• PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • This Or That Game New
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics

How to Solve Proportions

Last Updated: March 26, 2024

This article was reviewed by Grace Imson, MA . Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University. This article has been viewed 93,049 times.

{\frac  {1}{2}}

What is the "vertical" way to solve a proportion?

Use the relationship between the top and bottom number of the fraction.

How can I solve a proportion with the "horizontal" method?

Use the relationship between the two numbers across the proportion.

How do I solve a proportion step by step by cross-multiplying?

Step 1 Draw two diagonal lines in an

How do you find the missing value in a proportion with a table of ratios?

Step 1 Draw a table with two rows.

  • Each column in this table represents a fraction. All of the fractions in this table are equal to each other.

Step 2 Add equivalent fractions to your table.

  • The two answers are the same, which means your answer is correct.

How do you solve percent proportions?

Step 1 Rewrite the problem as a proportion.

How do you solve proportions algebraically?

Step 1 Treat the proportion as an algebraic equation.

  • You can change the left hand side of the equation, as long as you do the same math to the right hand side.

Step 2 Multiply each side by a denominator.

  • To get rid of the fraction on the left, multiply both sides by 27:

{\displaystyle {\frac {27\times 17}{27}}={\frac {27\times 13}{x}}}

How do you solve a proportion with a variable on both sides?

Step 1 Realize your goal is to get the variable on one side.

  • Warning : This is a difficult example. If you haven't learned about quadratic equations yet, you might want to skip this part.

{\displaystyle {\frac {3}{x+1}}={\frac {2x}{8}}}

  • You can now solve this as a quadratic equation , using any method that you've learned.

{\displaystyle (x+4)(x-3)=0}

Proportions Calculator, Practice Problems, and Answers

problem solving in geometry with proportions

Community Q&A

wikiHow Staff Editor

  • The algebraic method above works with any proportion. But for a specific proportion, there is often a faster way to use algebra to find the answer. As you learn more algebra, this will get easier. Thanks Helpful 0 Not Helpful 0

problem solving in geometry with proportions

You Might Also Like

Use an Abacus

  • ↑ http://www.mathvillage.info/node/72
  • ↑ https://www.youtube.com/watch?v=nwsDiID7UtQ
  • ↑ https://www.youtube.com/watch?v=Uo8HgcyfRFI
  • ↑ https://www.purplemath.com/modules/ratio2.htm

About This Article

Grace Imson, MA

To solve proportions, start by taking the numerator, or top number, of the fraction you know and multiplying it with the denominator, or bottom number, of the fraction you don’t know. Next, take that number and divide it by the denominator of the fraction you know. Now you can replace x with this final number. For example, to figure out “x” in the problem 3/4 = x/8, multiply 3 x 8 to get 24, then divide 24 / 4 to get 6, or the value of x. To learn how to use proportions to determine percentages, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

John Almacen

John Almacen

Nov 10, 2022

Did this article help you?

John Almacen

Featured Articles

21 Ways to Feel More Comfortable in Your Own Skin

Trending Articles

How to Set Boundaries with Texting

Watch Articles

Fold Boxer Briefs

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

wikiHow Tech Help Pro:

Level up your tech skills and stay ahead of the curve

6.5 Solve Proportions and their Applications

Learning objectives.

By the end of this section, you will be able to:

  • Use the definition of proportion
  • Solve proportions
  • Solve applications using proportions
  • Write percent equations as proportions
  • Translate and solve percent proportions

Be Prepared 6.11

Before you get started, take this readiness quiz.

Simplify: 1 3 4 . 1 3 4 . If you missed this problem, review Example 4.44 .

Be Prepared 6.12

Solve: x 4 = 20 . x 4 = 20 . If you missed this problem, review Example 4.99 .

Be Prepared 6.13

Write as a rate: Sale rode his bike 24 24 miles in 2 2 hours. If you missed this problem, review Example 5.63 .

Use the Definition of Proportion

In the section on Ratios and Rates we saw some ways they are used in our daily lives. When two ratios or rates are equal, the equation relating them is called a proportion .

A proportion is an equation of the form a b = c d , a b = c d , where b ≠ 0 , d ≠ 0 . b ≠ 0 , d ≠ 0 .

The proportion states two ratios or rates are equal. The proportion is read “ a “ a is to b , b , as c c is to d ”. d ”.

The equation 1 2 = 4 8 1 2 = 4 8 is a proportion because the two fractions are equal. The proportion 1 2 = 4 8 1 2 = 4 8 is read “ 1 “ 1 is to 2 2 as 4 4 is to 8 ”. 8 ”.

If we compare quantities with units, we have to be sure we are comparing them in the right order. For example, in the proportion 20 students 1 teacher = 60 students 3 teachers 20 students 1 teacher = 60 students 3 teachers we compare the number of students to the number of teachers. We put students in the numerators and teachers in the denominators.

Example 6.40

Write each sentence as a proportion:

  • ⓐ 3 3 is to 7 7 as 15 15 is to 35 . 35 .
  • ⓑ 5 5 hits in 8 8 at bats is the same as 30 30 hits in 48 48 at-bats.
  • ⓒ $1.50 $1.50 for 6 6 ounces is equivalent to $2.25 $2.25 for 9 9 ounces.

Try It 6.79

  • ⓐ 5 5 is to 9 9 as 20 20 is to 36 . 36 .
  • ⓑ 7 7 hits in 11 11 at-bats is the same as 28 28 hits in 44 44 at-bats.
  • ⓒ $2.50 $2.50 for 8 8 ounces is equivalent to $3.75 $3.75 for 12 12 ounces.

Try It 6.80

  • ⓐ 6 6 is to 7 7 as 36 36 is to 42 . 42 .
  • ⓑ 8 8 adults for 36 36 children is the same as 12 12 adults for 54 54 children.
  • ⓒ $3.75 $3.75 for 6 6 ounces is equivalent to $2.50 $2.50 for 4 4 ounces.

Look at the proportions 1 2 = 4 8 1 2 = 4 8 and 2 3 = 6 9 . 2 3 = 6 9 . From our work with equivalent fractions we know these equations are true. But how do we know if an equation is a proportion with equivalent fractions if it contains fractions with larger numbers?

To determine if a proportion is true, we find the cross products of each proportion. To find the cross products, we multiply each denominator with the opposite numerator (diagonally across the equal sign). The results are called a cross product because of the cross formed. If, and only if, the given proportion is true, that is, the two sides are equal, then the cross products of a proportion will be equal.

Cross Products of a Proportion

For any proportion of the form a b = c d , a b = c d , where b ≠ 0 , d ≠ 0 , b ≠ 0 , d ≠ 0 , its cross products are equal.

Cross products can be used to test whether a proportion is true. To test whether an equation makes a proportion, we find the cross products. If they are both equal, we have a proportion.

Example 6.41

Determine whether each equation is a proportion:

  • ⓐ 4 9 = 12 28 4 9 = 12 28
  • ⓑ 17.5 37.5 = 7 15 17.5 37.5 = 7 15

To determine if the equation is a proportion, we find the cross products. If they are equal, the equation is a proportion.

Since the cross products are not equal, 28 · 4 ≠ 9 · 12 , 28 · 4 ≠ 9 · 12 , the equation is not a proportion.

Since the cross products are equal, 15 · 17.5 = 37.5 · 7 , 15 · 17.5 = 37.5 · 7 , the equation is a proportion.

Try It 6.81

  • ⓐ 7 9 = 54 72 7 9 = 54 72
  • ⓑ 24.5 45.5 = 7 13 24.5 45.5 = 7 13

Try It 6.82

  • ⓐ 8 9 = 56 73 8 9 = 56 73
  • ⓑ 28.5 52.5 = 8 15 28.5 52.5 = 8 15

Solve Proportions

To solve a proportion containing a variable, we remember that the proportion is an equation. All of the techniques we have used so far to solve equations still apply. In the next example, we will solve a proportion by multiplying by the Least Common Denominator (LCD) using the Multiplication Property of Equality .

Example 6.42

Solve: x 63 = 4 7 . x 63 = 4 7 .

Try It 6.83

Solve the proportion: n 84 = 11 12 . n 84 = 11 12 .

Try It 6.84

Solve the proportion: y 96 = 13 12 . y 96 = 13 12 .

When the variable is in a denominator, we’ll use the fact that the cross products of a proportion are equal to solve the proportions.

We can find the cross products of the proportion and then set them equal. Then we solve the resulting equation using our familiar techniques.

Example 6.43

Solve: 144 a = 9 4 . 144 a = 9 4 .

Notice that the variable is in the denominator, so we will solve by finding the cross products and setting them equal.

Another method to solve this would be to multiply both sides by the LCD, 4 a . 4 a . Try it and verify that you get the same solution.

Try It 6.85

Solve the proportion: 91 b = 7 5 . 91 b = 7 5 .

Try It 6.86

Solve the proportion: 39 c = 13 8 . 39 c = 13 8 .

Example 6.44

Solve: 52 91 = −4 y . 52 91 = −4 y .

Try It 6.87

Solve the proportion: 84 98 = −6 x . 84 98 = −6 x .

Try It 6.88

Solve the proportion: −7 y = 105 135 . −7 y = 105 135 .

Solve Applications Using Proportions

The strategy for solving applications that we have used earlier in this chapter, also works for proportions, since proportions are equations. When we set up the proportion , we must make sure the units are correct—the units in the numerators match and the units in the denominators match.

Example 6.45

When pediatricians prescribe acetaminophen to children, they prescribe 5 5 milliliters (ml) of acetaminophen for every 25 25 pounds of the child’s weight. If Zoe weighs 80 80 pounds, how many milliliters of acetaminophen will her doctor prescribe?

You could also solve this proportion by setting the cross products equal.

Try It 6.89

Pediatricians prescribe 5 5 milliliters (ml) of acetaminophen for every 25 25 pounds of a child’s weight. How many milliliters of acetaminophen will the doctor prescribe for Emilia, who weighs 60 60 pounds?

Try It 6.90

For every 1 1 kilogram (kg) of a child’s weight, pediatricians prescribe 15 15 milligrams (mg) of a fever reducer. If Isabella weighs 12 12 kg, how many milligrams of the fever reducer will the pediatrician prescribe?

Example 6.46

One brand of microwave popcorn has 120 120 calories per serving. A whole bag of this popcorn has 3.5 3.5 servings. How many calories are in a whole bag of this microwave popcorn?

Try It 6.91

Marissa loves the Caramel Macchiato at the coffee shop. The 16 16 oz. medium size has 240 240 calories. How many calories will she get if she drinks the large 20 20 oz. size?

Try It 6.92

Yaneli loves Starburst candies, but wants to keep her snacks to 100 100 calories. If the candies have 160 160 calories for 8 8 pieces, how many pieces can she have in her snack?

Example 6.47

Josiah went to Mexico for spring break and changed $325 $325 dollars into Mexican pesos. At that time, the exchange rate had $1 $1 U.S. is equal to 12.54 12.54 Mexican pesos. How many Mexican pesos did he get for his trip?

Try It 6.93

Yurianna is going to Europe and wants to change $800 $800 dollars into Euros. At the current exchange rate, $1 $1 US is equal to 0.738 0.738 Euro. How many Euros will she have for her trip?

Try It 6.94

Corey and Nicole are traveling to Japan and need to exchange $600 $600 into Japanese yen. If each dollar is 94.1 94.1 yen, how many yen will they get?

Write Percent Equations As Proportions

Previously, we solved percent equations by applying the properties of equality we have used to solve equations throughout this text. Some people prefer to solve percent equations by using the proportion method. The proportion method for solving percent problems involves a percent proportion. A percent proportion is an equation where a percent is equal to an equivalent ratio.

For example, 60% = 60 100 60% = 60 100 and we can simplify 60 100 = 3 5 . 60 100 = 3 5 . Since the equation 60 100 = 3 5 60 100 = 3 5 shows a percent equal to an equivalent ratio, we call it a percent proportion . Using the vocabulary we used earlier:

Percent Proportion

The amount is to the base as the percent is to 100 . 100 .

If we restate the problem in the words of a proportion, it may be easier to set up the proportion:

We could also say:

First we will practice translating into a percent proportion. Later, we’ll solve the proportion.

Example 6.48

Translate to a proportion. What number is 75% 75% of 90 ? 90 ?

If you look for the word "of", it may help you identify the base.

Try It 6.95

Translate to a proportion: What number is 60% 60% of 105 ? 105 ?

Try It 6.96

Translate to a proportion: What number is 40% 40% of 85 ? 85 ?

Example 6.49

Translate to a proportion. 19 19 is 25% 25% of what number?

Try It 6.97

Translate to a proportion: 36 36 is 25% 25% of what number?

Try It 6.98

Translate to a proportion: 27 27 is 36% 36% of what number?

Example 6.50

Translate to a proportion. What percent of 27 27 is 9 ? 9 ?

Try It 6.99

Translate to a proportion: What percent of 52 52 is 39 ? 39 ?

Try It 6.100

Translate to a proportion: What percent of 92 92 is 23 ? 23 ?

Translate and Solve Percent Proportions

Now that we have written percent equations as proportions, we are ready to solve the equations.

Example 6.51

Translate and solve using proportions: What number is 45% 45% of 80 ? 80 ?

Try It 6.101

Translate and solve using proportions: What number is 65% 65% of 40 ? 40 ?

Try It 6.102

Translate and solve using proportions: What number is 85% 85% of 40 ? 40 ?

