Random Assignment in Psychology: Definition & Examples

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul Mcleod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul Mcleod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

In psychology, random assignment refers to the practice of allocating participants to different experimental groups in a study in a completely unbiased way, ensuring each participant has an equal chance of being assigned to any group.

In experimental research, random assignment, or random placement, organizes participants from your sample into different groups using randomization. 

Random assignment uses chance procedures to ensure that each participant has an equal opportunity of being assigned to either a control or experimental group.

The control group does not receive the treatment in question, whereas the experimental group does receive the treatment.

When using random assignment, neither the researcher nor the participant can choose the group to which the participant is assigned. This ensures that any differences between and within the groups are not systematic at the onset of the study. 

In a study to test the success of a weight-loss program, investigators randomly assigned a pool of participants to one of two groups.

Group A participants participated in the weight-loss program for 10 weeks and took a class where they learned about the benefits of healthy eating and exercise.

Group B participants read a 200-page book that explains the benefits of weight loss. The investigator randomly assigned participants to one of the two groups.

The researchers found that those who participated in the program and took the class were more likely to lose weight than those in the other group that received only the book.

Importance 

Random assignment ensures that each group in the experiment is identical before applying the independent variable.

In experiments , researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables. Random assignment increases the likelihood that the treatment groups are the same at the onset of a study.

Thus, any changes that result from the independent variable can be assumed to be a result of the treatment of interest. This is particularly important for eliminating sources of bias and strengthening the internal validity of an experiment.

Random assignment is the best method for inferring a causal relationship between a treatment and an outcome.

Random Selection vs. Random Assignment 

Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study.

On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. 

Random selection ensures that everyone in the population has an equal chance of being selected for the study. Once the pool of participants has been chosen, experimenters use random assignment to assign participants into groups. 

Random assignment is only used in between-subjects experimental designs, while random selection can be used in a variety of study designs.

Random Assignment vs Random Sampling

Random sampling refers to selecting participants from a population so that each individual has an equal chance of being chosen. This method enhances the representativeness of the sample.

Random assignment, on the other hand, is used in experimental designs once participants are selected. It involves allocating these participants to different experimental groups or conditions randomly.

This helps ensure that any differences in results across groups are due to manipulating the independent variable, not preexisting differences among participants.

When to Use Random Assignment

Random assignment is used in experiments with a between-groups or independent measures design.

In these research designs, researchers will manipulate an independent variable to assess its effect on a dependent variable, while controlling for other variables.

There is usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable at the onset of the study.

How to Use Random Assignment

There are a variety of ways to assign participants into study groups randomly. Here are a handful of popular methods: 

  • Random Number Generator : Give each member of the sample a unique number; use a computer program to randomly generate a number from the list for each group.
  • Lottery : Give each member of the sample a unique number. Place all numbers in a hat or bucket and draw numbers at random for each group.
  • Flipping a Coin : Flip a coin for each participant to decide if they will be in the control group or experimental group (this method can only be used when you have just two groups) 
  • Roll a Die : For each number on the list, roll a dice to decide which of the groups they will be in. For example, assume that rolling 1, 2, or 3 places them in a control group and rolling 3, 4, 5 lands them in an experimental group.

When is Random Assignment not used?

  • When it is not ethically permissible: Randomization is only ethical if the researcher has no evidence that one treatment is superior to the other or that one treatment might have harmful side effects. 
  • When answering non-causal questions : If the researcher is just interested in predicting the probability of an event, the causal relationship between the variables is not important and observational designs would be more suitable than random assignment. 
  • When studying the effect of variables that cannot be manipulated: Some risk factors cannot be manipulated and so it would not make any sense to study them in a randomized trial. For example, we cannot randomly assign participants into categories based on age, gender, or genetic factors.

Drawbacks of Random Assignment

While randomization assures an unbiased assignment of participants to groups, it does not guarantee the equality of these groups. There could still be extraneous variables that differ between groups or group differences that arise from chance. Additionally, there is still an element of luck with random assignments.

Thus, researchers can not produce perfectly equal groups for each specific study. Differences between the treatment group and control group might still exist, and the results of a randomized trial may sometimes be wrong, but this is absolutely okay.

Scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when data is aggregated in a meta-analysis.

Additionally, external validity (i.e., the extent to which the researcher can use the results of the study to generalize to the larger population) is compromised with random assignment.

Random assignment is challenging to implement outside of controlled laboratory conditions and might not represent what would happen in the real world at the population level. 

Random assignment can also be more costly than simple observational studies, where an investigator is just observing events without intervening with the population.

Randomization also can be time-consuming and challenging, especially when participants refuse to receive the assigned treatment or do not adhere to recommendations. 

What is the difference between random sampling and random assignment?

Random sampling refers to randomly selecting a sample of participants from a population. Random assignment refers to randomly assigning participants to treatment groups from the selected sample.

Does random assignment increase internal validity?

Yes, random assignment ensures that there are no systematic differences between the participants in each group, enhancing the study’s internal validity .

Does random assignment reduce sampling error?

Yes, with random assignment, participants have an equal chance of being assigned to either a control group or an experimental group, resulting in a sample that is, in theory, representative of the population.

Random assignment does not completely eliminate sampling error because a sample only approximates the population from which it is drawn. However, random sampling is a way to minimize sampling errors. 

When is random assignment not possible?

Random assignment is not possible when the experimenters cannot control the treatment or independent variable.

For example, if you want to compare how men and women perform on a test, you cannot randomly assign subjects to these groups.

Participants are not randomly assigned to different groups in this study, but instead assigned based on their characteristics.

Does random assignment eliminate confounding variables?

Yes, random assignment eliminates the influence of any confounding variables on the treatment because it distributes them at random among the study groups. Randomization invalidates any relationship between a confounding variable and the treatment.

Why is random assignment of participants to treatment conditions in an experiment used?

Random assignment is used to ensure that all groups are comparable at the start of a study. This allows researchers to conclude that the outcomes of the study can be attributed to the intervention at hand and to rule out alternative explanations for study results.

Further Reading

  • Bogomolnaia, A., & Moulin, H. (2001). A new solution to the random assignment problem .  Journal of Economic theory ,  100 (2), 295-328.
  • Krause, M. S., & Howard, K. I. (2003). What random assignment does and does not do .  Journal of Clinical Psychology ,  59 (7), 751-766.

Print Friendly, PDF & Email

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Best Family Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Verywell Mind Insights
  • 2023 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

The Definition of Random Assignment According to Psychology

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

the random assignment of participants to groups

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

the random assignment of participants to groups

Materio / Getty Images

Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the control group. In clinical research, randomized clinical trials are known as the gold standard for meaningful results.

Simple random assignment techniques might involve tactics such as flipping a coin, drawing names out of a hat, rolling dice, or assigning random numbers to a list of participants. It is important to note that random assignment differs from random selection .

While random selection refers to how participants are randomly chosen from a target population as representatives of that population, random assignment refers to how those chosen participants are then assigned to experimental groups.

Random Assignment In Research

To determine if changes in one variable will cause changes in another variable, psychologists must perform an experiment. Random assignment is a critical part of the experimental design that helps ensure the reliability of the study outcomes.

Researchers often begin by forming a testable hypothesis predicting that one variable of interest will have some predictable impact on another variable.

The variable that the experimenters will manipulate in the experiment is known as the independent variable , while the variable that they will then measure for different outcomes is known as the dependent variable. While there are different ways to look at relationships between variables, an experiment is the best way to get a clear idea if there is a cause-and-effect relationship between two or more variables.

Once researchers have formulated a hypothesis, conducted background research, and chosen an experimental design, it is time to find participants for their experiment. How exactly do researchers decide who will be part of an experiment? As mentioned previously, this is often accomplished through something known as random selection.

Random Selection

In order to generalize the results of an experiment to a larger group, it is important to choose a sample that is representative of the qualities found in that population. For example, if the total population is 60% female and 40% male, then the sample should reflect those same percentages.

Choosing a representative sample is often accomplished by randomly picking people from the population to be participants in a study. Random selection means that everyone in the group stands an equal chance of being chosen to minimize any bias. Once a pool of participants has been selected, it is time to assign them to groups.

By randomly assigning the participants into groups, the experimenters can be fairly sure that each group will have the same characteristics before the independent variable is applied.

Participants might be randomly assigned to the control group , which does not receive the treatment in question. The control group may receive a placebo or receive the standard treatment. Participants may also be randomly assigned to the experimental group , which receives the treatment of interest. In larger studies, there can be multiple treatment groups for comparison.

There are simple methods of random assignment, like rolling the die. However, there are more complex techniques that involve random number generators to remove any human error.

There can also be random assignment to groups with pre-established rules or parameters. For example, if you want to have an equal number of men and women in each of your study groups, you might separate your sample into two groups (by sex) before randomly assigning each of those groups into the treatment group and control group.

Random assignment is essential because it increases the likelihood that the groups are the same at the outset. With all characteristics being equal between groups, other than the application of the independent variable, any differences found between group outcomes can be more confidently attributed to the effect of the intervention.

Example of Random Assignment

Imagine that a researcher is interested in learning whether or not drinking caffeinated beverages prior to an exam will improve test performance. After randomly selecting a pool of participants, each person is randomly assigned to either the control group or the experimental group.

The participants in the control group consume a placebo drink prior to the exam that does not contain any caffeine. Those in the experimental group, on the other hand, consume a caffeinated beverage before taking the test.

Participants in both groups then take the test, and the researcher compares the results to determine if the caffeinated beverage had any impact on test performance.

A Word From Verywell

Random assignment plays an important role in the psychology research process. Not only does this process help eliminate possible sources of bias, but it also makes it easier to generalize the results of a tested sample of participants to a larger population.

Random assignment helps ensure that members of each group in the experiment are the same, which means that the groups are also likely more representative of what is present in the larger population of interest. Through the use of this technique, psychology researchers are able to study complex phenomena and contribute to our understanding of the human mind and behavior.

Lin Y, Zhu M, Su Z. The pursuit of balance: An overview of covariate-adaptive randomization techniques in clinical trials . Contemp Clin Trials. 2015;45(Pt A):21-25. doi:10.1016/j.cct.2015.07.011

Sullivan L. Random assignment versus random selection . In: The SAGE Glossary of the Social and Behavioral Sciences. SAGE Publications, Inc.; 2009. doi:10.4135/9781412972024.n2108

Alferes VR. Methods of Randomization in Experimental Design . SAGE Publications, Inc.; 2012. doi:10.4135/9781452270012

Nestor PG, Schutt RK. Research Methods in Psychology: Investigating Human Behavior. (2nd Ed.). SAGE Publications, Inc.; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

Random Assignment in Psychology (Definition + 40 Examples)

practical psychology logo

Have you ever wondered how researchers discover new ways to help people learn, make decisions, or overcome challenges? A hidden hero in this adventure of discovery is a method called random assignment, a cornerstone in psychological research that helps scientists uncover the truths about the human mind and behavior.

Random Assignment is a process used in research where each participant has an equal chance of being placed in any group within the study. This technique is essential in experiments as it helps to eliminate biases, ensuring that the different groups being compared are similar in all important aspects.

By doing so, researchers can be confident that any differences observed are likely due to the variable being tested, rather than other factors.

In this article, we’ll explore the intriguing world of random assignment, diving into its history, principles, real-world examples, and the impact it has had on the field of psychology.

History of Random Assignment

two women in different conditions

Stepping back in time, we delve into the origins of random assignment, which finds its roots in the early 20th century.

The pioneering mind behind this innovative technique was Sir Ronald A. Fisher , a British statistician and biologist. Fisher introduced the concept of random assignment in the 1920s, aiming to improve the quality and reliability of experimental research .

His contributions laid the groundwork for the method's evolution and its widespread adoption in various fields, particularly in psychology.

Fisher’s groundbreaking work on random assignment was motivated by his desire to control for confounding variables – those pesky factors that could muddy the waters of research findings.

By assigning participants to different groups purely by chance, he realized that the influence of these confounding variables could be minimized, paving the way for more accurate and trustworthy results.

Early Studies Utilizing Random Assignment

Following Fisher's initial development, random assignment started to gain traction in the research community. Early studies adopting this methodology focused on a variety of topics, from agriculture (which was Fisher’s primary field of interest) to medicine and psychology.

The approach allowed researchers to draw stronger conclusions from their experiments, bolstering the development of new theories and practices.

One notable early study utilizing random assignment was conducted in the field of educational psychology. Researchers were keen to understand the impact of different teaching methods on student outcomes.

By randomly assigning students to various instructional approaches, they were able to isolate the effects of the teaching methods, leading to valuable insights and recommendations for educators.

Evolution of the Methodology

As the decades rolled on, random assignment continued to evolve and adapt to the changing landscape of research.

Advances in technology introduced new tools and techniques for implementing randomization, such as computerized random number generators, which offered greater precision and ease of use.

The application of random assignment expanded beyond the confines of the laboratory, finding its way into field studies and large-scale surveys.

Researchers across diverse disciplines embraced the methodology, recognizing its potential to enhance the validity of their findings and contribute to the advancement of knowledge.

From its humble beginnings in the early 20th century to its widespread use today, random assignment has proven to be a cornerstone of scientific inquiry.

Its development and evolution have played a pivotal role in shaping the landscape of psychological research, driving discoveries that have improved lives and deepened our understanding of the human experience.

Principles of Random Assignment

Delving into the heart of random assignment, we uncover the theories and principles that form its foundation.

The method is steeped in the basics of probability theory and statistical inference, ensuring that each participant has an equal chance of being placed in any group, thus fostering fair and unbiased results.

Basic Principles of Random Assignment

Understanding the core principles of random assignment is key to grasping its significance in research. There are three principles: equal probability of selection, reduction of bias, and ensuring representativeness.

The first principle, equal probability of selection , ensures that every participant has an identical chance of being assigned to any group in the study. This randomness is crucial as it mitigates the risk of bias and establishes a level playing field.

The second principle focuses on the reduction of bias . Random assignment acts as a safeguard, ensuring that the groups being compared are alike in all essential aspects before the experiment begins.

This similarity between groups allows researchers to attribute any differences observed in the outcomes directly to the independent variable being studied.

Lastly, ensuring representativeness is a vital principle. When participants are assigned randomly, the resulting groups are more likely to be representative of the larger population.

This characteristic is crucial for the generalizability of the study’s findings, allowing researchers to apply their insights broadly.

Theoretical Foundation

The theoretical foundation of random assignment lies in probability theory and statistical inference .

Probability theory deals with the likelihood of different outcomes, providing a mathematical framework for analyzing random phenomena. In the context of random assignment, it helps in ensuring that each participant has an equal chance of being placed in any group.

Statistical inference, on the other hand, allows researchers to draw conclusions about a population based on a sample of data drawn from that population. It is the mechanism through which the results of a study can be generalized to a broader context.

Random assignment enhances the reliability of statistical inferences by reducing biases and ensuring that the sample is representative.

Differentiating Random Assignment from Random Selection

It’s essential to distinguish between random assignment and random selection, as the two terms, while related, have distinct meanings in the realm of research.

Random assignment refers to how participants are placed into different groups in an experiment, aiming to control for confounding variables and help determine causes.

In contrast, random selection pertains to how individuals are chosen to participate in a study. This method is used to ensure that the sample of participants is representative of the larger population, which is vital for the external validity of the research.

While both methods are rooted in randomness and probability, they serve different purposes in the research process.

Understanding the theories, principles, and distinctions of random assignment illuminates its pivotal role in psychological research.

This method, anchored in probability theory and statistical inference, serves as a beacon of reliability, guiding researchers in their quest for knowledge and ensuring that their findings stand the test of validity and applicability.

