35 problem-solving techniques and methods for solving complex problems

Problem solving workshop

Design your next session with SessionLab

Join the 150,000+ facilitators 
using SessionLab.

Recommended Articles

A step-by-step guide to planning a workshop, how to create an unforgettable training session in 8 simple steps, 47 useful online tools for workshop planning and meeting facilitation.

All teams and organizations encounter challenges as they grow. There are problems that might occur for teams when it comes to miscommunication or resolving business-critical issues . You may face challenges around growth , design , user engagement, and even team culture and happiness. In short, problem-solving techniques should be part of every team’s skillset.

Problem-solving methods are primarily designed to help a group or team through a process of first identifying problems and challenges , ideating possible solutions , and then evaluating the most suitable .

Finding effective solutions to complex problems isn’t easy, but by using the right process and techniques, you can help your team be more efficient in the process.

So how do you develop strategies that are engaging, and empower your team to solve problems effectively?

In this blog post, we share a series of problem-solving tools you can use in your next workshop or team meeting. You’ll also find some tips for facilitating the process and how to enable others to solve complex problems.

Let’s get started! 

How do you identify problems?

How do you identify the right solution.

  • Tips for more effective problem-solving

Complete problem-solving methods

  • Problem-solving techniques to identify and analyze problems
  • Problem-solving techniques for developing solutions

Problem-solving warm-up activities

Closing activities for a problem-solving process.

Before you can move towards finding the right solution for a given problem, you first need to identify and define the problem you wish to solve. 

Here, you want to clearly articulate what the problem is and allow your group to do the same. Remember that everyone in a group is likely to have differing perspectives and alignment is necessary in order to help the group move forward. 

Identifying a problem accurately also requires that all members of a group are able to contribute their views in an open and safe manner. It can be scary for people to stand up and contribute, especially if the problems or challenges are emotive or personal in nature. Be sure to try and create a psychologically safe space for these kinds of discussions.

Remember that problem analysis and further discussion are also important. Not taking the time to fully analyze and discuss a challenge can result in the development of solutions that are not fit for purpose or do not address the underlying issue.

Successfully identifying and then analyzing a problem means facilitating a group through activities designed to help them clearly and honestly articulate their thoughts and produce usable insight.

With this data, you might then produce a problem statement that clearly describes the problem you wish to be addressed and also state the goal of any process you undertake to tackle this issue.  

Finding solutions is the end goal of any process. Complex organizational challenges can only be solved with an appropriate solution but discovering them requires using the right problem-solving tool.

After you’ve explored a problem and discussed ideas, you need to help a team discuss and choose the right solution. Consensus tools and methods such as those below help a group explore possible solutions before then voting for the best. They’re a great way to tap into the collective intelligence of the group for great results!

Remember that the process is often iterative. Great problem solvers often roadtest a viable solution in a measured way to see what works too. While you might not get the right solution on your first try, the methods below help teams land on the most likely to succeed solution while also holding space for improvement.

Every effective problem solving process begins with an agenda . A well-structured workshop is one of the best methods for successfully guiding a group from exploring a problem to implementing a solution.

In SessionLab, it’s easy to go from an idea to a complete agenda . Start by dragging and dropping your core problem solving activities into place . Add timings, breaks and necessary materials before sharing your agenda with your colleagues.

The resulting agenda will be your guide to an effective and productive problem solving session that will also help you stay organized on the day!

a method for problem solving

Tips for more effective problem solving

Problem-solving activities are only one part of the puzzle. While a great method can help unlock your team’s ability to solve problems, without a thoughtful approach and strong facilitation the solutions may not be fit for purpose.

Let’s take a look at some problem-solving tips you can apply to any process to help it be a success!

Clearly define the problem

Jumping straight to solutions can be tempting, though without first clearly articulating a problem, the solution might not be the right one. Many of the problem-solving activities below include sections where the problem is explored and clearly defined before moving on.

This is a vital part of the problem-solving process and taking the time to fully define an issue can save time and effort later. A clear definition helps identify irrelevant information and it also ensures that your team sets off on the right track.

Don’t jump to conclusions

It’s easy for groups to exhibit cognitive bias or have preconceived ideas about both problems and potential solutions. Be sure to back up any problem statements or potential solutions with facts, research, and adequate forethought.

The best techniques ask participants to be methodical and challenge preconceived notions. Make sure you give the group enough time and space to collect relevant information and consider the problem in a new way. By approaching the process with a clear, rational mindset, you’ll often find that better solutions are more forthcoming.  

Try different approaches  

Problems come in all shapes and sizes and so too should the methods you use to solve them. If you find that one approach isn’t yielding results and your team isn’t finding different solutions, try mixing it up. You’ll be surprised at how using a new creative activity can unblock your team and generate great solutions.

Don’t take it personally 

Depending on the nature of your team or organizational problems, it’s easy for conversations to get heated. While it’s good for participants to be engaged in the discussions, ensure that emotions don’t run too high and that blame isn’t thrown around while finding solutions.

You’re all in it together, and even if your team or area is seeing problems, that isn’t necessarily a disparagement of you personally. Using facilitation skills to manage group dynamics is one effective method of helping conversations be more constructive.

Get the right people in the room

Your problem-solving method is often only as effective as the group using it. Getting the right people on the job and managing the number of people present is important too!

If the group is too small, you may not get enough different perspectives to effectively solve a problem. If the group is too large, you can go round and round during the ideation stages.

Creating the right group makeup is also important in ensuring you have the necessary expertise and skillset to both identify and follow up on potential solutions. Carefully consider who to include at each stage to help ensure your problem-solving method is followed and positioned for success.

Document everything

The best solutions can take refinement, iteration, and reflection to come out. Get into a habit of documenting your process in order to keep all the learnings from the session and to allow ideas to mature and develop. Many of the methods below involve the creation of documents or shared resources. Be sure to keep and share these so everyone can benefit from the work done!

Bring a facilitator 

Facilitation is all about making group processes easier. With a subject as potentially emotive and important as problem-solving, having an impartial third party in the form of a facilitator can make all the difference in finding great solutions and keeping the process moving. Consider bringing a facilitator to your problem-solving session to get better results and generate meaningful solutions!

Develop your problem-solving skills

It takes time and practice to be an effective problem solver. While some roles or participants might more naturally gravitate towards problem-solving, it can take development and planning to help everyone create better solutions.

You might develop a training program, run a problem-solving workshop or simply ask your team to practice using the techniques below. Check out our post on problem-solving skills to see how you and your group can develop the right mental process and be more resilient to issues too!

Design a great agenda

Workshops are a great format for solving problems. With the right approach, you can focus a group and help them find the solutions to their own problems. But designing a process can be time-consuming and finding the right activities can be difficult.

Check out our workshop planning guide to level-up your agenda design and start running more effective workshops. Need inspiration? Check out templates designed by expert facilitators to help you kickstart your process!

In this section, we’ll look at in-depth problem-solving methods that provide a complete end-to-end process for developing effective solutions. These will help guide your team from the discovery and definition of a problem through to delivering the right solution.

If you’re looking for an all-encompassing method or problem-solving model, these processes are a great place to start. They’ll ask your team to challenge preconceived ideas and adopt a mindset for solving problems more effectively.

  • Six Thinking Hats
  • Lightning Decision Jam
  • Problem Definition Process
  • Discovery & Action Dialogue
Design Sprint 2.0
  • Open Space Technology

1. Six Thinking Hats

Individual approaches to solving a problem can be very different based on what team or role an individual holds. It can be easy for existing biases or perspectives to find their way into the mix, or for internal politics to direct a conversation.

Six Thinking Hats is a classic method for identifying the problems that need to be solved and enables your team to consider them from different angles, whether that is by focusing on facts and data, creative solutions, or by considering why a particular solution might not work.

Like all problem-solving frameworks, Six Thinking Hats is effective at helping teams remove roadblocks from a conversation or discussion and come to terms with all the aspects necessary to solve complex problems.

2. Lightning Decision Jam

Featured courtesy of Jonathan Courtney of AJ&Smart Berlin, Lightning Decision Jam is one of those strategies that should be in every facilitation toolbox. Exploring problems and finding solutions is often creative in nature, though as with any creative process, there is the potential to lose focus and get lost.

Unstructured discussions might get you there in the end, but it’s much more effective to use a method that creates a clear process and team focus.

In Lightning Decision Jam, participants are invited to begin by writing challenges, concerns, or mistakes on post-its without discussing them before then being invited by the moderator to present them to the group.

From there, the team vote on which problems to solve and are guided through steps that will allow them to reframe those problems, create solutions and then decide what to execute on. 

By deciding the problems that need to be solved as a team before moving on, this group process is great for ensuring the whole team is aligned and can take ownership over the next stages. 

Lightning Decision Jam (LDJ)   #action   #decision making   #problem solving   #issue analysis   #innovation   #design   #remote-friendly   The problem with anything that requires creative thinking is that it’s easy to get lost—lose focus and fall into the trap of having useless, open-ended, unstructured discussions. Here’s the most effective solution I’ve found: Replace all open, unstructured discussion with a clear process. What to use this exercise for: Anything which requires a group of people to make decisions, solve problems or discuss challenges. It’s always good to frame an LDJ session with a broad topic, here are some examples: The conversion flow of our checkout Our internal design process How we organise events Keeping up with our competition Improving sales flow

3. Problem Definition Process

While problems can be complex, the problem-solving methods you use to identify and solve those problems can often be simple in design. 

By taking the time to truly identify and define a problem before asking the group to reframe the challenge as an opportunity, this method is a great way to enable change.

Begin by identifying a focus question and exploring the ways in which it manifests before splitting into five teams who will each consider the problem using a different method: escape, reversal, exaggeration, distortion or wishful. Teams develop a problem objective and create ideas in line with their method before then feeding them back to the group.

This method is great for enabling in-depth discussions while also creating space for finding creative solutions too!

Problem Definition   #problem solving   #idea generation   #creativity   #online   #remote-friendly   A problem solving technique to define a problem, challenge or opportunity and to generate ideas.

4. The 5 Whys 

Sometimes, a group needs to go further with their strategies and analyze the root cause at the heart of organizational issues. An RCA or root cause analysis is the process of identifying what is at the heart of business problems or recurring challenges. 

The 5 Whys is a simple and effective method of helping a group go find the root cause of any problem or challenge and conduct analysis that will deliver results. 

By beginning with the creation of a problem statement and going through five stages to refine it, The 5 Whys provides everything you need to truly discover the cause of an issue.

The 5 Whys   #hyperisland   #innovation   This simple and powerful method is useful for getting to the core of a problem or challenge. As the title suggests, the group defines a problems, then asks the question “why” five times, often using the resulting explanation as a starting point for creative problem solving.

5. World Cafe

World Cafe is a simple but powerful facilitation technique to help bigger groups to focus their energy and attention on solving complex problems.

World Cafe enables this approach by creating a relaxed atmosphere where participants are able to self-organize and explore topics relevant and important to them which are themed around a central problem-solving purpose. Create the right atmosphere by modeling your space after a cafe and after guiding the group through the method, let them take the lead!

Making problem-solving a part of your organization’s culture in the long term can be a difficult undertaking. More approachable formats like World Cafe can be especially effective in bringing people unfamiliar with workshops into the fold. 

World Cafe   #hyperisland   #innovation   #issue analysis   World Café is a simple yet powerful method, originated by Juanita Brown, for enabling meaningful conversations driven completely by participants and the topics that are relevant and important to them. Facilitators create a cafe-style space and provide simple guidelines. Participants then self-organize and explore a set of relevant topics or questions for conversation.

6. Discovery & Action Dialogue (DAD)

One of the best approaches is to create a safe space for a group to share and discover practices and behaviors that can help them find their own solutions.

With DAD, you can help a group choose which problems they wish to solve and which approaches they will take to do so. It’s great at helping remove resistance to change and can help get buy-in at every level too!

This process of enabling frontline ownership is great in ensuring follow-through and is one of the methods you will want in your toolbox as a facilitator.

Discovery & Action Dialogue (DAD)   #idea generation   #liberating structures   #action   #issue analysis   #remote-friendly   DADs make it easy for a group or community to discover practices and behaviors that enable some individuals (without access to special resources and facing the same constraints) to find better solutions than their peers to common problems. These are called positive deviant (PD) behaviors and practices. DADs make it possible for people in the group, unit, or community to discover by themselves these PD practices. DADs also create favorable conditions for stimulating participants’ creativity in spaces where they can feel safe to invent new and more effective practices. Resistance to change evaporates as participants are unleashed to choose freely which practices they will adopt or try and which problems they will tackle. DADs make it possible to achieve frontline ownership of solutions.

7. Design Sprint 2.0

Want to see how a team can solve big problems and move forward with prototyping and testing solutions in a few days? The Design Sprint 2.0 template from Jake Knapp, author of Sprint, is a complete agenda for a with proven results.

Developing the right agenda can involve difficult but necessary planning. Ensuring all the correct steps are followed can also be stressful or time-consuming depending on your level of experience.

Use this complete 4-day workshop template if you are finding there is no obvious solution to your challenge and want to focus your team around a specific problem that might require a shortcut to launching a minimum viable product or waiting for the organization-wide implementation of a solution.

8. Open space technology

Open space technology- developed by Harrison Owen – creates a space where large groups are invited to take ownership of their problem solving and lead individual sessions. Open space technology is a great format when you have a great deal of expertise and insight in the room and want to allow for different takes and approaches on a particular theme or problem you need to be solved.

Start by bringing your participants together to align around a central theme and focus their efforts. Explain the ground rules to help guide the problem-solving process and then invite members to identify any issue connecting to the central theme that they are interested in and are prepared to take responsibility for.

Once participants have decided on their approach to the core theme, they write their issue on a piece of paper, announce it to the group, pick a session time and place, and post the paper on the wall. As the wall fills up with sessions, the group is then invited to join the sessions that interest them the most and which they can contribute to, then you’re ready to begin!

Everyone joins the problem-solving group they’ve signed up to, record the discussion and if appropriate, findings can then be shared with the rest of the group afterward.

Open Space Technology   #action plan   #idea generation   #problem solving   #issue analysis   #large group   #online   #remote-friendly   Open Space is a methodology for large groups to create their agenda discerning important topics for discussion, suitable for conferences, community gatherings and whole system facilitation

Techniques to identify and analyze problems

Using a problem-solving method to help a team identify and analyze a problem can be a quick and effective addition to any workshop or meeting.

While further actions are always necessary, you can generate momentum and alignment easily, and these activities are a great place to get started.

We’ve put together this list of techniques to help you and your team with problem identification, analysis, and discussion that sets the foundation for developing effective solutions.

Let’s take a look!

  • The Creativity Dice
  • Fishbone Analysis
  • Problem Tree
  • SWOT Analysis
  • Agreement-Certainty Matrix
  • The Journalistic Six
  • LEGO Challenge
  • What, So What, Now What?
  • Journalists

Individual and group perspectives are incredibly important, but what happens if people are set in their minds and need a change of perspective in order to approach a problem more effectively?

Flip It is a method we love because it is both simple to understand and run, and allows groups to understand how their perspectives and biases are formed. 

Participants in Flip It are first invited to consider concerns, issues, or problems from a perspective of fear and write them on a flip chart. Then, the group is asked to consider those same issues from a perspective of hope and flip their understanding.  

No problem and solution is free from existing bias and by changing perspectives with Flip It, you can then develop a problem solving model quickly and effectively.

Flip It!   #gamestorming   #problem solving   #action   Often, a change in a problem or situation comes simply from a change in our perspectives. Flip It! is a quick game designed to show players that perspectives are made, not born.

10. The Creativity Dice

One of the most useful problem solving skills you can teach your team is of approaching challenges with creativity, flexibility, and openness. Games like The Creativity Dice allow teams to overcome the potential hurdle of too much linear thinking and approach the process with a sense of fun and speed. 

In The Creativity Dice, participants are organized around a topic and roll a dice to determine what they will work on for a period of 3 minutes at a time. They might roll a 3 and work on investigating factual information on the chosen topic. They might roll a 1 and work on identifying the specific goals, standards, or criteria for the session.

Encouraging rapid work and iteration while asking participants to be flexible are great skills to cultivate. Having a stage for idea incubation in this game is also important. Moments of pause can help ensure the ideas that are put forward are the most suitable. 

The Creativity Dice   #creativity   #problem solving   #thiagi   #issue analysis   Too much linear thinking is hazardous to creative problem solving. To be creative, you should approach the problem (or the opportunity) from different points of view. You should leave a thought hanging in mid-air and move to another. This skipping around prevents premature closure and lets your brain incubate one line of thought while you consciously pursue another.

11. Fishbone Analysis

Organizational or team challenges are rarely simple, and it’s important to remember that one problem can be an indication of something that goes deeper and may require further consideration to be solved.

Fishbone Analysis helps groups to dig deeper and understand the origins of a problem. It’s a great example of a root cause analysis method that is simple for everyone on a team to get their head around. 

Participants in this activity are asked to annotate a diagram of a fish, first adding the problem or issue to be worked on at the head of a fish before then brainstorming the root causes of the problem and adding them as bones on the fish. 

Using abstractions such as a diagram of a fish can really help a team break out of their regular thinking and develop a creative approach.

Fishbone Analysis   #problem solving   ##root cause analysis   #decision making   #online facilitation   A process to help identify and understand the origins of problems, issues or observations.

12. Problem Tree 

Encouraging visual thinking can be an essential part of many strategies. By simply reframing and clarifying problems, a group can move towards developing a problem solving model that works for them. 

In Problem Tree, groups are asked to first brainstorm a list of problems – these can be design problems, team problems or larger business problems – and then organize them into a hierarchy. The hierarchy could be from most important to least important or abstract to practical, though the key thing with problem solving games that involve this aspect is that your group has some way of managing and sorting all the issues that are raised.

Once you have a list of problems that need to be solved and have organized them accordingly, you’re then well-positioned for the next problem solving steps.

Problem tree   #define intentions   #create   #design   #issue analysis   A problem tree is a tool to clarify the hierarchy of problems addressed by the team within a design project; it represents high level problems or related sublevel problems.

13. SWOT Analysis

Chances are you’ve heard of the SWOT Analysis before. This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams.

Start by creating a desired end state or outcome and bare this in mind – any process solving model is made more effective by knowing what you are moving towards. Create a quadrant made up of the four categories of a SWOT analysis and ask participants to generate ideas based on each of those quadrants.

Once you have those ideas assembled in their quadrants, cluster them together based on their affinity with other ideas. These clusters are then used to facilitate group conversations and move things forward. 

SWOT analysis   #gamestorming   #problem solving   #action   #meeting facilitation   The SWOT Analysis is a long-standing technique of looking at what we have, with respect to the desired end state, as well as what we could improve on. It gives us an opportunity to gauge approaching opportunities and dangers, and assess the seriousness of the conditions that affect our future. When we understand those conditions, we can influence what comes next.

14. Agreement-Certainty Matrix

Not every problem-solving approach is right for every challenge, and deciding on the right method for the challenge at hand is a key part of being an effective team.

The Agreement Certainty matrix helps teams align on the nature of the challenges facing them. By sorting problems from simple to chaotic, your team can understand what methods are suitable for each problem and what they can do to ensure effective results. 

If you are already using Liberating Structures techniques as part of your problem-solving strategy, the Agreement-Certainty Matrix can be an invaluable addition to your process. We’ve found it particularly if you are having issues with recurring problems in your organization and want to go deeper in understanding the root cause. 

Agreement-Certainty Matrix   #issue analysis   #liberating structures   #problem solving   You can help individuals or groups avoid the frequent mistake of trying to solve a problem with methods that are not adapted to the nature of their challenge. The combination of two questions makes it possible to easily sort challenges into four categories: simple, complicated, complex , and chaotic .  A problem is simple when it can be solved reliably with practices that are easy to duplicate.  It is complicated when experts are required to devise a sophisticated solution that will yield the desired results predictably.  A problem is complex when there are several valid ways to proceed but outcomes are not predictable in detail.  Chaotic is when the context is too turbulent to identify a path forward.  A loose analogy may be used to describe these differences: simple is like following a recipe, complicated like sending a rocket to the moon, complex like raising a child, and chaotic is like the game “Pin the Tail on the Donkey.”  The Liberating Structures Matching Matrix in Chapter 5 can be used as the first step to clarify the nature of a challenge and avoid the mismatches between problems and solutions that are frequently at the root of chronic, recurring problems.

Organizing and charting a team’s progress can be important in ensuring its success. SQUID (Sequential Question and Insight Diagram) is a great model that allows a team to effectively switch between giving questions and answers and develop the skills they need to stay on track throughout the process. 

Begin with two different colored sticky notes – one for questions and one for answers – and with your central topic (the head of the squid) on the board. Ask the group to first come up with a series of questions connected to their best guess of how to approach the topic. Ask the group to come up with answers to those questions, fix them to the board and connect them with a line. After some discussion, go back to question mode by responding to the generated answers or other points on the board.

It’s rewarding to see a diagram grow throughout the exercise, and a completed SQUID can provide a visual resource for future effort and as an example for other teams.

SQUID   #gamestorming   #project planning   #issue analysis   #problem solving   When exploring an information space, it’s important for a group to know where they are at any given time. By using SQUID, a group charts out the territory as they go and can navigate accordingly. SQUID stands for Sequential Question and Insight Diagram.

16. Speed Boat

To continue with our nautical theme, Speed Boat is a short and sweet activity that can help a team quickly identify what employees, clients or service users might have a problem with and analyze what might be standing in the way of achieving a solution.

Methods that allow for a group to make observations, have insights and obtain those eureka moments quickly are invaluable when trying to solve complex problems.

In Speed Boat, the approach is to first consider what anchors and challenges might be holding an organization (or boat) back. Bonus points if you are able to identify any sharks in the water and develop ideas that can also deal with competitors!   

Speed Boat   #gamestorming   #problem solving   #action   Speedboat is a short and sweet way to identify what your employees or clients don’t like about your product/service or what’s standing in the way of a desired goal.

17. The Journalistic Six

Some of the most effective ways of solving problems is by encouraging teams to be more inclusive and diverse in their thinking.

Based on the six key questions journalism students are taught to answer in articles and news stories, The Journalistic Six helps create teams to see the whole picture. By using who, what, when, where, why, and how to facilitate the conversation and encourage creative thinking, your team can make sure that the problem identification and problem analysis stages of the are covered exhaustively and thoughtfully. Reporter’s notebook and dictaphone optional.

The Journalistic Six – Who What When Where Why How   #idea generation   #issue analysis   #problem solving   #online   #creative thinking   #remote-friendly   A questioning method for generating, explaining, investigating ideas.

18. LEGO Challenge

Now for an activity that is a little out of the (toy) box. LEGO Serious Play is a facilitation methodology that can be used to improve creative thinking and problem-solving skills. 

The LEGO Challenge includes giving each member of the team an assignment that is hidden from the rest of the group while they create a structure without speaking.

What the LEGO challenge brings to the table is a fun working example of working with stakeholders who might not be on the same page to solve problems. Also, it’s LEGO! Who doesn’t love LEGO! 

LEGO Challenge   #hyperisland   #team   A team-building activity in which groups must work together to build a structure out of LEGO, but each individual has a secret “assignment” which makes the collaborative process more challenging. It emphasizes group communication, leadership dynamics, conflict, cooperation, patience and problem solving strategy.

19. What, So What, Now What?

If not carefully managed, the problem identification and problem analysis stages of the problem-solving process can actually create more problems and misunderstandings.

The What, So What, Now What? problem-solving activity is designed to help collect insights and move forward while also eliminating the possibility of disagreement when it comes to identifying, clarifying, and analyzing organizational or work problems. 

Facilitation is all about bringing groups together so that might work on a shared goal and the best problem-solving strategies ensure that teams are aligned in purpose, if not initially in opinion or insight.

Throughout the three steps of this game, you give everyone on a team to reflect on a problem by asking what happened, why it is important, and what actions should then be taken. 

This can be a great activity for bringing our individual perceptions about a problem or challenge and contextualizing it in a larger group setting. This is one of the most important problem-solving skills you can bring to your organization.

W³ – What, So What, Now What?   #issue analysis   #innovation   #liberating structures   You can help groups reflect on a shared experience in a way that builds understanding and spurs coordinated action while avoiding unproductive conflict. It is possible for every voice to be heard while simultaneously sifting for insights and shaping new direction. Progressing in stages makes this practical—from collecting facts about What Happened to making sense of these facts with So What and finally to what actions logically follow with Now What . The shared progression eliminates most of the misunderstandings that otherwise fuel disagreements about what to do. Voila!

20. Journalists  

Problem analysis can be one of the most important and decisive stages of all problem-solving tools. Sometimes, a team can become bogged down in the details and are unable to move forward.

Journalists is an activity that can avoid a group from getting stuck in the problem identification or problem analysis stages of the process.

In Journalists, the group is invited to draft the front page of a fictional newspaper and figure out what stories deserve to be on the cover and what headlines those stories will have. By reframing how your problems and challenges are approached, you can help a team move productively through the process and be better prepared for the steps to follow.

Journalists   #vision   #big picture   #issue analysis   #remote-friendly   This is an exercise to use when the group gets stuck in details and struggles to see the big picture. Also good for defining a vision.

Problem-solving techniques for developing solutions 

The success of any problem-solving process can be measured by the solutions it produces. After you’ve defined the issue, explored existing ideas, and ideated, it’s time to narrow down to the correct solution.

Use these problem-solving techniques when you want to help your team find consensus, compare possible solutions, and move towards taking action on a particular problem.

  • Improved Solutions
  • Four-Step Sketch
  • 15% Solutions
  • How-Now-Wow matrix
  • Impact Effort Matrix

21. Mindspin  

Brainstorming is part of the bread and butter of the problem-solving process and all problem-solving strategies benefit from getting ideas out and challenging a team to generate solutions quickly. 

With Mindspin, participants are encouraged not only to generate ideas but to do so under time constraints and by slamming down cards and passing them on. By doing multiple rounds, your team can begin with a free generation of possible solutions before moving on to developing those solutions and encouraging further ideation. 

This is one of our favorite problem-solving activities and can be great for keeping the energy up throughout the workshop. Remember the importance of helping people become engaged in the process – energizing problem-solving techniques like Mindspin can help ensure your team stays engaged and happy, even when the problems they’re coming together to solve are complex. 

MindSpin   #teampedia   #idea generation   #problem solving   #action   A fast and loud method to enhance brainstorming within a team. Since this activity has more than round ideas that are repetitive can be ruled out leaving more creative and innovative answers to the challenge.

22. Improved Solutions

After a team has successfully identified a problem and come up with a few solutions, it can be tempting to call the work of the problem-solving process complete. That said, the first solution is not necessarily the best, and by including a further review and reflection activity into your problem-solving model, you can ensure your group reaches the best possible result. 

One of a number of problem-solving games from Thiagi Group, Improved Solutions helps you go the extra mile and develop suggested solutions with close consideration and peer review. By supporting the discussion of several problems at once and by shifting team roles throughout, this problem-solving technique is a dynamic way of finding the best solution. 

Improved Solutions   #creativity   #thiagi   #problem solving   #action   #team   You can improve any solution by objectively reviewing its strengths and weaknesses and making suitable adjustments. In this creativity framegame, you improve the solutions to several problems. To maintain objective detachment, you deal with a different problem during each of six rounds and assume different roles (problem owner, consultant, basher, booster, enhancer, and evaluator) during each round. At the conclusion of the activity, each player ends up with two solutions to her problem.

23. Four Step Sketch

Creative thinking and visual ideation does not need to be confined to the opening stages of your problem-solving strategies. Exercises that include sketching and prototyping on paper can be effective at the solution finding and development stage of the process, and can be great for keeping a team engaged. 

By going from simple notes to a crazy 8s round that involves rapidly sketching 8 variations on their ideas before then producing a final solution sketch, the group is able to iterate quickly and visually. Problem-solving techniques like Four-Step Sketch are great if you have a group of different thinkers and want to change things up from a more textual or discussion-based approach.

Four-Step Sketch   #design sprint   #innovation   #idea generation   #remote-friendly   The four-step sketch is an exercise that helps people to create well-formed concepts through a structured process that includes: Review key information Start design work on paper,  Consider multiple variations , Create a detailed solution . This exercise is preceded by a set of other activities allowing the group to clarify the challenge they want to solve. See how the Four Step Sketch exercise fits into a Design Sprint

24. 15% Solutions

Some problems are simpler than others and with the right problem-solving activities, you can empower people to take immediate actions that can help create organizational change. 

Part of the liberating structures toolkit, 15% solutions is a problem-solving technique that focuses on finding and implementing solutions quickly. A process of iterating and making small changes quickly can help generate momentum and an appetite for solving complex problems.

Problem-solving strategies can live and die on whether people are onboard. Getting some quick wins is a great way of getting people behind the process.   

It can be extremely empowering for a team to realize that problem-solving techniques can be deployed quickly and easily and delineate between things they can positively impact and those things they cannot change. 