In the next example, the percent is more than 100 , 100 , which is more than one whole. So the unknown number will be more than the base.

Example 6.52

Translate and solve using proportions: 125% 125% of 25 25 is what number?

Try It 6.103

Translate and solve using proportions: 125% 125% of 64 64 is what number?

Try It 6.104

Translate and solve using proportions: 175% 175% of 84 84 is what number?

Percents with decimals and money are also used in proportions.

Example 6.53

Translate and solve: 6.5% 6.5% of what number is $1.56 ? $1.56 ?

Try It 6.105

Translate and solve using proportions: 8.5% 8.5% of what number is $3.23 ? $3.23 ?

Try It 6.106

Translate and solve using proportions: 7.25% 7.25% of what number is $4.64 ? $4.64 ?

Example 6.54

Translate and solve using proportions: What percent of 72 72 is 9 ? 9 ?

Try It 6.107

Translate and solve using proportions: What percent of 72 72 is 27 ? 27 ?

Try It 6.108

Translate and solve using proportions: What percent of 92 92 is 23 ? 23 ?

Section 6.5 Exercises

Practice makes perfect.

In the following exercises, write each sentence as a proportion.

4 4 is to 15 15 as 36 36 is to 135 . 135 .

7 7 is to 9 9 as 35 35 is to 45 . 45 .

12 12 is to 5 5 as 96 96 is to 40 . 40 .

15 15 is to 8 8 as 75 75 is to 40 . 40 .

5 5 wins in 7 7 games is the same as 115 115 wins in 161 161 games.

4 4 wins in 9 9 games is the same as 36 36 wins in 81 81 games.

8 8 campers to 1 1 counselor is the same as 48 48 campers to 6 6 counselors.

6 6 campers to 1 1 counselor is the same as 48 48 campers to 8 8 counselors.

$9.36 $9.36 for 18 18 ounces is the same as $2.60 $2.60 for 5 5 ounces.

$3.92 $3.92 for 8 8 ounces is the same as $1.47 $1.47 for 3 3 ounces.

$18.04 $18.04 for 11 11 pounds is the same as $4.92 $4.92 for 3 3 pounds.

$12.42 $12.42 for 27 27 pounds is the same as $5.52 $5.52 for 12 12 pounds.

In the following exercises, determine whether each equation is a proportion.

7 15 = 56 120 7 15 = 56 120

5 12 = 45 108 5 12 = 45 108

11 6 = 21 16 11 6 = 21 16

9 4 = 39 34 9 4 = 39 34

12 18 = 4.99 7.56 12 18 = 4.99 7.56

9 16 = 2.16 3.89 9 16 = 2.16 3.89

13.5 8.5 = 31.05 19.55 13.5 8.5 = 31.05 19.55

10.1 8.4 = 3.03 2.52 10.1 8.4 = 3.03 2.52

In the following exercises, solve each proportion.

x 56 = 7 8 x 56 = 7 8

n 91 = 8 13 n 91 = 8 13

49 63 = z 9 49 63 = z 9

56 72 = y 9 56 72 = y 9

5 a = 65 117 5 a = 65 117

4 b = 64 144 4 b = 64 144

98 154 = −7 p 98 154 = −7 p

72 156 = −6 q 72 156 = −6 q

a −8 = −42 48 a −8 = −42 48

b −7 = −30 42 b −7 = −30 42

2.6 3.9 = c 3 2.6 3.9 = c 3

2.7 3.6 = d 4 2.7 3.6 = d 4

2.7 j = 0.9 0.2 2.7 j = 0.9 0.2

2.8 k = 2.1 1.5 2.8 k = 2.1 1.5

1 2 1 = m 8 1 2 1 = m 8

1 3 3 = 9 n 1 3 3 = 9 n

In the following exercises, solve the proportion problem.

Pediatricians prescribe 5 5 milliliters (ml) of acetaminophen for every 25 25 pounds of a child’s weight. How many milliliters of acetaminophen will the doctor prescribe for Jocelyn, who weighs 45 45 pounds?

Brianna, who weighs 6 6 kg, just received her shots and needs a pain killer. The pain killer is prescribed for children at 15 15 milligrams (mg) for every 1 1 kilogram (kg) of the child’s weight. How many milligrams will the doctor prescribe?

At the gym, Carol takes her pulse for 10 10 sec and counts 19 19 beats. How many beats per minute is this? Has Carol met her target heart rate of 140 140 beats per minute?

Kevin wants to keep his heart rate at 160 160 beats per minute while training. During his workout he counts 27 27 beats in 10 10 seconds. How many beats per minute is this? Has Kevin met his target heart rate?

A new energy drink advertises 106 106 calories for 8 8 ounces. How many calories are in 12 12 ounces of the drink?

One 12 12 ounce can of soda has 150 150 calories. If Josiah drinks the big 32 32 ounce size from the local mini-mart, how many calories does he get?

Karen eats 1 2 1 2 cup of oatmeal that counts for 2 2 points on her weight loss program. Her husband, Joe, can have 3 3 points of oatmeal for breakfast. How much oatmeal can he have?

An oatmeal cookie recipe calls for 1 2 1 2 cup of butter to make 4 4 dozen cookies. Hilda needs to make 10 10 dozen cookies for the bake sale. How many cups of butter will she need?

Janice is traveling to Canada and will change $250 $250 US dollars into Canadian dollars. At the current exchange rate, $1 $1 US is equal to $1.01 $1.01 Canadian. How many Canadian dollars will she get for her trip?

Todd is traveling to Mexico and needs to exchange $450 $450 into Mexican pesos. If each dollar is worth 12.29 12.29 pesos, how many pesos will he get for his trip?

Steve changed $600 $600 into 480 480 Euros. How many Euros did he receive per US dollar?

Martha changed $350 $350 US into 385 385 Australian dollars. How many Australian dollars did she receive per US dollar?

At the laundromat, Lucy changed $12.00 $12.00 into quarters. How many quarters did she get?

When she arrived at a casino, Gerty changed $20 $20 into nickels. How many nickels did she get?

Jesse’s car gets 30 30 miles per gallon of gas. If Las Vegas is 285 285 miles away, how many gallons of gas are needed to get there and then home? If gas is $3.09 $3.09 per gallon, what is the total cost of the gas for the trip?

Danny wants to drive to Phoenix to see his grandfather. Phoenix is 370 370 miles from Danny’s home and his car gets 18.5 18.5 miles per gallon. How many gallons of gas will Danny need to get to and from Phoenix? If gas is $3.19 $3.19 per gallon, what is the total cost for the gas to drive to see his grandfather?

Hugh leaves early one morning to drive from his home in Chicago to go to Mount Rushmore, 812 812 miles away. After 3 3 hours, he has gone 190 190 miles. At that rate, how long will the whole drive take?

Kelly leaves her home in Seattle to drive to Spokane, a distance of 280 280 miles. After 2 2 hours, she has gone 152 152 miles. At that rate, how long will the whole drive take?

Phil wants to fertilize his lawn. Each bag of fertilizer covers about 4,000 4,000 square feet of lawn. Phil’s lawn is approximately 13,500 13,500 square feet. How many bags of fertilizer will he have to buy?

April wants to paint the exterior of her house. One gallon of paint covers about 350 350 square feet, and the exterior of the house measures approximately 2000 2000 square feet. How many gallons of paint will she have to buy?

Write Percent Equations as Proportions

In the following exercises, translate to a proportion.

What number is 35% 35% of 250 ? 250 ?

What number is 75% 75% of 920 ? 920 ?

What number is 110% 110% of 47 ? 47 ?

What number is 150% 150% of 64 ? 64 ?

45 45 is 30% 30% of what number?

25 25 is 80% 80% of what number?

90 90 is 150% 150% of what number?

77 77 is 110% 110% of what number?

What percent of 85 85 is 17 ? 17 ?

What percent of 92 92 is 46 ? 46 ?

What percent of 260 260 is 340 ? 340 ?

What percent of 180 180 is 220 ? 220 ?

In the following exercises, translate and solve using proportions.

What number is 65% 65% of 180 ? 180 ?

What number is 55% 55% of 300 ? 300 ?

18% 18% of 92 92 is what number?

22% 22% of 74 74 is what number?

175% 175% of 26 26 is what number?

250% 250% of 61 61 is what number?

What is 300% 300% of 488 ? 488 ?

What is 500% 500% of 315 ? 315 ?

17% 17% of what number is $7.65 ? $7.65 ?

19% 19% of what number is $6.46 ? $6.46 ?

$13.53 $13.53 is 8.25% 8.25% of what number?

$18.12 $18.12 is 7.55% 7.55% of what number?

What percent of 56 56 is 14 ? 14 ?

What percent of 80 80 is 28 ? 28 ?

What percent of 96 96 is 12 ? 12 ?

What percent of 120 120 is 27 ? 27 ?

Everyday Math

Mixing a concentrate Sam bought a large bottle of concentrated cleaning solution at the warehouse store. He must mix the concentrate with water to make a solution for washing his windows. The directions tell him to mix 3 3 ounces of concentrate with 5 5 ounces of water. If he puts 12 12 ounces of concentrate in a bucket, how many ounces of water should he add? How many ounces of the solution will he have altogether?

Mixing a concentrate Travis is going to wash his car. The directions on the bottle of car wash concentrate say to mix 2 2 ounces of concentrate with 15 15 ounces of water. If Travis puts 6 6 ounces of concentrate in a bucket, how much water must he mix with the concentrate?

Writing Exercises

To solve “what number is 45% 45% of 350 ” 350 ” do you prefer to use an equation like you did in the section on Decimal Operations or a proportion like you did in this section? Explain your reason.

To solve “what percent of 125 125 is 25 ” 25 ” do you prefer to use an equation like you did in the section on Decimal Operations or a proportion like you did in this section? Explain your reason.

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

ⓑ Overall, after looking at the checklist, do you think you are well-prepared for the next Chapter? Why or why not?

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Access for free at https://openstax.org/books/prealgebra-2e/pages/1-introduction
  • Authors: Lynn Marecek, MaryAnne Anthony-Smith, Andrea Honeycutt Mathis
  • Publisher/website: OpenStax
  • Book title: Prealgebra 2e
  • Publication date: Mar 11, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/prealgebra-2e/pages/1-introduction
  • Section URL: https://openstax.org/books/prealgebra-2e/pages/6-5-solve-proportions-and-their-applications

© Jan 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

[FREE] Fun Math Games & Activities Packs

Always on the lookout for fun math games and activities in the classroom? Try our ready-to-go printable packs for students to complete independently or with a partner!

In order to access this I need to be confident with:

Ratio problem solving

Here you will learn about ratio problem solving, including how to set up and solve problems. You will also look at real life ratio word problems.

Students will first learn about ratio problem solving as part of ratio and proportion in 6 th grade and 7 th grade.

What is ratio problem solving?

Ratio problem solving is a collection of ratio and proportion word problems that link together aspects of ratio and proportion into more real life questions. This requires you to be able to take key information from a question and use your knowledge of ratios (and other areas of the curriculum) to solve the problem.

A ratio is a relationship between two or more quantities. They are usually written in the form a : b where a and b are two quantities. When problem solving with a ratio, the key facts that you need to know are:

  • What is the ratio involved?
  • What order are the quantities in the ratio?
  • What is the total amount / what is the part of the total amount known?
  • What are you trying to calculate ?

As with all problem solving, there is not one unique method to solve a problem. However, this does not mean that there aren’t similarities between different problems that you can use to help you find an answer.

The key to any problem solving is being able to draw from prior knowledge and use the correct piece of information to allow you to get to the next step and then the solution.

Let’s look at a couple of methods you can use when given certain pieces of information.

When solving ratio word problems, it is very important that you are able to use ratios. This includes being able to use ratio notation.

For example, Charlie and David share some sweets in the ratio of 3 : 5. This means that for every 3 sweets Charlie gets, David receives 5 sweets.

Charlie and David share 40 sweets, how many sweets do they each get?

You use the ratio to divide 40 sweets into 8 equal parts.

40 \div 8=5

Then you multiply each part of the ratio by 5.

3\times 5:5\times 5=15 : 25

This means that Charlie will get 15 sweets and David will get 25 sweets.

There can be ratio word problems involving different operations and types of numbers.

Here are some examples of different types of ratio word problems:

What is ratio problem solving?

Common Core State Standards

How does this relate to 6 th and 7 th grade math?

  • Grade 6 – Ratios and Proportional Relationships (6.RP.A.3) Use ratio and rate reasoning to solve real-world and mathematical problems, for example, by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations.
  • Grade 7 – Ratio and Proportional Relationships (7.RP.A.2) Recognize and represent proportional relationships between quantities.

How to do ratio problem solving

In order to solve problems including ratios:

Identify key information within the question.

Know what you are trying to calculate.

Use prior knowledge to structure a solution.

[FREE] Ratio Check for Understanding Quiz (Grade 6 and 7)

[FREE] Ratio Check for Understanding Quiz (Grade 6 and 7)

Use this quiz to check your 6th and 7th grade students’ understanding of ratios. 10+ questions with answers covering a range of 6th and 7th grade ratio topics to identify areas of strength and support!

Ratio problem solving examples

Example 1: part:part ratio.

Within a school, the total number of students who have school lunches to packed lunches is 5 : 7. If 465 students have a school lunch, how many students have a packed lunch?

Within a school, the number of students who have school lunches to packed lunches is \textbf{5 : 7} . If \textbf{465} students have a school lunch, how many students have a packed lunch?