Methodology of Random Assignment

woman sleeping with a brain monitor

Implementing random assignment in a study is a meticulous process that involves several crucial steps.

The initial step is participant selection, where individuals are chosen to partake in the study. This stage is critical to ensure that the pool of participants is diverse and representative of the population the study aims to generalize to.

Once the pool of participants has been established, the actual assignment process begins. In this step, each participant is allocated randomly to one of the groups in the study.

Researchers use various tools, such as random number generators or computerized methods, to ensure that this assignment is genuinely random and free from biases.

Monitoring and adjusting form the final step in the implementation of random assignment. Researchers need to continuously observe the groups to ensure that they remain comparable in all essential aspects throughout the study.

If any significant discrepancies arise, adjustments might be necessary to maintain the study’s integrity and validity.

Tools and Techniques Used

The evolution of technology has introduced a variety of tools and techniques to facilitate random assignment.

Random number generators, both manual and computerized, are commonly used to assign participants to different groups. These generators ensure that each individual has an equal chance of being placed in any group, upholding the principle of equal probability of selection.

In addition to random number generators, researchers often use specialized computer software designed for statistical analysis and experimental design.

These software programs offer advanced features that allow for precise and efficient random assignment, minimizing the risk of human error and enhancing the study’s reliability.

Ethical Considerations

The implementation of random assignment is not devoid of ethical considerations. Informed consent is a fundamental ethical principle that researchers must uphold.

Informed consent means that every participant should be fully informed about the nature of the study, the procedures involved, and any potential risks or benefits, ensuring that they voluntarily agree to participate.

Beyond informed consent, researchers must conduct a thorough risk and benefit analysis. The potential benefits of the study should outweigh any risks or harms to the participants.

Safeguarding the well-being of participants is paramount, and any study employing random assignment must adhere to established ethical guidelines and standards.

Conclusion of Methodology

The methodology of random assignment, while seemingly straightforward, is a multifaceted process that demands precision, fairness, and ethical integrity. From participant selection to assignment and monitoring, each step is crucial to ensure the validity of the study’s findings.

The tools and techniques employed, coupled with a steadfast commitment to ethical principles, underscore the significance of random assignment as a cornerstone of robust psychological research.

Benefits of Random Assignment in Psychological Research

The impact and importance of random assignment in psychological research cannot be overstated. It is fundamental for ensuring the study is accurate, allowing the researchers to determine if their study actually caused the results they saw, and making sure the findings can be applied to the real world.

Facilitating Causal Inferences

When participants are randomly assigned to different groups, researchers can be more confident that the observed effects are due to the independent variable being changed, and not other factors.

This ability to determine the cause is called causal inference .

This confidence allows for the drawing of causal relationships, which are foundational for theory development and application in psychology.

Ensuring Internal Validity

One of the foremost impacts of random assignment is its ability to enhance the internal validity of an experiment.

Internal validity refers to the extent to which a researcher can assert that changes in the dependent variable are solely due to manipulations of the independent variable , and not due to confounding variables.

By ensuring that each participant has an equal chance of being in any condition of the experiment, random assignment helps control for participant characteristics that could otherwise complicate the results.

Enhancing Generalizability

Beyond internal validity, random assignment also plays a crucial role in enhancing the generalizability of research findings.

When done correctly, it ensures that the sample groups are representative of the larger population, so can allow researchers to apply their findings more broadly.

This representative nature is essential for the practical application of research, impacting policy, interventions, and psychological therapies.

Limitations of Random Assignment

Potential for implementation issues.

While the principles of random assignment are robust, the method can face implementation issues.

One of the most common problems is logistical constraints. Some studies, due to their nature or the specific population being studied, find it challenging to implement random assignment effectively.

For instance, in educational settings, logistical issues such as class schedules and school policies might stop the random allocation of students to different teaching methods .

Ethical Dilemmas

Random assignment, while methodologically sound, can also present ethical dilemmas.

In some cases, withholding a potentially beneficial treatment from one of the groups of participants can raise serious ethical questions, especially in medical or clinical research where participants' well-being might be directly affected.

Researchers must navigate these ethical waters carefully, balancing the pursuit of knowledge with the well-being of participants.

Generalizability Concerns

Even when implemented correctly, random assignment does not always guarantee generalizable results.

The types of people in the participant pool, the specific context of the study, and the nature of the variables being studied can all influence the extent to which the findings can be applied to the broader population.

Researchers must be cautious in making broad generalizations from studies, even those employing strict random assignment.

Practical and Real-World Limitations

In the real world, many variables cannot be manipulated for ethical or practical reasons, limiting the applicability of random assignment.

For instance, researchers cannot randomly assign individuals to different levels of intelligence, socioeconomic status, or cultural backgrounds.

This limitation necessitates the use of other research designs, such as correlational or observational studies , when exploring relationships involving such variables.

Response to Critiques

In response to these critiques, people in favor of random assignment argue that the method, despite its limitations, remains one of the most reliable ways to establish cause and effect in experimental research.

They acknowledge the challenges and ethical considerations but emphasize the rigorous frameworks in place to address them.

The ongoing discussion around the limitations and critiques of random assignment contributes to the evolution of the method, making sure it is continuously relevant and applicable in psychological research.

While random assignment is a powerful tool in experimental research, it is not without its critiques and limitations. Implementation issues, ethical dilemmas, generalizability concerns, and real-world limitations can pose significant challenges.

However, the continued discourse and refinement around these issues underline the method's enduring significance in the pursuit of knowledge in psychology.

By being careful with how we do things and doing what's right, random assignment stays a really important part of studying how people act and think.

Real-World Applications and Examples

man on a treadmill

Random assignment has been employed in many studies across various fields of psychology, leading to significant discoveries and advancements.

Here are some real-world applications and examples illustrating the diversity and impact of this method:

  • Medicine and Health Psychology: Randomized Controlled Trials (RCTs) are the gold standard in medical research. In these studies, participants are randomly assigned to either the treatment or control group to test the efficacy of new medications or interventions.
  • Educational Psychology: Studies in this field have used random assignment to explore the effects of different teaching methods, classroom environments, and educational technologies on student learning and outcomes.
  • Cognitive Psychology: Researchers have employed random assignment to investigate various aspects of human cognition, including memory, attention, and problem-solving, leading to a deeper understanding of how the mind works.
  • Social Psychology: Random assignment has been instrumental in studying social phenomena, such as conformity, aggression, and prosocial behavior, shedding light on the intricate dynamics of human interaction.

Let's get into some specific examples. You'll need to know one term though, and that is "control group." A control group is a set of participants in a study who do not receive the treatment or intervention being tested , serving as a baseline to compare with the group that does, in order to assess the effectiveness of the treatment.

  • Smoking Cessation Study: Researchers used random assignment to put participants into two groups. One group received a new anti-smoking program, while the other did not. This helped determine if the program was effective in helping people quit smoking.
  • Math Tutoring Program: A study on students used random assignment to place them into two groups. One group received additional math tutoring, while the other continued with regular classes, to see if the extra help improved their grades.
  • Exercise and Mental Health: Adults were randomly assigned to either an exercise group or a control group to study the impact of physical activity on mental health and mood.
  • Diet and Weight Loss: A study randomly assigned participants to different diet plans to compare their effectiveness in promoting weight loss and improving health markers.
  • Sleep and Learning: Researchers randomly assigned students to either a sleep extension group or a regular sleep group to study the impact of sleep on learning and memory.
  • Classroom Seating Arrangement: Teachers used random assignment to place students in different seating arrangements to examine the effect on focus and academic performance.
  • Music and Productivity: Employees were randomly assigned to listen to music or work in silence to investigate the effect of music on workplace productivity.
  • Medication for ADHD: Children with ADHD were randomly assigned to receive either medication, behavioral therapy, or a placebo to compare treatment effectiveness.
  • Mindfulness Meditation for Stress: Adults were randomly assigned to a mindfulness meditation group or a waitlist control group to study the impact on stress levels.
  • Video Games and Aggression: A study randomly assigned participants to play either violent or non-violent video games and then measured their aggression levels.
  • Online Learning Platforms: Students were randomly assigned to use different online learning platforms to evaluate their effectiveness in enhancing learning outcomes.
  • Hand Sanitizers in Schools: Schools were randomly assigned to use hand sanitizers or not to study the impact on student illness and absenteeism.
  • Caffeine and Alertness: Participants were randomly assigned to consume caffeinated or decaffeinated beverages to measure the effects on alertness and cognitive performance.
  • Green Spaces and Well-being: Neighborhoods were randomly assigned to receive green space interventions to study the impact on residents’ well-being and community connections.
  • Pet Therapy for Hospital Patients: Patients were randomly assigned to receive pet therapy or standard care to assess the impact on recovery and mood.
  • Yoga for Chronic Pain: Individuals with chronic pain were randomly assigned to a yoga intervention group or a control group to study the effect on pain levels and quality of life.
  • Flu Vaccines Effectiveness: Different groups of people were randomly assigned to receive either the flu vaccine or a placebo to determine the vaccine’s effectiveness.
  • Reading Strategies for Dyslexia: Children with dyslexia were randomly assigned to different reading intervention strategies to compare their effectiveness.
  • Physical Environment and Creativity: Participants were randomly assigned to different room setups to study the impact of physical environment on creative thinking.
  • Laughter Therapy for Depression: Individuals with depression were randomly assigned to laughter therapy sessions or control groups to assess the impact on mood.
  • Financial Incentives for Exercise: Participants were randomly assigned to receive financial incentives for exercising to study the impact on physical activity levels.
  • Art Therapy for Anxiety: Individuals with anxiety were randomly assigned to art therapy sessions or a waitlist control group to measure the effect on anxiety levels.
  • Natural Light in Offices: Employees were randomly assigned to workspaces with natural or artificial light to study the impact on productivity and job satisfaction.
  • School Start Times and Academic Performance: Schools were randomly assigned different start times to study the effect on student academic performance and well-being.
  • Horticulture Therapy for Seniors: Older adults were randomly assigned to participate in horticulture therapy or traditional activities to study the impact on cognitive function and life satisfaction.
  • Hydration and Cognitive Function: Participants were randomly assigned to different hydration levels to measure the impact on cognitive function and alertness.
  • Intergenerational Programs: Seniors and young people were randomly assigned to intergenerational programs to study the effects on well-being and cross-generational understanding.
  • Therapeutic Horseback Riding for Autism: Children with autism were randomly assigned to therapeutic horseback riding or traditional therapy to study the impact on social communication skills.
  • Active Commuting and Health: Employees were randomly assigned to active commuting (cycling, walking) or passive commuting to study the effect on physical health.
  • Mindful Eating for Weight Management: Individuals were randomly assigned to mindful eating workshops or control groups to study the impact on weight management and eating habits.
  • Noise Levels and Learning: Students were randomly assigned to classrooms with different noise levels to study the effect on learning and concentration.
  • Bilingual Education Methods: Schools were randomly assigned different bilingual education methods to compare their effectiveness in language acquisition.
  • Outdoor Play and Child Development: Children were randomly assigned to different amounts of outdoor playtime to study the impact on physical and cognitive development.
  • Social Media Detox: Participants were randomly assigned to a social media detox or regular usage to study the impact on mental health and well-being.
  • Therapeutic Writing for Trauma Survivors: Individuals who experienced trauma were randomly assigned to therapeutic writing sessions or control groups to study the impact on psychological well-being.
  • Mentoring Programs for At-risk Youth: At-risk youth were randomly assigned to mentoring programs or control groups to assess the impact on academic achievement and behavior.
  • Dance Therapy for Parkinson’s Disease: Individuals with Parkinson’s disease were randomly assigned to dance therapy or traditional exercise to study the effect on motor function and quality of life.
  • Aquaponics in Schools: Schools were randomly assigned to implement aquaponics programs to study the impact on student engagement and environmental awareness.
  • Virtual Reality for Phobia Treatment: Individuals with phobias were randomly assigned to virtual reality exposure therapy or traditional therapy to compare effectiveness.
  • Gardening and Mental Health: Participants were randomly assigned to engage in gardening or other leisure activities to study the impact on mental health and stress reduction.

Each of these studies exemplifies how random assignment is utilized in various fields and settings, shedding light on the multitude of ways it can be applied to glean valuable insights and knowledge.

Real-world Impact of Random Assignment

old lady gardening

Random assignment is like a key tool in the world of learning about people's minds and behaviors. It’s super important and helps in many different areas of our everyday lives. It helps make better rules, creates new ways to help people, and is used in lots of different fields.

Health and Medicine

In health and medicine, random assignment has helped doctors and scientists make lots of discoveries. It’s a big part of tests that help create new medicines and treatments.

By putting people into different groups by chance, scientists can really see if a medicine works.

This has led to new ways to help people with all sorts of health problems, like diabetes, heart disease, and mental health issues like depression and anxiety.

Schools and education have also learned a lot from random assignment. Researchers have used it to look at different ways of teaching, what kind of classrooms are best, and how technology can help learning.

This knowledge has helped make better school rules, develop what we learn in school, and find the best ways to teach students of all ages and backgrounds.

Workplace and Organizational Behavior

Random assignment helps us understand how people act at work and what makes a workplace good or bad.

Studies have looked at different kinds of workplaces, how bosses should act, and how teams should be put together. This has helped companies make better rules and create places to work that are helpful and make people happy.

Environmental and Social Changes

Random assignment is also used to see how changes in the community and environment affect people. Studies have looked at community projects, changes to the environment, and social programs to see how they help or hurt people’s well-being.

This has led to better community projects, efforts to protect the environment, and programs to help people in society.

Technology and Human Interaction

In our world where technology is always changing, studies with random assignment help us see how tech like social media, virtual reality, and online stuff affect how we act and feel.

This has helped make better and safer technology and rules about using it so that everyone can benefit.

The effects of random assignment go far and wide, way beyond just a science lab. It helps us understand lots of different things, leads to new and improved ways to do things, and really makes a difference in the world around us.

From making healthcare and schools better to creating positive changes in communities and the environment, the real-world impact of random assignment shows just how important it is in helping us learn and make the world a better place.

So, what have we learned? Random assignment is like a super tool in learning about how people think and act. It's like a detective helping us find clues and solve mysteries in many parts of our lives.

From creating new medicines to helping kids learn better in school, and from making workplaces happier to protecting the environment, it’s got a big job!

This method isn’t just something scientists use in labs; it reaches out and touches our everyday lives. It helps make positive changes and teaches us valuable lessons.

Whether we are talking about technology, health, education, or the environment, random assignment is there, working behind the scenes, making things better and safer for all of us.

In the end, the simple act of putting people into groups by chance helps us make big discoveries and improvements. It’s like throwing a small stone into a pond and watching the ripples spread out far and wide.

Thanks to random assignment, we are always learning, growing, and finding new ways to make our world a happier and healthier place for everyone!

Related posts:

  • 19+ Experimental Design Examples (Methods + Types)
  • Cluster Sampling vs Stratified Sampling
  • 41+ White Collar Job Examples (Salary + Path)
  • 47+ Blue Collar Job Examples (Salary + Path)
  • McDonaldization of Society (Definition + Examples)

Reference this article:

About The Author

Photo of author

Free Personality Test

Free Personality Quiz

Free Memory Test

Free Memory Test

Free IQ Test

Free IQ Test

PracticalPie.com is a participant in the Amazon Associates Program. As an Amazon Associate we earn from qualifying purchases.

Follow Us On:

Youtube Facebook Instagram X/Twitter

Psychology Resources

Developmental

Personality

Relationships

Psychologists

Serial Killers

Psychology Tests

Personality Quiz

Memory Test

Depression test

Type A/B Personality Test

© PracticalPsychology. All rights reserved

Privacy Policy | Terms of Use

Purpose and Limitations of Random Assignment

In an experimental study, random assignment is a process by which participants are assigned, with the same chance, to either a treatment or a control group. The goal is to assure an unbiased assignment of participants to treatment options.