15% Solutions   #action   #liberating structures   #remote-friendly   You can reveal the actions, however small, that everyone can do immediately. At a minimum, these will create momentum, and that may make a BIG difference.  15% Solutions show that there is no reason to wait around, feel powerless, or fearful. They help people pick it up a level. They get individuals and the group to focus on what is within their discretion instead of what they cannot change.  With a very simple question, you can flip the conversation to what can be done and find solutions to big problems that are often distributed widely in places not known in advance. Shifting a few grains of sand may trigger a landslide and change the whole landscape.

25. How-Now-Wow Matrix

The problem-solving process is often creative, as complex problems usually require a change of thinking and creative response in order to find the best solutions. While it’s common for the first stages to encourage creative thinking, groups can often gravitate to familiar solutions when it comes to the end of the process. 

When selecting solutions, you don’t want to lose your creative energy! The How-Now-Wow Matrix from Gamestorming is a great problem-solving activity that enables a group to stay creative and think out of the box when it comes to selecting the right solution for a given problem.

Problem-solving techniques that encourage creative thinking and the ideation and selection of new solutions can be the most effective in organisational change. Give the How-Now-Wow Matrix a go, and not just for how pleasant it is to say out loud. 

How-Now-Wow Matrix   #gamestorming   #idea generation   #remote-friendly   When people want to develop new ideas, they most often think out of the box in the brainstorming or divergent phase. However, when it comes to convergence, people often end up picking ideas that are most familiar to them. This is called a ‘creative paradox’ or a ‘creadox’. The How-Now-Wow matrix is an idea selection tool that breaks the creadox by forcing people to weigh each idea on 2 parameters.

26. Impact and Effort Matrix

All problem-solving techniques hope to not only find solutions to a given problem or challenge but to find the best solution. When it comes to finding a solution, groups are invited to put on their decision-making hats and really think about how a proposed idea would work in practice. 

The Impact and Effort Matrix is one of the problem-solving techniques that fall into this camp, empowering participants to first generate ideas and then categorize them into a 2×2 matrix based on impact and effort.

Activities that invite critical thinking while remaining simple are invaluable. Use the Impact and Effort Matrix to move from ideation and towards evaluating potential solutions before then committing to them. 

Impact and Effort Matrix   #gamestorming   #decision making   #action   #remote-friendly   In this decision-making exercise, possible actions are mapped based on two factors: effort required to implement and potential impact. Categorizing ideas along these lines is a useful technique in decision making, as it obliges contributors to balance and evaluate suggested actions before committing to them.

27. Dotmocracy

If you’ve followed each of the problem-solving steps with your group successfully, you should move towards the end of your process with heaps of possible solutions developed with a specific problem in mind. But how do you help a group go from ideation to putting a solution into action? 

Dotmocracy – or Dot Voting -is a tried and tested method of helping a team in the problem-solving process make decisions and put actions in place with a degree of oversight and consensus. 

One of the problem-solving techniques that should be in every facilitator’s toolbox, Dot Voting is fast and effective and can help identify the most popular and best solutions and help bring a group to a decision effectively. 

Dotmocracy   #action   #decision making   #group prioritization   #hyperisland   #remote-friendly   Dotmocracy is a simple method for group prioritization or decision-making. It is not an activity on its own, but a method to use in processes where prioritization or decision-making is the aim. The method supports a group to quickly see which options are most popular or relevant. The options or ideas are written on post-its and stuck up on a wall for the whole group to see. Each person votes for the options they think are the strongest, and that information is used to inform a decision.

All facilitators know that warm-ups and icebreakers are useful for any workshop or group process. Problem-solving workshops are no different.

Use these problem-solving techniques to warm up a group and prepare them for the rest of the process. Activating your group by tapping into some of the top problem-solving skills can be one of the best ways to see great outcomes from your session.

  • Check-in/Check-out
  • Doodling Together
  • Show and Tell
  • Constellations
  • Draw a Tree

28. Check-in / Check-out

Solid processes are planned from beginning to end, and the best facilitators know that setting the tone and establishing a safe, open environment can be integral to a successful problem-solving process.

Check-in / Check-out is a great way to begin and/or bookend a problem-solving workshop. Checking in to a session emphasizes that everyone will be seen, heard, and expected to contribute. 

If you are running a series of meetings, setting a consistent pattern of checking in and checking out can really help your team get into a groove. We recommend this opening-closing activity for small to medium-sized groups though it can work with large groups if they’re disciplined!

Check-in / Check-out   #team   #opening   #closing   #hyperisland   #remote-friendly   Either checking-in or checking-out is a simple way for a team to open or close a process, symbolically and in a collaborative way. Checking-in/out invites each member in a group to be present, seen and heard, and to express a reflection or a feeling. Checking-in emphasizes presence, focus and group commitment; checking-out emphasizes reflection and symbolic closure.

29. Doodling Together  

Thinking creatively and not being afraid to make suggestions are important problem-solving skills for any group or team, and warming up by encouraging these behaviors is a great way to start. 

Doodling Together is one of our favorite creative ice breaker games – it’s quick, effective, and fun and can make all following problem-solving steps easier by encouraging a group to collaborate visually. By passing cards and adding additional items as they go, the workshop group gets into a groove of co-creation and idea development that is crucial to finding solutions to problems. 

Doodling Together   #collaboration   #creativity   #teamwork   #fun   #team   #visual methods   #energiser   #icebreaker   #remote-friendly   Create wild, weird and often funny postcards together & establish a group’s creative confidence.

30. Show and Tell

You might remember some version of Show and Tell from being a kid in school and it’s a great problem-solving activity to kick off a session.

Asking participants to prepare a little something before a workshop by bringing an object for show and tell can help them warm up before the session has even begun! Games that include a physical object can also help encourage early engagement before moving onto more big-picture thinking.

By asking your participants to tell stories about why they chose to bring a particular item to the group, you can help teams see things from new perspectives and see both differences and similarities in the way they approach a topic. Great groundwork for approaching a problem-solving process as a team! 

Show and Tell   #gamestorming   #action   #opening   #meeting facilitation   Show and Tell taps into the power of metaphors to reveal players’ underlying assumptions and associations around a topic The aim of the game is to get a deeper understanding of stakeholders’ perspectives on anything—a new project, an organizational restructuring, a shift in the company’s vision or team dynamic.

31. Constellations

Who doesn’t love stars? Constellations is a great warm-up activity for any workshop as it gets people up off their feet, energized, and ready to engage in new ways with established topics. It’s also great for showing existing beliefs, biases, and patterns that can come into play as part of your session.

Using warm-up games that help build trust and connection while also allowing for non-verbal responses can be great for easing people into the problem-solving process and encouraging engagement from everyone in the group. Constellations is great in large spaces that allow for movement and is definitely a practical exercise to allow the group to see patterns that are otherwise invisible. 

Constellations   #trust   #connection   #opening   #coaching   #patterns   #system   Individuals express their response to a statement or idea by standing closer or further from a central object. Used with teams to reveal system, hidden patterns, perspectives.

32. Draw a Tree

Problem-solving games that help raise group awareness through a central, unifying metaphor can be effective ways to warm-up a group in any problem-solving model.

Draw a Tree is a simple warm-up activity you can use in any group and which can provide a quick jolt of energy. Start by asking your participants to draw a tree in just 45 seconds – they can choose whether it will be abstract or realistic. 

Once the timer is up, ask the group how many people included the roots of the tree and use this as a means to discuss how we can ignore important parts of any system simply because they are not visible.

All problem-solving strategies are made more effective by thinking of problems critically and by exposing things that may not normally come to light. Warm-up games like Draw a Tree are great in that they quickly demonstrate some key problem-solving skills in an accessible and effective way.

Draw a Tree   #thiagi   #opening   #perspectives   #remote-friendly   With this game you can raise awarness about being more mindful, and aware of the environment we live in.

Each step of the problem-solving workshop benefits from an intelligent deployment of activities, games, and techniques. Bringing your session to an effective close helps ensure that solutions are followed through on and that you also celebrate what has been achieved.

Here are some problem-solving activities you can use to effectively close a workshop or meeting and ensure the great work you’ve done can continue afterward.

  • One Breath Feedback
  • Who What When Matrix
  • Response Cards

How do I conclude a problem-solving process?

All good things must come to an end. With the bulk of the work done, it can be tempting to conclude your workshop swiftly and without a moment to debrief and align. This can be problematic in that it doesn’t allow your team to fully process the results or reflect on the process.

At the end of an effective session, your team will have gone through a process that, while productive, can be exhausting. It’s important to give your group a moment to take a breath, ensure that they are clear on future actions, and provide short feedback before leaving the space. 

The primary purpose of any problem-solving method is to generate solutions and then implement them. Be sure to take the opportunity to ensure everyone is aligned and ready to effectively implement the solutions you produced in the workshop.

Remember that every process can be improved and by giving a short moment to collect feedback in the session, you can further refine your problem-solving methods and see further success in the future too.

33. One Breath Feedback

Maintaining attention and focus during the closing stages of a problem-solving workshop can be tricky and so being concise when giving feedback can be important. It’s easy to incur “death by feedback” should some team members go on for too long sharing their perspectives in a quick feedback round. 

One Breath Feedback is a great closing activity for workshops. You give everyone an opportunity to provide feedback on what they’ve done but only in the space of a single breath. This keeps feedback short and to the point and means that everyone is encouraged to provide the most important piece of feedback to them. 

One breath feedback   #closing   #feedback   #action   This is a feedback round in just one breath that excels in maintaining attention: each participants is able to speak during just one breath … for most people that’s around 20 to 25 seconds … unless of course you’ve been a deep sea diver in which case you’ll be able to do it for longer.

34. Who What When Matrix 

Matrices feature as part of many effective problem-solving strategies and with good reason. They are easily recognizable, simple to use, and generate results.

The Who What When Matrix is a great tool to use when closing your problem-solving session by attributing a who, what and when to the actions and solutions you have decided upon. The resulting matrix is a simple, easy-to-follow way of ensuring your team can move forward. 

Great solutions can’t be enacted without action and ownership. Your problem-solving process should include a stage for allocating tasks to individuals or teams and creating a realistic timeframe for those solutions to be implemented or checked out. Use this method to keep the solution implementation process clear and simple for all involved. 

Who/What/When Matrix   #gamestorming   #action   #project planning   With Who/What/When matrix, you can connect people with clear actions they have defined and have committed to.

35. Response cards

Group discussion can comprise the bulk of most problem-solving activities and by the end of the process, you might find that your team is talked out! 

Providing a means for your team to give feedback with short written notes can ensure everyone is head and can contribute without the need to stand up and talk. Depending on the needs of the group, giving an alternative can help ensure everyone can contribute to your problem-solving model in the way that makes the most sense for them.

Response Cards is a great way to close a workshop if you are looking for a gentle warm-down and want to get some swift discussion around some of the feedback that is raised. 

Response Cards   #debriefing   #closing   #structured sharing   #questions and answers   #thiagi   #action   It can be hard to involve everyone during a closing of a session. Some might stay in the background or get unheard because of louder participants. However, with the use of Response Cards, everyone will be involved in providing feedback or clarify questions at the end of a session.

Save time and effort discovering the right solutions

A structured problem solving process is a surefire way of solving tough problems, discovering creative solutions and driving organizational change. But how can you design for successful outcomes?

With SessionLab, it’s easy to design engaging workshops that deliver results. Drag, drop and reorder blocks  to build your agenda. When you make changes or update your agenda, your session  timing   adjusts automatically , saving you time on manual adjustments.

Collaborating with stakeholders or clients? Share your agenda with a single click and collaborate in real-time. No more sending documents back and forth over email.

Explore  how to use SessionLab  to design effective problem solving workshops or  watch this five minute video  to see the planner in action!

a method for problem solving

Over to you

The problem-solving process can often be as complicated and multifaceted as the problems they are set-up to solve. With the right problem-solving techniques and a mix of creative exercises designed to guide discussion and generate purposeful ideas, we hope we’ve given you the tools to find the best solutions as simply and easily as possible.

Is there a problem-solving technique that you are missing here? Do you have a favorite activity or method you use when facilitating? Let us know in the comments below, we’d love to hear from you! 

' src=

thank you very much for these excellent techniques

' src=

Certainly wonderful article, very detailed. Shared!

Leave a Comment Cancel reply

Your email address will not be published. Required fields are marked *

cycle of workshop planning steps

Going from a mere idea to a workshop that delivers results for your clients can feel like a daunting task. In this piece, we will shine a light on all the work behind the scenes and help you learn how to plan a workshop from start to finish. On a good day, facilitation can feel like effortless magic, but that is mostly the result of backstage work, foresight, and a lot of careful planning. Read on to learn a step-by-step approach to breaking the process of planning a workshop into small, manageable chunks.  The flow starts with the first meeting with a client to define the purposes of a workshop.…

a method for problem solving

How does learning work? A clever 9-year-old once told me: “I know I am learning something new when I am surprised.” The science of adult learning tells us that, in order to learn new skills (which, unsurprisingly, is harder for adults to do than kids) grown-ups need to first get into a specific headspace.  In a business, this approach is often employed in a training session where employees learn new skills or work on professional development. But how do you ensure your training is effective? In this guide, we'll explore how to create an effective training session plan and run engaging training sessions. As team leader, project manager, or consultant,…

a method for problem solving

Effective online tools are a necessity for smooth and engaging virtual workshops and meetings. But how do you choose the right ones? Do you sometimes feel that the good old pen and paper or MS Office toolkit and email leaves you struggling to stay on top of managing and delivering your workshop? Fortunately, there are plenty of online tools to make your life easier when you need to facilitate a meeting and lead workshops. In this post, we’ll share our favorite online tools you can use to make your job as a facilitator easier. In fact, there are plenty of free online workshop tools and meeting facilitation software you can…

Design your next workshop with SessionLab

Join the 150,000 facilitators using SessionLab

Sign up for free

Status.net

What is Problem Solving? (Steps, Techniques, Examples)

By Status.net Editorial Team on May 7, 2023 — 5 minutes to read

What Is Problem Solving?

Definition and importance.

Problem solving is the process of finding solutions to obstacles or challenges you encounter in your life or work. It is a crucial skill that allows you to tackle complex situations, adapt to changes, and overcome difficulties with ease. Mastering this ability will contribute to both your personal and professional growth, leading to more successful outcomes and better decision-making.

Problem-Solving Steps

The problem-solving process typically includes the following steps:

  • Identify the issue : Recognize the problem that needs to be solved.
  • Analyze the situation : Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present.
  • Generate potential solutions : Brainstorm a list of possible solutions to the issue, without immediately judging or evaluating them.
  • Evaluate options : Weigh the pros and cons of each potential solution, considering factors such as feasibility, effectiveness, and potential risks.
  • Select the best solution : Choose the option that best addresses the problem and aligns with your objectives.
  • Implement the solution : Put the selected solution into action and monitor the results to ensure it resolves the issue.
  • Review and learn : Reflect on the problem-solving process, identify any improvements or adjustments that can be made, and apply these learnings to future situations.

Defining the Problem

To start tackling a problem, first, identify and understand it. Analyzing the issue thoroughly helps to clarify its scope and nature. Ask questions to gather information and consider the problem from various angles. Some strategies to define the problem include:

  • Brainstorming with others
  • Asking the 5 Ws and 1 H (Who, What, When, Where, Why, and How)
  • Analyzing cause and effect
  • Creating a problem statement

Generating Solutions

Once the problem is clearly understood, brainstorm possible solutions. Think creatively and keep an open mind, as well as considering lessons from past experiences. Consider:

  • Creating a list of potential ideas to solve the problem
  • Grouping and categorizing similar solutions
  • Prioritizing potential solutions based on feasibility, cost, and resources required
  • Involving others to share diverse opinions and inputs

Evaluating and Selecting Solutions

Evaluate each potential solution, weighing its pros and cons. To facilitate decision-making, use techniques such as:

  • SWOT analysis (Strengths, Weaknesses, Opportunities, Threats)
  • Decision-making matrices
  • Pros and cons lists
  • Risk assessments

After evaluating, choose the most suitable solution based on effectiveness, cost, and time constraints.

Implementing and Monitoring the Solution

Implement the chosen solution and monitor its progress. Key actions include:

  • Communicating the solution to relevant parties
  • Setting timelines and milestones
  • Assigning tasks and responsibilities
  • Monitoring the solution and making adjustments as necessary
  • Evaluating the effectiveness of the solution after implementation

Utilize feedback from stakeholders and consider potential improvements. Remember that problem-solving is an ongoing process that can always be refined and enhanced.

Problem-Solving Techniques

During each step, you may find it helpful to utilize various problem-solving techniques, such as:

  • Brainstorming : A free-flowing, open-minded session where ideas are generated and listed without judgment, to encourage creativity and innovative thinking.
  • Root cause analysis : A method that explores the underlying causes of a problem to find the most effective solution rather than addressing superficial symptoms.
  • SWOT analysis : A tool used to evaluate the strengths, weaknesses, opportunities, and threats related to a problem or decision, providing a comprehensive view of the situation.
  • Mind mapping : A visual technique that uses diagrams to organize and connect ideas, helping to identify patterns, relationships, and possible solutions.

Brainstorming

When facing a problem, start by conducting a brainstorming session. Gather your team and encourage an open discussion where everyone contributes ideas, no matter how outlandish they may seem. This helps you:

  • Generate a diverse range of solutions
  • Encourage all team members to participate
  • Foster creative thinking

When brainstorming, remember to:

  • Reserve judgment until the session is over
  • Encourage wild ideas
  • Combine and improve upon ideas

Root Cause Analysis

For effective problem-solving, identifying the root cause of the issue at hand is crucial. Try these methods:

  • 5 Whys : Ask “why” five times to get to the underlying cause.
  • Fishbone Diagram : Create a diagram representing the problem and break it down into categories of potential causes.
  • Pareto Analysis : Determine the few most significant causes underlying the majority of problems.

SWOT Analysis

SWOT analysis helps you examine the Strengths, Weaknesses, Opportunities, and Threats related to your problem. To perform a SWOT analysis:

  • List your problem’s strengths, such as relevant resources or strong partnerships.
  • Identify its weaknesses, such as knowledge gaps or limited resources.
  • Explore opportunities, like trends or new technologies, that could help solve the problem.
  • Recognize potential threats, like competition or regulatory barriers.

SWOT analysis aids in understanding the internal and external factors affecting the problem, which can help guide your solution.

Mind Mapping

A mind map is a visual representation of your problem and potential solutions. It enables you to organize information in a structured and intuitive manner. To create a mind map:

  • Write the problem in the center of a blank page.
  • Draw branches from the central problem to related sub-problems or contributing factors.
  • Add more branches to represent potential solutions or further ideas.

Mind mapping allows you to visually see connections between ideas and promotes creativity in problem-solving.

Examples of Problem Solving in Various Contexts

In the business world, you might encounter problems related to finances, operations, or communication. Applying problem-solving skills in these situations could look like:

  • Identifying areas of improvement in your company’s financial performance and implementing cost-saving measures
  • Resolving internal conflicts among team members by listening and understanding different perspectives, then proposing and negotiating solutions
  • Streamlining a process for better productivity by removing redundancies, automating tasks, or re-allocating resources

In educational contexts, problem-solving can be seen in various aspects, such as:

  • Addressing a gap in students’ understanding by employing diverse teaching methods to cater to different learning styles
  • Developing a strategy for successful time management to balance academic responsibilities and extracurricular activities
  • Seeking resources and support to provide equal opportunities for learners with special needs or disabilities

Everyday life is full of challenges that require problem-solving skills. Some examples include:

  • Overcoming a personal obstacle, such as improving your fitness level, by establishing achievable goals, measuring progress, and adjusting your approach accordingly
  • Navigating a new environment or city by researching your surroundings, asking for directions, or using technology like GPS to guide you
  • Dealing with a sudden change, like a change in your work schedule, by assessing the situation, identifying potential impacts, and adapting your plans to accommodate the change.
  • How to Resolve Employee Conflict at Work [Steps, Tips, Examples]
  • How to Write Inspiring Core Values? 5 Steps with Examples
  • 30 Employee Feedback Examples (Positive & Negative)

Learn more

How it works

Transform your enterprise with the scalable mindsets, skills, & behavior change that drive performance.

Explore how BetterUp connects to your core business systems.

We pair AI with the latest in human-centered coaching to drive powerful, lasting learning and behavior change.

Build leaders that accelerate team performance and engagement.

Unlock performance potential at scale with AI-powered curated growth journeys.

Build resilience, well-being and agility to drive performance across your entire enterprise.

Transform your business, starting with your sales leaders.

Unlock business impact from the top with executive coaching.

Foster a culture of inclusion and belonging.

Accelerate the performance and potential of your agencies and employees.

See how innovative organizations use BetterUp to build a thriving workforce.

Discover how BetterUp measurably impacts key business outcomes for organizations like yours.

A demo is the first step to transforming your business. Meet with us to develop a plan for attaining your goals.

Request a demo

  • What is coaching?

Learn how 1:1 coaching works, who its for, and if it's right for you.

Accelerate your personal and professional growth with the expert guidance of a BetterUp Coach.

Types of Coaching

Navigate career transitions, accelerate your professional growth, and achieve your career goals with expert coaching.

Enhance your communication skills for better personal and professional relationships, with tailored coaching that focuses on your needs.

Find balance, resilience, and well-being in all areas of your life with holistic coaching designed to empower you.

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your Coach

Best practices, research, and tools to fuel individual and business growth.

View on-demand BetterUp events and learn about upcoming live discussions.

The latest insights and ideas for building a high-performing workplace.

  • BetterUp Briefing

The online magazine that helps you understand tomorrow's workforce trends, today.

Innovative research featured in peer-reviewed journals, press, and more.

Founded in 2022 to deepen the understanding of the intersection of well-being, purpose, and performance

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

For Business

For Individuals

10 Problem-solving strategies to turn challenges on their head

Find my Coach

Boost your productivity

Maximize your time and productivity with strategies from our expert coaches.

team-working-around-table-problem-solving-strategies

Jump to section

What is an example of problem-solving?

What are the 5 steps to problem-solving, 10 effective problem-solving strategies, what skills do efficient problem solvers have, how to improve your problem-solving skills.

Problems come in all shapes and sizes — from workplace conflict to budget cuts.

Creative problem-solving is one of the most in-demand skills in all roles and industries. It can boost an organization’s human capital and give it a competitive edge. 

Problem-solving strategies are ways of approaching problems that can help you look beyond the obvious answers and find the best solution to your problem . 

Let’s take a look at a five-step problem-solving process and how to combine it with proven problem-solving strategies. This will give you the tools and skills to solve even your most complex problems.

Good problem-solving is an essential part of the decision-making process . To see what a problem-solving process might look like in real life, let’s take a common problem for SaaS brands — decreasing customer churn rates.

To solve this problem, the company must first identify it. In this case, the problem is that the churn rate is too high. 

Next, they need to identify the root causes of the problem. This could be anything from their customer service experience to their email marketing campaigns. If there are several problems, they will need a separate problem-solving process for each one. 

Let’s say the problem is with email marketing — they’re not nurturing existing customers. Now that they’ve identified the problem, they can start using problem-solving strategies to look for solutions. 

This might look like coming up with special offers, discounts, or bonuses for existing customers. They need to find ways to remind them to use their products and services while providing added value. This will encourage customers to keep paying their monthly subscriptions.

They might also want to add incentives, such as access to a premium service at no extra cost after 12 months of membership. They could publish blog posts that help their customers solve common problems and share them as an email newsletter.

The company should set targets and a time frame in which to achieve them. This will allow leaders to measure progress and identify which actions yield the best results.

team-meeting-problem-solving-strategies

Perhaps you’ve got a problem you need to tackle. Or maybe you want to be prepared the next time one arises. Either way, it’s a good idea to get familiar with the five steps of problem-solving. 

Use this step-by-step problem-solving method with the strategies in the following section to find possible solutions to your problem.

1. Identify the problem

The first step is to know which problem you need to solve. Then, you need to find the root cause of the problem. 

The best course of action is to gather as much data as possible, speak to the people involved, and separate facts from opinions. 

Once this is done, formulate a statement that describes the problem. Use rational persuasion to make sure your team agrees .

2. Break the problem down 

Identifying the problem allows you to see which steps need to be taken to solve it. 

First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage.

3. Generate potential solutions

At this stage, the aim isn’t to evaluate possible solutions but to generate as many ideas as possible. 

Encourage your team to use creative thinking and be patient — the best solution may not be the first or most obvious one.

Use one or more of the different strategies in the following section to help come up with solutions — the more creative, the better.

4. Evaluate the possible solutions

Once you’ve generated potential solutions, narrow them down to a shortlist. Then, evaluate the options on your shortlist. 

There are usually many factors to consider. So when evaluating a solution, ask yourself the following questions:

  • Will my team be on board with the proposition?
  • Does the solution align with organizational goals ?
  • Is the solution likely to achieve the desired outcomes?
  • Is the solution realistic and possible with current resources and constraints?
  • Will the solution solve the problem without causing additional unintended problems?

woman-helping-her-colleague-problem-solving-strategies

5. Implement and monitor the solutions

Once you’ve identified your solution and got buy-in from your team, it’s time to implement it. 

But the work doesn’t stop there. You need to monitor your solution to see whether it actually solves your problem. 

Request regular feedback from the team members involved and have a monitoring and evaluation plan in place to measure progress.

If the solution doesn’t achieve your desired results, start this step-by-step process again.

There are many different ways to approach problem-solving. Each is suitable for different types of problems. 

The most appropriate problem-solving techniques will depend on your specific problem. You may need to experiment with several strategies before you find a workable solution.

Here are 10 effective problem-solving strategies for you to try:

  • Use a solution that worked before
  • Brainstorming
  • Work backward
  • Use the Kipling method
  • Draw the problem
  • Use trial and error
  • Sleep on it
  • Get advice from your peers
  • Use the Pareto principle
  • Add successful solutions to your toolkit

Let’s break each of these down.

1. Use a solution that worked before

It might seem obvious, but if you’ve faced similar problems in the past, look back to what worked then. See if any of the solutions could apply to your current situation and, if so, replicate them.

2. Brainstorming

The more people you enlist to help solve the problem, the more potential solutions you can come up with.

Use different brainstorming techniques to workshop potential solutions with your team. They’ll likely bring something you haven’t thought of to the table.

3. Work backward

Working backward is a way to reverse engineer your problem. Imagine your problem has been solved, and make that the starting point.

Then, retrace your steps back to where you are now. This can help you see which course of action may be most effective.

4. Use the Kipling method

This is a method that poses six questions based on Rudyard Kipling’s poem, “ I Keep Six Honest Serving Men .” 

  • What is the problem?
  • Why is the problem important?
  • When did the problem arise, and when does it need to be solved?
  • How did the problem happen?
  • Where is the problem occurring?
  • Who does the problem affect?

Answering these questions can help you identify possible solutions.

5. Draw the problem

Sometimes it can be difficult to visualize all the components and moving parts of a problem and its solution. Drawing a diagram can help.

This technique is particularly helpful for solving process-related problems. For example, a product development team might want to decrease the time they take to fix bugs and create new iterations. Drawing the processes involved can help you see where improvements can be made.

woman-drawing-mind-map-problem-solving-strategies

6. Use trial-and-error

A trial-and-error approach can be useful when you have several possible solutions and want to test them to see which one works best.

7. Sleep on it

Finding the best solution to a problem is a process. Remember to take breaks and get enough rest . Sometimes, a walk around the block can bring inspiration, but you should sleep on it if possible.

A good night’s sleep helps us find creative solutions to problems. This is because when you sleep, your brain sorts through the day’s events and stores them as memories. This enables you to process your ideas at a subconscious level. 

If possible, give yourself a few days to develop and analyze possible solutions. You may find you have greater clarity after sleeping on it. Your mind will also be fresh, so you’ll be able to make better decisions.

8. Get advice from your peers

Getting input from a group of people can help you find solutions you may not have thought of on your own. 

For solo entrepreneurs or freelancers, this might look like hiring a coach or mentor or joining a mastermind group. 

For leaders , it might be consulting other members of the leadership team or working with a business coach .

It’s important to recognize you might not have all the skills, experience, or knowledge necessary to find a solution alone. 

9. Use the Pareto principle

The Pareto principle — also known as the 80/20 rule — can help you identify possible root causes and potential solutions for your problems.

Although it’s not a mathematical law, it’s a principle found throughout many aspects of business and life. For example, 20% of the sales reps in a company might close 80% of the sales. 

You may be able to narrow down the causes of your problem by applying the Pareto principle. This can also help you identify the most appropriate solutions.

10. Add successful solutions to your toolkit

Every situation is different, and the same solutions might not always work. But by keeping a record of successful problem-solving strategies, you can build up a solutions toolkit. 

These solutions may be applicable to future problems. Even if not, they may save you some of the time and work needed to come up with a new solution.

three-colleagues-looking-at-computer-problem-solving-strategies

Improving problem-solving skills is essential for professional development — both yours and your team’s. Here are some of the key skills of effective problem solvers:

  • Critical thinking and analytical skills
  • Communication skills , including active listening
  • Decision-making
  • Planning and prioritization
  • Emotional intelligence , including empathy and emotional regulation
  • Time management
  • Data analysis
  • Research skills
  • Project management

And they see problems as opportunities. Everyone is born with problem-solving skills. But accessing these abilities depends on how we view problems. Effective problem-solvers see problems as opportunities to learn and improve.

