Have a thesis expert improve your writing

Check your thesis for plagiarism in 10 minutes, generate your apa citations for free.

  • Knowledge Base
  • Null and Alternative Hypotheses | Definitions & Examples

Null and Alternative Hypotheses | Definitions & Examples

Published on 5 October 2022 by Shaun Turney . Revised on 6 December 2022.

The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test :

  • Null hypothesis (H 0 ): There’s no effect in the population .
  • Alternative hypothesis (H A ): There’s an effect in the population.

The effect is usually the effect of the independent variable on the dependent variable .

Table of contents

Answering your research question with hypotheses, what is a null hypothesis, what is an alternative hypothesis, differences between null and alternative hypotheses, how to write null and alternative hypotheses, frequently asked questions about null and alternative hypotheses.

The null and alternative hypotheses offer competing answers to your research question . When the research question asks “Does the independent variable affect the dependent variable?”, the null hypothesis (H 0 ) answers “No, there’s no effect in the population.” On the other hand, the alternative hypothesis (H A ) answers “Yes, there is an effect in the population.”

The null and alternative are always claims about the population. That’s because the goal of hypothesis testing is to make inferences about a population based on a sample . Often, we infer whether there’s an effect in the population by looking at differences between groups or relationships between variables in the sample.

You can use a statistical test to decide whether the evidence favors the null or alternative hypothesis. Each type of statistical test comes with a specific way of phrasing the null and alternative hypothesis. However, the hypotheses can also be phrased in a general way that applies to any test.

The null hypothesis is the claim that there’s no effect in the population.

If the sample provides enough evidence against the claim that there’s no effect in the population ( p ≤ α), then we can reject the null hypothesis . Otherwise, we fail to reject the null hypothesis.

Although “fail to reject” may sound awkward, it’s the only wording that statisticians accept. Be careful not to say you “prove” or “accept” the null hypothesis.

Null hypotheses often include phrases such as “no effect”, “no difference”, or “no relationship”. When written in mathematical terms, they always include an equality (usually =, but sometimes ≥ or ≤).

Examples of null hypotheses

The table below gives examples of research questions and null hypotheses. There’s always more than one way to answer a research question, but these null hypotheses can help you get started.

*Note that some researchers prefer to always write the null hypothesis in terms of “no effect” and “=”. It would be fine to say that daily meditation has no effect on the incidence of depression and p 1 = p 2 .

The alternative hypothesis (H A ) is the other answer to your research question . It claims that there’s an effect in the population.

Often, your alternative hypothesis is the same as your research hypothesis. In other words, it’s the claim that you expect or hope will be true.

The alternative hypothesis is the complement to the null hypothesis. Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

Alternative hypotheses often include phrases such as “an effect”, “a difference”, or “a relationship”. When alternative hypotheses are written in mathematical terms, they always include an inequality (usually ≠, but sometimes > or <). As with null hypotheses, there are many acceptable ways to phrase an alternative hypothesis.

Examples of alternative hypotheses

The table below gives examples of research questions and alternative hypotheses to help you get started with formulating your own.

Null and alternative hypotheses are similar in some ways:

  • They’re both answers to the research question
  • They both make claims about the population
  • They’re both evaluated by statistical tests.

However, there are important differences between the two types of hypotheses, summarized in the following table.

To help you write your hypotheses, you can use the template sentences below. If you know which statistical test you’re going to use, you can use the test-specific template sentences. Otherwise, you can use the general template sentences.

The only thing you need to know to use these general template sentences are your dependent and independent variables. To write your research question, null hypothesis, and alternative hypothesis, fill in the following sentences with your variables:

Does independent variable affect dependent variable ?

  • Null hypothesis (H 0 ): Independent variable does not affect dependent variable .
  • Alternative hypothesis (H A ): Independent variable affects dependent variable .

Test-specific

Once you know the statistical test you’ll be using, you can write your hypotheses in a more precise and mathematical way specific to the test you chose. The table below provides template sentences for common statistical tests.

Note: The template sentences above assume that you’re performing one-tailed tests . One-tailed tests are appropriate for most studies.

The null hypothesis is often abbreviated as H 0 . When the null hypothesis is written using mathematical symbols, it always includes an equality symbol (usually =, but sometimes ≥ or ≤).

The alternative hypothesis is often abbreviated as H a or H 1 . When the alternative hypothesis is written using mathematical symbols, it always includes an inequality symbol (usually ≠, but sometimes < or >).

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Turney, S. (2022, December 06). Null and Alternative Hypotheses | Definitions & Examples. Scribbr. Retrieved 25 March 2024, from https://www.scribbr.co.uk/stats/null-and-alternative-hypothesis/

Is this article helpful?

Shaun Turney

Shaun Turney

Other students also liked, levels of measurement: nominal, ordinal, interval, ratio, the standard normal distribution | calculator, examples & uses, types of variables in research | definitions & examples.

  • Resources Home 🏠
  • Try SciSpace Copilot
  • Search research papers
  • Add Copilot Extension
  • Try AI Detector
  • Try Paraphraser
  • Try Citation Generator
  • April Papers
  • June Papers
  • July Papers

SciSpace Resources

The Craft of Writing a Strong Hypothesis

Deeptanshu D

Table of Contents

Writing a hypothesis is one of the essential elements of a scientific research paper. It needs to be to the point, clearly communicating what your research is trying to accomplish. A blurry, drawn-out, or complexly-structured hypothesis can confuse your readers. Or worse, the editor and peer reviewers.

A captivating hypothesis is not too intricate. This blog will take you through the process so that, by the end of it, you have a better idea of how to convey your research paper's intent in just one sentence.

What is a Hypothesis?

The first step in your scientific endeavor, a hypothesis, is a strong, concise statement that forms the basis of your research. It is not the same as a thesis statement , which is a brief summary of your research paper .

The sole purpose of a hypothesis is to predict your paper's findings, data, and conclusion. It comes from a place of curiosity and intuition . When you write a hypothesis, you're essentially making an educated guess based on scientific prejudices and evidence, which is further proven or disproven through the scientific method.

The reason for undertaking research is to observe a specific phenomenon. A hypothesis, therefore, lays out what the said phenomenon is. And it does so through two variables, an independent and dependent variable.

The independent variable is the cause behind the observation, while the dependent variable is the effect of the cause. A good example of this is “mixing red and blue forms purple.” In this hypothesis, mixing red and blue is the independent variable as you're combining the two colors at your own will. The formation of purple is the dependent variable as, in this case, it is conditional to the independent variable.

Different Types of Hypotheses‌

Types-of-hypotheses

Types of hypotheses

Some would stand by the notion that there are only two types of hypotheses: a Null hypothesis and an Alternative hypothesis. While that may have some truth to it, it would be better to fully distinguish the most common forms as these terms come up so often, which might leave you out of context.

Apart from Null and Alternative, there are Complex, Simple, Directional, Non-Directional, Statistical, and Associative and casual hypotheses. They don't necessarily have to be exclusive, as one hypothesis can tick many boxes, but knowing the distinctions between them will make it easier for you to construct your own.

1. Null hypothesis

A null hypothesis proposes no relationship between two variables. Denoted by H 0 , it is a negative statement like “Attending physiotherapy sessions does not affect athletes' on-field performance.” Here, the author claims physiotherapy sessions have no effect on on-field performances. Even if there is, it's only a coincidence.

2. Alternative hypothesis

Considered to be the opposite of a null hypothesis, an alternative hypothesis is donated as H1 or Ha. It explicitly states that the dependent variable affects the independent variable. A good  alternative hypothesis example is “Attending physiotherapy sessions improves athletes' on-field performance.” or “Water evaporates at 100 °C. ” The alternative hypothesis further branches into directional and non-directional.

  • Directional hypothesis: A hypothesis that states the result would be either positive or negative is called directional hypothesis. It accompanies H1 with either the ‘<' or ‘>' sign.
  • Non-directional hypothesis: A non-directional hypothesis only claims an effect on the dependent variable. It does not clarify whether the result would be positive or negative. The sign for a non-directional hypothesis is ‘≠.'

3. Simple hypothesis

A simple hypothesis is a statement made to reflect the relation between exactly two variables. One independent and one dependent. Consider the example, “Smoking is a prominent cause of lung cancer." The dependent variable, lung cancer, is dependent on the independent variable, smoking.

4. Complex hypothesis

In contrast to a simple hypothesis, a complex hypothesis implies the relationship between multiple independent and dependent variables. For instance, “Individuals who eat more fruits tend to have higher immunity, lesser cholesterol, and high metabolism.” The independent variable is eating more fruits, while the dependent variables are higher immunity, lesser cholesterol, and high metabolism.

5. Associative and casual hypothesis

Associative and casual hypotheses don't exhibit how many variables there will be. They define the relationship between the variables. In an associative hypothesis, changing any one variable, dependent or independent, affects others. In a casual hypothesis, the independent variable directly affects the dependent.

6. Empirical hypothesis

Also referred to as the working hypothesis, an empirical hypothesis claims a theory's validation via experiments and observation. This way, the statement appears justifiable and different from a wild guess.

Say, the hypothesis is “Women who take iron tablets face a lesser risk of anemia than those who take vitamin B12.” This is an example of an empirical hypothesis where the researcher  the statement after assessing a group of women who take iron tablets and charting the findings.

7. Statistical hypothesis

The point of a statistical hypothesis is to test an already existing hypothesis by studying a population sample. Hypothesis like “44% of the Indian population belong in the age group of 22-27.” leverage evidence to prove or disprove a particular statement.

Characteristics of a Good Hypothesis

Writing a hypothesis is essential as it can make or break your research for you. That includes your chances of getting published in a journal. So when you're designing one, keep an eye out for these pointers:

  • A research hypothesis has to be simple yet clear to look justifiable enough.
  • It has to be testable — your research would be rendered pointless if too far-fetched into reality or limited by technology.
  • It has to be precise about the results —what you are trying to do and achieve through it should come out in your hypothesis.
  • A research hypothesis should be self-explanatory, leaving no doubt in the reader's mind.
  • If you are developing a relational hypothesis, you need to include the variables and establish an appropriate relationship among them.
  • A hypothesis must keep and reflect the scope for further investigations and experiments.

Separating a Hypothesis from a Prediction

Outside of academia, hypothesis and prediction are often used interchangeably. In research writing, this is not only confusing but also incorrect. And although a hypothesis and prediction are guesses at their core, there are many differences between them.

A hypothesis is an educated guess or even a testable prediction validated through research. It aims to analyze the gathered evidence and facts to define a relationship between variables and put forth a logical explanation behind the nature of events.

Predictions are assumptions or expected outcomes made without any backing evidence. They are more fictionally inclined regardless of where they originate from.

For this reason, a hypothesis holds much more weight than a prediction. It sticks to the scientific method rather than pure guesswork. "Planets revolve around the Sun." is an example of a hypothesis as it is previous knowledge and observed trends. Additionally, we can test it through the scientific method.

Whereas "COVID-19 will be eradicated by 2030." is a prediction. Even though it results from past trends, we can't prove or disprove it. So, the only way this gets validated is to wait and watch if COVID-19 cases end by 2030.

Finally, How to Write a Hypothesis

Quick-tips-on-how-to-write-a-hypothesis

Quick tips on writing a hypothesis

1.  Be clear about your research question

A hypothesis should instantly address the research question or the problem statement. To do so, you need to ask a question. Understand the constraints of your undertaken research topic and then formulate a simple and topic-centric problem. Only after that can you develop a hypothesis and further test for evidence.

2. Carry out a recce

Once you have your research's foundation laid out, it would be best to conduct preliminary research. Go through previous theories, academic papers, data, and experiments before you start curating your research hypothesis. It will give you an idea of your hypothesis's viability or originality.

Making use of references from relevant research papers helps draft a good research hypothesis. SciSpace Discover offers a repository of over 270 million research papers to browse through and gain a deeper understanding of related studies on a particular topic. Additionally, you can use SciSpace Copilot , your AI research assistant, for reading any lengthy research paper and getting a more summarized context of it. A hypothesis can be formed after evaluating many such summarized research papers. Copilot also offers explanations for theories and equations, explains paper in simplified version, allows you to highlight any text in the paper or clip math equations and tables and provides a deeper, clear understanding of what is being said. This can improve the hypothesis by helping you identify potential research gaps.

3. Create a 3-dimensional hypothesis

Variables are an essential part of any reasonable hypothesis. So, identify your independent and dependent variable(s) and form a correlation between them. The ideal way to do this is to write the hypothetical assumption in the ‘if-then' form. If you use this form, make sure that you state the predefined relationship between the variables.

In another way, you can choose to present your hypothesis as a comparison between two variables. Here, you must specify the difference you expect to observe in the results.

4. Write the first draft

Now that everything is in place, it's time to write your hypothesis. For starters, create the first draft. In this version, write what you expect to find from your research.

Clearly separate your independent and dependent variables and the link between them. Don't fixate on syntax at this stage. The goal is to ensure your hypothesis addresses the issue.

5. Proof your hypothesis

After preparing the first draft of your hypothesis, you need to inspect it thoroughly. It should tick all the boxes, like being concise, straightforward, relevant, and accurate. Your final hypothesis has to be well-structured as well.

Research projects are an exciting and crucial part of being a scholar. And once you have your research question, you need a great hypothesis to begin conducting research. Thus, knowing how to write a hypothesis is very important.

Now that you have a firmer grasp on what a good hypothesis constitutes, the different kinds there are, and what process to follow, you will find it much easier to write your hypothesis, which ultimately helps your research.

Now it's easier than ever to streamline your research workflow with SciSpace Discover . Its integrated, comprehensive end-to-end platform for research allows scholars to easily discover, write and publish their research and fosters collaboration.

It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and experience.

If you found these tips on writing a research hypothesis useful, head over to our blog on Statistical Hypothesis Testing to learn about the top researchers, papers, and institutions in this domain.

Frequently Asked Questions (FAQs)

1. what is the definition of hypothesis.

According to the Oxford dictionary, a hypothesis is defined as “An idea or explanation of something that is based on a few known facts, but that has not yet been proved to be true or correct”.

2. What is an example of hypothesis?

The hypothesis is a statement that proposes a relationship between two or more variables. An example: "If we increase the number of new users who join our platform by 25%, then we will see an increase in revenue."

3. What is an example of null hypothesis?

A null hypothesis is a statement that there is no relationship between two variables. The null hypothesis is written as H0. The null hypothesis states that there is no effect. For example, if you're studying whether or not a particular type of exercise increases strength, your null hypothesis will be "there is no difference in strength between people who exercise and people who don't."

4. What are the types of research?

• Fundamental research

• Applied research

• Qualitative research

• Quantitative research

• Mixed research

• Exploratory research

• Longitudinal research

• Cross-sectional research

• Field research

• Laboratory research

• Fixed research

• Flexible research

• Action research

• Policy research

• Classification research

• Comparative research

• Causal research

• Inductive research

• Deductive research

5. How to write a hypothesis?

• Your hypothesis should be able to predict the relationship and outcome.

• Avoid wordiness by keeping it simple and brief.

• Your hypothesis should contain observable and testable outcomes.

• Your hypothesis should be relevant to the research question.

6. What are the 2 types of hypothesis?

• Null hypotheses are used to test the claim that "there is no difference between two groups of data".

• Alternative hypotheses test the claim that "there is a difference between two data groups".

7. Difference between research question and research hypothesis?

A research question is a broad, open-ended question you will try to answer through your research. A hypothesis is a statement based on prior research or theory that you expect to be true due to your study. Example - Research question: What are the factors that influence the adoption of the new technology? Research hypothesis: There is a positive relationship between age, education and income level with the adoption of the new technology.

8. What is plural for hypothesis?

The plural of hypothesis is hypotheses. Here's an example of how it would be used in a statement, "Numerous well-considered hypotheses are presented in this part, and they are supported by tables and figures that are well-illustrated."

9. What is the red queen hypothesis?

The red queen hypothesis in evolutionary biology states that species must constantly evolve to avoid extinction because if they don't, they will be outcompeted by other species that are evolving. Leigh Van Valen first proposed it in 1973; since then, it has been tested and substantiated many times.

10. Who is known as the father of null hypothesis?

The father of the null hypothesis is Sir Ronald Fisher. He published a paper in 1925 that introduced the concept of null hypothesis testing, and he was also the first to use the term itself.

11. When to reject null hypothesis?

You need to find a significant difference between your two populations to reject the null hypothesis. You can determine that by running statistical tests such as an independent sample t-test or a dependent sample t-test. You should reject the null hypothesis if the p-value is less than 0.05.

example of alternative hypothesis in research paper

You might also like

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Consensus GPT vs. SciSpace GPT: Choose the Best GPT for Research

Sumalatha G

Literature Review and Theoretical Framework: Understanding the Differences

Nikhil Seethi

Types of Essays in Academic Writing

Statology

Statistics Made Easy

What is an Alternative Hypothesis in Statistics?

Often in statistics we want to test whether or not some assumption is true about a population parameter .

For example, we might assume that the mean weight of a certain population of turtle is 300 pounds.

To determine if this assumption is true, we’ll go out and collect a sample of turtles and weigh each of them. Using this sample data, we’ll conduct a hypothesis test .

The first step in a hypothesis test is to define the  null and  alternative hypotheses .

These two hypotheses need to be mutually exclusive, so if one is true then the other must be false.

These two hypotheses are defined as follows:

Null hypothesis (H 0 ): The sample data is consistent with the prevailing belief about the population parameter.

Alternative hypothesis (H A ): The sample data suggests that the assumption made in the null hypothesis is not true. In other words, there is some non-random cause influencing the data.

Types of Alternative Hypotheses

There are two types of alternative hypotheses:

A  one-tailed hypothesis involves making a “greater than” or “less than ” statement. For example, suppose we assume the mean height of a male in the U.S. is greater than or equal to 70 inches.

The null and alternative hypotheses in this case would be:

  • Null hypothesis: µ ≥ 70 inches
  • Alternative hypothesis: µ < 70 inches

A  two-tailed hypothesis involves making an “equal to” or “not equal to” statement. For example, suppose we assume the mean height of a male in the U.S. is equal to 70 inches.

