Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Prevent plagiarism. Run a free check.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved April 9, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, what is your plagiarism score.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

questions about hypothesis in research

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing - Quick Guide (2024)

Ohio State nav bar

The Ohio State University

  • BuckeyeLink
  • Find People
  • Search Ohio State

Research Questions & Hypotheses

Generally, in quantitative studies, reviewers expect hypotheses rather than research questions. However, both research questions and hypotheses serve different purposes and can be beneficial when used together.

Research Questions

Clarify the research’s aim (farrugia et al., 2010).

  • Research often begins with an interest in a topic, but a deep understanding of the subject is crucial to formulate an appropriate research question.
  • Descriptive: “What factors most influence the academic achievement of senior high school students?”
  • Comparative: “What is the performance difference between teaching methods A and B?”
  • Relationship-based: “What is the relationship between self-efficacy and academic achievement?”
  • Increasing knowledge about a subject can be achieved through systematic literature reviews, in-depth interviews with patients (and proxies), focus groups, and consultations with field experts.
  • Some funding bodies, like the Canadian Institute for Health Research, recommend conducting a systematic review or a pilot study before seeking grants for full trials.
  • The presence of multiple research questions in a study can complicate the design, statistical analysis, and feasibility.
  • It’s advisable to focus on a single primary research question for the study.
  • The primary question, clearly stated at the end of a grant proposal’s introduction, usually specifies the study population, intervention, and other relevant factors.
  • The FINER criteria underscore aspects that can enhance the chances of a successful research project, including specifying the population of interest, aligning with scientific and public interest, clinical relevance, and contribution to the field, while complying with ethical and national research standards.
  • The P ICOT approach is crucial in developing the study’s framework and protocol, influencing inclusion and exclusion criteria and identifying patient groups for inclusion.
  • Defining the specific population, intervention, comparator, and outcome helps in selecting the right outcome measurement tool.
  • The more precise the population definition and stricter the inclusion and exclusion criteria, the more significant the impact on the interpretation, applicability, and generalizability of the research findings.
  • A restricted study population enhances internal validity but may limit the study’s external validity and generalizability to clinical practice.
  • A broadly defined study population may better reflect clinical practice but could increase bias and reduce internal validity.
  • An inadequately formulated research question can negatively impact study design, potentially leading to ineffective outcomes and affecting publication prospects.

Checklist: Good research questions for social science projects (Panke, 2018)

questions about hypothesis in research

Research Hypotheses

Present the researcher’s predictions based on specific statements.

  • These statements define the research problem or issue and indicate the direction of the researcher’s predictions.
  • Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.
  • The research or clinical hypothesis, derived from the research question, shapes the study’s key elements: sampling strategy, intervention, comparison, and outcome variables.
  • Hypotheses can express a single outcome or multiple outcomes.
  • After statistical testing, the null hypothesis is either rejected or not rejected based on whether the study’s findings are statistically significant.
  • Hypothesis testing helps determine if observed findings are due to true differences and not chance.
  • Hypotheses can be 1-sided (specific direction of difference) or 2-sided (presence of a difference without specifying direction).
  • 2-sided hypotheses are generally preferred unless there’s a strong justification for a 1-sided hypothesis.
  • A solid research hypothesis, informed by a good research question, influences the research design and paves the way for defining clear research objectives.

Types of Research Hypothesis

  • In a Y-centered research design, the focus is on the dependent variable (DV) which is specified in the research question. Theories are then used to identify independent variables (IV) and explain their causal relationship with the DV.
  • Example: “An increase in teacher-led instructional time (IV) is likely to improve student reading comprehension scores (DV), because extensive guided practice under expert supervision enhances learning retention and skill mastery.”
  • Hypothesis Explanation: The dependent variable (student reading comprehension scores) is the focus, and the hypothesis explores how changes in the independent variable (teacher-led instructional time) affect it.
  • In X-centered research designs, the independent variable is specified in the research question. Theories are used to determine potential dependent variables and the causal mechanisms at play.
  • Example: “Implementing technology-based learning tools (IV) is likely to enhance student engagement in the classroom (DV), because interactive and multimedia content increases student interest and participation.”
  • Hypothesis Explanation: The independent variable (technology-based learning tools) is the focus, with the hypothesis exploring its impact on a potential dependent variable (student engagement).
  • Probabilistic hypotheses suggest that changes in the independent variable are likely to lead to changes in the dependent variable in a predictable manner, but not with absolute certainty.
  • Example: “The more teachers engage in professional development programs (IV), the more their teaching effectiveness (DV) is likely to improve, because continuous training updates pedagogical skills and knowledge.”
  • Hypothesis Explanation: This hypothesis implies a probable relationship between the extent of professional development (IV) and teaching effectiveness (DV).
  • Deterministic hypotheses state that a specific change in the independent variable will lead to a specific change in the dependent variable, implying a more direct and certain relationship.
  • Example: “If the school curriculum changes from traditional lecture-based methods to project-based learning (IV), then student collaboration skills (DV) are expected to improve because project-based learning inherently requires teamwork and peer interaction.”
  • Hypothesis Explanation: This hypothesis presumes a direct and definite outcome (improvement in collaboration skills) resulting from a specific change in the teaching method.
  • Example : “Students who identify as visual learners will score higher on tests that are presented in a visually rich format compared to tests presented in a text-only format.”
  • Explanation : This hypothesis aims to describe the potential difference in test scores between visual learners taking visually rich tests and text-only tests, without implying a direct cause-and-effect relationship.
  • Example : “Teaching method A will improve student performance more than method B.”
  • Explanation : This hypothesis compares the effectiveness of two different teaching methods, suggesting that one will lead to better student performance than the other. It implies a direct comparison but does not necessarily establish a causal mechanism.
  • Example : “Students with higher self-efficacy will show higher levels of academic achievement.”
  • Explanation : This hypothesis predicts a relationship between the variable of self-efficacy and academic achievement. Unlike a causal hypothesis, it does not necessarily suggest that one variable causes changes in the other, but rather that they are related in some way.

Tips for developing research questions and hypotheses for research studies

  • Perform a systematic literature review (if one has not been done) to increase knowledge and familiarity with the topic and to assist with research development.
  • Learn about current trends and technological advances on the topic.
  • Seek careful input from experts, mentors, colleagues, and collaborators to refine your research question as this will aid in developing the research question and guide the research study.
  • Use the FINER criteria in the development of the research question.
  • Ensure that the research question follows PICOT format.
  • Develop a research hypothesis from the research question.
  • Ensure that the research question and objectives are answerable, feasible, and clinically relevant.

If your research hypotheses are derived from your research questions, particularly when multiple hypotheses address a single question, it’s recommended to use both research questions and hypotheses. However, if this isn’t the case, using hypotheses over research questions is advised. It’s important to note these are general guidelines, not strict rules. If you opt not to use hypotheses, consult with your supervisor for the best approach.

Farrugia, P., Petrisor, B. A., Farrokhyar, F., & Bhandari, M. (2010). Practical tips for surgical research: Research questions, hypotheses and objectives.  Canadian journal of surgery. Journal canadien de chirurgie ,  53 (4), 278–281.

Hulley, S. B., Cummings, S. R., Browner, W. S., Grady, D., & Newman, T. B. (2007). Designing clinical research. Philadelphia.

Panke, D. (2018). Research design & method selection: Making good choices in the social sciences.  Research Design & Method Selection , 1-368.

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

questions about hypothesis in research

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

questions about hypothesis in research

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • How to Write a Strong Hypothesis | Guide & Examples

How to Write a Strong Hypothesis | Guide & Examples

Published on 6 May 2022 by Shona McCombes .

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more variables . An independent variable is something the researcher changes or controls. A dependent variable is something the researcher observes and measures.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Prevent plagiarism, run a free check.

Step 1: ask a question.

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2: Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalise more complex constructs.

Step 3: Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

Step 4: Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

Step 5: Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in if … then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

Step 6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2022, May 06). How to Write a Strong Hypothesis | Guide & Examples. Scribbr. Retrieved 9 April 2024, from https://www.scribbr.co.uk/research-methods/hypothesis-writing/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, operationalisation | a guide with examples, pros & cons, what is a conceptual framework | tips & examples, a quick guide to experimental design | 5 steps & examples.

  • Affiliate Program

Wordvice

  • UNITED STATES
  • 台灣 (TAIWAN)
  • TÜRKIYE (TURKEY)
  • Academic Editing Services
  • - Research Paper
  • - Journal Manuscript
  • - Dissertation
  • - College & University Assignments
  • Admissions Editing Services
  • - Application Essay
  • - Personal Statement
  • - Recommendation Letter
  • - Cover Letter
  • - CV/Resume
  • Business Editing Services
  • - Business Documents
  • - Report & Brochure
  • - Website & Blog
  • Writer Editing Services
  • - Script & Screenplay
  • Our Editors
  • Client Reviews
  • Editing & Proofreading Prices
  • Wordvice Points
  • Partner Discount
  • Plagiarism Checker
  • APA Citation Generator
  • MLA Citation Generator
  • Chicago Citation Generator
  • Vancouver Citation Generator
  • - APA Style
  • - MLA Style
  • - Chicago Style
  • - Vancouver Style
  • Writing & Editing Guide
  • Academic Resources
  • Admissions Resources

How to Write a Good Research Question (w/ Examples)

questions about hypothesis in research

What is a Research Question?

A research question is the main question that your study sought or is seeking to answer. A clear research question guides your research paper or thesis and states exactly what you want to find out, giving your work a focus and objective. Learning  how to write a hypothesis or research question is the start to composing any thesis, dissertation, or research paper. It is also one of the most important sections of a research proposal . 

A good research question not only clarifies the writing in your study; it provides your readers with a clear focus and facilitates their understanding of your research topic, as well as outlining your study’s objectives. Before drafting the paper and receiving research paper editing (and usually before performing your study), you should write a concise statement of what this study intends to accomplish or reveal.

Research Question Writing Tips

Listed below are the important characteristics of a good research question:

A good research question should:

  • Be clear and provide specific information so readers can easily understand the purpose.
  • Be focused in its scope and narrow enough to be addressed in the space allowed by your paper
  • Be relevant and concise and express your main ideas in as few words as possible, like a hypothesis.
  • Be precise and complex enough that it does not simply answer a closed “yes or no” question, but requires an analysis of arguments and literature prior to its being considered acceptable. 
  • Be arguable or testable so that answers to the research question are open to scrutiny and specific questions and counterarguments.

Some of these characteristics might be difficult to understand in the form of a list. Let’s go into more detail about what a research question must do and look at some examples of research questions.

The research question should be specific and focused 

Research questions that are too broad are not suitable to be addressed in a single study. One reason for this can be if there are many factors or variables to consider. In addition, a sample data set that is too large or an experimental timeline that is too long may suggest that the research question is not focused enough.

A specific research question means that the collective data and observations come together to either confirm or deny the chosen hypothesis in a clear manner. If a research question is too vague, then the data might end up creating an alternate research problem or hypothesis that you haven’t addressed in your Introduction section .

The research question should be based on the literature 

An effective research question should be answerable and verifiable based on prior research because an effective scientific study must be placed in the context of a wider academic consensus. This means that conspiracy or fringe theories are not good research paper topics.

Instead, a good research question must extend, examine, and verify the context of your research field. It should fit naturally within the literature and be searchable by other research authors.

References to the literature can be in different citation styles and must be properly formatted according to the guidelines set forth by the publishing journal, university, or academic institution. This includes in-text citations as well as the Reference section . 

The research question should be realistic in time, scope, and budget

There are two main constraints to the research process: timeframe and budget.

A proper research question will include study or experimental procedures that can be executed within a feasible time frame, typically by a graduate doctoral or master’s student or lab technician. Research that requires future technology, expensive resources, or follow-up procedures is problematic.

A researcher’s budget is also a major constraint to performing timely research. Research at many large universities or institutions is publicly funded and is thus accountable to funding restrictions. 

The research question should be in-depth

Research papers, dissertations and theses , and academic journal articles are usually dozens if not hundreds of pages in length.

A good research question or thesis statement must be sufficiently complex to warrant such a length, as it must stand up to the scrutiny of peer review and be reproducible by other scientists and researchers.

Research Question Types

Qualitative and quantitative research are the two major types of research, and it is essential to develop research questions for each type of study. 

Quantitative Research Questions

Quantitative research questions are specific. A typical research question involves the population to be studied, dependent and independent variables, and the research design.

In addition, quantitative research questions connect the research question and the research design. In addition, it is not possible to answer these questions definitively with a “yes” or “no” response. For example, scientific fields such as biology, physics, and chemistry often deal with “states,” in which different quantities, amounts, or velocities drastically alter the relevance of the research.

As a consequence, quantitative research questions do not contain qualitative, categorical, or ordinal qualifiers such as “is,” “are,” “does,” or “does not.”

Categories of quantitative research questions

Qualitative research questions.

In quantitative research, research questions have the potential to relate to broad research areas as well as more specific areas of study. Qualitative research questions are less directional, more flexible, and adaptable compared with their quantitative counterparts. Thus, studies based on these questions tend to focus on “discovering,” “explaining,” “elucidating,” and “exploring.”

Categories of qualitative research questions

Quantitative and qualitative research question examples.

stacks of books in black and white; research question examples

Good and Bad Research Question Examples

Below are some good (and not-so-good) examples of research questions that researchers can use to guide them in crafting their own research questions.

Research Question Example 1

The first research question is too vague in both its independent and dependent variables. There is no specific information on what “exposure” means. Does this refer to comments, likes, engagement, or just how much time is spent on the social media platform?

Second, there is no useful information on what exactly “affected” means. Does the subject’s behavior change in some measurable way? Or does this term refer to another factor such as the user’s emotions?

Research Question Example 2

In this research question, the first example is too simple and not sufficiently complex, making it difficult to assess whether the study answered the question. The author could really only answer this question with a simple “yes” or “no.” Further, the presence of data would not help answer this question more deeply, which is a sure sign of a poorly constructed research topic.

The second research question is specific, complex, and empirically verifiable. One can measure program effectiveness based on metrics such as attendance or grades. Further, “bullying” is made into an empirical, quantitative measurement in the form of recorded disciplinary actions.

Steps for Writing a Research Question

Good research questions are relevant, focused, and meaningful. It can be difficult to come up with a good research question, but there are a few steps you can follow to make it a bit easier.

1. Start with an interesting and relevant topic

Choose a research topic that is interesting but also relevant and aligned with your own country’s culture or your university’s capabilities. Popular academic topics include healthcare and medical-related research. However, if you are attending an engineering school or humanities program, you should obviously choose a research question that pertains to your specific study and major.

Below is an embedded graph of the most popular research fields of study based on publication output according to region. As you can see, healthcare and the basic sciences receive the most funding and earn the highest number of publications. 

questions about hypothesis in research

2. Do preliminary research  

You can begin doing preliminary research once you have chosen a research topic. Two objectives should be accomplished during this first phase of research. First, you should undertake a preliminary review of related literature to discover issues that scholars and peers are currently discussing. With this method, you show that you are informed about the latest developments in the field.

Secondly, identify knowledge gaps or limitations in your topic by conducting a preliminary literature review . It is possible to later use these gaps to focus your research question after a certain amount of fine-tuning.

3. Narrow your research to determine specific research questions

You can focus on a more specific area of study once you have a good handle on the topic you want to explore. Focusing on recent literature or knowledge gaps is one good option. 

By identifying study limitations in the literature and overlooked areas of study, an author can carve out a good research question. The same is true for choosing research questions that extend or complement existing literature.

4. Evaluate your research question

Make sure you evaluate the research question by asking the following questions:

Is my research question clear?

The resulting data and observations that your study produces should be clear. For quantitative studies, data must be empirical and measurable. For qualitative, the observations should be clearly delineable across categories.

Is my research question focused and specific?