Here you can see that the ratio is 5 : 7, where the first part of the ratio represents school lunches (S) and the second part of the ratio represents packed lunches (P).

You could write this as:

Ratio Problem Solving Image 2 US

Where the letter above each part of the ratio links to the question.

You know that 465 students have school lunch.

2 Know what you are trying to calculate.

From the question, you need to calculate the number of students that have a packed lunch, so you can now write a ratio below the ratio 5 : 7 that shows that you have 465 students who have school lunches, and p students who have a packed lunch.

Ratio Problem Solving Image 3 US

You need to find the value of p.

3 Use prior knowledge to structure a solution.

You are looking for an equivalent ratio to 5 : 7. So you need to calculate the multiplier.

You do this by dividing the known values on the same side of the ratio by each other.

465\div 5 = 93

This means to create an equivalent ratio, you can multiply both sides by 93.

Ratio Problem Solving Image 4 US

So the value of p is equal to 7 \times 93=651.

There are 651 students that have a packed lunch.

Example 2: unit conversions

The table below shows the currency conversions on one day.

Use the table above to convert £520 \; (GBP) to Euros € \; (EUR).

Use the table above to convert \bf{£520} \textbf{ (GBP)} to Euros \textbf{€ } \textbf{(EUR)}.

The two values in the table that are important are \text{GBP} and EUR. Writing this as a ratio, you can state,

Ratio Problem Solving Image 7 US

You know that you have £520.

You need to convert GBP to EUR and so you are looking for an equivalent ratio with GBP=£520 and EUR=E.

Ratio Problem Solving Image 8 US

To get from 1 to 520, you multiply by 520 and so to calculate the number of Euros for £520, you need to multiply 1.17 by 520.

1.17 \times 520=608.4

So £520=€608.40.

Example 3: writing a ratio 1 : n

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the 500 \, ml of concentrated plant food must be diluted into 2 \, l of water. Express the ratio of plant food to water, respectively, in the ratio 1 : n.

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the \bf{500 \, ml} of concentrated plant food must be diluted into \bf{2 \, l} of water. Express the ratio of plant food to water respectively as a ratio in the form 1 : n.

Using the information in the question, you can now state the ratio of plant food to water as 500 \, ml : 2 \, l. As you can convert liters into milliliters, you could convert 2 \, l into milliliters by multiplying it by 1000.

2 \, l=2000 \, ml

So you can also express the ratio as 500 : 2000 which will help you in later steps.

You want to simplify the ratio 500 : 2000 into the form 1:n.

You need to find an equivalent ratio where the first part of the ratio is equal to 1. You can only do this by dividing both parts of the ratio by 500 (as 500 \div 500=1 ).

Ratio Problem Solving Image 9 US

So the ratio of plant food to water in the form 1 : n is 1 : 4.

Example 4: forming and solving an equation

Three siblings, Josh, Kieran and Luke, receive an allowance each week proportional to their age. Kieran is 3 years older than Josh. Luke is twice Josh’s age. If Josh receives \$ 8 allowance, how much money do the three siblings receive in total?

Three siblings, Josh, Kieran and Luke, receive an allowance each week proportional to their ages. Kieran is \bf{3} years older than Josh. Luke is twice Josh’s age. If Luke receives \bf{\$ 8} allowance, how much money do the three siblings receive in total?

You can represent the ages of the three siblings as a ratio. Taking Josh as x years old, Kieran would therefore be x+3 years old, and Luke would be 2x years old. As a ratio, you have:

Ratio Problem Solving Image 10 US

You also know that Luke receives \$ 8.

You want to calculate the total amount of allowance for the three siblings.

You need to find the value of x first. As Luke receives \$ 8, you can state the equation 2x=8 and so x=4.

Now you know the value of x, you can substitute this value into the other parts of the ratio to obtain how much money the siblings each receive.

Ratio Problem Solving Image 11 US

The total amount of allowance is therefore 4+7+8=\$ 19.

Example 5: simplifying ratios

Below is a bar chart showing the results for the colors of counters in a bag.

Ratio Problem Solving Image 12 US

Express this data as a ratio in its simplest form.

From the bar chart, you can read the frequencies to create the ratio.

Ratio Problem Solving Image 13 US

You need to simplify this ratio.

To simplify a ratio, you need to find the highest common factor of all the parts of the ratio. By listing the factors of each number, you can quickly see that the highest common factor is 2.

\begin{aligned} & 12 = 1, {\color{red}2}, 3, 4, 6, 12 \\\\ & 16 = 1, {\color{red}2}, 4, 8, 16 \\\\ & 10 = 1, {\color{red}2}, 5, 10 \end{aligned}

HCF(12,16,10) = 2

Dividing all the parts of the ratio by 2, you get

Ratio Problem Solving Image 14 US

Our solution is 6 : 8 : 5.

Example 6: combining two ratios

Glass is made from silica, lime and soda. The ratio of silica to lime is 15 : 2. The ratio of silica to soda is 5 : 1. State the ratio of silica:lime:soda.

Glass is made from silica, lime and soda. The ratio of silica to lime is \bf{15 : 2}. The ratio of silica to soda is \bf{5 : 1}. State the ratio of silica:lime:soda.

You know the two ratios

Ratio Problem Solving Image 15 US

You are trying to find the ratio of all 3 components: silica, lime and soda.

Using equivalent ratios you can say that the ratio of Silica:Soda is equivalent to 15 : 3 by multiplying the ratio by 3.

Ratio Problem Solving Image 16 US

You now have the same amount of silica in both ratios and so you can now combine them to get the ratio 15 : 2 : 3.

Ratio Problem Solving Image 17 US

Example 7: using bar modeling

India and Beau share some popcorn in the ratio of 5 : 2. If India has 75 \, g more popcorn than Beau, what was the original quantity?

India and Beau share some popcorn in the ratio of \bf{5 : 2} . If India has \bf{75 \, g} more popcorn than Beau, what was the original quantity?

You know that the initial ratio is 5 : 2 and that India has three more parts than Beau.

You want to find the original quantity.

Drawing a bar model of this problem, you have:

Ratio Problem Solving Image 18 US

Where India has 5 equal shares, and Beau has 2 equal shares.

Each share is the same value and so if you can find out this value, you can then find the total quantity.

From the question, India’s share is 75 \, g more than Beau’s share so you can write this on the bar model.

Ratio Problem Solving Image 19 US

You can find the value of one share by working out 75 \div 3=25 \, g.

Ratio Problem Solving Image 20 US

You can fill in each share to be 25 \, g.

Ratio Problem Solving Image 21 US

Adding up each share, you get

India=5 \times 25=125 \, g

Beau=2 \times 25=50 \, g

The total amount of popcorn was 125+50=175 \, g.

Teaching tips for ratio problem solving

  • Continue to remind students that when solving ratio word problems, it’s important to identify the quantities being compared and express the ratio in its simplest form.
  • Create practice problems for students using the information in your classroom. For example, ask students to find the ratio of boys to the ratio of girls using the total number of students in your classroom, then the school.
  • To find more practice questions, utilize educational websites and apps instead of worksheets. Some of these may also provide tutorials for struggling students. These can also be helpful for test prep as they are more engaging for students.
  • Use a variety of numbers in your ratio word problems – whole numbers, fractions, decimals, and mixed numbers – to give students a variety of practice.
  • Provide students with a step-by-step process for problem solving, like the one shown above, that can be applied to every ratio word problem.

Easy mistakes to make

  • Mixing units Make sure that all the units in the ratio are the same. For example, in example 6, all the units in the ratio were in milliliters. You did not mix ml and l in the ratio.
  • Writing ratios in the wrong order For example, the number of dogs to cats is given as the ratio 12 : 13 but the solution is written as 13 : 12.

Ratio Problem Solving Image 22 US

  • Counting the number of parts in the ratio, not the total number of shares For example, the ratio 5 : 4 has 9 shares, and 2 parts. This is because the ratio contains 2 numbers but the sum of these parts (the number of shares) is 5+4=9. You need to find the value per share, so you need to use the 9 shares in your next line of working.
  • Ratios of the form \bf{1 : \textbf{n}} The assumption can be incorrectly made that n must be greater than 1, but n can be any number, including a decimal.

Related ratio lessons

  • Unit rate math
  • Simplifying ratios
  • Ratio to fraction
  • How to calculate exchange rates
  • Ratio to percent
  • How to write a ratio
  • Dividing ratios
  • How to find the unit rate
  • Ratio scale
  • Constant of proportionality

Practice ratio problem solving questions

1. An online shop sells board games and computer games. The ratio of board games to the total number of games sold in one month is 3 : 8. What is the ratio of board games to computer games?

GCSE Quiz True

8-3=5 computer games sold for every 3 board games.

2. The ratio of prime numbers to non-prime numbers from 1-200 is 45 : 155. Express this as a ratio in the form 1 : n.

You need to simplify the ratio so that the first number is 1. That means you need to divide each number in the ratio by 45.

45 \div 45=1

155\div{45}=3\cfrac{4}{9}

3. During one month, the weather was recorded into 3 categories: sunshine, cloud and rain. The ratio of sunshine to cloud was 2 : 3 and the ratio of cloud to rain was 9 : 11. State the ratio that compares sunshine:cloud:rain for the month.

3 \times S : C=6 : 9

4. The angles in a triangle are written as the ratio x : 2x : 3x. Calculate the size of each angle.

You should know that the 3 angles in a triangle always equal 180^{\circ}.

\begin{aligned} & x+2 x+3 x=180 \\\\ & 6 x=180 \\\\ & x=30^{\circ} \\\\ & 2 x=60^{\circ} \\\\ & 3 x=90^{\circ} \end{aligned}

5. A clothing company has a sale on tops, dresses and shoes. \cfrac{1}{3} of sales were for tops, \cfrac{1}{5} of sales were for dresses, and the rest were for shoes. Write a ratio of tops to dresses to shoes sold in its simplest form.

\cfrac{1}{3}+\cfrac{1}{5}=\cfrac{5+3}{15}=\cfrac{8}{15}

1-\cfrac{8}{15}=\cfrac{7}{15}

6. The volume of gas is directly proportional to the temperature (in degrees Kelvin). A balloon contains 2.75 \, l of gas and has a temperature of 18^{\circ}K. What is the volume of gas if the temperature increases to 45^{\circ}K?

The given ratio in the word problem is 2. 75 \mathrm{~L}: 18^{\circ} \mathrm{K}

Divide 45 by 18 to see the relationship between the two temperatures.

45 \div 18=2.5

45 is 2.5 times greater than 18. So we multiply 2.75 by 2.5 to get the amount of gas.

2.75 \times 2.5=6.875 \mathrm{~l}

Ratio problem solving FAQs

A ratio is a comparison of two or more quantities. It shows how much one quantity is related to another.

A recipe calls for 2 cups of flour and 1 cup of sugar. What is the ratio of flour to sugar? (2 : 1)

In middle school ( 7 th grade and 8 th grade), students transition from understanding basic ratios to working with more complex and real-life applications of ratios and proportions. They gain a deeper understanding of how ratios relate to different mathematical concepts, making them more prepared for higher-level math topics in high school.

The next lessons are

  • Converting fractions, decimals and percentages

Still stuck?

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

One on one math tuition

Find out how we can help your students achieve success with our math tutoring programs .

[FREE] Common Core Practice Tests (Grades 3 to 6)

Prepare for math tests in your state with these Grade 3 to Grade 6 practice assessments for Common Core and state equivalents.

40 multiple choice questions and detailed answers to support test prep, created by US math experts covering a range of topics!

Privacy Overview

  • Pre-algebra lessons
  • Pre-algebra word problems
  • Algebra lessons
  • Algebra word problems
  • Algebra proofs
  • Advanced algebra
  • Geometry lessons
  • Geometry word problems
  • Geometry proofs
  • Trigonometry lessons
  • Consumer math
  • Baseball math
  • Math for nurses
  • Statistics made easy
  • High school physics
  • Basic mathematics store
  • SAT Math Prep
  • Math skills by grade level
  • Ask an expert
  • Other websites
  • K-12 worksheets
  • Worksheets generator
  • Algebra worksheets
  • Geometry worksheets
  • Free math problem solver
  • Pre-algebra calculators
  • Algebra Calculators
  • Geometry Calculators
  • Math puzzles
  • Math tricks
  • Member login

Proportion word problems

It is very important to notice that if the ratio on the left is a ratio of number of liters of water to number of lemons, you have to do the same ratio on the right before you set them equal. 

More interesting proportion word problems

Proportion word problem

Check this site if you want to solve more proportion word problems.

Ratio word problems

Recent Articles

How to divide any number by 5 in 2 seconds.

Feb 28, 24 11:07 AM

Math Trick to Square Numbers from 50 to 59

Feb 23, 24 04:46 AM

Sum of Consecutive Odd Numbers

Feb 22, 24 10:07 AM

Tough algebra word problems

100 Tough Algebra Word Problems. If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

About me :: Privacy policy :: Disclaimer :: Donate   Careers in mathematics  

Copyright © 2008-2021. Basic-mathematics.com. All right reserved

  • Homework Help
  • Article Directory

Proportion Math Problems, Solutions and Explanations

  •  / 

Students typically learn to solve proportion problems in 7th grade. Keep reading for examples of how to use proportions to solve problems involving tips, taxes and markdowns!