  • Null hypothesis: µ = 70 inches
  • Alternative hypothesis: µ ≠ 70 inches

Note: The “equal” sign is always included in the null hypothesis, whether it is =, ≥, or ≤.

Examples of Alternative Hypotheses

The following examples illustrate how to define the null and alternative hypotheses for different research problems.

Example 1: A biologist wants to test if the mean weight of a certain population of turtle is different from the widely-accepted mean weight of 300 pounds.

The null and alternative hypothesis for this research study would be:

  • Null hypothesis: µ = 300 pounds
  • Alternative hypothesis: µ ≠ 300 pounds

If we reject the null hypothesis, this means we have sufficient evidence from the sample data to say that the true mean weight of this population of turtles is different from 300 pounds.

Example 2: An engineer wants to test whether a new battery can produce higher mean watts than the current industry standard of 50 watts.

  • Null hypothesis: µ ≤ 50 watts
  • Alternative hypothesis: µ > 50 watts

If we reject the null hypothesis, this means we have sufficient evidence from the sample data to say that the true mean watts produced by the new battery is greater than the current industry standard of 50 watts.

Example 3: A botanist wants to know if a new gardening method produces less waste than the standard gardening method that produces 20 pounds of waste.

  • Null hypothesis: µ ≥ 20 pounds
  • Alternative hypothesis: µ < 20 pounds

If we reject the null hypothesis, this means we have sufficient evidence from the sample data to say that the true mean weight produced by this new gardening method is less than 20 pounds.

When to Reject the Null Hypothesis

Whenever we conduct a hypothesis test, we use sample data to calculate a test-statistic and a corresponding p-value.

If the p-value is less than some significance level (common choices are 0.10, 0.05, and 0.01), then we reject the null hypothesis.

This means we have sufficient evidence from the sample data to say that the assumption made by the null hypothesis is not true.

If the p-value is  not less than some significance level, then we fail to reject the null hypothesis.

This means our sample data did not provide us with evidence that the assumption made by the null hypothesis was not true.

Additional Resource:   An Explanation of P-Values and Statistical Significance

' src=

Published by Zach

Leave a reply cancel reply.

Your email address will not be published. Required fields are marked *

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • How to Write a Strong Hypothesis | Steps & Examples

How to Write a Strong Hypothesis | Steps & Examples

Published on May 6, 2022 by Shona McCombes . Revised on November 20, 2023.

A hypothesis is a statement that can be tested by scientific research. If you want to test a relationship between two or more variables, you need to write hypotheses before you start your experiment or data collection .

Example: Hypothesis

Daily apple consumption leads to fewer doctor’s visits.

Table of contents

What is a hypothesis, developing a hypothesis (with example), hypothesis examples, other interesting articles, frequently asked questions about writing hypotheses.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess – it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Variables in hypotheses

Hypotheses propose a relationship between two or more types of variables .

  • An independent variable is something the researcher changes or controls.
  • A dependent variable is something the researcher observes and measures.

If there are any control variables , extraneous variables , or confounding variables , be sure to jot those down as you go to minimize the chances that research bias  will affect your results.

In this example, the independent variable is exposure to the sun – the assumed cause . The dependent variable is the level of happiness – the assumed effect .

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Step 1. Ask a question

Writing a hypothesis begins with a research question that you want to answer. The question should be focused, specific, and researchable within the constraints of your project.

Step 2. Do some preliminary research

Your initial answer to the question should be based on what is already known about the topic. Look for theories and previous studies to help you form educated assumptions about what your research will find.

At this stage, you might construct a conceptual framework to ensure that you’re embarking on a relevant topic . This can also help you identify which variables you will study and what you think the relationships are between them. Sometimes, you’ll have to operationalize more complex constructs.

Step 3. Formulate your hypothesis

Now you should have some idea of what you expect to find. Write your initial answer to the question in a clear, concise sentence.

4. Refine your hypothesis

You need to make sure your hypothesis is specific and testable. There are various ways of phrasing a hypothesis, but all the terms you use should have clear definitions, and the hypothesis should contain:

  • The relevant variables
  • The specific group being studied
  • The predicted outcome of the experiment or analysis

5. Phrase your hypothesis in three ways

To identify the variables, you can write a simple prediction in  if…then form. The first part of the sentence states the independent variable and the second part states the dependent variable.

In academic research, hypotheses are more commonly phrased in terms of correlations or effects, where you directly state the predicted relationship between variables.

If you are comparing two groups, the hypothesis can state what difference you expect to find between them.

6. Write a null hypothesis

If your research involves statistical hypothesis testing , you will also have to write a null hypothesis . The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0 , while the alternative hypothesis is H 1 or H a .

  • H 0 : The number of lectures attended by first-year students has no effect on their final exam scores.
  • H 1 : The number of lectures attended by first-year students has a positive effect on their final exam scores.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Null and alternative hypotheses are used in statistical hypothesis testing . The null hypothesis of a test always predicts no effect or no relationship between variables, while the alternative hypothesis states your research prediction of an effect or relationship.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). How to Write a Strong Hypothesis | Steps & Examples. Scribbr. Retrieved March 25, 2024, from https://www.scribbr.com/methodology/hypothesis/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, construct validity | definition, types, & examples, what is a conceptual framework | tips & examples, operationalization | a guide with examples, pros & cons, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

Academic Success Center

Statistics Resources

  • Excel - Tutorials
  • Basic Probability Rules
  • Single Event Probability
  • Complement Rule
  • Levels of Measurement
  • Independent and Dependent Variables
  • Entering Data
  • Central Tendency
  • Data and Tests
  • Displaying Data
  • Discussing Statistics In-text
  • SEM and Confidence Intervals
  • Two-Way Frequency Tables
  • Empirical Rule
  • Finding Probability
  • Accessing SPSS
  • Chart and Graphs
  • Frequency Table and Distribution
  • Descriptive Statistics
  • Converting Raw Scores to Z-Scores
  • Converting Z-scores to t-scores
  • Split File/Split Output
  • Partial Eta Squared
  • Downloading and Installing G*Power: Windows/PC
  • Correlation
  • Testing Parametric Assumptions
  • One-Way ANOVA
  • Two-Way ANOVA
  • Repeated Measures ANOVA
  • Goodness-of-Fit
  • Test of Association
  • Pearson's r
  • Point Biserial
  • Mediation and Moderation
  • Simple Linear Regression
  • Multiple Linear Regression
  • Binomial Logistic Regression
  • Multinomial Logistic Regression
  • Independent Samples T-test
  • Dependent Samples T-test
  • Testing Assumptions
  • T-tests using SPSS
  • T-Test Practice
  • Predictive Analytics This link opens in a new window
  • Quantitative Research Questions
  • Null & Alternative Hypotheses
  • One-Tail vs. Two-Tail
  • Alpha & Beta
  • Associated Probability
  • Decision Rule
  • Statement of Conclusion
  • Statistics Group Sessions

ASC Chat Hours

ASC Chat is usually available at the following times ( Pacific Time):

If there is not a coach on duty, submit your question via one of the below methods:

  928-440-1325

  Ask a Coach

  [email protected]

Search our FAQs on the Academic Success Center's  Ask a Coach   page.

Once you have developed a clear and focused research question or set of research questions, you’ll be ready to conduct further research, a literature review, on the topic to help you make an educated guess about the answer to your question(s). This educated guess is called a hypothesis.

In research, there are two types of hypotheses: null and alternative. They work as a complementary pair, each stating that the other is wrong.

  • Null Hypothesis (H 0 ) – This can be thought of as the implied hypothesis. “Null” meaning “nothing.”  This hypothesis states that there is no difference between groups or no relationship between variables. The null hypothesis is a presumption of status quo or no change.
  • Alternative Hypothesis (H a ) – This is also known as the claim. This hypothesis should state what you expect the data to show, based on your research on the topic. This is your answer to your research question.

Null Hypothesis:   H 0 : There is no difference in the salary of factory workers based on gender. Alternative Hypothesis :  H a : Male factory workers have a higher salary than female factory workers.

Null Hypothesis :  H 0 : There is no relationship between height and shoe size. Alternative Hypothesis :  H a : There is a positive relationship between height and shoe size.

Null Hypothesis :  H 0 : Experience on the job has no impact on the quality of a brick mason’s work. Alternative Hypothesis :  H a : The quality of a brick mason’s work is influenced by on-the-job experience.

Was this resource helpful?

  • << Previous: Hypothesis Testing
  • Next: One-Tail vs. Two-Tail >>
  • Last Updated: Jan 16, 2024 12:09 PM
  • URL: https://resources.nu.edu/statsresources

NCU Library Home

9.1 Null and Alternative Hypotheses

The actual test begins by considering two hypotheses . They are called the null hypothesis and the alternative hypothesis . These hypotheses contain opposing viewpoints.

H 0 , the — null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

H a —, the alternative hypothesis: a claim about the population that is contradictory to H 0 and what we conclude when we reject H 0 .

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data.

After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are reject H 0 if the sample information favors the alternative hypothesis or do not reject H 0 or decline to reject H 0 if the sample information is insufficient to reject the null hypothesis.

Mathematical Symbols Used in H 0 and H a :

H 0 always has a symbol with an equal in it. H a never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example 9.1

H 0 : No more than 30 percent of the registered voters in Santa Clara County voted in the primary election. p ≤ 30 H a : More than 30 percent of the registered voters in Santa Clara County voted in the primary election. p > 30

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25 percent. State the null and alternative hypotheses.

Example 9.2

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are the following: H 0 : μ = 2.0 H a : μ ≠ 2.0

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 66
  • H a : μ __ 66

Example 9.3

We want to test if college students take fewer than five years to graduate from college, on the average. The null and alternative hypotheses are the following: H 0 : μ ≥ 5 H a : μ < 5

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : μ __ 45
  • H a : μ __ 45

Example 9.4

An article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third of the students pass. The same article stated that 6.6 percent of U.S. students take advanced placement exams and 4.4 percent pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6 percent. State the null and alternative hypotheses. H 0 : p ≤ 0.066 H a : p > 0.066

On a state driver’s test, about 40 percent pass the test on the first try. We want to test if more than 40 percent pass on the first try. Fill in the correct symbol (=, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • H 0 : p __ 0.40
  • H a : p __ 0.40

Collaborative Exercise

Bring to class a newspaper, some news magazines, and some internet articles. In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

As an Amazon Associate we earn from qualifying purchases.

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-statistics . Changes were made to the original material, including updates to art, structure, and other content updates.

Access for free at https://openstax.org/books/statistics/pages/1-introduction
  • Authors: Barbara Illowsky, Susan Dean
  • Publisher/website: OpenStax
  • Book title: Statistics
  • Publication date: Mar 27, 2020
  • Location: Houston, Texas
  • Book URL: https://openstax.org/books/statistics/pages/1-introduction
  • Section URL: https://openstax.org/books/statistics/pages/9-1-null-and-alternative-hypotheses

© Jan 23, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Null and alternative hypotheses.

Converting research questions to hypothesis is a simple task. Take the questions and make it a positive statement that says a relationship exists (correlation studies) or a difference exists between the groups (experiment study) and you have the alternative hypothesis. Write the statement such that a relationship does not exist or a difference does not exist and you have the null hypothesis. You can reverse the process if you have a hypothesis and wish to write a research question.

When you are comparing two groups, the groups are the independent variable. When you are testing whether something affects something else, the cause is the independent variable. The independent variable is the one you manipulate.

Teachers given higher pay will have more positive attitudes toward children than teachers given lower pay. The first step is to ask yourself “Are there two or more groups being compared?” The answer is “Yes.” What are the groups? Teachers who are given higher pay and teachers who are given lower pay. The independent variable is teacher pay. The dependent variable (the outcome) is attitude towards school.

You could also approach is another way. “Is something causing something else?” The answer is “Yes.”  What is causing what? Teacher pay is causing attitude towards school. Therefore, teacher pay is the independent variable (cause) and attitude towards school is the dependent variable (outcome).

By tradition, we try to disprove (reject) the null hypothesis. We can never prove a null hypothesis, because it is impossible to prove something does not exist. We can disprove something does not exist by finding an example of it. Therefore, in research we try to disprove the null hypothesis. When we do find that a relationship (or difference) exists then we reject the null and accept the alternative. If we do not find that a relationship (or difference) exists, we fail to reject the null hypothesis (and go with it). We never say we accept the null hypothesis because it is never possible to prove something does not exist. That is why we say that we failed to reject the null hypothesis, rather than we accepted it.

Del Siegle, Ph.D. Neag School of Education – University of Connecticut [email protected] www.delsiegle.com

User Preferences

Content preview.

Arcu felis bibendum ut tristique et egestas quis:

  • Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
  • Duis aute irure dolor in reprehenderit in voluptate
  • Excepteur sint occaecat cupidatat non proident

Keyboard Shortcuts

5.2 - writing hypotheses.

The first step in conducting a hypothesis test is to write the hypothesis statements that are going to be tested. For each test you will have a null hypothesis (\(H_0\)) and an alternative hypothesis (\(H_a\)).

When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  • At this point we can write hypotheses for a single mean (\(\mu\)), paired means(\(\mu_d\)), a single proportion (\(p\)), the difference between two independent means (\(\mu_1-\mu_2\)), the difference between two proportions (\(p_1-p_2\)), a simple linear regression slope (\(\beta\)), and a correlation (\(\rho\)). 
  • The research question will give us the information necessary to determine if the test is two-tailed (e.g., "different from," "not equal to"), right-tailed (e.g., "greater than," "more than"), or left-tailed (e.g., "less than," "fewer than").
  • The research question will also give us the hypothesized parameter value. This is the number that goes in the hypothesis statements (i.e., \(\mu_0\) and \(p_0\)). For the difference between two groups, regression, and correlation, this value is typically 0.

Hypotheses are always written in terms of population parameters (e.g., \(p\) and \(\mu\)).  The tables below display all of the possible hypotheses for the parameters that we have learned thus far. Note that the null hypothesis always includes the equality (i.e., =).

Research Hypothesis In Psychology: Types, & Examples

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A research hypothesis, in its plural form “hypotheses,” is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method .

Hypotheses connect theory to data and guide the research process towards expanding scientific understanding

Some key points about hypotheses:

  • A hypothesis expresses an expected pattern or relationship. It connects the variables under investigation.
  • It is stated in clear, precise terms before any data collection or analysis occurs. This makes the hypothesis testable.
  • A hypothesis must be falsifiable. It should be possible, even if unlikely in practice, to collect data that disconfirms rather than supports the hypothesis.
  • Hypotheses guide research. Scientists design studies to explicitly evaluate hypotheses about how nature works.
  • For a hypothesis to be valid, it must be testable against empirical evidence. The evidence can then confirm or disprove the testable predictions.
  • Hypotheses are informed by background knowledge and observation, but go beyond what is already known to propose an explanation of how or why something occurs.
Predictions typically arise from a thorough knowledge of the research literature, curiosity about real-world problems or implications, and integrating this to advance theory. They build on existing literature while providing new insight.

Types of Research Hypotheses

Alternative hypothesis.

The research hypothesis is often called the alternative or experimental hypothesis in experimental research.

It typically suggests a potential relationship between two key variables: the independent variable, which the researcher manipulates, and the dependent variable, which is measured based on those changes.

The alternative hypothesis states a relationship exists between the two variables being studied (one variable affects the other).

A hypothesis is a testable statement or prediction about the relationship between two or more variables. It is a key component of the scientific method. Some key points about hypotheses:

  • Important hypotheses lead to predictions that can be tested empirically. The evidence can then confirm or disprove the testable predictions.

In summary, a hypothesis is a precise, testable statement of what researchers expect to happen in a study and why. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

An experimental hypothesis predicts what change(s) will occur in the dependent variable when the independent variable is manipulated.

It states that the results are not due to chance and are significant in supporting the theory being investigated.

The alternative hypothesis can be directional, indicating a specific direction of the effect, or non-directional, suggesting a difference without specifying its nature. It’s what researchers aim to support or demonstrate through their study.

Null Hypothesis

The null hypothesis states no relationship exists between the two variables being studied (one variable does not affect the other). There will be no changes in the dependent variable due to manipulating the independent variable.

It states results are due to chance and are not significant in supporting the idea being investigated.

The null hypothesis, positing no effect or relationship, is a foundational contrast to the research hypothesis in scientific inquiry. It establishes a baseline for statistical testing, promoting objectivity by initiating research from a neutral stance.

Many statistical methods are tailored to test the null hypothesis, determining the likelihood of observed results if no true effect exists.

This dual-hypothesis approach provides clarity, ensuring that research intentions are explicit, and fosters consistency across scientific studies, enhancing the standardization and interpretability of research outcomes.

Nondirectional Hypothesis

A non-directional hypothesis, also known as a two-tailed hypothesis, predicts that there is a difference or relationship between two variables but does not specify the direction of this relationship.

It merely indicates that a change or effect will occur without predicting which group will have higher or lower values.

For example, “There is a difference in performance between Group A and Group B” is a non-directional hypothesis.

Directional Hypothesis

A directional (one-tailed) hypothesis predicts the nature of the effect of the independent variable on the dependent variable. It predicts in which direction the change will take place. (i.e., greater, smaller, less, more)

It specifies whether one variable is greater, lesser, or different from another, rather than just indicating that there’s a difference without specifying its nature.

For example, “Exercise increases weight loss” is a directional hypothesis.

hypothesis

Falsifiability

The Falsification Principle, proposed by Karl Popper , is a way of demarcating science from non-science. It suggests that for a theory or hypothesis to be considered scientific, it must be testable and irrefutable.

Falsifiability emphasizes that scientific claims shouldn’t just be confirmable but should also have the potential to be proven wrong.

It means that there should exist some potential evidence or experiment that could prove the proposition false.

However many confirming instances exist for a theory, it only takes one counter observation to falsify it. For example, the hypothesis that “all swans are white,” can be falsified by observing a black swan.