A strong research question should be specific enough that your methodology or testing procedure produces an objective result, not one left to subjective interpretation. Open-ended research questions or those relating to general topics can create ambiguous connections between the results and the aims of the study. 

Is my research question sufficiently complex?

The result of your research should be consequential and substantial (and fall sufficiently within the context of your field) to warrant an academic study. Simply reinforcing or supporting a scientific consensus is superfluous and will likely not be well received by most journal editors.  

reverse triangle chart, how to write a research question

Editing Your Research Question

Your research question should be fully formulated well before you begin drafting your research paper. However, you can receive English paper editing and proofreading services at any point in the drafting process. Language editors with expertise in your academic field can assist you with the content and language in your Introduction section or other manuscript sections. And if you need further assistance or information regarding paper compositions, in the meantime, check out our academic resources , which provide dozens of articles and videos on a variety of academic writing and publication topics.

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case NPS+ Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

questions about hypothesis in research

Home Market Research

Research Hypothesis: What It Is, Types + How to Develop?

A research hypothesis proposes a link between variables. Uncover its types and the secrets to creating hypotheses for scientific inquiry.

A research study starts with a question. Researchers worldwide ask questions and create research hypotheses. The effectiveness of research relies on developing a good research hypothesis. Examples of research hypotheses can guide researchers in writing effective ones.

In this blog, we’ll learn what a research hypothesis is, why it’s important in research, and the different types used in science. We’ll also guide you through creating your research hypothesis and discussing ways to test and evaluate it.

What is a Research Hypothesis?

A hypothesis is like a guess or idea that you suggest to check if it’s true. A research hypothesis is a statement that brings up a question and predicts what might happen.

It’s really important in the scientific method and is used in experiments to figure things out. Essentially, it’s an educated guess about how things are connected in the research.

A research hypothesis usually includes pointing out the independent variable (the thing they’re changing or studying) and the dependent variable (the result they’re measuring or watching). It helps plan how to gather and analyze data to see if there’s evidence to support or deny the expected connection between these variables.

Importance of Hypothesis in Research

Hypotheses are really important in research. They help design studies, allow for practical testing, and add to our scientific knowledge. Their main role is to organize research projects, making them purposeful, focused, and valuable to the scientific community. Let’s look at some key reasons why they matter:

  • A research hypothesis helps test theories.

A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior.

  • It serves as a great platform for investigation activities.

It serves as a launching pad for investigation activities, which offers researchers a clear starting point. A research hypothesis can explore the relationship between exercise and stress reduction.

  • Hypothesis guides the research work or study.

A well-formulated hypothesis guides the entire research process. It ensures that the study remains focused and purposeful. For instance, a hypothesis about the impact of social media on interpersonal relationships provides clear guidance for a study.

  • Hypothesis sometimes suggests theories.

In some cases, a hypothesis can suggest new theories or modifications to existing ones. For example, a hypothesis testing the effectiveness of a new drug might prompt a reconsideration of current medical theories.

  • It helps in knowing the data needs.

A hypothesis clarifies the data requirements for a study, ensuring that researchers collect the necessary information—a hypothesis guiding the collection of demographic data to analyze the influence of age on a particular phenomenon.

  • The hypothesis explains social phenomena.

Hypotheses are instrumental in explaining complex social phenomena. For instance, a hypothesis might explore the relationship between economic factors and crime rates in a given community.

  • Hypothesis provides a relationship between phenomena for empirical Testing.

Hypotheses establish clear relationships between phenomena, paving the way for empirical testing. An example could be a hypothesis exploring the correlation between sleep patterns and academic performance.

  • It helps in knowing the most suitable analysis technique.

A hypothesis guides researchers in selecting the most appropriate analysis techniques for their data. For example, a hypothesis focusing on the effectiveness of a teaching method may lead to the choice of statistical analyses best suited for educational research.

Characteristics of a Good Research Hypothesis

A hypothesis is a specific idea that you can test in a study. It often comes from looking at past research and theories. A good hypothesis usually starts with a research question that you can explore through background research. For it to be effective, consider these key characteristics:

  • Clear and Focused Language: A good hypothesis uses clear and focused language to avoid confusion and ensure everyone understands it.
  • Related to the Research Topic: The hypothesis should directly relate to the research topic, acting as a bridge between the specific question and the broader study.
  • Testable: An effective hypothesis can be tested, meaning its prediction can be checked with real data to support or challenge the proposed relationship.
  • Potential for Exploration: A good hypothesis often comes from a research question that invites further exploration. Doing background research helps find gaps and potential areas to investigate.
  • Includes Variables: The hypothesis should clearly state both the independent and dependent variables, specifying the factors being studied and the expected outcomes.
  • Ethical Considerations: Check if variables can be manipulated without breaking ethical standards. It’s crucial to maintain ethical research practices.
  • Predicts Outcomes: The hypothesis should predict the expected relationship and outcome, acting as a roadmap for the study and guiding data collection and analysis.
  • Simple and Concise: A good hypothesis avoids unnecessary complexity and is simple and concise, expressing the essence of the proposed relationship clearly.
  • Clear and Assumption-Free: The hypothesis should be clear and free from assumptions about the reader’s prior knowledge, ensuring universal understanding.
  • Observable and Testable Results: A strong hypothesis implies research that produces observable and testable results, making sure the study’s outcomes can be effectively measured and analyzed.

When you use these characteristics as a checklist, it can help you create a good research hypothesis. It’ll guide improving and strengthening the hypothesis, identifying any weaknesses, and making necessary changes. Crafting a hypothesis with these features helps you conduct a thorough and insightful research study.

Types of Research Hypotheses

The research hypothesis comes in various types, each serving a specific purpose in guiding the scientific investigation. Knowing the differences will make it easier for you to create your own hypothesis. Here’s an overview of the common types:

01. Null Hypothesis

The null hypothesis states that there is no connection between two considered variables or that two groups are unrelated. As discussed earlier, a hypothesis is an unproven assumption lacking sufficient supporting data. It serves as the statement researchers aim to disprove. It is testable, verifiable, and can be rejected.

For example, if you’re studying the relationship between Project A and Project B, assuming both projects are of equal standard is your null hypothesis. It needs to be specific for your study.

02. Alternative Hypothesis

The alternative hypothesis is basically another option to the null hypothesis. It involves looking for a significant change or alternative that could lead you to reject the null hypothesis. It’s a different idea compared to the null hypothesis.

When you create a null hypothesis, you’re making an educated guess about whether something is true or if there’s a connection between that thing and another variable. If the null view suggests something is correct, the alternative hypothesis says it’s incorrect. 

For instance, if your null hypothesis is “I’m going to be $1000 richer,” the alternative hypothesis would be “I’m not going to get $1000 or be richer.”

03. Directional Hypothesis

The directional hypothesis predicts the direction of the relationship between independent and dependent variables. They specify whether the effect will be positive or negative.

If you increase your study hours, you will experience a positive association with your exam scores. This hypothesis suggests that as you increase the independent variable (study hours), there will also be an increase in the dependent variable (exam scores).

04. Non-directional Hypothesis

The non-directional hypothesis predicts the existence of a relationship between variables but does not specify the direction of the effect. It suggests that there will be a significant difference or relationship, but it does not predict the nature of that difference.

For example, you will find no notable difference in test scores between students who receive the educational intervention and those who do not. However, once you compare the test scores of the two groups, you will notice an important difference.

05. Simple Hypothesis

A simple hypothesis predicts a relationship between one dependent variable and one independent variable without specifying the nature of that relationship. It’s simple and usually used when we don’t know much about how the two things are connected.

For example, if you adopt effective study habits, you will achieve higher exam scores than those with poor study habits.

06. Complex Hypothesis

A complex hypothesis is an idea that specifies a relationship between multiple independent and dependent variables. It is a more detailed idea than a simple hypothesis.

While a simple view suggests a straightforward cause-and-effect relationship between two things, a complex hypothesis involves many factors and how they’re connected to each other.

For example, when you increase your study time, you tend to achieve higher exam scores. The connection between your study time and exam performance is affected by various factors, including the quality of your sleep, your motivation levels, and the effectiveness of your study techniques.

If you sleep well, stay highly motivated, and use effective study strategies, you may observe a more robust positive correlation between the time you spend studying and your exam scores, unlike those who may lack these factors.

07. Associative Hypothesis

An associative hypothesis proposes a connection between two things without saying that one causes the other. Basically, it suggests that when one thing changes, the other changes too, but it doesn’t claim that one thing is causing the change in the other.

For example, you will likely notice higher exam scores when you increase your study time. You can recognize an association between your study time and exam scores in this scenario.

Your hypothesis acknowledges a relationship between the two variables—your study time and exam scores—without asserting that increased study time directly causes higher exam scores. You need to consider that other factors, like motivation or learning style, could affect the observed association.

08. Causal Hypothesis

A causal hypothesis proposes a cause-and-effect relationship between two variables. It suggests that changes in one variable directly cause changes in another variable.

For example, when you increase your study time, you experience higher exam scores. This hypothesis suggests a direct cause-and-effect relationship, indicating that the more time you spend studying, the higher your exam scores. It assumes that changes in your study time directly influence changes in your exam performance.

09. Empirical Hypothesis

An empirical hypothesis is a statement based on things we can see and measure. It comes from direct observation or experiments and can be tested with real-world evidence. If an experiment proves a theory, it supports the idea and shows it’s not just a guess. This makes the statement more reliable than a wild guess.

For example, if you increase the dosage of a certain medication, you might observe a quicker recovery time for patients. Imagine you’re in charge of a clinical trial. In this trial, patients are given varying dosages of the medication, and you measure and compare their recovery times. This allows you to directly see the effects of different dosages on how fast patients recover.

This way, you can create a research hypothesis: “Increasing the dosage of a certain medication will lead to a faster recovery time for patients.”

10. Statistical Hypothesis

A statistical hypothesis is a statement or assumption about a population parameter that is the subject of an investigation. It serves as the basis for statistical analysis and testing. It is often tested using statistical methods to draw inferences about the larger population.

In a hypothesis test, statistical evidence is collected to either reject the null hypothesis in favor of the alternative hypothesis or fail to reject the null hypothesis due to insufficient evidence.

For example, let’s say you’re testing a new medicine. Your hypothesis could be that the medicine doesn’t really help patients get better. So, you collect data and use statistics to see if your guess is right or if the medicine actually makes a difference.

If the data strongly shows that the medicine does help, you say your guess was wrong, and the medicine does make a difference. But if the proof isn’t strong enough, you can stick with your original guess because you didn’t get enough evidence to change your mind.

How to Develop a Research Hypotheses?

Step 1: identify your research problem or topic..

Define the area of interest or the problem you want to investigate. Make sure it’s clear and well-defined.

Start by asking a question about your chosen topic. Consider the limitations of your research and create a straightforward problem related to your topic. Once you’ve done that, you can develop and test a hypothesis with evidence.

Step 2: Conduct a literature review

Review existing literature related to your research problem. This will help you understand the current state of knowledge in the field, identify gaps, and build a foundation for your hypothesis. Consider the following questions:

  • What existing research has been conducted on your chosen topic?
  • Are there any gaps or unanswered questions in the current literature?
  • How will the existing literature contribute to the foundation of your research?

Step 3: Formulate your research question

Based on your literature review, create a specific and concise research question that addresses your identified problem. Your research question should be clear, focused, and relevant to your field of study.

Step 4: Identify variables

Determine the key variables involved in your research question. Variables are the factors or phenomena that you will study and manipulate to test your hypothesis.

  • Independent Variable: The variable you manipulate or control.
  • Dependent Variable: The variable you measure to observe the effect of the independent variable.

Step 5: State the Null hypothesis

The null hypothesis is a statement that there is no significant difference or effect. It serves as a baseline for comparison with the alternative hypothesis.

Step 6: Select appropriate methods for testing the hypothesis

Choose research methods that align with your study objectives, such as experiments, surveys, or observational studies. The selected methods enable you to test your research hypothesis effectively.

Creating a research hypothesis usually takes more than one try. Expect to make changes as you collect data. It’s normal to test and say no to a few hypotheses before you find the right answer to your research question.

Testing and Evaluating Hypotheses

Testing hypotheses is a really important part of research. It’s like the practical side of things. Here, real-world evidence will help you determine how different things are connected. Let’s explore the main steps in hypothesis testing:

  • State your research hypothesis.

Before testing, clearly articulate your research hypothesis. This involves framing both a null hypothesis, suggesting no significant effect or relationship, and an alternative hypothesis, proposing the expected outcome.

  • Collect data strategically.

Plan how you will gather information in a way that fits your study. Make sure your data collection method matches the things you’re studying.

Whether through surveys, observations, or experiments, this step demands precision and adherence to the established methodology. The quality of data collected directly influences the credibility of study outcomes.

  • Perform an appropriate statistical test.

Choose a statistical test that aligns with the nature of your data and the hypotheses being tested. Whether it’s a t-test, chi-square test, ANOVA, or regression analysis, selecting the right statistical tool is paramount for accurate and reliable results.

  • Decide if your idea was right or wrong.

Following the statistical analysis, evaluate the results in the context of your null hypothesis. You need to decide if you should reject your null hypothesis or not.

  • Share what you found.

When discussing what you found in your research, be clear and organized. Say whether your idea was supported or not, and talk about what your results mean. Also, mention any limits to your study and suggest ideas for future research.

The Role of QuestionPro to Develop a Good Research Hypothesis

QuestionPro is a survey and research platform that provides tools for creating, distributing, and analyzing surveys. It plays a crucial role in the research process, especially when you’re in the initial stages of hypothesis development. Here’s how QuestionPro can help you to develop a good research hypothesis:

  • Survey design and data collection: You can use the platform to create targeted questions that help you gather relevant data.
  • Exploratory research: Through surveys and feedback mechanisms on QuestionPro, you can conduct exploratory research to understand the landscape of a particular subject.
  • Literature review and background research: QuestionPro surveys can collect sample population opinions, experiences, and preferences. This data and a thorough literature evaluation can help you generate a well-grounded hypothesis by improving your research knowledge.
  • Identifying variables: Using targeted survey questions, you can identify relevant variables related to their research topic.
  • Testing assumptions: You can use surveys to informally test certain assumptions or hypotheses before formalizing a research hypothesis.
  • Data analysis tools: QuestionPro provides tools for analyzing survey data. You can use these tools to identify the collected data’s patterns, correlations, or trends.
  • Refining your hypotheses: As you collect data through QuestionPro, you can adjust your hypotheses based on the real-world responses you receive.

A research hypothesis is like a guide for researchers in science. It’s a well-thought-out idea that has been thoroughly tested. This idea is crucial as researchers can explore different fields, such as medicine, social sciences, and natural sciences. The research hypothesis links theories to real-world evidence and gives researchers a clear path to explore and make discoveries.

QuestionPro Research Suite is a helpful tool for researchers. It makes creating surveys, collecting data, and analyzing information easily. It supports all kinds of research, from exploring new ideas to forming hypotheses. With a focus on using data, it helps researchers do their best work.

Are you interested in learning more about QuestionPro Research Suite? Take advantage of QuestionPro’s free trial to get an initial look at its capabilities and realize the full potential of your research efforts.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Employee Engagement App

Employee Engagement App: Top 11 For Workforce Improvement 

Apr 10, 2024

employee evaluation software

Top 15 Employee Evaluation Software to Enhance Performance

event feedback software

Event Feedback Software: Top 11 Best in 2024

Apr 9, 2024

free market research tools

Top 10 Free Market Research Tools to Boost Your Business

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Uncategorized
  • Video Learning Series
  • What’s Coming Up
  • Workforce Intelligence

Enago Academy

How to Develop a Good Research Hypothesis

' src=

The story of a research study begins by asking a question. Researchers all around the globe are asking curious questions and formulating research hypothesis. However, whether the research study provides an effective conclusion depends on how well one develops a good research hypothesis. Research hypothesis examples could help researchers get an idea as to how to write a good research hypothesis.