Random assignment is considered the gold standard for achieving comparability across study groups, and therefore is the best method for inferring a causal relationship between a treatment (or intervention or risk factor) and an outcome.

Representation of random assignment in an experimental study

Random assignment of participants produces comparable groups regarding the participants’ initial characteristics, thereby any difference detected in the end between the treatment and the control group will be due to the effect of the treatment alone.

How does random assignment produce comparable groups?

1. random assignment prevents selection bias.

Randomization works by removing the researcher’s and the participant’s influence on the treatment allocation. So the allocation can no longer be biased since it is done at random, i.e. in a non-predictable way.

This is in contrast with the real world, where for example, the sickest people are more likely to receive the treatment.

2. Random assignment prevents confounding

A confounding variable is one that is associated with both the intervention and the outcome, and thus can affect the outcome in 2 ways:

Causal diagram representing how confounding works

Either directly:

Direct influence of confounding on the outcome

Or indirectly through the treatment:

Indirect influence of confounding on the outcome

This indirect relationship between the confounding variable and the outcome can cause the treatment to appear to have an influence on the outcome while in reality the treatment is just a mediator of that effect (as it happens to be on the causal pathway between the confounder and the outcome).

Random assignment eliminates the influence of the confounding variables on the treatment since it distributes them at random between the study groups, therefore, ruling out this alternative path or explanation of the outcome.

How random assignment protects from confounding

3. Random assignment also eliminates other threats to internal validity

By distributing all threats (known and unknown) at random between study groups, participants in both the treatment and the control group become equally subject to the effect of any threat to validity. Therefore, comparing the outcome between the 2 groups will bypass the effect of these threats and will only reflect the effect of the treatment on the outcome.

These threats include:

  • History: This is any event that co-occurs with the treatment and can affect the outcome.
  • Maturation: This is the effect of time on the study participants (e.g. participants becoming wiser, hungrier, or more stressed with time) which might influence the outcome.
  • Regression to the mean: This happens when the participants’ outcome score is exceptionally good on a pre-treatment measurement, so the post-treatment measurement scores will naturally regress toward the mean — in simple terms, regression happens since an exceptional performance is hard to maintain. This effect can bias the study since it represents an alternative explanation of the outcome.

Note that randomization does not prevent these effects from happening, it just allows us to control them by reducing their risk of being associated with the treatment.

What if random assignment produced unequal groups?

Question: What should you do if after randomly assigning participants, it turned out that the 2 groups still differ in participants’ characteristics? More precisely, what if randomization accidentally did not balance risk factors that can be alternative explanations between the 2 groups? (For example, if one group includes more male participants, or sicker, or older people than the other group).

Short answer: This is perfectly normal, since randomization only assures an unbiased assignment of participants to groups, i.e. it produces comparable groups, but it does not guarantee the equality of these groups.

A more complete answer: Randomization will not and cannot create 2 equal groups regarding each and every characteristic. This is because when dealing with randomization there is still an element of luck. If you want 2 perfectly equal groups, you better match them manually as is done in a matched pairs design (for more information see my article on matched pairs design ).

This is similar to throwing a die: If you throw it 10 times, the chance of getting a specific outcome will not be 1/6. But it will approach 1/6 if you repeat the experiment a very large number of times and calculate the average number of times the specific outcome turned up.

So randomization will not produce perfectly equal groups for each specific study, especially if the study has a small sample size. But do not forget that scientific evidence is a long and continuous process, and the groups will tend to be equal in the long run when a meta-analysis aggregates the results of a large number of randomized studies.

So for each individual study, differences between the treatment and control group will exist and will influence the study results. This means that the results of a randomized trial will sometimes be wrong, and this is absolutely okay.

BOTTOM LINE:

Although the results of a particular randomized study are unbiased, they will still be affected by a sampling error due to chance. But the real benefit of random assignment will be when data is aggregated in a meta-analysis.

Limitations of random assignment

Randomized designs can suffer from:

1. Ethical issues:

Randomization is ethical only if the researcher has no evidence that one treatment is superior to the other.

Also, it would be unethical to randomly assign participants to harmful exposures such as smoking or dangerous chemicals.

2. Low external validity:

With random assignment, external validity (i.e. the generalizability of the study results) is compromised because the results of a study that uses random assignment represent what would happen under “ideal” experimental conditions, which is in general very different from what happens at the population level.

In the real world, people who take the treatment might be very different from those who don’t – so the assignment of participants is not a random event, but rather under the influence of all sort of external factors.

External validity can be also jeopardized in cases where not all participants are eligible or willing to accept the terms of the study.

3. Higher cost of implementation:

An experimental design with random assignment is typically more expensive than observational studies where the investigator’s role is just to observe events without intervening.

Experimental designs also typically take a lot of time to implement, and therefore are less practical when a quick answer is needed.

4. Impracticality when answering non-causal questions:

A randomized trial is our best bet when the question is to find the causal effect of a treatment or a risk factor.

Sometimes however, the researcher is just interested in predicting the probability of an event or a disease given some risk factors. In this case, the causal relationship between these variables is not important, making observational designs more suitable for such problems.

5. Impracticality when studying the effect of variables that cannot be manipulated:

The usual objective of studying the effects of risk factors is to propose recommendations that involve changing the level of exposure to these factors.

However, some risk factors cannot be manipulated, and so it does not make any sense to study them in a randomized trial. For example it would be impossible to randomly assign participants to age categories, gender, or genetic factors.

6. Difficulty to control participants:

These difficulties include:

  • Participants refusing to receive the assigned treatment.
  • Participants not adhering to recommendations.
  • Differential loss to follow-up between those who receive the treatment and those who don’t.

All of these issues might occur in a randomized trial, but might not affect an observational study.

  • Shadish WR, Cook TD, Campbell DT. Experimental and Quasi-Experimental Designs for Generalized Causal Inference . 2nd edition. Cengage Learning; 2001.
  • Friedman LM, Furberg CD, DeMets DL, Reboussin DM, Granger CB. Fundamentals of Clinical Trials . 5th ed. 2015 edition. Springer; 2015.

Further reading

  • Posttest-Only Control Group Design
  • Pretest-Posttest Control Group Design
  • Randomized Block Design

Logo for Open Library Publishing Platform

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

As previously mentioned, one of the characteristics of a true experiment is that researchers use a random process to decide which participants are tested under which conditions. Random assignation is a powerful research technique that addresses the assumption of pre-test equivalence – that the experimental and control group are equal in all respects before the administration of the independent variable (Palys & Atchison, 2014).

Random assignation is the primary way that researchers attempt to control extraneous variables across conditions. Random assignation is associated with experimental research methods. In its strictest sense, random assignment should meet two criteria.  One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus, one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands on the heads side, the participant is assigned to Condition A, and if it lands on the tails side, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and, if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested.

However, one problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible.

One approach is block randomization. In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. When the procedure is computerized, the computer program often handles the random assignment, which is obviously much easier. You can also find programs online to help you randomize your random assignation. For example, the Research Randomizer website will generate block randomization sequences for any number of participants and conditions ( Research Randomizer ).

Random assignation is not guaranteed to control all extraneous variables across conditions. It is always possible that, just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this may not be a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population take the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this confound is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design. Note: Do not confuse random assignation with random sampling. Random sampling is a method for selecting a sample from a population; we will talk about this in Chapter 7.

Research Methods, Data Collection and Ethics Copyright © 2020 by Valerie Sheppard is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

helpful professor logo

Random Assignment in Psychology (Intro for Students)

random assignment examples and definition, explained below

Random assignment is a research procedure used to randomly assign participants to different experimental conditions (or ‘groups’). This introduces the element of chance, ensuring that each participant has an equal likelihood of being placed in any condition group for the study.

It is absolutely essential that the treatment condition and the control condition are the same in all ways except for the variable being manipulated.

Using random assignment to place participants in different conditions helps to achieve this.

It ensures that those conditions are the same in regards to all potential confounding variables and extraneous factors .

Why Researchers Use Random Assignment

Researchers use random assignment to control for confounds in research.

Confounds refer to unwanted and often unaccounted-for variables that might affect the outcome of a study. These confounding variables can skew the results, rendering the experiment unreliable.

For example, below is a study with two groups. Note how there are more ‘red’ individuals in the first group than the second:

a representation of a treatment condition showing 12 red people in the cohort

There is likely a confounding variable in this experiment explaining why more red people ended up in the treatment condition and less in the control condition. The red people might have self-selected, for example, leading to a skew of them in one group over the other.

Ideally, we’d want a more even distribution, like below:

a representation of a treatment condition showing 4 red people in the cohort

To achieve better balance in our two conditions, we use randomized sampling.

Fact File: Experiments 101

Random assignment is used in the type of research called the experiment.

An experiment involves manipulating the level of one variable and examining how it affects another variable. These are the independent and dependent variables :

  • Independent Variable: The variable manipulated is called the independent variable (IV)
  • Dependent Variable: The variable that it is expected to affect is called the dependent variable (DV).

The most basic form of the experiment involves two conditions: the treatment and the control .

  • The Treatment Condition: The treatment condition involves the participants being exposed to the IV.
  • The Control Condition: The control condition involves the absence of the IV. Therefore, the IV has two levels: zero and some quantity.

Researchers utilize random assignment to determine which participants go into which conditions.

Methods of Random Assignment

There are several procedures that researchers can use to randomly assign participants to different conditions.

1. Random number generator

There are several websites that offer computer-generated random numbers. Simply indicate how many conditions are in the experiment and then click. If there are 4 conditions, the program will randomly generate a number between 1 and 4 each time it is clicked.

2. Flipping a coin

If there are two conditions in an experiment, then the simplest way to implement random assignment is to flip a coin for each participant. Heads means being assigned to the treatment and tails means being assigned to the control (or vice versa).

3. Rolling a die

Rolling a single die is another way to randomly assign participants. If the experiment has three conditions, then numbers 1 and 2 mean being assigned to the control; numbers 3 and 4 mean treatment condition one; and numbers 5 and 6 mean treatment condition two.

4. Condition names in a hat

In some studies, the researcher will write the name of the treatment condition(s) or control on slips of paper and place them in a hat. If there are 4 conditions and 1 control, then there are 5 slips of paper.

The researcher closes their eyes and selects one slip for each participant. That person is then assigned to one of the conditions in the study and that slip of paper is placed back in the hat. Repeat as necessary.

There are other ways of trying to ensure that the groups of participants are equal in all ways with the exception of the IV. However, random assignment is the most often used because it is so effective at reducing confounds.

Read About More Methods and Examples of Random Assignment Here

Potential Confounding Effects

Random assignment is all about minimizing confounding effects.

Here are six types of confounds that can be controlled for using random assignment:

  • Individual Differences: Participants in a study will naturally vary in terms of personality, intelligence, mood, prior knowledge, and many other characteristics. If one group happens to have more people with a particular characteristic, this could affect the results. Random assignment ensures that these individual differences are spread out equally among the experimental groups, making it less likely that they will unduly influence the outcome.
  • Temporal or Time-Related Confounds: Events or situations that occur at a particular time can influence the outcome of an experiment. For example, a participant might be tested after a stressful event, while another might be tested after a relaxing weekend. Random assignment ensures that such effects are equally distributed among groups, thus controlling for their potential influence.
  • Order Effects: If participants are exposed to multiple treatments or tests, the order in which they experience them can influence their responses. Randomly assigning the order of treatments for different participants helps control for this.
  • Location or Environmental Confounds: The environment in which the study is conducted can influence the results. One group might be tested in a noisy room, while another might be in a quiet room. Randomly assigning participants to different locations can control for these effects.
  • Instrumentation Confounds: These occur when there are variations in the calibration or functioning of measurement instruments across conditions. If one group’s responses are being measured using a slightly different tool or scale, it can introduce a confound. Random assignment can ensure that any such potential inconsistencies in instrumentation are equally distributed among groups.
  • Experimenter Effects: Sometimes, the behavior or expectations of the person administering the experiment can unintentionally influence the participants’ behavior or responses. For instance, if an experimenter believes one treatment is superior, they might unconsciously communicate this belief to participants. Randomly assigning experimenters or using a double-blind procedure (where neither the participant nor the experimenter knows the treatment being given) can help control for this.

Random assignment helps balance out these and other potential confounds across groups, ensuring that any observed differences are more likely due to the manipulated independent variable rather than some extraneous factor.

Limitations of the Random Assignment Procedure

Although random assignment is extremely effective at eliminating the presence of participant-related confounds, there are several scenarios in which it cannot be used.

  • Ethics: The most obvious scenario is when it would be unethical. For example, if wanting to investigate the effects of emotional abuse on children, it would be unethical to randomly assign children to either received abuse or not.  Even if a researcher were to propose such a study, it would not receive approval from the Institutional Review Board (IRB) which oversees research by university faculty.
  • Practicality: Other scenarios involve matters of practicality. For example, randomly assigning people to specific types of diet over a 10-year period would be interesting, but it would be highly unlikely that participants would be diligent enough to make the study valid. This is why examining these types of subjects has to be carried out through observational studies . The data is correlational, which is informative, but falls short of the scientist’s ultimate goal of identifying causality.
  • Small Sample Size: The smaller the sample size being assigned to conditions, the more likely it is that the two groups will be unequal. For example, if you flip a coin many times in a row then you will notice that sometimes there will be a string of heads or tails that come up consecutively. This means that one condition may have a build-up of participants that share the same characteristics. However, if you continue flipping the coin, over the long-term, there will be a balance of heads and tails. Unfortunately, how large a sample size is necessary has been the subject of considerable debate (Bloom, 2006; Shadish et al., 2002).

“It is well known that larger sample sizes reduce the probability that random assignment will result in conditions that are unequal” (Goldberg, 2019, p. 2).

Applications of Random Assignment

The importance of random assignment has been recognized in a wide range of scientific and applied disciplines (Bloom, 2006).

Random assignment began as a tool in agricultural research by Fisher (1925, 1935). After WWII, it became extensively used in medical research to test the effectiveness of new treatments and pharmaceuticals (Marks, 1997).

Today it is widely used in industrial engineering (Box, Hunter, and Hunter, 2005), educational research (Lindquist, 1953; Ong-Dean et al., 2011)), psychology (Myers, 1972), and social policy studies (Boruch, 1998; Orr, 1999).

One of the biggest obstacles to the validity of an experiment is the confound. If the group of participants in the treatment condition are substantially different from the group in the control condition, then it is impossible to determine if the IV has an affect or if the confound has an effect.

Thankfully, random assignment is highly effective at eliminating confounds that are known and unknown. Because each participant has an equal chance of being placed in each condition, they are equally distributed.

There are several ways of implementing random assignment, including flipping a coin or using a random number generator.

Random assignment has become an essential procedure in research in a wide range of subjects such as psychology, education, and social policy.

Alferes, V. R. (2012). Methods of randomization in experimental design . Sage Publications.

Bloom, H. S. (2008). The core analytics of randomized experiments for social research. The SAGE Handbook of Social Research Methods , 115-133.

Boruch, R. F. (1998). Randomized controlled experiments for evaluation and planning. Handbook of applied social research methods , 161-191.

Box, G. E., Hunter, W. G., & Hunter, J. S. (2005). Design of experiments: Statistics for Experimenters: Design, Innovation and Discovery.

Dehue, T. (1997). Deception, efficiency, and random groups: Psychology and the gradual origination of the random group design. Isis , 88 (4), 653-673.

Fisher, R.A. (1925). Statistical methods for research workers (11th ed. rev.). Oliver and Boyd: Edinburgh.