For Popper, science should attempt to disprove a theory rather than attempt to continually provide evidence to support a research hypothesis.

Can a Hypothesis be Proven?

Hypotheses make probabilistic predictions. They state the expected outcome if a particular relationship exists. However, a study result supporting a hypothesis does not definitively prove it is true.

All studies have limitations. There may be unknown confounding factors or issues that limit the certainty of conclusions. Additional studies may yield different results.

In science, hypotheses can realistically only be supported with some degree of confidence, not proven. The process of science is to incrementally accumulate evidence for and against hypothesized relationships in an ongoing pursuit of better models and explanations that best fit the empirical data. But hypotheses remain open to revision and rejection if that is where the evidence leads.
  • Disproving a hypothesis is definitive. Solid disconfirmatory evidence will falsify a hypothesis and require altering or discarding it based on the evidence.
  • However, confirming evidence is always open to revision. Other explanations may account for the same results, and additional or contradictory evidence may emerge over time.

We can never 100% prove the alternative hypothesis. Instead, we see if we can disprove, or reject the null hypothesis.

If we reject the null hypothesis, this doesn’t mean that our alternative hypothesis is correct but does support the alternative/experimental hypothesis.

Upon analysis of the results, an alternative hypothesis can be rejected or supported, but it can never be proven to be correct. We must avoid any reference to results proving a theory as this implies 100% certainty, and there is always a chance that evidence may exist which could refute a theory.

How to Write a Hypothesis

  • Identify variables . The researcher manipulates the independent variable and the dependent variable is the measured outcome.
  • Operationalized the variables being investigated . Operationalization of a hypothesis refers to the process of making the variables physically measurable or testable, e.g. if you are about to study aggression, you might count the number of punches given by participants.
  • Decide on a direction for your prediction . If there is evidence in the literature to support a specific effect of the independent variable on the dependent variable, write a directional (one-tailed) hypothesis. If there are limited or ambiguous findings in the literature regarding the effect of the independent variable on the dependent variable, write a non-directional (two-tailed) hypothesis.
  • Make it Testable : Ensure your hypothesis can be tested through experimentation or observation. It should be possible to prove it false (principle of falsifiability).
  • Clear & concise language . A strong hypothesis is concise (typically one to two sentences long), and formulated using clear and straightforward language, ensuring it’s easily understood and testable.

Consider a hypothesis many teachers might subscribe to: students work better on Monday morning than on Friday afternoon (IV=Day, DV= Standard of work).

Now, if we decide to study this by giving the same group of students a lesson on a Monday morning and a Friday afternoon and then measuring their immediate recall of the material covered in each session, we would end up with the following:

  • The alternative hypothesis states that students will recall significantly more information on a Monday morning than on a Friday afternoon.
  • The null hypothesis states that there will be no significant difference in the amount recalled on a Monday morning compared to a Friday afternoon. Any difference will be due to chance or confounding factors.

More Examples

  • Memory : Participants exposed to classical music during study sessions will recall more items from a list than those who studied in silence.
  • Social Psychology : Individuals who frequently engage in social media use will report higher levels of perceived social isolation compared to those who use it infrequently.
  • Developmental Psychology : Children who engage in regular imaginative play have better problem-solving skills than those who don’t.
  • Clinical Psychology : Cognitive-behavioral therapy will be more effective in reducing symptoms of anxiety over a 6-month period compared to traditional talk therapy.
  • Cognitive Psychology : Individuals who multitask between various electronic devices will have shorter attention spans on focused tasks than those who single-task.
  • Health Psychology : Patients who practice mindfulness meditation will experience lower levels of chronic pain compared to those who don’t meditate.
  • Organizational Psychology : Employees in open-plan offices will report higher levels of stress than those in private offices.
  • Behavioral Psychology : Rats rewarded with food after pressing a lever will press it more frequently than rats who receive no reward.

example of alternative hypothesis in research paper

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Social Sci LibreTexts

11.2: Null and Alternative Hypotheses

  • Last updated
  • Save as PDF
  • Page ID 19098

The actual test begins by considering two hypotheses. They are called the null hypothesis and the alternative hypothesis. These hypotheses contain opposing viewpoints.

  • The null hypothesis (\(H_{0}\)) is a statement about the population that either is believed to be true or is used to put forth an argument unless it can be shown to be incorrect beyond a reasonable doubt.
  • The alternative hypothesis (\(H_{a}\)) is a claim about the population that is contradictory to \(H_{0}\) and what we conclude when we reject \(H_{0}\).

Since the null and alternative hypotheses are contradictory, you must examine evidence to decide if you have enough evidence to reject the null hypothesis or not. The evidence is in the form of sample data. After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_{0}\)" if the sample information favors the alternative hypothesis or "do not reject \(H_{0}\)" or "decline to reject \(H_{0}\)" if the sample information is insufficient to reject the null hypothesis.

\(H_{0}\) always has a symbol with an equal in it. \(H_{a}\) never has a symbol with an equal in it. The choice of symbol depends on the wording of the hypothesis test. However, be aware that many researchers (including one of the co-authors in research work) use = in the null hypothesis, even with > or < as the symbol in the alternative hypothesis. This practice is acceptable because we only make the decision to reject or not reject the null hypothesis.

Example \(\PageIndex{1}\)

  • \(H_{0}\): No more than 30% of the registered voters in Santa Clara County voted in the primary election. \(p \leq 30\)
  • \(H_{a}\): More than 30% of the registered voters in Santa Clara County voted in the primary election. \(p > 30\)

Exercise \(\PageIndex{1}\)

A medical trial is conducted to test whether or not a new medicine reduces cholesterol by 25%. State the null and alternative hypotheses.

  • \(H_{0}\): The drug reduces cholesterol by 25%. \(p = 0.25\)
  • \(H_{a}\): The drug does not reduce cholesterol by 25%. \(p \neq 0.25\)

Example \(\PageIndex{2}\)

We want to test whether the mean GPA of students in American colleges is different from 2.0 (out of 4.0). The null and alternative hypotheses are:

  • \(H_{0}: \mu = 2.0\)
  • \(H_{a}: \mu \neq 2.0\)

Exercise \(\PageIndex{2}\)

We want to test whether the mean height of eighth graders is 66 inches. State the null and alternative hypotheses. Fill in the correct symbol \((=, \neq, \geq, <, \leq, >)\) for the null and alternative hypotheses.

  • \(H_{0}: \mu_ 66\)
  • \(H_{a}: \mu_ 66\)
  • \(H_{0}: \mu = 66\)
  • \(H_{a}: \mu \neq 66\)

Example \(\PageIndex{3}\)

We want to test if college students take less than five years to graduate from college, on the average. The null and alternative hypotheses are:

  • \(H_{0}: \mu \geq 66\)
  • \(H_{a}: \mu < 66\)

Exercise \(\PageIndex{3}\)

We want to test if it takes fewer than 45 minutes to teach a lesson plan. State the null and alternative hypotheses. Fill in the correct symbol ( =, ≠, ≥, <, ≤, >) for the null and alternative hypotheses.

  • \(H_{0}: \mu_ 45\)
  • \(H_{a}: \mu_ 45\)
  • \(H_{0}: \mu \geq 45\)
  • \(H_{a}: \mu < 45\)

Example \(\PageIndex{4}\)

In an issue of U. S. News and World Report , an article on school standards stated that about half of all students in France, Germany, and Israel take advanced placement exams and a third pass. The same article stated that 6.6% of U.S. students take advanced placement exams and 4.4% pass. Test if the percentage of U.S. students who take advanced placement exams is more than 6.6%. State the null and alternative hypotheses.

  • \(H_{0}: p \leq 0.066\)
  • \(H_{a}: p > 0.066\)

Exercise \(\PageIndex{4}\)

On a state driver’s test, about 40% pass the test on the first try. We want to test if more than 40% pass on the first try. Fill in the correct symbol (\(=, \neq, \geq, <, \leq, >\)) for the null and alternative hypotheses.

  • \(H_{0}: p_ 0.40\)
  • \(H_{a}: p_ 0.40\)
  • \(H_{0}: p = 0.40\)
  • \(H_{a}: p > 0.40\)

COLLABORATIVE EXERCISE

Bring to class a newspaper, some news magazines, and some Internet articles . In groups, find articles from which your group can write null and alternative hypotheses. Discuss your hypotheses with the rest of the class.

Chapter Review

In a hypothesis test , sample data is evaluated in order to arrive at a decision about some type of claim. If certain conditions about the sample are satisfied, then the claim can be evaluated for a population. In a hypothesis test, we:

  • Evaluate the null hypothesis , typically denoted with \(H_{0}\). The null is not rejected unless the hypothesis test shows otherwise. The null statement must always contain some form of equality \((=, \leq \text{or} \geq)\)
  • Always write the alternative hypothesis , typically denoted with \(H_{a}\) or \(H_{1}\), using less than, greater than, or not equals symbols, i.e., \((\neq, >, \text{or} <)\).
  • If we reject the null hypothesis, then we can assume there is enough evidence to support the alternative hypothesis.
  • Never state that a claim is proven true or false. Keep in mind the underlying fact that hypothesis testing is based on probability laws; therefore, we can talk only in terms of non-absolute certainties.

Formula Review

\(H_{0}\) and \(H_{a}\) are contradictory.

  • If \(\alpha \leq p\)-value, then do not reject \(H_{0}\).
  • If\(\alpha > p\)-value, then reject \(H_{0}\).

\(\alpha\) is preconceived. Its value is set before the hypothesis test starts. The \(p\)-value is calculated from the data.References

Data from the National Institute of Mental Health. Available online at http://www.nimh.nih.gov/publicat/depression.cfm .

Contributors

  • Template:ContribOpenStax

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

AP®︎/College Statistics

Course: ap®︎/college statistics   >   unit 10.

  • Idea behind hypothesis testing

Examples of null and alternative hypotheses

  • Writing null and alternative hypotheses
  • P-values and significance tests
  • Comparing P-values to different significance levels
  • Estimating a P-value from a simulation
  • Estimating P-values from simulations
  • Using P-values to make conclusions

Want to join the conversation?

  • Upvote Button navigates to signup page
  • Downvote Button navigates to signup page
  • Flag Button navigates to signup page

Good Answer

Video transcript

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Format, Examples, and Tips

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

example of alternative hypothesis in research paper

Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk,  "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.

example of alternative hypothesis in research paper

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis, operational definitions, types of hypotheses, hypotheses examples.

  • Collecting Data

Frequently Asked Questions

A hypothesis is a tentative statement about the relationship between two or more  variables. It is a specific, testable prediction about what you expect to happen in a study.

One hypothesis example would be a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. It is only at this point that researchers begin to develop a testable hypothesis. Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore a number of factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk wisdom that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis.   In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in a number of different ways. One of the basic principles of any type of scientific research is that the results must be replicable.   By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. How would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

In order to measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming other people. In this situation, the researcher might utilize a simulated task to measure aggressiveness.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests that there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type of hypothesis suggests a relationship between three or more variables, such as two independent variables and a dependent variable.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative sample of the population and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • Complex hypothesis: "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "Children who receive a new reading intervention will have scores different than students who do not receive the intervention."
  • "There will be no difference in scores on a memory recall task between children and adults."

Examples of an alternative hypothesis:

  • "Children who receive a new reading intervention will perform better than students who did not receive the intervention."
  • "Adults will perform better on a memory task than children." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when it would be impossible or difficult to  conduct an experiment . These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a correlational study can then be used to look at how the variables are related. This type of research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

A Word From Verywell

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Some examples of how to write a hypothesis include:

  • "Staying up late will lead to worse test performance the next day."
  • "People who consume one apple each day will visit the doctor fewer times each year."
  • "Breaking study sessions up into three 20-minute sessions will lead to better test results than a single 60-minute study session."

The four parts of a hypothesis are:

  • The research question
  • The independent variable (IV)
  • The dependent variable (DV)
  • The proposed relationship between the IV and DV

Castillo M. The scientific method: a need for something better? . AJNR Am J Neuroradiol. 2013;34(9):1669-71. doi:10.3174/ajnr.A3401

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Math Article

Alternative Hypothesis

Alternative hypothesis defines there is a statistically important relationship between two variables. Whereas null hypothesis states there is no statistical relationship between the two variables. In statistics, we usually come across various kinds of hypotheses. A statistical hypothesis is supposed to be a working statement which is assumed to be logical with given data. It should be noticed that a hypothesis is neither considered true nor false.

The alternative hypothesis is a statement used in statistical inference experiment. It is contradictory to the null hypothesis and denoted by H a or H 1 . We can also say that it is simply an alternative to the null. In hypothesis testing, an alternative theory is a statement which a researcher is testing. This statement is true from the researcher’s point of view and ultimately proves to reject the null to replace it with an alternative assumption. In this hypothesis, the difference between two or more variables is predicted by the researchers, such that the pattern of data observed in the test is not due to chance.

To check the water quality of a river for one year, the researchers are doing the observation. As per the null hypothesis, there is no change in water quality in the first half of the year as compared to the second half. But in the alternative hypothesis, the quality of water is poor in the second half when observed.

Difference Between Null and Alternative Hypothesis

Basically, there are three types of the alternative hypothesis, they are;

Left-Tailed : Here, it is expected that the sample proportion (π) is less than a specified value which is denoted by π 0 , such that;

H 1 : π < π 0

Right-Tailed: It represents that the sample proportion (π) is greater than some value, denoted by π 0 .

H 1 : π > π 0

Two-Tailed: According to this hypothesis, the sample proportion (denoted by π) is not equal to a specific value which is represented by π 0 .

H 1 : π ≠ π 0

Note: The null hypothesis for all the three alternative hypotheses, would be H 1 : π = π 0 .

example of alternative hypothesis in research paper

  • Share Share

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

close

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.34(45); 2019 Nov 25

Logo of jkms

Scientific Hypotheses: Writing, Promoting, and Predicting Implications

Armen yuri gasparyan.

1 Departments of Rheumatology and Research and Development, Dudley Group NHS Foundation Trust (Teaching Trust of the University of Birmingham, UK), Russells Hall Hospital, Dudley, West Midlands, UK.

Lilit Ayvazyan

2 Department of Medical Chemistry, Yerevan State Medical University, Yerevan, Armenia.

Ulzhan Mukanova

3 Department of Surgical Disciplines, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

Marlen Yessirkepov

4 Department of Biology and Biochemistry, South Kazakhstan Medical Academy, Shymkent, Kazakhstan.

George D. Kitas

5 Arthritis Research UK Epidemiology Unit, University of Manchester, Manchester, UK.

Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential benefits and limitations of their suggestions and target widely visible publication outlets to ignite discussion by experts and start testing the hypotheses. Not many publication outlets are currently welcoming hypotheses and unconventional ideas that may open gates to criticism and conservative remarks. A few scholarly journals guide the authors on how to structure hypotheses. Reflecting on general and specific issues around the subject matter is often recommended for drafting a well-structured hypothesis article. An analysis of influential hypotheses, presented in this article, particularly Strachan's hygiene hypothesis with global implications in the field of immunology and allergy, points to the need for properly interpreting and testing new suggestions. Envisaging the ethical implications of the hypotheses should be considered both by authors and journal editors during the writing and publishing process.

INTRODUCTION

We live in times of digitization that radically changes scientific research, reporting, and publishing strategies. Researchers all over the world are overwhelmed with processing large volumes of information and searching through numerous online platforms, all of which make the whole process of scholarly analysis and synthesis complex and sophisticated.

Current research activities are diversifying to combine scientific observations with analysis of facts recorded by scholars from various professional backgrounds. 1 Citation analyses and networking on social media are also becoming essential for shaping research and publishing strategies globally. 2 Learning specifics of increasingly interdisciplinary research studies and acquiring information facilitation skills aid researchers in formulating innovative ideas and predicting developments in interrelated scientific fields.

Arguably, researchers are currently offered more opportunities than in the past for generating new ideas by performing their routine laboratory activities, observing individual cases and unusual developments, and critically analyzing published scientific facts. What they need at the start of their research is to formulate a scientific hypothesis that revisits conventional theories, real-world processes, and related evidence to propose new studies and test ideas in an ethical way. 3 Such a hypothesis can be of most benefit if published in an ethical journal with wide visibility and exposure to relevant online databases and promotion platforms.

Although hypotheses are crucially important for the scientific progress, only few highly skilled researchers formulate and eventually publish their innovative ideas per se . Understandably, in an increasingly competitive research environment, most authors would prefer to prioritize their ideas by discussing and conducting tests in their own laboratories or clinical departments, and publishing research reports afterwards. However, there are instances when simple observations and research studies in a single center are not capable of explaining and testing new groundbreaking ideas. Formulating hypothesis articles first and calling for multicenter and interdisciplinary research can be a solution in such instances, potentially launching influential scientific directions, if not academic disciplines.

The aim of this article is to overview the importance and implications of infrequently published scientific hypotheses that may open new avenues of thinking and research.

Despite the seemingly established views on innovative ideas and hypotheses as essential research tools, no structured definition exists to tag the term and systematically track related articles. In 1973, the Medical Subject Heading (MeSH) of the U.S. National Library of Medicine introduced “Research Design” as a structured keyword that referred to the importance of collecting data and properly testing hypotheses, and indirectly linked the term to ethics, methods and standards, among many other subheadings.