Ready to work on your problem-solving abilities? Get started with these seven tips.

1. Build your problem-solving skills

One of the best ways to improve your problem-solving skills is to learn from experts. Consider enrolling in organizational training , shadowing a mentor , or working with a coach .

2. Practice

Practice using your new problem-solving skills by applying them to smaller problems you might encounter in your daily life. 

Alternatively, imagine problematic scenarios that might arise at work and use problem-solving strategies to find hypothetical solutions.

3. Don’t try to find a solution right away

Often, the first solution you think of to solve a problem isn’t the most appropriate or effective.

Instead of thinking on the spot, give yourself time and use one or more of the problem-solving strategies above to activate your creative thinking. 

two-colleagues-talking-at-corporate-event-problem-solving-strategies

4. Ask for feedback

Receiving feedback is always important for learning and growth. Your perception of your problem-solving skills may be different from that of your colleagues. They can provide insights that help you improve. 

5. Learn new approaches and methodologies

There are entire books written about problem-solving methodologies if you want to take a deep dive into the subject. 

We recommend starting with “ Fixed — How to Perfect the Fine Art of Problem Solving ” by Amy E. Herman. 

6. Experiment

Tried-and-tested problem-solving techniques can be useful. However, they don’t teach you how to innovate and develop your own problem-solving approaches. 

Sometimes, an unconventional approach can lead to the development of a brilliant new idea or strategy. So don’t be afraid to suggest your most “out there” ideas.

7. Analyze the success of your competitors

Do you have competitors who have already solved the problem you’re facing? Look at what they did, and work backward to solve your own problem. 

For example, Netflix started in the 1990s as a DVD mail-rental company. Its main competitor at the time was Blockbuster. 

But when streaming became the norm in the early 2000s, both companies faced a crisis. Netflix innovated, unveiling its streaming service in 2007. 

If Blockbuster had followed Netflix’s example, it might have survived. Instead, it declared bankruptcy in 2010.

Use problem-solving strategies to uplevel your business

When facing a problem, it’s worth taking the time to find the right solution. 

Otherwise, we risk either running away from our problems or headlong into solutions. When we do this, we might miss out on other, better options.

Use the problem-solving strategies outlined above to find innovative solutions to your business’ most perplexing problems.

If you’re ready to take problem-solving to the next level, request a demo with BetterUp . Our expert coaches specialize in helping teams develop and implement strategies that work.

Elizabeth Perry, ACC

Elizabeth Perry is a Coach Community Manager at BetterUp. She uses strategic engagement strategies to cultivate a learning community across a global network of Coaches through in-person and virtual experiences, technology-enabled platforms, and strategic coaching industry partnerships. With over 3 years of coaching experience and a certification in transformative leadership and life coaching from Sofia University, Elizabeth leverages transpersonal psychology expertise to help coaches and clients gain awareness of their behavioral and thought patterns, discover their purpose and passions, and elevate their potential. She is a lifelong student of psychology, personal growth, and human potential as well as an ICF-certified ACC transpersonal life and leadership Coach.

8 creative solutions to your most challenging problems

5 problem-solving questions to prepare you for your next interview, what are metacognitive skills examples in everyday life, what is lateral thinking 7 techniques to encourage creative ideas, 31 examples of problem solving performance review phrases, leadership activities that encourage employee engagement, learn what process mapping is and how to create one (+ examples), can dreams help you solve problems 6 ways to try, how much do distractions cost 8 effects of lack of focus, similar articles, the pareto principle: how the 80/20 rule can help you do more with less, thinking outside the box: 8 ways to become a creative problem solver, effective problem statements have these 5 components, contingency planning: 4 steps to prepare for the unexpected, learn to sweat the small stuff: how to improve attention to detail, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform Overview
  • Integrations
  • Powered by AI
  • BetterUp Lead
  • BetterUp Manage™
  • BetterUp Care™
  • Sales Performance
  • Diversity & Inclusion
  • Case Studies
  • Why BetterUp?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Life Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Labs
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences

a method for problem solving

36 Problem-solving techniques, methods and tools

a method for problem solving

When it comes to solving problems, getting ideas is the easy part. 

But businesses often forget the other four stages of the problem-solving process that will allow them to find the best solution.

Instead of jumping straight to idea generation, your problem-solving framework should look like this:

  • Identify the problem
  • Reveal why it has occurred
  • Brainstorm ideas
  • Select the best solution

See how idea generation doesn’t appear until stage 3?!

In this extensive resource, we provide techniques, methodologies and tools to guide you through every stage of the problem-solving process.

Once you’ve finished reading, you’ll possess an extensive problem-solving arsenal that will enable you to overcome your biggest workplace challenges.

11 Problem-solving techniques for clarity and confidence

Before we dive into more comprehensive methodologies for solving problems, there are a few basic techniques you should know. 

The following techniques will set you up for a successful problem-solving session with your team, allowing you to take on your biggest challenges with clarity and confidence. ‍

1. Take a moment, take a breath

When a problem or challenge arises, it’s normal to act too quickly or rely on solutions that have worked well in the past. This is known as entrenched thinking.

But acting impulsively, without prior consideration or planning, can cause you to misunderstand the issue and overlook possible solutions to the problem.

Therefore, the first thing you should always do when you encounter a problem is: breathe in and out.

Take a step back and make a clear plan of action before you act. This will help you to take rational steps towards solving a problem. ‍

2. Ask questions to understand the full extent of the issue

Another common mistake people make when attempting to solve a problem is taking action before fully understanding the problem.

Before committing to a theory, ask enough questions to unearth the true root of the issue. 

Later in this article, we cover The 5 Why’s problem-solving methodology which you can use to easily identify the root of your problem. Give this a go at your next meeting and see how your initial understanding of a problem can often be wrong. ‍

3. Consider alternative perspectives

A common problem-solving issue is that of myopia—a narrow-minded view or perception of the problem. Myopia can occur when you’re too involved with the problem or your team isn’t diverse enough.

To give yourself the best chance of resolving a problem, gain insight from a wide range of sources. Collaborate with key stakeholders, customers and on-the-ground employees to learn how the problem affects them and whether they have found workarounds or solutions.

To paint the broadest picture, don’t limit your problem-solving team to a specific archetype. Try to include everyone, from the chief executive to the office janitor.

If you’re working with a small team, try the Flip It! problem-solving methodology to view the issue from a fresh angle. ‍

4. Make your office space conducive to problem-solving

The environment in which your host your brainstorming sessions should maximise creativity . When your team members trust each other and feel relaxed, they’re more likely to come up with innovative ideas and solutions to a problem.

Here are a few ways to get your employees’ creative juices flowing:

  • Play team-building games that maximise trust and build interpersonal relationships
  • Improve your team’s problem-solving skills with games that encourage critical thinking
  • Redesign the office with comfortable furniture and collaborative spaces
  • Boost job satisfaction by creating a positive work-life balance
  • Improve collaborative skills and learn to resolve conflicts

World Café is a problem-solving method that creates a casual environment conducive to creative thinking. 

Keep reading to learn more about how World Café can help your team solve complex organisational problems. ‍

5. Use problem-solving methodologies to guide the process

Because problem-solving is a creative process, it can be hard to keep it on track. As more ideas get banded around, conflicts can arise that derail the session.

That’s why problem-solving methodologies are so helpful. They offer you proven problem-solving frameworks to guide your group sessions and keep them on track.

The Six Thinking Hats problem-solving method is a popular technique that guides the process and helps your team analyse a problem from all angles.

We’re going to take a look at our favourite problem-solving methodologies in the next section of this article, XY Tried and tested problem-solving methodologies. ‍

6. Use analogies to solve complex problems

Sometimes, solving a different problem can help you uncover solutions to another problem! 

By stripping back a complex issue and framing it as a simplified analogy , you approach a problem from a different angle, enabling you to come up with alternative ideas.

After solving practice problems, your team might be more aptly equipped to solve real-world issues.

However, coming up with an analogy that reflects your issue can be difficult, so don’t worry if this technique doesn’t work for you.

The Speed Boat diagram is a visual tool that helps your employees view existing challenges as anchors holding back a boat which represents your end goals. By assigning a “weight” to each anchor, your team can prioritise which issues to tackle first. ‍

7. Establish clear constraints

Constraints make a big problem more approachable. 

Before you tackle a problem, establish clear boundaries and codes of conduct for the session. This allows your team to focus on the current issue without becoming distracted or veering off on a tangent.

In an article published in the Harvard Business Review, authors Oguz A. Acar, Murat Tarakci, and Daan van Knippenberg wrote, “Constraints … provide focus and a creative challenge that motivates people to search for and connect information from different sources to generate novel ideas for new products, services, or business processes.” (Why Constraints Are Good for Innovation, 2019)

Lightning Decision Jam is a prime example of how constraints can assist the creative process. Here, your team are given strict time constraints and isn’t permitted to discuss ideas until the end. ‍

8. Dislodge preconceived ideas

Humans are creatures of habit. 

We defer to strategies that have produced positive results in the past. This is typically beneficial because recalling our previous successes means we don’t need to constantly re-learn similar tasks.

But when it comes to problem-solving, this way of thinking can trip us up. We become fixated on a solution that worked in the past, but when this fails we’re dismayed and left wondering what to do next.

To resolve problems effectively, your employees need to escape the precincts of their imaginations. This helps to eliminate functional fixedness—the belief that an item serves only its predefined function.

Alternative Application is an icebreaker game that encourages employees to think outside the box by coming up with different uses for everyday objects. Try this at your next meeting or team-building event and watch your team tap into their creativity. ‍

9. Level the playing field

Having a diverse group of employees at your brainstorming sessions is a good idea, but there’s one problem: the extroverted members of your team will be more vocal than the introverts.

To ensure you’re gaining insight from every member of your team, you need to give your quieter employees equal opportunities to contribute by eliminating personality biases.

Read more: What icebreaker games and questions work best for introverts?

The obvious solution, then, is to “silence” the louder participants (it’s not as sinister as it sounds, promise)—all you have to do is ban your team from debating suggestions during the ideation process. 

The Lightning Decision Jam methodology gives your employees equal opportunities to contribute because much of the problem-solving process is carried out in silence. ‍

10. Take a break from the problem

Have you ever noticed how the best ideas seem to come when you’re not actively working on a problem? You may have spent hours slumped over your desk hashing out a solution, only for the “eureka!” moment to come when you’re walking your dog or taking a shower.

In James Webb Young’s book, A Technique for Producing Ideas , phase three of the process is “stepping away from the problem.” Young proclaims that after putting in the hard work, the information needs to ferment in the mind before any plausible ideas come to you.

So next time you’re in a meeting with your team trying to solve a problem, don’t panic if you don’t uncover groundbreaking ideas there and then. Allow everybody to mull over what they’ve learned, then reconvene at a later date.

The Creativity Dice methodology is a quick-fire brainstorming game that allows your team to incubate ideas while concentrating on another. ‍

11. Limit feedback sessions

The way your team delivers feedback at the end of a successful brainstorming session is critical. Left unsupervised, excessive feedback can undo all of your hard work.

Therefore, it’s wise to put a cap on the amount of feedback your team can provide. One great way of doing this is by using the One Breath Feedback technique.

By limiting your employees to one breath, they’re taught to be concise with their final comments. 

16 Tried and tested problem-solving methodologies

Problem-solving methodologies keep your brainstorming session on track and encourage your team to consider all angles of the issue.

Countless methods have wiggled their way into the world of business, each one with a unique strategy and end goal.

Here are 12 of our favourite problem-solving methodologies that will help you find the best-fit solution to your troubles. ‍

12. Six Thinking Hats

Six Thinking Hats is a methodical problem-solving framework that helps your group consider all possible problems, causes, solutions and repercussions by assigning a different coloured hat to each stage of the problem-solving process.

The roles of each hat are as follows:

  • Blue Hat (Control): This hat controls the session and dictates the order in which the hats will be worn. When wearing the Blue Hat, your group will observe possible solutions, draw conclusions and define a plan of action.
  • Green Hat (Idea Generation): The Green Hat signifies creativity. At this stage of the methodology, your team will focus their efforts on generating ideas, imagining solutions and considering alternatives.
  • Red Hat (Intuition and Feelings): It’s time for your employees to communicate their feelings. Here, your team listen to their guts and convey their emotional impulses without justification. 
  • Yellow Hat (Benefits and Values): What are the merits of each idea that has been put forward thus far? What positive impacts could they have?
  • Black or Grey Hat (Caution): What are the potential risks or shortcomings of each idea? What negative impacts could result from implicating each idea?
  • White Hat (Information and Data): While wearing The White Hat, your team must determine what information is needed and from where it can be obtained.

For Six Thinking Hats to work effectively, ensure your team acts within the confines of each role. 

While wearing The Yellow Hat, for example, your team should only discuss the positives . Any negative implications should be left for the Black or Grey hat.

Note: Feel free to alter the hat colours to align with your cultural context. ‍

13. Lightning Decision Jam (LDJ)

Lightning Decision Jam is a nine-stage problem-solving process designed to uncover a variety of perspectives while keeping the session on track.

The process starts by defining a general topic like the internal design process, interdepartmental communication, the sales funnel, etc.

Then, armed with pens and post-it notes, your team will work through the nine stages in the following order:

  • Write problems (7 minutes)
  • Present problems (4 minutes/person)
  • Select problems (6 minutes)
  • Reframe the problems (6 minutes)
  • Offer solutions (7 minutes)
  • Vote on solutions (10 minutes)
  • Prioritise solutions (30 seconds)
  • Decide what to execute (10 minutes)
  • Create task lists (5 minutes)

The philosophy behind LDJ is that of constraint. By limiting discussion, employees can focus on compiling ideas and coming to democratic decisions that benefit the company without being distracted or going off on a tangent. ‍

14. The 5 Why’s

Root Cause Analysis (RCA) is the process of unearthing a problem and finding the underlying cause. To help you through this process, you can use The 5 Why’s methodology.

The idea is to ask why you’re experiencing a problem, reframe the problem based on the answer, and then ask “ why?” again. If you do this five times , you should come pretty close to the root of your original challenge.

While this might not be a comprehensive end-to-end methodology, it certainly helps you to pin down your core challenges. ‍

15. World Café

If you’ve had enough of uninspiring corporate boardrooms, World Café is the solution. 

This problem-solving strategy facilitates casual conversations around given topics, enabling players to speak more openly about their grievances without the pressure of a large group.

Here’s how to do it:

  • Create a cosy cafe-style setting (try to have at least five or six chairs per table).
  • As a group, decide on a core problem and mark this as the session topic.
  • Divide your group into smaller teams by arranging five or six players at a table.
  • Assign each group a question that pertains to the session topic, or decide on one question for all groups to discuss at once.
  • Give the groups about 20 minutes to casually talk over each question.
  • Repeat this with about three or four different questions, making sure to write down key insights from each group.
  • Share the insights with the whole group.

World Café is a useful way of uncovering hidden causes and pitfalls by having multiple simultaneous conversations about a given topic. ‍

16. Discovery and Action Dialogue (DAD)

Discovery and Actions Dialogues are a collaborative method for employees to share and adopt personal behaviours in response to a problem. 

This crowdsourcing approach provides insight into how a problem affects individuals throughout your company and whether some are better equipped than others.

A DAD session is guided by a facilitator who asks seven open-ended questions in succession. Each person is given equal time to participate while a recorder takes down notes and valuable insights. 

This is a particularly effective method for uncovering preexisting ideas, behaviours and solutions from the people who face problems daily. ‍

17. Design Sprint 2.0

The Design Sprint 2.0 model by Jake Knapp helps your team to focus on finding, developing measuring a solution within four days . Because theorising is all well and good, but sometimes you can learn more by getting an idea off the ground and observing how it plays out in the real world.

Here’s the basic problem-solving framework:

  • Day 1: Map out or sketch possible solutions
  • Day 2: Choose the best solutions and storyboard your strategy going forward
  • Day 3: Create a living, breathing prototype
  • Day 4: Test and record how it performs in the real world

This technique is great for testing the viability of new products or expanding and fixing the features of an existing product. ‍

18. Open Space Technology

Open Space Technology is a method for large groups to create a problem-solving agenda around a central theme. It works best when your group is comprised of subject-matter experts and experienced individuals with a sufficient stake in the problem.

Open Space Technology works like this:

  • Establish a core theme for your team to centralise their efforts.
  • Ask the participants to consider their approach and write it on a post-it note.
  • Everybody writes a time and place for discussion on their note and sticks it to the wall.
  • The group is then invited to join the sessions that most interest them.
  • Everybody joins and contributes to their chosen sessions
  • Any significant insights and outcomes are recorded and presented to the group.

This methodology grants autonomy to your team and encourages them to take ownership of the problem-solving process. ‍

19. Round-Robin Brainstorming Technique

While not an end-to-end problem-solving methodology, the Round-Robin Brainstorming Technique is an effective way of squeezing every last ounce of creativity from your ideation sessions.

Here’s how it works:

  • Decide on a problem that needs to be solved
  • Sitting in a circle, give each employee a chance to offer an idea
  • Have somebody write down each idea as they come up
  • Participants can pass if they don’t have anything to contribute
  • The brainstorming session ends once everybody has passed

Once you’ve compiled a long list of ideas, it’s up to you how you move forward. You could, for example, borrow techniques from other methodologies, such as the “vote on solutions” phase of the Lightning Decision Jam. ‍

20. Failure Modes and Effects Analysis (FMEA)

Failure Modes and Effects Analysis is a method for preventing and mitigating problems within your business processes.

This technique starts by examining the process in question and asking, “What could go wrong?” From here, your team starts to brainstorm a list of potential failures.

Then, going through the list one by one, ask your participants, “Why would this failure happen?” 

Once you’ve answered this question for each list item, ask yourselves, “What would the consequences be of this failure?”

This proactive method focuses on prevention rather than treatment. Instead of waiting for a problem to occur and reacting, you’re actively searching for future shortcomings. ‍

21. Flip It!

The Flip It! Methodology teaches your team to view their concerns in a different light and frame them instead as catalysts for positive change.

The game works like this:

  • Select a topic your employees are likely to be concerned about, like market demand for your product or friction between departments.
  • Give each participant a pile of sticky notes and ask them to write down all their fears about the topic.
  • Take the fears and stick them to an area of the wall marked “fears.”
  • Then, encourage your team to look at these fears and ask them to reframe them as “hope” by writing new statements on different sticky notes.
  • Take these “hope” statements and stick them to an area of the wall marked “hope.”
  • Discuss the statements, then ask them to vote on the areas they feel they can start to take action on. They can do this by drawing a dot on the corner of the sticky note.
  • Move the notes with the most votes to a new area of the wall marked “traction.”
  • Discuss the most popular statements as a group and brainstorm actionable items related to each.
  • Write down the actions that need to be made and discuss them again as a group.

This brainstorming approach teaches your employees the danger of engrained thinking and helps them to reframe their fears as opportunities. ‍

22. The Creativity Dice

The Creativity Dice teaches your team to incubate ideas as they focus on different aspects of a problem. As we mentioned earlier in the article, giving ideas time to mature can be a highly effective problem-solving strategy. Here’s how the game works:

Choose a topic to focus on, It can be as specific or open-ended as you like. Write this down as a word or sentence. Roll the die, start a timer of three minutes and start writing down ideas within the confines of what that number resembles. The roles of each number are as follows:

  • Specification: Write down goals you want to achieve.
  • Investigation: Write down existing factual information you know about the topic.
  • Ideation: Write down creative or practical ideas related to the topic.
  • Incubation: Do something else unrelated to the problem.
  • Iteration: Look at what you’ve already written and come up with related ideas (roll again if you didn’t write anything yet). ‍
  • Integration: Look at everything you have written and try to create something cohesive from your ideas like a potential new product or actionable next step.

Once you’ve finished the activity, review your findings and decide what you want to take with you. ‍

23. SWOT Analysis

The SWOT Analysis is a long-standing method for analysing the current state of your business and considering how this affects the desired end state.

The basic idea is this:

  • Before the meeting, come up with a “Desired end state” and draw a picture that represents this on a flipchart or whiteboard.
  • Divide a large piece of paper into quadrants marked “Strengths”, “Weaknesses”, “Opportunities” and “Threats.”
  • Starting with “Strengths”, work through the quadrants, coming up with ideas that relate to the desired end state.
  • Ask your team to vote for the statements or ideas of each category that they feel are most relevant to the desired end state.
  • As a group, discuss the implications that these statements have on the desired end state. Spark debate by asking thought-provoking and open-ended questions.

The SWOT Analysis is an intuitive method for understanding which parts of your business could be affecting your long-term goals. ‍

24. The Journalistic Six

When learning to cover every aspect of a story, journalists are taught to ask themselves six essential questions:  

Now, this approach has been adopted by organisations to help understand every angle of a problem. All you need is a clear focus question, then you can start working through the six questions with your team until you have a 360-degree view of what has, can and needs to be done. ‍

25. Gamestorming

Gamestorming is a one-stop creative-thinking framework that uses various games to help your team come up with innovative ideas.

Originally published as a book 10 years ago, Gamestorming contained a selection of creative games used by Silicon Valley’s top-performing businesses to develop groundbreaking products and services.

This collection of resources, plucked from the minds of founders and CEOs like Jeff Bezos and Steve Jobs, allows you to tap into the potentially genius ideas lying dormant in the minds of your employees. ‍

26. Four-Step Sketch

The Four-Step Sketch is a visual brainstorming that provides an alternative to traditional discussion-based ideation techniques .

This methodology requires prior discussion to clarify the purpose of the activity. Imagine you’re on a startup retreat , for example, and your team is taking part in a design sprint or hackathon.

Once you’ve brainstormed a list of ideas with your team, participants can look at the suggestions and take down any relevant notes. They then take these notes and turn them into rough sketches that resemble the idea.

Then, as a warm-up, give each participant eight minutes to produce eight alternative sketches (eight minutes per sketch) of the idea. These ideas are not to be shared with the group.

Finally, participants create new sketches based on their favourite ideas and share them with the group. The group can then vote on the ideas they think offer the best solution. ‍

27. 15% Solutions

15% Solutions is a problem-solving strategy for motivating and inspiring your employees. By encouraging your team to gain small victories, you pave the way for bigger changes.

First, ask your participants to think about things they can personally do within the confines of their role.

Then, arrange your team into small groups of three to four and give them time to share their ideas and consult with each other.

This simple problem-solving process removes negativity and powerlessness and teaches your team to take responsibility for change. 

9 Problem-solving tools for gathering and selecting ideas

Problem-solving tools support your meeting with easy-to-use graphs, visualisations and techniques.  

By implementing a problem-solving tool, you break the cycle of mundane verbal discussion, enabling you to maintain engagement throughout the session. ‍

28. Fishbone Diagram

The Fishbone Diagram (otherwise known as the Ishikawa Diagram or Cause and Effect Diagram), is a tool for identifying the leading causes of a problem. You can then consolidate these causes into a comprehensive “Problem Statement.”

The term “Fishbone Diagram” is derived from the diagram’s structure. The problem itself forms the tail, possible causes radiate from the sides to form the fish skeleton while the final “Problem Statement” appears as the “head” of the fish.

Example: A fast-food chain is investigating the declining quality of their food. As the team brainstorms potential causes, they come up with reasons like “poorly trained personnel”, “lack of quality control”, and “incorrect quantity of spices.” Together with other causes, the group summarises that these problems lead to “bad burgers.” They write this as the Problem Statement and set about eliminating the main contributing factors. ‍

29. The Problem Tree

A Problem Tree is a useful tool for assessing the importance or relevance of challenges concerning the core topic. If you’re launching a new product, for example, gather your team and brainstorm the current issues, roadblocks and bottlenecks that are hindering the process.

Then, work together to decide which of these are most pressing. Place the most relevant issues closer to the core topic and less relevant issues farther away. ‍

30. SQUID Diagram

The Squid Diagram is an easy-to-use tool that charts the progress of ideas and business developments as they unfold. Your SQUID Diagram can remain on a wall for your team to add to over time.

  • Write down a core theme on a sticky note such as “customer service” or “Innovation”—this will be the “head” of your SQUID.
  • Hand two sets of different coloured sticky notes to your participants and choose one colour to represent “questions” and the other to represent “answers.”
  • Ask your team to write down questions pertaining to the success of the main topic. In the case of “Innovation,” your team might write things like “How can we improve collaboration between key stakeholders?”
  • Then, using the other coloured sticky notes, ask your team to write down possible answers to these questions. In the example above, this might be “Invest in open innovation software.”
  • Over time, you’ll develop a spawling SQUID Diagram that reflects the creative problem-solving process. ‍

31. The Speed Boat

The Speed Boat Diagram is a visual metaphor used to help your team identify and solve problems in the way of your goals.

Here’s how it works: 

  • Draw a picture of a boat and name it after the core objective.
  • With your team, brainstorm things that are slowing progress and draw each one as an anchor beneath the boat.
  • Discuss possible solutions to each problem on the diagram.

This is an easy-to-use tool that sparks creative solutions. If you like, your team can assign a “weight” to each anchor which determines the impact each problem has on the end goal. ‍

32. The LEGO Challenge

LEGO is an excellent creative-thinking and problem-solving tool used regularly by event facilitators to help teams overcome challenges. 

In our article 5 and 10-minute Team-Building Activities , we introduce Sneak a Peek —a collaborative team-building game that develops communication and leadership skills. ‍

33. The Three W’s: What? So What? Now What?

Teams aren’t always aligned when it comes to their understanding of a problem. While the problem remains the same for everyone, they might have differing opinions as to how it occurred at the implications it had.

Asking “ What? So What? Now What?” Helps you to understand different perspectives around a problem.

It goes like this:

  • Alone or in small groups, ask your employees to consider and write What happened. This should take between five and 10 minutes.
  • Then ask So What? What occurred because of this? Why was what happened important? What might happen if this issue is left unresolved?
  • Finally, ask your team Now What? What might be a solution to the problem? What actions do you need to take to avoid this happening again?

This approach helps your team understand how problems affect individuals in different ways and uncovers a variety of ways to overcome them. ‍

34. Now-How-Wow Matrix

Gathering ideas is easy—but selecting the best ones? That’s a different story. 

If you’ve got a bunch of ideas, try the Now-How-Wow Matrix to help you identify which ones you should implement now and which ones should wait until later.

Simply draw a two-axis graph with “implementation difficulty” on the Y axis and “idea originality” on the X axis. Divide this graph into quadrants and write “Now!” in the bottom left panel, “Wow!” in the bottom right panel, and “How?” in the top right panel. You can leave the top left panel blank.

Then, take your ideas and plot them on the graph depending on their implementation difficulty and level of originality.

By the end, you’ll have a clearer picture of which ideas to ignore, which ones to implement now, and which ones to add to the pipeline for the future. ‍

35. Impact-Effort Matrix

The Impact-Effort Matrix is a variation of the Now-How-Wow Matrix where the Y axis is marked “Impact” and the X axis is marked “Effort.”

Then, divide the graph into quadrants and plot your ideas. 

  • Top left section = Excellent, implement immediately
  • Top right section = Risky, but worth a try
  • Bottom left section = Low risk, but potentially ineffective
  • Bottom right section = Bad idea, ignore

The Impact-Effort Matrix is a simple way for your team to weigh the benefits of an idea against the amount of investment required. ‍

36. Dot Voting

Once you’ve gathered a substantial list of ideas from your employees, you need to sort the good from the bad. 

Dot voting is a simple tool used by problem-solving facilitators as a fast and effective way for large groups to vote on their favourite ideas . You’ll have seen this method used in problem-solving methods like Flip It! and Lightning Decision Jam .

  • Participants write their ideas on sticky notes and stick them to the wall or a flipchart.
  • When asked, participants draw a small dot on the corner of the idea they like the most.
  • Participants can be given as many votes as necessary.
  • When voting ends, arrange the notes from “most popular” to “least popular.”

This provides an easy-to-use visual representation of the best and worst ideas put forward by your team.

Give your problems the attention they deserve at an offsite retreat

While working from home or at the office, your team is often too caught up in daily tasks to take on complex problems. 

By escaping the office and uniting at an offsite location, you can craft a purposeful agenda of team-building activities and problem-solving sessions. This special time away from the office can prove invaluable when it comes to keeping your business on track.

If you have problems that need fixing (who doesn’t?), reach out to Surf Office and let us put together a fully-customised offsite retreat for you.

a method for problem solving

free course

How to plan your first company retreat

free course partners logos

Retreat Budget Spreadsheet

Are you organising a company retreat and want to make sure you have all the costs under the control?

Get a copy of our free Budget Calculator spreadsheet.

12 Decision-making techniques to improve team outcomes

12 Decision-making techniques to improve team outcomes

9 Signs you’re micromanaging & how to change it

9 Signs you’re micromanaging & how to change it

Revitalize your team with 20 key employee engagement drivers

Revitalize your team with 20 key employee engagement drivers

Recognizing and tackling microaggressions at the workplace

Recognizing and tackling microaggressions at the workplace

16 Game-changing ways to build trust in a team

16 Game-changing ways to build trust in a team

Organize your next company retreat with surf office, 💌 join 15,000+ managers receiving insights on building company culture that people love., stay in touch, work with us.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Problem-Solving Strategies and Obstacles

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

a method for problem solving

Sean is a fact-checker and researcher with experience in sociology, field research, and data analytics.

a method for problem solving

JGI / Jamie Grill / Getty Images

  • Application
  • Improvement

From deciding what to eat for dinner to considering whether it's the right time to buy a house, problem-solving is a large part of our daily lives. Learn some of the problem-solving strategies that exist and how to use them in real life, along with ways to overcome obstacles that are making it harder to resolve the issues you face.

