study of the chemistry of insecticides and pest control.
  • Analysis of the chemistry of nanotechnology applications.

Advanced Chemistry Projects

  • Synthesis and characterization of novel organic frameworks.
  • Investigation of reaction mechanisms using computational chemistry.
  • Study of advanced spectroscopic techniques for molecular analysis.
  • Analysis of chemical kinetics using ultrafast laser spectroscopy.
  • Investigation of catalytic reactions using surface science techniques.
  • Study of quantum chemistry principles and applications.
  • Analysis of supramolecular assemblies and host-guest interactions.
  • Investigation of molecular modeling and simulation methods.
  • Study of advanced materials for energy storage and conversion.
  • Analysis of chemical dynamics and reaction kinetics.
  • Investigation of organometallic catalysis for organic synthesis.
  • Study of advanced techniques in NMR spectroscopy.
  • Analysis of photochemical reactions and photophysics.
  • Investigation of electron transfer processes in biological systems .
  • Study of theoretical approaches to chemical bonding.
  • Analysis of advanced electrochemical techniques.
  • Investigation of non-covalent interactions in molecular recognition.
  • Study of advanced techniques in mass spectrometry.
  • Analysis of quantum dots and their applications in nanotechnology.
  • Investigation of chemical sensors and biosensors.

Chemistry Education Projects

  • Development of interactive chemistry teaching modules.
  • Investigation of inquiry-based learning approaches in chemistry education.
  • Study of the use of multimedia resources in chemistry instruction.
  • Analysis of student misconceptions in chemistry learning.
  • Investigation of the effectiveness of laboratory experiments in teaching chemistry concepts.
  • Study of collaborative learning strategies in chemistry education.
  • Analysis of the integration of technology in chemistry classrooms.
  • Investigation of the role of assessment in promoting conceptual understanding in chemistry.
  • Study of the impact of hands-on activities on student engagement in chemistry.
  • Analysis of the use of real-world applications to enhance chemistry learning.
  • Investigation of the implementation of flipped classroom models in chemistry education.
  • Study of the development of critical thinking skills in chemistry students.
  • Analysis of the role of feedback in improving student performance in chemistry.
  • Investigation of the use of peer teaching and tutoring in chemistry education.
  • Study of the incorporation of environmental chemistry concepts in the curriculum.
  • Analysis of the influence of classroom climate on student motivation in chemistry.
  • Investigation of the role of metacognition in chemistry problem-solving.
  • Study of the use of concept maps and graphic organizers in chemistry instruction.
  • Analysis of the impact of teacher professional development on student achievement in chemistry.
  • Investigation of the use of authentic assessments in chemistry education.

Chemistry Outreach Projects

  • Development of chemistry demonstration shows for public outreach events.
  • Investigation of community-based science education programs in chemistry.
  • Study of chemistry-themed science fairs and competitions.
  • Analysis of chemistry outreach activities in underserved communities.
  • Investigation of the role of science communication in promoting chemistry awareness.
  • Study of chemistry-themed podcasts and educational videos.
  • Analysis of chemistry outreach efforts in museums and science centers.
  • Investigation of chemistry-themed summer camps and workshops.
  • Study of chemistry outreach initiatives in schools and universities.
  • Analysis of chemistry outreach efforts on social media platforms.
  • Investigation of the impact of chemistry outreach on public perception of science.
  • Study of chemistry-themed citizen science projects.
  • Analysis of chemistry outreach programs for adults and lifelong learners.
  • Investigation of the use of storytelling in chemistry outreach.
  • Study of chemistry-themed art and literature projects.
  • Analysis of chemistry outreach collaborations with industry partners.
  • Investigation of the role of role models and mentors in chemistry outreach.
  • Study of chemistry-themed escape rooms and puzzle games.
  • Analysis of chemistry outreach efforts during national science weeks.
  • Investigation of the use of virtual reality and augmented reality in chemistry outreach.
  • Study of chemistry-themed science cafés and public lectures.
  • Analysis of the impact of chemistry outreach on career aspirations in STEM fields.

Chemistry projects offer a dynamic and engaging way to explore the diverse facets of chemical science. Whether synthesizing new compounds, analyzing environmental samples, or unraveling biochemical processes, these projects foster curiosity, critical thinking, and innovation.

By delving into various chemistry project topics, students and enthusiasts can deepen their understanding of the world’s chemical complexity while contributing to scientific knowledge and societal progress.

So, let’s embark on this exciting journey of discovery and uncover the wonders of chemistry together!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

  • Privacy Policy

Buy Me a Coffee

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Funny Research Topics

200+ Funny Research Topics

Sports Research Topics

500+ Sports Research Topics

American History Research Paper Topics

300+ American History Research Paper Topics

Cyber Security Research Topics

500+ Cyber Security Research Topics

Environmental Research Topics

500+ Environmental Research Topics

Economics Research Topics

500+ Economics Research Topics

This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies. Read the ACS privacy policy.

  • ACS Publications

Hot Topics in Chemistry at ACS Spring 2024: Part 1

  • Mar 18, 2024

From edible bugs to exercise in pill form, we bring you a roundup of hot topics and breakthrough chemistry research presented at ACS Spring 2024.

Abstract swirls of blue and orange hues with a glossy appearance.

The spring meeting of the American Chemical Society (ACS), held virtually and in person March 17-21, 2024, features more than 12,000 presentations on a diverse range of science topics. Read on to discover some of the hot topics and research highlights* presented at the meeting—and check back throughout the week for more updates!

1. Seasonal Secrets Unveiled: How Wild Animals' Hair Changes to Beat the Cold

Learn how wild animals have evolved to survive extreme temperatures in the groundbreaking research led by Taylor Millett at Utah Tech University. This study explores the fascinating world of animal hair, revealing for the first time that the inner structure of animals' coats undergoes significant changes with the seasons. Unlike common beliefs that only the color of the hair changes, Millett's research shows microscopic alterations within the hair that are crucial for survival in different weather conditions.

Millett and her colleagues explored the complex hair structures of wild, big-game animals including the pronghorn antelope, mule deer, and Rocky Mountain elk. Using advanced scanning electron microscopy, they discovered the unique 'honeycomb' structure within the hairs, which changes in density and size between seasons to provide essential insulation. Their findings not only shed light on nature's ingenious ways of protecting these animals but also suggest possibilities for other applications, such as synthetic insulation for homes and consumer products.

2. Bugging Out: The Surprisingly Tasty World of Edible Ants

When it comes to keeping with ACS Spring 2024's theme of " Many Flavors of Chemistry ," Changqi Liu and his colleagues understood the assignment. Their latest research uncovers the diverse and rich flavor profiles of edible ants , diving deep into the unique aroma profiles of four distinct ant species. From the acidic and vinegary taste of common black ants to the nutty and woody nuances of chicatana ants, their findings reveal that each species brings its own unique set of tastes and smells to the table, advancing our understanding of these insects' culinary potential.

The study also touches on the potential for incorporating these flavors into new food products, particularly as the world seeks more sustainable and eco-friendly protein alternatives.

Watch the Headline Science video surrounding this research, created by the ACS Science Communications team:

chemistry quantitative research topics

Explore More Bug Science on ACS Axial

Worm Slime: The Key to More Eco-Friendly Plastics? The Secret of Spinning A Bug’s Eye View of Road Safety

3. A Chemist's Guide to Brewing Perfect Kombucha

A team of chemists at Shippensburg University are revolutionizing kombucha brewing , tackling the challenges of inconsistent alcohol levels and flavor profiles in the fermented beverage. Their research reports on innovative ways to control alcohol content, enhance taste, and speed up fermentation, offering new insights for both home and commercial kombucha producers.

First, the team analyzed the fermentation process in different containers, where silicone bags showed superior performance over glass jars in both fermentation speed and increased acid production. They also looked into how different sugars affect kombucha's taste and alcohol content. Using glucose as a starter resulted in higher gluconic acid and lower ethanol levels, while fructose led to sweeter brews with more acetic acid and ethanol. These findings are crucial for brewers aiming to tailor their kombucha to specific flavor profiles and alcohol content.

This is not the team's first foray into the art and science of kombucha brewing. In 2023, they published a study in the Journal of Chemical Education exploring the use of a cost-effective sensor to accurately measure alcohol concentrations in kombucha across a variety of undergraduate chem lab courses. Read the article here .

Watch the Headline Science short surrounding this research, created by the ACS Science Communications team:

Person in a blue glove holding a beaker with a yellow liquid.

Read More Booze & Beverage Chemistry on Axial:

What Gives Red Bordeaux Wine a “Meaty” Aroma? Beyond the Bean: The Science Behind Lab-Grown Coffee Staying Fresh: The Chemistry of Beer Packaging Like a Fine (Sparkling) Wine: How to Age Champagne Without Losing the Bubbles

4. A New Decking Material That Fights Global Warming

In a major stride towards environmentally sustainable construction, David Heldebrant and his team have developed a new composite decking material that is both cheaper than standard options and carbon-negative. It's designed to store more carbon dioxide (CO 2 ) than its manufacturing process emits, providing a viable solution to one of the construction sector's most significant challenges: high carbon emissions.

The new material incorporates low-quality brown coal and lignin as fillers, which are then treated with CO 2 . Not only does this composite meet international building codes for decking materials in terms of strength and durability, but it also offers a significant cost advantage, being 18% cheaper than its conventional counterparts.

This type of composite decking could play a pivotal role in reducing the carbon footprint of the building industry: replacing all U.S. decking with this material could sequester the CO 2 equivalent of the annual emissions from 54,000 cars. As the team works towards commercialization, this carbon-negative decking presents a hopeful glimpse into a more sustainable solution for the construction industry.