One of the experts in the field defines “hypothesis” as a well-argued analysis of available evidence to provide a realistic (scientific) explanation of existing facts, fill gaps in public understanding of sophisticated processes, and propose a new theory or a test. 4 A hypothesis can be proven wrong partially or entirely. However, even such an erroneous hypothesis may influence progress in science by initiating professional debates that help generate more realistic ideas. The main ethical requirement for hypothesis authors is to be honest about the limitations of their suggestions. 5

EXAMPLES OF INFLUENTIAL SCIENTIFIC HYPOTHESES

Daily routine in a research laboratory may lead to groundbreaking discoveries provided the daily accounts are comprehensively analyzed and reproduced by peers. The discovery of penicillin by Sir Alexander Fleming (1928) can be viewed as a prime example of such discoveries that introduced therapies to treat staphylococcal and streptococcal infections and modulate blood coagulation. 6 , 7 Penicillin got worldwide recognition due to the inventor's seminal works published by highly prestigious and widely visible British journals, effective ‘real-world’ antibiotic therapy of pneumonia and wounds during World War II, and euphoric media coverage. 8 In 1945, Fleming, Florey and Chain got a much deserved Nobel Prize in Physiology or Medicine for the discovery that led to the mass production of the wonder drug in the U.S. and ‘real-world practice’ that tested the use of penicillin. What remained globally unnoticed is that Zinaida Yermolyeva, the outstanding Soviet microbiologist, created the Soviet penicillin, which turned out to be more effective than the Anglo-American penicillin and entered mass production in 1943; that year marked the turning of the tide of the Great Patriotic War. 9 One of the reasons of the widely unnoticed discovery of Zinaida Yermolyeva is that her works were published exclusively by local Russian (Soviet) journals.

The past decades have been marked by an unprecedented growth of multicenter and global research studies involving hundreds and thousands of human subjects. This trend is shaped by an increasing number of reports on clinical trials and large cohort studies that create a strong evidence base for practice recommendations. Mega-studies may help generate and test large-scale hypotheses aiming to solve health issues globally. Properly designed epidemiological studies, for example, may introduce clarity to the hygiene hypothesis that was originally proposed by David Strachan in 1989. 10 David Strachan studied the epidemiology of hay fever in a cohort of 17,414 British children and concluded that declining family size and improved personal hygiene had reduced the chances of cross infections in families, resulting in epidemics of atopic disease in post-industrial Britain. Over the past four decades, several related hypotheses have been proposed to expand the potential role of symbiotic microorganisms and parasites in the development of human physiological immune responses early in life and protection from allergic and autoimmune diseases later on. 11 , 12 Given the popularity and the scientific importance of the hygiene hypothesis, it was introduced as a MeSH term in 2012. 13

Hypotheses can be proposed based on an analysis of recorded historic events that resulted in mass migrations and spreading of certain genetic diseases. As a prime example, familial Mediterranean fever (FMF), the prototype periodic fever syndrome, is believed to spread from Mesopotamia to the Mediterranean region and all over Europe due to migrations and religious prosecutions millennia ago. 14 Genetic mutations spearing mild clinical forms of FMF are hypothesized to emerge and persist in the Mediterranean region as protective factors against more serious infectious diseases, particularly tuberculosis, historically common in that part of the world. 15 The speculations over the advantages of carrying the MEditerranean FeVer (MEFV) gene are further strengthened by recorded low mortality rates from tuberculosis among FMF patients of different nationalities living in Tunisia in the first half of the 20th century. 16

Diagnostic hypotheses shedding light on peculiarities of diseases throughout the history of mankind can be formulated using artefacts, particularly historic paintings. 17 Such paintings may reveal joint deformities and disfigurements due to rheumatic diseases in individual subjects. A series of paintings with similar signs of pathological conditions interpreted in a historic context may uncover mysteries of epidemics of certain diseases, which is the case with Ruben's paintings depicting signs of rheumatic hands and making some doctors to believe that rheumatoid arthritis was common in Europe in the 16th and 17th century. 18

WRITING SCIENTIFIC HYPOTHESES

There are author instructions of a few journals that specifically guide how to structure, format, and make submissions categorized as hypotheses attractive. One of the examples is presented by Med Hypotheses , the flagship journal in its field with more than four decades of publishing and influencing hypothesis authors globally. However, such guidance is not based on widely discussed, implemented, and approved reporting standards, which are becoming mandatory for all scholarly journals.

Generating new ideas and scientific hypotheses is a sophisticated task since not all researchers and authors are skilled to plan, conduct, and interpret various research studies. Some experience with formulating focused research questions and strong working hypotheses of original research studies is definitely helpful for advancing critical appraisal skills. However, aspiring authors of scientific hypotheses may need something different, which is more related to discerning scientific facts, pooling homogenous data from primary research works, and synthesizing new information in a systematic way by analyzing similar sets of articles. To some extent, this activity is reminiscent of writing narrative and systematic reviews. As in the case of reviews, scientific hypotheses need to be formulated on the basis of comprehensive search strategies to retrieve all available studies on the topics of interest and then synthesize new information selectively referring to the most relevant items. One of the main differences between scientific hypothesis and review articles relates to the volume of supportive literature sources ( Table 1 ). In fact, hypothesis is usually formulated by referring to a few scientific facts or compelling evidence derived from a handful of literature sources. 19 By contrast, reviews require analyses of a large number of published documents retrieved from several well-organized and evidence-based databases in accordance with predefined search strategies. 20 , 21 , 22

The format of hypotheses, especially the implications part, may vary widely across disciplines. Clinicians may limit their suggestions to the clinical manifestations of diseases, outcomes, and management strategies. Basic and laboratory scientists analysing genetic, molecular, and biochemical mechanisms may need to view beyond the frames of their narrow fields and predict social and population-based implications of the proposed ideas. 23

Advanced writing skills are essential for presenting an interesting theoretical article which appeals to the global readership. Merely listing opposing facts and ideas, without proper interpretation and analysis, may distract the experienced readers. The essence of a great hypothesis is a story behind the scientific facts and evidence-based data.

ETHICAL IMPLICATIONS

The authors of hypotheses substantiate their arguments by referring to and discerning rational points from published articles that might be overlooked by others. Their arguments may contradict the established theories and practices, and pose global ethical issues, particularly when more or less efficient medical technologies and public health interventions are devalued. The ethical issues may arise primarily because of the careless references to articles with low priorities, inadequate and apparently unethical methodologies, and concealed reporting of negative results. 24 , 25

Misinterpretation and misunderstanding of the published ideas and scientific hypotheses may complicate the issue further. For example, Alexander Fleming, whose innovative ideas of penicillin use to kill susceptible bacteria saved millions of lives, warned of the consequences of uncontrolled prescription of the drug. The issue of antibiotic resistance had emerged within the first ten years of penicillin use on a global scale due to the overprescription that affected the efficacy of antibiotic therapies, with undesirable consequences for millions. 26

The misunderstanding of the hygiene hypothesis that primarily aimed to shed light on the role of the microbiome in allergic and autoimmune diseases resulted in decline of public confidence in hygiene with dire societal implications, forcing some experts to abandon the original idea. 27 , 28 Although that hypothesis is unrelated to the issue of vaccinations, the public misunderstanding has resulted in decline of vaccinations at a time of upsurge of old and new infections.

A number of ethical issues are posed by the denial of the viral (human immunodeficiency viruses; HIV) hypothesis of acquired Immune deficiency Syndrome (AIDS) by Peter Duesberg, who overviewed the links between illicit recreational drugs and antiretroviral therapies with AIDS and refuted the etiological role of HIV. 29 That controversial hypothesis was rejected by several journals, but was eventually published without external peer review at Med Hypotheses in 2010. The publication itself raised concerns of the unconventional editorial policy of the journal, causing major perturbations and more scrutinized publishing policies by journals processing hypotheses.

WHERE TO PUBLISH HYPOTHESES

Although scientific authors are currently well informed and equipped with search tools to draft evidence-based hypotheses, there are still limited quality publication outlets calling for related articles. The journal editors may be hesitant to publish articles that do not adhere to any research reporting guidelines and open gates for harsh criticism of unconventional and untested ideas. Occasionally, the editors opting for open-access publishing and upgrading their ethics regulations launch a section to selectively publish scientific hypotheses attractive to the experienced readers. 30 However, the absence of approved standards for this article type, particularly no mandate for outlining potential ethical implications, may lead to publication of potentially harmful ideas in an attractive format.

A suggestion of simultaneously publishing multiple or alternative hypotheses to balance the reader views and feedback is a potential solution for the mainstream scholarly journals. 31 However, that option alone is hardly applicable to emerging journals with unconventional quality checks and peer review, accumulating papers with multiple rejections by established journals.

A large group of experts view hypotheses with improbable and controversial ideas publishable after formal editorial (in-house) checks to preserve the authors' genuine ideas and avoid conservative amendments imposed by external peer reviewers. 32 That approach may be acceptable for established publishers with large teams of experienced editors. However, the same approach can lead to dire consequences if employed by nonselective start-up, open-access journals processing all types of articles and primarily accepting those with charged publication fees. 33 In fact, pseudoscientific ideas arguing Newton's and Einstein's seminal works or those denying climate change that are hardly testable have already found their niche in substandard electronic journals with soft or nonexistent peer review. 34

CITATIONS AND SOCIAL MEDIA ATTENTION

The available preliminary evidence points to the attractiveness of hypothesis articles for readers, particularly those from research-intensive countries who actively download related documents. 35 However, citations of such articles are disproportionately low. Only a small proportion of top-downloaded hypotheses (13%) in the highly prestigious Med Hypotheses receive on average 5 citations per article within a two-year window. 36

With the exception of a few historic papers, the vast majority of hypotheses attract relatively small number of citations in a long term. 36 Plausible explanations are that these articles often contain a single or only a few citable points and that suggested research studies to test hypotheses are rarely conducted and reported, limiting chances of citing and crediting authors of genuine research ideas.

A snapshot analysis of citation activity of hypothesis articles may reveal interest of the global scientific community towards their implications across various disciplines and countries. As a prime example, Strachan's hygiene hypothesis, published in 1989, 10 is still attracting numerous citations on Scopus, the largest bibliographic database. As of August 28, 2019, the number of the linked citations in the database is 3,201. Of the citing articles, 160 are cited at least 160 times ( h -index of this research topic = 160). The first three citations are recorded in 1992 and followed by a rapid annual increase in citation activity and a peak of 212 in 2015 ( Fig. 1 ). The top 5 sources of the citations are Clin Exp Allergy (n = 136), J Allergy Clin Immunol (n = 119), Allergy (n = 81), Pediatr Allergy Immunol (n = 69), and PLOS One (n = 44). The top 5 citing authors are leading experts in pediatrics and allergology Erika von Mutius (Munich, Germany, number of publications with the index citation = 30), Erika Isolauri (Turku, Finland, n = 27), Patrick G Holt (Subiaco, Australia, n = 25), David P. Strachan (London, UK, n = 23), and Bengt Björksten (Stockholm, Sweden, n = 22). The U.S. is the leading country in terms of citation activity with 809 related documents, followed by the UK (n = 494), Germany (n = 314), Australia (n = 211), and the Netherlands (n = 177). The largest proportion of citing documents are articles (n = 1,726, 54%), followed by reviews (n = 950, 29.7%), and book chapters (n = 213, 6.7%). The main subject areas of the citing items are medicine (n = 2,581, 51.7%), immunology and microbiology (n = 1,179, 23.6%), and biochemistry, genetics and molecular biology (n = 415, 8.3%).

An external file that holds a picture, illustration, etc.
Object name is jkms-34-e300-g001.jpg

Interestingly, a recent analysis of 111 publications related to Strachan's hygiene hypothesis, stating that the lack of exposure to infections in early life increases the risk of rhinitis, revealed a selection bias of 5,551 citations on Web of Science. 37 The articles supportive of the hypothesis were cited more than nonsupportive ones (odds ratio adjusted for study design, 2.2; 95% confidence interval, 1.6–3.1). A similar conclusion pointing to a citation bias distorting bibliometrics of hypotheses was reached by an earlier analysis of a citation network linked to the idea that β-amyloid, which is involved in the pathogenesis of Alzheimer disease, is produced by skeletal muscle of patients with inclusion body myositis. 38 The results of both studies are in line with the notion that ‘positive’ citations are more frequent in the field of biomedicine than ‘negative’ ones, and that citations to articles with proven hypotheses are too common. 39

Social media channels are playing an increasingly active role in the generation and evaluation of scientific hypotheses. In fact, publicly discussing research questions on platforms of news outlets, such as Reddit, may shape hypotheses on health-related issues of global importance, such as obesity. 40 Analyzing Twitter comments, researchers may reveal both potentially valuable ideas and unfounded claims that surround groundbreaking research ideas. 41 Social media activities, however, are unevenly distributed across different research topics, journals and countries, and these are not always objective professional reflections of the breakthroughs in science. 2 , 42

Scientific hypotheses are essential for progress in science and advances in healthcare. Innovative ideas should be based on a critical overview of related scientific facts and evidence-based data, often overlooked by others. To generate realistic hypothetical theories, the authors should comprehensively analyze the literature and suggest relevant and ethically sound design for future studies. They should also consider their hypotheses in the context of research and publication ethics norms acceptable for their target journals. The journal editors aiming to diversify their portfolio by maintaining and introducing hypotheses section are in a position to upgrade guidelines for related articles by pointing to general and specific analyses of the subject, preferred study designs to test hypotheses, and ethical implications. The latter is closely related to specifics of hypotheses. For example, editorial recommendations to outline benefits and risks of a new laboratory test or therapy may result in a more balanced article and minimize associated risks afterwards.

Not all scientific hypotheses have immediate positive effects. Some, if not most, are never tested in properly designed research studies and never cited in credible and indexed publication outlets. Hypotheses in specialized scientific fields, particularly those hardly understandable for nonexperts, lose their attractiveness for increasingly interdisciplinary audience. The authors' honest analysis of the benefits and limitations of their hypotheses and concerted efforts of all stakeholders in science communication to initiate public discussion on widely visible platforms and social media may reveal rational points and caveats of the new ideas.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Gasparyan AY, Yessirkepov M, Kitas GD.
  • Methodology: Gasparyan AY, Mukanova U, Ayvazyan L.
  • Writing - original draft: Gasparyan AY, Ayvazyan L, Yessirkepov M.
  • Writing - review & editing: Gasparyan AY, Yessirkepov M, Mukanova U, Kitas GD.

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • My Account Login
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 19 March 2024

TacticAI: an AI assistant for football tactics

  • Zhe Wang   ORCID: orcid.org/0000-0002-0748-5376 1   na1 ,
  • Petar Veličković   ORCID: orcid.org/0000-0002-2820-4692 1   na1 ,
  • Daniel Hennes   ORCID: orcid.org/0000-0002-3646-5286 1   na1 ,
  • Nenad Tomašev   ORCID: orcid.org/0000-0003-1624-0220 1 ,
  • Laurel Prince 1 ,
  • Michael Kaisers 1 ,
  • Yoram Bachrach 1 ,
  • Romuald Elie 1 ,
  • Li Kevin Wenliang 1 ,
  • Federico Piccinini 1 ,
  • William Spearman 2 ,
  • Ian Graham 3 ,
  • Jerome Connor 1 ,
  • Yi Yang 1 ,
  • Adrià Recasens 1 ,
  • Mina Khan 1 ,
  • Nathalie Beauguerlange 1 ,
  • Pablo Sprechmann 1 ,
  • Pol Moreno 1 ,
  • Nicolas Heess   ORCID: orcid.org/0000-0001-7876-9256 1 ,
  • Michael Bowling   ORCID: orcid.org/0000-0003-2960-8418 4 ,
  • Demis Hassabis 1 &
  • Karl Tuyls   ORCID: orcid.org/0000-0001-7929-1944 5  

Nature Communications volume  15 , Article number:  1906 ( 2024 ) Cite this article

26k Accesses

255 Altmetric

Metrics details

  • Computational science
  • Information technology

Identifying key patterns of tactics implemented by rival teams, and developing effective responses, lies at the heart of modern football. However, doing so algorithmically remains an open research challenge. To address this unmet need, we propose TacticAI, an AI football tactics assistant developed and evaluated in close collaboration with domain experts from Liverpool FC. We focus on analysing corner kicks, as they offer coaches the most direct opportunities for interventions and improvements. TacticAI incorporates both a predictive and a generative component, allowing the coaches to effectively sample and explore alternative player setups for each corner kick routine and to select those with the highest predicted likelihood of success. We validate TacticAI on a number of relevant benchmark tasks: predicting receivers and shot attempts and recommending player position adjustments. The utility of TacticAI is validated by a qualitative study conducted with football domain experts at Liverpool FC. We show that TacticAI’s model suggestions are not only indistinguishable from real tactics, but also favoured over existing tactics 90% of the time, and that TacticAI offers an effective corner kick retrieval system. TacticAI achieves these results despite the limited availability of gold-standard data, achieving data efficiency through geometric deep learning.

Similar content being viewed by others

example of alternative hypothesis in research paper

Artificial intelligence and illusions of understanding in scientific research

Lisa Messeri & M. J. Crockett

example of alternative hypothesis in research paper

Highly accurate protein structure prediction with AlphaFold

John Jumper, Richard Evans, … Demis Hassabis

example of alternative hypothesis in research paper

De novo design of protein structure and function with RFdiffusion

Joseph L. Watson, David Juergens, … David Baker

Introduction

Association football, or simply football or soccer, is a widely popular and highly professionalised sport, in which two teams compete to score goals against each other. As each football team comprises up to 11 active players at all times and takes place on a very large pitch (also known as a soccer field), scoring goals tends to require a significant degree of strategic team-play. Under the rules codified in the Laws of the Game 1 , this competition has nurtured an evolution of nuanced strategies and tactics, culminating in modern professional football leagues. In today’s play, data-driven insights are a key driver in determining the optimal player setups for each game and developing counter-tactics to maximise the chances of success 2 .

When competing at the highest level the margins are incredibly tight, and it is increasingly important to be able to capitalise on any opportunity for creating an advantage on the pitch. To that end, top-tier clubs employ diverse teams of coaches, analysts and experts, tasked with studying and devising (counter-)tactics before each game. Several recent methods attempt to improve tactical coaching and player decision-making through artificial intelligence (AI) tools, using a wide variety of data types from videos to tracking sensors and applying diverse algorithms ranging from simple logistic regression to elaborate neural network architectures. Such methods have been employed to help predict shot events from videos 3 , forecast off-screen movement from spatio-temporal data 4 , determine whether a match is in-play or interrupted 5 , or identify player actions 6 .