Math Problems with Proportions

Proportions state that two ratios are equal, so they involve four quantities and one or two different types of units. For instance, if you knew that a car traveled 70 miles in one hour and 140 miles in two hours, you could represent this with the following proportion:

70 miles/1 hour = 140 miles/2 hours

We can state that the two ratios in the proportion are equal because in each one, the rate of speed in miles per hour (mph) is the same: 70 miles ÷ 1 hour = 70 mph and 140 miles ÷ 2 hours = 70 mph.

Solving a Proportion

Many word problems will give you three of the four quantities that make up a proportion, and you will have to identify the fourth quantity. Here's an example:

Ellen can run 0.75 miles in 15 minutes. How long will it take her to run three miles if she maintains a constant speed?

This problem gives you three of the four quantities in the proportion. Here's how you solve for the unknown quantity:

Practice Problems

1. Frank left a tip of $5.00 for his $25.00 meal, and Sandy left a $7.50 tip for her meal. If Frank's and Sandy's tips represent equal percentages of the price of their meals, how much did Sandy's meal cost?

2. Sweaters at Mega Mall are on sale. If Eleanor saved $20 on two sweaters, how much will she save if she buys five sweaters?

3. If Shawn paid $6.40 in sales tax on a $100 purchase, how much sales tax will he pay on a $1,000 purchase?

Solutions and Explanations

Problem one.

Since we know the ratio of tip to meal cost is equal for both Frank and Sandy, we can set up and solve this proportion:

$5.00/$25.00 = $7.50/x

(5x) ÷ 5 = 187.5 ÷ 5

Sandy's meal cost $37.50 .

Problem Two

To find Eleanor's savings, solve this proportion:

2 sweaters/$20 = 5 sweaters/x

(2x) ÷ 2 = 100 ÷ 2

Eleanor will save $50 if she buys five sweaters.

Problem Three

The sales tax on a $1,000 purchase can be found by solving this proportion:

$6.40/$100 = x/$1,000

100x = 6,400

(100x) ÷ 100 = 6,400 ÷ 100

The sales tax on $1,000 would be $64.00 .

Other Articles You May Be Interested In

Supplementing your child's math lessons with a few problems and worksheets of your own will help you become better acquainted with his or her curriculum, and will help your child perform better in the classroom. Here are some tips for creating them.

This simple addition worksheet is only a sample to help you format your own practice math problems. Includes answers.

We Found 7 Tutors You Might Be Interested In

Huntington learning.

  • What Huntington Learning offers:
  • Online and in-center tutoring
  • One on one tutoring
  • Every Huntington tutor is certified and trained extensively on the most effective teaching methods
  • What K12 offers:
  • Online tutoring
  • Has a strong and effective partnership with public and private schools
  • AdvancED-accredited corporation meeting the highest standards of educational management

Kaplan Kids

  • What Kaplan Kids offers:
  • Customized learning plans
  • Real-Time Progress Reports track your child's progress
  • What Kumon offers:
  • In-center tutoring
  • Individualized programs for your child
  • Helps your child develop the skills and study habits needed to improve their academic performance

Sylvan Learning

  • What Sylvan Learning offers:
  • Sylvan tutors are certified teachers who provide personalized instruction
  • Regular assessment and progress reports

Tutor Doctor

  • What Tutor Doctor offers:
  • In-Home tutoring
  • One on one attention by the tutor
  • Develops personlized programs by working with your child's existing homework
  • What TutorVista offers:
  • Student works one-on-one with a professional tutor
  • Using the virtual whiteboard workspace to share problems, solutions and explanations

Find the Perfect Tutor

Our commitment to you, free help from teachers, free learning materials, helping disadvantaged youth, learning tools.

  • Make learning fun with these online games!
  • Looking for ways to bring learning home? Check out our blog.

Want to Help Your Child Learn?

More articles.

  • Sample Math Worksheet - Simple and Advanced Multiplication Tables
  • Elementary Math: Learning the Order of Operations
  • Why Math Skills Are Up, But Reading Skills Are Down
  • MIND Games Lead to Math Gains
  • Should Math Be a Main Focus in Kindergarten?
  • Not Your Father's Algebra As 45 States Look to Math Reform
  • Too Much Emphasis on Reading and Math?
  • Reading and Math Targeted by Miami's 'Teach for America'
  • Middle School Math Help: Sixth Grade Square Roots
  • A Changing World: Math Expectations for High School Students
  • Spelling Tips for Children and Parents
  • Taking Logic Games to a New Level--Tower of Hanoi
  • Homework Help for Middle School Science
  • Tips for Creating Lesson Plans for Grades 3-9
  • Homeschooling on a Budget
  • Homework Helper for Grade 1 Math
  • Writing Assignments for Homeschool Kids
  • Early Literacy
  • Equations 4th Grade
  • Is Lack of Sleep Affecting Your Childs Performance in School
  • Guided Reading Lessons
  • Free Easy Math Prblems
  • Educational Buzz Words
  • 8-Year-Old Takes On NY Times Music Critic
  • Hard Math Problems
  • Math Percentage Problems
  • Volume Math Problems
  • Basic Elementary Math Problems
  • Basic Math Problems
  • Logical Math Problems
  • Math Verbal Problems
  • Area Math Problems
  • Simplest Form Math Problems
  • Abstract Math Problems
  • Privacy Policy
  • Resource Directory

© 2003 - 2024 All other trademarks and copyrights are the property of their respective owners. All rights reserved.

Proportions

Proportion says that two ratios (or fractions) are equal.

We see that 1-out-of-3 is equal to 2-out-of-6

The ratios are the same, so they are in proportion.

Example: Rope

A rope's length and weight are in proportion.

When 20m of rope weighs 1kg , then:

  • 40m of that rope weighs 2kg
  • 200m of that rope weighs 10kg

20 1 = 40 2

When shapes are "in proportion" their relative sizes are the same.

Example: International paper sizes (like A3, A4, A5, etc) all have the same proportions:

So any artwork or document can be resized to fit on any sheet. Very neat.

Working With Proportions

NOW, how do we use this?

Example: you want to draw the dog's head ... how long should it be?

Let us write the proportion with the help of the 10/20 ratio from above:

? 42 = 10 20

Now we solve it using a special method:

Multiply across the known corners, then divide by the third number

And we get this:

? = (42 × 10) / 20 = 420 / 20 = 21

So you should draw the head 21 long.

Using Proportions to Solve Percents

A percent is actually a ratio! Saying "25%" is actually saying "25 per 100":

25% = 25 100

We can use proportions to solve questions involving percents.

The trick is to put what we know into this form:

Part Whole = Percent 100

Example: what is 25% of 160 ?

The percent is 25, the whole is 160, and we want to find the "part":

Part 160 = 25 100

Multiply across the known corners, then divide by the third number:

Part = (160 × 25) / 100 = 4000 / 100 = 40

Answer: 25% of 160 is 40.

Note: we could have also solved this by doing the divide first, like this:

Part = 160 × (25 / 100) = 160 × 0.25 = 40

Either method works fine.

We can also find a Percent:

Example: what is $12 as a percent of $80 ?

Fill in what we know:

$12 $80 = Percent 100

Multiply across the known corners, then divide by the third number. This time the known corners are top left and bottom right:

Percent = ($12 × 100) / $80 = 1200 / 80 = 15%

Answer: $12 is 15% of $80

Or find the Whole:

Example: The sale price of a phone was $150, which was only 80% of normal price. What was the normal price?

$150 Whole = 80 100

Whole = ($150 × 100) / 80 = 15000 / 80 = 187.50

Answer: the phone's normal price was $187.50

Using Proportions to Solve Triangles

We can use proportions to solve similar triangles.

Example: How tall is the Tree?

Sam tried using a ladder, tape measure, ropes and various other things, but still couldn't work out how tall the tree was.

proportion tree

But then Sam has a clever idea ... similar triangles!

Sam measures a stick and its shadow (in meters), and also the shadow of the tree, and this is what he gets:

Now Sam makes a sketch of the triangles, and writes down the "Height to Length" ratio for both triangles:

Height: Shadow Length:     h 2.9 m = 2.4 m 1.3 m

h = (2.9 × 2.4) / 1.3 = 6.96 / 1.3 = 5.4 m (to nearest 0.1)

Answer: the tree is 5.4 m tall.

And he didn't even need a ladder!

The "Height" could have been at the bottom, so long as it was on the bottom for BOTH ratios, like this:

Let us try the ratio of "Shadow Length to Height":

Shadow Length: Height:     2.9 m h = 1.3 m 2.4 m

It is the same calculation as before.

A "Concrete" Example

Ratios can have more than two numbers !

For example concrete is made by mixing cement, sand, stones and water.

concrete pouring

A typical mix of cement, sand and stones is written as a ratio, such as 1:2:6 .

We can multiply all values by the same amount and still have the same ratio.

10:20:60 is the same as 1:2:6

So when we use 10 buckets of cement, we should use 20 of sand and 60 of stones.

Example: you have just put 12 buckets of stones into a mixer, how much cement and how much sand should you add to make a 1:2:6 mix?

Let us lay it out in a table to make it clearer:

You have 12 buckets of stones but the ratio says 6.

That is OK, you simply have twice as many stones as the number in the ratio ... so you need twice as much of everything to keep the ratio.

Here is the solution:

And the ratio 2:4:12 is the same as 1:2:6 (because they show the same relative sizes)

So the answer is: add 2 buckets of Cement and 4 buckets of Sand. (You will also need water and a lot of stirring....)

Why are they the same ratio? Well, the 1:2:6 ratio says to have :

  • twice as much Sand as Cement ( 1 : 2 :6)
  • 6 times as much Stones as Cement ( 1 :2: 6 )

In our mix we have:

  • twice as much Sand as Cement ( 2 : 4 :12)
  • 6 times as much Stones as Cement ( 2 :4: 12 )

So it should be just right!

That is the good thing about ratios. You can make the amounts bigger or smaller and so long as the relative sizes are the same then the ratio is the same.

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Mathematics LibreTexts

6.6: Solve Proportions and their Applications

  • Last updated
  • Save as PDF
  • Page ID 114928

Learning Objectives

By the end of this section, you will be able to:

  • Use the definition of proportion
  • Solve proportions
  • Solve applications using proportions
  • Write percent equations as proportions
  • Translate and solve percent proportions

Be Prepared 6.11

Before you get started, take this readiness quiz.

Simplify: 1 3 4 . 1 3 4 . If you missed this problem, review Example 4.44.

Be Prepared 6.12

Solve: x 4 = 20 . x 4 = 20 . If you missed this problem, review Example 4.99.

Be Prepared 6.13

Write as a rate: Sale rode his bike 24 24 miles in 2 2 hours. If you missed this problem, review Example 5.63.

Use the Definition of Proportion

In the section on Ratios and Rates we saw some ways they are used in our daily lives. When two ratios or rates are equal, the equation relating them is called a proportion .

A proportion is an equation of the form a b = c d , a b = c d , where b ≠ 0 , d ≠ 0 . b ≠ 0 , d ≠ 0 .

The proportion states two ratios or rates are equal. The proportion is read “ a “ a is to b , b , as c c is to d ”. d ”.

The equation 1 2 = 4 8 1 2 = 4 8 is a proportion because the two fractions are equal. The proportion 1 2 = 4 8 1 2 = 4 8 is read “ 1 “ 1 is to 2 2 as 4 4 is to 8 ”. 8 ”.

If we compare quantities with units, we have to be sure we are comparing them in the right order. For example, in the proportion 20 students 1 teacher = 60 students 3 teachers 20 students 1 teacher = 60 students 3 teachers we compare the number of students to the number of teachers. We put students in the numerators and teachers in the denominators.

Example 6.40

Write each sentence as a proportion:

  • ⓐ 3 3 is to 7 7 as 15 15 is to 35 . 35 .
  • ⓑ 5 5 hits in 8 8 at bats is the same as 30 30 hits in 48 48 at-bats.
  • ⓒ $1.50 $1.50 for 6 6 ounces is equivalent to $2.25 $2.25 for 9 9 ounces.

Try It 6.79

  • ⓐ 5 5 is to 9 9 as 20 20 is to 36 . 36 .
  • ⓑ 7 7 hits in 11 11 at-bats is the same as 28 28 hits in 44 44 at-bats.
  • ⓒ $2.50 $2.50 for 8 8 ounces is equivalent to $3.75 $3.75 for 12 12 ounces.

Try It 6.80

  • ⓐ 6 6 is to 7 7 as 36 36 is to 42 . 42 .
  • ⓑ 8 8 adults for 36 36 children is the same as 12 12 adults for 54 54 children.
  • ⓒ $3.75 $3.75 for 6 6 ounces is equivalent to $2.50 $2.50 for 4 4 ounces.

Look at the proportions 1 2 = 4 8 1 2 = 4 8 and 2 3 = 6 9 . 2 3 = 6 9 . From our work with equivalent fractions we know these equations are true. But how do we know if an equation is a proportion with equivalent fractions if it contains fractions with larger numbers?

To determine if a proportion is true, we find the cross products of each proportion. To find the cross products, we multiply each denominator with the opposite numerator (diagonally across the equal sign). The results are called a cross product because of the cross formed. If, and only if, the given proportion is true, that is, the two sides are equal, then the cross products of a proportion will be equal.