This blog will help you understand what is a research hypothesis, its characteristics and, how to formulate a research hypothesis

Table of Contents

What is Hypothesis?

Hypothesis is an assumption or an idea proposed for the sake of argument so that it can be tested. It is a precise, testable statement of what the researchers predict will be outcome of the study.  Hypothesis usually involves proposing a relationship between two variables: the independent variable (what the researchers change) and the dependent variable (what the research measures).

What is a Research Hypothesis?

Research hypothesis is a statement that introduces a research question and proposes an expected result. It is an integral part of the scientific method that forms the basis of scientific experiments. Therefore, you need to be careful and thorough when building your research hypothesis. A minor flaw in the construction of your hypothesis could have an adverse effect on your experiment. In research, there is a convention that the hypothesis is written in two forms, the null hypothesis, and the alternative hypothesis (called the experimental hypothesis when the method of investigation is an experiment).

Characteristics of a Good Research Hypothesis

As the hypothesis is specific, there is a testable prediction about what you expect to happen in a study. You may consider drawing hypothesis from previously published research based on the theory.

A good research hypothesis involves more effort than just a guess. In particular, your hypothesis may begin with a question that could be further explored through background research.

To help you formulate a promising research hypothesis, you should ask yourself the following questions:

  • Is the language clear and focused?
  • What is the relationship between your hypothesis and your research topic?
  • Is your hypothesis testable? If yes, then how?
  • What are the possible explanations that you might want to explore?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate your variables without hampering the ethical standards?
  • Does your research predict the relationship and outcome?
  • Is your research simple and concise (avoids wordiness)?
  • Is it clear with no ambiguity or assumptions about the readers’ knowledge
  • Is your research observable and testable results?
  • Is it relevant and specific to the research question or problem?

research hypothesis example

The questions listed above can be used as a checklist to make sure your hypothesis is based on a solid foundation. Furthermore, it can help you identify weaknesses in your hypothesis and revise it if necessary.

Source: Educational Hub

How to formulate a research hypothesis.

A testable hypothesis is not a simple statement. It is rather an intricate statement that needs to offer a clear introduction to a scientific experiment, its intentions, and the possible outcomes. However, there are some important things to consider when building a compelling hypothesis.

1. State the problem that you are trying to solve.

Make sure that the hypothesis clearly defines the topic and the focus of the experiment.

2. Try to write the hypothesis as an if-then statement.

Follow this template: If a specific action is taken, then a certain outcome is expected.

3. Define the variables

Independent variables are the ones that are manipulated, controlled, or changed. Independent variables are isolated from other factors of the study.

Dependent variables , as the name suggests are dependent on other factors of the study. They are influenced by the change in independent variable.

4. Scrutinize the hypothesis

Evaluate assumptions, predictions, and evidence rigorously to refine your understanding.

Types of Research Hypothesis

The types of research hypothesis are stated below:

1. Simple Hypothesis

It predicts the relationship between a single dependent variable and a single independent variable.

2. Complex Hypothesis

It predicts the relationship between two or more independent and dependent variables.

3. Directional Hypothesis

It specifies the expected direction to be followed to determine the relationship between variables and is derived from theory. Furthermore, it implies the researcher’s intellectual commitment to a particular outcome.

4. Non-directional Hypothesis

It does not predict the exact direction or nature of the relationship between the two variables. The non-directional hypothesis is used when there is no theory involved or when findings contradict previous research.

5. Associative and Causal Hypothesis

The associative hypothesis defines interdependency between variables. A change in one variable results in the change of the other variable. On the other hand, the causal hypothesis proposes an effect on the dependent due to manipulation of the independent variable.

6. Null Hypothesis

Null hypothesis states a negative statement to support the researcher’s findings that there is no relationship between two variables. There will be no changes in the dependent variable due the manipulation of the independent variable. Furthermore, it states results are due to chance and are not significant in terms of supporting the idea being investigated.

7. Alternative Hypothesis

It states that there is a relationship between the two variables of the study and that the results are significant to the research topic. An experimental hypothesis predicts what changes will take place in the dependent variable when the independent variable is manipulated. Also, it states that the results are not due to chance and that they are significant in terms of supporting the theory being investigated.

Research Hypothesis Examples of Independent and Dependent Variables

Research Hypothesis Example 1 The greater number of coal plants in a region (independent variable) increases water pollution (dependent variable). If you change the independent variable (building more coal factories), it will change the dependent variable (amount of water pollution).
Research Hypothesis Example 2 What is the effect of diet or regular soda (independent variable) on blood sugar levels (dependent variable)? If you change the independent variable (the type of soda you consume), it will change the dependent variable (blood sugar levels)

You should not ignore the importance of the above steps. The validity of your experiment and its results rely on a robust testable hypothesis. Developing a strong testable hypothesis has few advantages, it compels us to think intensely and specifically about the outcomes of a study. Consequently, it enables us to understand the implication of the question and the different variables involved in the study. Furthermore, it helps us to make precise predictions based on prior research. Hence, forming a hypothesis would be of great value to the research. Here are some good examples of testable hypotheses.

More importantly, you need to build a robust testable research hypothesis for your scientific experiments. A testable hypothesis is a hypothesis that can be proved or disproved as a result of experimentation.

Importance of a Testable Hypothesis

To devise and perform an experiment using scientific method, you need to make sure that your hypothesis is testable. To be considered testable, some essential criteria must be met:

  • There must be a possibility to prove that the hypothesis is true.
  • There must be a possibility to prove that the hypothesis is false.
  • The results of the hypothesis must be reproducible.

Without these criteria, the hypothesis and the results will be vague. As a result, the experiment will not prove or disprove anything significant.

What are your experiences with building hypotheses for scientific experiments? What challenges did you face? How did you overcome these challenges? Please share your thoughts with us in the comments section.

Frequently Asked Questions

The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a ‘if-then’ structure. 3. Defining the variables: Define the variables as Dependent or Independent based on their dependency to other factors. 4. Scrutinizing the hypothesis: Identify the type of your hypothesis

Hypothesis testing is a statistical tool which is used to make inferences about a population data to draw conclusions for a particular hypothesis.

Hypothesis in statistics is a formal statement about the nature of a population within a structured framework of a statistical model. It is used to test an existing hypothesis by studying a population.

Research hypothesis is a statement that introduces a research question and proposes an expected result. It forms the basis of scientific experiments.

The different types of hypothesis in research are: • Null hypothesis: Null hypothesis is a negative statement to support the researcher’s findings that there is no relationship between two variables. • Alternate hypothesis: Alternate hypothesis predicts the relationship between the two variables of the study. • Directional hypothesis: Directional hypothesis specifies the expected direction to be followed to determine the relationship between variables. • Non-directional hypothesis: Non-directional hypothesis does not predict the exact direction or nature of the relationship between the two variables. • Simple hypothesis: Simple hypothesis predicts the relationship between a single dependent variable and a single independent variable. • Complex hypothesis: Complex hypothesis predicts the relationship between two or more independent and dependent variables. • Associative and casual hypothesis: Associative and casual hypothesis predicts the relationship between two or more independent and dependent variables. • Empirical hypothesis: Empirical hypothesis can be tested via experiments and observation. • Statistical hypothesis: A statistical hypothesis utilizes statistical models to draw conclusions about broader populations.

' src=

Wow! You really simplified your explanation that even dummies would find it easy to comprehend. Thank you so much.

Thanks a lot for your valuable guidance.

I enjoy reading the post. Hypotheses are actually an intrinsic part in a study. It bridges the research question and the methodology of the study.

Useful piece!

This is awesome.Wow.

It very interesting to read the topic, can you guide me any specific example of hypothesis process establish throw the Demand and supply of the specific product in market

Nicely explained

It is really a useful for me Kindly give some examples of hypothesis

It was a well explained content ,can you please give me an example with the null and alternative hypothesis illustrated

clear and concise. thanks.

So Good so Amazing

Good to learn

Thanks a lot for explaining to my level of understanding

Explained well and in simple terms. Quick read! Thank you

Rate this article Cancel Reply

Your email address will not be published.

questions about hypothesis in research

Enago Academy's Most Popular Articles

Content Analysis vs Thematic Analysis: What's the difference?

  • Reporting Research

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for data interpretation

In research, choosing the right approach to understand data is crucial for deriving meaningful insights.…

Cross-sectional and Longitudinal Study Design

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right approach

The process of choosing the right research design can put ourselves at the crossroads of…

questions about hypothesis in research

  • Industry News

COPE Forum Discussion Highlights Challenges and Urges Clarity in Institutional Authorship Standards

The COPE forum discussion held in December 2023 initiated with a fundamental question — is…

Networking in Academic Conferences

  • Career Corner

Unlocking the Power of Networking in Academic Conferences

Embarking on your first academic conference experience? Fear not, we got you covered! Academic conferences…

Research recommendation

Research Recommendations – Guiding policy-makers for evidence-based decision making

Research recommendations play a crucial role in guiding scholars and researchers toward fruitful avenues of…

Choosing the Right Analytical Approach: Thematic analysis vs. content analysis for…

Comparing Cross Sectional and Longitudinal Studies: 5 steps for choosing the right…

How to Design Effective Research Questionnaires for Robust Findings

questions about hypothesis in research

Sign-up to read more

Subscribe for free to get unrestricted access to all our resources on research writing and academic publishing including:

  • 2000+ blog articles
  • 50+ Webinars
  • 10+ Expert podcasts
  • 50+ Infographics
  • 10+ Checklists
  • Research Guides

We hate spam too. We promise to protect your privacy and never spam you.

I am looking for Editing/ Proofreading services for my manuscript Tentative date of next journal submission:

questions about hypothesis in research

What should universities' stance be on AI tools in research and academic writing?

Grad Coach

Research Aims, Objectives & Questions

The “Golden Thread” Explained Simply (+ Examples)

By: David Phair (PhD) and Alexandra Shaeffer (PhD) | June 2022

The research aims , objectives and research questions (collectively called the “golden thread”) are arguably the most important thing you need to get right when you’re crafting a research proposal , dissertation or thesis . We receive questions almost every day about this “holy trinity” of research and there’s certainly a lot of confusion out there, so we’ve crafted this post to help you navigate your way through the fog.

Overview: The Golden Thread

  • What is the golden thread
  • What are research aims ( examples )
  • What are research objectives ( examples )
  • What are research questions ( examples )
  • The importance of alignment in the golden thread

What is the “golden thread”?  

The golden thread simply refers to the collective research aims , research objectives , and research questions for any given project (i.e., a dissertation, thesis, or research paper ). These three elements are bundled together because it’s extremely important that they align with each other, and that the entire research project aligns with them.

Importantly, the golden thread needs to weave its way through the entirety of any research project , from start to end. In other words, it needs to be very clearly defined right at the beginning of the project (the topic ideation and proposal stage) and it needs to inform almost every decision throughout the rest of the project. For example, your research design and methodology will be heavily influenced by the golden thread (we’ll explain this in more detail later), as well as your literature review.

The research aims, objectives and research questions (the golden thread) define the focus and scope ( the delimitations ) of your research project. In other words, they help ringfence your dissertation or thesis to a relatively narrow domain, so that you can “go deep” and really dig into a specific problem or opportunity. They also help keep you on track , as they act as a litmus test for relevance. In other words, if you’re ever unsure whether to include something in your document, simply ask yourself the question, “does this contribute toward my research aims, objectives or questions?”. If it doesn’t, chances are you can drop it.

Alright, enough of the fluffy, conceptual stuff. Let’s get down to business and look at what exactly the research aims, objectives and questions are and outline a few examples to bring these concepts to life.

Free Webinar: How To Find A Dissertation Research Topic

Research Aims: What are they?

Simply put, the research aim(s) is a statement that reflects the broad overarching goal (s) of the research project. Research aims are fairly high-level (low resolution) as they outline the general direction of the research and what it’s trying to achieve .

Research Aims: Examples  

True to the name, research aims usually start with the wording “this research aims to…”, “this research seeks to…”, and so on. For example:

“This research aims to explore employee experiences of digital transformation in retail HR.”   “This study sets out to assess the interaction between student support and self-care on well-being in engineering graduate students”  

As you can see, these research aims provide a high-level description of what the study is about and what it seeks to achieve. They’re not hyper-specific or action-oriented, but they’re clear about what the study’s focus is and what is being investigated.

Need a helping hand?

questions about hypothesis in research

Research Objectives: What are they?

The research objectives take the research aims and make them more practical and actionable . In other words, the research objectives showcase the steps that the researcher will take to achieve the research aims.

The research objectives need to be far more specific (higher resolution) and actionable than the research aims. In fact, it’s always a good idea to craft your research objectives using the “SMART” criteria. In other words, they should be specific, measurable, achievable, relevant and time-bound”.

Research Objectives: Examples  

Let’s look at two examples of research objectives. We’ll stick with the topic and research aims we mentioned previously.  

For the digital transformation topic:

To observe the retail HR employees throughout the digital transformation. To assess employee perceptions of digital transformation in retail HR. To identify the barriers and facilitators of digital transformation in retail HR.

And for the student wellness topic:

To determine whether student self-care predicts the well-being score of engineering graduate students. To determine whether student support predicts the well-being score of engineering students. To assess the interaction between student self-care and student support when predicting well-being in engineering graduate students.

  As you can see, these research objectives clearly align with the previously mentioned research aims and effectively translate the low-resolution aims into (comparatively) higher-resolution objectives and action points . They give the research project a clear focus and present something that resembles a research-based “to-do” list.

The research objectives detail the specific steps that you, as the researcher, will take to achieve the research aims you laid out.

Research Questions: What are they?

Finally, we arrive at the all-important research questions. The research questions are, as the name suggests, the key questions that your study will seek to answer . Simply put, they are the core purpose of your dissertation, thesis, or research project. You’ll present them at the beginning of your document (either in the introduction chapter or literature review chapter) and you’ll answer them at the end of your document (typically in the discussion and conclusion chapters).  

The research questions will be the driving force throughout the research process. For example, in the literature review chapter, you’ll assess the relevance of any given resource based on whether it helps you move towards answering your research questions. Similarly, your methodology and research design will be heavily influenced by the nature of your research questions. For instance, research questions that are exploratory in nature will usually make use of a qualitative approach, whereas questions that relate to measurement or relationship testing will make use of a quantitative approach.  

Let’s look at some examples of research questions to make this more tangible.

Research Questions: Examples  

Again, we’ll stick with the research aims and research objectives we mentioned previously.  

For the digital transformation topic (which would be qualitative in nature):

How do employees perceive digital transformation in retail HR? What are the barriers and facilitators of digital transformation in retail HR?  

And for the student wellness topic (which would be quantitative in nature):

Does student self-care predict the well-being scores of engineering graduate students? Does student support predict the well-being scores of engineering students? Do student self-care and student support interact when predicting well-being in engineering graduate students?  

You’ll probably notice that there’s quite a formulaic approach to this. In other words, the research questions are basically the research objectives “converted” into question format. While that is true most of the time, it’s not always the case. For example, the first research objective for the digital transformation topic was more or less a step on the path toward the other objectives, and as such, it didn’t warrant its own research question.  

So, don’t rush your research questions and sloppily reword your objectives as questions. Carefully think about what exactly you’re trying to achieve (i.e. your research aim) and the objectives you’ve set out, then craft a set of well-aligned research questions . Also, keep in mind that this can be a somewhat iterative process , where you go back and tweak research objectives and aims to ensure tight alignment throughout the golden thread.

The importance of strong alignment 

Alignment is the keyword here and we have to stress its importance . Simply put, you need to make sure that there is a very tight alignment between all three pieces of the golden thread. If your research aims and research questions don’t align, for example, your project will be pulling in different directions and will lack focus . This is a common problem students face and can cause many headaches (and tears), so be warned.

Take the time to carefully craft your research aims, objectives and research questions before you run off down the research path. Ideally, get your research supervisor/advisor to review and comment on your golden thread before you invest significant time into your project, and certainly before you start collecting data .  