Read more of David Hildebrant's research on CO 2 capture published in ACS journals:

Water-Lean Solvents for Post-Combustion CO 2 Capture: Fundamentals, Uncertainties, Opportunities, and Outlook David J. Heldebrant*Orcid, Phillip K. KoechOrcid, Vassiliki-Alexandra GlezakouOrcid, Roger RousseauOrcid, Deepika Malhotra, and David C. Cantu DOI : 10.1021/acs.chemrev.6b00768

In Situ Raman Methodology for Online Analysis of CO 2 and H 2 O Loadings in a Water-Lean Solvent for CO 2 Capture Amanda M. Lines, Dushyant Barpaga*, Richard F. Zheng, James R. Collett, David J. Heldebrant, and Samuel A. Bryan* DOI : 10.1021/acs.analchem.3c02281

Directed Hydrogen Bond Placement: Low Viscosity Amine Solvents for CO2 Capture Deepika Malhotra, David C. Cantu, Phillip K. Koech*, David J. Heldebrant, Abhijeet Karkamkar, Feng Zheng, Mark D. Bearden, Roger Rousseau, and Vassiliki-Alexandra Glezakou* DOI : 10.1021/acssuschemeng.8b05481

5. A Pill to Replace the Gym?

While this may seem too good to be true, researchers have recently identified new compounds that can mimic the physical benefits of exercise—a significant advancement particularly for those unable to engage in regular physical activity.

The team, led by Bahaa Elgendy at Washington University School of Medicine, initially developed SLU-PP-332 , a compound that activates estrogen-related receptors (ERRs), which are crucial in muscle adaptation to exercise. While SLU-PP-332 was a pioneering discovery, it had its limitations—particularly in its inability to cross into the brain.

To improve upon SLU-PP-332, the team engineered new molecules that not only demonstrated a stronger activation of the ERRs but also exhibited attributes like enhanced stability and lower toxicity potential. Their effectiveness was measured through an increase in RNA presence in rat heart muscle cells, suggesting a more robust simulation of exercise effects compared to SLU-PP-332.

A crucial advancement with the new compounds is their ability to penetrate the brain, opening possibilities for treating neurodegenerative disorders like Alzheimer's disease. Elgendy and his team hope to further test these compounds in animal models, potentially leading to new treatments for various medical conditions where exercise-mimicking drugs could be beneficial.

Read more of Bahaa Elgendy's research published in ACS journals:

Synthetic ERRα/β/γ Agonist Induces an ERRα-Dependent Acute Aerobic Exercise Response and Enhances Exercise Capacity Cyrielle Billon, Sadichha Sitaula, Subhashis Banerjee, Ryan Welch, Bahaa Elgendy, Lamees Hegazy, Tae Gyu Oh, Melissa Kazantzis, Arindam Chatterjee, John Chrivia, Matthew E. Hayes, Weiyi Xu, Angelica Hamilton, Janice M. Huss, Lilei Zhang, John K. Walker, Michael Downes, Ronald M. Evans, and Thomas P. Burris* DOI : 10.1021/acschembio.2c00720

Synthesis of 3-Aminoquinazolinones via a SnCl 2 -Mediated ANRORC-like Reductive Rearrangement of 1,3,4-Oxadiazoles Mohamed Elagawany, Lingaiah Maram, and Bahaa Elgendy* DOI : 10.1021/acs.joc.3c01973

Recent Advances in the Medicinal Chemistry of Farnesoid X Receptor Yuanying Fang, Lamees Hegazy, Brian N. Finck, and Bahaa Elgendy* DOI : 10.1021/acs.jmedchem.1c01017

6. Revolutionizing Cancer Research with Artificial Mucus

Led by Jessica Kramer at the University of Utah, this study marks a significant advancement in understanding the role of mucus in tumor formation. By synthesizing mucins, the sugar-coated proteins that mucus primarily consists of, the team discovered that altering the mucins in healthy cells to resemble those in cancer cells can induce cancer-like behaviors in these cells.

Kramer's approach, involving synthetic chemistry and bacterial enzymes, allows for the precise alteration of mucins and reveals how specific changes in their sugar or protein sequences can impact cellular behavior. This methodology led to the observation that healthy epithelial cells with modified, cancer-like mucins cease normal cell extrusion and begin to pile up, a process resembling early tumor formation. While it's still unclear if these cells transform into cancer cells, the findings open new avenues for developing cancer treatments targeting mucins, particularly the sugar groups on these molecules. Beyond cancer, this research could lead to the development of anti-infectives, probiotics, and other health-supporting therapies.

A person wearing purple gloves handling laboratory glassware.

*Press Release content and videos in this post are brought to you by the ACS Science Communications team. Learn more below.

Want the latest stories delivered to your inbox each month?

Banner

Chemistry Research Guide

  • Source Selection & Evaluation

Characteristics of a Research Question

Topic selection, topic verification.

  • Search Tips & Strategies
  • Online Sources
  • Data & Statistics
  • Citing Sources [opens a new window] This link opens in a new window

Library Help

Need assistance? Get in touch!

Email: [email protected]

Phone: 931-540-2560

Research questions have a few characteristics.

  • They're open-ended . (They can't be answered with a simple yes or no response.)
  • They're often measurable through quantitative data or qualitative measures.
  • They summarize the issue/topic being researched.
  • They may take a fresh look at an issue or try to solve a problem.

In addition, research questions may . . .

  • answer how or why questions.
  • fit within a cause/effect structure.
  • have a pro/con format.
  • introduce an argument that is then supported with evidence .

Topic selection is the process you use to choose your topic. This is the more creative side of topic development. There are several steps to this process.

  • Brainstorming. Start a list of topics that interest you and are within the guidelines of the assignment. They could be personal, professional, or academic interests. Researching something that interests you is much more enjoyable and will keep you interested in the research process. Write down related words or phrases. These will be useful at the research stage.
  • Reshaping the topic. Sometimes you'll choose a topic that's either too narrow or too broad. Find out ways to broaden or narrow the topic so that it's a better size to fit your research assignment. This is where Wikipedia and generic Google searches are okay. You can use those sites to get other ideas of how your topic idea may work. Perform some simple searches to see what information is out there. (Just be sure not to cite Wikipedia or Google.)
  • Looking at the body of research. Once you have a topic that you think is a good size, take a look at the body of research that's available for the topic. Check in catalogs and databases. Look at reputable websites. You want to be sure that your topic has an adequate amount of research before you invest too much time into the idea.
  • Revising. Throughout this process, be prepared to revise your topic. Don't think that you have to keep the same topic that you started with. Topic revision happens all the time. In fact, we often develop better topics as a result of this revision!

Topic verification is the process you use to confirm your topic is viable for research. This is the more technical side of topic development. There are also several steps to this process.

  • Using search strategies. Do some experimental searching in the databases using search strategies . Try different combinations to see what you find. Use your notes from your brainstorming to search for different synonyms or phrases.
  • Locating relevant and reliable information. At this stage, you want to see if you can find both a good quality and good quantity of sources. You don't need to read the entirety of the sources right now. Just read their abstracts and identifying information. Confirm that the sources you find support each other. Double-check the authority of the authors. This is the source evaluation stage.
  • Verifying information. Once you've confirmed that the sources are reliable and relevant, decide whether or not you can verify the information in the sources. If your sources corrobate each other, you have a good topic. In fact, even if they dispute each other, that is sometimes okay. It just depends on your topic's goal. However, if you cannot verify the reliability of any of your sources' information, then you may need to start over again with a new topic idea.
  • << Previous: Source Selection & Evaluation
  • Next: Search Tips & Strategies >>
  • Last Updated: Dec 7, 2023 11:04 AM
  • URL: https://libguides.columbiastate.edu/chemistry

Creative Commons License

ct-logo

189+ Good Quantitative Research Topics For STEM Students

Quantitative research is an essential part of STEM (Science, Technology, Engineering, and Mathematics) fields. It involves collecting and analyzing numerical data to answer research questions and test hypotheses. 

In 2023, STEM students have a wealth of exciting research opportunities in various disciplines. Whether you’re an undergraduate or graduate student, here are quantitative research topics to consider for your next project.

If you are looking for the best list of quantitative research topics for stem students, then you can check the given list in each field. It offers STEM students numerous opportunities to explore and contribute to their respective fields in 2023 and beyond. 

Whether you’re interested in astrophysics, biology, engineering, mathematics, or any other STEM field.

Also Read: Most Exciting Qualitative Research Topics For Students

What Is Quantitative Research

Table of Contents

Quantitative research is a type of research that focuses on the organized collection, analysis, and evaluation of numerical data to answer research questions, test theories, and find trends or connections between factors. It is an organized, objective way to do study that uses measurable data and scientific methods to come to results.

Quantitative research is often used in many areas, such as the natural sciences, social sciences, economics, psychology, education, and market research. It gives useful information about patterns, trends, cause-and-effect relationships, and how often things happen. Quantitative tools are used by researchers to answer questions like “How many?” and “How often?” “Is there a significant difference?” or “What is the relationship between the variables?”

In comparison to quantitative research, qualitative research uses non-numerical data like conversations, notes, and open-ended surveys to understand and explore the ideas, experiences, and points of view of people or groups. Researchers often choose between quantitative and qualitative methods based on their research goals, questions, and the type of thing they are studying.

How To Choose Quantitative Research Topics For STEM

Here’s a step-by-step guide on how to choose quantitative research topics for STEM:

Step 1:- Identify Your Interests and Passions

Start by reflecting on your personal interests within STEM. What areas or subjects in STEM excite you the most? Choosing a topic you’re passionate about will keep you motivated throughout the research process.