The execution of agreed-upon plans by players on the pitch is highly dynamic and imperfect, depending on numerous factors including player fitness and fatigue, variations in player movement and positioning, weather, the state of the pitch, and the reaction of the opposing team. In contrast, set pieces provide an opportunity to exert more control on the outcome, as the brief interruption in play allows the players to reposition according to one of the practiced and pre-agreed patterns, and make a deliberate attempt towards the goal. Examples of such set pieces include free kicks, corner kicks, goal kicks, throw-ins, and penalties 2 .

Among set pieces, corner kicks are of particular importance, as an improvement in corner kick execution may substantially modify game outcomes, and they lend themselves to principled, tactical and detailed analysis. This is because corner kicks tend to occur frequently in football matches (with ~10 corners on average taking place in each match 7 ), they are taken from a fixed, rigid position, and they offer an immediate opportunity for scoring a goal—no other set piece simultaneously satisfies all of the above. In practice, corner kick routines are determined well ahead of each match, taking into account the strengths and weaknesses of the opposing team and their typical tactical deployment. It is for this reason that we focus on corner kick analysis in particular, and propose TacticAI, an AI football assistant for supporting the human expert with set piece analysis, and the development and improvement of corner kick routines.

TacticAI is rooted in learning efficient representations of corner kick tactics from raw, spatio-temporal player tracking data. It makes efficient use of this data by representing each corner kick situation as a graph—a natural representation for modelling relationships between players (Fig.  1 A, Table  2 ), and these player relationships may be of higher importance than the absolute distances between them on the pitch 8 . Such a graph input is a natural candidate for graph machine learning models 9 , which we employ within TacticAI to obtain high-dimensional latent player representations. In the Supplementary Discussion section, we carefully contrast TacticAI against prior art in the area.

figure 1

A How corner kick situations are converted to a graph representation. Each player is treated as a node in a graph, with node, edge and graph features extracted as detailed in the main text. Then, a graph neural network operates over this graph by performing message passing; each node’s representation is updated using the messages sent to it from its neighbouring nodes. B How TacticAI processes a given corner kick. To ensure that TacticAI’s answers are robust in the face of horizontal or vertical reflections, all possible combinations of reflections are applied to the input corner, and these four views are then fed to the core TacticAI model, where they are able to interact with each other to compute the final player representations—each internal blue arrow corresponds to a single message passing layer from ( A ). Once player representations are computed, they can be used to predict the corner’s receiver, whether a shot has been taken, as well as assistive adjustments to player positions and velocities, which increase or decrease the probability of a shot being taken.

Uniquely, TacticAI takes advantage of geometric deep learning 10 to explicitly produce player representations that respect several symmetries of the football pitch (Fig.  1 B). As an illustrative example, we can usually safely assume that under a horizontal or vertical reflection of the pitch state, the game situation is equivalent. Geometric deep learning ensures that TacticAI’s player representations will be identically computed under such reflections, such that this symmetry does not have to be learnt from data. This proves to be a valuable addition, as high-quality tracking data is often limited—with only a few hundred matches played each year in every league. We provide an in-depth overview of how we employ geometric deep learning in TacticAI in the “Methods” section.

From these representations, TacticAI is then able to answer various predictive questions about the outcomes of a corner—for example, which player is most likely to make first contact with the ball, or whether a shot will take place. TacticAI can also be used as a retrieval system—for mining similar corner kick situations based on the similarity of player representations—and a generative recommendation system, suggesting adjustments to player positions and velocities to maximise or minimise the estimated shot probability. Through several experiments within a case study with domain expert coaches and analysts from Liverpool FC, the results of which we present in the next section, we obtain clear statistical evidence that TacticAI readily provides useful, realistic and accurate tactical suggestions.

To demonstrate the diverse qualities of our approach, we design TacticAI with three distinct predictive and generative components: receiver prediction, shot prediction, and tactic recommendation through guided generation, which also correspond to the benchmark tasks for quantitatively evaluating TacticAI. In addition to providing accurate quantitative insights for corner kick analysis with its predictive components, the interplay between TacticAI’s predictive and generative components allows coaches to sample alternative player setups for each routine of interest, and directly evaluate the possible outcomes of such alternatives.

We will first describe our quantitative analysis, which demonstrates that TacticAI’s predictive components are accurate at predicting corner kick receivers and shot situations on held-out test corners and that the proposed player adjustments do not strongly deviate from ground-truth situations. However, such an analysis only gives an indirect insight into how useful TacticAI would be once deployed. We tackle this question of utility head-on and conduct a comprehensive case study in collaboration with our partners at Liverpool FC—where we directly ask human expert raters to judge the utility of TacticAI’s predictions and player adjustments. The following sections expand on the specific results and analysis we have performed.

In what follows, we will describe TacticAI’s components at a minimal level necessary to understand our evaluation. We defer detailed descriptions of TacticAI’s components to the “Methods” section. Note that, all our error bars reported in this research are standard deviations.

Benchmarking TacticAI

We evaluate the three components of TacticAI on a relevant benchmark dataset of corner kicks. Our dataset consists of 7176 corner kicks from the 2020 to 2021 Premier League seasons, which we randomly shuffle and split into a training (80%) and a test set (20%). As previously mentioned, TacticAI operates on graphs. Accordingly, we represent each corner kick situation as a graph, where each node corresponds to a player. The features associated with each node encode the movements (velocities and positions) and simple profiles (heights and weights) of on-pitch players at the timestamp when the corresponding corner kick was being taken by the attacking kicker (see the “Methods” section), and no information of ball movement was encoded. The graphs are fully connected; that is, for every pair of players, we will include the edge connecting them in the graph. Each of these edges encodes a binary feature, indicating whether the two players are on opposing teams or not. For each task, we generated the relevant dataset of node/edge/graph features and corresponding labels (Tables  1 and 2 , see the “Methods” section). The components were then trained separately with their corresponding corner kick graphs. In particular, we only employ a minimal set of features to construct the corner kick graphs, without encoding the movements of the ball nor explicitly encoding the distances between players into the graphs. We used a consistent training-test split for all benchmark tasks, as this made it possible to benchmark not only the individual components but also their interactions.

Accurate receiver and shot prediction through geometric deep learning

One of TacticAI’s key predictive models forecasts the receiver out of the 22 on-pitch players. The receiver is defined as the first player touching the ball after the corner is taken. In our evaluation, all methods used the same set of features (see the “Receiver prediction” entry in Table  1 and the “Methods” section). We leveraged the receiver prediction task to benchmark several different TacticAI base models. Our best-performing model—achieving 0.782 ± 0.039 in top-3 test accuracy after 50,000 training steps—was a deep graph attention network 11 , 12 , leveraging geometric deep learning 10 through the use of D 2 group convolutions 13 . We supplement this result with a detailed ablation study, verifying that both our choice of base architecture and group convolution yielded significant improvements in the receiver prediction task (Supplementary Table  2 , see the subsection “Ablation study” in the “Methods” section). Considering that corner kick receiver prediction is a highly challenging task with many factors that are unseen by our model—including fatigue and fitness levels, and actual ball trajectory—we consider TacticAI’s top-3 accuracy to reflect a high level of predictive power, and keep the base TacticAI architecture fixed for subsequent studies. In addition to this quantitative evaluation with the evaluation dataset, we also evaluate the performance of TacticAI’s receiver prediction component in a case study with human raters. Please see the “Case study with expert raters” section for more details.

For shot prediction, we observe that reusing the base TacticAI architecture to directly predict shot events—i.e., directly modelling the probability \({\mathbb{P}}(\,{{\mbox{shot}}}| {{\mbox{corner}}}\,)\) —proved challenging, only yielding a test F 1 score of 0.52 ± 0.03, for a GATv2 base model. Note that here we use the F 1 score—the harmonic mean of precision and recall—as it is commonly used in binary classification problems over imbalanced datasets, such as shot prediction. However, given that we already have a potent receiver predictor, we decided to use its output to give us additional insight into whether or not a shot had been taken. Hence, we opted to decompose the probability of taking a shot as

where \({\mathbb{P}}(\,{{\mbox{receiver}}}| {{\mbox{corner}}}\,)\) are the probabilities computed by TacticAI’s receiver prediction system, and \({\mathbb{P}}(\,{{\mbox{shot}}}| {{\mbox{receiver}}},{{\mbox{corner}}}\,)\) models the conditional shot probability after a specific player makes first contact with the ball. This was implemented through providing an additional global feature to indicate the receiver in the corresponding corner kick (Table  1 ) while the architecture otherwise remained the same as that of receiver prediction (Supplementary Fig.  2 , see the “Methods” section). At training time, we feed the ground-truth receiver as input to the model—at inference time, we attempt every possible receiver, weighing their contributions using the probabilities given by TacticAI’s receiver predictor, as per Eq. ( 1 ). This two-phased approach yielded a final test F 1 score of 0.68 ± 0.04 for shot prediction, which encodes significantly more signal than the unconditional shot predictor, especially considering the many unobservables associated with predicting shot events. Just as for receiver prediction, this performance can be further improved using geometric deep learning; a conditional GATv2 shot predictor with D 2 group convolutions achieves an F 1 score of 0.71 ± 0.01.

Moreover, we also observe that, even just through predicting the receivers, without explicitly classifying any other salient features of corners, TacticAI learned generalisable representations of the data. Specifically, team setups with similar tactical patterns tend to cluster together in TacticAI’s latent space (Fig.  2 ). However, no clear clusters are observed in the raw input space (Supplementary Fig.  1 ). This indicates that TacticAI can be leveraged as a useful corner kick retrieval system, and we will present our evaluation of this hypothesis in the “Case study with expert raters” section.

figure 2

We visualise the latent representations of attacking and defending teams in 1024 corner kicks using t -SNE. A latent team embedding in one corner kick sample is the mean of the latent player representations on the same attacking ( A – C ) or defending ( D ) team. Given the reference corner kick sample ( A ), we retrieve another corner kick sample ( B ) with respect to the closest distance of their representations in the latent space. We observe that ( A ) and ( B ) are both out-swing corner kicks and share similar patterns of their attacking tactics, which are highlighted with rectangles having the same colours, although they bear differences with respect to the absolute positions and velocities of the players. All the while, the latent representation of an in-swing attack ( C ) is distant from both ( A ) and ( B ) in the latent space. The red arrows are only used to demonstrate the difference between in- and out-swing corner kicks, not the actual ball trajectories.

Lastly, it is worth emphasising that the utility of the shot predictor likely does not come from forecasting whether a shot event will occur—a challenging problem with many imponderables—but from analysing the difference in predicted shot probability across multiple corners. Indeed, in the following section, we will show how TacticAI’s generative tactic refinements can directly influence the predicted shot probabilities, which will then corresponds to highly favourable evaluation by our expert raters in the “Case study with expert raters” section.

Controlled tactic refinement using class-conditional generative models

Equipped with components that are able to potently relate corner kicks with their various outcomes (e.g. receivers and shot events), we can explore the use of TacticAI to suggest adjustments of tactics, in order to amplify or reduce the likelihood of certain outcomes.

Specifically, we aim to produce adjustments to the movements of players on one of the two teams, including their positions and velocities, which would maximise or minimise the probability of a shot event, conditioned on the initial corner setup, consisting of the movements of players on both teams and their heights and weights. In particular, although in real-world scenarios both teams may react simultaneously to the movements of each other, in our study, we focus on moderate adjustments to player movements, which help to detect players that are not responding to a tactic properly. Due to this reason, we simplify the process of tactic refinement through generating the adjustments for only one team while keeping the other fixed. The way we train a model for this task is through an auto-encoding objective: we feed the ground-truth shot outcome (a binary indicator) as an additional graph-level feature to TacticAI’s model (Table  1 ), and then have it learn to reconstruct a probability distribution of the input player coordinates (Fig.  1 B, also see the “Methods” section). As a consequence, our tactic adjustment system does not depend on the previously discussed shot predictor—although we can use the shot predictor to evaluate whether the adjustments make a measurable difference in shot probability.

This autoencoder-based generative model is an individual component that separates from TacticAI’s predictive systems. All three systems share the encoder architecture (without sharing parameters), but use different decoders (see the “Methods” section). At inference time, we can instead feed in a desired shot outcome for the given corner setup, and then sample new positions and velocities for players on one team using this probability distribution. This setup, in principle, allows for flexible downstream use, as human coaches can optimise corner kick setups through generating adjustments conditioned on the specific outcomes of their interest—e.g., increasing shot probability for the attacking team, decreasing it for the defending team (Fig.  3 ) or amplifying the chance that a particular striker receives the ball.

figure 3

TacticAI makes it possible for human coaches to redesign corner kick tactics in ways that help maximise the probability of a positive outcome for either the attacking or the defending team by identifying key players, as well as by providing temporally coordinated tactic recommendations that take all players into consideration. As demonstrated in the present example ( A ), for a corner kick in which there was a shot attempt in reality ( B ), TacticAI can generate a tactically-adjusted setting in which the shot probability has been reduced, by adjusting the positioning of the defenders ( D ). The suggested defender positions result in reduced receiver probability for attacking players 2–5 (see bottom row), while the receiver probability of Attacker 1, who is distant from the goalpost, has been increased ( C ). The model is capable of generating multiple such scenarios. Coaches can inspect the different options visually and additionally consult TacticAI’s quantitative analysis of the presented tactics.

We first evaluate the generated adjustments quantitatively, by verifying that they are indistinguishable from the original corner kick distribution using a classifier. To do this, we synthesised a dataset consisting of 200 corner kick samples and their corresponding conditionally generated adjustments. Specifically, for corners without a shot event, we generated adjustments for the attacking team by setting the shot event feature to 1, and vice-versa for the defending team when a shot event did happen. We found that the real and generated samples were not distinguishable by an MLP classifier, with an F 1 score of 0.53 ± 0.05, indicating random chance level accuracy. This result indicates that the adjustments produced by TacticAI are likely similar enough to real corner kicks that the MLP is unable to tell them apart. Note that, in spite of this similarity, TacticAI recommends player-level adjustments that are not negligible—in the following section we will illustrate several salient examples of this. To more realistically validate the practical indistinguishability of TacticAI’s adjustments from realistic corners, we also evaluated the realism of the adjustments in a case study with human experts, which we will present in the following section.

In addition, we leveraged our TacticAI shot predictor to estimate whether the proposed adjustments were effective. We did this by analysing 100 corner kick samples in which threatening shots occurred, and then, for each sample, generated one defensive refinement through setting the shot event feature to 0. We observed that the average shot probability significantly decreased, from 0.75 ± 0.14 for ground-truth corners to 0.69 ± 0.16 for adjustments ( z  = 2.62,  p  < 0.001). This observation was consistent when testing for attacking team refinements (shot probability increased from 0.18 ± 0.16 to 0.31 ± 0.26 ( z  = −4.46,  p  < 0.001)). Moving beyond this result, we also asked human raters to assess the utility of TacticAI’s proposed adjustments within our case study, which we detail next.

Case study with expert raters

Although quantitative evaluation with well-defined benchmark datasets was critical for the technical development of TacticAI, the ultimate test of TacticAI as a football tactic assistant is its practical downstream utility being recognised by professionals in the industry. To this end, we evaluated TacticAI through a case study with our partners at Liverpool FC (LFC). Specifically, we invited a group of five football experts: three data scientists, one video analyst, and one coaching assistant. Each of them completed four tasks in the case study, which evaluated the utility of TacticAI’s components from several perspectives; these include (1) the realism of TacticAI’s generated adjustments, (2) the plausibility of TacticAI’s receiver predictions, (3) effectiveness of TacticAI’s embeddings for retrieving similar corners, and (4) usefulness of TacticAI’s recommended adjustments. We provide an overview of our study’s results here and refer the interested reader to Supplementary Figs.  3 – 5 and the  Supplementary Methods for additional details.

We first simultaneously evaluated the realism of the adjusted corner kicks generated by TacticAI, and the plausibility of its receiver predictions. Going through a collection of 50 corner kick samples, we first asked the raters to classify whether a given sample was real or generated by TacticAI, and then they were asked to identify the most likely receivers in the corner kick sample (Supplementary Fig.  3 ).

On the task of classifying real and generated samples, first, we found that the raters’ average F 1 score of classifying the real vs. generated samples was only 0.60 ± 0.04, with individual F 1 scores ( \({F}_{1}^{A}=0.54,{F}_{1}^{B}=0.64,{F}_{1}^{C}=0.65,{F}_{1}^{D}=0.62,{F}_{1}^{E}=0.56\) ), indicating that the raters were, in many situations, unable to distinguish TacticAI’s adjustments from real corners.

The previous evaluation focused on analysing realism detection performance across raters. We also conduct a study that analyses realism detection across samples. Specifically, we assigned ratings for each sample—assigning +1 to a sample if it was identified as real by a human rater, and 0 otherwise—and computed the average rating for each sample across the five raters. Importantly, by studying the distribution of ratings, we found that there was no significant difference between the average ratings assigned to real and generated corners ( z  = −0.34,  p  > 0.05) (Fig.  4 A). Hence, the real and generated samples were assigned statistically indistinguishable average ratings by human raters.

figure 4

In task 1, we tested the statistical difference between the real corner kick samples and the synthetic ones generated by TacticAI from two aspects: ( A.1 ) the distributions of their assigned ratings, and ( A.2 ) the corresponding histograms of the rating values. Analogously, in task 2 (receiver prediction), ( B.1 ) we track the distributions of the top-3 accuracy of receiver prediction using those samples, and ( B.2 ) the corresponding histogram of the mean rating per sample. No statistical difference in the mean was observed in either cases (( A.1 ) ( z  = −0.34,  p  > 0.05), and ( B.1 ) ( z  = 0.97,  p  > 0.05)). Additionally, we observed a statistically significant difference between the ratings of different raters on receiver prediction, with three clear clusters emerging ( C ). Specifically, Raters A and E had similar ratings ( z  = 0.66,  p  > 0.05), and Raters B and D also rated in similar ways ( z  = −1.84,  p  > 0.05), while Rater C responded differently from all other raters. This suggests a good level of variety of the human raters with respect to their perceptions of corner kicks. In task 3—identifying similar corners retrieved in terms of salient strategic setups—there were no significant differences among the distributions of the ratings by different raters ( D ), suggesting a high level of agreement on the usefulness of TacticAI’s capability of retrieving similar corners ( F 1,4  = 1.01,  p  > 0.1). Finally, in task 4, we compared the ratings of TacticAI’s strategic refinements across the human raters ( E ) and found that the raters also agreed on the general effectiveness of the refinements recommended by TacticAI ( F 1,4  = 0.45,  p  > 0.05). Note that the violin plots used in B.1 and C – E model a continuous probability distribution and hence assign nonzero probabilities to values outside of the allowed ranges. We only label y -axis ticks for the possible set of ratings.