Recap: The golden thread

In this post, we unpacked the golden thread of research, consisting of the research aims , research objectives and research questions . You can jump back to any section using the links below.

As always, feel free to leave a comment below – we always love to hear from you. Also, if you’re interested in 1-on-1 support, take a look at our private coaching service here.

questions about hypothesis in research

Psst… there’s more (for free)

This post is part of our dissertation mini-course, which covers everything you need to get started with your dissertation, thesis or research project. 

You Might Also Like:

Narrative analysis explainer

38 Comments

Isaac Levi

Thank you very much for your great effort put. As an Undergraduate taking Demographic Research & Methodology, I’ve been trying so hard to understand clearly what is a Research Question, Research Aim and the Objectives in a research and the relationship between them etc. But as for now I’m thankful that you’ve solved my problem.

Hatimu Bah

Well appreciated. This has helped me greatly in doing my dissertation.

Dr. Abdallah Kheri

An so delighted with this wonderful information thank you a lot.

so impressive i have benefited a lot looking forward to learn more on research.

Ekwunife, Chukwunonso Onyeka Steve

I am very happy to have carefully gone through this well researched article.

Infact,I used to be phobia about anything research, because of my poor understanding of the concepts.

Now,I get to know that my research question is the same as my research objective(s) rephrased in question format.

I please I would need a follow up on the subject,as I intends to join the team of researchers. Thanks once again.

Tosin

Thanks so much. This was really helpful.

Ishmael

I know you pepole have tried to break things into more understandable and easy format. And God bless you. Keep it up

sylas

i found this document so useful towards my study in research methods. thanks so much.

Michael L. Andrion

This is my 2nd read topic in your course and I should commend the simplified explanations of each part. I’m beginning to understand and absorb the use of each part of a dissertation/thesis. I’ll keep on reading your free course and might be able to avail the training course! Kudos!

Scarlett

Thank you! Better put that my lecture and helped to easily understand the basics which I feel often get brushed over when beginning dissertation work.

Enoch Tindiwegi

This is quite helpful. I like how the Golden thread has been explained and the needed alignment.

Sora Dido Boru

This is quite helpful. I really appreciate!

Chulyork

The article made it simple for researcher students to differentiate between three concepts.

Afowosire Wasiu Adekunle

Very innovative and educational in approach to conducting research.

Sàlihu Abubakar Dayyabu

I am very impressed with all these terminology, as I am a fresh student for post graduate, I am highly guided and I promised to continue making consultation when the need arise. Thanks a lot.

Mohammed Shamsudeen

A very helpful piece. thanks, I really appreciate it .

Sonam Jyrwa

Very well explained, and it might be helpful to many people like me.

JB

Wish i had found this (and other) resource(s) at the beginning of my PhD journey… not in my writing up year… 😩 Anyways… just a quick question as i’m having some issues ordering my “golden thread”…. does it matter in what order you mention them? i.e., is it always first aims, then objectives, and finally the questions? or can you first mention the research questions and then the aims and objectives?

UN

Thank you for a very simple explanation that builds upon the concepts in a very logical manner. Just prior to this, I read the research hypothesis article, which was equally very good. This met my primary objective.

My secondary objective was to understand the difference between research questions and research hypothesis, and in which context to use which one. However, I am still not clear on this. Can you kindly please guide?

Derek Jansen

In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study. Research questions are broader and guide the overall study, while hypotheses are specific and testable statements used in quantitative research. Research questions identify the problem, while hypotheses provide a focus for testing in the study.

Saen Fanai

Exactly what I need in this research journey, I look forward to more of your coaching videos.

Abubakar Rofiat Opeyemi

This helped a lot. Thanks so much for the effort put into explaining it.

Lamin Tarawally

What data source in writing dissertation/Thesis requires?

What is data source covers when writing dessertation/thesis

Latifat Muhammed

This is quite useful thanks

Yetunde

I’m excited and thankful. I got so much value which will help me progress in my thesis.

Amer Al-Rashid

where are the locations of the reserch statement, research objective and research question in a reserach paper? Can you write an ouline that defines their places in the researh paper?

Webby

Very helpful and important tips on Aims, Objectives and Questions.

Refiloe Raselane

Thank you so much for making research aim, research objectives and research question so clear. This will be helpful to me as i continue with my thesis.

Annabelle Roda-Dafielmoto

Thanks much for this content. I learned a lot. And I am inspired to learn more. I am still struggling with my preparation for dissertation outline/proposal. But I consistently follow contents and tutorials and the new FB of GRAD Coach. Hope to really become confident in writing my dissertation and successfully defend it.

Joe

As a researcher and lecturer, I find splitting research goals into research aims, objectives, and questions is unnecessarily bureaucratic and confusing for students. For most biomedical research projects, including ‘real research’, 1-3 research questions will suffice (numbers may differ by discipline).

Abdella

Awesome! Very important resources and presented in an informative way to easily understand the golden thread. Indeed, thank you so much.

Sheikh

Well explained

New Growth Care Group

The blog article on research aims, objectives, and questions by Grad Coach is a clear and insightful guide that aligns with my experiences in academic research. The article effectively breaks down the often complex concepts of research aims and objectives, providing a straightforward and accessible explanation. Drawing from my own research endeavors, I appreciate the practical tips offered, such as the need for specificity and clarity when formulating research questions. The article serves as a valuable resource for students and researchers, offering a concise roadmap for crafting well-defined research goals and objectives. Whether you’re a novice or an experienced researcher, this article provides practical insights that contribute to the foundational aspects of a successful research endeavor.

yaikobe

A great thanks for you. it is really amazing explanation. I grasp a lot and one step up to research knowledge.

UMAR SALEH

I really found these tips helpful. Thank you very much Grad Coach.

Rahma D.

I found this article helpful. Thanks for sharing this.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Privacy Policy

Buy Me a Coffee

Research Method

Home » Research Question Vs Hypothesis

Research Question Vs Hypothesis

Table of Contents

Research Question Vs Hypothesis

Research questions and hypotheses are both important elements of a research study, but they serve different purposes.

Research Question

A Research Question is a clear, concise, and specific question that a researcher asks to guide their study. Research questions are used to define the scope of the research project and to guide the collection and analysis of data. Research questions are often used in exploratory or descriptive studies, and they are open-ended in nature. Research questions should be answerable through data collection and analysis and should be linked to the research objectives or goals of the study.

A Hypothesis is a statement that predicts the relationship between two or more variables in a research study. Hypotheses are used in studies that aim to test cause-and-effect relationships between variables. A hypothesis is a tentative explanation for an observed phenomenon, and it is often derived from existing theory or previous research. Hypotheses are typically expressed as an “if-then” statement, where the “if” part refers to the independent variable, and the “then” part refers to the dependent variable. Hypotheses can be either directional (predicting the direction of the relationship between variables) or non-directional (predicting the presence of a relationship without specifying its direction).

Difference Between Research Question and Hypothesis

Here are some key differences between research questions and hypotheses:

Both Research Questions and Hypotheses are essential elements of a research study, but they serve different purposes. Research questions guide the study and help researchers define its scope, while hypotheses are used to test specific cause-and-effect relationships between variables. The choice of which to use depends on the nature of the research question, the study design, and the research objectives.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Inductive Vs Deductive Research

Inductive Vs Deductive Research

Exploratory Vs Explanatory Research

Exploratory Vs Explanatory Research

Basic Vs Applied Research

Basic Vs Applied Research

Generative Vs Evaluative Research

Generative Vs Evaluative Research

Reliability Vs Validity

Reliability Vs Validity

Longitudinal Vs Cross-Sectional Research

Longitudinal Vs Cross-Sectional Research

Click through the PLOS taxonomy to find articles in your field.

For more information about PLOS Subject Areas, click here .

Loading metrics

Open Access

Peer-reviewed

Research Article

Liking music with and without sadness: Testing the direct effect hypothesis of pleasurable negative emotion

Roles Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project administration, Resources, Validation, Visualization, Writing – original draft, Writing – review & editing

* E-mail: [email protected]

Affiliation Empirical Musicology Laboratory, School of the Arts and Media, UNSW Australia, Sydney, NSW, Australia

ORCID logo

  • Emery Schubert

PLOS

  • Published: April 10, 2024
  • https://doi.org/10.1371/journal.pone.0299115
  • Reader Comments

Table 1

Negative emotion evoked in listeners of music can produce intense pleasure, but we do not fully understand why. The present study addressed the question by asking participants (n = 50) to self-select a piece of sadness-evoking music that was loved. The key part of the study asked participants to imagine that the felt sadness could be removed. Overall participants reported performing the task successfully. They also indicated that the removal of the sadness reduced their liking of the music, and 82% of participants reported that the evoked sadness also adds to the enjoyment of the music. The study provided evidence for a “Direct effect hypothesis”, which draws on the multicomponent model of emotion, where a component of the negative emotion is experienced as positive during music (and other aesthetic) experiences. Earlier evidence of a mediator, such as ‘being moved’, as the source of enjoyment was reinterpreted in light of the new findings. Instead, the present study applied a semantic overlap explanation, arguing that sadness primes emotions that share meaning with sadness, such as being-moved. The priming occurs if the overlap in meaning is sufficient. The degree of semantic overlap was defined empirically. The present study therefore suggests that mediator-based explanations need to be treated with caution both as a finding of the study, and because of analytic limitations in earlier research that are discussed in the paper.

Citation: Schubert E (2024) Liking music with and without sadness: Testing the direct effect hypothesis of pleasurable negative emotion. PLoS ONE 19(4): e0299115. https://doi.org/10.1371/journal.pone.0299115

Editor: Maja Vukadinovic, Novi Sad School of Business, SERBIA

Received: December 5, 2023; Accepted: February 5, 2024; Published: April 10, 2024

Copyright: © 2024 Emery Schubert. This is an open access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: Data contain potentially identifying or sensitive participant information because open ended responses about personal experiences to music could have been reported. The decision to restrict data sharing was part of the approval given by the institutional ethics committee. The email contact for the institutional ethics advisory committee that granted approval for this design is [email protected] .

Funding: Initials of the authors who received each award: ES Grant numbers awarded to each author: FT120100053 (ES) The full name of each funder: Australian Research Council URL of each funder website: https://www.arc.gov.au/ Did the sponsors or funders play any role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript?: No.

Competing interests: The authors have declared that no competing interests exist.

Introduction

A considerable portion of the population (estimates ranging from around 25% to 50%) will report that music they love can also make them feel negative emotions such as sadness [ 1 – 6 ]. This finding has mystified researchers. How can a loved activity simultaneously produce a negative feeling, and yet lead the same individual to eagerly seek out the experience?

The Indirect effect hypothesis

Much theorising has been proposed to explain the conundrum as it applies to music listening and the contemplation of the arts in general. A dominating approach argues that the ‘sadness’ (the negative emotion that is the focus of the current investigation, and one that has received much attention) evoked by the music serves some non-negative purpose. The negative emotion is not in and of itself enjoyed. We will refer to such explanations as part of the ‘Indirect effect hypothesis’, meaning that a negative emotion such as sadness itself cannot or should not directly play a role in the generation of pleasure. The Indirect effect hypothesis is old, with written origins in Aristotle’s concept of catharsis from 4 th century BCE–where certain negative emotions in response to the arts act as a psychic cleanser, which removes bad or negative emotions from the soul [ 7 , 8 ]. The enduring concept of catharsis suggests an Indirect effect hypothesis because the negative emotion itself is not enjoyed directly. Rather, it is the cleansing, or the product of the cleansing that feels good. (Please note that in this article, the terms enjoyment, pleasure, feels-good, preferred, loved and liked are treated, more or less, as substitutable synonyms; see [ 9 ]) The negative impact of the emotion is thus compensated for by the positive effect on the soul or, in early 21 st century parlance, the mind.

A more recent version of the Indirect effect hypothesis is that sadness produces pleasure indirectly by triggering an intermediary step, sometimes referred to as a ‘mediator’. ‘Being moved’, for example, has been reported as the underlying reason for listening to otherwise sad music. Being moved can be seen as consisting of positive aspects, in addition to negative aspects [ 10 – 13 ]. It is the positive aspects of being moved that are responsible for the pleasure of the otherwise sadness-inducing music. Such explanations argue that the negative emotion occurs alongside a mediator, and so itself is not the direct cause of the positive aspects of the experience, thus eradicating the paradoxical aspect of the phenomenon.

A common technique to test the Indirect effect hypothesis is to ask participants to listen to a piece of music and rate the felt sadness and enjoyment experienced, in addition to rating the alleged mediator. If the enjoyment ratings are correlated with the mediator, and provided this correlation is overall stronger than is sadness with enjoyment, we have evidence, albeit correlational, that the mediator is the direct cause of the liking, not the sadness, supporting the Indirect effect hypothesis. To date, being moved has produced the strongest evidence of mediating sadness [ 3 , 14 – 16 ]. But other contenders that have been proposed, including beauty, wonder and nostalgia [for an overview, see 3 , 17 ].

Limitations of the Indirect effect hypothesis

An inherent weakness of Indirect effect hypothesis, and in particular the mediator-based explanation, is that it does not consider the phenomenal experience of the individual who claims that they both experience sadness, and that the sadness itself, for them, forms at least part of the pleasure [e.g., 6 ]. There are also limitations with research methods that are used to test the mediator explanation in the extant literature, as elucidated in the Method section.

Another limitation specifically concerns the mediator driven approach because it does not explain why the negative emotion would be present at all if it is the mediator that is driving the pleasure. If music is pleasurable because it is moving, and not because it evokes sadness, why would the listener not just seek the music that is moving but not sadness evoking? Is it because the mediator generates the negative (sad) emotion, as a by-product? But this would suggest that the occurrence of enjoyed negative emotion experiences such as sadness in response to music should be nothing more than an outlier, and be rarely reported as an enjoyed part of the experience (presumably well under the 25% of reports that are typical of published research, as indicated at the Introduction). Mediation theory therefore only explains why listeners claim to enjoy felt negative emotions to a limited extent. An alternative explanation is worth considering, and here the Direct effect hypothesis is proposed.

The Direct effect hypothesis

The Direct effect hypothesis argues that there is something intrinsic about felt negative emotion evoked by music that attracts the listener, without mandating a mediator or some factor outside the negative emotion itself. The presence of accompanying affects (such as being moved) are not excluded, but they are not essential. One line of research that supports this hypothesis is the link between individual differences and enjoyment of sad music. Such research does not exclude the Indirect effect account, but it does suggest that individual factors attract the listener to sadness in music, raising the possibility that there is something peculiar about some negative emotions that allow them to be enjoyed in their own right.

Strong contenders for the disposition of people who enjoy the sadness evoked by music are empathisers, fantasisers, ruminators, those who demonstrate an openness to experience, and those with a high propensity to fall into states of absorption [ 2 , 3 , 16 , 18 – 22 ]. Current thinking is that these personal characteristics, especially empathising, absorption and openness to experience, allow the individual to connect with fictional narratives while suspending disbelief, and so exhibit a good capacity to “make-believe” [ 23 , 24 ], a capacity which generalises to emotions in music listening [e.g., see 16 , 25 – 27 ]. This explanation also presents an alternative theoretical perspective to the above cited literature, because rather than presenting sadness as a mere by-product of mediation or as a means to some beneficial end, the sadness can be ‘enjoyed’ for its own sake (directly). It is not real-sadness, but a make-believe, or aesthetic, kind of sadness, still experienced as sadness, but with some real-life negative aspect of the sadness not triggered [ 28 ].