Step 2:- Review Coursework and Textbooks

Look through your coursework, textbooks, and class notes. Identify concepts, theories, or areas that you found particularly intriguing or challenging. These can be a source of potential research topics.

Step 3:- Consult with Professors and Advisors

Discuss your research interests with professors, academic advisors, or mentors. They can provide valuable insights, suggest relevant topics, and guide you toward areas with research opportunities.

Step 4:- Read Recent Literature

Explore recent research articles, journals, and publications in STEM fields. This will help you identify current trends, gaps in knowledge, and areas where further research is needed.

Step 5:- Narrow Down Your Focus

Once you have a broad area of interest, narrow it down to a specific research focus. Consider questions like:

  • What specific problem or phenomenon do you want to investigate?
  • Are there unanswered questions or controversies in this area?
  • What impact could your research have on the field or society?

Step 6:- Consider Resources and Access

Assess the resources available to you, including access to laboratories, equipment, databases, and funding. Ensure that your chosen topic aligns with the resources you have or can access.

Step 7:- Think About Practicality

Consider the feasibility of conducting research on your chosen topic. Are the data readily available, or will you need to collect data yourself? Can you complete the research within your available time frame?

Step 8:- Define Your Research Question

Formulate a clear and specific research question or hypothesis. Your research question should guide your entire study and provide a focus for your data collection and analysis.

Step 9:- Conduct a Literature Review

Dive deeper into the existing literature related to your chosen topic. This will help you understand the current state of research, identify gaps, and refine your research question.

Step 10:- Consider the Impact

Think about the potential impact of your research. How does your topic contribute to the advancement of knowledge in your field? Does it have practical applications or implications for society?

Step 11:- Brainstorm Research Methods

Determine the quantitative research methods and data collection techniques you plan to use. Consider whether you’ll conduct experiments, surveys, data analysis, simulations, or use existing datasets.

Step 12:- Seek Feedback

Share your research topic and ideas with peers, advisors, or mentors. They can provide valuable feedback and help you refine your research focus.

Step 13:- Assess Ethical Considerations

Consider ethical implications related to your research, especially if it involves human subjects, sensitive data, or potential environmental impacts. Ensure that your research adheres to ethical guidelines.

Step 14:- Finalize Your Research Topic

Once you’ve gone through these steps, finalize your research topic. Write a clear and concise research proposal that outlines your research question, objectives, methods, and expected outcomes.

Step 15:- Stay Open to Adjustments

Be open to adjusting your research topic as you progress. Sometimes, new insights or challenges may lead you to refine or adapt your research focus.

Following are the most interesting quantitative research topics for stem students. These are given below.

Quantitative Research Topics In Physics and Astronomy

  • Quantum Computing Algorithms : Investigate new algorithms for quantum computers and their potential applications.
  • Dark Matter Detection Methods : Explore innovative approaches to detect dark matter particles.
  • Quantum Teleportation : Study the principles and applications of quantum teleportation.
  • Exoplanet Characterization : Analyze data from telescopes to characterize exoplanets.
  • Nuclear Fusion Modeling : Create mathematical models for nuclear fusion reactions.
  • Superconductivity at High Temperatures : Research the properties and applications of high-temperature superconductors.
  • Gravitational Wave Analysis : Analyze gravitational wave data to study astrophysical phenomena.
  • Black Hole Thermodynamics : Investigate the thermodynamics of black holes and their entropy.

Quantitative Research Topics In Biology and Life Sciences

  • Genome-Wide Association Studies (GWAS) : Conduct GWAS to identify genetic factors associated with diseases.
  • Pharmacokinetics and Pharmacodynamics : Study drug interactions in the human body.
  • Ecological Modeling : Model ecosystems to understand population dynamics.
  • Protein Folding : Research the kinetics and thermodynamics of protein folding.
  • Cancer Epidemiology : Analyze cancer incidence and risk factors in specific populations.
  • Neuroimaging Analysis : Develop algorithms for analyzing brain imaging data.
  • Evolutionary Genetics : Investigate evolutionary patterns using genetic data.
  • Stem Cell Differentiation : Study the factors influencing stem cell differentiation.

Engineering and Technology Quantitative Research Topics

  • Renewable Energy Efficiency : Optimize the efficiency of solar panels or wind turbines.
  • Aerodynamics of Drones : Analyze the aerodynamics of drone designs.
  • Autonomous Vehicle Safety : Evaluate safety measures for autonomous vehicles.
  • Machine Learning in Robotics : Implement machine learning algorithms for robot control.
  • Blockchain Scalability : Research methods to scale blockchain technology.
  • Quantum Computing Hardware : Design and test quantum computing hardware components.
  • IoT Security : Develop security protocols for the Internet of Things (IoT).
  • 3D Printing Materials Analysis : Study the mechanical properties of 3D-printed materials.

Quantitative Research Topics In Mathematics and Statistics

Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics.

  • Prime Number Distribution : Investigate the distribution of prime numbers.
  • Graph Theory Algorithms : Develop algorithms for solving graph theory problems.
  • Statistical Analysis of Financial Markets : Analyze financial data and market trends.
  • Number Theory Research : Explore unsolved problems in number theory.
  • Bayesian Machine Learning : Apply Bayesian methods to machine learning models.
  • Random Matrix Theory : Study the properties of random matrices in mathematics and physics.
  • Topological Data Analysis : Use topology to analyze complex data sets.
  • Quantum Algorithms for Optimization : Research quantum algorithms for optimization problems.

Experimental Quantitative Research Topics In Science and Earth Sciences

  • Climate Change Modeling : Develop climate models to predict future trends.
  • Biodiversity Conservation Analysis : Analyze data to support biodiversity conservation efforts.
  • Geographic Information Systems (GIS) : Apply GIS techniques to solve environmental problems.
  • Oceanography and Remote Sensing : Use satellite data for oceanographic research.
  • Air Quality Monitoring : Develop sensors and models for air quality assessment.
  • Hydrological Modeling : Study the movement and distribution of water resources.
  • Volcanic Activity Prediction : Predict volcanic eruptions using quantitative methods.
  • Seismology Data Analysis : Analyze seismic data to understand earthquake patterns.

Chemistry and Materials Science Quantitative Research Topics

  • Nanomaterial Synthesis and Characterization : Research the synthesis and properties of nanomaterials.
  • Chemoinformatics : Analyze chemical data for drug discovery and materials science.
  • Quantum Chemistry Simulations : Perform quantum simulations of chemical reactions.
  • Materials for Renewable Energy : Investigate materials for energy storage and conversion.
  • Catalysis Kinetics : Study the kinetics of chemical reactions catalyzed by materials.
  • Polymer Chemistry : Research the properties and applications of polymers.
  • Analytical Chemistry Techniques : Develop new analytical techniques for chemical analysis.
  • Sustainable Chemistry : Explore green chemistry approaches for sustainable materials.

Computer Science and Information Technology Topics

  • Natural Language Processing (NLP) : Work on NLP algorithms for language understanding.
  • Cybersecurity Analytics : Analyze cybersecurity threats and vulnerabilities.
  • Big Data Analytics : Apply quantitative methods to analyze large data sets.
  • Machine Learning Fairness : Investigate bias and fairness issues in machine learning models.
  • Human-Computer Interaction (HCI) : Study user behavior and interaction patterns.
  • Software Performance Optimization : Optimize software applications for performance.
  • Distributed Systems Analysis : Analyze the performance of distributed computing systems.
  • Bioinformatics Data Mining : Develop algorithms for mining biological data.

Good Quantitative Research Topics Students In Medicine and Healthcare

  • Clinical Trial Data Analysis : Analyze clinical trial data to evaluate treatment effectiveness.
  • Epidemiological Modeling : Model disease spread and intervention strategies.
  • Healthcare Data Analytics : Analyze healthcare data for patient outcomes and cost reduction.
  • Medical Imaging Algorithms : Develop algorithms for medical image analysis.
  • Genomic Medicine : Apply genomics to personalized medicine approaches.
  • Telemedicine Effectiveness : Study the effectiveness of telemedicine in healthcare delivery.
  • Health Informatics : Analyze electronic health records for insights into patient care.

Agriculture and Food Sciences Topics

  • Precision Agriculture : Use quantitative methods for optimizing crop production.
  • Food Safety Analysis : Analyze food safety data and quality control.
  • Aquaculture Sustainability : Research sustainable practices in aquaculture.
  • Crop Disease Modeling : Model the spread of diseases in agricultural crops.
  • Climate-Resilient Agriculture : Develop strategies for agriculture in changing climates.
  • Food Supply Chain Optimization : Optimize food supply chain logistics.
  • Soil Health Assessment : Analyze soil data for sustainable land management.

Social Sciences with Quantitative Approaches

  • Educational Data Mining : Analyze educational data for improving learning outcomes.
  • Sociodemographic Surveys : Study social trends and demographics using surveys.
  • Psychometrics : Develop and validate psychological measurement instruments.
  • Political Polling Analysis : Analyze political polling data and election trends.
  • Economic Modeling : Develop economic models for policy analysis.
  • Urban Planning Analytics : Analyze data for urban planning and infrastructure.
  • Climate Policy Evaluation : Evaluate the impact of climate policies on society.

Environmental Engineering Quantitative Research Topics

  • Water Quality Assessment : Analyze water quality data for environmental monitoring.
  • Waste Management Optimization : Optimize waste collection and recycling programs.
  • Environmental Impact Assessments : Evaluate the environmental impact of projects.
  • Air Pollution Modeling : Model the dispersion of air pollutants in urban areas.
  • Sustainable Building Design : Apply quantitative methods to sustainable architecture.