For the task of identifying receivers, we rated TacticAI’s predictions with respect to a rater as +1 if at least one of the receivers identified by the rater appeared in TacticAI’s top-3 predictions, and 0 otherwise. The average top-3 accuracy among the human raters was 0.79 ± 0.18; specifically, 0.81 ± 0.17 for the real samples, and 0.77 ± 0.21 for the generated ones. These scores closely line up with the accuracy of TacticAI in predicting receivers for held-out test corners, validating our quantitative study. Further, after averaging the ratings for receiver prediction sample-wise, we found no statistically significant difference between the average ratings of predicting receivers over the real and generated samples ( z  = 0.97,  p  > 0.05) (Fig.  4 B). This indicates that TacticAI was equally performant in predicting the receivers of real corners and TacticAI-generated adjustments, and hence may be leveraged for this purpose even in simulated scenarios.

There is a notably high variance in the average receiver prediction rating of TacticAI. We hypothesise that this is due to the fact that different raters may choose to focus on different salient features when evaluating the likely receivers (or even the amount of likely receivers). We set out to validate this hypothesis by testing the pair-wise similarity of the predictions by the human raters through running a one-away analysis of variance (ANOVA), followed by a Tukey test. We found that the distributions of the five raters’ predictions were significantly different ( F 1,4  = 14.46,  p  < 0.001) forming three clusters (Fig.  4 C). This result indicates that different human raters—as suggested by their various titles at LFC—may often use very different leads when suggesting plausible receivers. The fact that TacticAI manages to retain a high top-3 accuracy in such a setting suggests that it was able to capture the salient patterns of corner kick strategies, which broadly align with human raters’ preferences. We will further test this hypothesis in the third task—identifying similar corners.

For the third task, we asked the human raters to judge 50 pairs of corners for their similarity. Each pair consisted of a reference corner and a retrieved corner, where the retrieved corner was chosen either as the nearest-neighbour of the reference in terms of their TacticAI latent space representations, or—as a feature-level heuristic—the cosine similarities of their raw features (Supplementary Fig.  4 ) in our corner kick dataset. We score the raters’ judgement of a pair as +1 if they considered the corners presented in the case to be usefully similar, otherwise, the pair is scored with 0. We first computed, for each rater, the recall with which they have judged a baseline- or TacticAI-retrieved pair as usefully similar—see description of Task 3 in the  Supplementary Methods . For TacticAI retrievals, the average recall across all raters was 0.59 ± 0.09, and for the baseline system, the recall was 0.36 ± 0.10. Secondly, we assess the statistical difference between the results of the two methods by averaging the ratings for each reference–retrieval pair, finding that the average rating of TacticAI retrievals is significantly higher than the average rating of baseline method retrievals ( z  = 2.34,  p  < 0.05). These two results suggest that TacticAI significantly outperforms the feature-space baseline as a method for mining similar corners. This indicates that TacticAI is able to extract salient features from corners that are not trivial to extract from the input data alone, reinforcing it as a potent tool for discovering opposing team tactics from available data. Finally, we observed that this task exhibited a high level of inter-rater agreement for TacticAI-retrieved pairs ( F 1,4  = 1.01,  p  > 0.1) (Fig.  4 D), suggesting that human raters were largely in agreement with respect to their assessment of TacticAI’s performance.

Finally, we evaluated TacticAI’s player adjustment recommendations for their practical utility. Specifically, each rater was given 50 tactical refinements together with the corresponding real corner kick setups—see Supplementary Fig.  5 , and the “Case study design” section in the  Supplementary Methods . The raters were then asked to rate each refinement as saliently improving the tactics (+1), saliently making them worse (−1), or offering no salient differences (0). We calculated the average rating assigned by each of the raters (giving us a value in the range [− 1, 1] for each rater). The average of these values across all five raters was 0.7 ± 0.1. Further, for 45 of the 50 situations (90%), the human raters found TacticAI’s suggestion to be favourable on average (by majority voting). Both of these results indicate that TacticAI’s recommendations are salient and useful to a downstream football club practitioner, and we set out to validate this with statistical tests.

We performed statistical significance testing of the observed positive ratings. First, for each of the 50 situations, we averaged its ratings across all five raters and then ran a t -test to assess whether the mean rating was significantly larger than zero. Indeed, the statistical test indicated that the tactical adjustments recommended by TacticAI were constructive overall ( \({t}_{49}^{{{{{{{{\rm{avg}}}}}}}}}=9.20,\, p \, < \, 0.001\) ). Secondly, we verified that each of the five raters individually found TacticAI’s recommendations to be constructive, running a t -test on each of their ratings individually. For all of the five raters, their average ratings were found to be above zero with statistical significance ( \({t}_{49}^{A}=5.84,\, {p}^{A} \, < \, 0.001;{t}_{49}^{B}=7.88,\; {p}^{B} \, < \, 0.001;{t}_{49}^{C}=7.00,\; {p}^{C} \, < \, 0.001;{t}_{49}^{D}=6.04,\; {p}^{D} \, < \, 0.001;{t}_{49}^{E}=7.30,\, {p}^{E} \, < \, 0.001\) ). In addition, their ratings also shared a high level of inter-agreement ( F 1,4  = 0.45,  p  > 0.05) (Fig.  4 E), suggesting a level of practical usefulness that is generally recognised by human experts, even though they represent different backgrounds.

Taking all of these results together, we find TacticAI to possess strong components for prediction, retrieval, and tactical adjustments on corner kicks. To illustrate the kinds of salient recommendations by TacticAI, in Fig.  5 we present four examples with a high degree of inter-rater agreement.

figure 5

These examples are selected from our case study with human experts, to illustrate the breadth of tactical adjustments that TacticAI suggests to teams defending a corner. The density of the yellow circles coincides with the number of times that the corresponding change is recognised as constructive by human experts. Instead of optimising the movement of one specific player, TacticAI can recommend improvements for multiple players in one generation step through suggesting better positions to block the opposing players, or better orientations to track them more efficiently. Some specific comments from expert raters follow. In A , according to raters, TacticAI suggests more favourable positions for several defenders, and improved tracking runs for several others—further, the goalkeeper is positioned more deeply, which is also beneficial. In B , TacticAI suggests that the defenders furthest away from the corner make improved covering runs, which was unanimously deemed useful, with several other defenders also positioned more favourably. In C , TacticAI recommends improved covering runs for a central group of defenders in the penalty box, which was unanimously considered salient by our raters. And in D , TacticAI suggests substantially better tracking runs for two central defenders, along with a better positioning for two other defenders in the goal area.

We have demonstrated an AI assistant for football tactics and provided statistical evidence of its efficacy through a comprehensive case study with expert human raters from Liverpool FC. First, TacticAI is able to accurately predict the first receiver after a corner kick is taken as well as the probability of a shot as the direct result of the corner. Second, TacticAI has been shown to produce plausible tactical variations that improve outcomes in a salient way, while being indistinguishable from real scenarios by domain experts. And finally, the system’s latent player representations are a powerful means to retrieve similar set-piece tactics, allowing coaches to analyse relevant tactics and counter-tactics that have been successful in the past.

The broader scope of strategy modelling in football has previously been addressed from various individual angles, such as pass prediction 14 , 15 , 16 , shot prediction 3 or corner kick tactical classification 7 . However, to the best of our knowledge, our work stands out by combining and evaluating predictive and generative modelling of corner kicks for tactic development. It also stands out in its method of applying geometric deep learning, allowing for efficiently incorporating various symmetries of the football pitch for improved data efficiency. Our method incorporates minimal domain knowledge and does not rely on intricate feature engineering—though its factorised design naturally allows for more intricate feature engineering approaches when such features are available.

Our methodology requires the position and velocity estimates of all players at the time of execution of the corner and subsequent events. Here, we derive these from high-quality tracking and event data, with data availability from tracking providers limited to top leagues. Player tracking based on broadcast video would increase the reach and training data substantially, but would also likely result in noisier model inputs. While the attention mechanism of GATs would allow us to perform introspection of the most salient factors contributing to the model outcome, our method does not explicitly model exogenous (aleatoric) uncertainty, which would be valuable context for the football analyst.

While the empirical study of our method’s efficacy has been focused on corner kicks in association football, it readily generalises to other set pieces (such as throw-ins, which similarly benefit from similarity retrieval, pass and/or shot prediction) and other team sports with suspended play situations. The learned representations and overall framing of TacticAI also lay the ground for future research to integrate a natural language interface that enables domain-grounded conversations with the assistant, with the aim to retrieve particular situations of interest, make predictions for a given tactical variant, compare and contrast, and guide through an interactive process to derive tactical suggestions. It is thus our belief that TacticAI lays the groundwork for the next-generation AI assistant for football.

We devised TacticAI as a geometric deep learning pipeline, further expanded in this section. We process labelled spatio-temporal football data into graph representations, and train and evaluate on benchmarking tasks cast as classification or regression. These steps are presented in sequence, followed by details on the employed computational architecture.

Raw corner kick data

The raw dataset consisted of 9693 corner kicks collected from the 2020–21, 2021–22, and 2022–23 (up to January 2023) Premier League seasons. The dataset was provided by Liverpool FC and comprises four separate data sources, described below.

Our primary data source is spatio-temporal trajectory frames (tracking data), which tracked all on-pitch players and the ball, for each match, at 25 frames per second. In addition to player positions, their velocities are derived from position data through filtering. For each corner kick, we only used the frame in which the kick is being taken as input information.

Secondly, we also leverage event stream data, which annotated the events or actions (e.g., passes, shots and goals) that have occurred in the corresponding tracking frames.

Thirdly, the line-up data for the corresponding games, which recorded the players’ profiles, including their heights, weights and roles, is also used.

Lastly, we have access to miscellaneous game data, which contains the game days, stadium information, and pitch length and width in meters.

Graph representation and construction

We assumed that we were provided with an input graph \({{{{{{{\mathcal{G}}}}}}}}=({{{{{{{\mathcal{V}}}}}}}},\,{{{{{{{\mathcal{E}}}}}}}})\) with a set of nodes \({{{{{{{\mathcal{V}}}}}}}}\) and edges \({{{{{{{\mathcal{E}}}}}}}}\subseteq {{{{{{{\mathcal{V}}}}}}}}\times {{{{{{{\mathcal{V}}}}}}}}\) . Within the context of football games, we took \({{{{{{{\mathcal{V}}}}}}}}\) to be the set of 22 players currently on the pitch for both teams, and we set \({{{{{{{\mathcal{E}}}}}}}}={{{{{{{\mathcal{V}}}}}}}}\times {{{{{{{\mathcal{V}}}}}}}}\) ; that is, we assumed all pairs of players have the potential to interact. Further analyses, leveraging more specific choices of \({{{{{{{\mathcal{E}}}}}}}}\) , would be an interesting avenue for future work.

Additionally, we assume that the graph is appropriately featurised. Specifically, we provide a node feature matrix, \({{{{{{{\bf{X}}}}}}}}\in {{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times k}\) , an edge feature tensor, \({{{{{{{\bf{E}}}}}}}}\in {{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times | {{{{{{{\mathcal{V}}}}}}}}| \times l}\) , and a graph feature vector, \({{{{{{{\bf{g}}}}}}}}\in {{\mathbb{R}}}^{m}\) . The appropriate entries of these objects provide us with the input features for each node, edge, and graph. For example, \({{{{{{{{\bf{x}}}}}}}}}_{u}\in {{\mathbb{R}}}^{k}\) would provide attributes of an individual player \(u\in {{{{{{{\mathcal{V}}}}}}}}\) , such as position, height and weight, and \({{{{{{{{\bf{e}}}}}}}}}_{uv}\in {{\mathbb{R}}}^{l}\) would provide the attributes of a particular pair of players \((u,\, v)\in {{{{{{{\mathcal{E}}}}}}}}\) , such as their distance, and whether they belong to the same team. The graph feature vector, g , can be used to store global attributes of interest to the corner kick, such as the game time, current score, or ball position. For a simplified visualisation of how a graph neural network would process such an input, refer to Fig.  1 A.

To construct the input graphs, we first aligned the four data sources with respect to their game IDs and timestamps and filtered out 2517 invalid corner kicks, for which the alignment failed due to missing data, e.g., missing tracking frames or event labels. This filtering yielded 7176 valid corner kicks for training and evaluation. We summarised the exact information that was used to construct the input graphs in Table  2 . In particular, other than player heights (measured in centimeters (cm)) and weights (measured in kilograms (kg)), the players were anonymous in the model. For the cases in which the player profiles were missing, we set their heights and weights to 180 cm and 75 kg, respectively, as defaults. In total, we had 385 such occurrences out of a total of 213,246( = 22 × 9693) during data preprocessing. We downscaled the heights and weights by a factor of 100. Moreover, for each corner kick, we zero-centred the positions of on-pitch players and normalised them onto a 10 m × 10 m pitch, and their velocities were re-scaled accordingly. For the cases in which the pitch dimensions were missing, we used a standard pitch dimension of 110 m × 63 m as default.

We summarised the grouping of the features in Table  1 . The actual features used in different benchmark tasks may differ, and we will describe this in more detail in the next section. To focus on modelling the high-level tactics played by the attacking and defending teams, other than a binary indicator for ball possession—which is 1 for the corner kick taker and 0 for all other players—no information of ball movement, neither positions nor velocities, was used to construct the input graphs. Additionally, we do not have access to the player’s vertical movement, therefore only information on the two-dimensional movements of each player is provided in the data. We do however acknowledge that such information, when available, would be interesting to consider in a corner kick outcome predictor, considering the prevalence of aerial battles in corners.

Benchmark tasks construction

TacticAI consists of three predictive and generative models, which also correspond to three benchmark tasks implemented in this study. Specifically, (1) Receiver prediction, (2) Threatening shot prediction, and (3) Guided generation of team positions and velocities (Table  1 ). The graphs of all the benchmark tasks used the same feature space of nodes and edges, differing only in the global features.

For all three tasks, our models first transform the node features to a latent node feature matrix, \({{{{{{{\bf{H}}}}}}}}={f}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{\bf{X}}}}}}}},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})\) , from which we could answer queries: either about individual players—in which case we learned a relevant classifier or regressor over the h u vectors (the rows of H )—or about the occurrence of a global event (e.g. shot taken)—in which case we classified or regressed over the aggregated player vectors, ∑ u h u . In both cases, the classifiers were trained using stochastic gradient descent over an appropriately chosen loss function, such as categorical cross-entropy for classifiers, and mean squared error for regressors.

For different tasks, we extracted the corresponding ground-truth labels from either the event stream data or the tracking data. Specifically, (1) We modelled receiver prediction as a node classification task and labelled the first player to touch the ball after the corner was taken as the target node. This player could be either an attacking or defensive player. (2) Shot prediction was modelled as graph classification. In particular, we considered a next-ball-touch action by the attacking team as a shot if it was a direct corner, a goal, an aerial, hit on the goalposts, a shot attempt saved by the goalkeeper, or missing target. This yielded 1736 corners labelled as a shot being taken, and 5440 corners labelled as a shot not being taken. (3) For guided generation of player position and velocities, no additional label was needed, as this model relied on a self-supervised reconstruction objective.

The entire dataset was split into training and evaluation sets with an 80:20 ratio through random sampling, and the same splits were used for all tasks.

Graph neural networks

The central model of TacticAI is the graph neural network (GNN) 9 , which computes latent representations on a graph by repeatedly combining them within each node’s neighbourhood. Here we define a node’s neighbourhood, \({{{{{{{{\mathcal{N}}}}}}}}}_{u}\) , as the set of all first-order neighbours of node u , that is, \({{{{{{{{\mathcal{N}}}}}}}}}_{u}=\{v\,| \,(v,\, u)\in {{{{{{{\mathcal{E}}}}}}}}\}\) . A single GNN layer then transforms the node features by passing messages between neighbouring nodes 17 , following the notation of related work 10 , and the implementation of the CLRS-30 benchmark baselines 18 :

where \(\psi :{{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{l}\times {{\mathbb{R}}}^{m}\to {{\mathbb{R}}}^{{k}^{{\prime} }}\) and \(\phi :{{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{{k}^{{\prime} }}\to {{\mathbb{R}}}^{{k}^{{\prime} }}\) are two learnable functions (e.g. multilayer perceptrons), \({{{{{{{{\bf{h}}}}}}}}}_{u}^{(t)}\) are the features of node u after t GNN layers, and ⨁ is any permutation-invariant aggregator, such as sum, max, or average. By definition, we set \({{{{{{{{\bf{h}}}}}}}}}_{u}^{(0)}={{{{{{{{\bf{x}}}}}}}}}_{u}\) , and iterate Eq. ( 2 ) for T steps, where T is a hyperparameter. Then, we let \({{{{{{{\bf{H}}}}}}}}={f}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{\bf{X}}}}}}}},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})={{{{{{{{\bf{H}}}}}}}}}^{(T)}\) be the final node embeddings coming out of the GNN.

It is well known that Eq. ( 2 ) is remarkably general; it can be used to express popular models such as Transformers 19 as a special case, and it has been argued that all discrete deep learning models can be expressed in this form 20 , 21 . This makes GNNs a perfect framework for benchmarking various approaches to modelling player–player interactions in the context of football.