Fisher, R. A. (1935). The Design of Experiments. Edinburgh: Oliver and Boyd.

Goldberg, M. H. (2019). How often does random assignment fail? Estimates and recommendations. Journal of Environmental Psychology , 66 , 101351.

Jamison, J. C. (2019). The entry of randomized assignment into the social sciences. Journal of Causal Inference , 7 (1), 20170025.

Lindquist, E. F. (1953). Design and analysis of experiments in psychology and education . Boston: Houghton Mifflin Company.

Marks, H. M. (1997). The progress of experiment: Science and therapeutic reform in the United States, 1900-1990 . Cambridge University Press.

Myers, J. L. (1972). Fundamentals of experimental design (2nd ed.). Allyn & Bacon.

Ong-Dean, C., Huie Hofstetter, C., & Strick, B. R. (2011). Challenges and dilemmas in implementing random assignment in educational research. American Journal of Evaluation , 32 (1), 29-49.

Orr, L. L. (1999). Social experiments: Evaluating public programs with experimental methods . Sage.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Quasi-experiments: interrupted time-series designs. Experimental and quasi-experimental designs for generalized causal inference , 171-205.

Stigler, S. M. (1992). A historical view of statistical concepts in psychology and educational research. American Journal of Education , 101 (1), 60-70.

Dave

Dave Cornell (PhD)

Dr. Cornell has worked in education for more than 20 years. His work has involved designing teacher certification for Trinity College in London and in-service training for state governments in the United States. He has trained kindergarten teachers in 8 countries and helped businessmen and women open baby centers and kindergartens in 3 countries.

  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Positive Punishment Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 25 Dissociation Examples (Psychology)
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ 15 Zone of Proximal Development Examples
  • Dave Cornell (PhD) https://helpfulprofessor.com/author/dave-cornell-phd/ Perception Checking: 15 Examples and Definition

Chris

Chris Drew (PhD)

This article was peer-reviewed and edited by Chris Drew (PhD). The review process on Helpful Professor involves having a PhD level expert fact check, edit, and contribute to articles. Reviewers ensure all content reflects expert academic consensus and is backed up with reference to academic studies. Dr. Drew has published over 20 academic articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education and holds a PhD in Education from ACU.

  • Chris Drew (PhD) #molongui-disabled-link 25 Positive Punishment Examples
  • Chris Drew (PhD) #molongui-disabled-link 25 Dissociation Examples (Psychology)
  • Chris Drew (PhD) #molongui-disabled-link 15 Zone of Proximal Development Examples
  • Chris Drew (PhD) #molongui-disabled-link Perception Checking: 15 Examples and Definition

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Explore Psychology

What Is Random Assignment in Psychology?

Categories Research Methods

What Is Random Assignment in Psychology?

Sharing is caring!

Random assignment means that every participant has the same chance of being chosen for the experimental or control group. It involves using procedures that rely on chance to assign participants to groups. Doing this means that every participant in a study has an equal opportunity to be assigned to any group.

For example, in a psychology experiment, participants might be assigned to either a control or experimental group. Some experiments might only have one experimental group, while others may have several treatment variations.

Using random assignment means that each participant has the same chance of being assigned to any of these groups.

How to Use Random Assignment

So what type of procedures might psychologists utilize for random assignment? Strategies can include:

  • Flipping a coin
  • Assigning random numbers
  • Rolling dice
  • Drawing names out of a hat

How Does Random Assignment Work?

A psychology experiment aims to determine if changes in one variable lead to changes in another variable. Researchers will first begin by coming up with a hypothesis. Once researchers have an idea of what they think they might find in a population, they will come up with an experimental design and then recruit participants for their study.

Once they have a pool of participants representative of the population they are interested in looking at, they will randomly assign the participants to their groups.

  • Control group : Some participants will end up in the control group, which serves as a baseline and does not receive the independent variables.
  • Experimental group : Other participants will end up in the experimental groups that receive some form of the independent variables.

By using random assignment, the researchers make it more likely that the groups are equal at the start of the experiment. Since the groups are the same on other variables, it can be assumed that any changes that occur are the result of varying the independent variables.

After a treatment has been administered, the researchers will then collect data in order to determine if the independent variable had any impact on the dependent variable.

Random Assignment vs. Random Selection

It is important to remember that random assignment is not the same thing as random selection , also known as random sampling.

Random selection instead involves how people are chosen to be in a study. Using random selection, every member of a population stands an equal chance of being chosen for a study or experiment.

So random sampling affects how participants are chosen for a study, while random assignment affects how participants are then assigned to groups.

Examples of Random Assignment

Imagine that a psychology researcher is conducting an experiment to determine if getting adequate sleep the night before an exam results in better test scores.

Forming a Hypothesis

They hypothesize that participants who get 8 hours of sleep will do better on a math exam than participants who only get 4 hours of sleep.

Obtaining Participants

The researcher starts by obtaining a pool of participants. They find 100 participants from a local university. Half of the participants are female, and half are male.

Randomly Assign Participants to Groups

The researcher then assigns random numbers to each participant and uses a random number generator to randomly assign each number to either the 4-hour or 8-hour sleep groups.

Conduct the Experiment

Those in the 8-hour sleep group agree to sleep for 8 hours that night, while those in the 4-hour group agree to wake up after only 4 hours. The following day, all of the participants meet in a classroom.

Collect and Analyze Data

Everyone takes the same math test. The test scores are then compared to see if the amount of sleep the night before had any impact on test scores.

Why Is Random Assignment Important in Psychology Research?

Random assignment is important in psychology research because it helps improve a study’s internal validity. This means that the researchers are sure that the study demonstrates a cause-and-effect relationship between an independent and dependent variable.

Random assignment improves the internal validity by minimizing the risk that there are systematic differences in the participants who are in each group.

Key Points to Remember About Random Assignment

  • Random assignment in psychology involves each participant having an equal chance of being chosen for any of the groups, including the control and experimental groups.
  • It helps control for potential confounding variables, reducing the likelihood of pre-existing differences between groups.
  • This method enhances the internal validity of experiments, allowing researchers to draw more reliable conclusions about cause-and-effect relationships.
  • Random assignment is crucial for creating comparable groups and increasing the scientific rigor of psychological studies.

Logo for Mavs Open Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

8.1 Experimental design: What is it and when should it be used?

Learning objectives.

  • Define experiment
  • Identify the core features of true experimental designs
  • Describe the difference between an experimental group and a control group
  • Identify and describe the various types of true experimental designs

Experiments are an excellent data collection strategy for social workers wishing to observe the effects of a clinical intervention or social welfare program. Understanding what experiments are and how they are conducted is useful for all social scientists, whether they actually plan to use this methodology or simply aim to understand findings from experimental studies. An experiment is a method of data collection designed to test hypotheses under controlled conditions. In social scientific research, the term experiment has a precise meaning and should not be used to describe all research methodologies.

the random assignment of participants to groups

Experiments have a long and important history in social science. Behaviorists such as John Watson, B. F. Skinner, Ivan Pavlov, and Albert Bandura used experimental design to demonstrate the various types of conditioning. Using strictly controlled environments, behaviorists were able to isolate a single stimulus as the cause of measurable differences in behavior or physiological responses. The foundations of social learning theory and behavior modification are found in experimental research projects. Moreover, behaviorist experiments brought psychology and social science away from the abstract world of Freudian analysis and towards empirical inquiry, grounded in real-world observations and objectively-defined variables. Experiments are used at all levels of social work inquiry, including agency-based experiments that test therapeutic interventions and policy experiments that test new programs.

Several kinds of experimental designs exist. In general, designs considered to be true experiments contain three basic key features:

  • random assignment of participants into experimental and control groups
  • a “treatment” (or intervention) provided to the experimental group
  • measurement of the effects of the treatment in a post-test administered to both groups

Some true experiments are more complex.  Their designs can also include a pre-test and can have more than two groups, but these are the minimum requirements for a design to be a true experiment.

Experimental and control groups

In a true experiment, the effect of an intervention is tested by comparing two groups: one that is exposed to the intervention (the experimental group , also known as the treatment group) and another that does not receive the intervention (the control group ). Importantly, participants in a true experiment need to be randomly assigned to either the control or experimental groups. Random assignment uses a random number generator or some other random process to assign people into experimental and control groups. Random assignment is important in experimental research because it helps to ensure that the experimental group and control group are comparable and that any differences between the experimental and control groups are due to random chance. We will address more of the logic behind random assignment in the next section.

Treatment or intervention

In an experiment, the independent variable is receiving the intervention being tested—for example, a therapeutic technique, prevention program, or access to some service or support. It is less common in of social work research, but social science research may also have a stimulus, rather than an intervention as the independent variable. For example, an electric shock or a reading about death might be used as a stimulus to provoke a response.

In some cases, it may be immoral to withhold treatment completely from a control group within an experiment. If you recruited two groups of people with severe addiction and only provided treatment to one group, the other group would likely suffer. For these cases, researchers use a control group that receives “treatment as usual.” Experimenters must clearly define what treatment as usual means. For example, a standard treatment in substance abuse recovery is attending Alcoholics Anonymous or Narcotics Anonymous meetings. A substance abuse researcher conducting an experiment may use twelve-step programs in their control group and use their experimental intervention in the experimental group. The results would show whether the experimental intervention worked better than normal treatment, which is useful information.

The dependent variable is usually the intended effect the researcher wants the intervention to have. If the researcher is testing a new therapy for individuals with binge eating disorder, their dependent variable may be the number of binge eating episodes a participant reports. The researcher likely expects her intervention to decrease the number of binge eating episodes reported by participants. Thus, she must, at a minimum, measure the number of episodes that occur after the intervention, which is the post-test .  In a classic experimental design, participants are also given a pretest to measure the dependent variable before the experimental treatment begins.

Types of experimental design

Let’s put these concepts in chronological order so we can better understand how an experiment runs from start to finish. Once you’ve collected your sample, you’ll need to randomly assign your participants to the experimental group and control group. In a common type of experimental design, you will then give both groups your pretest, which measures your dependent variable, to see what your participants are like before you start your intervention. Next, you will provide your intervention, or independent variable, to your experimental group, but not to your control group. Many interventions last a few weeks or months to complete, particularly therapeutic treatments. Finally, you will administer your post-test to both groups to observe any changes in your dependent variable. What we’ve just described is known as the classical experimental design and is the simplest type of true experimental design. All of the designs we review in this section are variations on this approach. Figure 8.1 visually represents these steps.

Steps in classic experimental design: Sampling to Assignment to Pretest to intervention to Posttest

An interesting example of experimental research can be found in Shannon K. McCoy and Brenda Major’s (2003) study of people’s perceptions of prejudice. In one portion of this multifaceted study, all participants were given a pretest to assess their levels of depression. No significant differences in depression were found between the experimental and control groups during the pretest. Participants in the experimental group were then asked to read an article suggesting that prejudice against their own racial group is severe and pervasive, while participants in the control group were asked to read an article suggesting that prejudice against a racial group other than their own is severe and pervasive. Clearly, these were not meant to be interventions or treatments to help depression, but were stimuli designed to elicit changes in people’s depression levels. Upon measuring depression scores during the post-test period, the researchers discovered that those who had received the experimental stimulus (the article citing prejudice against their same racial group) reported greater depression than those in the control group. This is just one of many examples of social scientific experimental research.

In addition to classic experimental design, there are two other ways of designing experiments that are considered to fall within the purview of “true” experiments (Babbie, 2010; Campbell & Stanley, 1963).  The posttest-only control group design is almost the same as classic experimental design, except it does not use a pretest. Researchers who use posttest-only designs want to eliminate testing effects , in which participants’ scores on a measure change because they have already been exposed to it. If you took multiple SAT or ACT practice exams before you took the real one you sent to colleges, you’ve taken advantage of testing effects to get a better score. Considering the previous example on racism and depression, participants who are given a pretest about depression before being exposed to the stimulus would likely assume that the intervention is designed to address depression. That knowledge could cause them to answer differently on the post-test than they otherwise would. In theory, as long as the control and experimental groups have been determined randomly and are therefore comparable, no pretest is needed. However, most researchers prefer to use pretests in case randomization did not result in equivalent groups and to help assess change over time within both the experimental and control groups.

Researchers wishing to account for testing effects but also gather pretest data can use a Solomon four-group design. In the Solomon four-group design , the researcher uses four groups. Two groups are treated as they would be in a classic experiment—pretest, experimental group intervention, and post-test. The other two groups do not receive the pretest, though one receives the intervention. All groups are given the post-test. Table 8.1 illustrates the features of each of the four groups in the Solomon four-group design. By having one set of experimental and control groups that complete the pretest (Groups 1 and 2) and another set that does not complete the pretest (Groups 3 and 4), researchers using the Solomon four-group design can account for testing effects in their analysis.

Solomon four-group designs are challenging to implement in the real world because they are time- and resource-intensive. Researchers must recruit enough participants to create four groups and implement interventions in two of them.

Overall, true experimental designs are sometimes difficult to implement in a real-world practice environment. It may be impossible to withhold treatment from a control group or randomly assign participants in a study. In these cases, pre-experimental and quasi-experimental designs–which we  will discuss in the next section–can be used.  However, the differences in rigor from true experimental designs leave their conclusions more open to critique.

Experimental design in macro-level research

You can imagine that social work researchers may be limited in their ability to use random assignment when examining the effects of governmental policy on individuals.  For example, it is unlikely that a researcher could randomly assign some states to implement decriminalization of recreational marijuana and some states not to in order to assess the effects of the policy change.  There are, however, important examples of policy experiments that use random assignment, including the Oregon Medicaid experiment. In the Oregon Medicaid experiment, the wait list for Oregon was so long, state officials conducted a lottery to see who from the wait list would receive Medicaid (Baicker et al., 2013).  Researchers used the lottery as a natural experiment that included random assignment. People selected to be a part of Medicaid were the experimental group and those on the wait list were in the control group. There are some practical complications macro-level experiments, just as with other experiments.  For example, the ethical concern with using people on a wait list as a control group exists in macro-level research just as it does in micro-level research.

Key Takeaways

  • True experimental designs require random assignment.
  • Control groups do not receive an intervention, and experimental groups receive an intervention.
  • The basic components of a true experiment include a pretest, posttest, control group, and experimental group.
  • Testing effects may cause researchers to use variations on the classic experimental design.
  • Classic experimental design- uses random assignment, an experimental and control group, as well as pre- and posttesting
  • Control group- the group in an experiment that does not receive the intervention
  • Experiment- a method of data collection designed to test hypotheses under controlled conditions
  • Experimental group- the group in an experiment that receives the intervention
  • Posttest- a measurement taken after the intervention
  • Posttest-only control group design- a type of experimental design that uses random assignment, and an experimental and control group, but does not use a pretest
  • Pretest- a measurement taken prior to the intervention
  • Random assignment-using a random process to assign people into experimental and control groups
  • Solomon four-group design- uses random assignment, two experimental and two control groups, pretests for half of the groups, and posttests for all
  • Testing effects- when a participant’s scores on a measure change because they have already been exposed to it
  • True experiments- a group of experimental designs that contain independent and dependent variables, pretesting and post testing, and experimental and control groups

Image attributions

exam scientific experiment by mohamed_hassan CC-0

Foundations of Social Work Research Copyright © 2020 by Rebecca L. Mauldin is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

6.2 Experimental Design

Learning objectives.

  • Explain the difference between between-subjects and within-subjects experiments, list some of the pros and cons of each approach, and decide which approach to use to answer a particular research question.
  • Define random assignment, distinguish it from random sampling, explain its purpose in experimental research, and use some simple strategies to implement it.
  • Define what a control condition is, explain its purpose in research on treatment effectiveness, and describe some alternative types of control conditions.
  • Define several types of carryover effect, give examples of each, and explain how counterbalancing helps to deal with them.