The figure shows cross multiplication of two proportions. There is the proportion 1 is to 2 as 4 is to 8. Arrows are shown diagonally across the equal sign to show cross products. The equations formed by cross multiplying are 8 · 1 = 8 and 2 · 4 = 8. There is the proportion 2 is to 3 as 6 is to 9. Arrows are shown diagonally across the equal sign to show cross products. The equations formed by cross multiplying are 9 · 2 = 18 and 3 · 6 = 18.

Cross Products of a Proportion

For any proportion of the form a b = c d , a b = c d , where b ≠ 0 , d ≠ 0 , b ≠ 0 , d ≠ 0 , its cross products are equal.

No Alt Text

Cross products can be used to test whether a proportion is true. To test whether an equation makes a proportion, we find the cross products. If they are both equal, we have a proportion.

Example 6.41

Determine whether each equation is a proportion:

  • ⓐ 4 9 = 12 28 4 9 = 12 28
  • ⓑ 17.5 37.5 = 7 15 17.5 37.5 = 7 15

To determine if the equation is a proportion, we find the cross products. If they are equal, the equation is a proportion.

Since the cross products are not equal, 28 · 4 ≠ 9 · 12 , 28 · 4 ≠ 9 · 12 , the equation is not a proportion.

Since the cross products are equal, 15 · 17.5 = 37.5 · 7 , 15 · 17.5 = 37.5 · 7 , the equation is a proportion.

Try It 6.81

  • ⓐ 7 9 = 54 72 7 9 = 54 72
  • ⓑ 24.5 45.5 = 7 13 24.5 45.5 = 7 13

Try It 6.82

  • ⓐ 8 9 = 56 73 8 9 = 56 73
  • ⓑ 28.5 52.5 = 8 15 28.5 52.5 = 8 15

Solve Proportions

To solve a proportion containing a variable, we remember that the proportion is an equation. All of the techniques we have used so far to solve equations still apply. In the next example, we will solve a proportion by multiplying by the Least Common Denominator (LCD) using the Multiplication Property of Equality .

Example 6.42

Solve: x 63 = 4 7 . x 63 = 4 7 .

Try It 6.83

Solve the proportion: n 84 = 11 12 . n 84 = 11 12 .

Try It 6.84

Solve the proportion: y 96 = 13 12 . y 96 = 13 12 .

When the variable is in a denominator, we’ll use the fact that the cross products of a proportion are equal to solve the proportions.

We can find the cross products of the proportion and then set them equal. Then we solve the resulting equation using our familiar techniques.

Example 6.43

Solve: 144 a = 9 4 . 144 a = 9 4 .

Notice that the variable is in the denominator, so we will solve by finding the cross products and setting them equal.

Another method to solve this would be to multiply both sides by the LCD, 4 a . 4 a . Try it and verify that you get the same solution.

Try It 6.85

Solve the proportion: 91 b = 7 5 . 91 b = 7 5 .

Try It 6.86

Solve the proportion: 39 c = 13 8 . 39 c = 13 8 .

Example 6.44

Solve: 52 91 = −4 y . 52 91 = −4 y .

Try It 6.87

Solve the proportion: 84 98 = −6 x . 84 98 = −6 x .

Try It 6.88

Solve the proportion: −7 y = 105 135 . −7 y = 105 135 .

Solve Applications Using Proportions

The strategy for solving applications that we have used earlier in this chapter, also works for proportions, since proportions are equations. When we set up the proportion , we must make sure the units are correct—the units in the numerators match and the units in the denominators match.

Example 6.45

When pediatricians prescribe acetaminophen to children, they prescribe 5 5 milliliters (ml) of acetaminophen for every 25 25 pounds of the child’s weight. If Zoe weighs 80 80 pounds, how many milliliters of acetaminophen will her doctor prescribe?

You could also solve this proportion by setting the cross products equal.

Try It 6.89

Pediatricians prescribe 5 5 milliliters (ml) of acetaminophen for every 25 25 pounds of a child’s weight. How many milliliters of acetaminophen will the doctor prescribe for Emilia, who weighs 60 60 pounds?

Try It 6.90

For every 1 1 kilogram (kg) of a child’s weight, pediatricians prescribe 15 15 milligrams (mg) of a fever reducer. If Isabella weighs 12 12 kg, how many milligrams of the fever reducer will the pediatrician prescribe?

Example 6.46

One brand of microwave popcorn has 120 120 calories per serving. A whole bag of this popcorn has 3.5 3.5 servings. How many calories are in a whole bag of this microwave popcorn?

Try It 6.91

Marissa loves the Caramel Macchiato at the coffee shop. The 16 16 oz. medium size has 240 240 calories. How many calories will she get if she drinks the large 20 20 oz. size?

Try It 6.92

Yaneli loves Starburst candies, but wants to keep her snacks to 100 100 calories. If the candies have 160 160 calories for 8 8 pieces, how many pieces can she have in her snack?

Example 6.47

Josiah went to Mexico for spring break and changed $325 $325 dollars into Mexican pesos. At that time, the exchange rate had $1 $1 U.S. is equal to 12.54 12.54 Mexican pesos. How many Mexican pesos did he get for his trip?

Try It 6.93

Yurianna is going to Europe and wants to change $800 $800 dollars into Euros. At the current exchange rate, $1 $1 US is equal to 0.738 0.738 Euro. How many Euros will she have for her trip?

Try It 6.94

Corey and Nicole are traveling to Japan and need to exchange $600 $600 into Japanese yen. If each dollar is 94.1 94.1 yen, how many yen will they get?

Write Percent Equations As Proportions

Previously, we solved percent equations by applying the properties of equality we have used to solve equations throughout this text. Some people prefer to solve percent equations by using the proportion method. The proportion method for solving percent problems involves a percent proportion. A percent proportion is an equation where a percent is equal to an equivalent ratio.

For example, 60% = 60 100 60% = 60 100 and we can simplify 60 100 = 3 5 . 60 100 = 3 5 . Since the equation 60 100 = 3 5 60 100 = 3 5 shows a percent equal to an equivalent ratio, we call it a percent proportion . Using the vocabulary we used earlier:

amount base = percent 100 amount base = percent 100

3 5 = 60 100 3 5 = 60 100

Percent Proportion

The amount is to the base as the percent is to 100 . 100 .

If we restate the problem in the words of a proportion, it may be easier to set up the proportion:

The amount is to the base as the percent is to one hundred. The amount is to the base as the percent is to one hundred.

We could also say:

The amount out of the base is the same as the percent out of one hundred. The amount out of the base is the same as the percent out of one hundred.

First we will practice translating into a percent proportion. Later, we’ll solve the proportion.

Example 6.48

Translate to a proportion. What number is 75% 75% of 90 ? 90 ?

If you look for the word "of", it may help you identify the base.

Try It 6.95

Translate to a proportion: What number is 60% 60% of 105 ? 105 ?

Try It 6.96

Translate to a proportion: What number is 40% 40% of 85 ? 85 ?

Example 6.49

Translate to a proportion. 19 19 is 25% 25% of what number?

Try It 6.97

Translate to a proportion: 36 36 is 25% 25% of what number?

Try It 6.98

Translate to a proportion: 27 27 is 36% 36% of what number?

Example 6.50

Translate to a proportion. What percent of 27 27 is 9 ? 9 ?

Try It 6.99

Translate to a proportion: What percent of 52 52 is 39 ? 39 ?

Try It 6.100

Translate to a proportion: What percent of 92 92 is 23 ? 23 ?

Translate and Solve Percent Proportions

Now that we have written percent equations as proportions, we are ready to solve the equations.

Example 6.51

Translate and solve using proportions: What number is 45% 45% of 80 ? 80 ?

Try It 6.101

Translate and solve using proportions: What number is 65% 65% of 40 ? 40 ?

Try It 6.102

Translate and solve using proportions: What number is 85% 85% of 40 ? 40 ?

In the next example, the percent is more than 100 , 100 , which is more than one whole. So the unknown number will be more than the base.

Example 6.52

Translate and solve using proportions: 125% 125% of 25 25 is what number?

Try It 6.103

Translate and solve using proportions: 125% 125% of 64 64 is what number?

Try It 6.104

Translate and solve using proportions: 175% 175% of 84 84 is what number?

Percents with decimals and money are also used in proportions.

Example 6.53

Translate and solve: 6.5% 6.5% of what number is $1.56 ? $1.56 ?

Try It 6.105

Translate and solve using proportions: 8.5% 8.5% of what number is $3.23 ? $3.23 ?

Try It 6.106

Translate and solve using proportions: 7.25% 7.25% of what number is $4.64 ? $4.64 ?

Example 6.54

Translate and solve using proportions: What percent of 72 72 is 9 ? 9 ?

Try It 6.107

Translate and solve using proportions: What percent of 72 72 is 27 ? 27 ?

Try It 6.108

Translate and solve using proportions: What percent of 92 92 is 23 ? 23 ?

Section 6.5 Exercises

Practice makes perfect.

In the following exercises, write each sentence as a proportion.

4 4 is to 15 15 as 36 36 is to 135 . 135 .

7 7 is to 9 9 as 35 35 is to 45 . 45 .

12 12 is to 5 5 as 96 96 is to 40 . 40 .

15 15 is to 8 8 as 75 75 is to 40 . 40 .

5 5 wins in 7 7 games is the same as 115 115 wins in 161 161 games.

4 4 wins in 9 9 games is the same as 36 36 wins in 81 81 games.

8 8 campers to 1 1 counselor is the same as 48 48 campers to 6 6 counselors.

6 6 campers to 1 1 counselor is the same as 48 48 campers to 8 8 counselors.

$9.36 $9.36 for 18 18 ounces is the same as $2.60 $2.60 for 5 5 ounces.

$3.92 $3.92 for 8 8 ounces is the same as $1.47 $1.47 for 3 3 ounces.

$18.04 $18.04 for 11 11 pounds is the same as $4.92 $4.92 for 3 3 pounds.

$12.42 $12.42 for 27 27 pounds is the same as $5.52 $5.52 for 12 12 pounds.

In the following exercises, determine whether each equation is a proportion.

7 15 = 56 120 7 15 = 56 120

5 12 = 45 108 5 12 = 45 108

11 6 = 21 16 11 6 = 21 16

9 4 = 39 34 9 4 = 39 34

12 18 = 4.99 7.56 12 18 = 4.99 7.56

9 16 = 2.16 3.89 9 16 = 2.16 3.89

13.5 8.5 = 31.05 19.55 13.5 8.5 = 31.05 19.55

10.1 8.4 = 3.03 2.52 10.1 8.4 = 3.03 2.52

In the following exercises, solve each proportion.

x 56 = 7 8 x 56 = 7 8

n 91 = 8 13 n 91 = 8 13

49 63 = z 9 49 63 = z 9

56 72 = y 9 56 72 = y 9

5 a = 65 117 5 a = 65 117

4 b = 64 144 4 b = 64 144

98 154 = −7 p 98 154 = −7 p

72 156 = −6 q 72 156 = −6 q

a −8 = −42 48 a −8 = −42 48

b −7 = −30 42 b −7 = −30 42

2.6 3.9 = c 3 2.6 3.9 = c 3

2.7 3.6 = d 4 2.7 3.6 = d 4

2.7 j = 0.9 0.2 2.7 j = 0.9 0.2

2.8 k = 2.1 1.5 2.8 k = 2.1 1.5

1 2 1 = m 8 1 2 1 = m 8

1 3 3 = 9 n 1 3 3 = 9 n

In the following exercises, solve the proportion problem.

Pediatricians prescribe 5 5 milliliters (ml) of acetaminophen for every 25 25 pounds of a child’s weight. How many milliliters of acetaminophen will the doctor prescribe for Jocelyn, who weighs 45 45 pounds?

Brianna, who weighs 6 6 kg, just received her shots and needs a pain killer. The pain killer is prescribed for children at 15 15 milligrams (mg) for every 1 1 kilogram (kg) of the child’s weight. How many milligrams will the doctor prescribe?

At the gym, Carol takes her pulse for 10 10 sec and counts 19 19 beats. How many beats per minute is this? Has Carol met her target heart rate of 140 140 beats per minute?

Kevin wants to keep his heart rate at 160 160 beats per minute while training. During his workout he counts 27 27 beats in 10 10 seconds. How many beats per minute is this? Has Kevin met his target heart rate?

A new energy drink advertises 106 106 calories for 8 8 ounces. How many calories are in 12 12 ounces of the drink?

One 12 12 ounce can of soda has 150 150 calories. If Josiah drinks the big 32 32 ounce size from the local mini-mart, how many calories does he get?

Karen eats 1 2 1 2 cup of oatmeal that counts for 2 2 points on her weight loss program. Her husband, Joe, can have 3 3 points of oatmeal for breakfast. How much oatmeal can he have?

An oatmeal cookie recipe calls for 1 2 1 2 cup of butter to make 4 4 dozen cookies. Hilda needs to make 10 10 dozen cookies for the bake sale. How many cups of butter will she need?

Janice is traveling to Canada and will change $250 $250 US dollars into Canadian dollars. At the current exchange rate, $1 $1 US is equal to $1.01 $1.01 Canadian. How many Canadian dollars will she get for her trip?

Todd is traveling to Mexico and needs to exchange $450 $450 into Mexican pesos. If each dollar is worth 12.29 12.29 pesos, how many pesos will he get for his trip?

Steve changed $600 $600 into 480 480 Euros. How many Euros did he receive per US dollar?

Martha changed $350 $350 US into 385 385 Australian dollars. How many Australian dollars did she receive per US dollar?