What Is Problem-Solving?

In cognitive psychology , the term 'problem-solving' refers to the mental process that people go through to discover, analyze, and solve problems.

A problem exists when there is a goal that we want to achieve but the process by which we will achieve it is not obvious to us. Put another way, there is something that we want to occur in our life, yet we are not immediately certain how to make it happen.

Maybe you want a better relationship with your spouse or another family member but you're not sure how to improve it. Or you want to start a business but are unsure what steps to take. Problem-solving helps you figure out how to achieve these desires.

The problem-solving process involves:

  • Discovery of the problem
  • Deciding to tackle the issue
  • Seeking to understand the problem more fully
  • Researching available options or solutions
  • Taking action to resolve the issue

Before problem-solving can occur, it is important to first understand the exact nature of the problem itself. If your understanding of the issue is faulty, your attempts to resolve it will also be incorrect or flawed.

Problem-Solving Mental Processes

Several mental processes are at work during problem-solving. Among them are:

  • Perceptually recognizing the problem
  • Representing the problem in memory
  • Considering relevant information that applies to the problem
  • Identifying different aspects of the problem
  • Labeling and describing the problem

Problem-Solving Strategies

There are many ways to go about solving a problem. Some of these strategies might be used on their own, or you may decide to employ multiple approaches when working to figure out and fix a problem.

An algorithm is a step-by-step procedure that, by following certain "rules" produces a solution. Algorithms are commonly used in mathematics to solve division or multiplication problems. But they can be used in other fields as well.

In psychology, algorithms can be used to help identify individuals with a greater risk of mental health issues. For instance, research suggests that certain algorithms might help us recognize children with an elevated risk of suicide or self-harm.

One benefit of algorithms is that they guarantee an accurate answer. However, they aren't always the best approach to problem-solving, in part because detecting patterns can be incredibly time-consuming.

There are also concerns when machine learning is involved—also known as artificial intelligence (AI)—such as whether they can accurately predict human behaviors.

Heuristics are shortcut strategies that people can use to solve a problem at hand. These "rule of thumb" approaches allow you to simplify complex problems, reducing the total number of possible solutions to a more manageable set.

If you find yourself sitting in a traffic jam, for example, you may quickly consider other routes, taking one to get moving once again. When shopping for a new car, you might think back to a prior experience when negotiating got you a lower price, then employ the same tactics.

While heuristics may be helpful when facing smaller issues, major decisions shouldn't necessarily be made using a shortcut approach. Heuristics also don't guarantee an effective solution, such as when trying to drive around a traffic jam only to find yourself on an equally crowded route.

Trial and Error

A trial-and-error approach to problem-solving involves trying a number of potential solutions to a particular issue, then ruling out those that do not work. If you're not sure whether to buy a shirt in blue or green, for instance, you may try on each before deciding which one to purchase.

This can be a good strategy to use if you have a limited number of solutions available. But if there are many different choices available, narrowing down the possible options using another problem-solving technique can be helpful before attempting trial and error.

In some cases, the solution to a problem can appear as a sudden insight. You are facing an issue in a relationship or your career when, out of nowhere, the solution appears in your mind and you know exactly what to do.

Insight can occur when the problem in front of you is similar to an issue that you've dealt with in the past. Although, you may not recognize what is occurring since the underlying mental processes that lead to insight often happen outside of conscious awareness .

Research indicates that insight is most likely to occur during times when you are alone—such as when going on a walk by yourself, when you're in the shower, or when lying in bed after waking up.

How to Apply Problem-Solving Strategies in Real Life

If you're facing a problem, you can implement one or more of these strategies to find a potential solution. Here's how to use them in real life:

  • Create a flow chart . If you have time, you can take advantage of the algorithm approach to problem-solving by sitting down and making a flow chart of each potential solution, its consequences, and what happens next.
  • Recall your past experiences . When a problem needs to be solved fairly quickly, heuristics may be a better approach. Think back to when you faced a similar issue, then use your knowledge and experience to choose the best option possible.
  • Start trying potential solutions . If your options are limited, start trying them one by one to see which solution is best for achieving your desired goal. If a particular solution doesn't work, move on to the next.
  • Take some time alone . Since insight is often achieved when you're alone, carve out time to be by yourself for a while. The answer to your problem may come to you, seemingly out of the blue, if you spend some time away from others.

Obstacles to Problem-Solving

Problem-solving is not a flawless process as there are a number of obstacles that can interfere with our ability to solve a problem quickly and efficiently. These obstacles include:

  • Assumptions: When dealing with a problem, people can make assumptions about the constraints and obstacles that prevent certain solutions. Thus, they may not even try some potential options.
  • Functional fixedness : This term refers to the tendency to view problems only in their customary manner. Functional fixedness prevents people from fully seeing all of the different options that might be available to find a solution.
  • Irrelevant or misleading information: When trying to solve a problem, it's important to distinguish between information that is relevant to the issue and irrelevant data that can lead to faulty solutions. The more complex the problem, the easier it is to focus on misleading or irrelevant information.
  • Mental set: A mental set is a tendency to only use solutions that have worked in the past rather than looking for alternative ideas. A mental set can work as a heuristic, making it a useful problem-solving tool. However, mental sets can also lead to inflexibility, making it more difficult to find effective solutions.

How to Improve Your Problem-Solving Skills

In the end, if your goal is to become a better problem-solver, it's helpful to remember that this is a process. Thus, if you want to improve your problem-solving skills, following these steps can help lead you to your solution:

  • Recognize that a problem exists . If you are facing a problem, there are generally signs. For instance, if you have a mental illness , you may experience excessive fear or sadness, mood changes, and changes in sleeping or eating habits. Recognizing these signs can help you realize that an issue exists.
  • Decide to solve the problem . Make a conscious decision to solve the issue at hand. Commit to yourself that you will go through the steps necessary to find a solution.
  • Seek to fully understand the issue . Analyze the problem you face, looking at it from all sides. If your problem is relationship-related, for instance, ask yourself how the other person may be interpreting the issue. You might also consider how your actions might be contributing to the situation.
  • Research potential options . Using the problem-solving strategies mentioned, research potential solutions. Make a list of options, then consider each one individually. What are some pros and cons of taking the available routes? What would you need to do to make them happen?
  • Take action . Select the best solution possible and take action. Action is one of the steps required for change . So, go through the motions needed to resolve the issue.
  • Try another option, if needed . If the solution you chose didn't work, don't give up. Either go through the problem-solving process again or simply try another option.

You can find a way to solve your problems as long as you keep working toward this goal—even if the best solution is simply to let go because no other good solution exists.

Sarathy V. Real world problem-solving .  Front Hum Neurosci . 2018;12:261. doi:10.3389/fnhum.2018.00261

Dunbar K. Problem solving . A Companion to Cognitive Science . 2017. doi:10.1002/9781405164535.ch20

Stewart SL, Celebre A, Hirdes JP, Poss JW. Risk of suicide and self-harm in kids: The development of an algorithm to identify high-risk individuals within the children's mental health system . Child Psychiat Human Develop . 2020;51:913-924. doi:10.1007/s10578-020-00968-9

Rosenbusch H, Soldner F, Evans AM, Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code . Soc Personal Psychol Compass . 2021;15(2):e12579. doi:10.1111/spc3.12579

Mishra S. Decision-making under risk: Integrating perspectives from biology, economics, and psychology . Personal Soc Psychol Rev . 2014;18(3):280-307. doi:10.1177/1088868314530517

Csikszentmihalyi M, Sawyer K. Creative insight: The social dimension of a solitary moment . In: The Systems Model of Creativity . 2015:73-98. doi:10.1007/978-94-017-9085-7_7

Chrysikou EG, Motyka K, Nigro C, Yang SI, Thompson-Schill SL. Functional fixedness in creative thinking tasks depends on stimulus modality .  Psychol Aesthet Creat Arts . 2016;10(4):425‐435. doi:10.1037/aca0000050

Huang F, Tang S, Hu Z. Unconditional perseveration of the short-term mental set in chunk decomposition .  Front Psychol . 2018;9:2568. doi:10.3389/fpsyg.2018.02568

National Alliance on Mental Illness. Warning signs and symptoms .

Mayer RE. Thinking, problem solving, cognition, 2nd ed .

Schooler JW, Ohlsson S, Brooks K. Thoughts beyond words: When language overshadows insight. J Experiment Psychol: General . 1993;122:166-183. doi:10.1037/0096-3445.2.166

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • The Art of Effective Problem Solving: A Step-by-Step Guide
  • Learn Lean Sigma
  • Problem Solving

Whether we realise it or not, problem solving skills are an important part of our daily lives. From resolving a minor annoyance at home to tackling complex business challenges at work, our ability to solve problems has a significant impact on our success and happiness. However, not everyone is naturally gifted at problem-solving, and even those who are can always improve their skills. In this blog post, we will go over the art of effective problem-solving step by step.

You will learn how to define a problem, gather information, assess alternatives, and implement a solution, all while honing your critical thinking and creative problem-solving skills. Whether you’re a seasoned problem solver or just getting started, this guide will arm you with the knowledge and tools you need to face any challenge with confidence. So let’s get started!

Table of Contents

Problem solving methodologies.

Individuals and organisations can use a variety of problem-solving methodologies to address complex challenges. 8D and A3 problem solving techniques are two popular methodologies in the Lean Six Sigma framework.

Methodology of 8D (Eight Discipline) Problem Solving:

The 8D problem solving methodology is a systematic, team-based approach to problem solving. It is a method that guides a team through eight distinct steps to solve a problem in a systematic and comprehensive manner.

The 8D process consists of the following steps:

  • Form a team: Assemble a group of people who have the necessary expertise to work on the problem.
  • Define the issue: Clearly identify and define the problem, including the root cause and the customer impact.
  • Create a temporary containment plan: Put in place a plan to lessen the impact of the problem until a permanent solution can be found.
  • Identify the root cause: To identify the underlying causes of the problem, use root cause analysis techniques such as Fishbone diagrams and Pareto charts.
  • Create and test long-term corrective actions: Create and test a long-term solution to eliminate the root cause of the problem.
  • Implement and validate the permanent solution: Implement and validate the permanent solution’s effectiveness.
  • Prevent recurrence: Put in place measures to keep the problem from recurring.
  • Recognize and reward the team: Recognize and reward the team for its efforts.

Download the 8D Problem Solving Template

A3 Problem Solving Method:

The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

The A3 problem-solving procedure consists of the following steps:

  • Determine the issue: Define the issue clearly, including its impact on the customer.
  • Perform root cause analysis: Identify the underlying causes of the problem using root cause analysis techniques.
  • Create and implement a solution: Create and implement a solution that addresses the problem’s root cause.
  • Monitor and improve the solution: Keep an eye on the solution’s effectiveness and make any necessary changes.

Subsequently, in the Lean Six Sigma framework, the 8D and A3 problem solving methodologies are two popular approaches to problem solving. Both methodologies provide a structured, team-based problem-solving approach that guides individuals through a comprehensive and systematic process of identifying, analysing, and resolving problems in an effective and efficient manner.

Step 1 – Define the Problem

The definition of the problem is the first step in effective problem solving. This may appear to be a simple task, but it is actually quite difficult. This is because problems are frequently complex and multi-layered, making it easy to confuse symptoms with the underlying cause. To avoid this pitfall, it is critical to thoroughly understand the problem.

To begin, ask yourself some clarifying questions:

  • What exactly is the issue?
  • What are the problem’s symptoms or consequences?
  • Who or what is impacted by the issue?
  • When and where does the issue arise?

Answering these questions will assist you in determining the scope of the problem. However, simply describing the problem is not always sufficient; you must also identify the root cause. The root cause is the underlying cause of the problem and is usually the key to resolving it permanently.

Try asking “why” questions to find the root cause:

  • What causes the problem?
  • Why does it continue?
  • Why does it have the effects that it does?

By repeatedly asking “ why ,” you’ll eventually get to the bottom of the problem. This is an important step in the problem-solving process because it ensures that you’re dealing with the root cause rather than just the symptoms.

Once you have a firm grasp on the issue, it is time to divide it into smaller, more manageable chunks. This makes tackling the problem easier and reduces the risk of becoming overwhelmed. For example, if you’re attempting to solve a complex business problem, you might divide it into smaller components like market research, product development, and sales strategies.

To summarise step 1, defining the problem is an important first step in effective problem-solving. You will be able to identify the root cause and break it down into manageable parts if you take the time to thoroughly understand the problem. This will prepare you for the next step in the problem-solving process, which is gathering information and brainstorming ideas.

Step 2 – Gather Information and Brainstorm Ideas

Gathering information and brainstorming ideas is the next step in effective problem solving. This entails researching the problem and relevant information, collaborating with others, and coming up with a variety of potential solutions. This increases your chances of finding the best solution to the problem.

Begin by researching the problem and relevant information. This could include reading articles, conducting surveys, or consulting with experts. The goal is to collect as much information as possible in order to better understand the problem and possible solutions.

Next, work with others to gather a variety of perspectives. Brainstorming with others can be an excellent way to come up with new and creative ideas. Encourage everyone to share their thoughts and ideas when working in a group, and make an effort to actively listen to what others have to say. Be open to new and unconventional ideas and resist the urge to dismiss them too quickly.

Finally, use brainstorming to generate a wide range of potential solutions. This is the place where you can let your imagination run wild. At this stage, don’t worry about the feasibility or practicality of the solutions; instead, focus on generating as many ideas as possible. Write down everything that comes to mind, no matter how ridiculous or unusual it may appear. This can be done individually or in groups.

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the next step in the problem-solving process, which we’ll go over in greater detail in the following section.

Step 3 – Evaluate Options and Choose the Best Solution

Once you’ve compiled a list of potential solutions, it’s time to assess them and select the best one. This is the third step in effective problem solving, and it entails weighing the advantages and disadvantages of each solution, considering their feasibility and practicability, and selecting the solution that is most likely to solve the problem effectively.

To begin, weigh the advantages and disadvantages of each solution. This will assist you in determining the potential outcomes of each solution and deciding which is the best option. For example, a quick and easy solution may not be the most effective in the long run, whereas a more complex and time-consuming solution may be more effective in solving the problem in the long run.

Consider each solution’s feasibility and practicability. Consider the following:

  • Can the solution be implemented within the available resources, time, and budget?
  • What are the possible barriers to implementing the solution?
  • Is the solution feasible in today’s political, economic, and social environment?

You’ll be able to tell which solutions are likely to succeed and which aren’t by assessing their feasibility and practicability.

Finally, choose the solution that is most likely to effectively solve the problem. This solution should be based on the criteria you’ve established, such as the advantages and disadvantages of each solution, their feasibility and practicability, and your overall goals.

It is critical to remember that there is no one-size-fits-all solution to problems. What is effective for one person or situation may not be effective for another. This is why it is critical to consider a wide range of solutions and evaluate each one based on its ability to effectively solve the problem.

Step 4 – Implement and Monitor the Solution

When you’ve decided on the best solution, it’s time to put it into action. The fourth and final step in effective problem solving is to put the solution into action, monitor its progress, and make any necessary adjustments.

To begin, implement the solution. This may entail delegating tasks, developing a strategy, and allocating resources. Ascertain that everyone involved understands their role and responsibilities in the solution’s implementation.

Next, keep an eye on the solution’s progress. This may entail scheduling regular check-ins, tracking metrics, and soliciting feedback from others. You will be able to identify any potential roadblocks and make any necessary adjustments in a timely manner if you monitor the progress of the solution.

Finally, make any necessary modifications to the solution. This could entail changing the solution, altering the plan of action, or delegating different tasks. Be willing to make changes if they will improve the solution or help it solve the problem more effectively.

It’s important to remember that problem solving is an iterative process, and there may be times when you need to start from scratch. This is especially true if the initial solution does not effectively solve the problem. In these situations, it’s critical to be adaptable and flexible and to keep trying new solutions until you find the one that works best.

To summarise, effective problem solving is a critical skill that can assist individuals and organisations in overcoming challenges and achieving their objectives. Effective problem solving consists of four key steps: defining the problem, generating potential solutions, evaluating alternatives and selecting the best solution, and implementing the solution.

You can increase your chances of success in problem solving by following these steps and considering factors such as the pros and cons of each solution, their feasibility and practicability, and making any necessary adjustments. Furthermore, keep in mind that problem solving is an iterative process, and there may be times when you need to go back to the beginning and restart. Maintain your adaptability and try new solutions until you find the one that works best for you.

  • Novick, L.R. and Bassok, M., 2005.  Problem Solving . Cambridge University Press.

Daniel Croft

Daniel Croft is a seasoned continuous improvement manager with a Black Belt in Lean Six Sigma. With over 10 years of real-world application experience across diverse sectors, Daniel has a passion for optimizing processes and fostering a culture of efficiency. He's not just a practitioner but also an avid learner, constantly seeking to expand his knowledge. Outside of his professional life, Daniel has a keen Investing, statistics and knowledge-sharing, which led him to create the website learnleansigma.com, a platform dedicated to Lean Six Sigma and process improvement insights.

Free Lean Six Sigma Templates

Improve your Lean Six Sigma projects with our free templates. They're designed to make implementation and management easier, helping you achieve better results.

5S Floor Marking Best Practices

In lean manufacturing, the 5S System is a foundational tool, involving the steps: Sort, Set…

How to Measure the ROI of Continuous Improvement Initiatives

When it comes to business, knowing the value you’re getting for your money is crucial,…

8D Problem-Solving: Common Mistakes to Avoid

In today’s competitive business landscape, effective problem-solving is the cornerstone of organizational success. The 8D…

The Evolution of 8D Problem-Solving: From Basics to Excellence

In a world where efficiency and effectiveness are more than just buzzwords, the need for…

8D: Tools and Techniques

Are you grappling with recurring problems in your organization and searching for a structured way…

How to Select the Right Lean Six Sigma Projects: A Comprehensive Guide

Going on a Lean Six Sigma journey is an invigorating experience filled with opportunities for…

loading

How it works

For Business

Join Mind Tools

Article • 4 min read

The Problem-Solving Process

Looking at the basic problem-solving process to help keep you on the right track.

By the Mind Tools Content Team

Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself.

We face and solve problems every day, in a variety of guises and of differing complexity. Some, such as the resolution of a serious complaint, require a significant amount of time, thought and investigation. Others, such as a printer running out of paper, are so quickly resolved they barely register as a problem at all.

a method for problem solving

Despite the everyday occurrence of problems, many people lack confidence when it comes to solving them, and as a result may chose to stay with the status quo rather than tackle the issue. Broken down into steps, however, the problem-solving process is very simple. While there are many tools and techniques available to help us solve problems, the outline process remains the same.

The main stages of problem-solving are outlined below, though not all are required for every problem that needs to be solved.

a method for problem solving

1. Define the Problem

Clarify the problem before trying to solve it. A common mistake with problem-solving is to react to what the problem appears to be, rather than what it actually is. Write down a simple statement of the problem, and then underline the key words. Be certain there are no hidden assumptions in the key words you have underlined. One way of doing this is to use a synonym to replace the key words. For example, ‘We need to encourage higher productivity ’ might become ‘We need to promote superior output ’ which has a different meaning.

2. Analyze the Problem

Ask yourself, and others, the following questions.

  • Where is the problem occurring?
  • When is it occurring?
  • Why is it happening?

Be careful not to jump to ‘who is causing the problem?’. When stressed and faced with a problem it is all too easy to assign blame. This, however, can cause negative feeling and does not help to solve the problem. As an example, if an employee is underperforming, the root of the problem might lie in a number of areas, such as lack of training, workplace bullying or management style. To assign immediate blame to the employee would not therefore resolve the underlying issue.

Once the answers to the where, when and why have been determined, the following questions should also be asked:

  • Where can further information be found?
  • Is this information correct, up-to-date and unbiased?
  • What does this information mean in terms of the available options?

3. Generate Potential Solutions

When generating potential solutions it can be a good idea to have a mixture of ‘right brain’ and ‘left brain’ thinkers. In other words, some people who think laterally and some who think logically. This provides a balance in terms of generating the widest possible variety of solutions while also being realistic about what can be achieved. There are many tools and techniques which can help produce solutions, including thinking about the problem from a number of different perspectives, and brainstorming, where a team or individual write as many possibilities as they can think of to encourage lateral thinking and generate a broad range of potential solutions.

4. Select Best Solution

When selecting the best solution, consider:

  • Is this a long-term solution, or a ‘quick fix’?
  • Is the solution achievable in terms of available resources and time?
  • Are there any risks associated with the chosen solution?
  • Could the solution, in itself, lead to other problems?

This stage in particular demonstrates why problem-solving and decision-making are so closely related.

5. Take Action

In order to implement the chosen solution effectively, consider the following:

  • What will the situation look like when the problem is resolved?
  • What needs to be done to implement the solution? Are there systems or processes that need to be adjusted?
  • What will be the success indicators?
  • What are the timescales for the implementation? Does the scale of the problem/implementation require a project plan?
  • Who is responsible?

Once the answers to all the above questions are written down, they can form the basis of an action plan.

6. Monitor and Review

One of the most important factors in successful problem-solving is continual observation and feedback. Use the success indicators in the action plan to monitor progress on a regular basis. Is everything as expected? Is everything on schedule? Keep an eye on priorities and timelines to prevent them from slipping.

If the indicators are not being met, or if timescales are slipping, consider what can be done. Was the plan realistic? If so, are sufficient resources being made available? Are these resources targeting the correct part of the plan? Or does the plan need to be amended? Regular review and discussion of the action plan is important so small adjustments can be made on a regular basis to help keep everything on track.

Once all the indicators have been met and the problem has been resolved, consider what steps can now be taken to prevent this type of problem recurring? It may be that the chosen solution already prevents a recurrence, however if an interim or partial solution has been chosen it is important not to lose momentum.

Problems, by their very nature, will not always fit neatly into a structured problem-solving process. This process, therefore, is designed as a framework which can be adapted to individual needs and nature.

Join Mind Tools and get access to exclusive content.

This resource is only available to Mind Tools members.

Already a member? Please Login here

a method for problem solving

Get 20% off your first year of Mind Tools

Our on-demand e-learning resources let you learn at your own pace, fitting seamlessly into your busy workday. Join today and save with our limited time offer!

Sign-up to our newsletter

Subscribing to the Mind Tools newsletter will keep you up-to-date with our latest updates and newest resources.

Subscribe now

Business Skills

Personal Development

Leadership and Management

Member Extras

Most Popular

Newest Releases

Article am7y1zt

Pain Points Podcast - Balancing Work And Kids

Article aexy3sj

Pain Points Podcast - Improving Culture

Mind Tools Store

About Mind Tools Content

Discover something new today

Pain points podcast - what is ai.

Exploring Artificial Intelligence

Pain Points Podcast - How Do I Get Organized?

It's Time to Get Yourself Sorted!

How Emotionally Intelligent Are You?

Boosting Your People Skills

Self-Assessment

What's Your Leadership Style?

Learn About the Strengths and Weaknesses of the Way You Like to Lead

Recommended for you

Top tips for staying focused.

If You Have Trouble Concentrating These Tips Will Help You Focus

Business Operations and Process Management

Strategy Tools

Customer Service

Business Ethics and Values

Handling Information and Data

Project Management

Knowledge Management

Self-Development and Goal Setting

Time Management

Presentation Skills

Learning Skills

Career Skills

Communication Skills

Negotiation, Persuasion and Influence

Working With Others

Difficult Conversations

Creativity Tools

Self-Management

Work-Life Balance

Stress Management and Wellbeing

Coaching and Mentoring

Change Management

Team Management

Managing Conflict

Delegation and Empowerment

Performance Management

Leadership Skills

Developing Your Team

Talent Management

Problem Solving

Decision Making

Member Podcast

StrategyPunk

Master the 7-Step Problem-Solving Process for Better Decision-Making

Discover the powerful 7-Step Problem-Solving Process to make better decisions and achieve better outcomes. Master the art of problem-solving in this comprehensive guide. Download the Free PowerPoint and PDF Template.

StrategyPunk

StrategyPunk

Master the 7-Step Problem-Solving Process for Better Decision-Making

Introduction

Mastering the art of problem-solving is crucial for making better decisions. Whether you're a student, a business owner, or an employee, problem-solving skills can help you tackle complex issues and find practical solutions. The 7-Step Problem-Solving Process is a proven method that can help you approach problems systematically and efficiently.

The 7-Step Problem-Solving Process involves steps that guide you through the problem-solving process. The first step is to define the problem, followed by disaggregating the problem into smaller, more manageable parts. Next, you prioritize the features and create a work plan to address each. Then, you analyze each piece, synthesize the information, and communicate your findings to others.

By following this process, you can avoid jumping to conclusions, overlooking important details, or making hasty decisions. Instead, you can approach problems with a clear and structured mindset, which can help you make better decisions and achieve better outcomes.

In this article, we'll explore each step of the 7-Step Problem-Solving Process in detail so you can start mastering this valuable skill. You can download the process's free PowerPoint and PDF templates at the end of the blog post .

a method for problem solving

Step 1: Define the Problem

The first step in the problem-solving process is to define the problem. This step is crucial because finding a solution is only accessible if the problem is clearly defined. The problem must be specific, measurable, and achievable.

One way to define the problem is to ask the right questions. Questions like "What is the problem?" and "What are the causes of the problem?" can help. Gathering data and information about the issue to assist in the definition process is also essential.

Another critical aspect of defining the problem is identifying the stakeholders. Who is affected by it? Who has a stake in finding a solution? Identifying the stakeholders can help ensure that the problem is defined in a way that considers the needs and concerns of all those affected by it.

Once the problem is defined, it is essential to communicate the definition to all stakeholders. This helps to ensure that everyone is on the same page and that there is a shared understanding of the problem.

Step 2: Disaggregate

After defining the problem, the next step in the 7-step problem-solving process is to disaggregate the problem into smaller, more manageable parts. Disaggregation helps break down the problem into smaller pieces that can be analyzed individually. This step is crucial in understanding the root cause of the problem and identifying the most effective solutions.

Disaggregation can be achieved by breaking down the problem into sub-problems, identifying the contributing factors, and analyzing the relationships between these factors. This step helps identify the most critical factors that must be addressed to solve the problem.

A tree or fishbone diagram is one effective way to disaggregate a problem. These diagrams help identify the different factors contributing to the problem and how they are related. Another way is to use a table to list the other factors contributing to the situation and their corresponding impact on the issue.

Disaggregation helps in breaking down complex problems into smaller, more manageable parts. It helps understand the relationships between different factors contributing to the problem and identify the most critical factors that must be addressed. By disaggregating the problem, decision-makers can focus on the most vital areas, leading to more effective solutions.

Step 3: Prioritize

After defining the problem and disaggregating it into smaller parts, the next step in the 7-step problem-solving process is prioritizing the issues that need addressing. Prioritizing helps to focus on the most pressing issues and allocate resources more effectively.

There are several ways to prioritize issues, including:

  • Urgency: Prioritize issues based on their urgency. Problems that require immediate attention should be addressed first.
  • Impact: Prioritize issues based on their impact on the organization or stakeholders. Problems with a high impact should be given priority.
  • Resources: Prioritize issues based on the resources required to address them. Problems that require fewer resources should be dealt with first.

Considering their concerns and needs, it is important to involve stakeholders in the prioritization process. This can be done through surveys, focus groups, or other forms of engagement.

Once the issues have been prioritized, developing a plan of action to address them is essential. This involves identifying the resources required, setting timelines, and assigning responsibilities.

Prioritizing issues is a critical step in problem-solving. By focusing on the most pressing problems, organizations can allocate resources more effectively and make better decisions.

Step 4: Workplan

After defining the problem, disaggregating, and prioritizing the issues, the next step in the 7-step problem-solving process is to develop a work plan. This step involves creating a roadmap that outlines the steps needed to solve the problem.

The work plan should include a list of tasks, deadlines, and responsibilities for each team member involved in the problem-solving process. Assigning tasks based on each team member's strengths and expertise ensures the work is completed efficiently and effectively.

Creating a work plan can help keep the team on track and ensure everyone is working towards the same goal. It can also help to identify potential roadblocks or challenges that may arise during the problem-solving process and develop contingency plans to address them.

Several tools and techniques can be used to develop a work plan, including Gantt charts, flowcharts, and mind maps. These tools can help to visualize the steps needed to solve the problem and identify dependencies between tasks.

Developing a work plan is a critical step in the problem-solving process. It provides a clear roadmap for solving the problem and ensures everyone involved is aligned and working towards the same goal.

Step 5: Analysis

Once the problem has been defined and disaggregated, the next step is to analyze the information gathered. This step involves examining the data, identifying patterns, and determining the root cause of the problem.