Quantitative Research Topics Robotics and Automation

  • Robotic Swarm Behavior : Study the behavior of robot swarms in different tasks.
  • Autonomous Drone Navigation : Develop algorithms for autonomous drone navigation.
  • Humanoid Robot Control : Implement control algorithms for humanoid robots.
  • Robotic Grasping and Manipulation : Study robotic manipulation techniques.
  • Reinforcement Learning for Robotics : Apply reinforcement learning to robotic control.

Quantitative Research Topics Materials Engineering

  • Additive Manufacturing Process Optimization : Optimize 3D printing processes.
  • Smart Materials for Aerospace : Research smart materials for aerospace applications.
  • Nanostructured Materials for Energy Storage : Investigate energy storage materials.
  • Corrosion Prevention : Develop corrosion-resistant materials and coatings.

Nuclear Engineering Quantitative Research Topics

  • Nuclear Reactor Safety Analysis : Study safety aspects of nuclear reactor designs.
  • Nuclear Fuel Cycle Analysis : Analyze the nuclear fuel cycle for efficiency.
  • Radiation Shielding Materials : Research materials for radiation protection.

Quantitative Research Topics In Biomedical Engineering

  • Medical Device Design and Testing : Develop and test medical devices.
  • Biomechanics Analysis : Analyze biomechanics in sports or rehabilitation.
  • Biomaterials for Medical Implants : Investigate materials for medical implants.

Good Quantitative Research Topics Chemical Engineering

  • Chemical Process Optimization : Optimize chemical manufacturing processes.
  • Industrial Pollution Control : Develop strategies for pollution control in industries.
  • Chemical Reaction Kinetics : Study the kinetics of chemical reactions in industries.

Best Quantitative Research Topics In Renewable Energy

  • Energy Storage Systems : Research and optimize energy storage solutions.
  • Solar Cell Efficiency : Improve the efficiency of photovoltaic cells.
  • Wind Turbine Performance Analysis : Analyze and optimize wind turbine designs.

Brilliant Quantitative Research Topics In Astronomy and Space Sciences

  • Astrophysical Simulations : Simulate astrophysical phenomena using numerical methods.
  • Spacecraft Trajectory Optimization : Optimize spacecraft trajectories for missions.
  • Exoplanet Detection Algorithms : Develop algorithms for exoplanet detection.

Quantitative Research Topics In Psychology and Cognitive Science

  • Cognitive Psychology Experiments : Conduct quantitative experiments in cognitive psychology.
  • Emotion Recognition Algorithms : Develop algorithms for emotion recognition in AI.
  • Neuropsychological Assessments : Create quantitative assessments for brain function.

Geology and Geological Engineering Quantitative Research Topics

  • Geological Data Analysis : Analyze geological data for mineral exploration.
  • Geological Hazard Prediction : Predict geological hazards using quantitative models.

Top Quantitative Research Topics In Forensic Science

  • Forensic Data Analysis : Analyze forensic evidence using quantitative methods.
  • Crime Pattern Analysis : Study crime patterns and trends in urban areas.

Great Quantitative Research Topics In Cybersecurity

  • Network Intrusion Detection : Develop quantitative methods for intrusion detection.
  • Cryptocurrency Analysis : Analyze blockchain data and cryptocurrency trends.

Mathematical Biology Quantitative Research Topics

  • Epidemiological Modeling : Model disease spread and control in populations.
  • Population Genetics : Analyze genetic data to understand population dynamics.

Quantitative Research Topics In Chemical Analysis

  • Analytical Chemistry Methods : Develop quantitative methods for chemical analysis.
  • Spectroscopy Analysis : Analyze spectroscopic data for chemical identification.

Mathematics Education Quantitative Research Topics

  • Mathematics Curriculum Analysis : Analyze curriculum effectiveness in mathematics education.
  • Mathematics Assessment Development : Develop quantitative assessments for mathematics skills.

Quantitative Research Topics In Social Research

  • Social Network Analysis : Analyze social network structures and dynamics.
  • Survey Research : Conduct quantitative surveys on social issues and trends.

Quantitative Research Topics In Computational Neuroscience

  • Neural Network Modeling : Model neural networks and brain functions computationally.
  • Brain Connectivity Analysis : Analyze functional and structural brain connectivity.

Best Topics In Transportation Engineering

  • Traffic Flow Modeling : Model and optimize traffic flow in urban areas.
  • Public Transportation Efficiency : Analyze the efficiency of public transportation systems.

Good Quantitative Research Topics In Energy Economics

  • Energy Policy Analysis : Evaluate the economic impact of energy policies.
  • Renewable Energy Cost-Benefit Analysis : Assess the economic viability of renewable energy projects.

Quantum Information Science

  • Quantum Cryptography Protocols : Develop and analyze quantum cryptography protocols.
  • Quantum Key Distribution : Study the security of quantum key distribution systems.

Human Genetics

  • Genome Editing Ethics : Investigate ethical issues in genome editing technologies.
  • Population Genomics : Analyze genomic data for population genetics research.

Marine Biology

  • Coral Reef Health Assessment : Quantitatively assess the health of coral reefs.
  • Marine Ecosystem Modeling : Model marine ecosystems and biodiversity.

Data Science and Machine Learning

  • Machine Learning Explainability : Develop methods for explaining machine learning models.
  • Data Privacy in Machine Learning : Study privacy issues in machine learning applications.
  • Deep Learning for Image Analysis : Develop deep learning models for image recognition.

Environmental Engineering

Robotics and automation, materials engineering, nuclear engineering, biomedical engineering, chemical engineering, renewable energy, astronomy and space sciences, psychology and cognitive science, geology and geological engineering, forensic science, cybersecurity, mathematical biology, chemical analysis, mathematics education, quantitative social research, computational neuroscience, quantitative research topics in transportation engineering, quantitative research topics in energy economics, topics in quantum information science, amazing quantitative research topics in human genetics, quantitative research topics in marine biology, what is a common goal of qualitative and quantitative research.

A common goal of both qualitative and quantitative research is to generate knowledge and gain a deeper understanding of a particular phenomenon or topic. However, they approach this goal in different ways:

1. Understanding a Phenomenon

Both types of research aim to understand and explain a specific phenomenon, whether it’s a social issue, a natural process, a human behavior, or a complex event.

2. Testing Hypotheses

Both qualitative and quantitative research can involve hypothesis testing. While qualitative research may not use statistical hypothesis tests in the same way as quantitative research, it often tests hypotheses or research questions by examining patterns and themes in the data.

3. Contributing to Knowledge

Researchers in both approaches seek to contribute to the body of knowledge in their respective fields. They aim to answer important questions, address gaps in existing knowledge, and provide insights that can inform theory, practice, or policy.

4. Informing Decision-Making

Research findings from both qualitative and quantitative studies can be used to inform decision-making in various domains, whether it’s in academia, government, industry, healthcare, or social services.

5. Enhancing Understanding

Both approaches strive to enhance our understanding of complex phenomena by systematically collecting and analyzing data. They aim to provide evidence-based explanations and insights.

6. Application

Research findings from both qualitative and quantitative studies can be applied to practical situations. For example, the results of a quantitative study on the effectiveness of a new drug can inform medical treatment decisions, while qualitative research on customer preferences can guide marketing strategies.

7. Contributing to Theory

In academia, both types of research contribute to the development and refinement of theories in various disciplines. Quantitative research may provide empirical evidence to support or challenge existing theories, while qualitative research may generate new theoretical frameworks or perspectives.

Conclusion – Quantitative Research Topics For STEM Students

So, selecting a quantitative research topic for STEM students is a pivotal decision that can shape the trajectory of your academic and professional journey. The process involves a thoughtful exploration of your interests, a thorough review of the existing literature, consideration of available resources, and the formulation of a clear and specific research question.

Your chosen topic should resonate with your passions, align with your academic or career goals, and offer the potential to contribute to the body of knowledge in your STEM field. Whether you’re delving into physics, biology, engineering, mathematics, or any other STEM discipline, the right research topic can spark curiosity, drive innovation, and lead to valuable insights.

Moreover, quantitative research in STEM not only expands the boundaries of human knowledge but also has the power to address real-world challenges, improve technology, and enhance our understanding of the natural world. It is a journey that demands dedication, intellectual rigor, and an unwavering commitment to scientific inquiry.

What is quantitative research in STEM?

Quantitative research in this context is designed to improve our understanding of the science system’s workings, structural dependencies and dynamics.

What are good examples of quantitative research?

Surveys and questionnaires serve as common examples of quantitative research. They involve collecting data from many respondents and analyzing the results to identify trends, patterns

What are the 4 C’s in STEM?

They became known as the “Four Cs” — critical thinking, communication, collaboration, and creativity.

Similar Articles

How To Improve Grade

Top 19 Tips & Tricks On How To Improve Grades?

Do you want to improve your grades? If yes, then don’t worry! In this blog, I have provided 19 tips…

How To Study For Final Exam

How To Study For Final Exam – 12 Proven Tips You Must Know

How To Study For Final Exam? Studying for the final exam is very important for academic success because they test…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

share this!

March 25, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Scientists deliver quantum algorithm to develop new materials and chemistry

by Nicholas E. M. Pasquini, Naval Research Laboratory

Scientists deliver quantum algorithm to develop new materials and chemistry

U.S. Naval Research Laboratory (NRL) scientists have published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent Physical Review Research article. The algorithm is expected to become a powerful tool to investigate the physical properties in electronic systems.

The CVQE algorithm is a variant of the Variational Quantum Eigensolver (VQE) algorithm that only requires the execution of a set of quantum circuits once rather than at every iteration during the parameter optimization process, thereby increasing the computational throughput.