At the laundromat, Lucy changed $12.00 $12.00 into quarters. How many quarters did she get?

When she arrived at a casino, Gerty changed $20 $20 into nickels. How many nickels did she get?

Jesse’s car gets 30 30 miles per gallon of gas. If Las Vegas is 285 285 miles away, how many gallons of gas are needed to get there and then home? If gas is $3.09 $3.09 per gallon, what is the total cost of the gas for the trip?

Danny wants to drive to Phoenix to see his grandfather. Phoenix is 370 370 miles from Danny’s home and his car gets 18.5 18.5 miles per gallon. How many gallons of gas will Danny need to get to and from Phoenix? If gas is $3.19 $3.19 per gallon, what is the total cost for the gas to drive to see his grandfather?

Hugh leaves early one morning to drive from his home in Chicago to go to Mount Rushmore, 812 812 miles away. After 3 3 hours, he has gone 190 190 miles. At that rate, how long will the whole drive take?

Kelly leaves her home in Seattle to drive to Spokane, a distance of 280 280 miles. After 2 2 hours, she has gone 152 152 miles. At that rate, how long will the whole drive take?

Phil wants to fertilize his lawn. Each bag of fertilizer covers about 4,000 4,000 square feet of lawn. Phil’s lawn is approximately 13,500 13,500 square feet. How many bags of fertilizer will he have to buy?

April wants to paint the exterior of her house. One gallon of paint covers about 350 350 square feet, and the exterior of the house measures approximately 2000 2000 square feet. How many gallons of paint will she have to buy?

Write Percent Equations as Proportions

In the following exercises, translate to a proportion.

What number is 35% 35% of 250 ? 250 ?

What number is 75% 75% of 920 ? 920 ?

What number is 110% 110% of 47 ? 47 ?

What number is 150% 150% of 64 ? 64 ?

45 45 is 30% 30% of what number?

25 25 is 80% 80% of what number?

90 90 is 150% 150% of what number?

77 77 is 110% 110% of what number?

What percent of 85 85 is 17 ? 17 ?

What percent of 92 92 is 46 ? 46 ?

What percent of 260 260 is 340 ? 340 ?

What percent of 180 180 is 220 ? 220 ?

In the following exercises, translate and solve using proportions.

What number is 65% 65% of 180 ? 180 ?

What number is 55% 55% of 300 ? 300 ?

18% 18% of 92 92 is what number?

22% 22% of 74 74 is what number?

175% 175% of 26 26 is what number?

250% 250% of 61 61 is what number?

What is 300% 300% of 488 ? 488 ?

What is 500% 500% of 315 ? 315 ?

17% 17% of what number is $7.65 ? $7.65 ?

19% 19% of what number is $6.46 ? $6.46 ?

$13.53 $13.53 is 8.25% 8.25% of what number?

$18.12 $18.12 is 7.55% 7.55% of what number?

What percent of 56 56 is 14 ? 14 ?

What percent of 80 80 is 28 ? 28 ?

What percent of 96 96 is 12 ? 12 ?

What percent of 120 120 is 27 ? 27 ?

Everyday Math

Mixing a concentrate Sam bought a large bottle of concentrated cleaning solution at the warehouse store. He must mix the concentrate with water to make a solution for washing his windows. The directions tell him to mix 3 3 ounces of concentrate with 5 5 ounces of water. If he puts 12 12 ounces of concentrate in a bucket, how many ounces of water should he add? How many ounces of the solution will he have altogether?

Mixing a concentrate Travis is going to wash his car. The directions on the bottle of car wash concentrate say to mix 2 2 ounces of concentrate with 15 15 ounces of water. If Travis puts 6 6 ounces of concentrate in a bucket, how much water must he mix with the concentrate?

Writing Exercises

To solve “what number is 45% 45% of 350 ” 350 ” do you prefer to use an equation like you did in the section on Decimal Operations or a proportion like you did in this section? Explain your reason.

To solve “what percent of 125 125 is 25 ” 25 ” do you prefer to use an equation like you did in the section on Decimal Operations or a proportion like you did in this section? Explain your reason.

ⓐ After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

.

ⓑ Overall, after looking at the checklist, do you think you are well-prepared for the next Chapter? Why or why not?

problem solving in geometry with proportions

Home / United States / Math Classes / 7th Grade Math / Writing and Solving Proportions

Writing and Solving Proportions

A proportion is an equation that states that two ratios are equivalent. We can perform operations on proportions, just l ike we do with normal equations. Here we will learn to perform operations on proportions and the steps involved in solving them. ...Read More Read Less

About Proportions in Math

problem solving in geometry with proportions

What are Proportions?

Writing proportions as fractions, using operations to solve proportions, solved examples.

  • Frequently Asked Questions

Proportions are mathematical equations that are used to relate equivalent ratios. Two ratios having different antecedents and consequents can have the same value. This relation can be expressed with the help of proportions. Let us consider the ratios \( 2:5 \)  and \( 8:20 \) . When we simplify the ratio \( 8:20 \) , we obtain \( 2:5 \) . This implies that \( 2:5 \)  and \( 8:20 \)  are equivalent ratios. 

In other words, these ratios are in proportion. If \( a:b \)  and \( c:d \) are equivalent ratios, we can express the relation as \( a:b::c:d \) , where the ‘ \( ~::~ \) ’ sign is used to express proportion. So, we can state the proportion in the example that was just observed as, \( 2:5 :: 8:20 \) .

We have learned that a ratio is a comparison of two quantities having the same unit. We also compare two quantities using fractions. Hence, a ratio can also be written as a fraction. For example, we can write the ratio \( a:b \)  as \( \frac{a}{b} \) and \( c:d \)  as \( \frac{c}{d} \) .

Similarly, we can write a proportion as a fraction. Instead of writing \( 2:5::8:20 \) , we can write the proportion as \( \frac{2}{5} = \frac{8}{20} \)   , and this makes it easier to perform operations on proportions to solve for unknown values.

Since a proportion is basically an equation, we can perform operations on them to find unknown values. We can use operations like addition, subtraction, multiplication, and division to solve a proportion. In most cases, we only need to use multiplication and division. Let’s consider a proportion in which one of the values is unknown. 

For example, \( \frac{5}{8} = \frac{x}{40} \)

Use basic math operations to solve this equation. Begin by removing the denominator from both sides.

\( \frac{5 \times 8}{8} = \frac{x \times 8}{40} \)            [Multiply both sides by \( 8 \)]

\( 5 = \frac{x}{5} \)                    [Simplify]

\( 5 \times 5 = \frac{x\times 5}{5} \)          [Multiply both sides by \( 5 \)]

\( 25 = x \)                   [ Simplify]      

Hence, the value of \( x \) is \( 25 \). 

Similarly, we can use a combination of mathematical operations to solve proportions.

Example 1: Use math operations to find the value of \( x \) in the expression, \( \frac{3}{7} = \frac{x}{28} \) .

Solution:  

To find the value of \( x \) , simplify the equation.

\( \frac{3}{7} = \frac{x}{28} \)                    [Write the equation]

\( \frac{3 \times 7}{7} = \frac{x \times 7}{28} \)              [Multiply both sides by \( 7 \)]

\( 3 = \frac{x}{4} \)                      [Simplify]

\( 3 \times 4 = \frac{x \times 4}{4} \)            [Multiply both sides by \( 4 \)]

\( 12 = x \)                    [Simplify]

So, the value of \( x \) is \( 12 \).

Example 2: Solve the proportion to find the unknown value: \( 15:y :: 25:55 \) .

The proportion is \( 15:y :: 25:55 \) and this expression can also be written as \( \frac{15}{y} = \frac{25}{55} \)

To find the value of \( y \) , simplify the equation.

\( \frac{15}{y} = \frac{25}{55} \)                   [Write the proportion]

\( \frac{y}{15} = \frac{55}{25} \)                    [Taking reciprocal of both sides]

\( \frac{y \times 15}{15} = \frac{55 \times 15}{25} \)           [Multiplying both sides by \( 15 \)]

\( y = \frac{11 \times 15}{55} \)                  [Simplify]

\( y = 11 \times 3 \)                [Simplify]

\( y = 33 \)                      [Multiply]

Hence, the unknown value, \( y \) is \( 33 \).

Example 3: An athlete can run \( 100 \) meters in \( 11 \) seconds. If she runs at a constant pace, how long will she take to run \( 800 \) meters?

Time taken by the athlete to cover \( 100 \) meters \( = 11 \) seconds

Let us assume the time taken by the athlete to cover \( 800 \) meters \( = x \) seconds

Since her speed is constant, the ratio of distance and time in both cases is in proportion. 

\( \frac{100}{11} = \frac{800}{x} \)                      [Write the above condition in proportion]

\( \frac{11}{100} = \frac{x}{800} \)                      [Taking reciprocal of both sides]

\( \frac{11 \times 100}{100} = \frac{x \times 100}{800} \)              [Multiplying both sides by \( 100 \)]

\( 11 = \frac{x}{8} \)                          [Simplify]

\( x = 88 \)                            [Multiplying both sides by \( 8 \)]

Hence, the athlete will take \( 88 \) seconds to run \( 800 \) meters.

Are ratios related to proportions?

Yes, a proportion is an equation that states that two ratios are equivalent. So, we can say that proportions are directly related to ratios.

Can we perform mathematical operations on proportions?

Since proportions are basically mathematical equations, we can perform all the mathematical operations on them, just like we do with a normal mathematical equation.

How do we solve a proportion?

We can solve a proportion to find the unknown value by performing mathematical operations on them. The goal is to isolate the unknown value on one side of the equation. Thus, by solving the equation, we will get the value of the unknown on the other side of the equation.

Check out our other courses

Grades 1 - 12

Level 1 - 10

The Math Doctors

Many Ways to Solve a Proportion

Last week we looked at a set of special rules for working with proportions, which have been largely replaced by the more general “tool” of algebra (the “Swiss army knife” of problem solving, which can do the job of many specialized tools), though the latter can still be useful. We still find that many students memorize a related special tool, cross-multiplication, and miss out on the great flexibility algebra provides. Here we’ll focus on the variety of ways you can solve these.

Cross-multiplication

I’ll start with a question from 2002:

Cross multiplication means multiplying diagonally opposite terms in the proportion, like this in Kimberly’s example:

$$\require{cancel}\frac{3}{15}\xcancel{=}\frac{n}{30}$$ $$3\times 30=n\times 15$$ $$90=15n$$ $$n=\frac{90}{15}=6$$

We’ll see other ways to solve this soon; but the immediate question is, why can we do that?

I answered:

The Rule of Three, an old version of cross-multiplication, will be our topic next week. Math isn’t just a set of magical incantations to recite because an authority tells you to do so; we need reasons for what we do. When we know how and why it works, we are more likely to remember it correctly and to apply it appropriately.

The students in this class are likely learning just the beginnings of algebra, such as the use of a variable in the problem, and using letters for all four terms of a proportion. I wanted to explain in a way that would both show a little of the power of algebra, but also not overwhelm them – though the main target of my answer was the teacher!

To make this more concrete, consider our proportion $$\frac{3}{15}=\frac{n}{30}.$$ We can first multiply both sides by the first denominator, 15, canceling to get $$\cancel{15}\times\frac{3}{\cancel{15}}=15\times\frac{n}{30}$$ $$3=\frac{15n}{30},$$ and then multiply both sides by the second denominator (without doing the arithmetic, so we can see what’s happening), to get $$30\times 3=\cancel{30}\times\frac{15n}{\cancel{30}}$$ $$30\times 3=15n$$ Cross-multiplication is just a shortcut for multiplying the equation by both denominators.

But if you look closely at what I just did, you may notice that we could actually save effort by multiplying by only one denominator, since the 15 just has to be divided back out. This gives us the first of several alternative methods we’ll see:

Alternative 1: Multiply by one denominator

Here I saw that I could divide 30 by 15 before doing the multiplication (the cancel-first strategy that was discussed here ), and never have to work with large numbers.

Kimberly replied,

Teachers are always among our favorite users!

Means and extremes

Here is a question, from 2001, about an older way to talk about cross-multiplication:

This relates to an old way to describe cross-multiplication: “the product of the means equals the product of the extremes “. This particularly related to the old notation for proportions, using “horizontal” ratio notation, in which the last example might have been written as “3:15:: n :30″, with “::” playing the role of the equal sign, and read as “3 is to 15 as n is to 30″.

I explained:

When written in the vertical form, it is harder to see an inside and an outside (except when you read it aloud), and easier to see them as forming a cross.

You don’t need to know the Latin, of course; but if you use these terms, you need to know the ideas of “middle” and “outside”. We also use the word “extreme” to refer to the largest or smallest value of something – the farthest you can get from the “middle”.

Using this formulation, our proportion looks like $$\underbrace{3:\underbrace{15::n}:30},$$ where the means are 15 and n , and the extremes are 3 and 30. Setting the means equal to the extremes, we have, as before, $$15n=3\cdot30.$$

More alternatives

For yet more flexibility, consider this question from 2014, suggesting an alternative method:

Vladimir recognizes that solving this proportion is equivalent to asking, what fraction with 20 in the denominator is equivalent to \(\frac{9}{20}\)? To do that, you just multiply the numerator by the same number you have to multiply the denominator by. It’s a good method … for this particular problem!

I congratulated him, and then took it further:

A key to good problem solving is to see special features of the problem at hand that offer shorter and better ways than a routine approach.