Several methods can be used during the analysis phase, including:

  • Root cause analysis
  • Pareto analysis
  • SWOT analysis

Root cause analysis is a popular method used to identify the underlying cause of a problem. This method involves asking a series of "why" questions to get to the root cause of the issue.

Pareto analysis is another method that can be used during the analysis phase. This method involves identifying the 20% of causes responsible for 80% of the problems. By focusing on these critical causes, organizations can make significant improvements.

Finally, SWOT analysis is a valuable tool for analyzing the internal and external factors that may impact the problem. This method involves identifying the strengths, weaknesses, opportunities, and threats related to the issue.

Overall, the analysis phase is critical for identifying the root cause of the problem and developing practical solutions. Organizations can gain a deeper understanding of the issue and make informed decisions by using a combination of methods.

Step 6: Synthesize

Once the analysis phase is complete, it is time to synthesize the information gathered to arrive at a solution. During this step, the focus is on identifying the most viable solution that addresses the problem. This involves examining and combining the analysis results for a clear and concise conclusion.

One way to synthesize the information is to use a decision matrix. This involves creating a table that lists the potential solutions and the essential criteria for making a decision. Each answer is then rated against each standard, and the scores are tallied to arrive at a final decision.

Another approach to synthesizing the information is to use a mind map. This involves creating a visual representation of the problem and the potential solutions. The mind map can identify the relationships between the different pieces of information and help prioritize the solutions.

During the synthesis phase, remaining open-minded and considering all potential solutions is vital. To ensure everyone's perspectives are considered, it is also essential to involve all stakeholders in the decision-making process.

Step 7: Communicate

After synthesizing the information, the next step is communicating the findings to the relevant stakeholders. This is a crucial step because it helps to ensure that everyone is on the same page and that the decision-making process is transparent.

One effective way to communicate the findings is through a well-organized report. The report should include the problem statement, the analysis, the synthesis, and the recommended solution. It should be clear, concise, and easy to understand.

In addition to the report, a presentation explaining the findings is essential. The presentation should be tailored to the audience and highlight the report's key points. Visual aids such as tables, graphs, and charts can make the presentation more engaging.

During the presentation, it is essential to be open to feedback and questions from the audience. This helps ensure everyone agrees with the recommended solution and addresses concerns or objections.

Effective communication is vital to ensuring the decision-making process is successful. Stakeholders can make informed decisions and work towards a common goal by communicating the findings clearly and concisely.

The 7-step problem-solving process is a powerful tool for helping individuals and organizations make better decisions. By following these steps, individuals can identify the root cause of a problem, prioritize potential solutions, and develop a clear plan of action. This process can be applied to various scenarios, from personal challenges to complex business problems.

Through disaggregation, individuals can break down complex problems into smaller, more manageable parts. By prioritizing potential solutions, individuals can focus their efforts on the most impactful actions. The work step allows individuals to develop a clear action plan, while the analysis step provides a framework for evaluating possible solutions.

The synthesis step combines all the information gathered to develop a comprehensive solution. Finally, the communication step allows individuals to share their answers with others and gather feedback.

By mastering the 7-step problem-solving process, individuals can become more effective decision-makers and problem-solvers. This process can help individuals and organizations save time and resources while improving outcomes. With practice, individuals can develop the skills to apply this process to a wide range of scenarios and make better decisions in all areas of life.

7-Step Problem-Solving Process PPT Template

Free powerpoint and pdf template, executive summary: the 7-step problem-solving process.

a method for problem solving

The 7-Step Problem-Solving Process is a robust and systematic method to help individuals and organizations make better decisions by tackling complex issues and finding practical solutions. This process comprises defining the problem, disaggregating it into smaller parts, prioritizing the issues, creating a work plan, analyzing the data, synthesizing the information, and communicating the findings.

By following these steps, individuals can identify the root cause of a problem, break it down into manageable components, and prioritize the most impactful actions. The work plan, analysis, and synthesis steps provide a framework for developing comprehensive solutions, while the communication step ensures transparency and stakeholder engagement.

Mastering this process can improve decision-making and problem-solving capabilities, save time and resources, and improve outcomes in personal and professional contexts.

Please buy me a coffee.

I'd appreciate your support if my templates have saved you time or helped you start a project. Buy Me a Coffee is a simple way to show your appreciation and help me continue creating high-quality templates that meet your needs.

Buy Me A Coffee

7-Step Problem-Solving Process PDF Template

7-step problem-solving process powerpoint template.

Xpeng SWOT Analysis: Free PPT Template and In-Depth Insights (free file)

Xpeng SWOT Analysis: Free PPT Template and In-Depth Insights (free file)

Unlock key insights into Xpeng with our free SWOT analysis PPT template. Dive deep into its business dynamics at no cost.

Strategic Insights 2024: A SWOT Analysis of Nestle (Plus Free PPT)

Strategic Insights 2024: A SWOT Analysis of Nestle (Plus Free PPT)

Explore Nestle's strategic outlook with our SWOT analysis for 2024. This PowerPoint template highlights key areas for growth and challenges.

2024 Business Disruption: Navigating Growth Through Shaping Strategy

2024 Business Disruption: Navigating Growth Through Shaping Strategy

Discover the importance of being a shaper in 2023's business ecosystem. Shaping strategy, attracting a critical mass of participants, and finding the right strategic path to create value.

Samsung PESTLE Analysis: Unveiling the Driving Forces (Free PPT)

Samsung PESTLE Analysis: Unveiling the Driving Forces (Free PPT)

Download our comprehensive guide: Samsung PESTLE Analysis (Free PPT). Discover the strategic insights & driving forces shaping Samsung's future.

7.3 Problem-Solving

Learning objectives.

By the end of this section, you will be able to:

  • Describe problem solving strategies
  • Define algorithm and heuristic
  • Explain some common roadblocks to effective problem solving

   People face problems every day—usually, multiple problems throughout the day. Sometimes these problems are straightforward: To double a recipe for pizza dough, for example, all that is required is that each ingredient in the recipe be doubled. Sometimes, however, the problems we encounter are more complex. For example, say you have a work deadline, and you must mail a printed copy of a report to your supervisor by the end of the business day. The report is time-sensitive and must be sent overnight. You finished the report last night, but your printer will not work today. What should you do? First, you need to identify the problem and then apply a strategy for solving the problem.

The study of human and animal problem solving processes has provided much insight toward the understanding of our conscious experience and led to advancements in computer science and artificial intelligence. Essentially much of cognitive science today represents studies of how we consciously and unconsciously make decisions and solve problems. For instance, when encountered with a large amount of information, how do we go about making decisions about the most efficient way of sorting and analyzing all the information in order to find what you are looking for as in visual search paradigms in cognitive psychology. Or in a situation where a piece of machinery is not working properly, how do we go about organizing how to address the issue and understand what the cause of the problem might be. How do we sort the procedures that will be needed and focus attention on what is important in order to solve problems efficiently. Within this section we will discuss some of these issues and examine processes related to human, animal and computer problem solving.

PROBLEM-SOLVING STRATEGIES

   When people are presented with a problem—whether it is a complex mathematical problem or a broken printer, how do you solve it? Before finding a solution to the problem, the problem must first be clearly identified. After that, one of many problem solving strategies can be applied, hopefully resulting in a solution.

Problems themselves can be classified into two different categories known as ill-defined and well-defined problems (Schacter, 2009). Ill-defined problems represent issues that do not have clear goals, solution paths, or expected solutions whereas well-defined problems have specific goals, clearly defined solutions, and clear expected solutions. Problem solving often incorporates pragmatics (logical reasoning) and semantics (interpretation of meanings behind the problem), and also in many cases require abstract thinking and creativity in order to find novel solutions. Within psychology, problem solving refers to a motivational drive for reading a definite “goal” from a present situation or condition that is either not moving toward that goal, is distant from it, or requires more complex logical analysis for finding a missing description of conditions or steps toward that goal. Processes relating to problem solving include problem finding also known as problem analysis, problem shaping where the organization of the problem occurs, generating alternative strategies, implementation of attempted solutions, and verification of the selected solution. Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation.

A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below). For example, a well-known strategy is trial and error. The old adage, “If at first you don’t succeed, try, try again” describes trial and error. In terms of your broken printer, you could try checking the ink levels, and if that doesn’t work, you could check to make sure the paper tray isn’t jammed. Or maybe the printer isn’t actually connected to your laptop. When using trial and error, you would continue to try different solutions until you solved your problem. Although trial and error is not typically one of the most time-efficient strategies, it is a commonly used one.

   Another type of strategy is an algorithm. An algorithm is a problem-solving formula that provides you with step-by-step instructions used to achieve a desired outcome (Kahneman, 2011). You can think of an algorithm as a recipe with highly detailed instructions that produce the same result every time they are performed. Algorithms are used frequently in our everyday lives, especially in computer science. When you run a search on the Internet, search engines like Google use algorithms to decide which entries will appear first in your list of results. Facebook also uses algorithms to decide which posts to display on your newsfeed. Can you identify other situations in which algorithms are used?

A heuristic is another type of problem solving strategy. While an algorithm must be followed exactly to produce a correct result, a heuristic is a general problem-solving framework (Tversky & Kahneman, 1974). You can think of these as mental shortcuts that are used to solve problems. A “rule of thumb” is an example of a heuristic. Such a rule saves the person time and energy when making a decision, but despite its time-saving characteristics, it is not always the best method for making a rational decision. Different types of heuristics are used in different types of situations, but the impulse to use a heuristic occurs when one of five conditions is met (Pratkanis, 1989):

  • When one is faced with too much information
  • When the time to make a decision is limited
  • When the decision to be made is unimportant
  • When there is access to very little information to use in making the decision
  • When an appropriate heuristic happens to come to mind in the same moment

Working backwards is a useful heuristic in which you begin solving the problem by focusing on the end result. Consider this example: You live in Washington, D.C. and have been invited to a wedding at 4 PM on Saturday in Philadelphia. Knowing that Interstate 95 tends to back up any day of the week, you need to plan your route and time your departure accordingly. If you want to be at the wedding service by 3:30 PM, and it takes 2.5 hours to get to Philadelphia without traffic, what time should you leave your house? You use the working backwards heuristic to plan the events of your day on a regular basis, probably without even thinking about it.

Another useful heuristic is the practice of accomplishing a large goal or task by breaking it into a series of smaller steps. Students often use this common method to complete a large research project or long essay for school. For example, students typically brainstorm, develop a thesis or main topic, research the chosen topic, organize their information into an outline, write a rough draft, revise and edit the rough draft, develop a final draft, organize the references list, and proofread their work before turning in the project. The large task becomes less overwhelming when it is broken down into a series of small steps.

Further problem solving strategies have been identified (listed below) that incorporate flexible and creative thinking in order to reach solutions efficiently.

Additional Problem Solving Strategies :

  • Abstraction – refers to solving the problem within a model of the situation before applying it to reality.
  • Analogy – is using a solution that solves a similar problem.
  • Brainstorming – refers to collecting an analyzing a large amount of solutions, especially within a group of people, to combine the solutions and developing them until an optimal solution is reached.
  • Divide and conquer – breaking down large complex problems into smaller more manageable problems.
  • Hypothesis testing – method used in experimentation where an assumption about what would happen in response to manipulating an independent variable is made, and analysis of the affects of the manipulation are made and compared to the original hypothesis.
  • Lateral thinking – approaching problems indirectly and creatively by viewing the problem in a new and unusual light.
  • Means-ends analysis – choosing and analyzing an action at a series of smaller steps to move closer to the goal.
  • Method of focal objects – putting seemingly non-matching characteristics of different procedures together to make something new that will get you closer to the goal.
  • Morphological analysis – analyzing the outputs of and interactions of many pieces that together make up a whole system.
  • Proof – trying to prove that a problem cannot be solved. Where the proof fails becomes the starting point or solving the problem.
  • Reduction – adapting the problem to be as similar problems where a solution exists.
  • Research – using existing knowledge or solutions to similar problems to solve the problem.
  • Root cause analysis – trying to identify the cause of the problem.

The strategies listed above outline a short summary of methods we use in working toward solutions and also demonstrate how the mind works when being faced with barriers preventing goals to be reached.

One example of means-end analysis can be found by using the Tower of Hanoi paradigm . This paradigm can be modeled as a word problems as demonstrated by the Missionary-Cannibal Problem :

Missionary-Cannibal Problem

Three missionaries and three cannibals are on one side of a river and need to cross to the other side. The only means of crossing is a boat, and the boat can only hold two people at a time. Your goal is to devise a set of moves that will transport all six of the people across the river, being in mind the following constraint: The number of cannibals can never exceed the number of missionaries in any location. Remember that someone will have to also row that boat back across each time.

Hint : At one point in your solution, you will have to send more people back to the original side than you just sent to the destination.

The actual Tower of Hanoi problem consists of three rods sitting vertically on a base with a number of disks of different sizes that can slide onto any rod. The puzzle starts with the disks in a neat stack in ascending order of size on one rod, the smallest at the top making a conical shape. The objective of the puzzle is to move the entire stack to another rod obeying the following rules:

  • 1. Only one disk can be moved at a time.
  • 2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod.
  • 3. No disc may be placed on top of a smaller disk.

a method for problem solving

  Figure 7.02. Steps for solving the Tower of Hanoi in the minimum number of moves when there are 3 disks.

a method for problem solving

Figure 7.03. Graphical representation of nodes (circles) and moves (lines) of Tower of Hanoi.

The Tower of Hanoi is a frequently used psychological technique to study problem solving and procedure analysis. A variation of the Tower of Hanoi known as the Tower of London has been developed which has been an important tool in the neuropsychological diagnosis of executive function disorders and their treatment.

GESTALT PSYCHOLOGY AND PROBLEM SOLVING

As you may recall from the sensation and perception chapter, Gestalt psychology describes whole patterns, forms and configurations of perception and cognition such as closure, good continuation, and figure-ground. In addition to patterns of perception, Wolfgang Kohler, a German Gestalt psychologist traveled to the Spanish island of Tenerife in order to study animals behavior and problem solving in the anthropoid ape.

As an interesting side note to Kohler’s studies of chimp problem solving, Dr. Ronald Ley, professor of psychology at State University of New York provides evidence in his book A Whisper of Espionage  (1990) suggesting that while collecting data for what would later be his book  The Mentality of Apes (1925) on Tenerife in the Canary Islands between 1914 and 1920, Kohler was additionally an active spy for the German government alerting Germany to ships that were sailing around the Canary Islands. Ley suggests his investigations in England, Germany and elsewhere in Europe confirm that Kohler had served in the German military by building, maintaining and operating a concealed radio that contributed to Germany’s war effort acting as a strategic outpost in the Canary Islands that could monitor naval military activity approaching the north African coast.

While trapped on the island over the course of World War 1, Kohler applied Gestalt principles to animal perception in order to understand how they solve problems. He recognized that the apes on the islands also perceive relations between stimuli and the environment in Gestalt patterns and understand these patterns as wholes as opposed to pieces that make up a whole. Kohler based his theories of animal intelligence on the ability to understand relations between stimuli, and spent much of his time while trapped on the island investigation what he described as  insight , the sudden perception of useful or proper relations. In order to study insight in animals, Kohler would present problems to chimpanzee’s by hanging some banana’s or some kind of food so it was suspended higher than the apes could reach. Within the room, Kohler would arrange a variety of boxes, sticks or other tools the chimpanzees could use by combining in patterns or organizing in a way that would allow them to obtain the food (Kohler & Winter, 1925).

While viewing the chimpanzee’s, Kohler noticed one chimp that was more efficient at solving problems than some of the others. The chimp, named Sultan, was able to use long poles to reach through bars and organize objects in specific patterns to obtain food or other desirables that were originally out of reach. In order to study insight within these chimps, Kohler would remove objects from the room to systematically make the food more difficult to obtain. As the story goes, after removing many of the objects Sultan was used to using to obtain the food, he sat down ad sulked for a while, and then suddenly got up going over to two poles lying on the ground. Without hesitation Sultan put one pole inside the end of the other creating a longer pole that he could use to obtain the food demonstrating an ideal example of what Kohler described as insight. In another situation, Sultan discovered how to stand on a box to reach a banana that was suspended from the rafters illustrating Sultan’s perception of relations and the importance of insight in problem solving.

Grande (another chimp in the group studied by Kohler) builds a three-box structure to reach the bananas, while Sultan watches from the ground.  Insight , sometimes referred to as an “Ah-ha” experience, was the term Kohler used for the sudden perception of useful relations among objects during problem solving (Kohler, 1927; Radvansky & Ashcraft, 2013).

Solving puzzles.

   Problem-solving abilities can improve with practice. Many people challenge themselves every day with puzzles and other mental exercises to sharpen their problem-solving skills. Sudoku puzzles appear daily in most newspapers. Typically, a sudoku puzzle is a 9×9 grid. The simple sudoku below (see figure) is a 4×4 grid. To solve the puzzle, fill in the empty boxes with a single digit: 1, 2, 3, or 4. Here are the rules: The numbers must total 10 in each bolded box, each row, and each column; however, each digit can only appear once in a bolded box, row, and column. Time yourself as you solve this puzzle and compare your time with a classmate.

How long did it take you to solve this sudoku puzzle? (You can see the answer at the end of this section.)

   Here is another popular type of puzzle (figure below) that challenges your spatial reasoning skills. Connect all nine dots with four connecting straight lines without lifting your pencil from the paper:

Did you figure it out? (The answer is at the end of this section.) Once you understand how to crack this puzzle, you won’t forget.

   Take a look at the “Puzzling Scales” logic puzzle below (figure below). Sam Loyd, a well-known puzzle master, created and refined countless puzzles throughout his lifetime (Cyclopedia of Puzzles, n.d.).

A puzzle involving a scale is shown. At the top of the figure it reads: “Sam Loyds Puzzling Scales.” The first row of the puzzle shows a balanced scale with 3 blocks and a top on the left and 12 marbles on the right. Below this row it reads: “Since the scales now balance.” The next row of the puzzle shows a balanced scale with just the top on the left, and 1 block and 8 marbles on the right. Below this row it reads: “And balance when arranged this way.” The third row shows an unbalanced scale with the top on the left side, which is much lower than the right side. The right side is empty. Below this row it reads: “Then how many marbles will it require to balance with that top?”

What steps did you take to solve this puzzle? You can read the solution at the end of this section.

Pitfalls to problem solving.

   Not all problems are successfully solved, however. What challenges stop us from successfully solving a problem? Albert Einstein once said, “Insanity is doing the same thing over and over again and expecting a different result.” Imagine a person in a room that has four doorways. One doorway that has always been open in the past is now locked. The person, accustomed to exiting the room by that particular doorway, keeps trying to get out through the same doorway even though the other three doorways are open. The person is stuck—but she just needs to go to another doorway, instead of trying to get out through the locked doorway. A mental set is where you persist in approaching a problem in a way that has worked in the past but is clearly not working now.

Functional fixedness is a type of mental set where you cannot perceive an object being used for something other than what it was designed for. During the Apollo 13 mission to the moon, NASA engineers at Mission Control had to overcome functional fixedness to save the lives of the astronauts aboard the spacecraft. An explosion in a module of the spacecraft damaged multiple systems. The astronauts were in danger of being poisoned by rising levels of carbon dioxide because of problems with the carbon dioxide filters. The engineers found a way for the astronauts to use spare plastic bags, tape, and air hoses to create a makeshift air filter, which saved the lives of the astronauts.

   Researchers have investigated whether functional fixedness is affected by culture. In one experiment, individuals from the Shuar group in Ecuador were asked to use an object for a purpose other than that for which the object was originally intended. For example, the participants were told a story about a bear and a rabbit that were separated by a river and asked to select among various objects, including a spoon, a cup, erasers, and so on, to help the animals. The spoon was the only object long enough to span the imaginary river, but if the spoon was presented in a way that reflected its normal usage, it took participants longer to choose the spoon to solve the problem. (German & Barrett, 2005). The researchers wanted to know if exposure to highly specialized tools, as occurs with individuals in industrialized nations, affects their ability to transcend functional fixedness. It was determined that functional fixedness is experienced in both industrialized and nonindustrialized cultures (German & Barrett, 2005).

In order to make good decisions, we use our knowledge and our reasoning. Often, this knowledge and reasoning is sound and solid. Sometimes, however, we are swayed by biases or by others manipulating a situation. For example, let’s say you and three friends wanted to rent a house and had a combined target budget of $1,600. The realtor shows you only very run-down houses for $1,600 and then shows you a very nice house for $2,000. Might you ask each person to pay more in rent to get the $2,000 home? Why would the realtor show you the run-down houses and the nice house? The realtor may be challenging your anchoring bias. An anchoring bias occurs when you focus on one piece of information when making a decision or solving a problem. In this case, you’re so focused on the amount of money you are willing to spend that you may not recognize what kinds of houses are available at that price point.

The confirmation bias is the tendency to focus on information that confirms your existing beliefs. For example, if you think that your professor is not very nice, you notice all of the instances of rude behavior exhibited by the professor while ignoring the countless pleasant interactions he is involved in on a daily basis. Hindsight bias leads you to believe that the event you just experienced was predictable, even though it really wasn’t. In other words, you knew all along that things would turn out the way they did. Representative bias describes a faulty way of thinking, in which you unintentionally stereotype someone or something; for example, you may assume that your professors spend their free time reading books and engaging in intellectual conversation, because the idea of them spending their time playing volleyball or visiting an amusement park does not fit in with your stereotypes of professors.

Finally, the availability heuristic is a heuristic in which you make a decision based on an example, information, or recent experience that is that readily available to you, even though it may not be the best example to inform your decision . Biases tend to “preserve that which is already established—to maintain our preexisting knowledge, beliefs, attitudes, and hypotheses” (Aronson, 1995; Kahneman, 2011). These biases are summarized in the table below.

Were you able to determine how many marbles are needed to balance the scales in the figure below? You need nine. Were you able to solve the problems in the figures above? Here are the answers.

The first puzzle is a Sudoku grid of 16 squares (4 rows of 4 squares) is shown. Half of the numbers were supplied to start the puzzle and are colored blue, and half have been filled in as the puzzle’s solution and are colored red. The numbers in each row of the grid, left to right, are as follows. Row 1: blue 3, red 1, red 4, blue 2. Row 2: red 2, blue 4, blue 1, red 3. Row 3: red 1, blue 3, blue 2, red 4. Row 4: blue 4, red 2, red 3, blue 1.The second puzzle consists of 9 dots arranged in 3 rows of 3 inside of a square. The solution, four straight lines made without lifting the pencil, is shown in a red line with arrows indicating the direction of movement. In order to solve the puzzle, the lines must extend beyond the borders of the box. The four connecting lines are drawn as follows. Line 1 begins at the top left dot, proceeds through the middle and right dots of the top row, and extends to the right beyond the border of the square. Line 2 extends from the end of line 1, through the right dot of the horizontally centered row, through the middle dot of the bottom row, and beyond the square’s border ending in the space beneath the left dot of the bottom row. Line 3 extends from the end of line 2 upwards through the left dots of the bottom, middle, and top rows. Line 4 extends from the end of line 3 through the middle dot in the middle row and ends at the right dot of the bottom row.

   Many different strategies exist for solving problems. Typical strategies include trial and error, applying algorithms, and using heuristics. To solve a large, complicated problem, it often helps to break the problem into smaller steps that can be accomplished individually, leading to an overall solution. Roadblocks to problem solving include a mental set, functional fixedness, and various biases that can cloud decision making skills.

References:

Openstax Psychology text by Kathryn Dumper, William Jenkins, Arlene Lacombe, Marilyn Lovett and Marion Perlmutter licensed under CC BY v4.0. https://openstax.org/details/books/psychology

Review Questions:

1. A specific formula for solving a problem is called ________.

a. an algorithm

b. a heuristic

c. a mental set

d. trial and error

2. Solving the Tower of Hanoi problem tends to utilize a  ________ strategy of problem solving.

a. divide and conquer

b. means-end analysis

d. experiment

3. A mental shortcut in the form of a general problem-solving framework is called ________.

4. Which type of bias involves becoming fixated on a single trait of a problem?

a. anchoring bias

b. confirmation bias

c. representative bias

d. availability bias

5. Which type of bias involves relying on a false stereotype to make a decision?

6. Wolfgang Kohler analyzed behavior of chimpanzees by applying Gestalt principles to describe ________.

a. social adjustment

b. student load payment options

c. emotional learning

d. insight learning

7. ________ is a type of mental set where you cannot perceive an object being used for something other than what it was designed for.

a. functional fixedness

c. working memory

Critical Thinking Questions:

1. What is functional fixedness and how can overcoming it help you solve problems?

2. How does an algorithm save you time and energy when solving a problem?

Personal Application Question:

1. Which type of bias do you recognize in your own decision making processes? How has this bias affected how you’ve made decisions in the past and how can you use your awareness of it to improve your decisions making skills in the future?

anchoring bias

availability heuristic

confirmation bias

functional fixedness

hindsight bias

problem-solving strategy

representative bias

trial and error

working backwards

Answers to Exercises

algorithm:  problem-solving strategy characterized by a specific set of instructions

anchoring bias:  faulty heuristic in which you fixate on a single aspect of a problem to find a solution

availability heuristic:  faulty heuristic in which you make a decision based on information readily available to you

confirmation bias:  faulty heuristic in which you focus on information that confirms your beliefs

functional fixedness:  inability to see an object as useful for any other use other than the one for which it was intended

heuristic:  mental shortcut that saves time when solving a problem

hindsight bias:  belief that the event just experienced was predictable, even though it really wasn’t

mental set:  continually using an old solution to a problem without results

problem-solving strategy:  method for solving problems

representative bias:  faulty heuristic in which you stereotype someone or something without a valid basis for your judgment

trial and error:  problem-solving strategy in which multiple solutions are attempted until the correct one is found

working backwards:  heuristic in which you begin to solve a problem by focusing on the end result

Creative Commons License

Share This Book

  • Increase Font Size
  • Soft skills
  • What is a credential?
  • Why do a credential?
  • How do credentials work?
  • Selecting your level
  • How will I be assessed?
  • Benefits for professionals
  • Benefits for organisations
  • Benefits for postgraduates

Problem solving techniques: Steps and methods

a method for problem solving

Posted on May 29, 2019

Constant disruption has become a hallmark of the modern workforce and organisations want problem solving skills to combat this. Employers need people who can respond to change – be that evolving technology, new competitors, different models for doing business, or any of the other transformations that have taken place in recent years.

In addition, problem solving techniques encompass many of the other top skills employers seek . For example, LinkedIn’s list of the most in-demand soft skills of 2019 includes creativity, collaboration and adaptability, all of which fall under the problem-solving umbrella.

Despite its importance, many employees misunderstand what the problem solving method really involves.

What constitutes effective problem solving?

Effective problem solving doesn’t mean going away and coming up with an answer immediately. In fact, this isn’t good problem solving at all, because you’ll be running with the first solution that comes into your mind, which often isn’t the best.

Instead, you should look at problem solving more as a process with several steps involved that will help you reach the best outcome. Those steps are:

  • Define the problem
  • List all the possible solutions
  • Evaluate the options
  • Select the best solution
  • Create an implementation plan
  • Communicate your solution

Let’s look at each step in a little more detail.

It's important you take the time to brainstorm and consider all your options when solving problems.

1. Define the problem

The first step to solving a problem is defining what the problem actually is – sounds simple, right? Well no. An effective problem solver will take the thoughts of everyone involved into account, but different people might have different ideas on what the root cause of the issue really is. It’s up to you to actively listen to everyone without bringing any of your own preconceived notions to the conversation. Learning to differentiate facts from opinion is an essential part of this process.

An effective problem solver will take the opinions of everyone involved into account

The same can be said of data. Depending on what the problem is, there will be varying amounts of information available that will help you work out what’s gone wrong. There should be at least some data involved in any problem, and it’s up to you to gather as much as possible and analyse it objectively.

2. List all the possible solutions

Once you’ve identified what the real issue is, it’s time to think of solutions. Brainstorming as many solutions as possible will help you arrive at the best answer because you’ll be considering all potential options and scenarios. You should take everyone’s thoughts into account when you’re brainstorming these ideas, as well as all the insights you’ve gleaned from your data analysis. It also helps to seek input from others at this stage, as they may come up with solutions you haven’t thought of.

Depending on the type of problem, it can be useful to think of both short-term and long-term solutions, as some of your options may take a while to implement.

One of the best problem solving techniques is brainstorming a number of different solutions and involving affected parties in this process.

3. Evaluate the options

Each option will have pros and cons, and it’s important you list all of these, as well as how each solution could impact key stakeholders. Once you’ve narrowed down your options to three or four, it’s often a good idea to go to other employees for feedback just in case you’ve missed something. You should also work out how each option ties in with the broader goals of the business.

There may be a way to merge two options together in order to satisfy more people.

4. Select an option

Only now should you choose which solution you’re going to go with. What you decide should be whatever solves the problem most effectively while also taking the interests of everyone involved into account. There may be a way to merge two options together in order to satisfy more people.

5. Create an implementation plan

At this point you might be thinking it’s time to sit back and relax – problem solved, right? There are actually two more steps involved if you want your problem solving method to be truly effective. The first is to create an implementation plan. After all, if you don’t carry out your solution effectively, you’re not really solving the problem at all. 