Different choices of ψ , ϕ and ⨁ yield different architectures. In our case, we utilise a message function that factorises into an attentional mechanism, \(a:{{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{k}\times {{\mathbb{R}}}^{l}\times {{\mathbb{R}}}^{m}\to {\mathbb{R}}\) :

yielding the graph attention network (GAT) architecture 12 . In our work, specifically, we use a two-layer multilayer perceptron for the attentional mechanism, as proposed by GATv2 11 :

where \({{{{{{{{\bf{W}}}}}}}}}_{1},\, {{{{{{{{\bf{W}}}}}}}}}_{2}\in {{\mathbb{R}}}^{k\times h}\) , \({{{{{{{{\bf{W}}}}}}}}}_{e}\in {{\mathbb{R}}}^{l\times h}\) , \({{{{{{{{\bf{W}}}}}}}}}_{g}\in {{\mathbb{R}}}^{m\times h}\) and \({{{{{{{\bf{a}}}}}}}}\in {{\mathbb{R}}}^{h}\) are the learnable parameters of the attentional mechanism, and LeakyReLU is the leaky rectified linear activation function. This mechanism computes coefficients of interaction (a single scalar value) for each pair of connected nodes ( u ,  v ), which are then normalised across all neighbours of u using the \({{{{{{{\rm{softmax}}}}}}}}\) function.

Through early-stage experimentation, we have ascertained that GATs are capable of matching the performance of more generic choices of ψ (such as the MPNN 17 ) while being more scalable. Hence, we focus our study on the GAT model in this work. More details can be found in the subsection “Ablation study” section.

Geometric deep learning

In spite of the power of Eq. ( 2 ), using it in its full generality is often prone to overfitting, given the large number of parameters contained in ψ and ϕ . This problem is exacerbated in the football analytics domain, where gold-standard data is generally very scarce—for example, in the English Premier League, only a few hundred games are played every season.

In order to tackle this issue, we can exploit the immense regularity of data arising from football games. Strategically equivalent game states are also called transpositions, and symmetries such as arriving at the same chess position through different move sequences have been exploited computationally since the 1960s 22 . Similarly, game rotations and reflections may yield equivalent strategic situations 23 . Using the blueprint of geometric deep learning (GDL) 10 , we can design specialised GNN architectures that exploit this regularity.

That is, geometric deep learning is a generic methodology for deriving mathematical constraints on neural networks, such that they will behave predictably when inputs are transformed in certain ways. In several important cases, these constraints can be directly resolved, directly informing neural network architecture design. For a comprehensive example of point clouds under 3D rotational symmetry, see Fuchs et al. 24 .

To elucidate several aspects of the GDL framework on a high level, let us assume that there exists a group of input data transformations (symmetries), \({\mathfrak{G}}\) under which the ground-truth label remains unchanged. Specifically, if we let y ( X ,  E ,  g ) be the label given to the graph featurised with X ,  E ,  g , then for every transformation \({\mathfrak{g}}\in {\mathfrak{G}}\) , the following property holds:

This condition is also referred to as \({\mathfrak{G}}\) -invariance. Here, by \({\mathfrak{g}}({{{{{{{\bf{X}}}}}}}})\) we denote the result of transforming X by \({\mathfrak{g}}\) —a concept also known as a group action. More generally, it is a function of the form \({\mathfrak{G}}\times {{{{{{{\mathcal{S}}}}}}}}\to {{{{{{{\mathcal{S}}}}}}}}\) for some state set \({{{{{{{\mathcal{S}}}}}}}}\) . Note that a single group element, \({\mathfrak{g}}\in {\mathfrak{G}}\) can easily produce different actions on different \({{{{{{{\mathcal{S}}}}}}}}\) —in this case, \({{{{{{{\mathcal{S}}}}}}}}\) could be \({{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times k}\) ( X ), \({{\mathbb{R}}}^{| {{{{{{{\mathcal{V}}}}}}}}| \times | {{{{{{{\mathcal{V}}}}}}}}| \times l}\) ( E ) and \({{\mathbb{R}}}^{m}\) ( g ).

It is worth noting that GNNs may also be derived using a GDL perspective if we set the symmetry group \({\mathfrak{G}}\) to \({S}_{| {{{{{{{\mathcal{V}}}}}}}}}|\) , the permutation group of \(| {{{{{{{\mathcal{V}}}}}}}}|\) objects. Owing to the design of Eq. ( 2 ), its outputs will not be dependent on the exact permutation of nodes in the input graph.

Frame averaging

A simple mechanism to enforce \({\mathfrak{G}}\) -invariance, given any predictor \({f}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{\bf{X}}}}}}}},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})\) , performs frame averaging across all \({\mathfrak{G}}\) -transformed inputs:

This ensures that all \({\mathfrak{G}}\) -transformed versions of a particular input (also known as that input’s orbit) will have exactly the same output, satisfying Eq. ( 5 ). A variant of this approach has also been applied in the AlphaGo architecture 25 to encode symmetries of a Go board.

In our specific implementation, we set \({\mathfrak{G}}={D}_{2}=\{{{{{{{{\rm{id}}}}}}}},\leftrightarrow,\updownarrow,\leftrightarrow \updownarrow \}\) , the dihedral group. Exploiting D 2 -invariance allows us to encode quadrant symmetries. Each element of the D 2 group encodes the presence of vertical or horizontal reflections of the input football pitch. Under these transformations, the pitch is assumed completely symmetric, and hence many predictions, such as which player receives the corner kick, or takes a shot from it, can be safely assumed unchanged. As an example of how to compute transformed features in Eq. ( 6 ), ↔( X ) horizontally reflects all positional features of players in X (e.g. the coordinates of the player), and negates the x -axis component of their velocity.

Group convolutions

While the frame averaging approach of Eq. ( 6 ) is a powerful way to restrict GNNs to respect input symmetries, it arguably misses an opportunity for the different \({\mathfrak{G}}\) -transformed views to interact while their computations are being performed. For small groups such as D 2 , a more fine-grained approach can be assumed, operating over a single GNN layer in Eq. ( 2 ), which we will write shortly as \({{{{{{{{\bf{H}}}}}}}}}^{(t)}={g}_{{{{{{{{\mathcal{G}}}}}}}}}({{{{{{{{\bf{H}}}}}}}}}^{(t-1)},\, {{{{{{{\bf{E}}}}}}}},\, {{{{{{{\bf{g}}}}}}}})\) . The condition that we need a symmetry-respecting GNN layer to satisfy is as follows, for all transformations \({\mathfrak{g}}\in {\mathfrak{G}}\) :

that is, it does not matter if we apply \({\mathfrak{g}}\) it to the input or the output of the function \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) —the final answer is the same. This condition is also referred to as \({\mathfrak{G}}\) -equivariance, and it has recently proved to be a potent paradigm for developing powerful GNNs over biochemical data 24 , 26 .

To satisfy D 2 -equivariance, we apply the group convolution approach 13 . Therein, views of the input are allowed to directly interact with their \({\mathfrak{G}}\) -transformed variants, in a manner very similar to grid convolutions (which is, indeed, a special case of group convolutions, setting \({\mathfrak{G}}\) to be the translation group). We use \({{{{{{{{\bf{H}}}}}}}}}_{{\mathfrak{g}}}^{(t)}\) to denote the \({\mathfrak{g}}\) -transformed view of the latent node features at layer t . Omitting E and g inputs for brevity, and using our previously designed layer \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) as a building block, we can perform a group convolution as follows:

Here, ∥ is the concatenation operation, joining the two node feature matrices column-wise; \({{\mathfrak{g}}}^{-1}\) is the inverse transformation to \({\mathfrak{g}}\) (which must exist as \({\mathfrak{G}}\) is a group); and \({{\mathfrak{g}}}^{-1}{\mathfrak{h}}\) is the composition of the two transformations.

Effectively, Eq. ( 8 ) implies our D 2 -equivariant GNN needs to maintain a node feature matrix \({{{{{{{{\bf{H}}}}}}}}}_{{\mathfrak{g}}}^{(t)}\) for every \({\mathfrak{G}}\) -transformation of the current input, and these views are recombined by invoking \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) on all pairs related together by applying a transformation \({\mathfrak{h}}\) . Note that all reflections are self-inverses, hence, in D 2 , \({\mathfrak{g}}={{\mathfrak{g}}}^{-1}\) .

It is worth noting that both the frame averaging in Eq. ( 6 ) and group convolution in Eq. ( 8 ) are similar in spirit to data augmentation. However, whereas standard data augmentation would only show one view at a time to the model, a frame averaging/group convolution architecture exhaustively generates all views and feeds them to the model all at once. Further, group convolutions allow these views to explicitly interact in a way that does not break symmetries. Here lies the key difference between the two approaches: frame averaging and group convolutions rigorously enforce the symmetries in \({\mathfrak{G}}\) , whereas data augmentation only provides implicit hints to the model about satisfying them. As a consequence of the exhaustive generation, Eqs. ( 6 ) and ( 8 ) are only feasible for small groups like D 2 . For larger groups, approaches like Steerable CNNs 27 may be employed.

Network architectures

While the three benchmark tasks we are performing have minor differences in the global features available to the model, the neural network models designed for them all have the same encoder–decoder architecture. The encoder has the same structure in all tasks, while the decoder model is tailored to produce appropriately shaped outputs for each benchmark task.

Given an input graph, TacticAI’s model first generates all relevant D 2 -transformed versions of it, by appropriately reflecting the player coordinates and velocities. We refer to the original input graph as the identity view, and the remaining three D 2 -transformed graphs as reflected views.

Once the views are prepared, we apply four group convolutional layers (Eq. ( 8 )) with a GATv2 base model (Eqs. ( 3 ) and ( 4 )) as the \({g}_{{{{{{{{\mathcal{G}}}}}}}}}\) function. Specifically, this means that, in Eqs. ( 3 ) and ( 4 ), every instance of \({{{{{{{{\bf{h}}}}}}}}}_{u}^{(t-1)}\) is replaced by the concatenation of \({({{{{{{{{\bf{h}}}}}}}}}_{{\mathfrak{h}}}^{(t-1)})}_{u}\parallel {({{{{{{{{\bf{h}}}}}}}}}_{{{\mathfrak{g}}}^{-1}{\mathfrak{h}}}^{(t-1)})}_{u}\) . Each GATv2 layer has eight attention heads and computes four latent features overall per player. Accordingly, once the four group convolutions are performed, we have a representation of \({{{{{{{\bf{H}}}}}}}}\in {{\mathbb{R}}}^{4\times 22\times 4}\) , where the first dimension corresponds to the four views ( \({{{{{{{{\bf{H}}}}}}}}}_{{{{{{{{\rm{id}}}}}}}}},\, {{{{{{{{\bf{H}}}}}}}}}_{\leftrightarrow },\, {{{{{{{{\bf{H}}}}}}}}}_{\updownarrow },\, {{{{{{{{\bf{H}}}}}}}}}_{\leftrightarrow \updownarrow }\in {{\mathbb{R}}}^{22\times 4}\) ), the second dimension corresponds to the players (eleven on each team), and the third corresponds to the 4-dimensional latent vector for each player node in this particular view. How this representation is used by the decoder depends on the specific downstream task, as we detail below.

For receiver prediction, which is a fully invariant function (i.e. reflections do not change the receiver), we perform simple frame averaging across all views, arriving at

and then learn a node-wise classifier over the rows of \({{{{{{{{\bf{H}}}}}}}}}^{{{{{{{{\rm{node}}}}}}}}}\in {{\mathbb{R}}}^{22\times 4}\) . We further decode H node into a logit vector \({{{{{{{\bf{O}}}}}}}}\in {{\mathbb{R}}}^{22}\) with a linear layer before computing the corresponding softmax cross entropy loss.

For shot prediction, which is once again fully invariant (i.e. reflections do not change the probability of a shot), we can further average the frame-averaged features across all players to get a global graph representation:

and then learn a binary classifier over \({{{{{{{{\bf{h}}}}}}}}}^{{{{{{{{\rm{graph}}}}}}}}}\in {{\mathbb{R}}}^{4}\) . Specifically, we decode the hidden vector into a single logit with a linear layer and compute the sigmoid binary cross-entropy loss with the corresponding label.

For guided generation (position/velocity adjustments), we generate the player positions and velocities with respect to a particular outcome of interest for the human coaches, predicted over the rows of the hidden feature matrix. For example, the model may adjust the defensive setup to decrease the shot probability by the attacking team. The model output is now equivariant rather than invariant—reflecting the pitch appropriately reflects the predicted positions and velocity vectors. As such, we cannot perform frame averaging, and take only the identity view’s features, \({{{{{{{{\bf{H}}}}}}}}}_{{{{{{{{\rm{id}}}}}}}}}\in {{\mathbb{R}}}^{22\times 4}\) . From this latent feature matrix, we can then learn a conditional distribution from each row, which models the positions or velocities of the corresponding player. To do this, we extend the backbone encoder with conditional variational autoencoder (CVAE 28 , 29 ). Specifically, for the u -th row of H id , h u , we first map its latent embedding to the parameters of a two-dimensional Gaussian distribution \({{{{{{{\mathcal{N}}}}}}}}({\mu }_{u}| {\sigma }_{u})\) , and then sample the coordinates and velocities from this distribution. At training time, we can efficiently propagate gradients through this sampling operation using the reparameterisation trick 28 : sample a random value \({\epsilon }_{u} \sim {{{{{{{\mathcal{N}}}}}}}}(0,1)\) for each player from the unit Gaussian distribution, and then treat μ u  +  σ u ϵ u as the sample for this player. In what follows, we omit edge features for brevity. For each corner kick sample X with the corresponding outcome o (e.g. a binary value indicating a shot event), we extend the standard VAE loss 28 , 29 to our case of outcome-conditional guided generation as

where h u is the player embedding corresponding to the u th row of H id , and \({\mathbb{KL}}\) is Kullback–Leibler (KL) divergence. Specifically, the first term is the generation loss between the real player input x u and the reconstructed sample decoded from h u with the decoder p ϕ . Using the KL term, the distribution of the latent embedding h u is regularised towards p ( h u ∣ o ), which is a multivariate Gaussian in our case.

A complete high-level summary of the generic encoder–decoder equivariant architecture employed by TacticAI can be summarised in Supplementary Fig.  2 . In the following section, we will provide empirical evidence for justifying these architectural decisions. This will be done through targeted ablation studies on our predictive benchmarks (receiver prediction and shot prediction).

Ablation study

We leveraged the receiver prediction task as a way to evaluate various base model architectures, and directly quantitatively assess the contributions of geometric deep learning in this context. We already see that the raw corner kick data can be better represented through geometric deep learning, yielding separable clusters in the latent space that could correspond to different attacking or defending tactics (Fig.  2 ). In addition, we hypothesise that these representations can also yield better performance on the task of receiver prediction. Accordingly, we ablate several design choices using deep learning on this task, as illustrated by the following four questions:

Does a factorised graph representation help? To assess this, we compare it against a convolutional neural network (CNN 30 ) baseline, which does not leverage a graph representation.

Does a graph structure help? To assess this, we compare against a Deep Sets 31 baseline, which only models each node in isolation without considering adjacency information—equivalently, setting each neighbourhood \({{{{{{{{\mathcal{N}}}}}}}}}_{u}\) to a singleton set { u }.

Are attentional GNNs a good strategy? To assess this, we compare against a message passing neural network 32 , MPNN baseline, which uses the fully potent GNN layer from Eq. ( 2 ) instead of the GATv2.

Does accounting for symmetries help? To assess this, we compare our geometric GATv2 baseline against one which does not utilise D 2 group convolutions but utilises D 2 frame averaging, and one which does not explicitly utilise any aspect of D 2 symmetries at all.

Each of these models has been trained for a fixed budget of 50,000 training steps. The test top- k receiver prediction accuracies of the trained models are provided in Supplementary Table  2 . As already discussed in the section “Results”, there is a clear advantage to using a full graph structure, as well as directly accounting for reflection symmetry. Further, the usage of the MPNN layer leads to slight overfitting compared to the GATv2, illustrating how attentional GNNs strike a good balance of expressivity and data efficiency for this task. Our analysis highlights the quantitative benefits of both graph representation learning and geometric deep learning for football analytics from tracking data. We also provide a brief ablation study for the shot prediction task in Supplementary Table  3 .

Training details

We train each of TacticAI’s models in isolation, using NVIDIA Tesla P100 GPUs. To minimise overfitting, each model’s learning objective is regularised with an L 2 norm penalty with respect to the network parameters. During training, we use the Adam stochastic gradient descent optimiser 33 over the regularised loss.

All models, including baselines, have been given an equal hyperparameter tuning budget, spanning the number of message passing steps ({1, 2, 4}), initial learning rate ({0.0001, 0.00005}), batch size ({128, 256}) and L 2 regularisation coefficient ({0.01, 0.005, 0.001, 0.0001, 0}). We summarise the chosen hyperparameters of each TacticAI model in Supplementary Table  1 .

Data availability

The data collected in the human experiments in this study have been deposited in the Zenodo database under accession code https://zenodo.org/records/10557063 , and the processed data which is used in the statistical analysis and to generate the relevant figures in the main text are available under the same accession code. The input and output data generated and/or analysed during the current study are protected and are not available due to data privacy laws and licensing restrictions. However, contact details of the input data providers are available from the corresponding authors on reasonable request.

Code availability

All the core models described in this research were built with the Graph Neural Network processors provided by the CLRS Algorithmic Reasoning Benchmark 18 , and their source code is available at https://github.com/google-deepmind/clrs . We are unable to release our code for this work as it was developed in a proprietary context; however, the corresponding authors are open to answer specific questions concerning re-implementations on request. For general data analysis, we used the following freely available packages: numpy v1.25.2 , pandas v1.5.3 , matplotlib v3.6.1 , seaborn v0.12.2 and scipy v1.9.3 . Specifically, the code of the statistical analysis conducted in this study is available at https://zenodo.org/records/10557063 .