We’ll see next week that the tradition is very old indeed. I started by examining when Vladimir’s method (which I’ll call alternative 2) works best:

Alternative 2: Make an equivalent fraction

In other words, his method is essentially what students are taught to do when they need to make an equivalent fraction using a common denominator (for addition of fractions, say), which is a multiple of the existing denominator. We just fill in the blank by multiplying the numerator by the same quantity as the denominator. If those numbers aren’t so compatible, the method still works, but is considerably more awkward. Here, I had to divide 23.85 by 5.3 to get 4.5 – and it could have been a lot worse! I made this problem to be relatively easy to do this way.

Note that this method still requires a multiplication and a division; but we are doing the division first because (in his example) it is easy to see.

Alternative 3: Multiply by the divisor

This is really the same as alternative 1 above, but viewed algebraically. As before, I chose to cancel the 20 and the 5 before multiplying; otherwise, this would have been the same work as cross-multiplying, namely multiplying \(20\times9\) and dividing by 5. To put it another way, like Vladimir, I recognized an easy division and did it first, rather than the multiplication.

Aside: What if the variable is in the denominator?

None of my examples here will involve problems where the unknown is on the bottom, like this: $$\frac{5}{9}=\frac{20}{x}$$ This is a case where students will often fall back on cross-multiplying: $$5x=9\cdot20=180$$ $$x=\frac{180}{5}=36$$

But there is a simple way, again: Take the reciprocal of each side . (After all, if \(x=y\), then \(\frac{1}{x}=\frac{1}{y}\).) So in my example, we would just flip everything, to get $$\frac{9}{5}=\frac{x}{20}$$

This is, of course, the same problem we just solved the easy way. So a quick flip turns the awkward problem into a simpler one.

This is particularly useful when we use the Law of Sines in trigonometry, which can be written in two forms: $$\frac{a}{\sin A}=\frac{b}{\sin B}$$ and $$\frac{\sin A}{a}=\frac{\sin B}{b}$$ Rather than always use one form, I use the first (“side over sine”) when the unknown is a side length, and the second (“sine over side”) when the unknown is an angle, so that the unknown is always on top. I recently showed this in tutoring a student face to face, and it saved her from a major struggle.

Alternative 4: Clear fractions using the LCD

Here, the Least Common Multiple of 15 and 25 is 75. Using this keeps all numbers as small as possible; but that comes at the cost of having to find the LCD, which isn’t always easy. On the other hand, as usual in simplifying fractions, you don’t need to worry about finding the best number to use, but can approach it step by step, perhaps first multiplying by one of the denominators, and then seeing what is left. (If you do that, though, you’ll often find yourself really using another of our methods!)

Aside: Simplify first

School exercises using nice numbers often benefit from doing this; you may have noticed that it applies to our first example as well: $$\frac{3}{15}=\frac{n}{30}$$ becomes $$\frac{1}{5}=\frac{n}{30}$$ so that multiplying by 30 leads directly to the answer, $$n=\frac{30}{5}=6$$

This is less common in real life.

Check by simplifying

Cross-multiplication is commonly first introduced as a way to check whether two fractions are equal, or equivalently whether an equation is a [true] proportion. For example, you might be given $$\frac{45}{67}=\frac{86}{128}$$ and asked whether it is a proportion (that is, whether it is true). The cross-products are \(45\times128=5760\) and \(67\times86=5762\); since these are close but not equal, you would say that the numbers are not [exactly] in proportion, but nearly so. With some effort, you could instead determine that both are in lowest terms , so the fractions are not equal. On the other hand, given $$\frac{45}{78}=\frac{75}{130}$$ you would find that you can simplify both to \(\frac{15}{26}\), so they are equivalent fractions and the equation is true. Is this easy? That depends on the numbers, and whether you have a calculator handy!

Check using a common denominator

Another similar approach would go in the opposite direction: Rather than try to reduce both fractions (hopefully to the same thing), we might write both fractions using the same denominator (hopefully with the same numerator, too). If we use the LCD to do this, it can take some work:  Given $$\frac{45}{78}=\frac{75}{130}$$ we would have to see that the least common multiple of \(78=2\times3\times13\) and \(130=2\times5\times13\) is \(2\times3\times5\times13=390\), so $$\frac{45}{78}=\frac{45}{78}\times\frac{5}{5}=\frac{225}{390}$$ while $$\frac{75}{130}=\frac{75}{130}\times\frac{3}{3}=\frac{225}{390}$$ and they are equal.

But we don’t need to use the Least Common Denominator; we can use what I call the “ Obvious Common Denominator”, which is just the product of the two denominators. That gives bigger numbers, but saves thought. Here is the work: $$\frac{45}{78}=\frac{45}{78}\times\frac{130}{130}=\frac{5,850}{10,140}$$ while $$\frac{75}{130}=\frac{75}{130}\times\frac{78}{78}=\frac{5,850}{10,140}$$ There are, of course, the same. And do you notice that the new numerators are the cross-products ? This is another way to see why cross-multiplication works!

By thinking first, you can often save a lot of work; but also, you are sharpening you skills and building “number sense”, which can be useful in other areas of math. This is not just about proportions!

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

Algebra: Ratio Word Problems

Related Pages Two-Term Ratio Word Problems More Ratio Word Problems Algebra Lessons

In these lessons, we will learn how to solve ratio word problems that have two-term ratios or three-term ratios.

Ratio problems are word problems that use ratios to relate the different items in the question.

The main things to be aware about for ratio problems are:

  • Change the quantities to the same unit if necessary.
  • Write the items in the ratio as a fraction .
  • Make sure that you have the same items in the numerator and denominator.

Ratio Problems: Two-Term Ratios

Example 1: In a bag of red and green sweets, the ratio of red sweets to green sweets is 3:4. If the bag contains 120 green sweets, how many red sweets are there?

Solution: Step 1: Assign variables: Let x = number of red sweets.

Step 2: Solve the equation. Cross Multiply 3 × 120 = 4 × x 360 = 4 x

Answer: There are 90 red sweets.

Example 2: John has 30 marbles, 18 of which are red and 12 of which are blue. Jane has 20 marbles, all of them either red or blue. If the ratio of the red marbles to the blue marbles is the same for both John and Jane, then John has how many more blue marbles than Jane?

Solution: Step 1: Sentence: Jane has 20 marbles, all of them either red or blue. Assign variables: Let x = number of blue marbles for Jane 20 – x = number red marbles for Jane

Step 2: Solve the equation

Cross Multiply 3 × x = 2 × (20 – x ) 3 x = 40 – 2 x

John has 12 blue marbles. So, he has 12 – 8 = 4 more blue marbles than Jane.

Answer: John has 4 more blue marbles than Jane.

How To Solve Word Problems Using Proportions?

This is another word problem that involves ratio or proportion.

Example: A recipe uses 5 cups of flour for every 2 cups of sugar. If I want to make a recipe using 8 cups of flour. How much sugar should I use?

How To Solve Proportion Word Problems?

When solving proportion word problems remember to have like units in the numerator and denominator of each ratio in the proportion.

  • Biologist tagged 900 rabbits in Bryer Lake National Park. At a later date, they found 6 tagged rabbits in a sample of 2000. Estimate the total number of rabbits in Bryer Lake National Park.
  • Mel fills his gas tank up with 6 gallons of premium unleaded gas for a cost of $26.58. How much would it costs to fill an 18 gallon tank? 3 If 4 US dollars can be exchanged for 1.75 Euros, how many Euros can be obtained for 144 US dollars?

Ratio problems: Three-term Ratios

Example 1: A special cereal mixture contains rice, wheat and corn in the ratio of 2:3:5. If a bag of the mixture contains 3 pounds of rice, how much corn does it contain?

Solution: Step 1: Assign variables: Let x = amount of corn

Step 2: Solve the equation Cross Multiply 2 × x = 3 × 5 2 x = 15

Answer: The mixture contains 7.5 pounds of corn.

Example 2: Clothing store A sells T-shirts in only three colors: red, blue and green. The colors are in the ratio of 3 to 4 to 5. If the store has 20 blue T-shirts, how many T-shirts does it have altogether?

Solution: Step 1: Assign variables: Let x = number of red shirts and y = number of green shirts

Step 2: Solve the equation Cross Multiply 3 × 20 = x × 4 60 = 4 x x = 15

5 × 20 = y × 4 100 = 4 y y = 25

The total number of shirts would be 15 + 25 + 20 = 60

Answer: There are 60 shirts.

Algebra And Ratios With Three Terms

Let’s study how algebra can help us think about ratios with more than two terms.

Example: There are a total of 42 computers. Each computer runs one of three operating systems: OSX, Windows, Linux. The ratio of the computers running OSX, Windows, Linux is 2:5:7. Find the number of computers that are running each of the operating systems.

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Unit 1: Proportional relationships

About this unit.

Learn all about proportional relationships. How are they connected to ratios and rates? What do their graphs look like? What types of word problems can we solve with proportions?

Constant of proportionality

  • Rates & proportional relationships FAQ (Opens a modal)
  • Introduction to proportional relationships (Opens a modal)
  • Identifying constant of proportionality graphically (Opens a modal)
  • Constant of proportionality from graph (Opens a modal)
  • Identifying the constant of proportionality from equation (Opens a modal)
  • Constant of proportionality from equation (Opens a modal)
  • Constant of proportionality from tables (Opens a modal)
  • Constant of proportionality from table (with equations) (Opens a modal)
  • Constant of proportionality from graphs Get 3 of 4 questions to level up!
  • Constant of proportionality from equations Get 3 of 4 questions to level up!
  • Constant of proportionality from tables Get 3 of 4 questions to level up!
  • Constant of proportionality from tables (with equations) Get 3 of 4 questions to level up!

Compare and interpret constants of proportionality

  • Comparing constants of proportionality (Opens a modal)
  • Comparing proportionality constants (Opens a modal)
  • Interpret proportionality constants (Opens a modal)
  • Compare constants of proportionality Get 3 of 4 questions to level up!
  • Interpret constants of proportionality Get 3 of 4 questions to level up!
  • Interpret constant of proportionality in graphs Get 3 of 4 questions to level up!

Identifying proportional relationships

  • Intro to proportional relationships (Opens a modal)
  • Proportional relationships: movie tickets (Opens a modal)
  • Proportional relationships: bananas (Opens a modal)
  • Proportional relationships: spaghetti (Opens a modal)
  • Proportional relationships (Opens a modal)
  • Is side length & area proportional? (Opens a modal)
  • Is side length & perimeter proportional? (Opens a modal)
  • Identify proportional relationships Get 5 of 7 questions to level up!
  • Proportional relationships Get 5 of 7 questions to level up!

Graphs of proportional relationships

  • Identifying proportional relationships from graphs (Opens a modal)
  • Proportional relationships: graphs (Opens a modal)
  • Interpreting graphs of proportional relationships (Opens a modal)
  • Identify proportional relationships from graphs Get 3 of 4 questions to level up!
  • Interpreting graphs of proportional relationships Get 3 of 4 questions to level up!

Writing & solving proportions

  • Worked example: Solving proportions (Opens a modal)
  • Writing proportions example (Opens a modal)
  • Proportion word problem: cookies (Opens a modal)
  • Proportion word problem: hot dogs (Opens a modal)
  • Solving proportions Get 5 of 7 questions to level up!
  • Writing proportions Get 3 of 4 questions to level up!
  • Proportion word problems Get 3 of 4 questions to level up!

Equations of proportional relationships

  • Equations for proportional relationships (Opens a modal)
  • Writing proportional equations from tables (Opens a modal)
  • Writing proportional equations (Opens a modal)
  • Writing proportional equations from tables Get 3 of 4 questions to level up!
  • Writing proportional equations Get 3 of 4 questions to level up!

PROBLEM SOLVING IN GEOMETRY WITH PROPORTIONS

Properties of proportions.

1. Cross Product Property :

The product of the extremes equals the product of the means.

If a/b = c/d, then ad = bc.

2. Reciprocal Property :

If two ratios are equal, then their reciprocals are also equal.

If a/b = c/d, then b/a = d/c.

3. Alternendo Property :

If a/b = c/d, then a/c = b/d.

4. Componendo Property :

If a/b = c/d, then (a + b)/b = (c + d)/d.

Using Properties of Proportions

Example 1 :

Say, whether the statement given below is true.

If x/4 = y/16, then x/y = 1/4.

Using Alternendo Property,

Hence, the statement is true.

Example 2 :

If p/3 = q/5, then (p + 3)/3 = (q + 3)/5

Using Componendo Property,

(p + 3)/3 = (q + 5)/5

Because  (p + 3)/3  ≠  (q + 3)/5, the conclusions are equivalent.

Hence, the statement is false.

Example 3 :

In the diagram shown below,

PQ/QS = PR/RT

Find the length of QS.

problem solving in geometry with proportions

Substitute.

16/x = (30 - 10)/10

16/x = 20/10

By reciprocal property, we have

Multiply each side by 16.

16  ⋅  (x/16) = (1/2)  ⋅ 16

Hence, the length of BD is 8 units.

Geometric Mean

The geometric mean of two positive numbers a and b is the positive number x such that

a/ x  =  x /b

If we solve this proportion for x , we find that

x  =  √(a  ⋅ b)

which is a positive number.

For example, the geometric mean of 8 and 18 is 12 .