The Direct effect hypothesis has a theoretical foundation. Emotion researchers such as Frijda [ 29 ] and Scherer [ 30 ] have conceptualised emotion as consisting of multiple phases or components operating in synchrony. This view is both reflective of contemporary understandings of emotion, and defined networks in the brain. In one instantiation of a componential model, Sander, Grandjean and Scherer [ 31 ] proposed five components/networks of emotion building on Scherer’s model: ‘Expression’ (e.g., a facial expression that communicates the emotion), ‘Action Tendency’ (e.g., motivation to approach toward, or flee from the cause of the emotion), ‘Autonomic Reaction’ (e.g., changed heart rate), ‘Feeling’ (what the emotion feels-like, such as ‘I feel sadness’) and ‘Elicitation’ (the internally triggered cause of the emotion through interpretation of environmental situation, association and instinct) such as prolonged loneliness eliciting sadness.

In the case of the enjoyment of negative emotions Schubert [ 32 ] proposed that when contemplating aesthetic stimuli the Action tendency component of an emotion is experienced as positive (motivation to approach) while other components remain as they would for real-life, non-aesthetic experiences of such emotions. The individual is not compelled to act in a withdrawn or aversive manner to the stimulus or event under contemplation because the perceiver has an implicit awareness that it is presented in an aesthetic or make-believe context. This dissociated response occurs because the individual has an intrinsic understanding of the safe, make-believe context in which the causal stimulus/event is perceived [ 33 – 35 ].

Limitations of the direct effect hypothesis

The Direct effect hypothesis of enjoyment of negative emotion has arguably been difficult to test. If emotions happen to be correlated (such as sadness and being moved), researchers typically take this as an indication in favour of the Indirect effect hypothesis. But such interpretations do not exclude the possibility that the enjoyment directly stems from the sadness. While there is some evidence that those who enjoy negative emotion in music are indeed enjoying the negative emotion, there has been little systematic investigation of the experiential aspect of enjoyment of negative emotion in music. Other approaches to falsifying the Direct effect hypothesis are needed.

The approach taken in the present research is in the form of an ‘empirical thought experiment’, which has origins in so-called experimental philosophy [ 36 ]. Thought experiments, also referred to as mental simulation or ‘prefactual thinking’, rely on the participant’s capacity to imagine a situation and provide a response to that situation. The method can be particularly useful when a real-life stimulus-effect manipulation of interest is not possible or ethically compromising [e.g., 37 ]. It has been applied successfully to the empirical investigation of a range or research questions [ 38 ] and, of relevance here, to scenarios involving mental simulation of emotions [ 39 – 42 ].

Probing listeners to mentally simulate manipulating aspects of sadness induced by music is a simple approach to address both the Direct and Indirect effect hypotheses of enjoyment of experienced negative emotion in music. In brief, if a listener reports experiencing the sadness induced by a piece of music as pleasurable, the thought experiment to address the question of interest (to test if the sadness is the cause of the pleasure) is to ask the participant to imagine that the felt sadness, and only the felt sadness, can somehow be removed. If enjoyment is consequently diminished (as a result of the mentally simulated, excised sadness), the Direct effect hypothesis will be supported. Assurances would need to be set in place that the sadness was experienced (felt) and not just expressed by the music [ 43 ], and that the music was responsible for triggering the sadness, not some (extramusical) association (as discussed in the Method section).

The aim of this study was to investigate whether negative emotion in music, in this case sadness, can be both experienced and enjoyed. Two competing hypotheses were tested:

H1 –the Indirect effect hypothesis, which predicts that: Sadness removed from a liked piece of music will increase or not change enjoyment. This is because it is not the sadness that is enjoyed, but something external to the sadness, such as being moved or some other mediator.

H2 –the Direct effect hypothesis predicts that: Sadness removed from a liked piece of sadness will decrease enjoyment. This is because the sadness itself is somehow enjoyed, regardless of the impact of correlated variables (such as being moved, etc.).

Methodological and data analysis issues

This preamble to the method examines four key issues encountered in extant methods and data-analysis conventions stemming from controversy about use of experimenter- versus participant-selected stimuli. These issues are: Confounding extramusical association, Phenomenon of interest, Demand characteristics and Prospective mediators. This is followed by a discussion of problems that have emerged in experimenter-selected stimulus, and, as a result, a justification for the use of participant-selected music is then presented.

Confounding extramusical association.

There has been growing consensus that investigations of enjoyed sadness in music should be assessed through experimenter-selected music. Participant- or ‘self’-selected music has the disadvantage that the music can have personal or other non-musical associations, meaning that it is not the music that is directly responsible for triggering sadness, but previously formed, ‘extramusical’ associations with the music. Self-selected music could therefore lead to confounding extramusical associations that evoke sadness: the music acting as a mere go-between with the external cause of the sadness and the experience of sadness, and therefore potentially lead to false conclusion of negative emotion being caused by the music. Furthermore, self-selected music does not assure that findings would be generalisable to other participants who did not self-select the same piece. Self-selected music is inevitably music that is familiar. Personal meanings and associations with familiar music could well lead to idiosyncratic responses, peculiar to one or a small number of individuals [for a detailed discussion on limitations in use of familiar music, see 44 ].

Although one of the main drivers for using experimenter-selected music is to avoid confounding extramusical associations , it is possible that even for unfamiliar (experimenter-selected) music a participant will have an emotional response to music because it triggers an external factor, rather than emanating from the music itself [ 45 ]. For example, while Day and Thompson [ 46 ] found that familiar music is more successful at evoking visual imagery (and hence increasing the likelihood of extramusical emotional associations), they also observed the important role of fluency, where music that is complex (low in fluency) is more likely to trigger visual imagery than music that is less complex (high in fluency), regardless of familiarity. Furthermore, autobiographical memories have been reported to be triggered by unfamiliar music, although to a lesser extent than familiar music [ 47 , 48 , see also 49 ]. Thus experimenter-selected music can help to diminish the likelihood of data pollution through confounding extramusical associations , even if not eliminate it.

Phenomenon of interest.

Use of unfamiliar music that is rated by an independent panel, or some other means, as evoking sadness and being pleasurable has been proposed to remedy the problem of confounding extramusical association [e.g., 14 , 16 ]. However, this approach also has its shortcomings. Others deciding what music is likely to evoke sadness will not necessarily evoke sadness to a sufficient degree in a randomly sampled participant to address the phenomenon of interest (enjoyment of evoked negative emotion in music). It is well documented that familiar music can evoke stronger emotions than unfamiliar music, with self-selected music being a particularly effective way to elicit the strong emotions [e.g., 43 , 50 – 56 ]. Similarly, others deciding what music someone likes is riddled with problems. Music preference calls into play several factors such as familiarity [ 57 ], making the assumption of an absolute, objective rating of pleasure in response to a given piece of music problematic. This constitutes a considerable drawback of experimenter-selected design because additional precautions need to be taken to assure that participant experiences capture the phenomenon of interest (both strong liking and experiencing of sadness), as discussed below.

Demand characteristics.

Another problem with self-selected music is that it may attract demand characteristics bias. This bias can occur when the participant infers the research question [ 58 , 59 ]. For self-selected music the research objective can be inferred by the participant, in particular if they are asked to select music that they love that also evokes sadness. In this situation, the participant may guess that the study is concerned with enjoyment and experiencing sadness. If consciously or subconsciously they wish to please the experimenter, they may inflate their assessment of the amount of enjoyment the music generates or the amount of sadness it evokes or both. Furthermore, during participant recruiting, if mention is made that people are sought who experience sadness in response to loved music, it is self-evident that the participant pool will be biased, because only those who have the targeted experience are likely to participate, overlooking the opportunity to estimate how common the phenomenon is in a general population.

Prospective mediators.

Overall, the studies adopting experimenter-selected designs have used interval rating scale measurements of the variables of interest (enjoyment, sadness, and the prospective mediator variables, such as being moved). In addition, other variables are rated to help reduce the likelihood that the participant will successfully intuit the aim of the study, and to capture information about alternative, prospective mediators. Interval rating scales have the advantage of being convenient for correlation based data processing procedures, such as statistical mediation analysis [ 60 ].

Problems with experiment-selected designs.

Although research using experimenter-selected music designs have claimed to manage several methodological problems identified in self-selected music designs to address the current research question, as summarised above, experimenter-selected stimuli based approaches nevertheless have their own limitations (some overlapping with self-selected music approaches).

As mentioned above, experimenter-selected music is less likely to evoke strong emotions compared with self-selected music, and so it is possible that a person who is capable of experiencing intense sadness in response to loved music will not have that experience for music selected by the best-intentioned experimenter. Even with self-selected music, some studies have shown that only about one quarter to one third of participants report experiencing negative emotions such as sadness in response to music they love (see Introduction ). Schubert (6) used the self-selection approach while considerably circumventing the problem of demand characteristics. He asked participants to select a piece of music that they love, but not revealing the research interest in negative emotions. As it turned out, about one third (25/73) of the participants spontaneously reported experiencing negative emotions, with specific mention made of sadness in 12/72 (i.e., one sixth of) cases (p. 17). In that study it was not clear, however, whether the sadness emanated from the music itself, or through some confounding extramusical association . Nevertheless the method mitigated demand characteristics bias, and above all, it ensured that the piece selected was highly liked, something which experimenter-selected approaches rarely guarantee. Konečni [ 61 ] also argued that fully-fledged aesthetic experiences in response to music are rare even under regular listening circumstances. Therefore, the phenomenon of interest would occur in an even smaller proportion of cases in studies applying experimenter-selected music, even if the stimuli have been previously screened for sadness evocation and enjoyment by individuals other than the participant them/her/himself.

Another related limitation of studies using experimenter-selected pieces concerns the response format itself, which commonly employs an integer-based rating scale for each of the affective variables of interest. The problem is not the use of rating scales per se , but the tradition of publishing rating scale results. Studies typically report scale (i.e., item) mean (X) and standard deviation (SD) scores, and/or the correlation coefficient (usually the Pearson product moment coefficient, r) for pairs of variables. The chief problem with such reporting is they imply assumptions about the distribution of the responses. Providing these descriptive statistics, and in particular when the data are then applied to parametric statistical analysis procedures, infers that the distribution of the data are normal, have homogenous variance and are linear [ 62 , p. 311]. If these assumptions are taken at face value, it means that the density of responses diminish as data points are located further away from the mean, with the diminution per scale step being more rapid when the standard deviation is small. Consequently, when there is no explicit information provided about the nature of the distribution, the number of responses that meet the criterion for the phenomenon of interest could be relatively small, and risk not providing statistically sufficient power for meaningful analysis. A simple visual diagnosis can be made through scatterplots of felt sadness versus liking ratings. The decision needs to be made as to where the cut off mark is for sadness and liking scores above which count as satisfying the phenomenon of interest .

This weakness in extant research constitutes the most serious problem of the mediation-based explanation, which, to the author’s knowledge, has exclusively employed experimenter-selected stimuli and use of interval rating scales with X/SD/r reporting, assuming that any amount of sadness evoked by a piece of music should be proportionally implicated in its enjoyment. The assumption is incorrect because it asserts that a linear relationship is evidence of the phenomenon of interest . In fact, the phenomenon of interest is not concerned with enjoyed that accompanies low levels of sadness because when sadness levels are low, other reasons for enjoying the music are still perfectly viable. Evidence of this problem is reflected to some extent by the generally low correlations reported between sadness and liking scores, usually with a small effect size [r < .3, see 63 ]. When the correlation coefficient is small, no conclusion can be drawn about the phenomenon of interest because low correlation only reveals a lack of (non-zero) linearity, rather than information about the modality of the bivariate distribution. That is, a small correlation coefficient provides no information regarding the location of the mode of the distribution, or whether a desirable mode (also) exists in the high sadness, high liking region of the distribution.

In short, by not diagnosing the nature of the bivariate response distribution, the analytic approaches adopted for currently available experimenter-selected designs potentially exclude cases of high evoked sadness that accompany high liking, meaning that they have not captured the phenomenon of interest and so cannot make conclusions about it, or should do so with caution. One solution for future research employing ratings for all variables of interest while maintaining the advantages of the experimenter-selected stimuli approach is to recruit a sufficiently large random sample so that enough cases happen to fall in the desired range spontaneously. However, using self-selected music is more efficient because the phenomenon of interest is achieved by categorical self-selection.

Using self-selected stimuli–justification.

With the above arguments, the stimulus self-selection approach can be justified provided some modifications are made to the way the approach has been applied in the past. These are itemised here in six points. Based on the above overview, the main innovations to note are points 2, 3c, 3d and 4. Square bracketed text following each point indicates the main methodological issue(s) discussed above that are addressed by each of the proposed actions.

  • Correspondence used for recruiting participants is not to indicate that the study is concerned with experiencing sadness in music, its enjoyment, or both [as per recommendations by 58 , 59 ]. [Demand characteristics]
  • During the study, request that the participant selects music that is loved, not just liked, to ensure that the desired (high) liking category of music is attained [ 64 ]. [Phenomenon of interest]
  • that the music is highly liked,
  • the sadness is indeed felt,
  • the sadness emanates directly from the music, and not through extramusical association, and
  • the experienced sadness is implicated in the enjoyment of the music. [Confounding extramusical association; Phenomenon of interest]
  • A control condition is employed, for example where instead of requesting sadness-evoking music, music evoking another emotion that is not paradoxical is requested, such as a mediator proposed in previous research. An obvious choice is moving music (that is loved). [Demand characteristics; Phenomenon of interest]
  • A number of affect terms, including sadness and the control condition emotion should be added to a list of emotions rated in both test and control conditions to allow for comparison, and help identify prospective mediators. [Prospective mediators]
  • Since participants are explicitly asked to have potentially powerfully sad emotions evoked, towards the end of the study an additional stimulus is rated that requires evocation of a positive emotion. This satisfies potential ethical concerns where sadness experience could influence mood negatively, and allows the option of further comparisons with affects in the test condition that were prospective mediators. [Prospective mediators]

Participants

103 participants, recruited from an English speaking tertiary institution, consisting mostly of undergraduate music students, completed the study. They were randomly assigned to one of the two conditions. Fifty participants were randomly assigned to the Sadness condition and 53 to the Moving condition in a between-subjects design. The research received ethics approval from the UNSW Australia institutional review board Human Research Advisory Panel B: Arts, Architecture, Design and Law. Participants were recruited from June 4, 2021 until June 9, 2021. Consent to participate was provided at the opening of the online survey, with a checkbox selected if the participant agreed to participate. No minors participated in the study.

The Qualtrics survey platform ( https://www.qualtrics.com ) was used for human data collection. Self-selected music was identified through online links searched for and reported within the survey by the participant. The participant used an electronic device, such as a laptop, iPad or tablet. They were encouraged to wear earphones to listen to music, but this was not enforced. Affect terms consisted of a list of terms that are drawn from Schindler, Hosoya [ 65 ] and Schubert [ 66 ], as presented in the Procedures.

Prior to commencing the study, informed consent was requested verbally through the online interface, with all participants being asked to read an online participant information sheet, which included information about being free to withdraw from the study at any time. They were informed that their data would be treated confidentially, and were encouraged to ask questions if needed, and then to indicate if they wished to commence the study. Participants were randomly assigned into a Sadness (test) or Moving (control) condition. We describe the sadness condition here, but the moving condition is identical, except that ‘sad’ and ‘sadness’ is replaced with ‘moved’/’being moved’ and ‘movingness’ (respectively). Otherwise, where grammatically straight-forward ‘[CONDITION]’ is shown, which was replaced by ‘sadness’ or ‘moved’/’being moved’, depending on the assigned condition. After the tasks for the test or control condition were completed, all participants were invited to select another piece, but this time one that made them feel happy. Although this step of the study was completed by all participants, it will be referred to as the Happy ‘condition’ for convenience. The steps of the study are listed below. They followed one another in sequence, and the participant could not return to a step once they had answered the questions in that step and progressed.