The International Football Association Board (IFAB). Laws of the Game (The International Football Association Board, 2023).

Tuyls, K. et al. Game plan: what AI can do for football, and what football can do for AI. J. Artif. Intell. Res. 71 , 41–88 (2021).

Article   Google Scholar  

Goka, R., Moroto, Y., Maeda, K., Ogawa, T. & Haseyama, M. Prediction of shooting events in soccer videos using complete bipartite graphs and players’ spatial–temporal relations. Sensors 23 , 4506 (2023).

Article   ADS   PubMed   PubMed Central   Google Scholar  

Omidshafiei, S. et al. Multiagent off-screen behavior prediction in football. Sci. Rep. 12 , 8638 (2022).

Article   ADS   CAS   PubMed   PubMed Central   Google Scholar  

Lang, S., Wild, R., Isenko, A. & Link, D. Predicting the in-game status in soccer with machine learning using spatiotemporal player tracking data. Sci. Rep. 12 , 16291 (2022).

Baccouche, M., Mamalet, F., Wolf, C., Garcia, C. & Baskurt, A. Action classification in soccer videos with long short-term memory recurrent neural networks. In International Conference on Artificial Neural Networks (eds Diamantaras, K., Duch, W. & Iliadis, L. S.) pages 154–159 (Springer, 2010).

Shaw, L. & Gopaladesikan, S. Routine inspection: a playbook for corner kicks. In Machine Learning and Data Mining for Sports Analytics: 7th International Workshop, MLSA 2020, Co-located with ECML/PKDD 2020 , Proceedings, Ghent, Belgium, September 14–18, 2020, Vol . 7 , 3–16 (Springer, 2020).

Araújo, D. & Davids, K. Team synergies in sport: theory and measures. Front. Psychol. 7 , 1449 (2016).

Article   PubMed   PubMed Central   Google Scholar  

Veličković, P. Everything is connected: graph neural networks. Curr. Opin. Struct. Biol. 79 , 102538 (2023).

Article   PubMed   Google Scholar  

Bronstein, M. M., Bruna, J., Cohen, T. & Veličković, P. Geometric deep learning: grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021).

Brody, S., Alon, U. & Yahav, E. How attentive are graph attention networks? In International Conference on Learning Representations (ICLR, 2022). https://openreview.net/forum?id=F72ximsx7C1 .

Veličković, P. et al. Graph attention networks. In International Conference on Learning Representations (ICLR, 2018). https://openreview.net/forum?id=rJXMpikCZ .

Cohen, T. & Welling, M. Group equivariant convolutional networks. In International Conference on Machine Learning (eds Balcan, M. F. & Weinberger, K. Q.) 2990–2999 (PMLR, 2016).

Honda, Y., Kawakami, R., Yoshihashi, R., Kato, K. & Naemura, T. Pass receiver prediction in soccer using video and players’ trajectories. In 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 3502–3511 (2022). https://ieeexplore.ieee.org/document/9857310 .

Hubáček, O., Sourek, G. & Železný, F. Deep learning from spatial relations for soccer pass prediction. In MLSA@PKDD/ECML (eds Brefeld, U., Davis, J., Van Haaren, J. & Zimmermann, A.) Vol. 11330, (Lecture Notes in Computer Science, Springer, Cham, 2018).

Sanyal, S. Who will receive the ball? Predicting pass recipient in soccer videos. J Visual Commun. Image Represent. 78 , 103190 (2021).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In International Conference on Machine Learning (Precup, D. & Teh, Y. W.) 1263–1272 (PMLR, 2017).

Veličković, P. et al. The CLRS algorithmic reasoning benchmark. In International Conference on Machine Learning (eds Chaudhuri, K. et al.) 22084–22102 (PMLR, 2022).

Vaswani, A. et al. Attention is all you need. In Advances in Neural Information Processing Systems (eds Guyon, I. et al.) Vol. 30 (Curran Associates, Inc., 2017).

Veličković, P. Message passing all the way up. In ICLR 2022 Workshop on Geometrical and Topological Representation Learning (GTRL, 2022). https://openreview.net/forum?id=Bc8GiEZkTe5 .

Baranwal, A., Kimon, F. & Aukosh, J. Optimality of message-passing architectures for sparse graphs. In Thirty-seventh Conference on Neural Information Processing Systems (2023). https://papers.nips.cc/paper_files/paper/2023/hash/7e991aa4cd2fdf0014fba2f000f542d0-Abstract-Conference.html .

Greenblatt, R. D., Eastlake III, D. E. & Crocker, S. D. The Greenblatt chess program. In Proc. Fall Joint Computer Conference , 14–16 , 801–810 (Association for Computing Machinery, 1967). https://dl.acm.org/doi/10.1145/1465611.1465715 .

Schijf, M., Allis, L. V. & Uiterwijk, J. W. Proof-number search and transpositions. ICGA J. 17 , 63–74 (1994).

Fuchs, F., Worrall, D., Fischer, V. & Welling, M. SE(3)-transformers: 3D roto-translation equivariant attention networks. Adv. Neural Inf. Process. Syst. 33 , 1970–1981 (2020).

Google Scholar  

Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529 , 484–489 (2016).

Article   ADS   CAS   PubMed   Google Scholar  

Satorras, V. G., Hoogeboom, E. & Welling, M. E ( n ) equivariant graph neural networks. In International Conference on Machine Learning (eds Meila, M. & Zhang, T.) 9323–9332 (PMLR, 2021).

Cohen, T. S. & Welling, M. Steerable CNNs. In International Conference on Learning Representations (ICLR, 2017). https://openreview.net/forum?id=rJQKYt5ll .

Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. In 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14–16, 2014, Conference Track Proceedings (ICLR, 2014). https://openreview.net/forum?id=33X9fd2-9FyZd .

Sohn, K., Lee, H. & Yan, X. Learning structured output representation using deep conditional generative models. In Advances in Neural Information Processing Systems (eds Cortes, C, Lawrence, N., Lee, D., Sugiyama, M. & Garnett, R.) Vol. 28 (Curran Associates, Inc., 2015).

Fernández, J. & Bornn, L. Soccermap: a deep learning architecture for visually-interpretable analysis in soccer. In Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part V (eds Dong, Y., Ifrim, G., Mladenić, D., Saunders, C. & Van Hoecke, S.) 491–506 (Springer, 2021).

Zaheer, M. et al. Deep sets. In Advances in Neural Information Processing Systems Vol. 30 (eds Guyon, I., et al.) (Curran Associates, Inc., 2017).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O. & Dahl, G. E. Neural message passing for quantum chemistry. In Proc. 34th International Conference on Machine Learning , Vol. 70 of Proceedings of Machine Learning Research, 6–11 Aug 2017 (eds Precup, D. & Whye Teh, Y) 1263–1272 (PMLR, 2017).

Kingma, G. E. & Ba, J. Adam: a method for stochastic optimization. In ICLR (Poster) , (eds Bengio, Y. & LeCun, Y.) (International Conference of Learning Representations (ICLR), 2015). https://openreview.net/forum?id=8gmWwjFyLj .

Download references

Acknowledgements

We gratefully acknowledge the support of James French, Timothy Waskett, Hans Leitert and Benjamin Hervey for their extensive efforts in analysing TacticAI’s outputs. Further, we are thankful to Kevin McKee, Sherjil Ozair and Beatrice Bevilacqua for useful technical discussions, and Marc Lanctôt and Satinder Singh for reviewing the paper prior to submission.

Author information

These authors contributed equally: Zhe Wang, Petar Veličković, Daniel Hennes.

Authors and Affiliations

Google DeepMind, 6-8 Handyside Street, London, N1C 4UZ, UK

Zhe Wang, Petar Veličković, Daniel Hennes, Nenad Tomašev, Laurel Prince, Michael Kaisers, Yoram Bachrach, Romuald Elie, Li Kevin Wenliang, Federico Piccinini, Jerome Connor, Yi Yang, Adrià Recasens, Mina Khan, Nathalie Beauguerlange, Pablo Sprechmann, Pol Moreno, Nicolas Heess & Demis Hassabis

Liverpool FC, AXA Training Centre, Simonswood Lane, Kirkby, Liverpool, L33 5XB, UK

William Spearman

Liverpool FC, Kirkby, UK

University of Alberta, Amii, Edmonton, AB, T6G 2E8, Canada

Michael Bowling

Google DeepMind, London, UK

You can also search for this author in PubMed   Google Scholar

Contributions

Z.W., D. Hennes, L.P. and K.T. coordinated and organised the research effort leading to this paper. P.V. and Z.W. developed the core TacticAI models. Z.W., W.S. and I.G. prepared the Premier League corner kick dataset used for training and evaluating these models. P.V., Z.W., D. Hennes and N.T. designed the case study with human experts and Z.W. and P.V. performed the qualitative evaluation and statistical analysis of its outcomes. Z.W., P.V., D. Hennes, N.T., L.P., M. Kaisers, Y.B., R.E., L.K.W., F.P., W.S., I.G., N.H., M.B., D. Hassabis and K.T. contributed to writing the paper and providing feedback on the final manuscript. J.C., Y.Y., A.R., M. Khan, N.B., P.S. and P.M. contributed valuable technical and implementation discussions throughout the work’s development.

Corresponding authors

Correspondence to Zhe Wang , Petar Veličković or Karl Tuyls .

Ethics declarations

Competing interests.

The authors declare no competing interests but the following competing interests: TacticAI was developed during the course of the Authors’ employment at Google DeepMind and Liverpool Football Club, as applicable to each Author.

Peer review

Peer review information.

Nature Communications thanks Rui Luo and the other anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information, peer review file, rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Wang, Z., Veličković, P., Hennes, D. et al. TacticAI: an AI assistant for football tactics. Nat Commun 15 , 1906 (2024). https://doi.org/10.1038/s41467-024-45965-x

Download citation

Received : 13 October 2023

Accepted : 08 February 2024

Published : 19 March 2024

DOI : https://doi.org/10.1038/s41467-024-45965-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

By submitting a comment you agree to abide by our Terms and Community Guidelines . If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

example of alternative hypothesis in research paper

IMAGES

  1. Alternative Hypothesis Example In Research Paper / Pdf Intuitionistic

    example of alternative hypothesis in research paper

  2. Null Hypothesis and Alternative Hypothesis

    example of alternative hypothesis in research paper

  3. alternative hypothesis

    example of alternative hypothesis in research paper

  4. Research Hypothesis Generator

    example of alternative hypothesis in research paper

  5. Write a correct null and alternative hypothesis

    example of alternative hypothesis in research paper

  6. How to form a hypothesis for a research paper. Sample Research Papers

    example of alternative hypothesis in research paper

VIDEO

  1. Research Methods

  2. Null Hypothesis vs Alternate Hypothesis

  3. What is Hypothesis? And it's types. #hypothesis

  4. Hypothesis

  5. How to frame the Hypothesis statement in your Research

  6. Hypothesis Testing: the null and alternative hypotheses

COMMENTS

  1. Null & Alternative Hypotheses

    When the research question asks "Does the independent variable affect the dependent variable?": The null hypothesis ( H0) answers "No, there's no effect in the population.". The alternative hypothesis ( Ha) answers "Yes, there is an effect in the population.". The null and alternative are always claims about the population.

  2. 17 Examples of an Alternative Hypothesis

    The following are hypothetical examples of an alternative hypothesis.Years of kendo experience has a positive correlation with personal resilience.Coffee drinkers have higher average productivity than people who don't drink coffee.Temperature influences the volume of alcohol.Rain causes mud puddles.There is a positive correlation between the ...

  3. Null and Alternative Hypotheses

    The null and alternative hypotheses are two competing claims that researchers weigh evidence for and against using a statistical test: Null hypothesis (H0): There's no effect in the population. Alternative hypothesis (HA): There's an effect in the population. The effect is usually the effect of the independent variable on the dependent ...

  4. Research Hypothesis: Definition, Types, Examples and Quick Tips

    A good alternative hypothesis example is "Attending physiotherapy sessions improves athletes' on-field performance." or "Water evaporates at 100°C. ... It includes everything you need, including a repository of over 270 million research papers across disciplines, SEO-optimized summaries and public profiles to show your expertise and ...

  5. What is an Alternative Hypothesis in Statistics?

    The following examples illustrate how to define the null and alternative hypotheses for different research problems. Example 1: A biologist wants to test if the mean weight of a certain population of turtle is different from the widely-accepted mean weight of 300 pounds. The null and alternative hypothesis for this research study would be: Null ...

  6. How to Write a Strong Hypothesis

    6. Write a null hypothesis. If your research involves statistical hypothesis testing, you will also have to write a null hypothesis. The null hypothesis is the default position that there is no association between the variables. The null hypothesis is written as H 0, while the alternative hypothesis is H 1 or H a.

  7. Hypothesis Testing, P Values, Confidence Intervals, and Significance

    This is sometimes called the alternative hypothesis and ultimately allows the researcher to take a stance based on experience or insight from medical literature. An example of a hypothesis is below. Research Hypothesis: Drug 23 will significantly reduce symptoms associated with Disease A compared to Drug 22.

  8. 10.1

    The alternative hypothesis is typically the research hypothesis of interest. Here are some examples. Example 10.2: Hypotheses with One Sample of One Categorical Variable Section . About 10% of the human population is left-handed. Suppose a researcher at Penn State speculates that students in the College of Arts and Architecture are more likely ...

  9. Null & Alternative Hypotheses

    This hypothesis should state what you expect the data to show, based on your research on the topic. This is your answer to your research question. Examples: Null Hypothesis: H 0: There is no difference in the salary of factory workers based on gender. Alternative Hypothesis: H a: Male factory workers have a higher salary than female factory ...

  10. 9.1 Null and Alternative Hypotheses

    The actual test begins by considering two hypotheses.They are called the null hypothesis and the alternative hypothesis.These hypotheses contain opposing viewpoints. H 0, the —null hypothesis: a statement of no difference between sample means or proportions or no difference between a sample mean or proportion and a population mean or proportion. In other words, the difference equals 0.

  11. An Introduction to Statistics: Understanding Hypothesis Testing and

    HYPOTHESIS TESTING. A clinical trial begins with an assumption or belief, and then proceeds to either prove or disprove this assumption. In statistical terms, this belief or assumption is known as a hypothesis. Counterintuitively, what the researcher believes in (or is trying to prove) is called the "alternate" hypothesis, and the opposite ...

  12. Null and Alternative Hypotheses

    That is why we say that we failed to reject the null hypothesis, rather than we accepted it. Del Siegle, Ph.D. Neag School of Education - University of Connecticut. [email protected]. www.delsiegle.com. Converting research questions to hypothesis is a simple task. Take the questions and make it a positive statement that says a relationship ...

  13. 5.2

    Alternative Hypothesis. The statement that there is some difference in the population (s), denoted as H a or H 1. When writing hypotheses there are three things that we need to know: (1) the parameter that we are testing (2) the direction of the test (non-directional, right-tailed or left-tailed), and (3) the value of the hypothesized parameter.

  14. Research Hypothesis In Psychology: Types, & Examples

    Examples. A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. It is a key component of the scientific method. Hypotheses connect theory to data and guide the research process towards expanding scientific understanding.

  15. 11.2: Null and Alternative Hypotheses

    After you have determined which hypothesis the sample supports, you make a decision. There are two options for a decision. They are "reject \(H_{0}\)" if the sample information favors the alternative hypothesis or "do not reject \(H_{0}\)" or "decline to reject \(H_{0}\)" if the sample information is insufficient to reject the null hypothesis.

  16. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  17. Hypothesis Testing

    The first step in testing hypotheses is the transformation of the research question into a null hypothesis, H 0, and an alternative hypothesis, H A. 6 The null and alternative hypotheses are concise statements, usually in mathematical form, of 2 possible versions of "truth" about the relationship between the predictor of interest and the ...

  18. Examples of null and alternative hypotheses

    It is the opposite of your research hypothesis. The alternative hypothesis--that is, the research hypothesis--is the idea, phenomenon, observation that you want to prove. If you suspect that girls take longer to get ready for school than boys, then: Alternative: girls time > boys time. Null: girls time <= boys time.

  19. What Is an Alternative Hypothesis? (Definition and Examples)

    The alternative hypothesis often is the statement you test when attempting to disprove the null hypothesis. If you can gather enough data to support the alternative hypothesis, it replaces the null hypothesis. Statisticians and researchers use alternative and null hypotheses when conducting research in a variety of industries, including:

  20. Hypothesis Examples: How to Write a Great Research Hypothesis

    What is a hypothesis and how can you write a great one for your research? A hypothesis is a tentative statement about the relationship between two or more variables that can be tested empirically. Find out how to formulate a clear, specific, and testable hypothesis with examples and tips from Verywell Mind, a trusted source of psychology and mental health information.

  21. Alternative Hypothesis-Definition, Types and Examples

    Types. Basically, there are three types of the alternative hypothesis, they are; Left-Tailed: Here, it is expected that the sample proportion (π) is less than a specified value which is denoted by π 0, such that; H 1 : π < π 0. Right-Tailed: It represents that the sample proportion (π) is greater than some value, denoted by π 0.

  22. Scientific Hypotheses: Writing, Promoting, and Predicting Implications

    Scientific hypotheses are essential for progress in rapidly developing academic disciplines. Proposing new ideas and hypotheses require thorough analyses of evidence-based data and predictions of the implications. One of the main concerns relates to the ethical implications of the generated hypotheses. The authors may need to outline potential ...

  23. How to Write a Hypothesis for a Research Paper + Examples

    Ensure that your hypothesis is realistic and can be tested within the constraints of your available resources, time, and ethical considerations. Avoid value judgments: Be neutral and objective. Avoid including personal beliefs, value judgments, or subjective opinions. Stick to empirical statements based on evidence.

  24. TacticAI: an AI assistant for football tactics

    Identifying key patterns of tactics implemented by rival teams, and developing effective responses, lies at the heart of modern football. However, doing so algorithmically remains an open research ...