"Both algorithms produce a quantum state close to the ground state of a system, which is used to determine many of the system's physical properties," said John Stenger, Ph.D., a Theoretical Chemistry Section research physicist. "Calculations that previously took months can now be performed in hours."

The CVQE algorithm uses a quantum computer to probe the needed probability mass functions and a classical computer to perform the remaining calculations, including the energy minimization.

"Finding the minimum energy is computationally hard as the size of the state space grows exponentially with the system size," said Steve Hellberg, Ph.D., a Theory of Advanced Functional Materials Section research physicist. "Except for very small systems, even the world's most powerful supercomputers are unable to find the exact ground state."

To address this challenge, scientists use a quantum computer with a qubit register, whose state space also increases exponentially, in this case with qubits. By representing the states of a physical system on the state space of the register, a quantum computer can be used to simulate the states in the exponentially large representation space of the system.

Scientists deliver quantum algorithm to develop new materials and chemistry

Data can subsequently be extracted by quantum measurements. As quantum measurements are not deterministic, the quantum circuit executions must be repeated multiple times to estimate probability distributions describing the states, a process known as sampling. Variational quantum algorithms, including the CVQE algorithm, identify trial states by a set of parameters that are optimized to minimize the energy.

"The key difference between the original VQE method and the new CVQE method is that the sampling and optimization processes have been decoupled in the latter such that the sampling can be performed exclusively on the quantum computer and the parameters processed exclusively on a classical computer," said Dan Gunlycke, D.Phil., Theoretical Chemistry Section Head, who also leads the NRL quantum computing effort.

"The new approach also has other benefits. The form of the solution space does not have to comport with the symmetry requirements of the qubit register, and therefore, it is much easier to shape the solution space and implement symmetries of the system and other physically motivated constraints, which will ultimately lead to more accurate predictions of electronic system properties," Gunlycke continued.

Quantum computing is a component of quantum science, which has been designated as a Critical Technology Area within the USD(R&E) Technology Vision for an Era of Competition by the Under Secretary of Defense for Research and Engineering Heidi Shyu.

"Understanding the properties of quantum-mechanical systems is essential in the development of new materials and chemistry for the Navy and Marine Corps," Gunlycke said. "Corrosion, for instance, is an omnipresent challenge costing the Department of Defense billions every year. The CVQE algorithm can be used to study the chemical reactions causing corrosion and provide critical information to our existing anticorrosion teams in their quest to develop better coatings and additives."

For decades, NRL has been conducting fundamental research in quantum science, which has the potential to yield disruptive Defense technologies for precision, navigation, and timing; quantum sensing; quantum computing; and quantum networking.

Journal information: Physical Review Research

Provided by Naval Research Laboratory

Explore further

Feedback to editors

chemistry quantitative research topics

Blind people can hear and feel April's total solar eclipse with new technology

4 hours ago

chemistry quantitative research topics

Mapping the best route for a spacecraft traveling beyond the sun's sphere of influence

chemistry quantitative research topics

Researchers outline new approach in search for dark matter through future DUNE research project

chemistry quantitative research topics

Researchers reveal evolutionary path of important proteins

chemistry quantitative research topics

Study identifies protein responsible for gas vesicle clustering in bacteria

chemistry quantitative research topics

Largest ice shelf in Antarctica lurches forward once or twice each day

5 hours ago

chemistry quantitative research topics

Researchers develop a thermoelectric material with optimal cost, efficiency and flexibility

chemistry quantitative research topics

Researchers find WWI and WWII bombs in the ground are becoming more volatile

chemistry quantitative research topics

Scientists discover a key quality-control mechanism in DNA replication

6 hours ago

chemistry quantitative research topics

Tiny orchid flowers pollinated by tiny flies

Relevant physicsforums posts, a dumb question about entanglement, are superposition, the uncertainty principle, and duality the same.

3 hours ago

Feedback on Educational Script: Whats a particle in QFT?

Vacuum energy from correlation functions.

Mar 28, 2024

Time-ordered products derivation in "QFT and the SM" by Schwartz

Mar 26, 2024

How do quantum fluctuations affect the formation and evolution of structures in the Universe?

More from Quantum Physics

Related Stories

chemistry quantitative research topics

Better and faster design of organic light-emitting materials with machine learning and quantum computing

Jul 13, 2023

chemistry quantitative research topics

New theory hints at more efficient way to develop quantum algorithms

Aug 31, 2020

chemistry quantitative research topics

Toward a quantum computer that calculates molecular energy

Mar 16, 2022

chemistry quantitative research topics

Quantum computer programming for dummies

Jun 14, 2022

chemistry quantitative research topics

Progress in algorithms makes small, noisy quantum computers viable

Aug 13, 2021

chemistry quantitative research topics

Combining classical and quantum computing opens door to new discoveries

Jun 15, 2021

Recommended for you

chemistry quantitative research topics

'Shear sound waves' provide the magic for linking ultrasound and magnetic waves

8 hours ago

chemistry quantitative research topics

A method to compute the Rényi entanglement entropy in auxiliary-field quantum Monte Carlo simulations

chemistry quantitative research topics

Researchers find first experimental evidence for a graviton-like particle in a quantum material

chemistry quantitative research topics

Quantum computing just got hotter: One degree above absolute zero

chemistry quantitative research topics

Realizing clean qubits for quantum computers using electrons on helium

chemistry quantitative research topics

Advancing quantum networks: Study achieves largest photon emission enhancement for single T center to date

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

  • MyU : For Students, Faculty, and Staff

hUMNs of Chemistry #13

Gwen Bailey photo

Gwen Bailey 

Sher/her Assistant Professor

Tell us about your journey to the University of Minnesota.

I became fascinated with synthetic chemistry as an intern at Tekmira Pharmaceuticals (now Arbutus Biopharm) in Burnaby, BC. It struck me as so powerful that humans could manipulate matter in order to make and break bonds and create compounds with new chemical compositions and properties. Later in third-year inorganic chemistry class, I became fascinated with the chemistry of metals, and the rest of my career has been devoted to pursuing this passion. Like many others in my discipline, I was motivated by the desire to learn and develop new knowledge by carrying out experimental research. I was also passionate about sustainability and soon realized that I could use my knowledge of inorganic chemistry to contribute to more sustainable synthesis and energy solutions. My excitement for this topic is what drove me to pursue a Ph.D. at the University of Ottawa (fun fact: Canada's only officially bilingual institution!) and then a postdoc at Caltech. 

We would love to hear more about your research! What do you hope to accomplish with this work? What is the real-world impact for the average person?

Our research is focused on development of atomically precise nanocluster systems that mimic the structure and reactivity of heterogeneous electrocatalysts. By preparing these discrete compounds and evaluating them in solution environments, we can precisely pinpoint important mechanistic information including the site of substrate binding, delocalization of charge, and the dynamic reconfiguration of bonds that leads to substrate turnover. Our cluster systems not only capture the capabilities of heterogeneous electrocatalysts in a discrete model but they go one step beyond these capabilities in that they have a high density of active sites and are precisely tunable in their steric environment and electronic structure according to well-defined structure-property relationships. Overall, we hope to develop new approaches to catalysis using our atomically precise nanocluster systems and ultimately contribute solutions to solve climate change, for example by developing methods for synthesizing commodity chemicals on large scale using abundant feedstocks (like CO2) and renewable electricity. 

What courses do you teach? What can students expect to get out of your course?

I teach advanced inorganic chemistry classes (CHEM 4745/8745 and 4715/8715) and introductory general chemistry (CHEM 1061). I love talking to students and drawing them into deep conversations about the properties and study of matter! I believe that education is accessible to anyone with a good work ethic and growth mindset, and my teaching style reflects this philosophy. Activities in my classes are split between short, interactive lectures and small-group activities where students go deep with the material through problem-solving and discussion. Students in my classes can expect to be challenged intellectually and ultimately rewarded with new ways of thinking about challenging scientific concepts. 

What do you hope to contribute to the chemistry community at the University?

Beyond the science, I hope to reflect that chemistry is something that is accessible and practicable for all, and that teamwork and mentorship are integral to the practice. Also, I hope to provide opportunities for students to grow their personal, interpersonal, and scientific abilities through the practice of science and through participation in conferences and other programming. 

What do you do outside of the classroom/lab/office for fun?

I am pretty much obsessed with training my body for better health and longevity. I have enjoyed reading books such as "Outlive" by Peter Attia that have focused my efforts in these areas. My current exercise program includes regular zone 2 training (cycling/walking), interval training, strength training, and (mostly for fun) bouldering. 

portrait of John Beumer

John Beumer

Senior Designer, Center for Sustainable Polymers

Please give a brief description of your role within the UMN Chemistry department.

I am the Senior Designer for the Center For Sustainable Polymers. My day-to-day tasks include creating artwork for publication, managing the website, and leading our monthly research meetings. 

Before coming to the University of Minnesota I was a design consultant for Pentair and Bright Health in the Twin Cities. In addition, I spent a fair amount of time in the nonprofit world leading marketing and communications efforts. 

What’s your favorite piece of chemistry/science pop culture media? Why do you love it?

I remember visiting the Bell Museum for a CSP Annual Meeting years ago and we got to see closeup images of the Mars surface in their Planetarium. It is so special to live in a time when we get to see images from another planet. And I am equally excited to see what the Mars Perseverance rover returns to us in 2033.

Where is your favorite spot in the Twin Cities?

The Prospect Park Water Tower is a favorite spot. It is currently in the process of renovation but my guess is that they will have limited access to the tower again in a couple of years. It is a great place to get a birds eye view of Minneapolis. 