In this section, we look at some different ways to design an experiment. The primary distinction we will make is between approaches in which each participant experiences one level of the independent variable and approaches in which each participant experiences all levels of the independent variable. The former are called between-subjects experiments and the latter are called within-subjects experiments.

Between-Subjects Experiments

In a between-subjects experiment , each participant is tested in only one condition. For example, a researcher with a sample of 100 college students might assign half of them to write about a traumatic event and the other half write about a neutral event. Or a researcher with a sample of 60 people with severe agoraphobia (fear of open spaces) might assign 20 of them to receive each of three different treatments for that disorder. It is essential in a between-subjects experiment that the researcher assign participants to conditions so that the different groups are, on average, highly similar to each other. Those in a trauma condition and a neutral condition, for example, should include a similar proportion of men and women, and they should have similar average intelligence quotients (IQs), similar average levels of motivation, similar average numbers of health problems, and so on. This is a matter of controlling these extraneous participant variables across conditions so that they do not become confounding variables.

Random Assignment

The primary way that researchers accomplish this kind of control of extraneous variables across conditions is called random assignment , which means using a random process to decide which participants are tested in which conditions. Do not confuse random assignment with random sampling. Random sampling is a method for selecting a sample from a population, and it is rarely used in psychological research. Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too.

In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a condition independently of other participants. Thus one way to assign participants to two conditions would be to flip a coin for each one. If the coin lands heads, the participant is assigned to Condition A, and if it lands tails, the participant is assigned to Condition B. For three conditions, one could use a computer to generate a random integer from 1 to 3 for each participant. If the integer is 1, the participant is assigned to Condition A; if it is 2, the participant is assigned to Condition B; and if it is 3, the participant is assigned to Condition C. In practice, a full sequence of conditions—one for each participant expected to be in the experiment—is usually created ahead of time, and each new participant is assigned to the next condition in the sequence as he or she is tested. When the procedure is computerized, the computer program often handles the random assignment.

One problem with coin flipping and other strict procedures for random assignment is that they are likely to result in unequal sample sizes in the different conditions. Unequal sample sizes are generally not a serious problem, and you should never throw away data you have already collected to achieve equal sample sizes. However, for a fixed number of participants, it is statistically most efficient to divide them into equal-sized groups. It is standard practice, therefore, to use a kind of modified random assignment that keeps the number of participants in each group as similar as possible. One approach is block randomization . In block randomization, all the conditions occur once in the sequence before any of them is repeated. Then they all occur again before any of them is repeated again. Within each of these “blocks,” the conditions occur in a random order. Again, the sequence of conditions is usually generated before any participants are tested, and each new participant is assigned to the next condition in the sequence. Table 6.2 “Block Randomization Sequence for Assigning Nine Participants to Three Conditions” shows such a sequence for assigning nine participants to three conditions. The Research Randomizer website ( http://www.randomizer.org ) will generate block randomization sequences for any number of participants and conditions. Again, when the procedure is computerized, the computer program often handles the block randomization.

Table 6.2 Block Randomization Sequence for Assigning Nine Participants to Three Conditions

Random assignment is not guaranteed to control all extraneous variables across conditions. It is always possible that just by chance, the participants in one condition might turn out to be substantially older, less tired, more motivated, or less depressed on average than the participants in another condition. However, there are some reasons that this is not a major concern. One is that random assignment works better than one might expect, especially for large samples. Another is that the inferential statistics that researchers use to decide whether a difference between groups reflects a difference in the population takes the “fallibility” of random assignment into account. Yet another reason is that even if random assignment does result in a confounding variable and therefore produces misleading results, this is likely to be detected when the experiment is replicated. The upshot is that random assignment to conditions—although not infallible in terms of controlling extraneous variables—is always considered a strength of a research design.

Treatment and Control Conditions

Between-subjects experiments are often used to determine whether a treatment works. In psychological research, a treatment is any intervention meant to change people’s behavior for the better. This includes psychotherapies and medical treatments for psychological disorders but also interventions designed to improve learning, promote conservation, reduce prejudice, and so on. To determine whether a treatment works, participants are randomly assigned to either a treatment condition , in which they receive the treatment, or a control condition , in which they do not receive the treatment. If participants in the treatment condition end up better off than participants in the control condition—for example, they are less depressed, learn faster, conserve more, express less prejudice—then the researcher can conclude that the treatment works. In research on the effectiveness of psychotherapies and medical treatments, this type of experiment is often called a randomized clinical trial .

There are different types of control conditions. In a no-treatment control condition , participants receive no treatment whatsoever. One problem with this approach, however, is the existence of placebo effects. A placebo is a simulated treatment that lacks any active ingredient or element that should make it effective, and a placebo effect is a positive effect of such a treatment. Many folk remedies that seem to work—such as eating chicken soup for a cold or placing soap under the bedsheets to stop nighttime leg cramps—are probably nothing more than placebos. Although placebo effects are not well understood, they are probably driven primarily by people’s expectations that they will improve. Having the expectation to improve can result in reduced stress, anxiety, and depression, which can alter perceptions and even improve immune system functioning (Price, Finniss, & Benedetti, 2008).

Placebo effects are interesting in their own right (see Note 6.28 “The Powerful Placebo” ), but they also pose a serious problem for researchers who want to determine whether a treatment works. Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” shows some hypothetical results in which participants in a treatment condition improved more on average than participants in a no-treatment control condition. If these conditions (the two leftmost bars in Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” ) were the only conditions in this experiment, however, one could not conclude that the treatment worked. It could be instead that participants in the treatment group improved more because they expected to improve, while those in the no-treatment control condition did not.

Figure 6.2 Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

Fortunately, there are several solutions to this problem. One is to include a placebo control condition , in which participants receive a placebo that looks much like the treatment but lacks the active ingredient or element thought to be responsible for the treatment’s effectiveness. When participants in a treatment condition take a pill, for example, then those in a placebo control condition would take an identical-looking pill that lacks the active ingredient in the treatment (a “sugar pill”). In research on psychotherapy effectiveness, the placebo might involve going to a psychotherapist and talking in an unstructured way about one’s problems. The idea is that if participants in both the treatment and the placebo control groups expect to improve, then any improvement in the treatment group over and above that in the placebo control group must have been caused by the treatment and not by participants’ expectations. This is what is shown by a comparison of the two outer bars in Figure 6.2 “Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions” .

Of course, the principle of informed consent requires that participants be told that they will be assigned to either a treatment or a placebo control condition—even though they cannot be told which until the experiment ends. In many cases the participants who had been in the control condition are then offered an opportunity to have the real treatment. An alternative approach is to use a waitlist control condition , in which participants are told that they will receive the treatment but must wait until the participants in the treatment condition have already received it. This allows researchers to compare participants who have received the treatment with participants who are not currently receiving it but who still expect to improve (eventually). A final solution to the problem of placebo effects is to leave out the control condition completely and compare any new treatment with the best available alternative treatment. For example, a new treatment for simple phobia could be compared with standard exposure therapy. Because participants in both conditions receive a treatment, their expectations about improvement should be similar. This approach also makes sense because once there is an effective treatment, the interesting question about a new treatment is not simply “Does it work?” but “Does it work better than what is already available?”

The Powerful Placebo

Many people are not surprised that placebos can have a positive effect on disorders that seem fundamentally psychological, including depression, anxiety, and insomnia. However, placebos can also have a positive effect on disorders that most people think of as fundamentally physiological. These include asthma, ulcers, and warts (Shapiro & Shapiro, 1999). There is even evidence that placebo surgery—also called “sham surgery”—can be as effective as actual surgery.

Medical researcher J. Bruce Moseley and his colleagues conducted a study on the effectiveness of two arthroscopic surgery procedures for osteoarthritis of the knee (Moseley et al., 2002). The control participants in this study were prepped for surgery, received a tranquilizer, and even received three small incisions in their knees. But they did not receive the actual arthroscopic surgical procedure. The surprising result was that all participants improved in terms of both knee pain and function, and the sham surgery group improved just as much as the treatment groups. According to the researchers, “This study provides strong evidence that arthroscopic lavage with or without débridement [the surgical procedures used] is not better than and appears to be equivalent to a placebo procedure in improving knee pain and self-reported function” (p. 85).

Doctors treating a patient in Surgery

Research has shown that patients with osteoarthritis of the knee who receive a “sham surgery” experience reductions in pain and improvement in knee function similar to those of patients who receive a real surgery.

Army Medicine – Surgery – CC BY 2.0.

Within-Subjects Experiments

In a within-subjects experiment , each participant is tested under all conditions. Consider an experiment on the effect of a defendant’s physical attractiveness on judgments of his guilt. Again, in a between-subjects experiment, one group of participants would be shown an attractive defendant and asked to judge his guilt, and another group of participants would be shown an unattractive defendant and asked to judge his guilt. In a within-subjects experiment, however, the same group of participants would judge the guilt of both an attractive and an unattractive defendant.

The primary advantage of this approach is that it provides maximum control of extraneous participant variables. Participants in all conditions have the same mean IQ, same socioeconomic status, same number of siblings, and so on—because they are the very same people. Within-subjects experiments also make it possible to use statistical procedures that remove the effect of these extraneous participant variables on the dependent variable and therefore make the data less “noisy” and the effect of the independent variable easier to detect. We will look more closely at this idea later in the book.

Carryover Effects and Counterbalancing

The primary disadvantage of within-subjects designs is that they can result in carryover effects. A carryover effect is an effect of being tested in one condition on participants’ behavior in later conditions. One type of carryover effect is a practice effect , where participants perform a task better in later conditions because they have had a chance to practice it. Another type is a fatigue effect , where participants perform a task worse in later conditions because they become tired or bored. Being tested in one condition can also change how participants perceive stimuli or interpret their task in later conditions. This is called a context effect . For example, an average-looking defendant might be judged more harshly when participants have just judged an attractive defendant than when they have just judged an unattractive defendant. Within-subjects experiments also make it easier for participants to guess the hypothesis. For example, a participant who is asked to judge the guilt of an attractive defendant and then is asked to judge the guilt of an unattractive defendant is likely to guess that the hypothesis is that defendant attractiveness affects judgments of guilt. This could lead the participant to judge the unattractive defendant more harshly because he thinks this is what he is expected to do. Or it could make participants judge the two defendants similarly in an effort to be “fair.”

Carryover effects can be interesting in their own right. (Does the attractiveness of one person depend on the attractiveness of other people that we have seen recently?) But when they are not the focus of the research, carryover effects can be problematic. Imagine, for example, that participants judge the guilt of an attractive defendant and then judge the guilt of an unattractive defendant. If they judge the unattractive defendant more harshly, this might be because of his unattractiveness. But it could be instead that they judge him more harshly because they are becoming bored or tired. In other words, the order of the conditions is a confounding variable. The attractive condition is always the first condition and the unattractive condition the second. Thus any difference between the conditions in terms of the dependent variable could be caused by the order of the conditions and not the independent variable itself.

There is a solution to the problem of order effects, however, that can be used in many situations. It is counterbalancing , which means testing different participants in different orders. For example, some participants would be tested in the attractive defendant condition followed by the unattractive defendant condition, and others would be tested in the unattractive condition followed by the attractive condition. With three conditions, there would be six different orders (ABC, ACB, BAC, BCA, CAB, and CBA), so some participants would be tested in each of the six orders. With counterbalancing, participants are assigned to orders randomly, using the techniques we have already discussed. Thus random assignment plays an important role in within-subjects designs just as in between-subjects designs. Here, instead of randomly assigning to conditions, they are randomly assigned to different orders of conditions. In fact, it can safely be said that if a study does not involve random assignment in one form or another, it is not an experiment.

There are two ways to think about what counterbalancing accomplishes. One is that it controls the order of conditions so that it is no longer a confounding variable. Instead of the attractive condition always being first and the unattractive condition always being second, the attractive condition comes first for some participants and second for others. Likewise, the unattractive condition comes first for some participants and second for others. Thus any overall difference in the dependent variable between the two conditions cannot have been caused by the order of conditions. A second way to think about what counterbalancing accomplishes is that if there are carryover effects, it makes it possible to detect them. One can analyze the data separately for each order to see whether it had an effect.

When 9 Is “Larger” Than 221

Researcher Michael Birnbaum has argued that the lack of context provided by between-subjects designs is often a bigger problem than the context effects created by within-subjects designs. To demonstrate this, he asked one group of participants to rate how large the number 9 was on a 1-to-10 rating scale and another group to rate how large the number 221 was on the same 1-to-10 rating scale (Birnbaum, 1999). Participants in this between-subjects design gave the number 9 a mean rating of 5.13 and the number 221 a mean rating of 3.10. In other words, they rated 9 as larger than 221! According to Birnbaum, this is because participants spontaneously compared 9 with other one-digit numbers (in which case it is relatively large) and compared 221 with other three-digit numbers (in which case it is relatively small).

Simultaneous Within-Subjects Designs

So far, we have discussed an approach to within-subjects designs in which participants are tested in one condition at a time. There is another approach, however, that is often used when participants make multiple responses in each condition. Imagine, for example, that participants judge the guilt of 10 attractive defendants and 10 unattractive defendants. Instead of having people make judgments about all 10 defendants of one type followed by all 10 defendants of the other type, the researcher could present all 20 defendants in a sequence that mixed the two types. The researcher could then compute each participant’s mean rating for each type of defendant. Or imagine an experiment designed to see whether people with social anxiety disorder remember negative adjectives (e.g., “stupid,” “incompetent”) better than positive ones (e.g., “happy,” “productive”). The researcher could have participants study a single list that includes both kinds of words and then have them try to recall as many words as possible. The researcher could then count the number of each type of word that was recalled. There are many ways to determine the order in which the stimuli are presented, but one common way is to generate a different random order for each participant.

Between-Subjects or Within-Subjects?

Almost every experiment can be conducted using either a between-subjects design or a within-subjects design. This means that researchers must choose between the two approaches based on their relative merits for the particular situation.

Between-subjects experiments have the advantage of being conceptually simpler and requiring less testing time per participant. They also avoid carryover effects without the need for counterbalancing. Within-subjects experiments have the advantage of controlling extraneous participant variables, which generally reduces noise in the data and makes it easier to detect a relationship between the independent and dependent variables.

A good rule of thumb, then, is that if it is possible to conduct a within-subjects experiment (with proper counterbalancing) in the time that is available per participant—and you have no serious concerns about carryover effects—this is probably the best option. If a within-subjects design would be difficult or impossible to carry out, then you should consider a between-subjects design instead. For example, if you were testing participants in a doctor’s waiting room or shoppers in line at a grocery store, you might not have enough time to test each participant in all conditions and therefore would opt for a between-subjects design. Or imagine you were trying to reduce people’s level of prejudice by having them interact with someone of another race. A within-subjects design with counterbalancing would require testing some participants in the treatment condition first and then in a control condition. But if the treatment works and reduces people’s level of prejudice, then they would no longer be suitable for testing in the control condition. This is true for many designs that involve a treatment meant to produce long-term change in participants’ behavior (e.g., studies testing the effectiveness of psychotherapy). Clearly, a between-subjects design would be necessary here.

Remember also that using one type of design does not preclude using the other type in a different study. There is no reason that a researcher could not use both a between-subjects design and a within-subjects design to answer the same research question. In fact, professional researchers often do exactly this.