Create an implementation plan on how you will put your solution into practice. One problem solving technique that many use here is to introduce a testing and feedback phase just to make sure the option you’ve selected really is the most viable. You’ll also want to include any changes to your solution that may occur in your implementation plan, as well as how you’ll monitor compliance and success.

6. Communicate your solution

There’s one last step to consider as part of the problem solving methodology, and that’s communicating your solution . Without this crucial part of the process, how is anyone going to know what you’ve decided? Make sure you communicate your decision to all the people who might be impacted by it. Not everyone is going to be 100 per cent happy with it, so when you communicate you must give them context. Explain exactly why you’ve made that decision and how the pros mean it’s better than any of the other options you came up with.

Prove your problem solving skills with Deakin

Employers are increasingly seeking soft skills, but unfortunately, while you can show that you’ve got a degree in a subject, it’s much harder to prove you’ve got proficiency in things like problem solving skills. But this is changing thanks to Deakin’s micro-credentials. These are university-level micro-credentials that provide an authoritative and third-party assessment of your capabilities in a range of areas, including problem solving. Reach out today for more information .

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Share Podcast

HBR On Leadership podcast series

Do You Understand the Problem You’re Trying to Solve?

To solve tough problems at work, first ask these questions.

  • Apple Podcasts
  • Google Podcasts

Problem solving skills are invaluable in any job. But all too often, we jump to find solutions to a problem without taking time to really understand the dilemma we face, according to Thomas Wedell-Wedellsborg , an expert in innovation and the author of the book, What’s Your Problem?: To Solve Your Toughest Problems, Change the Problems You Solve .

In this episode, you’ll learn how to reframe tough problems by asking questions that reveal all the factors and assumptions that contribute to the situation. You’ll also learn why searching for just one root cause can be misleading.

Key episode topics include: leadership, decision making and problem solving, power and influence, business management.

HBR On Leadership curates the best case studies and conversations with the world’s top business and management experts, to help you unlock the best in those around you. New episodes every week.

  • Listen to the original HBR IdeaCast episode: The Secret to Better Problem Solving (2016)
  • Find more episodes of HBR IdeaCast
  • Discover 100 years of Harvard Business Review articles, case studies, podcasts, and more at HBR.org .

HANNAH BATES: Welcome to HBR on Leadership , case studies and conversations with the world’s top business and management experts, hand-selected to help you unlock the best in those around you.

Problem solving skills are invaluable in any job. But even the most experienced among us can fall into the trap of solving the wrong problem.

Thomas Wedell-Wedellsborg says that all too often, we jump to find solutions to a problem – without taking time to really understand what we’re facing.

He’s an expert in innovation, and he’s the author of the book, What’s Your Problem?: To Solve Your Toughest Problems, Change the Problems You Solve .

  In this episode, you’ll learn how to reframe tough problems, by asking questions that reveal all the factors and assumptions that contribute to the situation. You’ll also learn why searching for one root cause can be misleading. And you’ll learn how to use experimentation and rapid prototyping as problem-solving tools.

This episode originally aired on HBR IdeaCast in December 2016. Here it is.

SARAH GREEN CARMICHAEL: Welcome to the HBR IdeaCast from Harvard Business Review. I’m Sarah Green Carmichael.

Problem solving is popular. People put it on their resumes. Managers believe they excel at it. Companies count it as a key proficiency. We solve customers’ problems.

The problem is we often solve the wrong problems. Albert Einstein and Peter Drucker alike have discussed the difficulty of effective diagnosis. There are great frameworks for getting teams to attack true problems, but they’re often hard to do daily and on the fly. That’s where our guest comes in.

Thomas Wedell-Wedellsborg is a consultant who helps companies and managers reframe their problems so they can come up with an effective solution faster. He asks the question “Are You Solving The Right Problems?” in the January-February 2017 issue of Harvard Business Review. Thomas, thank you so much for coming on the HBR IdeaCast .

THOMAS WEDELL-WEDELLSBORG: Thanks for inviting me.

SARAH GREEN CARMICHAEL: So, I thought maybe we could start by talking about the problem of talking about problem reframing. What is that exactly?

THOMAS WEDELL-WEDELLSBORG: Basically, when people face a problem, they tend to jump into solution mode to rapidly, and very often that means that they don’t really understand, necessarily, the problem they’re trying to solve. And so, reframing is really a– at heart, it’s a method that helps you avoid that by taking a second to go in and ask two questions, basically saying, first of all, wait. What is the problem we’re trying to solve? And then crucially asking, is there a different way to think about what the problem actually is?

SARAH GREEN CARMICHAEL: So, I feel like so often when this comes up in meetings, you know, someone says that, and maybe they throw out the Einstein quote about you spend an hour of problem solving, you spend 55 minutes to find the problem. And then everyone else in the room kind of gets irritated. So, maybe just give us an example of maybe how this would work in practice in a way that would not, sort of, set people’s teeth on edge, like oh, here Sarah goes again, reframing the whole problem instead of just solving it.

THOMAS WEDELL-WEDELLSBORG: I mean, you’re bringing up something that’s, I think is crucial, which is to create legitimacy for the method. So, one of the reasons why I put out the article is to give people a tool to say actually, this thing is still important, and we need to do it. But I think the really critical thing in order to make this work in a meeting is actually to learn how to do it fast, because if you have the idea that you need to spend 30 minutes in a meeting delving deeply into the problem, I mean, that’s going to be uphill for most problems. So, the critical thing here is really to try to make it a practice you can implement very, very rapidly.

There’s an example that I would suggest memorizing. This is the example that I use to explain very rapidly what it is. And it’s basically, I call it the slow elevator problem. You imagine that you are the owner of an office building, and that your tenants are complaining that the elevator’s slow.

Now, if you take that problem framing for granted, you’re going to start thinking creatively around how do we make the elevator faster. Do we install a new motor? Do we have to buy a new lift somewhere?

The thing is, though, if you ask people who actually work with facilities management, well, they’re going to have a different solution for you, which is put up a mirror next to the elevator. That’s what happens is, of course, that people go oh, I’m busy. I’m busy. I’m– oh, a mirror. Oh, that’s beautiful.

And then they forget time. What’s interesting about that example is that the idea with a mirror is actually a solution to a different problem than the one you first proposed. And so, the whole idea here is once you get good at using reframing, you can quickly identify other aspects of the problem that might be much better to try to solve than the original one you found. It’s not necessarily that the first one is wrong. It’s just that there might be better problems out there to attack that we can, means we can do things much faster, cheaper, or better.

SARAH GREEN CARMICHAEL: So, in that example, I can understand how A, it’s probably expensive to make the elevator faster, so it’s much cheaper just to put up a mirror. And B, maybe the real problem people are actually feeling, even though they’re not articulating it right, is like, I hate waiting for the elevator. But if you let them sort of fix their hair or check their teeth, they’re suddenly distracted and don’t notice.

But if you have, this is sort of a pedestrian example, but say you have a roommate or a spouse who doesn’t clean up the kitchen. Facing that problem and not having your elegant solution already there to highlight the contrast between the perceived problem and the real problem, how would you take a problem like that and attack it using this method so that you can see what some of the other options might be?

THOMAS WEDELL-WEDELLSBORG: Right. So, I mean, let’s say it’s you who have that problem. I would go in and say, first of all, what would you say the problem is? Like, if you were to describe your view of the problem, what would that be?

SARAH GREEN CARMICHAEL: I hate cleaning the kitchen, and I want someone else to clean it up.

THOMAS WEDELL-WEDELLSBORG: OK. So, my first observation, you know, that somebody else might not necessarily be your spouse. So, already there, there’s an inbuilt assumption in your question around oh, it has to be my husband who does the cleaning. So, it might actually be worth, already there to say, is that really the only problem you have? That you hate cleaning the kitchen, and you want to avoid it? Or might there be something around, as well, getting a better relationship in terms of how you solve problems in general or establishing a better way to handle small problems when dealing with your spouse?

SARAH GREEN CARMICHAEL: Or maybe, now that I’m thinking that, maybe the problem is that you just can’t find the stuff in the kitchen when you need to find it.

THOMAS WEDELL-WEDELLSBORG: Right, and so that’s an example of a reframing, that actually why is it a problem that the kitchen is not clean? Is it only because you hate the act of cleaning, or does it actually mean that it just takes you a lot longer and gets a lot messier to actually use the kitchen, which is a different problem. The way you describe this problem now, is there anything that’s missing from that description?

SARAH GREEN CARMICHAEL: That is a really good question.

THOMAS WEDELL-WEDELLSBORG: Other, basically asking other factors that we are not talking about right now, and I say those because people tend to, when given a problem, they tend to delve deeper into the detail. What often is missing is actually an element outside of the initial description of the problem that might be really relevant to what’s going on. Like, why does the kitchen get messy in the first place? Is it something about the way you use it or your cooking habits? Is it because the neighbor’s kids, kind of, use it all the time?

There might, very often, there might be issues that you’re not really thinking about when you first describe the problem that actually has a big effect on it.

SARAH GREEN CARMICHAEL: I think at this point it would be helpful to maybe get another business example, and I’m wondering if you could tell us the story of the dog adoption problem.

THOMAS WEDELL-WEDELLSBORG: Yeah. This is a big problem in the US. If you work in the shelter industry, basically because dogs are so popular, more than 3 million dogs every year enter a shelter, and currently only about half of those actually find a new home and get adopted. And so, this is a problem that has persisted. It’s been, like, a structural problem for decades in this space. In the last three years, where people found new ways to address it.

So a woman called Lori Weise who runs a rescue organization in South LA, and she actually went in and challenged the very idea of what we were trying to do. She said, no, no. The problem we’re trying to solve is not about how to get more people to adopt dogs. It is about keeping the dogs with their first family so they never enter the shelter system in the first place.

In 2013, she started what’s called a Shelter Intervention Program that basically works like this. If a family comes and wants to hand over their dog, these are called owner surrenders. It’s about 30% of all dogs that come into a shelter. All they would do is go up and ask, if you could, would you like to keep your animal? And if they said yes, they would try to fix whatever helped them fix the problem, but that made them turn over this.

And sometimes that might be that they moved into a new building. The landlord required a deposit, and they simply didn’t have the money to put down a deposit. Or the dog might need a $10 rabies shot, but they didn’t know how to get access to a vet.

And so, by instigating that program, just in the first year, she took her, basically the amount of dollars they spent per animal they helped went from something like $85 down to around $60. Just an immediate impact, and her program now is being rolled out, is being supported by the ASPCA, which is one of the big animal welfare stations, and it’s being rolled out to various other places.

And I think what really struck me with that example was this was not dependent on having the internet. This was not, oh, we needed to have everybody mobile before we could come up with this. This, conceivably, we could have done 20 years ago. Only, it only happened when somebody, like in this case Lori, went in and actually rethought what the problem they were trying to solve was in the first place.

SARAH GREEN CARMICHAEL: So, what I also think is so interesting about that example is that when you talk about it, it doesn’t sound like the kind of thing that would have been thought of through other kinds of problem solving methods. There wasn’t necessarily an After Action Review or a 5 Whys exercise or a Six Sigma type intervention. I don’t want to throw those other methods under the bus, but how can you get such powerful results with such a very simple way of thinking about something?

THOMAS WEDELL-WEDELLSBORG: That was something that struck me as well. This, in a way, reframing and the idea of the problem diagnosis is important is something we’ve known for a long, long time. And we’ve actually have built some tools to help out. If you worked with us professionally, you are familiar with, like, Six Sigma, TRIZ, and so on. You mentioned 5 Whys. A root cause analysis is another one that a lot of people are familiar with.

Those are our good tools, and they’re definitely better than nothing. But what I notice when I work with the companies applying those was those tools tend to make you dig deeper into the first understanding of the problem we have. If it’s the elevator example, people start asking, well, is that the cable strength, or is the capacity of the elevator? That they kind of get caught by the details.

That, in a way, is a bad way to work on problems because it really assumes that there’s like a, you can almost hear it, a root cause. That you have to dig down and find the one true problem, and everything else was just symptoms. That’s a bad way to think about problems because problems tend to be multicausal.

There tend to be lots of causes or levers you can potentially press to address a problem. And if you think there’s only one, if that’s the right problem, that’s actually a dangerous way. And so I think that’s why, that this is a method I’ve worked with over the last five years, trying to basically refine how to make people better at this, and the key tends to be this thing about shifting out and saying, is there a totally different way of thinking about the problem versus getting too caught up in the mechanistic details of what happens.

SARAH GREEN CARMICHAEL: What about experimentation? Because that’s another method that’s become really popular with the rise of Lean Startup and lots of other innovation methodologies. Why wouldn’t it have worked to, say, experiment with many different types of fixing the dog adoption problem, and then just pick the one that works the best?

THOMAS WEDELL-WEDELLSBORG: You could say in the dog space, that’s what’s been going on. I mean, there is, in this industry and a lot of, it’s largely volunteer driven. People have experimented, and they found different ways of trying to cope. And that has definitely made the problem better. So, I wouldn’t say that experimentation is bad, quite the contrary. Rapid prototyping, quickly putting something out into the world and learning from it, that’s a fantastic way to learn more and to move forward.

My point is, though, that I feel we’ve come to rely too much on that. There’s like, if you look at the start up space, the wisdom is now just to put something quickly into the market, and then if it doesn’t work, pivot and just do more stuff. What reframing really is, I think of it as the cognitive counterpoint to prototyping. So, this is really a way of seeing very quickly, like not just working on the solution, but also working on our understanding of the problem and trying to see is there a different way to think about that.

If you only stick with experimentation, again, you tend to sometimes stay too much in the same space trying minute variations of something instead of taking a step back and saying, wait a minute. What is this telling us about what the real issue is?

SARAH GREEN CARMICHAEL: So, to go back to something that we touched on earlier, when we were talking about the completely hypothetical example of a spouse who does not clean the kitchen–

THOMAS WEDELL-WEDELLSBORG: Completely, completely hypothetical.

SARAH GREEN CARMICHAEL: Yes. For the record, my husband is a great kitchen cleaner.

You started asking me some questions that I could see immediately were helping me rethink that problem. Is that kind of the key, just having a checklist of questions to ask yourself? How do you really start to put this into practice?

THOMAS WEDELL-WEDELLSBORG: I think there are two steps in that. The first one is just to make yourself better at the method. Yes, you should kind of work with a checklist. In the article, I kind of outlined seven practices that you can use to do this.

But importantly, I would say you have to consider that as, basically, a set of training wheels. I think there’s a big, big danger in getting caught in a checklist. This is something I work with.

My co-author Paddy Miller, it’s one of his insights. That if you start giving people a checklist for things like this, they start following it. And that’s actually a problem, because what you really want them to do is start challenging their thinking.

So the way to handle this is to get some practice using it. Do use the checklist initially, but then try to step away from it and try to see if you can organically make– it’s almost a habit of mind. When you run into a colleague in the hallway and she has a problem and you have five minutes, like, delving in and just starting asking some of those questions and using your intuition to say, wait, how is she talking about this problem? And is there a question or two I can ask her about the problem that can help her rethink it?

SARAH GREEN CARMICHAEL: Well, that is also just a very different approach, because I think in that situation, most of us can’t go 30 seconds without jumping in and offering solutions.

THOMAS WEDELL-WEDELLSBORG: Very true. The drive toward solutions is very strong. And to be clear, I mean, there’s nothing wrong with that if the solutions work. So, many problems are just solved by oh, you know, oh, here’s the way to do that. Great.

But this is really a powerful method for those problems where either it’s something we’ve been banging our heads against tons of times without making progress, or when you need to come up with a really creative solution. When you’re facing a competitor with a much bigger budget, and you know, if you solve the same problem later, you’re not going to win. So, that basic idea of taking that approach to problems can often help you move forward in a different way than just like, oh, I have a solution.

I would say there’s also, there’s some interesting psychological stuff going on, right? Where you may have tried this, but if somebody tries to serve up a solution to a problem I have, I’m often resistant towards them. Kind if like, no, no, no, no, no, no. That solution is not going to work in my world. Whereas if you get them to discuss and analyze what the problem really is, you might actually dig something up.

Let’s go back to the kitchen example. One powerful question is just to say, what’s your own part in creating this problem? It’s very often, like, people, they describe problems as if it’s something that’s inflicted upon them from the external world, and they are innocent bystanders in that.

SARAH GREEN CARMICHAEL: Right, or crazy customers with unreasonable demands.

THOMAS WEDELL-WEDELLSBORG: Exactly, right. I don’t think I’ve ever met an agency or consultancy that didn’t, like, gossip about their customers. Oh, my god, they’re horrible. That, you know, classic thing, why don’t they want to take more risk? Well, risk is bad.

It’s their business that’s on the line, not the consultancy’s, right? So, absolutely, that’s one of the things when you step into a different mindset and kind of, wait. Oh yeah, maybe I actually am part of creating this problem in a sense, as well. That tends to open some new doors for you to move forward, in a way, with stuff that you may have been struggling with for years.

SARAH GREEN CARMICHAEL: So, we’ve surfaced a couple of questions that are useful. I’m curious to know, what are some of the other questions that you find yourself asking in these situations, given that you have made this sort of mental habit that you do? What are the questions that people seem to find really useful?

THOMAS WEDELL-WEDELLSBORG: One easy one is just to ask if there are any positive exceptions to the problem. So, was there day where your kitchen was actually spotlessly clean? And then asking, what was different about that day? Like, what happened there that didn’t happen the other days? That can very often point people towards a factor that they hadn’t considered previously.

SARAH GREEN CARMICHAEL: We got take-out.

THOMAS WEDELL-WEDELLSBORG: S,o that is your solution. Take-out from [INAUDIBLE]. That might have other problems.

Another good question, and this is a little bit more high level. It’s actually more making an observation about labeling how that person thinks about the problem. And what I mean with that is, we have problem categories in our head. So, if I say, let’s say that you describe a problem to me and say, well, we have a really great product and are, it’s much better than our previous product, but people aren’t buying it. I think we need to put more marketing dollars into this.

Now you can go in and say, that’s interesting. This sounds like you’re thinking of this as a communications problem. Is there a different way of thinking about that? Because you can almost tell how, when the second you say communications, there are some ideas about how do you solve a communications problem. Typically with more communication.

And what you might do is go in and suggest, well, have you considered that it might be, say, an incentive problem? Are there incentives on behalf of the purchasing manager at your clients that are obstructing you? Might there be incentive issues with your own sales force that makes them want to sell the old product instead of the new one?

So literally, just identifying what type of problem does this person think about, and is there different potential way of thinking about it? Might it be an emotional problem, a timing problem, an expectations management problem? Thinking about what label of what type of problem that person is kind of thinking as it of.

SARAH GREEN CARMICHAEL: That’s really interesting, too, because I think so many of us get requests for advice that we’re really not qualified to give. So, maybe the next time that happens, instead of muddying my way through, I will just ask some of those questions that we talked about instead.

THOMAS WEDELL-WEDELLSBORG: That sounds like a good idea.

SARAH GREEN CARMICHAEL: So, Thomas, this has really helped me reframe the way I think about a couple of problems in my own life, and I’m just wondering. I know you do this professionally, but is there a problem in your life that thinking this way has helped you solve?

THOMAS WEDELL-WEDELLSBORG: I’ve, of course, I’ve been swallowing my own medicine on this, too, and I think I have, well, maybe two different examples, and in one case somebody else did the reframing for me. But in one case, when I was younger, I often kind of struggled a little bit. I mean, this is my teenage years, kind of hanging out with my parents. I thought they were pretty annoying people. That’s not really fair, because they’re quite wonderful, but that’s what life is when you’re a teenager.

And one of the things that struck me, suddenly, and this was kind of the positive exception was, there was actually an evening where we really had a good time, and there wasn’t a conflict. And the core thing was, I wasn’t just seeing them in their old house where I grew up. It was, actually, we were at a restaurant. And it suddenly struck me that so much of the sometimes, kind of, a little bit, you love them but they’re annoying kind of dynamic, is tied to the place, is tied to the setting you are in.

And of course, if– you know, I live abroad now, if I visit my parents and I stay in my old bedroom, you know, my mother comes in and wants to wake me up in the morning. Stuff like that, right? And it just struck me so, so clearly that it’s– when I change this setting, if I go out and have dinner with them at a different place, that the dynamic, just that dynamic disappears.

SARAH GREEN CARMICHAEL: Well, Thomas, this has been really, really helpful. Thank you for talking with me today.

THOMAS WEDELL-WEDELLSBORG: Thank you, Sarah.  

HANNAH BATES: That was Thomas Wedell-Wedellsborg in conversation with Sarah Green Carmichael on the HBR IdeaCast. He’s an expert in problem solving and innovation, and he’s the author of the book, What’s Your Problem?: To Solve Your Toughest Problems, Change the Problems You Solve .

We’ll be back next Wednesday with another hand-picked conversation about leadership from the Harvard Business Review. If you found this episode helpful, share it with your friends and colleagues, and follow our show on Apple Podcasts, Spotify, or wherever you get your podcasts. While you’re there, be sure to leave us a review.

We’re a production of Harvard Business Review. If you want more podcasts, articles, case studies, books, and videos like this, find it all at HBR dot org.

This episode was produced by Anne Saini, and me, Hannah Bates. Ian Fox is our editor. Music by Coma Media. Special thanks to Maureen Hoch, Adi Ignatius, Karen Player, Ramsey Khabbaz, Nicole Smith, Anne Bartholomew, and you – our listener.

See you next week.

  • Subscribe On:

Latest in this series

This article is about leadership.

  • Decision making and problem solving
  • Power and influence
  • Business management

Partner Center

  • Open access
  • Published: 17 February 2022

Effectiveness of problem-based learning methodology in undergraduate medical education: a scoping review

  • Joan Carles Trullàs   ORCID: orcid.org/0000-0002-7380-3475 1 , 2 , 3 ,
  • Carles Blay   ORCID: orcid.org/0000-0003-3962-5887 1 , 4 ,
  • Elisabet Sarri   ORCID: orcid.org/0000-0002-2435-399X 3 &
  • Ramon Pujol   ORCID: orcid.org/0000-0003-2527-385X 1  

BMC Medical Education volume  22 , Article number:  104 ( 2022 ) Cite this article

31k Accesses

78 Citations

10 Altmetric

Metrics details

Problem-based learning (PBL) is a pedagogical approach that shifts the role of the teacher to the student (student-centered) and is based on self-directed learning. Although PBL has been adopted in undergraduate and postgraduate medical education, the effectiveness of the method is still under discussion. The author’s purpose was to appraise available international evidence concerning to the effectiveness and usefulness of PBL methodology in undergraduate medical teaching programs.

The authors applied the Arksey and O’Malley framework to undertake a scoping review. The search was carried out in February 2021 in PubMed and Web of Science including all publications in English and Spanish with no limits on publication date, study design or country of origin.

The literature search identified one hundred and twenty-four publications eligible for this review. Despite the fact that this review included many studies, their design was heterogeneous and only a few provided a high scientific evidence methodology (randomized design and/or systematic reviews with meta-analysis). Furthermore, most were single-center experiences with small sample size and there were no large multi-center studies. PBL methodology obtained a high level of satisfaction, especially among students. It was more effective than other more traditional (or lecture-based methods) at improving social and communication skills, problem-solving and self-learning skills. Knowledge retention and academic performance weren’t worse (and in many studies were better) than with traditional methods. PBL was not universally widespread, probably because requires greater human resources and continuous training for its implementation.

PBL is an effective and satisfactory methodology for medical education. It is likely that through PBL medical students will not only acquire knowledge but also other competencies that are needed in medical professionalism.

Peer Review reports

There has always been enormous interest in identifying the best learning methods. In the mid-twentieth century, US educator Edgar Dale proposed which actions would lead to deeper learning than others and published the well-known (and at the same time controversial) “Cone of Experience or Cone of Dale”. At the apex of the cone are oral representations (verbal descriptions, written descriptions, etc.) and at the base is direct experience (based on a person carrying out the activity that they aim to learn), which represents the greatest depth of our learning. In other words, each level of the cone corresponds to various learning methods. At the base are the most effective, participative methods (what we do and what we say) and at the apex are the least effective, abstract methods (what we read and what we hear) [ 1 ]. In 1990, psychologist George Miller proposed a framework pyramid to assess clinical competence. At the lowest level of the pyramid is knowledge (knows), followed by the competence (knows how), execution (shows how) and finally the action (does) [ 2 ]. Both Miller’s pyramid and Dale’s cone propose a very efficient way of training and, at the same time, of evaluation. Miller suggested that the learning curve passes through various levels, from the acquisition of theoretical knowledge to knowing how to put this knowledge into practice and demonstrate it. Dale stated that to remember a high percentage of the acquired knowledge, a theatrical representation should be carried out or real experiences should be simulated. It is difficult to situate methodologies such as problem-based learning (PBL), case-based learning (CBL) and team-based learning (TBL) in the context of these learning frameworks.

In the last 50 years, various university education models have emerged and have attempted to reconcile teaching with learning, according to the principle that students should lead their own learning process. Perhaps one of the most successful models is PBL that came out of the English-speaking environment. There are many descriptions of PBL in the literature, but in practice there is great variability in what people understand by this methodology. The original conception of PBL as an educational strategy in medicine was initiated at McMaster University (Canada) in 1969, leaving aside the traditional methodology (which is often based on lectures) and introducing student-centered learning. The new formulation of medical education proposed by McMaster did not separate the basic sciences from the clinical sciences, and partially abandoned theoretical classes, which were taught after the presentation of the problem. In its original version, PBL is a methodology in which the starting point is a problem or a problematic situation. The situation enables students to develop a hypothesis and identify learning needs so that they can better understand the problem and meet the established learning objectives [ 3 , 4 ]. PBL is taught using small groups (usually around 8–10 students) with a tutor. The aim of the group sessions is to identify a problem or scenario, define the key concepts identified, brainstorm ideas and discuss key learning objectives, research these and share this information with each other at subsequent sessions. Tutors are used to guide students, so they stay on track with the learning objectives of the task. Contemporary medical education also employs other small group learning methods including CBL and TBL. Characteristics common to the pedagogy of both CBL and TBL include the use of an authentic clinical case, active small-group learning, activation of existing knowledge and application of newly acquired knowledge. In CBL students are encouraged to engage in peer learning and apply new knowledge to these authentic clinical problems under the guidance of a facilitator. CBL encourages a structured and critical approach to clinical problem-solving, and, in contrast to PBL, is designed to allow the facilitator to correct and redirect students [ 5 ]. On the other hand, TBL offers a student-centered, instructional approach for large classes of students who are divided into small teams of typically five to seven students to solve clinically relevant problems. The overall similarities between PBL and TBL relate to the use of professionally relevant problems and small group learning, while the main difference relates to one teacher facilitating interactions between multiple self-managed teams in TBL, whereas each small group in PBL is facilitated by one teacher. Further differences are related to mandatory pre-reading assignments in TBL, testing of prior knowledge in TBL and activating prior knowledge in PBL, teacher-initiated clarifying of concepts that students struggled with in TBL versus students-generated issues that need further study in PBL, inter-team discussions in TBL and structured feedback and problems with related questions in TBL [ 6 ].

In the present study we have focused on PBL methodology, and, as attractive as the method may seem, we should consider whether it is really useful and effective as a learning method. Although PBL has been adopted in undergraduate and postgraduate medical education, the effectiveness (in terms of academic performance and/or skill improvement) of the method is still under discussion. This is due partly to the methodological difficulty in comparing PBL with traditional curricula based on lectures. To our knowledge, there is no systematic scoping review in the literature that has analyzed these aspects.

The main motivation for carrying out this research and writing this article was scientific but also professional interest. We believe that reviewing the state of the art of this methodology once it was already underway in our young Faculty of Medicine, could allow us to know if we were on the right track and if we should implement changes in the training of future doctors.

The primary goal of this study was to appraise available international evidence concerning to the effectiveness and usefulness of PBL methodology in undergraduate medical teaching programs. As the intention was to synthesize the scattered evidence available, the option was to conduct a scoping review. A scoping study tends to address broader topics where many different study designs might be applicable. Scoping studies may be particularly relevant to disciplines, such as medical education, in which the paucity of randomized controlled trials makes it difficult for researchers to undertake systematic reviews [ 7 , 8 ]. Even though the scoping review methodology is not widely used in medical education, it is well established for synthesizing heterogeneous research evidence [ 9 ].

The specific aims were: 1) to determine the effectiveness of PBL in academic performance (learning and retention of knowledge) in medical education; 2) to determine the effectiveness of PBL in other skills (social and communication skills, problem solving or self-learning) in medical education; 3) to know the level of satisfaction perceived by the medical students (and/or tutors) when they are taught with the PBL methodology (or when they teach in case of tutors).

This review was guided by Arksey and O’Malley’s methodological framework for conducting scoping reviews. The five main stages of the framework are: (1) identifying the research question; (2) ascertaining relevant studies; (3) determining study selection; (4) charting the data; and (5) collating, summarizing and reporting the results [ 7 ]. We reported our process according to the PRISMA Extension for Scoping Reviews [ 10 ].

Stage 1: Identifying the research question

With the goals of the study established, the four members of the research team established the research questions. The primary research question was “What is the effectiveness of PBL methodology for learning in undergraduate medicine?” and the secondary question “What is the perception and satisfaction of medical students and tutors in relation to PBL methodology?”.