Headshot of Emily Robinson

Emily Robinson

She/her Graduate Student, Buhlmann Group

I am a Minnesotan, born and raised! I went to college and got my chemistry degree at the University of Minnesota Morris, which is part of the U system but out in the middle of western Minnesota, in 2020. I also studied for a semester at the University of Limerick in Ireland for a semester studying chemical nanotechnology. I applied for graduate school all over the US but UMN was one of the few schools felt I could thrive in. I loved the atmosphere and people I met.

We would love to hear more about your research interests! What do you hope to accomplish with this work? What is the real-world impact for the average person?

I work on the development of ion-selective electrodes. Ion detection is vital for medical analysis, environmental monitoring, and industrial applications. think of ions such as chloride and potassium, for medical purposes such as to assess kidney function, and nitrate and arsenate, common environmental pollutants. While there is equipment that can detect there ions, many of them are costly, require complex instrumentation with trained professionals, and are not time-efficient. Ion-selective electrodes (ISEs) are my are an great alternative, they have high selectivity, sensitivity, and versatility. They also overcome the limits that many other instruments have, being relatively small, easy to handle, and give fast response times. These factors are critical for point of care, for rapid test results, and for deployable, wearable, and implantable devices. For these applications, sensors not only need to be dependable for short periods but for days or even years. That is why I have pushed the boundaries of ISE systems to develop exceedingly stable sensing and reference electrodes that can be used to meet the needs of the medical, environmental, and industrial fields today.

Are you involved in any student groups? What inspired you to get involved?

I am currently the co-president for the Joint Safety Team! I have always been a big proponent of lab safety culture and when the opportunity came up, I thought why not? I have been able to work with other lab safety teams throughout the US and we recently submitted a paper on LSO programs as well as were accepted to host a symposium at ACS fall on lab safety culture. Lab safety is something that affects everyone, whether it be on big or small scales, and I am very happy to have been able to be a part of that here.

We keep a garden on our patio that I (try to) help take care of and I am always down for an easy hike in the fall.

Black Coffee & Waffle Bar

Tell us about who makes up your household (including pets).

Our household is myself, my partner Zach who does cancer research at UMN, and our adorable grey tuxedo cat Beatrice

Headshots of three people over a maroon and gold banner

Related news releases

  • Jan-Niklas Boyn and Kade Head-Marsden join Department of Chemistry
  • hUMNs of Chemistry #11
  • Professor Peter Carr retires after over 45 years on Department of Chemistry faculty
  • hUMNs of Chemistry #10
  • hUMNs of Chemistry #8
  • Future undergraduate students
  • Future transfer students
  • Future graduate students
  • Future international students
  • Diversity and Inclusion Opportunities
  • Learn abroad
  • Living Learning Communities
  • Mentor programs
  • Programs for women
  • Student groups
  • Visit, Apply & Next Steps
  • Information for current students
  • Departments and majors overview
  • Departments
  • Undergraduate majors
  • Graduate programs
  • Integrated Degree Programs
  • Additional degree-granting programs
  • Online learning
  • Academic Advising overview
  • Academic Advising FAQ
  • Academic Advising Blog
  • Appointments and drop-ins
  • Academic support
  • Commencement
  • Four-year plans
  • Honors advising
  • Policies, procedures, and forms
  • Career Services overview
  • Resumes and cover letters
  • Jobs and internships
  • Interviews and job offers
  • CSE Career Fair
  • Major and career exploration
  • Graduate school
  • Collegiate Life overview
  • Scholarships
  • Diversity & Inclusivity Alliance
  • Anderson Student Innovation Labs
  • Information for alumni
  • Get engaged with CSE
  • Upcoming events
  • CSE Alumni Society Board
  • Alumni volunteer interest form
  • Golden Medallion Society Reunion
  • 50-Year Reunion
  • Alumni honors and awards
  • Outstanding Achievement
  • Alumni Service
  • Distinguished Leadership
  • Honorary Doctorate Degrees
  • Nobel Laureates
  • Alumni resources
  • Alumni career resources
  • Alumni news outlets
  • CSE branded clothing
  • International alumni resources
  • Inventing Tomorrow magazine
  • Update your info
  • CSE giving overview
  • Why give to CSE?
  • College priorities
  • Give online now
  • External relations
  • Giving priorities
  • Donor stories
  • Impact of giving
  • Ways to give to CSE
  • Matching gifts
  • CSE directories
  • Invest in your company and the future
  • Recruit our students
  • Connect with researchers
  • K-12 initiatives
  • Diversity initiatives
  • Research news
  • Give to CSE
  • CSE priorities
  • Corporate relations
  • Information for faculty and staff
  • Administrative offices overview
  • Office of the Dean
  • Academic affairs
  • Finance and Operations
  • Communications
  • Human resources
  • Undergraduate programs and student services
  • CSE Committees
  • CSE policies overview
  • Academic policies
  • Faculty hiring and tenure policies
  • Finance policies and information
  • Graduate education policies
  • Human resources policies
  • Research policies
  • Research overview
  • Research centers and facilities
  • Research proposal submission process
  • Research safety
  • Award-winning CSE faculty
  • National academies
  • University awards
  • Honorary professorships
  • Collegiate awards
  • Other CSE honors and awards
  • Staff awards
  • Performance Management Process
  • Work. With Flexibility in CSE
  • K-12 outreach overview
  • Summer camps
  • Outreach events
  • Enrichment programs
  • Field trips and tours
  • CSE K-12 Virtual Classroom Resources
  • Educator development
  • Sponsor an event

Your browser is not supported

Sorry but it looks as if your browser is out of date. To get the best experience using our site we recommend that you upgrade or switch browsers.

Find a solution

  • Skip to main content
  • Skip to navigation
  • hot-topics Extras
  • Newsletters
  • Reading room

Tell us what you think. Take part in our reader survey

Celebrating twenty years

  • Back to parent navigation item
  • Collections
  • Water and the environment
  • Chemical bonding
  • Antimicrobial resistance
  • Energy storage and batteries
  • AI and automation
  • Sustainability
  • Research culture
  • Nobel prize
  • Food science and cookery
  • Plastics and polymers
  • Periodic table
  • Coronavirus

Quarts

  • More from navigation items

Crystalline cages create unusual ‘touchless’ sensors

Fernando Gomollón-Bel

  • No comments

Crystalline cages that adsorb water have found an unexpected application in the field of sensors. These supramolecular structures serve as ‘touchless’ sensors, by simply detecting the humidity that naturally surrounds the skin. The sensor ‘exhibits an exceptional responsiveness to humidity changes’, explains lead author Niveen Khashab , who works at the King Abdullah University of Science and Technology in Saudi Arabia. ‘It’s a more promising avenue for touchless technology,’ she adds.

Source: © Royal Society of Chemistry / CCDC 2179030

The organic cages can respond to the humidity around a finger, enabling a touchless interface to be created

Touchless technology could transform how we interact with computers and other machines. Since the start of the Covid pandemic, interest in touchless sensors has rocketed – market projections predict sales will triple by 2026 , to an estimated to an estimated $37.6 billion (£30 billion). Traditionally, touchless sensors use ‘physical’ stimuli such as infrared radiation, ultrasounds or capacitance. In this case, chemistry is key. ‘Humidity sensors detect the presence of a finger, it’s very creative,’ says Jonathan Nitschke , an expert in supramolecular cages at the University of Cambridge, UK. ‘I had never heard of this application before.’

The chemical cages created by Khashab and collaborators feature a handful of functional groups that crave water. In particular, protonated amines cover the cavity’s interior, while the external part is decorated with carboxylic groups – both moisture-sensitive moieties. ‘Human skin naturally releases moisture and [our] sensors capture its variations,’ explains Khashab. Instead of relying on purely proximity or gestures, detecting humidity ‘allows for a more natural and intuitive form of touchless interactions’, she adds. ‘We evaluated the performance of our touchless screens through nearly a hundred trials [and] consistently achieved a 100% rate in correct detection.’

‘This paper is a great engineering demonstration of a chemical discovery,’ says Shushei Furukawa , an expert in supramolecular chemistry at Kyoto University in Japan . In low humidity, the cage surface hosts a small amount of water molecules, constrained by the hydrogen bonds formed with the moisture-sensitive groups. This limits their mobility, which is linked to a high resistance. The increase in humidity makes more water molecules accumulate in the cage, which in turn transforms the network of hydrogen bonds. The phenomenon of ‘water adsorption in porous organic cages is translated into proton conduction and, therefore, a change in resistivity’, he explains.  

Source: J Wang et al, Nat. Commun., 2024, 15, 1575 (DOI: 10.1038/s41467-024-46071-8)

For Furukawa, this discovery opens the possibility of touchless technology to other materials. ‘Any porous materials that uptake water with high adsorption and desorption kinetics could work,’ he says. This includes metal–organic frameworks (MOFs) and covalent–organic frameworks (COFs), which haven’t yet been explored for such applications. The problem is likely to be processability, explains  Furukawa. ‘Thanks to the nature of [this crystalline] cage, it was easily processed into an electronic device, [which] showed a highly robust sensing performance,’ he says.

Arnau Carné Sánchez , a postdoctoral researcher working on supramolecular structures at the Institute of Nanoscience and Nanotechnology in Barcelona, Spain, agrees that processability of this cage is a clear advantage   over other materials such as MOFs. ‘One of the main drawbacks of conventional porous materials for manufacturing devices is poor processability,’ he explains. ‘The crystalline cages in this study are soluble in water, which allows the use of state-of-the-art “drop casting” techniques.’ This is a simple strategy to form films, which works by dropping a solution of solids into a surface and then evaporating the solvent. Eventually, the cages are ‘structured onto the sensor surface, facilitating the fabrication of a useful device’, adds Carné Sánchez. When ‘researchers analysed the electrical response as a function of the distance between the device and a finger, they found it was very accurate and reproducible’, he says. Additionally, the fast kinetics of the reaction create an ‘ultrafast response’ and raise the recovery abilities of the sensor. According to the authors, the recovery time hovers between one and three seconds, and the sensor exhibits an ‘exceptional stability’ showing successful measurements throughout over 800 cycles.