Key Takeaways

  • Experiments can be conducted using either between-subjects or within-subjects designs. Deciding which to use in a particular situation requires careful consideration of the pros and cons of each approach.
  • Random assignment to conditions in between-subjects experiments or to orders of conditions in within-subjects experiments is a fundamental element of experimental research. Its purpose is to control extraneous variables so that they do not become confounding variables.
  • Experimental research on the effectiveness of a treatment requires both a treatment condition and a control condition, which can be a no-treatment control condition, a placebo control condition, or a waitlist control condition. Experimental treatments can also be compared with the best available alternative.

Discussion: For each of the following topics, list the pros and cons of a between-subjects and within-subjects design and decide which would be better.

  • You want to test the relative effectiveness of two training programs for running a marathon.
  • Using photographs of people as stimuli, you want to see if smiling people are perceived as more intelligent than people who are not smiling.
  • In a field experiment, you want to see if the way a panhandler is dressed (neatly vs. sloppily) affects whether or not passersby give him any money.
  • You want to see if concrete nouns (e.g., dog ) are recalled better than abstract nouns (e.g., truth ).
  • Discussion: Imagine that an experiment shows that participants who receive psychodynamic therapy for a dog phobia improve more than participants in a no-treatment control group. Explain a fundamental problem with this research design and at least two ways that it might be corrected.

Birnbaum, M. H. (1999). How to show that 9 > 221: Collect judgments in a between-subjects design. Psychological Methods, 4 , 243–249.

Moseley, J. B., O’Malley, K., Petersen, N. J., Menke, T. J., Brody, B. A., Kuykendall, D. H., … Wray, N. P. (2002). A controlled trial of arthroscopic surgery for osteoarthritis of the knee. The New England Journal of Medicine, 347 , 81–88.

Price, D. D., Finniss, D. G., & Benedetti, F. (2008). A comprehensive review of the placebo effect: Recent advances and current thought. Annual Review of Psychology, 59 , 565–590.

Shapiro, A. K., & Shapiro, E. (1999). The powerful placebo: From ancient priest to modern physician . Baltimore, MD: Johns Hopkins University Press.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Frequently asked questions

How do you randomly assign participants to groups.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

When randomisation is not good enough: Matching groups in intervention studies

  • Brief Report
  • Open access
  • Published: 09 July 2021
  • Volume 28 , pages 2085–2093, ( 2021 )

Cite this article

You have full access to this open access article

  • Francesco Sella 1 ,
  • Gal Raz 2 &
  • Roi Cohen Kadosh 2  

12k Accesses

10 Citations

3 Altmetric

Explore all metrics

Randomised assignment of individuals to treatment and controls groups is often considered the gold standard to draw valid conclusions about the efficacy of an intervention. In practice, randomisation can lead to accidental differences due to chance. Researchers have offered alternatives to reduce such differences, but these methods are not used frequently due to the requirement of advanced statistical methods. Here, we recommend a simple assignment procedure based on variance minimisation (VM), which assigns incoming participants automatically to the condition that minimises differences between groups in relevant measures. As an example of its application in the research context, we simulated an intervention study whereby a researcher used the VM procedure on a covariate to assign participants to a control and intervention group rather than controlling for the covariate at the analysis stage. Among other features of the simulated study, such as effect size and sample size, we manipulated the correlation between the matching covariate and the outcome variable and the presence of imbalance between groups in the covariate. Our results highlighted the advantages of VM over prevalent random assignment procedure in terms of reducing the Type I error rate and providing accurate estimates of the effect of the group on the outcome variable. The VM procedure is valuable in situations whereby the intervention to an individual begins before the recruitment of the entire sample size is completed. We provide an Excel spreadsheet, as well as scripts in R, MATLAB, and Python to ease and foster the implementation of the VM procedure.

Similar content being viewed by others

the random assignment of participants to groups

Qualitative Research: Ethical Considerations

the random assignment of participants to groups

How to use and assess qualitative research methods

Loraine Busetto, Wolfgang Wick & Christoph Gumbinger

the random assignment of participants to groups

Reporting reliability, convergent and discriminant validity with structural equation modeling: A review and best-practice recommendations

Gordon W. Cheung, Helena D. Cooper-Thomas, … Linda C. Wang

Avoid common mistakes on your manuscript.

Introduction

Randomisation in controlled trials.

A common problem in intervention studies is comparing the effect of intervention while minimising the influence of confounding factors. In the pre-treatment assessment, a researcher usually measures the characteristics that the treatment aims to modify (i.e., outcome measures) as well as other variables that can exert an influence on the treatment (i.e., covariates). Then, the researcher will randomly assign individuals to the treatment and the control condition. In the ideal scenario, the control condition matches the treatment condition except for that specific feature of the treatment that the researcher considers to be crucial for causing a change in the outcome measures (e.g., placebo vs the active molecule in pharmacological studies). If the treatment is effective, the treatment group should improve in the outcome measures compared to the control group.

In the case of randomisation with large sample size, the statistical test for a difference at baseline or in other covariates becomes irrelevant as occurring significant differences reflect Type I error (de Boer et al., 2015 ; Roberts & Torgerson, 1999 ), which more likely arises when several covariates are considered (Austin et al., 2010 ). However, large sample sizes are difficult to achieve. Many researchers, especially in the clinical sciences, rely on small naturally occurring samples composed of individuals who voluntarily join the study when they wish to. In this scenario, the sampling is suboptimal as participants are not randomly sampled from the population, but they take part in the study based on convenience and opportunity. Although the assignment to different treatment conditions can be random, differences at baseline are more likely to emerge in small compared to large trials (Bruhn & Mckenzie, 2009 ; Chia, 2000 ; Nguyen & Collins, 2017 ; Saint-mont, 2015 ). Unfortunately, there is no statistical way to control for these differences between groups at pre-test (Miller & Chapman, 2001 ; Van Breukelen, 2006 ). Therefore, the imbalance in the pre-treatment scores can compromise the evaluation of the treatment efficacy, and seriously harm the interpretability of the results. To correct for this, the researcher may choose to allocate individuals to a condition based on previously collected pre-treatment scores and match the groups on these scores. However, this procedure requires the researcher to complete the pre-treatment assessment of all participants before the beginning of the treatment. The whole process may take several months, increase the attrition rate before the treatment begins and cannot account for unwanted changes in the measures of interest. Furthermore, the immediate implementation of the treatment is frequently necessary, especially in a clinical setting, where the treatment must begin in a critical phase of the patients’ clinical condition.

Minimising group differences

One solution is the use of covariate-adaptive randomisation procedures (Chen & Lee, 2011 ; Dragalin et al., 2003 ; Endo et al., 2006 ; Scott et al., 2002 ), which allocate participants to the different conditions as they join the study and, at the same time, reduce the difference between groups on predefined critical variables. There are three commonly used types of covariate-adaptive randomisation methods: stratified randomisation, dynamic hierarchical randomisation, and minimisation (Lin et al., 2015 ). Differences at baseline can be reduced by using stratified randomisation, whereby specific (prognostic) variables are divided into strata and participants are randomly selected from each stratum. However, stratified randomisation becomes difficult to implement as the factors to control for increase (Therneau, 1993 ). In dynamic hierarchical randomisation, covariates are ranked in order of importance and participants are assigned to conditions via biased coin allocation when thresholds of imbalance are exceeded in selected covariates (Signorini et al., 1993 ). A minimisation procedure, the focus of this paper, calculates the level of imbalance in covariates that assigning a participant to each condition would cause, then allocates with high probability (to maintain a degree of randomness) the current participant to the condition that minimises the imbalance.

In this vein, the use of covariate-adaptive randomisation procedures not only matches groups on covariates, but also implicitly forces researchers to state in advance those critical covariates related to the treatment rather than controlling for their effect at a later stage, when running statistical analyses (Simmons et al., 2011 ). A covariate-adaptive randomisation procedure attempts to reduce the unwanted differences at baseline that inadvertently emerge from a random assignment. However, it is worth highlighting that the covariate-adaptive randomisation procedures aim to solve the imbalances at pre-test that might emerge from the random assignment of participants, rather than issues related to non-random selection of participants from naturally occurring samples.

Despite a variety of covariate-adaptive randomisation procedures at disposal, researchers conducting training/treatment studies, including randomised control trials (RCTs), seldom implement these methods (Ciolino et al., 2019 ; Lin et al., 2015 ; Taves, 2010 ). The lack of popularity of these procedures might be due to multiple factors. Researchers may feel more comfortable in implementing more traditional and easier to understand stratified/block randomisation. In this vein, an efficient implementation of covariate-adaptive procedures would require the consultancy of an expert statistician for the entire duration of the trial; an extra cost that principal investigators may prefer to avoid (Ciolino et al., 2019 ). Finally, the lack of free, easy-to-use, computerised functions to automatically implement covariate-adaptive procedures may have contributed to their still limited dissemination (Treasure & Farewell, 2012 ; Treasure & MacRae, 1998 ).

Here, we provide a procedure based on variance minimisation (VM; Frane, 1998 ; Pocock & Simon, 1975 ; Scott et al., 2002 ; Treasure & MacRae, 1998 ), which assigns the next incoming participant to the condition that minimises differences between groups in the chosen measures. Our procedure brings the benefit of using multiple covariates without creating strata in advance, as done in the stratified randomisation, and it is relatively easy to implement compared with the more complex dynamic hierarchical randomisation. The logic and the calculation behind the procedure are simple and easy-to-grasp also from an audience of non-experts. We provided ready-to-use code to implement the procedure using different (also free) software along with step-by-step written instructions, thereby reducing any costs associated with product licenses or consultancy from expert statisticians.

Description of the VM procedure

The goal of the VM procedure is to find the best group assignment for participants prior to an intervention, such that the groups are matched in terms of the scores that the researcher suspects might cause random differences in post-intervention outcomes. The VM procedure requires the researcher to define the number of groups to which participants can be assigned and to collect individual scores for each variable on which groups are matched. These variables can be continuous or binary, where nominal variables with more than two categories can be transformed into multiple dummy variables (as in regression analysis) before being passed to the VM procedure (see section Using VM Procedure on Non-Dichotomous Nominal Variables, in the Supplementary Materials ). The procedure particularly suits those studies in which proper matching is essential, but the assignment to groups needs to occur while the recruitment is still ongoing. It works as follows.

The first participants joining the study are sequentially assigned one to each group. For example, in case of three different groups (i.e., A, B, C), the first participant is assigned to Group A, the second participant to Group B, and the third participant to Group C. Then the fourth participant is added temporarily to each group, and for each temporary group assignment, the algorithm checks which group assignment for this participant would minimize the between-group variance (i.e., V in Fig. 1 ) of the measures of interest and assigns the participant to that group. The next (fifth) participant undergoes the same procedure, but the algorithm will not assign the present participant to the group of the previous participant in order to ensure a balanced distribution of participants in each condition. The same procedure goes on until there is only one group remaining, which in the case of three groups would be for the sixth participant. The sixth participant would be automatically assigned to the remaining group, such that each group would now have two participants assigned to them. Then, the entire procedure starts again with the possibility for the next participant to be assigned to all available groups (for a formal description of the variance minimisation procedure, see section Details of the Minimisation Procedure, in the Supplementary Materials ).

figure 1

Comparison of assignment to groups using ( a ) variance minimisation and ( b ) random assignment. When a new participant joins a study, variance minimisation assigns the participant to the group that minimises the variance between groups along with the pre-defined variables (i.e., V ); in this case intelligence (IQ), executive functions (EFs), attentional performance (AP), and gender, while keeping the number of participants in each group balanced. Random assignment, on the other hand, assigns the participant to every group with equal probability and does not match the groups

To avoid predictable group assignments due to this shrinking set of available groups, the user can also specify a small probability of random assignment over the VM procedure (see section Discontinuous Implementation of the VM Procedure: The Parameter pRand, in the Supplementary Materials ). This random component makes the assignment unpredictable even if the researcher has access to previous group allocations.

Simulations

We present multiple simulations to illustrate how the VM procedure can be implemented in different scenarios and the advantages it provides.

In the first simulation, we implemented the VM procedure to assign participants to three experimental groups based on three continuous and one dichotomous variable. We compared the matching obtained from the VM procedure with random assignment. In the second simulation, we showed that the VM procedure better detects group differences and provides better estimates of effects compared with the attempt to control for the effect of covariates. In the supplementary materials , we demonstrate how to incorporate a random component in the VM procedure to ensure a non-deterministic assignment of participants to conditions (section Discontinuous Implementation of the VM Procedure: The Parameter pRand ) and how the VM can match participants also on non-dichotomous nominal variables (section Using VM Procedure on Non-Dichotomous Nominal Variables ). We briefly discuss the results of these two additional simulations in the Discussion section.

The functions to implement the VM procedure in Excel, MATLAB, Python, and R along with tutorials, as well as the R code of the simulation, can be found at the Open Science Framework ( https://osf.io/6jfvk/?view_only=8d405f7b794d4e3bbff7e345e6ef4eed ).

VM procedure outperforms random assignment in matching groups on continuous and dichotomous variables

In the first fictional example, a researcher wants to evaluate whether the combination of cognitive training of executive functions and brain stimulation improves the clinical symptoms of ADHD. The study design comprises three groups: the first group receives brain stimulation and the executive functions training; the second group receives sham stimulation and the training; the third group receives neither training nor stimulation (passive control group). The researcher aims to match the three groups on intelligence, executive functions performance, attentional performance, and gender. Figure 1 illustrates how VM assigns incoming participants compared with a traditional random assignment.

We simulated 1,000 data sets whereby we randomly drew the scores for IQ, executive functions, and attentional performance from a normal distribution, with a mean of 100 and a standard deviation of 15. Participants’ gender came from a binomial distribution with the same probability for a participant to be male or female. The simulated values for the matching variables were randomly generated, therefore there were no real differences between groups. We varied the sample size to be very small ( n = 36), small ( n = 66), medium ( n = 159), and large ( n = 969), reflecting the researcher’s intention to evaluate the possible presence of an extremely large ( f = 0.55), large ( f = 0.40), medium ( f = 0.25), and small ( f = 0.10) effect size, respectively, while keeping the alpha at .05 and power at 80% (Faul et al., 2009 ). We assigned participants to the three groups randomly or by using the VM procedure.