Stage 2: Identifying relevant studies

After the research questions and a search strategy were defined, the searches were conducted in PubMed and Web of Science using the MeSH terms “problem-based learning” and “Medicine” (the Boolean operator “AND” was applied to the search terms). No limits were set on language, publication date, study design or country of origin. The search was carried out on 14th February 2021. Citations were uploaded to the reference manager software Mendeley Desktop (version 1.19.8) for title and abstract screening, and data characterization.

Stage 3: Study selection

The searching strategy in our scoping study generated a total of 2399 references. The literature search and screening of title, abstract and full text for suitability was performed independently by one author (JCT) based on predetermined inclusion criteria. The inclusion criteria were: 1) PBL methodology was the major research topic; 2) participants were undergraduate medical students or tutors; 3) the main outcome was academic performance (learning and knowledge retention); 4) the secondary outcomes were one of the following: social and communication skills, problem solving or self-learning and/or student/tutor satisfaction; 5) all types of studies were included including descriptive papers, qualitative, quantitative and mixed studies methods, perspectives, opinion, commentary pieces and editorials. Exclusion criteria were studies including other types of participants such as postgraduate medical students, residents and other health non-medical specialties such as pharmacy, veterinary, dentistry or nursing. Studies published in languages other than Spanish and English were also excluded. Situations in which uncertainty arose, all authors (CB, ES, RP) discussed the publication together to reach a final consensus. The outcomes of the search results and screening are presented in Fig.  1 . One-hundred and twenty-four articles met the inclusion criteria and were included in the final analysis.

figure 1

Study flow PRISMA diagram. Details the review process through the different stages of the review; includes the number of records identified, included and excluded

Stage 4: Charting the data

A data extraction table was developed by the research team. Data extracted from each of the 124 publications included general publication details (year, author, and country), sample size, study population, design/methodology, main and secondary outcomes and relevant results and/or conclusions. We compiled all data into a single spreadsheet in Microsoft Excel for coding and analysis. The characteristics and the study subject of the 124 articles included in this review are summarized in Tables 1 and 2 . The detailed results of the Microsoft Excel file is also available in Additional file 1 .

Stage 5: Collating, summarizing and reporting the results

As indicated in the search strategy (Fig.  1 ) this review resulted in the inclusion of 124 publications. Publication years of the final sample ranged from 1990 to 2020, the majority of the publications (51, 41%) were identified for the years 2010–2020 and the years in which there were more publications were 2001, 2009 and 2015. Countries from the six continents were represented in this review. Most of the publications were from Asia (especially China and Saudi Arabia) and North America followed by Europe, and few studies were from Africa, Oceania and South America. The country with more publications was the United States of America ( n  = 27). The most frequent designs of the selected studies were surveys or questionnaires ( n  = 45) and comparative studies ( n  = 48, only 16 were randomized) with traditional or lecture-based learning methodologies (in two studies the comparison was with simulation) and the most frequently measured outcomes were academic performance followed by student satisfaction (48 studies measured more than one outcome). The few studies with the highest level of scientific evidence (systematic review and meta-analysis and randomized studies) were conducted mostly in Asian countries (Tables  1 and 2 ). The study subject was specified in 81 publications finding a high variability but at the same time great representability of almost all disciplines of the medical studies.

The sample size was available in 99 publications and the median [range] of the participants was 132 [14–2061]. According to study population, there were more participants in the students’ focused studies (median 134 and range 16–2061) in comparison with the tutors’ studies (median 53 and range 14–494).

Finally, after reviewing in detail the measured outcomes (main and secondary) according to the study design (Table 2 and Additional file 1 ) we present a narrative overview and a synthesis of the main findings.

Main outcome: academic performance (learning and knowledge retention)

Seventy-one of the 124 publications had learning and/or knowledge retention as a measured outcome, most of them ( n  = 45) were comparative studies with traditional or lecture-based learning and 16 were randomized. These studies were varied in their methodology, were performed in different geographic zones, and normally analyzed the experience of just one education center. Most studies ( n  = 49) reported superiority of PBL in learning and knowledge acquisition [ 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 ] but there was no difference between traditional and PBL curriculums in another 19 studies [ 60 , 61 , 62 , 63 , 64 , 65 , 66 , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75 , 76 , 77 , 78 ]. Only three studies reported that PBL was less effective [ 79 , 80 , 81 ], two of them were randomized (in one case favoring simulation-based learning [ 80 ] and another favoring lectures [ 81 ]) and the remaining study was based on tutors’ opinion rather than real academic performance [ 79 ]. It is noteworthy that the four systematic reviews and meta-analysis included in this scoping review, all carried out in China, found that PBL was more effective than lecture-based learning in improving knowledge and other skills (clinical, problem-solving, self-learning and collaborative) [ 40 , 51 , 53 , 58 ]. Another relevant example of the superiority of the PBL method over the traditional method is the experience reported by Hoffman et al. from the University of Missouri-Columbia. The authors analyzed the impact of implementing the PBL methodology in its Faculty of Medicine and revealed an improvement in the academic results that lasted for over a decade [ 31 ].

Secondary outcomes

Social and communication skills.

We found five studies in this scoping review that focused on these outcomes and all of them described that a curriculum centered on PBL seems to instill more confidence in social and communication skills among students. Students perceived PBL positively for teamwork, communication skills and interpersonal relations [ 44 , 45 , 67 , 75 , 82 ].

Student satisfaction

Sixty publications analyzed student satisfaction with PBL methodology. The most frequent methodology were surveys or questionnaires (30 studies) followed by comparative studies with traditional or lecture-based methodology (19 studies, 7 of them were randomized). Almost all the studies (51) have shown that PBL is generally well-received [ 11 , 13 , 18 , 19 , 20 , 21 , 22 , 26 , 29 , 34 , 37 , 39 , 41 , 42 , 46 , 50 , 56 , 58 , 63 , 64 , 66 , 78 , 82 , 83 , 84 , 85 , 86 , 87 , 88 , 89 , 90 , 91 , 92 , 93 , 94 , 95 , 96 , 97 , 98 , 99 , 100 , 101 , 102 , 103 , 104 , 105 , 106 , 107 , 108 , 109 , 110 ] but in 9 studies the overall satisfaction scores for the PBL program were neutral [ 76 , 111 , 112 , 113 , 114 , 115 , 116 ] or negative [ 117 , 118 ]. Some factors that have been identified as key components for PBL to be successful include: a small group size, the use of scenarios of realistic cases and good management of group dynamics. Despite a mostly positive assessment of the PBL methodology by the students, there were some negative aspects that could be criticized or improved. These include unclear communication of the learning methodology, objectives and assessment method; bad management and organization of the sessions; tutors having little experience of the method; and a lack of standardization in the implementation of the method by the tutors.

Tutor satisfaction

There are only 15 publications that analyze the satisfaction of tutors, most of them surveys or questionnaires [ 85 , 88 , 92 , 98 , 108 , 110 , 119 ]. In comparison with the satisfaction of the students, here the results are more neutral [ 112 , 113 , 115 , 120 , 121 ] and even unfavorable to the PBL methodology in two publications [ 117 , 122 ]. PBL teaching was favored by tutors when the institutions train them in the subject, when there was administrative support and adequate infrastructure and coordination [ 123 ]. In some experiences, the PBL modules created an unacceptable toll of anxiety, unhappiness and strained relations.

Other skills (problem solving and self-learning)

The effectiveness of the PBL methodology has also been explored in other outcomes such as the ability to solve problems and to self-directed learning. All studies have shown that PBL is more effective than lecture-based learning in problem-solving and self-learning skills [ 18 , 24 , 40 , 48 , 67 , 75 , 93 , 104 , 124 ]. One single study found a poor accuracy of the students’ self-assessment when compared to their own performance [ 125 ]. In addition, there are studies that support PBL methodology for integration between basic and clinical sciences [ 126 ].

Finally, other publications have reported the experience of some faculties in the implementation of the PBL methodology. Different experiences have demonstrated that it is both possible and feasible to shift from a traditional curriculum to a PBL program, recognizing that PBL methodology is complex to plan and structure, needs a large number of human and material resources, requiring an immense teacher effort [ 28 , 31 , 94 , 127 , 128 , 129 , 130 , 131 , 132 , 133 ]. In addition, and despite its cost implication, a PBL curriculum can be successfully implemented in resource-constrained settings [ 134 , 135 ].

We conducted this scoping review to explore the effectiveness and satisfaction of PBL methodology for teaching in undergraduate medicine and, to our knowledge, it is the only study of its kind (systematic scoping review) that has been carried out in the last years. Similarly, Vernon et al. conducted a meta-analysis of articles published between 1970 and 1992 and their results generally supported the superiority of the PBL approach over more traditional methods of medical education [ 136 ]. PBL methodology is implemented in medical studies on the six continents but there is more experience (or at least more publications) from Asian countries and North America. Despite its apparent difficulties on implementation, a PBL curriculum can be successfully implemented in resource-constrained settings [ 134 , 135 ]. Although it is true that the few studies with the highest level of scientific evidence (randomized studies and meta-analysis) were carried out mainly in Asian countries (and some in North America and Europe), there were no significant differences in the main results according to geographical origin.

In this scoping review we have included a large number of publications that, despite their heterogeneity, tend to show favorable results for the usefulness of the PBL methodology in teaching and learning medicine. The results tend to be especially favorable to PBL methodology when it is compared with traditional or lecture-based teaching methods, but when compared with simulation it is not so clear. There are two studies that show neutral [ 71 ] or superior [ 80 ] results to simulation for the acquisition of specific clinical skills. It seems important to highlight that the four meta-analysis included in this review, which included a high number of participants, show results that are clearly favorable to the PBL methodology in terms of knowledge, clinical skills, problem-solving, self-learning and satisfaction [ 40 , 51 , 53 , 58 ].

Regarding the level of satisfaction described in the surveys or questionnaires, the overall satisfaction rate was higher in the PBL students when compared with traditional learning students. Students work in small groups, allowing and promoting teamwork and facilitating social and communication skills. As sessions are more attractive and dynamic than traditional classes, this could lead to a greater degree of motivation for learning.

These satisfaction results are not so favorable when tutors are asked and this may be due to different reasons; first, some studies are from the 90s, when the methodology was not yet fully implemented; second, the number of tutors included in these studies is low; and third, and perhaps most importantly, the complaints are not usually due to the methodology itself, but rather due to lack of administrative support, and/or work overload. PBL methodology implies more human and material resources. The lack of experience in guided self-learning by lecturers requires more training. Some teachers may not feel comfortable with the method and therefore do not apply it correctly.

Despite how effective and/or attractive the PBL methodology may seem, some (not many) authors are clearly detractors and have published opinion articles with fierce criticism to this methodology. Some of the arguments against are as follows: clinical problem solving is the wrong task for preclinical medical students, self-directed learning interpreted as self-teaching is not appropriate in undergraduate medical education, relegation to the role of facilitators is a misuse of the faculty, small-group experience is inherently variable and sometimes dysfunctional, etc. [ 137 ].

In light of the results found in our study, we believe that PBL is an adequate methodology for the training of future doctors and reinforces the idea that the PBL should have an important weight in the curriculum of our medical school. It is likely that training through PBL, the doctors of the future will not only have great knowledge but may also acquire greater capacity for communication, problem solving and self-learning, all of which are characteristics that are required in medical professionalism. For this purpose, Koh et al. analyzed the effect that PBL during medical school had on physician competencies after graduation, finding a positive effect mainly in social and cognitive dimensions [ 138 ].

Despite its defects and limitations, we must not abandon this methodology and, in any case, perhaps PBL should evolve, adapt, and improve to enhance its strengths and improve its weaknesses. It is likely that the new generations, trained in schools using new technologies and methodologies far from lectures, will feel more comfortable (either as students or as tutors) with methodologies more like PBL (small groups and work focused on problems or projects). It would be interesting to examine the implementation of technologies and even social media into PBL sessions, an issue that has been poorly explorer [ 139 ].

Limitations

Scoping reviews are not without limitations. Our review includes 124 articles from the 2399 initially identified and despite our efforts to be as comprehensive as possible, we may have missed some (probably few) articles. Even though this review includes many studies, their design is very heterogeneous, only a few include a large sample size and high scientific evidence methodology. Furthermore, most are single-center experiences and there are no large multi-center studies. Finally, the frequency of the PBL sessions (from once or twice a year to the whole curriculum) was not considered, in part, because most of the revised studies did not specify this information. This factor could affect the efficiency of PBL and the perceptions of students and tutors about PBL. However, the adoption of a scoping review methodology was effective in terms of summarizing the research findings, identifying limitations in studies’ methodologies and findings and provided a more rigorous vision of the international state of the art.

Conclusions

This systematic scoping review provides a broad overview of the efficacy of PBL methodology in undergraduate medicine teaching from different countries and institutions. PBL is not a new teaching method given that it has already been 50 years since it was implemented in medicine courses. It is a method that shifts the leading role from teachers to students and is based on guided self-learning. If it is applied properly, the degree of satisfaction is high, especially for students. PBL is more effective than traditional methods (based mainly on lectures) at improving social and communication skills, problem-solving and self-learning skills, and has no worse results (and in many studies better results) in relation to academic performance. Despite that, its use is not universally widespread, probably because it requires greater human resources and continuous training for its implementation. In any case, more comparative and randomized studies and/or other systematic reviews and meta-analysis are required to determine which educational strategies could be most suitable for the training of future doctors.

Abbreviations

  • Problem-based learning

Case-based learning

Team-based learning

References:

Dale E. Methods for analyzing the content of motion pictures. J Educ Sociol. 1932;6:244–50.

Google Scholar  

Miller GE. The assessment of clinical skills/competence/performance. Acad Med. 1990;65(9 Suppl):S63–7. https://doi.org/10.1097/00001888-199009000-00045 .

Article   Google Scholar  

Bodagh N, Bloomfield J, Birch P, Ricketts W. Problem-based learning: a review. Br J Hosp Med (Lond). 2017;78:C167–70. https://doi.org/10.12968/hmed.2017.78.11.C167 .

- Branda LA. El abc del ABP: Lo esencial del aprendizaje basado en problemas. In: Fundación Dr. Esteve, Cuadernos de la fundación Dr. Antonio Esteve nº27: El aprendizaje basado en problemas en sus textos, pp.1–16. 2013. Barcelona.

Burgess A, Matar E, Roberts C, et al. Scaffolding medical student knowledge and skills: team-based learning (TBL) and case-based learning (CBL). BMC Med Educ. 2021;21:238. https://doi.org/10.1186/s12909-021-02638-3 .

Dolmans D, Michaelsen L, van Merriënboer J, van der Vleuten C. Should we choose between problem-based learning and team-based learning? No, combine the best of both worlds! Med Teach. 2015;37:354–9. https://doi.org/10.3109/0142159X.2014.948828 .

Arksey H, O’Malley L. Scoping studies: towards a methodological framework. In J Soc Res Methodol. 2005;8:19–32. https://doi.org/10.1080/1364557032000119616 .

Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69. https://doi.org/10.1186/1748-5908-5-69 .

Pham MT, Rajić A, Greig JD, Sargeant JM, Papadopoulos A, McEwen SA. A scoping review of scoping reviews: advancing the approach and enhancing the consistency. Res Synth Methods. 2014;5:371–85. https://doi.org/10.1002/jrsm.1123 .

Tricco AC, Lillie E, Zarin W, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169:467–73. https://doi.org/10.7326/M18-0850 .

Sokas RK, Diserens D, Johnston MA. Integrating occupational-health into the internal medicine clerkship using problem-based learning. Clin Res. 1990;38:A735.

Richards BF, Ober KP, Cariaga-Lo L, et al. Ratings of students’ performances in a third-year internal medicine clerkship: a comparison between problem-based and lecture-based curricula. Acad Med. 1996;71:187–9. https://doi.org/10.1097/00001888-199602000-00028 .

Gresham CL, Philp JR. Problem-based learning in clinical medicine. Teach Learn Med. 1996;8:111–5. https://doi.org/10.1080/10401339609539776 .

Hill J, Rolfe IE, Pearson SA, Heathcote A. Do junior doctors feel they are prepared for hospital practice? A study of graduates from traditional and non-traditional medical schools. Med Educ. 1998;32:19–24. https://doi.org/10.1046/j.1365-2923.1998.00152.x .

Blake RL, Parkison L. Faculty evaluation of the clinical performances of students in a problem-based learning curriculum. Teach Learn Med. 1998;10:69–73. https://doi.org/10.1207/S15328015TLM1002\_3 .

Hmelo CE. Problem-based learning: effects on the early acquisition of cognitive skill in medicine. J Learn Sc. 1998;7:173–208. https://doi.org/10.1207/s15327809jls0702\_2 .

Finch PN. The effect of problem-based learning on the academic performance of students studying podiatric medicine in Ontario. Med Educ. 1999;33:411–7.

Casassus P, Hivon R, Gagnayre R, d’Ivernois JF. An initial experiment in haematology instruction using the problem-based learning method in third-year medical training in France. Hematol Cell Ther. 1999;41:137–44. https://doi.org/10.1007/s00282-999-0137-0 .

Purdy RA, Benstead TJ, Holmes DB, Kaufman DM. Using problem-based learning in neurosciences education for medical students. Can J Neurol Sci. 1999;26:211–6. https://doi.org/10.1017/S0317167100000287 .

Farrell TA, Albanese MA, Pomrehn PRJ. Problem-based learning in ophthalmology: a pilot program for curricular renewal. Arch Ophthalmol. 1999;117:1223–6. https://doi.org/10.1001/archopht.117.9.1223 .

Curtis JA, Indyk D, Taylor B. Successful use of problem-based learning in a third-year pediatric clerkship. Ambul Pediatr. 2001;1:132–5. https://doi.org/10.1367/1539-4409(2001)001%3c0132:suopbl%3e2.0.co;2 .

Trevena LJ, Clarke RM. Self-directed learning in population health. a clinically relevant approach for medical students. Am J Prev Med. 2002;22:59–65. https://doi.org/10.1016/s0749-3797(01)00395-6 .

Astin J, Jenkins T, Moore L. Medical students’ perspective on the teaching of medical statistics in the undergraduate medical curriculum. Stat Med. 2002;21:1003–7. https://doi.org/10.1002/sim.1132 .

Whitfield CR, Manger EA, Zwicker J, Lehman EB. Differences between students in problem-based and lecture-based curricula measured by clerkship performance ratings at the beginning of the third year. Teach Learn Med. 2002;14:211–7. https://doi.org/10.1207/S15328015TLM1404\_2 .

McParland M, Noble LM, Livingston G. The effectiveness of problem-based learning compared to traditional teaching in undergraduate psychiatry. Med Educ. 2004;38:859–67. https://doi.org/10.1111/j.1365-2929.2004.01818.x .

Casey PM, Magrane D, Lesnick TG. Improved performance and student satisfaction after implementation of a problem-based preclinical obstetrics and gynecology curriculum. Am J Obstet Gynecol. 2005;193:1874–8. https://doi.org/10.1016/j.ajog.2005.07.061 .

Gurpinar E, Musal B, Aksakoglu G, Ucku R. Comparison of knowledge scores of medical students in problem-based learning and traditional curriculum on public health topics. BMC Med Educ. 2005;5:7. https://doi.org/10.1186/1472-6920-5-7 .

Tamblyn R, Abrahamowicz M, Dauphinee D, et al. Effect of a community oriented problem based learning curriculum on quality of primary care delivered by graduates: historical cohort comparison study. BMJ. 2005;331:1002. https://doi.org/10.1136/bmj.38636.582546.7C .

Abu-Hijleh MF, Chakravarty M, Al-Shboul Q, Kassab S, Hamdy H. Integrating applied anatomy in surgical clerkship in a problem-based learning curriculum. Surg Radiol Anat. 2005;27:152–7. https://doi.org/10.1007/s00276-004-0293-4 .

Distlehorst LH, Dawson E, Robbs RS, Barrows HS. Problem-based learning outcomes: the glass half-full. Acad Med. 2005;80:294–9. https://doi.org/10.1097/00001888-200503000-00020 .

Hoffman K, Hosokawa M, Blake R Jr, Headrick L, Johnson G. Problem-based learning outcomes: ten years of experience at the University of Missouri-Columbia school of medicine. Acad Med. 2006;81:617–25. https://doi.org/10.1097/01.ACM.0000232411.97399.c6 .

Kong J, Li X, Wang Y, Sun W, Zhang J. Effect of digital problem-based learning cases on student learning outcomes in ophthalmology courses. Arch Ophthalmol. 2009;127:1211–4. https://doi.org/10.1001/archophthalmol.2009.110 .

Tsou KI, Cho SL, Lin CS, et al. Short-term outcomes of a near-full PBL curriculum in a new Taiwan medical school. Kaohsiung J Med Sci. 2009;25:282–93. https://doi.org/10.1016/S1607-551X(09)70075-0 .

Wang J, Zhang W, Qin L, et al. Problem-based learning in regional anatomy education at Peking University. Anat Sci Educ. 2010;3:121–6. https://doi.org/10.1002/ase.151 .

Abou-Elhamd KA, Rashad UM, Al-Sultan AI. Applying problem-based learning to otolaryngology teaching. J Laryngol Otol. 2011;125:117–20. https://doi.org/10.1017/S0022215110001702 .

Urrutia Aguilar ME, Hamui-Sutton A, Castaneda Figueiras S, van der Goes TI, Guevara-Guzman R. Impact of problem-based learning on the cognitive processes of medical students. Gac Med Mex. 2011;147:385–93.

Tian J-H, Yang K-H, Liu A-P. Problem-based learning in evidence-based medicine courses at Lanzhou University. Med Teach. 2012;34:341. https://doi.org/10.3109/0142159X.2011.531169 .

Hoover CR, Wong CC, Azzam A. From primary care to public health: using problem-based Learning and the ecological model to teach public health to first year medical students. J Community Health. 2012;37:647–52. https://doi.org/10.1007/s10900-011-9495-y .

Li J, Li QL, Li J, et al. Comparison of three problem-based learning conditions (real patients, digital and paper) with lecture-based learning in a dermatology course: a prospective randomized study from China. Med Teach. 2013;35:e963–70. https://doi.org/10.3109/0142159X.2012.719651 .

Ding X, Zhao L, Chu H, et al. Assessing the effectiveness of problem-based learning of preventive medicine education in China. Sci Rep. 2014;4:5126. https://doi.org/10.1038/srep05126 .

Meo SA. Undergraduate medical student’s perceptions on traditional and problem based curricula: pilot study. J Pak Med Assoc. 2014;64:775–9.

Khoshnevisasl P, Sadeghzadeh M, Mazloomzadeh S, Hashemi Feshareki R, Ahmadiafshar A. Comparison of problem-based learning with lecture-based learning. Iran Red Crescent Med J. 2014;16: e5186. https://doi.org/10.5812/ircmj.5186 .

Al-Drees AA, Khalil MS, Irshad M, Abdulghani HM. Students’ perception towards the problem based learning tutorial session in a system-based hybrid curriculum. Saudi Med J. 2015;36:341–8. https://doi.org/10.15537/smj.2015.3.10216 .

Al-Shaikh G, Al Mussaed EM, Altamimi TN, Elmorshedy H, Syed S, Habib F. Perception of medical students regarding problem based learning. Kuwait Med J. 2015;47:133–8.

Hande S, Mohammed CA, Komattil R. Acquisition of knowledge, generic skills and attitudes through problem-based learning: student perspectives in a hybrid curriculum. J Taibah Univ Medical Sci. 2015;10:21–5. https://doi.org/10.1016/j.jtumed.2014.01.008 .

González Mirasol E, Gómez García MT, Lobo Abascal P, Moreno Selva R, Fuentes Rozalén AM, González MG. Analysis of perception of training in graduates of the faculty of medicine at Universidad de Castilla-Mancha. Eval Program Plann. 2015;52:169–75. https://doi.org/10.1016/j.evalprogplan.2015.06.001 .

Yanamadala M, Kaprielian VS, O’Connor Grochowski C, Reed T, Heflin MT. A problem-based learning curriculum in geriatrics for medical students. Gerontol Geriatr Educ. 2018;39:122–31. https://doi.org/10.1080/02701960.2016.1152268 .

Balendran K, John L. Comparison of learning outcomes in problem based learning and lecture based learning in teaching forensic medicine. J Evol Med Dent Sci. 2017;6:89–92. https://doi.org/10.14260/jemds/2017/22 .

Chang H-C, Wang N-Y, Ko W-R, Yu Y-T, Lin L-Y, Tsai H-F. The effectiveness of clinical problem-based learning model of medico-jurisprudence education on general law knowledge for obstetrics/gynecological interns. Taiwan J Obstet Gynecol. 2017;56:325–30. https://doi.org/10.1016/j.tjog.2017.04.011 .

Eltony SA, El-Sayed NH, El-Araby SE-S, Kassab SE. Implementation and evaluation of a patient safety course in a problem-based learning program. Educ Heal. 2017;30:44–9. https://doi.org/10.4103/1357-6283.210512 .

Zhang S, Xu J, Wang H, Zhang D, Zhang Q, Zou L. Effects of problem-based learning in Chinese radiology education: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97: e0069. https://doi.org/10.1097/MD.0000000000010069 .

Hincapie Parra DA, Ramos Monobe A, Chrino-Barcelo V. Problem based learning as an active learning strategy and its impact on academic performance and critical thinking of medical students. Rev Complut Educ. 2018;29:665–81. https://doi.org/10.5209/RCED.53581 .

Ma Y, Lu X. The effectiveness of problem-based learning in pediatric medical education in China: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2019;98: e14052. https://doi.org/10.1097/MD.0000000000014052 .

Berger C, Brinkrolf P, Ertmer C, et al. Combination of problem-based learning with high-fidelity simulation in CPR training improves short and long-term CPR skills: a randomised single blinded trial. BMC Med Educ. 2019;19:180. https://doi.org/10.1186/s12909-019-1626-7 .

Aboonq M, Alquliti A, Abdulmonem I, Alpuq N, Jalali K, Arabi S. Students’ approaches to learning and perception of learning environment: a comparison between traditional and problem-based learning medical curricula. Indo Am J Pharm Sci. 2019;6:3610–9. https://doi.org/10.5281/zenodo.2562660 .

Li X, Xie F, Li X, et al. Development, application, and evaluation of a problem-based learning method in clinical laboratory education. Clin Chim ACTA. 2020;510:681–4. https://doi.org/10.1016/j.cca.2020.08.037 .

Zhao W, He L, Deng W, Zhu J, Su A, Zhang Y. The effectiveness of the combined problem-based learning (PBL) and case-based learning (CBL) teaching method in the clinical practical teaching of thyroid disease. BMC Med Educ. 2020;20:381. https://doi.org/10.1186/s12909-020-02306 .

Liu C-X, Ouyang W-W, Wang X-W, Chen D, Jiang Z-L. Comparing hybrid problem-based and lecture learning (PBL plus LBL) with LBL pedagogy on clinical curriculum learning for medical students in China: a meta-analysis of randomized controlled trials. Medicine (Baltimore). 2020;99:e19687. https://doi.org/10.1097/MD.0000000000019687 .

Margolius SW, Papp KK, Altose MD, Wilson-Delfosse AL. Students perceive skills learned in pre-clerkship PBL valuable in core clinical rotations. Med Teach. 2020;42:902–8. https://doi.org/10.1080/0142159X.2020.1762031 .

Schwartz RW, Donnelly MB, Nash PP, Young B. Developing students cognitive skills in a problem-based surgery clerkship. Acad Med. 1992;67:694–6. https://doi.org/10.1097/00001888-199210000-00016 .

Mennin SP, Friedman M, Skipper B, Kalishman S, Snyder J. Performances on the NBME-I, NBME-II, and NBME-III by medical-students in the problem-based learning and conventional tracks at the university-of-new-mexico. Acad Med. 1993;68:616–24. https://doi.org/10.1097/00001888-199308000-00012 .

Kaufman DM, Mann KV. Comparing achievement on the medical council of Canada qualifying examination part I of students in conventional and problem-based learning curricula. Acad Med. 1998;73:1211–3. https://doi.org/10.1097/00001888-199811000-00022 .

Kaufman DM, Mann KV. Achievement of students in a conventional and Problem-Based Learning (PBL) curriculum. Adv Heal Sci Educ. 1999;4:245–60. https://doi.org/10.1023/A:1009829831978 .

Antepohl W, Herzig S. Problem-based learning versus lecture-based learning in a course of basic pharmacology: a controlled, randomized study. Med Educ. 1999;33:106–13. https://doi.org/10.1046/j.1365-2923.1999.00289.x .

Dyke P, Jamrozik K, Plant AJ. A randomized trial of a problem-based learning approach for teaching epidemiology. Acad Med. 2001;76:373–9. https://doi.org/10.1097/00001888-200104000-00016 .

Brewer DW. Endocrine PBL in the year 2000. Adv Physiol Educ. 2001;25:249–55. https://doi.org/10.1152/advances.2001.25.4.249 .