Because 8/ 12  =  12 /18 and also because

√(8 ⋅ 18) =  √144 =  12

Using Geometric Mean

Example 4 :

International standard paper sizes are commonly used all over the world. The various sizes all have the same width-to-length ratios. Two sizes of paper are shown below, called A4 and A3. The distance labeled x is the geometric mean of 210 mm and 420 mm. Find the value of x.

problem solving in geometry with proportions

Using the given information, write proportion.

210/x = x/420

Using cross product property,

x 2  = 210  ⋅ 420

Take radical on both sides.

√ x 2  =  √( 210  ⋅ 420)

x =  √( 210  ⋅ 210  ⋅ 2)

The geometric mean of 210 and 420 is 210 √ 2, or about 297.

Hence, the distance labeled x in the diagram is about 297 mm.

Using Proportions in Real Life

Example 5 :

A scale model of the Titanic is 107.5 inches long and 11.25 inches wide. The Titanic itself was 882.75 feet long. How wide was it?

problem solving in geometry with proportions

One way to solve this problem is to set up a proportion that compares the measurements of the Titanic to the measurements of the scale model.

Problem Solving Strategy :

problem solving in geometry with proportions

Multiply each side by 11.25.

11.25  ⋅  (x/11.25) = (882.75/107.5)  ⋅ 11.25

x =  (882.75  ⋅ 11.25)  / 107.5

Using calculator, we have

x  ≈ 92.4

Hence, the Titanic was about 92.4 feet wide.

Kindly mail your feedback to   [email protected]

We always appreciate your feedback.

© All rights reserved. onlinemath4all.com

  • Sat Math Practice
  • SAT Math Worksheets
  • PEMDAS Rule
  • BODMAS rule
  • GEMDAS Order of Operations
  • Math Calculators
  • Transformations of Functions
  • Order of rotational symmetry
  • Lines of symmetry
  • Compound Angles
  • Quantitative Aptitude Tricks
  • Trigonometric ratio table
  • Word Problems
  • Times Table Shortcuts
  • 10th CBSE solution
  • PSAT Math Preparation
  • Privacy Policy
  • Laws of Exponents

Recent Articles

RSS

Polar Form of a Complex Number

Apr 16, 24 09:28 AM

polarform1.png

Conjugate of a Complex Number

Apr 15, 24 11:17 PM

conjugateofcomplexnumber1.png

Complex Plane

Apr 14, 24 07:56 AM

complexplane1.png

Corbettmaths

Ratio Practice Questions

Click here for questions, click here for answers, gcse revision cards.

problem solving in geometry with proportions

5-a-day Workbooks

problem solving in geometry with proportions

Primary Study Cards

problem solving in geometry with proportions

Privacy Policy

Terms and Conditions

Corbettmaths © 2012 – 2024

Solve Math Problems 4+

Geometry solver pic answer, hhh technologies llc, ipad용으로 디자인됨.

  • 4.9 • 15개의 평가

Introducing "AI Math Solver" - your ultimate academic sidekick! Say goodbye to math headaches and hello to instant solutions at your fingertips. Why Choose AI Math Solver? - Instant Math Magic: Snap a pic of any math problem, and watch our AI work its magic with lightning-fast solutions! - All-Subject AI Chat: Stuck on science or tangled up in literature? No worries! Our AI chat is here to give you personalized guidance whenever you need it. - Learning, Simplified: We're not just about answers; we're all about making complex concepts easy to understand! - Super Easy to Use: Our app is designed to be super intuitive and fun for learners of all ages! Key Features: - Snap & Solve: Snap a pic of any problem, and our AI will crack it in seconds! - Live Chat Help: Get instant explanations and study tips through interactive chat! - Covers Everything: From math mysteries to literary puzzles, we've got every subject covered! Your Ultimate Study Buddy: - Always Improving: We're constantly updating with the latest AI advancements and feedback from users like you! - Perfect for Everyone: Whether you're a student, teacher, or just curious, our app is tailor-made for all learners! Don't let homework stress you out any longer. With "AI Math Solver" by your side, acing assignments has never been easier! Download now and unleash your academic superpowers! Privacy Policy: https://www.hhhtechnologies.com/privacy-policy Terms of Use: https://www.hhhtechnologies.com/terms-and-conditions

This update fixes bugs and makes your experience smoother and faster.

앱이 수집하는 개인정보

HHH Technologies LLC 개발자가 아래 설명된 데이터 처리 방식이 앱의 개인정보 처리방침에 포함되어 있을 수 있다고 표시했습니다. 자세한 내용은 개발자의 개인정보 처리방침 을 참조하십시오.

데이터가 수집되지 않음

개발자가 이 앱에서 데이터를 수집하지 않습니다.

개인정보 처리방침은 사용하는 기능이나 사용자의 나이 등에 따라 달라질 수 있습니다. 더 알아보기

  • Lifetime Access ₩0
  • Weekly Access ₩9,900
  • Yearly Access ₩55,000

이 개발자의 앱 더 보기

QR Scanner & Generator Pro

좋아할 만한 다른 항목

Pi - Math AI Solver

Edu AI - AI Homework Helper

AI Math Solver Homework Help

Math Solver: Homework AI Tutor

The Math Solver App: AI Helper

Solver.AI - Homework Helper

IMAGES

  1. Extended ratio

    problem solving in geometry with proportions

  2. PPT

    problem solving in geometry with proportions

  3. Learn How To Solve A Proportion Problem

    problem solving in geometry with proportions

  4. Student Tutorial: Solving Proportions

    problem solving in geometry with proportions

  5. 6 2 Use Proportions to Solve Geometric Problems

    problem solving in geometry with proportions

  6. Triangle Proportionality Theorem (With Proof and Examples)

    problem solving in geometry with proportions

VIDEO

  1. Solving Proportions

  2. 6-2 Use Proportions to Solve Geometry Problems

  3. Parabolas Covering the Plane; A Math Competition Problem

  4. Proportions using dimensional analysis

  5. Solving Geometry Related Problems that end up in a Quadratic

  6. Using Proportions And Equations To Solve Percentage Problems

COMMENTS

  1. 8 Ways to Solve Proportions

    Find the product of these two numbers: 3. Divide by the last number in the proportion. Take the answer to your multiplication problem and divide it by the number you haven't used yet. (This is the green number in the example.) The result is the value of , the missing number in your proportion.

  2. Ratios and proportions

    A ratio is a comparison of two quantities. A proportion is an equality of two ratios. To write a ratio: Determine whether the ratio is part to part or part to whole. Calculate the parts and the whole if needed. Plug values into the ratio. Simplify the ratio if needed.

  3. Proportion word problems (practice)

    Proportion word problems. Sam used 6 loaves of elf bread on an 8 day hiking trip. He wants to know how many loaves of elf bread ( b) he should pack for a 12 day hiking trip if he eats the same amount of bread each day. How many loaves of elf bread should Sam pack for a 12 day trip? Learn for free about math, art, computer programming, economics ...

  4. 6.5 Solve Proportions and their Applications

    9.1 Use a Problem Solving Strategy; 9.2 Solve Money Applications; 9.3 Use Properties of Angles, Triangles, and the Pythagorean Theorem; 9.4 Use Properties of Rectangles, Triangles, and Trapezoids; 9.5 Solve Geometry Applications: Circles and Irregular Figures; 9.6 Solve Geometry Applications: Volume and Surface Area; 9.7 Solve a Formula for a ...

  5. 1.4: Proportions

    In solving this problem before, we set up two ratios \[3752 \colon x \quad \text{and} \quad 13 \colon 1 \] Why did we do this? Well, it turns out that all proportion problems can be solved using a method from algebra known as cross multiplication.While this text mostly stays away from algebra, this procedure is essential.

  6. 5.5: Ratios and Proportions

    Determine and apply a constant of proportionality. Use proportions to solve scaling problems. Ratios and proportions are used in a wide variety of situations to make comparisons. For example, using the information from Figure 5.15, we can see that the number of Facebook users compared to the number of Twitter users is 2,006 M to 328 M. Note ...

  7. How to Solve Proportions

    Welcome to How to Solve Proportions with Mr. J! Need help with solving proportions? You're in the right place!Whether you're just starting out, or need a qui...

  8. Ratio Problem Solving

    40 \div 8=5 40 ÷ 8 = 5. Then you multiply each part of the ratio by 5. 5. 3\times 5:5\times 5=15 : 25 3 × 5: 5 × 5 = 15: 25. This means that Charlie will get 15 15 sweets and David will get 25 25 sweets. There can be ratio word problems involving different operations and types of numbers.

  9. Proportion Word Problems

    Proportion word problems. There are lots of situations that can create proportion word problems. We will illustrate these situations with some examples. Problem # 1. Mix 3 liters of water with 4 lemons to make lemonade. How many liters of water are mixed with 8 lemons. Set up the ratios, but make sure that the two ratios are written in the same ...

  10. How to Solve a Proportion

    Example 1. Solve for x. There's more than one way to solve this proportion. To solve it by cross-multiplying, you multiply diagonally and set the two cross-products equal to each other. Multiply the x and the 3 together and set it equal to what you get when you multiply the 2 and the 9 together. A common mistake that students make when they ...

  11. Solving proportions (practice)

    a simplified improperfraction, like 7/4‍. a mixed number, like 1 3/4‍. an exactdecimal, like 0.75‍. a multiple of pi, like 12 pi‍ or 2/3 pi‍. Related content. Video 7 minutes 20 seconds7:20. Worked example: Solving proportions. Video 5 minutes 48 seconds5:48. Proportion word problem: cookies.

  12. Proportion Math Problems, Solutions and Explanations

    1. Identify the two ratios and the unknown quantity. In this problem, the two ratios are 0.75 miles:15 minutes and 3 miles:x minutes. 2. Set the two ratios equal to each other. Be sure that both numerators and denominators contain like units. One possible way to write the proportion is 0.75 miles/15 minutes = 3 miles/x minutes.

  13. Worked example: Solving proportions (video)

    The video is a bit confusing, and I'm struggling to transfer this to solving the questions for "Solving Proportions". For example in the question: 4/z = 12/5. I understand that you begin by multiplying by z. z * 4/z = 12/5*z. --> 4 = 12/5*z. After this, the solution set asks you to multiply both sides by 5/12, the opposite fraction of the right ...

  14. Proportions

    Proportion says that two ratios (or fractions) are equal. Example: We see that 1-out-of-3 is equal to 2-out-of-6. The ratios are the same, so they are in proportion. Example: Rope. A rope's length and weight are in proportion. When 20m of rope weighs 1kg , then: So: 20 1 = 40 2.

  15. 6.6: Solve Proportions and their Applications

    To solve a proportion containing a variable, we remember that the proportion is an equation. All of the techniques we have used so far to solve equations still apply. ... In the following exercises, solve the proportion problem. 279. Pediatricians prescribe 5 5 milliliters (ml) of acetaminophen for every 25 25 pounds of a child's weight.

  16. How to Solve Proportion Problems? (Examples)

    We can use operations like addition, subtraction, multiplication, and division to solve a proportion. In most cases, we only need to use multiplication and division. Let's consider a proportion in which one of the values is unknown. For example, \( \frac{5}{8} = \frac{x}{40} \) Use basic math operations to solve this equation.

  17. Solve Problems with Ratios and Proportions

    You can use a proportion to solve this problem by comparing two ratios. One ratio is 2 short hair to 3 long hair, or 2:3. The other ratio is 12 short hair to an unknown number of long hair, or 12:x. Since the ratios are equivalent, you can set them equal to each other, so 2:3 = 12:x. You need to figure out what numbers to multiply both 2 and 3 ...

  18. Ratio and Proportion Word Problems

    This math video tutorial provides a basic introduction into ratio and proportion word problems. Here is a list of examples and practice problems:Percentage ...

  19. Many Ways to Solve a Proportion

    Alternative 4: Clear fractions using the LCD. Or, you can think of the proportion as an equation involving fractions, and eliminate fractions by multiplying by the least common denominator (LCD). This method is equivalent to the last method for your example, so I'll use a different one: 9 x. --- = ---. 15 25.

  20. Algebra: Ratio Word Problems

    Ratio problems are word problems that use ratios to relate the different items in the question. The main things to be aware about for ratio problems are: Change the quantities to the same unit if necessary. Write the items in the ratio as a fraction. Make sure that you have the same items in the numerator and denominator. Ratio Problems: Two ...

  21. Proportional relationships

    Proportional relationships: graphs. Interpreting graphs of proportional relationships. Worked example: Solving proportions. Writing proportions example. Proportion word problem: cookies. Proportion word problem: hot dogs. Equations for proportional relationships. Writing proportional equations from tables. Writing proportional equations.

  22. Problem Solving in Geometry with Proportions

    Solution : One way to solve this problem is to set up a proportion that compares the measurements of the Titanic to the measurements of the scale model. Problem Solving Strategy : Multiply each side by 11.25. 11.25 ⋅ (x/11.25) = (882.75/107.5) ⋅ 11.25. Simplify.

  23. Ratio Practice Questions

    Practice Questions. Previous: Percentages of an Amount (Non Calculator) Practice Questions. Next: Rotations Practice Questions. The Corbettmaths Practice Questions on Ratio.

  24. ‎App Store에서 제공하는 Solve Math Problems

    Key Features: - Snap & Solve: Snap a pic of any problem, and our AI will crack it in seconds! - Live Chat Help: Get instant explanations and study tips through interactive chat! - Covers Everything: From math mysteries to literary puzzles, we've got every subject covered! Your Ultimate Study Buddy: - Always Improving: We're constantly updating ...