  • Participants were asked to self-select a piece that they both loved and that evoked sadness. They were encouraged to think about this for a few minutes if necessary. For those who could not come up with a piece that met these criteria, some alternative pieces were proposed, from which they could select, or, have further opportunity to select another piece. Details of the piece were collected.
  • Enjoyment of the piece was rated: "How much do you like this piece?” (anchors: 0 = dislike it a lot; 100 = like it a lot)
  • Open-ended felt emotions requested: “Please indicate in as much detail as possible any emotions that you feel in response to this piece. Be sure to include [CONDITION], of course.” (Free text response.)
  • Affects felt . 26 felt affect terms were rated on a 3-point scale (A lot, A little, Not felt) on the extent to which each terms was felt. The wording of each terms was presented to the participant as—1: Being absorbed/completely immersed in the music; 2. Anger; 3. A sense of awe; 4. Feeling of beauty; 5. Calm; 6. Chills; 7. Compassion; 8. Empathy; 9. Euphoria; 10. Fear; 11. A feeling that is sublime; 12. Goosebumps; 13. Grief; 14. Happiness; 15. Joy; 16. Being moved; 17. Nostalgia; 18. Peacefulness; 19. Powerful feelings; 20. Release or relief (sometimes referred to as ’Catharsis’); 21. Sadness; 22. Tears/wanting to cry/feeling like crying/actually crying; 23. Tenderness; 24. Transcendence; 25. Tragedy; 26. Wonder.
  • Confirm felt and direct . Confirm that: Affect terms marked as present in the previous step (‘A lot’ or ‘A little’) were (a) felt and (b) that they were triggered directly by the music, not by thoughts, memories, images, etc. (Yes/No for each of (a) and (b)).
  • I would like the piece a LITTLE LESS;
  • It would make NO DIFFERENCE;
  • I would like the piece a LITTLE MORE;
  • I would like the piece a LOT MORE.
  • Affects that add to liking . The same 26 Affect terms listed in step iv were rated on a 3-point scale (Adds to the pleasure, Does not add to the pleasure, Don’t know/not relevant) to assess whether the “the felt emotions add to the liking, pleasure, attraction or enjoyment”.
  • Cooling down. The above procedure was repeated for a self-selected happy piece, but without any ratings of the 26 Affect terms requested (i.e. steps iv, v & vii excluded).
  • Background (age, gender, music background) data were collected after which the participant was thanked and farewelled.

Some researchers, such as [ 67 , 68 ], treat the concepts of affect and emotion as distinct. In the present study the distinction is partly made for the convenience of distinguishing between participant open-ended response in step iii (emotion) versus their selection from a predetermined list of terms in steps iv, v & vii (affect). The term ‘emotion’ rather than ‘affect’ was used in all of these instruction steps because the former term was considered better understood by participants, regardless of whether referred to as emotion or affect in this article.

Data validation

Participant profile by condition..

Inferential tests demonstrated that the Sadness and Moving groups were statistically identical in terms of gender, age and years of music lessons ( Table 1 ). Also comparable across the groups was the overall rating of liking, averaging over 90 on a 0–100 scale, with upper quartiles (Q3) demonstrating a ceiling effect in both conditions which supports the use of self-selected music for generating high levels of pleasure.

thumbnail

  • PPT PowerPoint slide
  • PNG larger image
  • TIFF original image

https://doi.org/10.1371/journal.pone.0299115.t001

Check that the emotion was felt and evoked emotion was directly due to the music.

There was overall high confirmation that the emotions were felt (over 96% of participants) and over 90% of participants in both conditions confirmed that the sadness was triggered intrinsically by the music (not triggered by something outside the music). See Table 1 for breakdown by condition. Overall, participants from both conditions were successful at experiencing the target emotion (Sadness or Being moved) and confirmed that, as requested, the music was directly responsible for triggering the emotion, rather than due to some extramusical factor. All participants were retained for further analysis.

Most frequently reported music excerpts.

All participants selected a piece that met the music selection criteria. Although researcher-suggested pieces were prepared in case a participant could not identify a self-selected piece meeting the criteria, none of the participants requested the researcher-suggested option, and so the research-suggested options were never used in the study. A selection of the self-selected items is presented in Table 2 , showing composers/artists reported by at least three participants across the cohort, and listing the works reported at least twice across the cohort. Interesting similarities can be observed across conditions, with composers Beethoven, Chopin and Debussy, and artists Taylor Swift and Bon Iver appearing in the Moving and Sad conditions. Furthermore, for the Beethoven, two pieces were mentioned in both of these conditions: Für Elise and Moonlight Sonata (1st Movement). These selections reflect the shared tastes across the groups, and at the high proportion of musicians, in particular pianists, who participated (all of the more frequently selected Beethoven, Chopin and Debussy pieces were for piano). Table 1 reveals the overall high average years of music lessons reported across the cohort [ 69 ]. These selections also indicate the capacity for the same piece of music to evoke different emotions (being moving and sadness).

thumbnail

https://doi.org/10.1371/journal.pone.0299115.t002

Emotion profile of sad music: Open-ended

After selection of a piece in their assigned condition, participants were asked to provide free descriptions of the emotions they felt in response to the selected piece (self-selected sad or self-selected moving music). The reported terms were pre-processed by identifying all reported emotion terms (participants could report more than one), correcting spelling mistakes, checking context and lemmatizing terms. This was followed by a frequency count of these terms for each condition. The target emotion was expected to be reported frequently in each condition.

Table 3 lists the emotion terms in descending order of frequency for each condition (including the Happy condition, where the same task was requested of participants in both conditions, but for a happy piece), with the most frequent words shown (down to a count of five). The selection of most frequent terms shown with an asterisk in the top rows of the table (above the horizontal cell divider) was determined by the ‘Power Fitted Elbow’ (PFE) technique that builds on word frequency distribution characteristics [ 70 – 73 ]. The expected target emotion (shown in italics font in the table) is reported most frequently in all conditions. Noteworthy is that sad was reported frequently in the Moved condition, while negative emotions were reported exclusively among the most frequently reported Sad condition emotions. Nostalgia was frequently reported in all conditions. In the Sad condition, the lemma Moved (not shown in the table) was mentioned 4 times, but was not reported frequently, according to the PFE criterion. Another interesting finding is that none of the frequently investigated mediator emotions (Being moved, in particular), appear in the most frequently reported items of the Sad condition list (sad, nostalgia, loss, melancholy and lonely). In contrast, the Moved condition did lead to frequent open-ended reporting of sadness.

thumbnail

https://doi.org/10.1371/journal.pone.0299115.t003

Emotion profile of sad music: Felt Affect term ratings

After open-ended responses were reported, participants were asked to indicate the extent to which each of 26 affect terms were felt when listening to the music. Again, the target affect terms were expected to be rated highest. The ratings for each affect term within and between conditions were examined.

questions about hypothesis in research

Means for each affect term by condition are summarised in Fig 1 . Ratings of the same affect term between conditions were analysed using Bonferroni adjusted independent samples t-tests. Felt sadness was rated higher in the Sad condition, but (non-significantly) higher ratings were given to felt Power, Moved and Absorption ratings in the Sad condition. For the Moved condition the affect term Being moved was rated as the second highest scale (second to Absorption), and the rating was statistically the same as for the rating of Being Moved in the Sad condition. Other differences within and across the two conditions can be observed in Fig 1 . Differences for within conditions are not shown because of the large number that were significantly different at p = .05. The highest scoring (with mean rating in at least one condition > 1.5) affect terms were Absorption, Awe, Beauty, Moved, Power, and Sadness.

thumbnail

https://doi.org/10.1371/journal.pone.0299115.g001

In these data, a relatively high rating of Being moved can be observed in the Sad condition, and it received a higher rating than the target emotion (Sadness) by M = .122, though non-significantly (p = 1.0), which could be taken to support the action of a mediator, being moved, as responsible for the pleasure generated by the music, despite the accompanying rating of sadness.

Affects that add to enjoyment

The above results indicate the presence of emotion during the enjoyable music experience. However this does not necessarily confirm that the emotion itself is implicated in the enjoyment of the music. The next step of the study addressed this with an explicit question about the contribution of each affect term to the enjoyment of the music. The 26 Affect terms were presented again this time to be classified as contributing, not contributing, or being irrelevant to the enjoyment of the music. Table 4 lists the counts across each of the three possibilities for each Affect term, by Condition. Chi-Square tests identified whether the Affect words add to enjoyment of the music by chance or not.

thumbnail

https://doi.org/10.1371/journal.pone.0299115.t004

Significant Chi-square test statistics (at p = .05 with Bonferroni correction) ranged from 15.500 (Fear) to 83.400 (Absorption) for the Moving condition and 14.596 (Fear) to 82.383 (Being moved) for the Sad condition (at p = .05). Chi-Squared tests for Sad and Moving conditions pooled produced statistically significant results for all emotions at p = .05 with Bonferroni correction, ranging from χ 2 = 13.273 (Tragedy) to 158.606 (Being Moved), with second highest χ 2 = 156.85 (for Absorption) and third highest χ 2 = 84.061 (for Sadness).

Self-selected sad music was associated with good likelihood of reporting felt sadness as adding to the pleasure of the experience (83% of response in the Sad condition versus 71% in the Moving condition). The same applies for the affect term rating of Being moved in the Moving condition.

All emotions contributed to the enjoyment of the self-selected music, with the exception of Anger, Fear, Tragedy (both conditions for each, though Tragedy was approaching significance), Grief (Moving condition), Euphoria, Sublime, Happiness, Joy, Peacefulness and Wonder (Sad condition for each). Absorption and Being Moved made the most consistently positive contribution to enjoyment of music, with each being reported as contributing to enjoyment by 90% or more of participants regardless of condition ( Table 4 ).

Fewer nominally negative emotions add to enjoyment in the Moving condition, whereas fewer positive emotions add to enjoyment in the Sad condition. Sadness and crying are emotions with nominally negative connotations, but were reported as adding to the pleasure, regardless of the condition.

Additional emotions that add to liking

The 26 Affect terms might not have exhaustively covered all the emotions that could be experienced, or enjoyed. Therefore, a final question invited participants to list any other emotions that added to the enjoyment of the music.

Only one expression was reported by different participants more than once—Hopelessness (3 independent mentions, one in the Moving condition). 72 participants indicated that no additional emotions contributed to enjoyment (36 in the Moving condition and 36 in the Sad condition). A higher proportion of participants who did report additional emotions mentioned ones that could be interpreted as negative in the Sad condition compared to the Moving condition, but because of the heterogeneity of the responses, which included some words that were already among the 26 Affect terms, no strong conclusion can be drawn, except that the set of Affect terms was effective in identifying the feelings implicated in pleasurable musical experiences.

Hypothesis test–Sadness is liked because the music is sad

For the responses to the Sadness removed step, the following scoring was applied to responses: -2 for ‘I would like the piece a LOT LESS’, -1 for ‘I would like the piece a LITTLE LESS’, 1 for ‘I would like the piece a LITTLE MORE’, 2 for ‘I would like the piece a LOT MORE’, and 0 for NO DIFFERENCE. If the Direct effect hypothesis is supported, we would expect liking to reduce when sadness is removed from the experience. The Indirect effect hypothesis, on the other hand, predicts that removal of sadness would not change liking (change of 0) or increase liking. A single sample t-test supported the Direct effect hypothesis, with an overall reduction of .83 (SD = .916) in liking on the scale of -2 to +2 (t(46) = -.6.207, p < .001, Cohen’s-d = .916). For comparison, in the control condition, removal of movingness also led to a reduction in liking (M = -.77, SD = .807, t(51) = -.6872, p < .001, Cohen’s-d = .807). Taken together the data from this step of the study supports the Direct effect hypothesis.

Based on an overall interpretation of the data, the Direct effect hypothesis is supported. In the specific part of the study that tested the hypothesis, the Sadness removed step, participants reported overall significant reduction in pleasure if the felt sadness, and only the felt sadness evoked by the music, were excised. If sadness were not in itself enjoyed, we may have expected participants to attribute non-sad emotions to the enjoyment, or be unable to perform the task. As it turned out, we can confirm that 83% of participants could perform the task and verify that the sadness was specifically enjoyed, suggesting that the phenomenon of interest is empirically demonstrable. To further ascertain if this is a plausible interpretation, the results are interpreted through the alternative, Indirect effect hypothesis, lens by examining whether mediators still play a commensurate or dominant role in the effect.

Mediation explanation

In the results where affect terms were all rated, a term can be viewed as a mediator if its score or count is statistically equal to or higher than the score or count of the target emotion. Based on this criterion, several steps of the study could be interpreted as supporting the presence of a mediator. In the Open-ended felt emotions step Nostalgia, a prospective mediator of sadness-enjoyment, was spontaneously reported ( Table 3 ). However, Being moved was not, despite previous evidence that Being moved is the stronger candidate of the two [ 15 ]. Nostalgia appeared frequently in the Moved condition as well, but in the Moved condition no mediator was expected because the target emotion (being moved) itself already contained an implicitly positive component. Furthermore, Sadness was also frequently reported in the Moved condition, but, again, there is no reason that being moved would require a mediator. The Indirect effect hypothesis does not predict a mediator that is itself negatively valenced. Thus a mediator based explanation for these results is not straight forward.

In the Affects felt step a more credible impact of prospective mediators can be observed. In the Sad condition, Absorbed (rated highest, with M = 1.796), Being moved (rated higher than Sadness by M = .122, though non-significantly [NS], p = 1.0) and Powerful feelings (rated higher than Sadness by M = 0.020, NS p = 1.0) are all rated as high or higher than the target emotion (Sadness). In the Moved condition only Absorbed (M = 1.942) is rated higher than Being moved (by M = .135, NS p = .074). If we set aside the finding for the Moved condition, the mediator-based explanation is supported, triangulating extant evidence that two of these affects (absorbed and moved) are mediators of sadness.

So it is possible to find support for the Indirect-effect hypothesis, and the mediator-based explanation in particular. However, the findings refer to the presence of emotions. There is no assurance that any of the emotions identified are adding to the pleasure, with the exception of the target emotion, since that requirement was made explicit in the procedure.

The Affects that add to liking step addressed the matter. Being moved, Absorption, and Powerful feelings (but not Nostalgia) all had the same or higher counts than the target (Sadness) emotion, indicating that they add to enjoyment in the Sad condition ( Table 4 ). For example, the affect term Being moved was voted as ’adding to pleasure’ by 96% of participants in the Sad condition, compared to the affect term Sadness ’adding to pleasure’ according to 83% of participants. This supports the Indirect effect hypothesis ( Table 4 ).

Here we have the strongest evidence of mediators in explaining enjoyment of sadness, and this aligns with evidence from previous research [as discussed in the introduction, see 17 ]. But Absorption (adds to pleasure according to 92% of participants) also has a higher count than the target emotion (90%) in the Moved condition. Does that mean that Absorption also mediates Being moved? As pointed out above, that seems unlikely because Being moved already contains a positive aspect, and so should not need a mediator. Using the mediator-based explanation, Absorption adding to enjoyment votes should have (at least) been fewer than the votes for Being moved in the Moving condition (which was not the case). Furthermore, in the Sadness condition, the target emotion itself received statistically significant votes as adding to pleasure, meaning that the alleged mediators may not have served any essential purpose in contributing to the enjoyment. The mediation explanation is only able to partially explain the results. An alternative explanation is proposed by applying the concept of ‘semantic overlap’.

Semantic overlap explanation

Semantic overlap is a phenomenon concerned with the mental organisation of concepts and word meanings. Words with similar meanings (synonyms) are more linked with one another in a mental space than words with unrelated meanings. This is often characterised in network inspired models of the mind, foundationally proposed by Quillian and the notion of the semantic network [ 74 , 75 ]. Word meanings are organised in a complex yet systematic manner according to network principles, of particular interest here being through similarities in the meaning of words, where expressions that are more similar in meaning appear ‘closer together’ in the mental network. This means that when a word is triggered (e.g., heard or read), the semantically more closely related words are more primed (ready to be raised to conscious attention) in the mental network than less closely related words. Cognitive linguists by and large agree that words are pointers or approximate representations of concepts and experiences stored in memory [ 76 , 77 ]. The implication is that words can be mapped onto points in multidimensional semantic space, with distance between words reflecting (of interest here) degree of conceptual dissimilarity between the words. Considerable effort has been devoted to organising emotions by similarity [e.g., 78 – 83 ]. Semantic distance may therefore explain why Being moved frequently appears for sad evoking music (a frequently reported result), and the novel findings identified in the present study.