Seneviratne RD, Samarasekera DD, Karunathilake IM, Ponnamperuma GG. Students’ perception of problem-based learning in the medical curriculum of the faculty of medicine, University of Colombo. Ann Acad Med Singapore. 2001;30:379–81.

Alleyne T, Shirley A, Bennett C, et al. Problem-based compared with traditional methods at the faculty of medical sciences, University of the West Indies: a model study. Med Teach. 2002;24:273–9. https://doi.org/10.1080/01421590220125286 .

Norman GR, Wenghofer E, Klass D. Predicting doctor performance outcomes of curriculum interventions: problem-based learning and continuing competence. Med Educ. 2008;42:794–9. https://doi.org/10.1111/j.1365-2923.2008.03131.x .

Cohen-Schotanus J, Muijtjens AMM, Schoenrock-Adema J, Geertsma J, van der Vleuten CPM. Effects of conventional and problem-based learning on clinical and general competencies and career development. Med Educ. 2008;42:256–65. https://doi.org/10.1111/j.1365-2923.2007.02959.x .

Wenk M, Waurick R, Schotes D, et al. Simulation-based medical education is no better than problem-based discussions and induces misjudgment in self-assessment. Adv Health Sci Educ Theory Pract. 2009;14:159–71. https://doi.org/10.1007/s10459-008-9098-2 .

Collard A, Gelaes S, Vanbelle S, et al. Reasoning versus knowledge retention and ascertainment throughout a problem-based learning curriculum. Med Educ. 2009;43:854–65. https://doi.org/10.1111/j.1365-2923.2009.03410.x .

Nouns Z, Schauber S, Witt C, Kingreen H, Schuettpelz-Brauns K. Development of knowledge in basic sciences: a comparison of two medical curricula. Med Educ. 2012;46:1206–14. https://doi.org/10.1111/medu.12047 .

Saloojee S, van Wyk J. The impact of a problem-based learning curriculum on the psychiatric knowledge and skills of final-year students at the Nelson R Mandela school of medicine. South African J Psychiatry. 2012;18:116.

Mughal AM, Shaikh SH. Assessment of collaborative problem solving skills in undergraduate medical students at Ziauddin college of medicine. Karachi Pakistan J Med Sci. 2018;34:185–9. https://doi.org/10.12669/pjms.341.13485 .

Hu X, Zhang H, Song Y, et al. Implementation of flipped classroom combined with problem-based learning: an approach to promote learning about hyperthyroidism in the endocrinology internship. BMC Med Educ. 2019;19:290. https://doi.org/10.1186/s12909-019-1714-8 .

Thompson KL, Gendreau JL, Strickling JE, Young HE. Cadaveric dissection in relation to problem-based learning case sequencing: a report of medical student musculoskeletal examination performances and self-confidence. Anat Sci Educ. 2019;12:619–26. https://doi.org/10.1002/ase.1891 .

Chang G, Cook D, Maguire T, Skakun E, Yakimets WW, Warnock GL. Problem-based learning: its role in undergraduate surgical education. Can J Surg. 1995;38:13–21.

Vernon DTA, Hosokawa MC. Faculty attitudes and opinions about problem-based learning. Acad Med. 1996;71:1233–8. https://doi.org/10.1097/00001888-199611000-00020 .

Steadman RH, Coates WC, Huang YM, et al. Simulation-based training is superior to problem-based learning for the acquisition of critical assessment and management skills. Crit Care Med. 2006;34:151–7. https://doi.org/10.1097/01.CCM.0000190619.42013.94 .

Johnston JM, Schooling CM, Leung GM. A randomised-controlled trial of two educational modes for undergraduate evidence-based medicine learning in Asia. BMC Med Educ. 2009;9:63. https://doi.org/10.1186/1472-6920-9-63 .

Suleman W, Iqbal R, Alsultan A, Baig SM. Perception of 4(th) year medical students about problem based learning. Pakistan J Med Sci. 2010;26:871–4.

Blosser A, Jones B. Problem-based learning in a surgery clerkship. Med Teach. 1991;13:289–93. https://doi.org/10.3109/01421599109089907 .

Usherwood T, Joesbury H, Hannay D. Student-directed problem-based learning in general-practice and public-health medicine. Med Educ. 1991;25:421–9. https://doi.org/10.1111/j.1365-2923.1991.tb00090.x .

Bernstein P, Tipping J, Bercovitz K, Skinner HA. Shifting students and faculty to a PBL curriculum - attitudes changed and lessons learned. Acad Med. 1995;70:245–7. https://doi.org/10.1097/00001888-199503000-00019 .

Kaufman DM, Mann KV. Comparing students’ attitudes in problem-based and conventional curricula. Acad Med. 1996;71:1096–9. https://doi.org/10.1097/00001888-199610000-00018 .

Kalaian HA, Mullan PB. Exploratory factor analysis of students’ ratings of a problem-based learning curriculum. Acad Med. 1996;71:390–2. https://doi.org/10.1097/00001888-199604000-00019 .

Vincelette J, Lalande R, Delorme P, Goudreau J, Lalonde V, Jean P. A pilot course as a model for implementing a PBL curriculum. Acad Med. 1997;72:698–701. https://doi.org/10.1097/00001888-199708000-00015 .

Ghosh S, Dawka V. Combination of didactic lecture with problem-based learning sessions in physiology teaching in a developing medical college in Nepal. Adv Physiol Educ. 2000;24:8–12.

Walters MR. Problem-based learning within endocrine physiology lectures. Adv Physiol Educ. 2001;25:225–7. https://doi.org/10.1152/advances.2001.25.4.225 .

Leung GM, Lam TH, Hedley AJ. Problem-based public health learning - from the classroom to the community. Med Educ. 2001;35:1071–2.

Khoo HE, Chhem RK, Gwee MCE, Balasubramaniam P. Introduction of problem-based learning in a traditional medical curriculum in Singapore - students’ and tutors’ perspectives. Ann Acad Med Singapore. 2001;30:371–4.

Villamor MCA. Problem-based learning (PBL) as an approach in the teaching of biochemistry of the endocrine system at the Angeles University College of Medicine. Ann Acad Med Singapore. 2001;30:382–6.

Chang C-H, Yang C-Y, See L-C, Lui P-W. High satisfaction with problem-based learning for anesthesia. Chang Gung Med J. 2004;27:654–62.

McLean M. A comparison of students who chose a traditional or a problem-based learning curriculum after failing year 2 in the traditional curriculum: a unique case study at the Nelson R. Mandela school of medicine. Teach Learn Med. 2004;16:301–3. https://doi.org/10.1207/s15328015tlm1603\_15 .

Lucas M, García Guasch R, Moret E, Llasera R, Melero A. Canet J [Problem-based learning in an undergraduate medical school course on anesthesiology, recovery care, and pain management]. Rev Esp Anestesiol Reanim. 2006;53:419–25.

Burgun A, Darmoni S, Le Duff F, Weber J. Problem-based learning in medical informatics for undergraduate medical students: an experiment in two medical schools. Int J Med Inform. 2006;75:396–402. https://doi.org/10.1016/j.ijmedinf.2005.07.014 .

Gurpinar E, Senol Y, Aktekin MR. Evaluation of problem based learning by tutors and students in a medical faculty of Turkey. Kuwait Med J. 2009;41:123–7.

Elzubeir MA. Teaching of the renal system in an integrated, problem-based curriculum. Saudi J Kidney Dis Transpl. 2012;23:93–8.

Sulaiman N, Hamdy H. Problem-based learning: where are we now? Guide supplement 36.3–practical application. Med Teach. 2013;35:160–2. https://doi.org/10.3109/0142159X.2012.737965 .

Albarrak AI, Mohammed R, Abalhassan MF, Almutairi NK. Academic satisfaction among traditional and problem based learning medical students a comparative study. Saudi Med J. 2013;34:1179–88.

Nosair E, Mirghani Z, Mostafa RM. Measuring students’ perceptions of educational environment in the PBL program of Sharjah Medical College. J Med Educ Curric Dev. 2015;2:71–9. https://doi.org/10.4137/JMECDECDECD.S29926 .

Tshitenge ST, Ndhlovu CE, Ogundipe R. Evaluation of problem-based learning curriculum implementation in a clerkship rotation of a newly established African medical training institution: lessons from the University of Botswana. Pan Afr Med J. 2017;27:13. https://doi.org/10.11604/pamj.2017.27.13.10623 .

Yadav RL, Piryani RM, Deo GP, Shah DK, Yadav LK, Islam MN. Attitude and perception of undergraduate medical students toward the problem-based learning in Chitwan Medical College. Nepal Adv Med Educ Pract. 2018;9:317–22. https://doi.org/10.2147/AMEP.S160814 .

Asad MR, Tadvi N, Amir KM, Afzal K, Irfan A, Hussain SA. Medical student’s feedback towards problem based learning and interactive lectures as a teaching and learning method in an outcome-based curriculum. Int J Med Res & Heal Sci. 2019;8:78–84. https://doi.org/10.33844/ijol.2019.60392 .

Mpalanyi M, Nalweyiso ID, Mubuuke AG. Perceptions of radiography students toward problem-based learning almost two decades after its introduction at Makerere University. Uganda J Med imaging Radiat Sci. 2020;51:639–44. https://doi.org/10.1016/j.jmir.2020.06.009 .

Korkmaz NS, Ozcelik S. Evaluation of the opinions of the first, second and third term medical students about problem based learning sessions in Bezmialem Vakif University. Bezmialem Sci. 2020;8:144–9. https://doi.org/10.14235/bas.galenos.2019.3471 .

McGrew MC, Skipper B, Palley T, Kaufman A. Student and faculty perceptions of problem-based learning on a family medicine clerkship. Fam Med. 1999;31:171–6.

Kelly AM. A problem-based learning resource in emergency medicine for medical students. J Accid Emerg Med. 2000;17:320–3. https://doi.org/10.1136/emj.17.5.320 .

Bui-Mansfield LT, Chew FS. Radiologists as clinical tutors in a problem-based medical school curriculum. Acad Radiol. 2001;8:657–63. https://doi.org/10.1016/S1076-6332(03)80693-1 .

Macallan DC, Kent A, Holmes SC, Farmer EA, McCrorie P. A model of clinical problem-based learning for clinical attachments in medicine. Med Educ. 2009;43:799–807. https://doi.org/10.1111/j.1365-2923.2009.03406.x .

Grisham JW, Martiniuk ALC, Negin J, Wright EP. Problem-based learning (PBL) and public health: an initial exploration of perceptions of PBL in Vietnam. Asia-Pacific J public Heal. 2015;27:NP2019-27. https://doi.org/10.1177/1010539512436875 .

Khan IA, Al-Swailmi FK. Perceptions of faculty and students regarding Problem Based Learning: a mixed methods study. J Pak Med Assoc. 2015;65:1334–8.

Alduraywish AA, Mohager MO, Alenezi MJ, Nail AM, Aljafari AS. Evaluation of students’ experience with Problem-based Learning (PBL) applied at the College of Medicine, Al-Jouf University. Saudi Arabia J Pak Med Assoc. 2017;67:1870–3.

Yoo DM, Cho AR, Kim S. Satisfaction with and suitability of the problem-based learning program at the Catholic University of Korea College of Medicine. J Educ Eval Health Prof. 2019;16:20. https://doi.org/10.3352/jeehp.2019.16.20 .

Aldayel AA, Alali AO, Altuwaim AA, et al. Problem-based learning: medical students’ perception toward their educational environment at Al-Imam Mohammad Ibn Saud Islamic University. Adv Med Educ Pract. 2019;10:95–104. https://doi.org/10.2147/AMEP.S189062 .

DeLowerntal E. An evaluation of a module in problem-based learning. Int J Educ Dev. 1996;16:303–7. https://doi.org/10.1016/0738-0593(96)00001-6 .

Tufts MA, Higgins-Opitz SB. What makes the learning of physiology in a PBL medical curriculum challenging? Student perceptions. Adv Physiol Educ. 2009;33:187–95. https://doi.org/10.1152/advan.90214.2008 .

Aboonq M. Perception of the faculty regarding problem-based learning as an educational approach in Northwestern Saudi Arabia. Saudi Med J. 2015;36:1329–35. https://doi.org/10.15537/smj.2015.11.12263 .

Subramaniam RM, Scally P, Gibson R. Problem-based learning and medical student radiology teaching. Australas Radiol. 2004;48:335–8. https://doi.org/10.1111/j.0004-8461.2004.01317.x .

Chang BJ. Problem-based learning in medical school: a student’s perspective. Ann Med Surg. 2016;12:88–9. https://doi.org/10.1016/j.amsu.2016.11.011 .

Griffith CD, Blue AV, Mainous AG, DeSimone PA. Housestaff attitudes toward a problem-based clerkship. Med Teach. 1996;18:133–4. https://doi.org/10.3109/01421599609034147 .

Navarro HN, Zamora SJ. The opinion of teachers about tutorial problem based learning. Rev Med Chil. 2014;142:989–97. https://doi.org/10.4067/S0034-98872014000800006 .

Demiroren M, Turan S, Oztuna D. Medical students’ self-efficacy in problem-based learning and its relationship with self-regulated learning. Med Educ Online. 2016;21:30049. https://doi.org/10.3402/meo.v21.30049 .

Tousignant M, DesMarchais JE. Accuracy of student self-assessment ability compared to their own performance in a problem-based learning medical program: a correlation study. Adv Heal Sci Educ. 2002;7:19–27. https://doi.org/10.1023/A:1014516206120 .

Brynhildsen J, Dahle LO, Behrbohm Fallsberg M, Rundquist I, Hammar M. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum. Med Teach. 2002;24:286–8. https://doi.org/10.1080/01421590220134105 .

Desmarchais JE. A student-centered, problem-based curriculum - 5 years experience. Can Med Assoc J. 1993;148:1567–72.

Doig K, Werner E. The marriage of a traditional lecture-based curriculum and problem-based learning: are the offspring vigorous? Med Teach. 2000;22:173–8.

Kemahli S. Hematology education in a problem-based curriculum. Hematology. 2005;10(Suppl 1):161–3. https://doi.org/10.1080/10245330512331390267 .

Grkovic I. Transition of the medical curriculum from classical to integrated: problem-based approach and Australian way of keeping academia in medicine. Croat Med J. 2005;46:16–20.

Bosch-Barrera J, Briceno Garcia HC, Capella D, et al. Teaching bioethics to students of medicine with Problem-Based Learning (PBL). Cuad Bioet. 2015;26:303–9.

Lin Y-C, Huang Y-S, Lai C-S, Yen J-H, Tsai W-C. Problem-based learning curriculum in medical education at Kaohsiung Medical University. Kaohsiung J Med Sci. 2009;25:264–9. https://doi.org/10.1016/S1607-551X(09)70072-5 .

Salinas Sánchez AS, Hernández Millán I, Virseda Rodríguez JA, et al. Problem-based learning in urology training the faculty of medicine of the Universidad de Castilla-La Mancha model. Actas Urol Esp. 2005;29:8–15. https://doi.org/10.1016/s0210-4806(05)73193-4 .

Amoako-Sakyi D, Amonoo-Kuofi H. Problem-based learning in resource-poor settings: lessons from a medical school in Ghana. BMC Med Educ. 2015;15:221. https://doi.org/10.1186/s12909-015-0501-4 .

Carrera LI, Tellez TE, D’Ottavio AE. Implementing a problem-based learning curriculum in an Argentinean medical school: implications for developing countries. Acad Med. 2003;78:798–801. https://doi.org/10.1097/00001888-200308000-00010 .

Vernon DT, Blake RL. Does problem-based learning work? A meta-analysis of evaluative research. Acad Med. 1993;68:550–63. https://doi.org/10.1097/00001888-199307000-00015 .

Shanley PF. Viewpoint: leaving the “empty glass” of problem-based learning behind: new assumptions and a revised model for case study in preclinical medical education. Acad Med. 2007;82:479–85. https://doi.org/10.1097/ACM.0b013e31803eac4c .

Koh GC, Khoo HE, Wong ML, Koh D. The effects of problem-based learning during medical school on physician competency: a systematic review. CMAJ. 2008;178:34–41. https://doi.org/10.1503/cmaj.070565 .

Awan ZA, Awan AA, Alshawwa L, Tekian A, Park YS. Assisting the integration of social media in problem-based learning sessions in the faculty of medicine at King Abdulaziz University. Med Teach. 2018;40:S37–42. https://doi.org/10.1080/0142159X.2018.1465179 .

Download references

Acknowledgements

Not applicable

No funding was received for conducting this study.

Author information

Authors and affiliations.

Medical Education Cathedra, School of Medicine, University of Vic-Central University of Catalonia, Vic, Barcelona, Spain

Joan Carles Trullàs, Carles Blay & Ramon Pujol

Internal Medicine Service, Hospital de Olot i Comarcal de La Garrotxa, Olot, Girona, Spain

Joan Carles Trullàs

The Tissue Repair and Regeneration Laboratory (TR2Lab), University of Vic-Central University of Catalonia, Vic, Barcelona, Spain

Joan Carles Trullàs & Elisabet Sarri

Catalan Institute of Health (ICS) – Catalunya Central, Barcelona, Spain

Carles Blay

You can also search for this author in PubMed   Google Scholar

Contributions

JCT had the idea for the article, performed the literature search and data analysis and drafted the first version of the manuscript. CB, ES and RP contributed to the data analysis and suggested revisions to the manuscript. All authors read and approved the final manuscript.

Ethics declarations

Availability of data and materials.

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

Not applicable for a literature review.

Consent for publication

Competing interests.

All authors declare that they have no conflict of interest.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1..

Characteristics ofthe 124 included studies.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ . The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/ ) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Cite this article.

Trullàs, J.C., Blay, C., Sarri, E. et al. Effectiveness of problem-based learning methodology in undergraduate medical education: a scoping review. BMC Med Educ 22 , 104 (2022). https://doi.org/10.1186/s12909-022-03154-8

Download citation

Received : 03 October 2021

Accepted : 02 February 2022

Published : 17 February 2022

DOI : https://doi.org/10.1186/s12909-022-03154-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Systematic review

BMC Medical Education

ISSN: 1472-6920

a method for problem solving

Help | Advanced Search

Quantum Physics

Title: solving the $kp$ problem with the global cartan decomposition.

Abstract: Geometric methods have useful application for solving problems in a range of quantum information disciplines, including the synthesis of time-optimal unitaries in quantum control. In particular, the use of Cartan decompositions to solve problems in optimal control, especially lambda systems, has given rise to a range of techniques for solving the so-called $KP$-problem, where target unitaries belong to a semi-simple Lie group manifold $G$ whose Lie algebra admits a $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$ decomposition and time-optimal solutions are represented by subRiemannian geodesics synthesised via a distribution of generators in $\mathfrak{p}$. In this paper, we propose a new method utilising global Cartan decompositions $G=KAK$ of symmetric spaces $G/K$ for generating time-optimal unitaries for targets $-iX \in [\frak{p},\frak{p}] \subset \frak{k}$ with controls $-iH(t) \in \frak{p}$. Target unitaries are parametrised as $U=kac$ where $k,c \in K$ and $a = e^{i\Theta}$ with $\Theta \in \frak{a}$. We show that the assumption of $d\Theta=0$ equates to the corresponding time-optimal unitary control problem being able to be solved analytically using variational techniques. We identify how such control problems correspond to the holonomies of a compact globally Riemannian symmetric space, where local translations are generated by $\mathfrak{p}$ and local rotations are generated by $[\mathfrak{p},\mathfrak{p}]$.

Submission history

Access paper:.

  • HTML (experimental)
  • Other Formats

license icon

References & Citations

  • INSPIRE HEP
  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

IMAGES

  1. 7 Steps to Improve Your Problem Solving Skills

    a method for problem solving

  2. ️ Problem solving step. 5 Problem Solving Steps. 2019-01-14

    a method for problem solving

  3. problem-solving-steps-poster

    a method for problem solving

  4. Problem Solving Strategies [EFFECTIVE STRATEGIES] SmallBusinessify.com

    a method for problem solving

  5. Introduction to Problem Solving Skills

    a method for problem solving

  6. 7 Step Problem Solving Process

    a method for problem solving

VIDEO

  1. Dynamic balancing

  2. Problem solving and decomposition exercises

  3. Finite Difference Method (Problem Solving), MAT306, Lec#20, Md.Akteruzzaman, Dhaka College, Dhaka

  4. BSI method problem solving حل مسالة كاملة بالارقام لتصميم الخلطة الخرسانية بالطريقة البريطانية

  5. Problem Solving and Reasoning: Polya's Steps and Problem Solving Strategies

  6. Unitary Method Problem Solving Using Easy Method @NJClasses25

COMMENTS

  1. 35 problem-solving techniques and methods for solving complex problems

    This problem-solving method focuses on identifying strengths, weaknesses, opportunities, and threats is a tried and tested method for both individuals and teams. Start by creating a desired end state or outcome and bare this in mind - any process solving model is made more effective by knowing what you are moving towards. Create a quadrant ...

  2. What is Problem Solving? Steps, Process & Techniques

    Finding a suitable solution for issues can be accomplished by following the basic four-step problem-solving process and methodology outlined below. Step. Characteristics. 1. Define the problem. Differentiate fact from opinion. Specify underlying causes. Consult each faction involved for information. State the problem specifically.

  3. Problem-Solving Strategies: Definition and 5 Techniques to Try

    In general, effective problem-solving strategies include the following steps: Define the problem. Come up with alternative solutions. Decide on a solution. Implement the solution. Problem-solving ...

  4. The Problem-Solving Process

    Problem-solving is a mental process that involves discovering, analyzing, and solving problems. The ultimate goal of problem-solving is to overcome obstacles and find a solution that best resolves the issue. The best strategy for solving a problem depends largely on the unique situation. In some cases, people are better off learning everything ...

  5. What is Problem Solving? (Steps, Techniques, Examples)

    The problem-solving process typically includes the following steps: Identify the issue: Recognize the problem that needs to be solved. Analyze the situation: Examine the issue in depth, gather all relevant information, and consider any limitations or constraints that may be present. Generate potential solutions: Brainstorm a list of possible ...

  6. 10 Problem-solving strategies to turn challenges on their head

    2. Break the problem down. Identifying the problem allows you to see which steps need to be taken to solve it. First, break the problem down into achievable blocks. Then, use strategic planning to set a time frame in which to solve the problem and establish a timeline for the completion of each stage. 3.

  7. 36 Problem-solving techniques, methods and tools

    The Six Thinking Hats problem-solving method is a popular technique that guides the process and helps your team analyse a problem from all angles. We're going to take a look at our favourite problem-solving methodologies in the next section of this article, XY Tried and tested problem-solving methodologies. ‍ 6.

  8. Problem-Solving Strategies and Obstacles

    Problem-solving involves taking certain steps and using psychological strategies. Learn problem-solving techniques and how to overcome obstacles to solving problems. ... Zeelenberg M. Supervised machine learning methods in psychology: A practical introduction with annotated R code. Soc Personal Psychol Compass. 2021;15(2):e12579. doi:10.1111 ...

  9. Problem solving

    Problem solving is the process of achieving a goal by overcoming obstacles, a frequent part of most activities. Problems in need of solutions range from simple personal tasks (e.g. how to turn on an appliance) to complex issues in business and technical fields. The former is an example of simple problem solving (SPS) addressing one issue ...

  10. What Is Problem Solving?

    The first step in solving a problem is understanding what that problem actually is. You need to be sure that you're dealing with the real problem - not its symptoms. For example, if performance in your department is substandard, you might think that the problem lies with the individuals submitting work. However, if you look a bit deeper, the ...

  11. How to master the seven-step problem-solving process

    Looked at this way, it's no surprise that McKinsey takes problem solving very seriously, testing for it during the recruiting process and then honing it, in McKinsey consultants, through immersion in a structured seven-step method. To discuss the art of problem solving, I sat down in California with McKinsey senior partner Hugo Sarrazin and ...

  12. The Art of Effective Problem Solving: A Step-by-Step Guide

    A3 Problem Solving Method: The A3 problem solving technique is a visual, team-based problem-solving approach that is frequently used in Lean Six Sigma projects. The A3 report is a one-page document that clearly and concisely outlines the problem, root cause analysis, and proposed solution.

  13. The Problem-Solving Process

    The Problem-Solving Process. Problem-solving is an important part of planning and decision-making. The process has much in common with the decision-making process, and in the case of complex decisions, can form part of the process itself. We face and solve problems every day, in a variety of guises and of differing complexity.

  14. Master the 7-Step Problem-Solving Process for Better ...

    The 7-Step Problem-Solving Process is a proven method that can help you approach problems systematically and efficiently. The 7-Step Problem-Solving Process involves steps that guide you through the problem-solving process. The first step is to define the problem, followed by disaggregating the problem into smaller, more manageable parts.

  15. The McKinsey guide to problem solving

    The McKinsey guide to problem solving. Become a better problem solver with insights and advice from leaders around the world on topics including developing a problem-solving mindset, solving problems in uncertain times, problem solving with AI, and much more.

  16. Problem-Solving Techniques and Tips (That Actually Work)

    Creative problem solving (CPS) is actually a formal process formulated by Sidney Parnes and Alex Faickney Osborn, who is thought of as the father of traditional brainstorming (and the "O" in famous advertising agency BBDO).. Their creative problem solving process emphasizes several things, namely:. Separate ideation from evaluation.When you brainstorm creative ideas, have a separate time for ...

  17. 14 Effective Problem-Solving Strategies

    14 types of problem-solving strategies. Here are some examples of problem-solving strategies you can practice using to see which works best for you in different situations: 1. Define the problem. Taking the time to define a potential challenge can help you identify certain elements to create a plan to resolve them.

  18. 7.3 Problem-Solving

    Various methods of studying problem solving exist within the field of psychology including introspection, behavior analysis and behaviorism, simulation, computer modeling, and experimentation. A problem-solving strategy is a plan of action used to find a solution. Different strategies have different action plans associated with them (table below).

  19. Problem solving techniques: Steps and methods

    Evaluate the options. Select the best solution. Create an implementation plan. Communicate your solution. Let's look at each step in a little more detail. The first solution you come up with won't always be the best - taking the time to consider your options is an essential problem solving technique. 1.

  20. Problem Solving: Definition, Skills, & Strategies

    Problem-solving is an important skill to develop because life will always throw you curveballs. Being able to respond to these problems with flexibility and calmness will generate much better results than if you respond to the problem with resistance or avoidance. Also, research has shown that increasing problem-solving skills through problem-solving therapy is beneficial for several physical ...

  21. 12 Approaches To Problem-Solving for Every Situation

    Here are the seven steps of the rational approach: Define the problem. Identify possible causes. Brainstorm options to solve the problem. Select an option. Create an implementation plan. Execute the plan and monitor the results. Evaluate the solution. Read more: Effective Problem Solving Steps in the Workplace.

  22. PDF Creative Problem Solving

    Creative Problem Solving is a proven method for approaching a problem or a challenge in an imaginative and innovative way. It's a process that helps people re-define the problems they think they face, come up with breakthrough ideas and then take action on these new ideas all with the same innovative spirit. ...

  23. What is 8D? Eight Disciplines Problem Solving Process

    The eight disciplines (8D) model is a problem solving approach typically employed by quality engineers or other professionals, and is most commonly used by the automotive industry but has also been successfully applied in healthcare, retail, finance, government, and manufacturing. The purpose of the 8D methodology is to identify, correct, and ...

  24. Do You Understand the Problem You're Trying to Solve?

    Problem solving skills are invaluable in any job. ... And so, reframing is really a- at heart, it's a method that helps you avoid that by taking a second to go in and ask two questions ...

  25. 7 Problem-Solving Skills That Can Help You Be a More ...

    Although problem-solving is a skill in its own right, a subset of seven skills can help make the process of problem-solving easier. These include analysis, communication, emotional intelligence, resilience, creativity, adaptability, and teamwork. 1. Analysis. As a manager, you'll solve each problem by assessing the situation first.

  26. How to Select the Best Optimization Method for Your Problem

    Every mathematician, industrial engineer, computer scientist or management scientist has at some point in their career been asked to solve a problem for optimization, i.e., achieve the best suitable solution under a set of conditions. Finding the right solution is the task at hand; however, selecting the method best suited to achieve an optimal solution is a concealed hard skill necessary for ...

  27. Effectiveness of problem-based learning methodology in undergraduate

    Problem-based learning (PBL) is a pedagogical approach that shifts the role of the teacher to the student (student-centered) and is based on self-directed learning. Although PBL has been adopted in undergraduate and postgraduate medical education, the effectiveness of the method is still under discussion. The author's purpose was to appraise available international evidence concerning to the ...

  28. First-sight recognition of touched objects shows that chicks can solve

    Another problem encountered in addressing Molyneux's problem that can be solved by studying precocial species is maintaining the functionality of sensory systems despite visual deprivation. When sight is restored after long-term blindness or in congenitally blind human patients, for instance via surgical removal of a cataract, sight can be ...

  29. Solving the $KP$ problem with the Global Cartan Decomposition

    View PDF HTML (experimental) Abstract: Geometric methods have useful application for solving problems in a range of quantum information disciplines, including the synthesis of time-optimal unitaries in quantum control. In particular, the use of Cartan decompositions to solve problems in optimal control, especially lambda systems, has given rise to a range of techniques for solving the so ...