As the sensors detect humidity, the device presents problems when ambient conditions exceed certain limits. With an average ambient humidity of 60%, the sensor responds well to a fingertip, Khashab says. However, if the ambient humidity is higher than that near to the skin, the sensor doesn’t work reliably , which would limit its use. ‘The change in resistance is lower, [therefore] sensitivity is lower too, explains Furukawa. However, it’s a first proof-of-concept. In the future, modifications of the supramolecular structure could surpass the disadvantages – maybe creating crystalline cages with different chemical groups that work better in highly humid conditions. Moreover, materials like MOFs and COFs could provide other options too. ‘Different processable porous materials with more hydrophobic pores [could still] adsorb water at higher humidity,’ adds Furukawa.

Khashab’s team has created a simple touchless screen, as well as a touchless ‘password manager’ device, similar to the patterned screen locks on smartphones. The latter incorporates an array of 25 humidity sensors, all responsive to the proximity of a finger – which could increase not only safety, but also security, as it removes the risk of marking the surface with fingerprints. The design of the supramolecular cages ‘suggest the sensor is easily scalable’, says Khashab.

‘They’re relatively cheap materials and fabrication processes,’ explains Nitschke. ‘It looks scalable to me!’

J Wang et al , Nat. Commun. , 2024, 15 , 1575 (DOI:  10.1038/s41467-024-46071-8 )

Fernando Gomollón-Bel

More from Fernando Gomollón-Bel

Interlocked cogs

First example of communication in coupled molecular motors

Cyclopropane

Iron salts catalyse the creation of carbenes for cyclopropanation

Autonomous platform engineers enhanced proteins

Autonomous platform engineers enhanced proteins

  • Organic cage
  • Organic chemistry
  • Supramolecular chemistry
  • touchscreen

Related articles

Reaction set-up

Cross-coupling technique cracks open alcohols for chemical synthesis

2024-03-26T14:30:00Z

By James Urquhart

Tiny motor made from crystallized molecules

Molecular crystal motors completely powered by light

2024-03-25T14:30:00Z

By Rebecca Trager

Image

DIY recycling protocol could save organoiridium waste from incinerators

2024-03-22T13:16:00Z

By Michael Whitelaw

Three glass flasks showing a colour change in a reaction from clear to light blue to purple

3D-printed capsules enhance speed and safety of synthetic chemistry

2024-03-21T14:38:00Z

By Hannah Hamilton

A bottle of bromine sealed in an additional jar with hazard warnings on the label

Where does bromine come from?

2024-03-20T14:30:00Z

By Chemjobber

A petrol pump refilling a fuel tank

Energetically unfavourable Diels-Alder reaction driven by chemical fuel

2024-03-19T09:30:00Z

By Victoria Corless

No comments yet

Only registered users can comment on this article., more from news.

Snow blowing machine

Model explains why water can freeze at different temperatures

2024-03-28T09:30:00Z

South Korea and EU flag

South Korea joins EU’s research programme Horizon Europe

2024-03-27T14:30:00Z

By Julia Robinson

X

Tweets don’t bring citations, randomised controlled study finds

2024-03-27T09:30:00Z

By Maria Burke

Curl's Nobel medal

Robert Curl’s ‘buckyball’ chemistry Nobel prize to be auctioned off

A petri dish with a pink liquid that has growing strips and swirls of lighter colours

Pulsating chemical computers vie with their quantum rivals

2024-03-26T10:31:00Z

By Andy Extance

Mark Newman

Chemours sacks top executives following accounting probe

2024-03-25T15:09:00Z

By Phillip Broadwith

  • Contributors
  • Terms of use
  • Accessibility
  • Permissions
  • This website collects cookies to deliver a better user experience. See how this site uses cookies .
  • This website collects cookies to deliver a better user experience. Do not sell my personal data .
  • Este site coleta cookies para oferecer uma melhor experiência ao usuário. Veja como este site usa cookies .

Site powered by Webvision Cloud

ScienceDaily

Research lights up process for turning CO2 into sustainable fuel

Researchers have successfully transformed CO 2 into methanol by shining sunlight on single atoms of copper deposited on a light-activated material, a discovery that paves the way for creating new green fuels.

An international team of researchers from the University of Nottingham's School of Chemistry, University of Birmingham, University of Queensland and University of Ulm have designed a material, made up of copper anchored on nanocrystalline carbon nitride. The copper atoms are nested within the nanocrystalline structure, which allows electrons to move from carbon nitride to CO 2 , an essential step in the production of methanol from CO 2 under the influence of solar irradiation. The research has been published in the Sustainable Energy & Fuels Journal of the Royal Society of Chemistry.

In photocatalysis, light is shone on a semiconductor material that excites electrons, enabling them to travel through the material to react with CO 2 and water, leading to a variety of useful products, including methanol, which is a green fuel. Despite recent progress, this process suffers from a lack of efficiency and selectivity.

Carbon dioxide is the greatest contributor to global warming. Although, it is possible to convert CO 2 to useful products, traditional thermal methods rely on hydrogen sourced from fossil fuels. It is important to develop alternative methods based on photo- and electrocatalysis, taking advantage of the sustainable solar energy and abundance of omnipresent water.

Dr Madasamy Thangamuthu, a research fellow in the School of Chemistry, University of Nottingham, who co-led the research team, said: "There is a large variety of different materials used in photocatalysis. It is important that the photocatalyst absorbs light and separates charge carriers with high efficiency. In our approach, we control the material at the nanoscale. We developed a new form of carbon nitride with crystalline nanoscale domains that allow efficient interaction with light as well as sufficient charge separation."

The researchers devised a process of heating carbon nitride to the required degree of crystallinity, maximising the functional properties of this material for photocatalysis. Using magnetron sputtering, they deposited atomic copper in a solventless process, allowing intimate contact between the semiconductor and metal atoms.

Tara LeMercier, a PhD student who carried out the experimental work at the University of Nottingham, School of Chemistry, said: "We measured the current generated by light and used it as a criterion to judge the quality of the catalyst. Even without copper, the new form of carbon nitride is 44 times more active than traditional carbon nitride. However, to our surprise, the addition of only 1 mg of copper per 1 g of carbon nitride quadrupled this efficiency. Most importantly the selectivity changed from methane, another greenhouse gas, to methanol, a valuable green fuel."

Professor Andrei Khlobystov, School of Chemistry, University of Nottingham, said: "Carbon dioxide valorisation holds the key for achieving the net-zero ambition of the UK. It is vitally important to ensure the sustainability of our catalyst materials for this important reaction. A big advantage of the new catalyst is that it consists of sustainable elements -- carbon, nitrogen and copper -- all highly abundant on our planet."

This invention represents a significant step towards a deep understanding of photocatalytic materials in CO 2 conversion. It opens a pathway for creating highly selective and tuneable catalysts where the desired product could be dialled up by controlling the catalyst at the nanoscale.

This work is funded by the EPSRC Programme Grant 'Metal atoms on surfaces and interfaces (MASI) for sustainable future' which is set to develop catalyst materials for the conversion of three key molecules -- carbon dioxide, hydrogen and ammonia -- crucially important for economy and environment. MASI catalysts are made in an atom-efficient way to ensure sustainable use of chemical elements without depleting supplies of rare elements and making most of the earth's abundant elements, such as carbon and base metals.

The University of Nottingham is dedicated to championing green and sustainable technologies. The Zero Carbon Cluster has been set in the East Midlands to accelerate the development and deployment of innovation in green industries and advanced manufacturing.

  • Energy and Resources
  • Organic Chemistry
  • Nanotechnology
  • Sustainability
  • Global Warming
  • Geochemistry
  • Energy and the Environment
  • Activated carbon
  • Scanning tunneling microscope
  • Common ethanol fuel mixtures
  • Nanoparticle
  • Hydrogen-like atom
  • Electroluminescence
  • Solar power

Story Source:

Materials provided by University of Nottingham . Note: Content may be edited for style and length.

Journal Reference :

  • Tara M LeMercier, Madasamy Thangamuthu, Emerson C Kohlrausch, Yifan Chen, Craig Stoppiello, Michael W Fay, Graham A. Rance, Gazi N Aliev, Wolfgang Theis, Johannes Biskupek, Ute Kaiser, Anabel E. Lanterna, Jesum Alves Fernandes, Andrei Khlobystov. Synergy of Nanocrystalline Carbon Nitride with Cu Single Atom Catalyst Leads to Selective Photocatalytic Reduction of CO2 to Methanol . Sustainable Energy & Fuels , 2024; DOI: 10.1039/D4SE00028E

Cite This Page :

Explore More

  • Heart Disease Risk: More Than One Drink a Day
  • Unlocking Supernova Stardust Secrets
  • Why Do Some Memories Become Longterm?
  • Cell Division Quality Control 'Stopwatch'
  • What Controls Sun's Differential Rotation?
  • Robot, Can You Say 'Cheese'?
  • Researchers Turn Back the Clock On Cancer Cells
  • Making Long-Term Memories: Nerve-Cell Damage
  • A Solar Cell You Can Bend and Soak in Water
  • 'Cosmic Cannibals': Fast-Moving Jets in Space

Trending Topics

Strange & offbeat.