It is possible to estimate the relative semantic distance between the two words moving and sadness by looking up the terms in a published list of words with quantified point estimates of locations in theoretical semantic space. A large such database was developed by Mohammad [ 82 ], where estimates of location in semantic space of some 20,000 English words were produced. The semantic space in that research adopts a conventional representation of the space, particularly relevant for emotions, referred to as ‘VAD’ space. Emotions can be reasonably well expressed in terms of two dimensions, labelled valence (V) and arousal (A), where the former refers to the positive or negative aspect of the word’s meaning (e.g., happy and calm exhibit positive valence, while sad and angry negative) and the degree of activity associated with the word’s meaning (e.g., joyous and furious are high arousal, while calm and sad are low arousal). Some have argued that two dimensions are only partially sufficient for describing the meaning of an emotion [ 81 , 84 – 87 ], and a frequently proposed third dimension is dominance (D) (where words such as angry and energetic exhibit high dominance, while fear and innocuous are low in dominance), leading to the VAD (Valence, Arousal, Dominance) abbreviation for this three dimensional configuration [other examples: 85 , 88 , for a review, see 89 , 90 ]. Mohammad (82) provided numerical VAD scores for each term scaled to a score between 0 and 1 (negative to positive for valence, low to high for arousal and for dominance) based on human ratings. From these data it is possible to estimate the semantic distance between emotions.

Through calculations using the VAD word list published by Mohammad (82), Moved and Sadness have a semantic distance in VAD space of 0.607 units (numbers closer to 0 indicating greater similarity). With Sadness as the reference, positive emotions appearing in the Affect term list have distances that range from 0.852 for Calm to 1.243 for Joy (all greater than the distance between Sadness and Moving), while negative emotions have scores ranging from 0.469 for Grief (closest negative emotion to Sadness from the Affect terms presented) to 0.768 (Anger), which apart from Anger are all closer to Sadness than Moving is to Sadness. That is, Moving has more semantic overlap with Sadness than does Anger and the positive emotions Joy and Happiness, suggesting semantic overlap as a viable alternative to mediation as to why being moved appears in tandem with sadness. The VAD data also suggest that Moving is semantically more closely related to Sadness than Catharsis, since Catharsis has a distance of 0.633 from Sadness (slightly more distant than Moving). High ratings of Moving for a Sad-evoking context can therefore be explained by semantic overlap. Such an interpretation strengthens the case for supporting the Direct effect hypothesis, because being moved need not be treated as surrogate for sadness.

The Direct effect hypothesis proposes that pleasure is experienced by contextualised re-appraisal or ‘dissociation’ of the Action tendency component of an otherwise negative emotion. The consequent positive experience (enjoyment, pleasure, preference) provides another clue for the remaining Affect terms that were rated the same or higher than the target emotion in each condition. The mediation account fails to explain why Sadness was voted (by 71% of participant) as adding to enjoyment in the Moving condition. The mediator based explanation is also poor at explaining why Absorption was reported as adding to enjoyment, and for doing so in both conditions.

The semantic overlap approach can better explain these results, too. Affect terms such as Absorption and Powerful feelings are affects related to enjoyment when experiencing art. Consider the Absorption in Music scale developed by Sandstrom and Russo [ 91 ]. The 34 item scale contains several items related to the pleasure of being engaged with music in different ways [see also 2 , 18 , 92 , 93 ]. Powerful experiences are reported during special, personal experiences that occur during strong positive aesthetic experiences [ 94 – 96 , p. xiv]. That is, the task itself, of identifying a loved piece of music, also produces semantic overlap of these terms. Furthermore, in the Sad condition several positive emotions were reported more frequently as having no relevance to enjoyment, in comparison to the Moved condition: Euphoria (57% in the Sad condition versus 15% in the Moving condition), Happiness (43% vs 8%) and Joy (49% vs 12%). Mediation struggles to explain why purely positive affect terms are not voted as adding to enjoyment. Semantic overlap, on the other hand, suggests that the activation of sadness is more likely to be associated with other negative emotions, while being moved would be more associated with emotions of both positive and negative valence. In addition to the possibly misleading interpretations of enjoyed-sadness in music research employing a mediator-based approach to explaining the phenomenon, discussed in the Method section, semantic overlap offers an explanation of the results that is superior to the mediator-based explanation.

Conclusions

This study investigated whether the experience of sadness, evoked by music, can itself be highly enjoyable. A novel method was applied where participants were asked to imagine how enjoyment would be impacted should the felt sadness somehow be removed. The results demonstrated that sadness is directly implicated in the enjoyment of such music, providing support for the ‘Direct effect hypothesis’. This hypothesis states that when sad music is enjoyed, the sadness itself directly contributes to the enjoyment. A theoretical position has been presumed by the hypothesis–that the experience of sadness contains a component that can be dissociated from regular experience of the negative emotion when contemplating music or any aesthetic event. The presence of emotions such as being moved were explained by the concept of semantic overlap, where an emotion concept is not activated as a lexical singular, but rather as the meaning that the emotion encompasses, or that is spread to other related emotions, according to how similar they are (in this case to the concept of sadness). Being moved is sufficiently close in meaning to sadness to allow it to be activated during a sadness evoking music experience, regardless of the extent to which it is enjoyed, meaning that the presence of an emotion such as being moved does not necessarily explain (and is not needed to explain) why felt sadness can be enjoyed. Absorption is another affect that accompanied loved, sadness-inducing music. This, too, was explained by semantic overlap, with the positive component of the sadness activating other, reasonably nearby, positive affects, including Absorption. The state of absorption may also play a causal role in attraction to music [ 20 , 97 ], and so there could well be some feedback loop between absorption and other aspects of the experience, including evoked emotions. Suggestions were made for further research to test whether the semantic overlap account and the Direct effect hypothesis better characterise enjoyment of negative emotion in music than mediators (such as being moved and absorption) that themselves have a positive component, through which enjoyment is indirectly generated.

The results of the present study were enhanced by applying a modified version of research using self-selected stimuli that minimised demand characteristics, while ensuring that the phenomenon of interest was investigated. Methodologically, the study took the critical step of ensuring that the impact of particular affects on enjoyment of the music were investigated, not just their presence. Future research is likely to continue the more popular method of using experimenter-selected stimuli which are then rated along various affect terms. This paper made recommendations on how such research could be more successful at identifying the phenomenon of interest, and in so doing better address the debate on the enjoyment of felt sadness and other felt negative emotions in music.

  • View Article
  • Google Scholar
  • PubMed/NCBI
  • 23. Walton KL. Mimesis as make-believe: On the foundations of the representational arts. Cambridge, MA: Harvard University Press; 1990.
  • 29. Frijda NH. The emotions. Cambridge: Cambridge University Press; 1986.
  • 54. Van den Tol AJM, Ritchie TD. Emotion memory and music: A critical review and recommendations for future research. In: Rosaria SM, Alessandra R, editors. Music, memory and autobiography: An interdisciplinary approach. Naples, Italy: Liguori Publisher; 2015.
  • 60. Hayes AF. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: Guilford Press; 2013.
  • 67. Quigley KS, Lindquist KA, Barrett LF. Inducing and measuring emotion and affect: Tips, tricks, and secrets. In: Reis HT, Judd CM, editors. Handbook of research methods in social and personality psychology: Cambridge University Press; 2014. p. 220–52.
  • 70. Hills T, Hurford AC, Stroup WM, Lesh R. Formalizing learning as a complex system: Scale invariant power law distributions in group and individual decision making. Foundations for the future in mathematics education. London: Routledge; 2007. p. 225–44.
  • 74. Quillian MR. Semantic memory: PhD Thesis, Carnegie Institute of Technology; 1966.
  • 82. Mohammad S, editor Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 English words. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long papers); 2018; Melbourne, Australia: Association for Computational Linguistics.
  • 87. Trkulja M, Janković D, editors. Towards Three-Dimensional Model of Affective Experience of Music. 12th International Conference on Music Perception and Cognition (ICMPC) and 8th Triennial Conference of the European Society for the Cognitive Sciences of Music (ESCOM); 2012; Theealoniki, Greece.
  • 94. Gabrielsson A. Strong experiences with music: Music is much more than just music. Oxford: Oxford University Press; 2011.
  • 95. Gabrielsson A, Whaley J, Sloboda J. Peak Experiences in Music. In: Hallam S, Cross I, Thaut MH, editors. The Oxford Handbook of Music Psychology. 2nd ed. Oxford: Oxford University Press; 2016. p. 745–58.
  • 96. Wordsworth W, Coleridge ST. Lyrical ballads, with other poems. In two volumes. London: printed for T. N. Longman and O. Rees, by Biggs and Co. Bristol; 1800.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.63(8); 2019 Aug

Formulating a good research question: Pearls and pitfalls

Wilson fandino.

Guys' and St Thomas' Hospital National Health Service Foundation Trust, London, United Kingdom

The process of formulating a good research question can be challenging and frustrating. While a comprehensive literature review is compulsory, the researcher usually encounters methodological difficulties in the conduct of the study, particularly if the primary study question has not been adequately selected in accordance with the clinical dilemma that needs to be addressed. Therefore, optimising time and resources before embarking in the design of a clinical protocol can make an impact on the final results of the research project. Researchers have developed effective ways to convey the message of how to build a good research question that can be easily recalled under the acronyms of PICOT (population, intervention, comparator, outcome, and time frame) and FINER (feasible, interesting, novel, ethical, and relevant). In line with these concepts, this article highlights the main issues faced by clinicians, when developing a research question.

INTRODUCTION

What is your research question? This is very often one of the first queries made by statisticians, when researchers come up with an interesting idea. In fact, the findings of a study may only acquire relevance if they provide an accurate and unbiased answer to a specific question,[ 1 , 2 ] and it has been suggested that up to one-third of the time spent in the whole process—from the conception of an idea to the publication of the manuscript—could be invested in finding the right primary study question.[ 3 ] Furthermore, selecting a good research question can be a time-consuming and challenging task: in one retrospective study, Mayo et al . reported that 3 out of 10 articles published would have needed a major rewording of the question.[ 1 ] This paper explores some recommendations to consider before starting any research project, and outlines the main difficulties faced by young and experienced clinicians, when it comes time to turn an exciting idea into a valuable and feasible research question.

OPTIMISATION OF TIME AND RESOURCES

Focusing on the primary research question.

The process of developing a new idea usually stems from a dilemma inherent to the clinical practice.[ 2 , 3 , 4 ] However, once the problem has been identified, it is tempting to formulate multiple research questions. Conducting a clinical trial with more than one primary study question would not be feasible. First, because each question may require a different research design, and second, because the necessary statistical power of the study would demand unaffordable sample sizes. It is the duty of editors and reviewers to make sure that authors clearly identify the primary research question, and as a consequence, studies approaching more than one primary research question may not be suitable for publication.

Working in the right environment

Teamwork is essential to find the appropriate research question. Working in the right environment will enable the investigator to interact with colleagues with different backgrounds, and create opportunities to exchange experiences in a collaborative way between clinicians and researchers. Likewise, it is of paramount importance to get involved colleagues with expertise in the field (lead clinicians, education supervisors, research mentors, department chairs, epidemiologists, biostatisticians, and ethical consultants, among others), and ask for their guidance.[ 5 , 6 , 7 , 8 ]

Evaluating the pertinence of the study

The researcher should wonder if, on the basis of the research question formulated, there is a need for a study to address the problem, as clinical research usually entails a large investment of resources and workforce involvement. Thus, if the answer to the posed clinical question seems to be evident before starting the study, investing in research to address the problem would become superfluous. For example, in a clinical trial, Herzog-Niescery et al . compared laryngeal masks with cuffed and uncuffed tracheal tubes, in the context of surgeons' exposure to sevoflurane, in infants undergoing adenoidectomy. However, it appears obvious that cuffed tracheal tubes are preferred to minimise surgeons' exposure to volatile gases, as authors concluded after recruiting 60 patients.[ 9 ]

Conducting a thorough literature review

Any research project requires the identification of at least one of three problems: the evidence is scarce, the existing literature yields conflicting results, or the results could be improved. Hence, a comprehensive review of the topic is imperative, as it allows the researcher to identify this gap in the literature, formulate a hypothesis and develop a research question.[ 2 ] To this end, it is crucial to be attentive to new ideas, keep the imagination roaming with reflective attitude, and remain sceptical to the new-gained information.[ 4 , 7 ]

Narrowing the research question

A broad research question may encompass an unaffordable extensive topic. For instance, do supraglottic devices provide similar conditions for the visualization of the glottis aperture in a German hospital? Such a general research question usually needs to be narrowed, not only by cutting away unnecessary components (a German hospital is irrelevant in this context), but also by defining a target population, a specific intervention, an alternative treatment or procedure to be compared with the intervention, a measurable primary outcome, and a time frame of the study. In contrast, an example of a good research question would be: among children younger than 1 year of age undergoing elective minor procedures, to what extent the insertion times are different, comparing the Supreme™ laryngeal mask airway (LMA) to Proseal™ LMA, when placed after reaching a BIS index <60?[ 10 ] In this example, the core ingredients of the research question can be easily identified as: children <1 year of age undergoing minor elective procedures, Supreme™ LMA, Proseal™ LMA and insertion times at anaesthetic induction when reaching a BIS index <60. These components are usually gathered in the literature under the acronym of PICOT (population, intervention, comparator, outcome and time frame, respectively).[ 1 , 3 , 5 ]

PICOT FRAMEWORK

Table 1 summarises the foremost questions likely to be addressed when working on PICOT frame.[ 1 , 6 , 8 ] These components are also applicable to observational studies, where the exposure takes place of the intervention.[ 1 , 11 ] Remarkably, if after browsing the title and the abstract of a paper, the reader is not able to clearly identify the PICOT parameters, and elucidate the question posed by the authors, there should be reasonable scepticism regarding the scientific rigor of the work.[ 12 , 13 ] All these elements are crucial in the design and methodology of a clinical trial, as they can affect the feasibility and reliability of results. Having formulated the primary study question in the context of the PICOT framework [ Table 1 ],[ 1 , 6 , 8 ] the researcher should be able to elucidate which design is most suitable for their work, determine what type of data needs to be collected, and write a structured introduction tailored to what they want to know, explicitly mentioning the primary study hypothesis, which should lead to formulate the main research question.[ 1 , 2 , 6 , 8 ]

Key questions to be answered when working with the PICOT framework (population, intervention, comparator, outcome, and time frame) in a clinical research design

Occasionally, the intended population of the study needs to be modified, in order to overcome any potential ethical issues, and/or for the sake of convenience and feasibility of the project. Yet, the researcher must be aware that the external validity of the results may be compromised. As an illustration, in a randomised clinical trial, authors compared the ease of tracheal tube insertion between C-MAC video laryngoscope and direct laryngoscopy, in patients presenting to the emergency department with an indication of rapid sequence intubation. However, owing to the existence of ethical concerns, a substantial amount of patients requiring emergency tracheal intubation, including patients with major maxillofacial trauma and ongoing cardiopulmonary resuscitation, had to be excluded from the trial.[ 14 ] In fact, the design of prospective studies to explore this subset of patients can be challenging, not only because of ethical considerations, but because of the low incidence of these cases. In another study, Metterlein et al . compared the glottis visualisation among five different supraglottic airway devices, using fibreroptic-guided tracheal intubation in an adult population. Despite that the study was aimed to explore the ease of intubation in patients with anticipated difficult airway (thus requiring fibreoptic tracheal intubation), authors decided to enrol patients undergoing elective laser treatment for genital condylomas, as a strategy to hasten the recruitment process and optimise resources.[ 15 ]

Intervention

Anaesthetic interventions can be classified into pharmacological (experimental treatment) and nonpharmacological. Among nonpharmacological interventions, the most common include anaesthetic techniques, monitoring instruments and airway devices. For example, it would be appropriate to examine the ease of insertion of Supreme™ LMA, when compared with ProSeal™ LMA. Notwithstanding, a common mistake is the tendency to be focused on the data aimed to be collected (the “stated” objective), rather than the question that needs to be answered (the “latent” objective).[ 1 , 4 ] In one clinical trial, authors stated: “we compared the Supreme™ and ProSeal™ LMAs in infants by measuring their performance characteristics, including insertion features, ventilation parameters, induced changes in haemodynamics, and rates of postoperative complications”.[ 10 ] Here, the research question has been centered on the measurements (insertion characteristics, haemodynamic variables, LMA insertion characteristics, ventilation parameters) rather than the clinical problem that needs to be addressed (is Supreme™ LMA easier to insert than ProSeal™ LMA?).