We ran univariate analyses of variance (ANOVAs) with IQ, executive functions, and attentional performance as dependent variables and group as factor whereas differences in gender distribution across groups were analysed using χ 2 tests. In Fig. 2 , we show the distributions of F , p , and η 2 values from ANOVAs on IQ, executive functions, and attentional performance (top panel), whereas in the case of gender, we presented the distribution and χ 2 , p , and Cramer’s V values (bottom panel) separately for the random assignment and the VM procedure across different sample sizes. Compared with random assignment, the VM procedure yielded smaller F , η 2 , χ 2 , and Cramer’s V values and the distribution of p -values was skewed toward 1, rather than uniform. The VM procedure demonstrated an efficient matching between groups starting from a very small sample size while keeping the number of participants in each group balanced. Moreover, both the VM procedure and the random assignment violated ANOVA assumptions on the normality of residuals and homogeneity of variance between groups with a similar rate (see Supplementary Materials, Fig. S1 ).

figure 2

A comparison of the VM procedure and random assignment based on simulated data. Top panel: Distributions of F -values, p -values, and η 2 values from ANOVAs comparing groups on intelligence (IQ), executive functions (EFs), and attentional performance (AP) separately for the VM procedure (orange boxplots) and the random assignment (blue boxplots). Bottom panel: Distributions of χ 2 , p -values, and Cramer’s V values comparing groups on gender separately for the VM procedure (orange boxplots) and the random assignment (blue boxplots). The boxplots represent the quartiles whereas the whiskers represent the 95% limits of the distribution. (Colour figure online)

Matching groups on a covariate versus controlling for a covariate with imbalance

We simulated an intervention study to display the advantages that the minimisation procedure provides in terms of detecting group differences and better estimates of effects compared with the attempt to control for the effect of covariates in the statistical analysis after the intervention was completed. A researcher evaluates the effect of an intervention on a dependent variable Y while controlling for the possible confounding effect of a covariate A, which positively correlates with Y, and a covariate B that correlates with covariate A (i.e., pattern correlation 1), or Y (i.e., pattern correlation 2), or neither of them (i.e., pattern correlation 3). In this vein, the covariate A represents a variable that the researchers ought to control for, given its known relation with the dependent variable Y, whereas the covariate B represents a non-matching variable that is still inserted into the model as it might have a real or spurious correlation with the covariate A and the dependent variable Y. We simulated a small, medium, and large effect of the intervention (i.e., Cohen’s d = 0.2; d = 0.5; d = 0.8) and, accordingly, we varied the total sample size to be 788, 128, and 52 to achieve a power of 80% while keeping the alpha at .05 (Faul et al., 2009 ). For comparison, we used the same sample sizes, 788, 128, and 52, when simulating the absence of an intervention effect (i.e., Cohen’s d = 0). Crucially, we compared the scenario whereby the researcher matches participants on the covariate A (i.e., VM on CovA) before implementing the intervention or randomly assigns participants to the control and training group and then attempts to control for the effect of covariate after the intervention (i.e., Control for CovA). The subsequent inclusion of the covariate A in the analysis, especially in the case of imbalance between groups in the covariate A, would bias the effect of the group on Y when the difference between groups in the covariate A is larger in the direction of the intervention effect. Conversely, the minimisation procedure reduces the difference between groups on the covariate A and the inclusion of the covariate A into the analysis (i.e., analysis of covariance; ANCOVA) would not cause biases in the estimation of the effect of the group on Y.

In the case of the control for covariate approach, we generated the scores of the covariate A by taking them from a standard normal distribution ( M = 0, SD = 1) and we randomly assigned participants to the control and training group. We generated an imbalance in the covariate A by calculating the standard error of the mean and multiplying it for the standard normal deviates ±1.28, ±1.64, ±1.96 corresponding to the 20%, 10%, and 5% probabilities respectively of the standard normal distribution. The use of the standard error allowed to keep the imbalance proportionate to the sample size. The obtained imbalance was added to the scores of the covariate A only for the training group, thereby generating a difference in covariate A that went in the same or in the opposite direction with respect to the intervention effect (i.e., larger scores on the dependent variable only for the training group; Egbewale et al., 2014 ). We also included the case of absent imbalance for reference. In the case of the VM procedure, we took the previously generated scores of the covariate A with the imbalance, and we assigned participants to the control or training group using the VM procedure. Then, we generated the scores of Y that were correlated with the covariate A according to four correlations, that were, 0, 0.5, 0.7, and 0.9. Finally, we added 0, 0.2, 0.5, 0.8 to the Y scores of the training group to simulate an absent, small, medium, and large effect of the intervention.

In both the random assignment and the VM procedure, the covariate B was generated to alternatively have a correlation of 0.5 ( SD = 0.1) with the covariate A (i.e., Pattern 1), Y (i.e., Pattern 2), or no correlation with these two variables (i.e., Pattern 3). We randomly selected the correlation from a normal distribution with an average 0.5 and standard deviation of 0.1 to add some noise to the correlation while maintaining it positive and centred on 0.5.

Overall, we varied multiple experimental conditions in 504 scenarios (for a similar approach, see Egbewale et al., 2014 ):

seven imbalances on the covariate A: −1.96, −1.64, −1.28, 0, 1.28, 1.64, 1.96;

four correlations between covariates A and Y: 0, 0.5, 0.7, 0.9;

six treatment effects: 0 (×3 as the absence of the effect was tested with three sample sizes, that were, 52, 128, 788), 0.2, 0.5, 0.8;

three patterns of correlation between the covariate B, covariate A, and Y.

We simulated each scenario 1,000 times.

As expected, the correlations between the covariate B and the other two variables varied according to the pre-specified patterns of correlations, which were practically identical in the VM and control for covariate approach (see Table S1 in the Supplementary Materials).

We ran a series of ANCOVAs with Y as the dependent variable, the covariates A and B, and group [Training, Control] as independent variables. We used a regression approach as the variable group was converted to a dichotomous numerical variable (i.e., control = 0, training = 1) to directly use the regression coefficients as estimates for the effect of each variable on Y. Both the VM procedure and the control for the covariate approach display a similar rate in violating ANCOVA assumptions of the normality of residuals and homogeneity of variance between groups (see Supplementary Materials; Fig. S2 ).

In this fictitious scenario, the researcher would be interested in evaluating the effect of the group on Y while controlling for covariates. Therefore, we reported the proportion of significant results ( p < .05; Fig. 3 ) and the estimated effect (i.e., coefficient of the regression; Fig. 4 ) for the effect of group on Y depending on the imbalance in the covariate A, the effect size of the intervention, and the degree of correlation between the covariate A and Y. For simplicity, in Figs. 3 and 4 , we reported only the simulation with a large sample size (i.e., n = 788) when the effect of the intervention was absent (i.e., d =0). The pattern of results remained stable across the patterns of correlations of the covariate B. Therefore, we reported the proportion of significant results and estimated effects for the group, covariate A, and covariate B across the patterns correlation of the covariate B in the Supplementary Materials (Figs. S5 – S22 ).

figure 3

Proportion of significant results ( y -axis) for the effect of group in the ANCOVA (Y ~ CovA + CovB + Group) separately for the VM procedure (orange lines) and control for CovA approach (blue lines) across imbalances of the covariate A ( x -axis) when the sample size varied according to the effect size to be detected (rows; absent = 0, n = 788; small = 0.2, n = 788; medium = 0.5, n = 128; large = 0.8, n = 52) and the correlation between the covariate A and the dependent variable Y ranged between 0 and 0.9 (columns). The black dotted line represents alpha (i.e., 0.05) and the dashed black line represents the expected power (i.e., 0.8). (Colour figure online)

figure 4

Median of estimates ( y -axis; regression coefficients) for the effect of group in the ANCOVA (Y ~ CovA + CovB + Group) separately for the VM procedure (orange lines) and control for CovA approach (blue lines) across imbalances of the covariate A ( x -axis) when the sample size varied according to the effect size to be detected (rows; absent = 0, n = 788; small = 0.2, n = 788; medium = 0.5, n = 128; large = 0.8, n = 52) and the correlation between the covariate A and the dependent variable Y ranged between 0 and 0.9 (columns). The black dotted line represents the expected regression coefficients (i.e., 0, 0.2, 0.5, 0.8). (Colour figure online)

When the effect of the intervention was present (second to fourth rows in Fig. 3 ), the VM procedure showed a more stable detection of significant results also in the presence of serious imbalances in the covariate A. This stability became clearer as the correlation between the covariate A and Y increased. When the effect of the intervention was absent (first row in Fig. 3 ), the VM procedure always kept the Type I error around 0.05 while the control covariate approach inflated Type I error rate in the case of strong imbalance in the covariate A when it was highly correlated (i.e., 0.7, 0.9) with the outcome variable Y.

A similar pattern of results emerged when we compared the estimates of the effect of the group (i.e., regression coefficients) yielded by the VM procedure and the control for covariate approach. The VM procedure always provided accurate estimates of the effect of the group. Conversely, the control for covariate approach returned biased estimates with large imbalances in the covariate A and when its correlation with the outcome variable Y was high (i.e., 0.7, 0.9; Fig. 4 ).

In treatment studies, groups should be as similar as possible in all the variables of interest before the beginning of the treatment. An optimal matching can ensure that the effect of the treatment is not related to the pre-treatment characteristics of the groups and can, therefore, be extended to the general population. In contrast, the random assignment can yield relevant, and even statistically significant, differences between the groups before the treatment (Treasure & MacRae, 1998 ).

The proposed VM procedure constitutes a quick and useful tool to match groups before treatment on both continuous and categorical covariates (Pocock & Simon, 1975 ; Scott et al., 2002 ; Treasure & MacRae, 1998 ). The latter, though, need to be transformed into dummy variables to be passed to the minimisation algorithm (for a minimisation procedure that directly handles nominal covariates see Colavincenzo, 2013 ). We simulated an intervention study whereby a researcher used the VM procedure on a covariate to assign participants to a control and intervention group rather than controlling for the covariate at the analysis stage. Among other features of the simulated study, we manipulated the correlation between the matching covariate and the outcome variable and the presence of imbalance between groups in the covariate. Controlling for covariates post hoc inflated Type I error rate and yielded biased estimates of the effect of the group on the outcome variable when the imbalance between groups in the covariate increased and the correlation between the covariate and the outcome variable was high. Conversely, the use of VM on the covariate did not inflate Type I error rate and provided accurate estimates of the effect of the group on the outcome variable.

The progressive shrinking of available conditions when using the VM procedure ensures a perfect balance in the number of participants across conditions while still minimising covariate imbalance. However, some participants will be forcefully assigned to a given condition irrespective of their scores in the covariates. Therefore, in some instances, the researcher will know in advance the condition the participants will be assigned to and not all participants will have the chance to be assigned to each of the available conditions. This restriction might be relevant for clinical trials where one of the conditions is potentially beneficial (i.e., the treatment group). In this case, the researcher can insert a random component into the VM procedure by defining the probability to implement a random assignment. The random component prevents the researcher from being sure about the condition some participants will be assigned to and gives all participants the possibility, in principle, to be assigned to one of the conditions. Using a small amount of randomness (e.g., pRand = 0.1) provides a good balance between matching groups on covariates while avoiding predictable allocation (see section Discontinuous Implementation of the VM Procedure: The Parameter pRand, in the Supplementary Materials ).

Despite the benefits of the minimisation procedure, limitations must be carefully considered. First, the application of the VM procedure on small sample sizes does not prevent the treatment effect from being influenced by the unequal distribution of unobserved confounding variables, whose equal distribution is most likely achieved with large sample sizes. This limitation related to small sample sizes affects both the VM procedure and random assignment. Nevertheless, the selection of matching covariates for the minimisation procedure encourages researchers to carefully think in advance about possible confounding variables and match participants on them. Secondly, we showed that the VM is beneficial in simple ANOVA/ANCOVA simulations. In the case of more complex models (e.g., with an interaction), the researcher should carefully consider whether the minimisation procedure constitutes an advantage to the design. We recommend running simulations tailored to specific research designs to ensure that the VM procedure adequately matches participants across conditions.

Third, the minimisation procedure considers all covariates equally important without giving the user the possibility to allow more imbalance in some covariates compared to others (for a minimisation procedure that allows weighting see Saghaei, 2011 ). It is therefore paramount that the researchers will carefully consider the covariates they wish to match the groups on.

Overall, our minimisation procedure, even after considering the above-mentioned limitations, provides important advantages over the randomisation procedure that is used frequently. Its relative simplicity encourages researchers to use covariate-adaptive matching procedures (Ciolino et al., 2019 ; Lin et al., 2015 ). To allow the requested shift from the randomisation procedure, we provide scripts, written using popular software (i.e., R, Python, MATLAB, and Excel), which allow a fast and easy implementation of the VM procedure and integration with other stimulus presentation and analysis scripts. In this light, the treatment can start in the same session in which pre-treatment measures are acquired, thereby reducing the total number of sessions and, consequently, the overall costs. The immediate application of the treatment also excludes the possibility that pre-treatment measures change between the period of the initial recruitment and the actual implementation of the treatment. We strongly recommend using the VM procedure in these studies to yield more effective and valid RCTs.

Austin, P. C., Manca, A., Zwarenstein, M., Juurlink, D. N., & Stanbrook, M. B. (2010). Baseline comparisons in randomized controlled trials. Journal of Clinical Epidemiology , 63 (8), 940–942. https://doi.org/10.1016/j.jclinepi.2010.03.009

Article   Google Scholar  

Bruhn, M., & Mckenzie, D. (2009). In pursuit of balance: Randomization in practice in development field experiments. American Economic Journal: Applied Economics, 4 (1), 200–232. https://www.jstor.org/stable/25760187

Google Scholar  

Chen, L. H., & Lee, W. C. (2011). Two-way minimization: A novel treatment allocation method for small trials. PLOS ONE , 6 (12), 1–8. https://doi.org/10.1371/journal.pone.0028604

Chia, K. S. (2000). Randomisation: Magical cure for bias? Annals of the Academy of Medicine, Singapore, 29 (5), 563–564.

Ciolino, J. D., Palac, H. L., Yang, A., Vaca, M., & Belli, H. M. (2019). Ideal vs. real: A systematic review on handling covariates in randomized controlled trials. BMC Medical Research Methodology, 19 (1), 136. https://doi.org/10.1186/s12874-019-0787-8

Colavincenzo, J. (2013). Doctoring your clinical trial with adaptive randomization: SAS® Macros to perform adaptive randomization. Proceedings of the SAS® Global Forum 2013 Conference [Internet]. Cary (NC): SAS Institute Inc. https://support.sas.com/resources/papers/proceedings13/181-2013.pdf

de Boer, M. R., Waterlander, W. E., Kuijper, L. D. J., Steenhuis, I. H. M., & Twisk, J. W. R. (2015). Testing for baseline differences in randomized controlled trials: An unhealthy research behavior that is hard to eradicate. International Journal of Behavioral Nutrition and Physical Activity , 12 (1), 1–8. https://doi.org/10.1186/s12966-015-0162-z

Dragalin, V., Fedorov, V., Patterson, S., & Jones, B. (2003). Kullback-Leibler divergence for evaluating bioequivalence. Statistics in Medicine , 22 (6), 913–930. https://doi.org/10.1002/sim.1451

Article   PubMed   Google Scholar  

Egbewale, B. E., Lewis, M. & Sim, J. (2014). Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study. BMC Med Res Methodol, 14 , 49. https://doi.org/10.1186/1471-2288-14-49

Endo, A., Nagatani, F., Hamada, C., & Yoshimura, I. (2006). Minimization method for balancing continuous prognostic variables between treatment and control groups using Kullback-Leibler divergence. Contemporary Clinical Trials , 27 (5), 420–431. https://doi.org/10.1016/j.cct.2006.05.002

Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior Research Methods , 41 (4), 1149–1160. https://doi.org/10.3758/BRM.41.4.1149

Frane, J. W. (1998). A method of biased coin randomisation, its implementation and its validation. Drug Information Journal , 32 , 423–432.

Lin, Y., Zhu, M., & Su, Z. (2015). The pursuit of balance: An overview of covariate-adaptive randomization techniques in clinical trials. Contemporary Clinical Trials, 45, 21–25. https://doi.org/10.1016/j.cct.2015.07.011

Miller, G. A., & Chapman, J. P. (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology , 110 (1), 40–48.

Nguyen, T., & Collins, G. S. (2017). Simple randomization did not protect against bias in smaller trials, 84 , 105–113. https://doi.org/10.1016/j.jclinepi.2017.02.010

Pocock, S. J., & Simon, R. (1975). Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics , 31 (1), 103. https://doi.org/10.2307/2529712

Roberts, C., & Torgerson, D. J. (1999). Understanding controlled trials: Baseline imbalance in randomised controlled trials. BMJ , 319 (7203), 185–185. https://doi.org/10.1136/bmj.319.7203.185

Article   PubMed   PubMed Central   Google Scholar  

Saghaei, M. (2011). An overview of randomization and minimization programs for randomized clinical trials. Journal of Medical Signals and Sensors, 1 (1), 55.