IMAGES

  1. 100+ Chemistry Research Topics Ideas for Your Paper

    chemistry quantitative research topics

  2. 100+ Best Quantitative Research Topics For Students In 2023

    chemistry quantitative research topics

  3. AQA GCSE Combined Science: Quantitative Chemistry (Higher Tier

    chemistry quantitative research topics

  4. Quantitative Chemistry Cheat Sheet

    chemistry quantitative research topics

  5. Best 75 Chemistry Research Topics For Student's Project

    chemistry quantitative research topics

  6. 50+ Chemistry Research Topics for College Students

    chemistry quantitative research topics

VIDEO

  1. Quantitative research process

  2. Organic Chemistry

  3. QUALITATIVE AND QUANTITATIVE ANALYSIS OF ORGANIC COMPOUNDS

  4. Quantitative Research

  5. Qualitative vs quantitative

  6. Quantitative analysis introduction Chemistry secondary 3 تالتة ثانوى كيمسترى

COMMENTS

  1. 100+ Great Chemistry Research Topics

    If you are looking for essential biomolecular chemistry research topics, here are some ideas to get you started: The structure and function of DNA. The structure and function of proteins. The role of carbohydrates in the body. The role of lipids in the body. How enzymes work. The role of biochemistry in heart disease.

  2. 300+ Chemistry Research Topics

    Organic Chemistry Research Topics. Organic Chemistry Research Topics are as follows: Development of novel synthetic routes for the production of biologically active natural products. Investigation of reaction mechanisms and kinetics for organic transformations. Design and synthesis of new catalysts for asymmetric organic reactions.

  3. 28 Must-Read Topics in Chemistry

    ACS Publications regularly produces collections of the most important chemistry research topics. These Virtual Collections of the most important chemistry research topics bring together the most important ideas in the field in a variety of ways, including Special Issues and ACS Selects from across the portfolio journals. These collections reflect the most important chemistry research […]

  4. 100+ Best Quantitative Research Topics For Students In 2023

    An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones: The link between global warming and climate change. What is the greenhouse gas impact on biodiversity and the atmosphere.

  5. 240 Best Chemistry Research Topics and Ideas to Get Started

    Physical Chemistry Research Topics. Organic Chemistry Research Topics. Inorganic Chemistry Research Topics. Biochemistry Research Ideas. Analytical Chemistry Research Topics. Nuclear Chemistry Research Topics. Green Chemistry Research Topics. Advanced Chemistry Topics for Research. Innovative Chemistry Research Paper Topics.

  6. 200+ Chemistry Research Topics & Ideas for Your Study

    Below is a list of chemistry research topics for papers: Latest developments in DNA technology. Negative effects of using pesticides in food production. Importance and potential drawbacks of using fertilizer in commercial agriculture. Acids and bases: composition, properties, and applications.

  7. 21 Cutting-Edge Chemistry Topics

    21 Cutting-Edge Chemistry Topics. Freddy Tellez. Jul 31, 2020. 14 min read. ACS Publications regularly produces collections of the most important chemistry research topics. These Virtual Collections of the most important chemistry research topics bring together the most important ideas in the field in a variety of ways, including Special Issues ...

  8. Frontiers in Chemistry

    Beyond Borders: Exploring Diverse Roles of Heterocyclic Compounds in Combatting Infections and Cancer. Advances our understanding of how atoms, ions, and molecules come together and come apart. It explores the role of chemistry in our everyday lives - from electronic devices to health and wellbeing.

  9. 4.5: Quantitative Chemical Analysis

    Titration. The described approach to measuring vinegar strength was an early version of the analytical technique known as titration analysis. A typical titration analysis involves the use of a buret (Figure 4.5.1 4.5. 1) to make incremental additions of a solution containing a known concentration of some substance (the titrant) to a sample ...

  10. The case for data science in experimental chemistry: examples and

    Data-driven techniques, such as machine learning (ML) and artificial intelligence (AI), are rapidly becoming indispensable tools for scientific research 1 and have been the topic of national 2 and ...

  11. 190+ Best Quantitative Research Topics for STEM Students

    Biomedical Engineering Research Topics. 1. Optimizing algorithms for medical image analysis in diagnostic imaging. 2. Quantifying the efficiency of prosthetic and orthopedic devices in rehabilitation. 3. Analyzing the quantitative aspects of drug delivery systems in personalized medicine. 4.

  12. 50+ Chemistry Research Topics To Help You With Studies

    Interesting Chemistry Research Areas. As one sees chemistry topics for research project, it is crucial to choose something that interests you and can fully reveal innovative approach to studies or laboratory work. For example, one can combine biology with genome analysis, which will lead to study of NanoChemistry - innovative and hot topic!

  13. Quantitative chemistry

    Quantitative analysis is any method used for determining the amount of a chemical in a sample. The amount is always expressed as a number with appropriate units. An acid-base titration is an example of quantitative analysis. In this module you will learn about the core ideas or building blocks that are required for a deep understanding of ...

  14. 50+ Remarkable Chemistry Project Topics for BSC Students ...

    Physical Chemistry Projects. Chemical Kinetics: Investigate the rate of chemical reactions under different conditions and analyze reaction mechanisms. Electrochemistry: Explore the principles of electrochemical cells, study electrode processes, and investigate applications in energy storage.

  15. Best 151+ Quantitative Research Topics for STEM Students

    Chemistry. Let's get started with some quantitative research topics for stem students in chemistry: 1. Studying the properties of superconductors at different temperatures. 2. Analyzing the efficiency of various catalysts in chemical reactions. 3. Investigating the synthesis of novel polymers with unique properties. 4.

  16. 127+ Great Quantitative Research Topics For STEM Students

    Chemistry Quantitative Research Topics. Chemistry's quantitative research explores numerical relationships within chemical reactions, material properties, and various compounds, offering insights into chemical phenomena through measurable data. Topic; 1. Reaction rates in different catalysts: 2. Electrolysis of various solutions

  17. 80 Experimental Quantitative Research Topics for STEM Students

    Dive into a captivating world of quantitative research topics for STEM students! Fuel your scientific curiosity and sharpen your analytical skills as you navigate through this carefully curated collection. Picture it as your personal roadmap, guiding you through the thrilling landscapes of Science, Technology, Engineering, and Mathematics.

  18. Best 75 Chemistry Research Topics For Student's Project

    Chemistry research topics for college students are a bit more difficult. After all, college professors expect you to put in a lot more work than a high school student. This doesn't mean that you can't write these papers quickly though. Here are some of the best topics we can think of: The hidden dangers of tap water.

  19. 201+ Chemistry Project Topics [Updated]

    201+ Chemistry Project Topics [Updated] General / By Stat Analytica / 6th March 2024. Chemistry, often hailed as the "central science," plays a pivotal role in understanding the world around us. From the composition of substances to the reactions that transform them, chemistry influences nearly every aspect of our lives.

  20. 500+ Quantitative Research Titles and Topics

    Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology, economics, and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas ...

  21. Research topics in Analytical Chemistry: some current work in

    PDF | On Jan 1, 1970, D. R. Marriott and others published Research topics in Analytical Chemistry: some current work in universities and college | Find, read and cite all the research you need on ...

  22. Hot Topics in Chemistry at ACS Spring 2024: Part 1

    The spring meeting of the American Chemical Society (ACS), held virtually and in person March 17-21, 2024, features more than 12,000 presentations on a diverse range of science topics. Read on to discover some of the hot topics and research highlights* presented at the meeting—and check back throughout the week for more updates! 1.

  23. Construct a Research Question

    Looking at the body of research. Once you have a topic that you think is a good size, take a look at the body of research that's available for the topic. Check in catalogs and databases. Look at reputable websites. You want to be sure that your topic has an adequate amount of research before you invest too much time into the idea. Revising.

  24. 189+ Good Quantitative Research Topics For STEM Students

    Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics. Prime Number Distribution: Investigate the distribution of prime numbers. Graph Theory Algorithms: Develop algorithms for solving graph theory problems. Statistical Analysis of Financial Markets: Analyze financial data and market trends.

  25. Examining Educational Debts in Student Preparation for General Chemistry

    Students beginning college chemistry are expected to arrive prepared with fundamental, prerequisite conceptual understanding and skills from high school. While some topics may be reviewed explicitly in the course, prerequisite material─including hidden prerequisites often overlooked by faculty─is typically considered assumed prior knowledge and not taught in General Chemistry. This study ...

  26. Scientists deliver quantum algorithm to develop new materials and chemistry

    U.S. Naval Research Laboratory (NRL) scientists have published the Cascaded Variational Quantum Eigensolver (CVQE) algorithm in a recent Physical Review Research article. The algorithm is expected ...

  27. Study unlocks the power of visible light for sustainable chemistry

    Study unlocks the power of visible light for sustainable chemistry. ScienceDaily . Retrieved March 28, 2024 from www.sciencedaily.com / releases / 2024 / 03 / 240328111000.htm

  28. hUMNs of Chemistry #13

    Gwen Bailey Sher/herAssistant ProfessorTell us about your journey to the University of Minnesota.I became fascinated with synthetic chemistry as an intern at Tekmira Pharmaceuticals (now Arbutus Biopharm) in Burnaby, BC. It struck me as so powerful that humans could manipulate matter in order to make and break bonds and create compounds with new chemical compositions and properties. Later in ...

  29. Crystalline cages create unusual 'touchless' sensors

    Touchless technology could transform how we interact with computers and other machines. Since the start of the Covid pandemic, interest in touchless sensors has rocketed - market projections ...

  30. Research lights up process for turning CO2 into sustainable fuel

    Research lights up process for turning CO2 into sustainable fuel. ScienceDaily . Retrieved March 29, 2024 from www.sciencedaily.com / releases / 2024 / 03 / 240325201620.htm