Comparators in clinical research can also be pharmacological (e.g., gold standard or placebo) or nonpharmacological. Typically, not more than two comparator groups are included in a clinical trial. Multiple comparisons should be generally avoided, unless there is enough statistical power to address the end points of interest, and statistical analyses have been adjusted for multiple testing. For instance, in the aforementioned study of Metterlein et al .,[ 15 ] authors compared five supraglottic airway devices by recruiting only 10--12 participants per group. In spite of the authors' recommendation of using two supraglottic devices based on the results of the study, there was no mention of statistical adjustments for multiple comparisons, and given the small sample size, larger clinical trials will undoubtedly be needed to confirm or refute these findings.[ 15 ]

A clear formulation of the primary outcome results of vital importance in clinical research, as the primary statistical analyses, including the sample size calculation (and therefore, the estimation of the effect size and statistical power), will be derived from the main outcome of interest. While it is clear that using more than one primary outcome would not be appropriate, it would be equally inadequate to include multiple point measurements of the same variable as the primary outcome (e.g., visual analogue scale for pain at 1, 2, 6, and 12 h postoperatively).

Composite outcomes, in which multiple primary endpoints are combined, may make it difficult to draw any conclusions based on the study findings. For example, in a clinical trial, 200 children undergoing ophthalmic surgery were recruited to explore the incidence of respiratory adverse events, when comparing desflurane with sevoflurane, following the removal of flexible LMA during the emergence of the anaesthesia. The primary outcome was the number of respiratory events, including breath holding, coughing, secretions requiring suction, laryngospasm, bronchospasm, and mild desaturation.[ 16 ] Should authors had claimed a significant difference between these anaesthetic volatiles, it would have been important to elucidate whether those differences were due to serious adverse events, like laryngospasm or bronchospasm, or the results were explained by any of the other events (e.g., secretions requiring suction). While it is true that clinical trials evaluating the occurrence of adverse events like laryngospasm/bronchospasm,[ 16 , 17 ] or life-threating complications following a tracheal intubation (e.g., inadvertent oesophageal placement, dental damage or injury of the larynx/pharynx)[ 14 ] are almost invariably underpowered, because the incidence of such events is expected to be low, subjective outcomes like coughing or secretions requiring suction should be avoided, as they are highly dependent on the examiner's criteria.[ 16 ]

Secondary outcomes are useful to document potential side effects (e.g., gastric insufflation after placing a supraglottic device), and evaluate the adherence (say, airway leak pressure) and safety of the intervention (for instance, occurrence, or laryngospasm/bronchospasm).[ 17 ] Nevertheless, the problem of addressing multiple secondary outcomes without the adequate statistical power is habitual in medical literature. A good illustration of this issue can be found in a study evaluating the performance of two supraglottic devices in 50 anaesthetised infants and neonates, whereby authors could not draw any conclusions in regard to potential differences in the occurrence of complications, because the sample size calculated made the study underpowered to explore those differences.[ 17 ]

Among PICOT components, the time frame is the most likely to be omitted or inappropriate.[ 1 , 12 ] There are two key aspects of the time component that need to be clearly specified in the research question: the time of measuring the outcome variables (e.g. visual analogue scale for pain at 1, 2, 6, and 12 h postoperatively), and the duration of each measurement (when indicated). The omission of these details in the study protocol might lead to substantial differences in the methodology used. For instance, if a study is designed to compare the insertion times of three different supraglottic devices, and researchers do not specify the exact moment of LMA insertion in the clinical trial protocol (i.e., at the anaesthetic induction after reaching a BIS index < 60), placing an LMA with insufficient depth of anaesthesia would have compromised the internal validity of the results, because inserting a supraglottic device in those patients would have resulted in failed attempts and longer insertion times.[ 10 ]

FINER CRITERIA

A well-elaborated research question may not necessarily be a good question. The proposed study also requires being achievable from both ethical and realistic perspectives, interesting and useful to the clinical practice, and capable to formulate new hypotheses, that may contribute to the generation of knowledge. Researchers have developed an effective way to convey the message of how to build a good research question, that is usually recalled under the acronym of FINER (feasible, interesting, novel, ethical and relevant).[ 5 , 6 , 7 ] Table 2 highlights the main characteristics of FINER criteria.[ 7 ]

Main features of FINER criteria (Feasibility, interest, novelty, ethics, and relevance) to formulate a good research question. Adapted from Cummings et al .[ 7 ]

Novelty and relevance

Although it is clear that any research project should commence with an accurate literature interpretation, in many instances it represents the start and the end of the research: the reader will soon realise that the answer to several questions can be easily found in the published literature.[ 5 ] When the question overcomes the test of a thorough literature review, the project may become novel (there is a gap in the knowledge, and therefore, there is a need for new evidence on the topic) and relevant (the paper may contribute to change the clinical practice). In this context, it is important to distinguish the difference between statistical significance and clinical relevance: in the aforementioned study of Oba et al .,[ 10 ] despite the means of insertion times were reported as significant for the Supreme™ LMA, as compared with ProSeal™ LMA, the difference found in the insertion times (528 vs. 486 sec, respectively), although reported as significant, had little or no clinical relevance.[ 10 ] Conversely, a statistically significant difference of 12 sec might be of clinical relevance in neonates weighing <5 kg.[ 17 ] Thus, statistical tests must be interpreted in the context of a clinically meaningful effect size, which should be previously defined by the researcher.

Feasibility and ethical aspects

Among FINER criteria, there are two potential barriers that may prevent the successful conduct of the project and publication of the manuscript: feasibility and ethical aspects. These obstacles are usually related to the target population, as discussed above. Feasibility refers not only to the budget but also to the complexity of the design, recruitment strategy, blinding, adequacy of the sample size, measurement of the outcome, time of follow-up of participants, and commitment of clinicians, among others.[ 3 , 7 ] Funding, as a component of feasibility, may also be implicated in the ethical principles of clinical research, because the choice of the primary study question may be markedly influenced by the specific criteria demanded in the interest of potential funders.

Discussing ethical issues with local committees is compulsory, as rules applied might vary among countries.[ 18 ] Potential risks and benefits need to be carefully weighed, based upon the four principles of respect for autonomy, beneficence, non-maleficence, and justice.[ 19 ] Although many of these issues may be related to the population target (e.g., conducting a clinical trial in patients with ongoing cardiopulmonary resuscitation would be inappropriate, as would be anaesthetising patients undergoing elective LASER treatment for condylomas, to examine the performance of supraglottic airway devices),[ 14 , 15 ] ethical conflicts may also arise from the intervention (particularly those involving the occurrence of side effects or complications, and their potential for reversibility), comparison (e.g., use of placebo or sham procedures),[ 19 ] outcome (surrogate outcomes should be considered in lieu of long term outcomes), or time frame (e.g., unnecessary longer exposition to an intervention). Thus, FINER criteria should not be conceived without a concomitant examination of the PICOT checklist, and consequently, PICOT framework and FINER criteria should not be seen as separated components, but rather complementary ingredients of a good research question.

Undoubtedly, no research project can be conducted if it is deemed unfeasible, and most institutional review boards would not be in a position to approve a work with major ethical problems. Nonetheless, whether or not the findings are interesting, is a subjective matter. Engaging the attention of readers also depends upon a number of factors, including the manner of presenting the problem, the background of the topic, the intended audience, and the reader's expectations. Furthermore, the interest is usually linked to the novelty and relevance of the topic, and it is worth nothing that editors and peer reviewers of high-impact medical journals are usually reluctant to accept any publication, if there is no novelty inherent to the research hypothesis, or there is a lack of relevance in the results.[ 11 ] Nevertheless, a considerable number of papers have been published without any novelty or relevance in the topic addressed. This is probably reflected in a recent survey, according to which only a third of respondents declared to have read thoroughly the most recent papers downloaded, and at least half of those manuscripts remained unread.[ 20 ] The same study reported that up to one-third of papers examined remained uncited after 5 years of publication, and only 20% of papers accounted for 80% of the citations.[ 20 ]

Formulating a good research question can be fascinating, albeit challenging, even for experienced investigators. While it is clear that clinical experience in combination with the accurate interpretation of literature and teamwork are essential to develop new ideas, the formulation of a clinical problem usually requires the compliance with PICOT framework in conjunction with FINER criteria, in order to translate a clinical dilemma into a researchable question. Working in the right environment with the adequate support of experienced researchers, will certainly make a difference in the generation of knowledge. By doing this, a lot of time will be saved in the search of the primary study question, and undoubtedly, there will be more chances to become a successful researcher.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

IMAGES

  1. What is a Research Hypothesis And How to Write it?

    questions about hypothesis in research

  2. hypothesis in research methodology notes

    questions about hypothesis in research

  3. PPT

    questions about hypothesis in research

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    questions about hypothesis in research

  5. 😍 How to formulate a hypothesis in research. How to Formulate

    questions about hypothesis in research

  6. PPT

    questions about hypothesis in research

VIDEO

  1. Academic Writing Workshop

  2. Pract 1

  3. Alternate hypothesis

  4. How To Formulate The Hypothesis/What is Hypothesis?

  5. Chapter 4 Problems, Research Questions, Hypothesis, and Variables

  6. AWR001 Academic Writing Part 1 A

COMMENTS

  1. How to Write a Strong Hypothesis

    5. Phrase your hypothesis in three ways. To identify the variables, you can write a simple prediction in if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable. If a first-year student starts attending more lectures, then their exam scores will improve.

  2. What is a Research Hypothesis: How to Write it, Types, and Examples

    It seeks to explore and understand a particular aspect of the research subject. In contrast, a research hypothesis is a specific statement or prediction that suggests an expected relationship between variables. It is formulated based on existing knowledge or theories and guides the research design and data analysis. 7.

  3. Research Hypothesis: Definition, Types, Examples and Quick Tips

    Quick tips on writing a hypothesis. 1. Be clear about your research question. A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem.

  4. Research Questions & Hypotheses

    The primary research question should originate from the hypothesis, not the data, and be established before starting the study. Formulating the research question and hypothesis from existing data (e.g., a database) can lead to multiple statistical comparisons and potentially spurious findings due to chance.

  5. Research questions, hypotheses and objectives

    Research hypothesis. The primary research question should be driven by the hypothesis rather than the data. 1, 2 That is, the research question and hypothesis should be developed before the start of the study. This sounds intuitive; however, if we take, for example, a database of information, it is potentially possible to perform multiple ...

  6. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  7. Hypothesis Examples: How to Write a Great Research Hypothesis

    What is a hypothesis and how can you write a great one for your research? A hypothesis is a tentative statement about the relationship between two or more variables that can be tested empirically. Find out how to formulate a clear, specific, and testable hypothesis with examples and tips from Verywell Mind, a trusted source of psychology and mental health information.

  8. How to Write a Strong Hypothesis

    A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation ('x affects y because …'). A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses.

  9. Research: Articulating Questions, Generating Hypotheses, and Choosing

    A research question has been described as "the uncertainty that the investigator wants to resolve by performing her study ... The hypothesis is a tentative prediction of the nature and direction of relationships between sets of data, phrased as a declarative statement. Therefore, hypotheses are really only required for studies that address ...

  10. How to Write a Good Research Question (w/ Examples)

    A good research question should: Be clear and provide specific information so readers can easily understand the purpose. Be focused in its scope and narrow enough to be addressed in the space allowed by your paper. Be relevant and concise and express your main ideas in as few words as possible, like a hypothesis.

  11. PDF DEVELOPING HYPOTHESIS AND RESEARCH QUESTIONS

    RESEARCH QUESTIONS Nature of Hypothesis The hypothesis is a clear statement of what is intended to be investigated. It should be specified before research is conducted and openly stated in reporting the results. This allows to: Identify the research objectives

  12. Research Hypothesis: What It Is, Types + How to Develop?

    A research hypothesis helps test theories. A hypothesis plays a pivotal role in the scientific method by providing a basis for testing existing theories. For example, a hypothesis might test the predictive power of a psychological theory on human behavior. It serves as a great platform for investigation activities.

  13. PDF Research Questions and Hypotheses

    Research Questions and Hypotheses I nvestigators place signposts to carry the reader through a plan for a study. The first signpost is the purpose statement, which establishes the ... Designing Research Example 7.3 A Null Hypothesis An investigator might examine three types of reinforcement for children with autism: verbal cues, a reward, and ...

  14. What is a Research Hypothesis and How to Write a Hypothesis

    The steps to write a research hypothesis are: 1. Stating the problem: Ensure that the hypothesis defines the research problem 2. Writing a hypothesis as an 'if-then' statement: Include the action and the expected outcome of your study by following a 'if-then' structure. 3.

  15. What Is A Research Hypothesis? A Simple Definition

    A research hypothesis (also called a scientific hypothesis) is a statement about the expected outcome of a study (for example, a dissertation or thesis). To constitute a quality hypothesis, the statement needs to have three attributes - specificity, clarity and testability. Let's take a look at these more closely.

  16. Research Questions, Objectives & Aims (+ Examples)

    In research, a research question is a clear and specific inquiry that the researcher wants to answer, while a research hypothesis is a tentative statement or prediction about the relationship between variables or the expected outcome of the study.

  17. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. ... research design to test the hypothesis, and its ethical implications: Sections are chosen by the authors, depending on the topic: Introduction, Methods, Results ...

  18. Research Questions vs Hypothesis: Understanding the Difference

    A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement. Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption. Researchers use the null approach for ...

  19. Research Question Vs Hypothesis

    A Hypothesis is a statement that predicts the relationship between two or more variables in a research study. Hypotheses are used in studies that aim to test cause-and-effect relationships between variables. A hypothesis is a tentative explanation for an observed phenomenon, and it is often derived from existing theory or previous research.

  20. Liking music with and without sadness: Testing the direct effect

    Negative emotion evoked in listeners of music can produce intense pleasure, but we do not fully understand why. The present study addressed the question by asking participants (n = 50) to self-select a piece of sadness-evoking music that was loved. The key part of the study asked participants to imagine that the felt sadness could be removed. Overall participants reported performing the task ...

  21. Formulation of Research Question

    A good research question (RQ) forms backbone of a good research, which in turn is vital in unraveling mysteries of nature and giving insight into a problem.[1,2,3,4] RQ identifies the problem to be studied and guides to the methodology. It leads to building up of an appropriate hypothesis (Hs).

  22. Answered: If you were conducting research, which…

    Question. None. Transcribed Image Text: If you were conducting research, which outcome is the most desirable Accept H (o) - null hypothesis reject H (o) null hypothesis reject H (1) alternate hypothesis Reject both the H (1) and the H (o) Expert Solution.

  23. Formulating a good research question: Pearls and pitfalls

    Hence, a comprehensive review of the topic is imperative, as it allows the researcher to identify this gap in the literature, formulate a hypothesis and develop a research question. To this end, it is crucial to be attentive to new ideas, keep the imagination roaming with reflective attitude, and remain sceptical to the new-gained information ...