Saint-mont, U. (2015). Randomization does not help much, comparability does. PLOS ONE, 10 (7), Article e0132102. https://doi.org/10.1371/journal.pone.0132102

Scott, N. W., McPherson, G. C., Ramsay, C. R., & Campbell, M. K. (2002). The method of minimization for allocation to clinical trials: A review. Controlled Clinical Trials , 23 (6), 662–674. https://doi.org/10.1016/S0197-2456(02)00242-8

Signorini, D. F., Leung, O., Simes, R. J., Beller, E., Gebski, V. J., & Callaghan, T. (1993). Dynamic balanced randomization for clinical trials. Statistics in Medicine, 12 (24), 2343–2350.

Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science , 22 (11), 1359–1366. https://doi.org/10.1177/0956797611417632

Taves, D. R. (2010). The use of minimization in clinical trials. Contemporary Clinical Trials , 31 (2), 180–184. https://doi.org/10.1016/j.cct.2009.12.005

Therneau, T. M. (1993). How many stratification factors are “too many” to use in a randomization plan? Controlled Clinical Trials , 14(2), 98–108. https://doi.org/10.1016/0197-2456(93)90013-4

Treasure, T., & Farewell, V. (2012). Minimization in interventional trials : great value but residual vulnerability. Journal of Clinical Epidemiology , 65 (1), 7–9. https://doi.org/10.1016/j.jclinepi.2011.07.005

Treasure, T., & MacRae, K. D. (1998). Minimisation: The platinum standard for trials? BMJ (Clinical Research Ed.) , 317 (7155), 362–363. https://doi.org/10.1136/bmj.317.7155.362

Van Breukelen, G. J. P. (2006). ANCOVA versus change from baseline had more power in randomized studies and more bias in nonrandomized studies. Journal of Clinical Epidemiology , 59 (9), 920–925. https://doi.org/10.1016/j.jclinepi.2006.02.007

Download references

Acknowledgements

This study was supported by the European Research Council (Learning&Achievement 338065).

Author information

Authors and affiliations.

Centre for Mathematical Cognition, Loughborough University, Loughborough, UK

Francesco Sella

Department of Experimental Psychology, University of Oxford, Oxford, UK

Gal Raz & Roi Cohen Kadosh

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Francesco Sella .

Additional information

Open practices statement

The R code of the analyses is available at https://osf.io/6jfvk/?view_only=8d405f7b794d4e3bbff7e345e6ef4eed

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

(DOCX 2855 kb)

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Sella, F., Raz, G. & Cohen Kadosh, R. When randomisation is not good enough: Matching groups in intervention studies. Psychon Bull Rev 28 , 2085–2093 (2021). https://doi.org/10.3758/s13423-021-01970-5

Download citation

Accepted : 03 June 2021

Published : 09 July 2021

Issue Date : December 2021

DOI : https://doi.org/10.3758/s13423-021-01970-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Variance minimisation
  • Randomised controlled trial
  • Research design
  • Clinical trials
  • Allocation methods
  • Find a journal
  • Publish with us
  • Track your research

Frequently asked questions

How do you randomly assign participants to a group.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

Frequently asked questions: Methodology

Quantitative observations involve measuring or counting something and expressing the result in numerical form, while qualitative observations involve describing something in non-numerical terms, such as its appearance, texture, or color.

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Scope of research is determined at the beginning of your research process , prior to the data collection stage. Sometimes called “scope of study,” your scope delineates what will and will not be covered in your project. It helps you focus your work and your time, ensuring that you’ll be able to achieve your goals and outcomes.

Defining a scope can be very useful in any research project, from a research proposal to a thesis or dissertation . A scope is needed for all types of research: quantitative , qualitative , and mixed methods .

To define your scope of research, consider the following:

  • Budget constraints or any specifics of grant funding
  • Your proposed timeline and duration
  • Specifics about your population of study, your proposed sample size , and the research methodology you’ll pursue
  • Any inclusion and exclusion criteria
  • Any anticipated control , extraneous , or confounding variables that could bias your research if not accounted for properly.

Inclusion and exclusion criteria are predominantly used in non-probability sampling . In purposive sampling and snowball sampling , restrictions apply as to who can be included in the sample .

Inclusion and exclusion criteria are typically presented and discussed in the methodology section of your thesis or dissertation .

The purpose of theory-testing mode is to find evidence in order to disprove, refine, or support a theory. As such, generalisability is not the aim of theory-testing mode.

Due to this, the priority of researchers in theory-testing mode is to eliminate alternative causes for relationships between variables . In other words, they prioritise internal validity over external validity , including ecological validity .

Convergent validity shows how much a measure of one construct aligns with other measures of the same or related constructs .

On the other hand, concurrent validity is about how a measure matches up to some known criterion or gold standard, which can be another measure.

Although both types of validity are established by calculating the association or correlation between a test score and another variable , they represent distinct validation methods.

Validity tells you how accurately a method measures what it was designed to measure. There are 4 main types of validity :

  • Construct validity : Does the test measure the construct it was designed to measure?
  • Face validity : Does the test appear to be suitable for its objectives ?
  • Content validity : Does the test cover all relevant parts of the construct it aims to measure.
  • Criterion validity : Do the results accurately measure the concrete outcome they are designed to measure?

Criterion validity evaluates how well a test measures the outcome it was designed to measure. An outcome can be, for example, the onset of a disease.

Criterion validity consists of two subtypes depending on the time at which the two measures (the criterion and your test) are obtained:

  • Concurrent validity is a validation strategy where the the scores of a test and the criterion are obtained at the same time
  • Predictive validity is a validation strategy where the criterion variables are measured after the scores of the test

Attrition refers to participants leaving a study. It always happens to some extent – for example, in randomised control trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analysing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Construct validity refers to how well a test measures the concept (or construct) it was designed to measure. Assessing construct validity is especially important when you’re researching concepts that can’t be quantified and/or are intangible, like introversion. To ensure construct validity your test should be based on known indicators of introversion ( operationalisation ).

On the other hand, content validity assesses how well the test represents all aspects of the construct. If some aspects are missing or irrelevant parts are included, the test has low content validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Construct validity has convergent and discriminant subtypes. They assist determine if a test measures the intended notion.

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.
  • Reproducing research entails reanalysing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalisations – often the goal of quantitative research . As such, a snowball sample is not representative of the target population, and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones. 

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extra-marital affairs)

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection , using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

When your population is large in size, geographically dispersed, or difficult to contact, it’s necessary to use a sampling method .

This allows you to gather information from a smaller part of the population, i.e. the sample, and make accurate statements by using statistical analysis. A few sampling methods include simple random sampling , convenience sampling , and snowball sampling .

The two main types of social desirability bias are:

  • Self-deceptive enhancement (self-deception): The tendency to see oneself in a favorable light without realizing it.
  • Impression managemen t (other-deception): The tendency to inflate one’s abilities or achievement in order to make a good impression on other people.

Response bias refers to conditions or factors that take place during the process of responding to surveys, affecting the responses. One type of response bias is social desirability bias .

Demand characteristics are aspects of experiments that may give away the research objective to participants. Social desirability bias occurs when participants automatically try to respond in ways that make them seem likeable in a study, even if it means misrepresenting how they truly feel.

Participants may use demand characteristics to infer social norms or experimenter expectancies and act in socially desirable ways, so you should try to control for demand characteristics wherever possible.

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information – for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Peer review is a process of evaluating submissions to an academic journal. Utilising rigorous criteria, a panel of reviewers in the same subject area decide whether to accept each submission for publication.

For this reason, academic journals are often considered among the most credible sources you can use in a research project – provided that the journal itself is trustworthy and well regarded.

In general, the peer review process follows the following steps:

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or
  • Send it onward to the selected peer reviewer(s)
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made.
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field.

It acts as a first defence, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure.

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analysing the data.

Blinding is important to reduce bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behaviour in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalisability of your results, while random assignment improves the internal validity of your study.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardisation and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyse, detect, modify, or remove ‘dirty’ data to make your dataset ‘clean’. Data cleaning is also called data cleansing or data scrubbing.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimise or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Observer bias occurs when a researcher’s expectations, opinions, or prejudices influence what they perceive or record in a study. It usually affects studies when observers are aware of the research aims or hypotheses. This type of research bias is also called detection bias or ascertainment bias .

The observer-expectancy effect occurs when researchers influence the results of their own study through interactions with participants.

Researchers’ own beliefs and expectations about the study results may unintentionally influence participants through demand characteristics .

You can use several tactics to minimise observer bias .

  • Use masking (blinding) to hide the purpose of your study from all observers.
  • Triangulate your data with different data collection methods or sources.
  • Use multiple observers and ensure inter-rater reliability.
  • Train your observers to make sure data is consistently recorded between them.
  • Standardise your observation procedures to make sure they are structured and clear.

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviours of your research subjects in real-world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as ‘people watching’ with a purpose.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

You can organise the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomisation can minimise the bias from order effects.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or by post. All questions are standardised so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment
  • Random assignment of participants to ensure the groups are equivalent

Depending on your study topic, there are various other methods of controlling variables .

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

A true experiment (aka a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analysing data from people using questionnaires.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviours. It is made up of four or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with five or seven possible responses, to capture their degree of agreement.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyse your data.

A research hypothesis is your proposed answer to your research question. The research hypothesis usually includes an explanation (‘ x affects y because …’).

A statistical hypothesis, on the other hand, is a mathematical statement about a population parameter. Statistical hypotheses always come in pairs: the null and alternative hypotheses. In a well-designed study , the statistical hypotheses correspond logically to the research hypothesis.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess. It should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations, and statistical analysis of data).

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data are available for analysis; other times your research question may only require a cross-sectional study to answer it.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyse behaviour over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups . Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with ‘yes’ or ‘no’ (questions that start with ‘why’ or ‘how’ are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

Social desirability bias is the tendency for interview participants to give responses that will be viewed favourably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias in research can also occur in observations if the participants know they’re being observed. They might alter their behaviour accordingly.

A focus group is a research method that brings together a small group of people to answer questions in a moderated setting. The group is chosen due to predefined demographic traits, and the questions are designed to shed light on a topic of interest. It is one of four types of interviews .

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order.
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualise your initial thoughts and hypotheses
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when:

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyse your data quickly and efficiently
  • Your research question depends on strong parity between participants, with environmental conditions held constant

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g., understanding the needs of your consumers or user testing your website).
  • You can control and standardise the process for high reliability and validity (e.g., choosing appropriate measurements and sampling methods ).

However, there are also some drawbacks: data collection can be time-consuming, labour-intensive, and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

If something is a mediating variable :

  • It’s caused by the independent variable
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g., the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g., water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control, and randomisation.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomisation , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalisation .

In statistics, ordinal and nominal variables are both considered categorical variables .

Even though ordinal data can sometimes be numerical, not all mathematical operations can be performed on them.

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

‘Controlling for a variable’ means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

There are 4 main types of extraneous variables :

  • Demand characteristics : Environmental cues that encourage participants to conform to researchers’ expectations
  • Experimenter effects : Unintentional actions by researchers that influence study outcomes
  • Situational variables : Eenvironmental variables that alter participants’ behaviours
  • Participant variables : Any characteristic or aspect of a participant’s background that could affect study results

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

The term ‘ explanatory variable ‘ is sometimes preferred over ‘ independent variable ‘ because, in real-world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so ‘explanatory variables’ is a more appropriate term.

On graphs, the explanatory variable is conventionally placed on the x -axis, while the response variable is placed on the y -axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalisation : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalisation: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity, and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity: The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Attrition bias can skew your sample so that your final sample differs significantly from your original sample. Your sample is biased because some groups from your population are underrepresented.

With a biased final sample, you may not be able to generalise your findings to the original population that you sampled from, so your external validity is compromised.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment, and situation effect.

The two types of external validity are population validity (whether you can generalise to other groups of people) and ecological validity (whether you can generalise to other situations and settings).

The external validity of a study is the extent to which you can generalise your findings to different groups of people, situations, and measures.

Attrition bias is a threat to internal validity . In experiments, differential rates of attrition between treatment and control groups can skew results.

This bias can affect the relationship between your independent and dependent variables . It can make variables appear to be correlated when they are not, or vice versa.

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction, and attrition .

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 × 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method .

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

In multistage sampling , you can use probability or non-probability sampling methods.

For a probability sample, you have to probability sampling at every stage. You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data are then collected from as large a percentage as possible of this random subset.

Sampling bias occurs when some members of a population are systematically more likely to be selected in a sample than others.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from county to city to neighbourhood) to create a sample that’s less expensive and time-consuming to collect data from.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling , and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

Advantages:

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.

Disadvantages:

  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes
  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomisation. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference between this and a true experiment is that the groups are not randomly assigned.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word ‘between’ means that you’re comparing different conditions between groups, while the word ‘within’ means you’re comparing different conditions within the same group.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Triangulation can help:

  • Reduce bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labour-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analysing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Experimental designs are a set of procedures that you plan in order to examine the relationship between variables that interest you.

To design a successful experiment, first identify:

  • A testable hypothesis
  • One or more independent variables that you will manipulate
  • One or more dependent variables that you will measure

When designing the experiment, first decide:

  • How your variable(s) will be manipulated
  • How you will control for any potential confounding or lurking variables
  • How many subjects you will include
  • How you will assign treatments to your subjects

Exploratory research explores the main aspects of a new or barely researched question.

Explanatory research explains the causes and effects of an already widely researched question.

The key difference between observational studies and experiments is that, done correctly, an observational study will never influence the responses or behaviours of participants. Experimental designs will have a treatment condition applied to at least a portion of participants.

An observational study could be a good fit for your research if your research question is based on things you observe. If you have ethical, logistical, or practical concerns that make an experimental design challenging, consider an observational study. Remember that in an observational study, it is critical that there be no interference or manipulation of the research subjects. Since it’s not an experiment, there are no control or treatment groups either.

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analysed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analysed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualise your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analysed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organisation to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organise your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyse data (e.g. experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Ask our team

Want to contact us directly? No problem. We are always here for you.

Support team - Nina

Our support team is here to help you daily via chat, WhatsApp, email, or phone between 9:00 a.m. to 11:00 p.m. CET.

Our APA experts default to APA 7 for editing and formatting. For the Citation Editing Service you are able to choose between APA 6 and 7.

Yes, if your document is longer than 20,000 words, you will get a sample of approximately 2,000 words. This sample edit gives you a first impression of the editor’s editing style and a chance to ask questions and give feedback.

How does the sample edit work?

You will receive the sample edit within 24 hours after placing your order. You then have 24 hours to let us know if you’re happy with the sample or if there’s something you would like the editor to do differently.

Read more about how the sample edit works

Yes, you can upload your document in sections.

We try our best to ensure that the same editor checks all the different sections of your document. When you upload a new file, our system recognizes you as a returning customer, and we immediately contact the editor who helped you before.

However, we cannot guarantee that the same editor will be available. Your chances are higher if

  • You send us your text as soon as possible and
  • You can be flexible about the deadline.

Please note that the shorter your deadline is, the lower the chance that your previous editor is not available.

If your previous editor isn’t available, then we will inform you immediately and look for another qualified editor. Fear not! Every Scribbr editor follows the  Scribbr Improvement Model  and will deliver high-quality work.

Yes, our editors also work during the weekends and holidays.

Because we have many editors available, we can check your document 24 hours per day and 7 days per week, all year round.

If you choose a 72 hour deadline and upload your document on a Thursday evening, you’ll have your thesis back by Sunday evening!

Yes! Our editors are all native speakers, and they have lots of experience editing texts written by ESL students. They will make sure your grammar is perfect and point out any sentences that are difficult to understand. They’ll also notice your most common mistakes, and give you personal feedback to improve your writing in English.

Every Scribbr order comes with our award-winning Proofreading & Editing service , which combines two important stages of the revision process.

For a more comprehensive edit, you can add a Structure Check or Clarity Check to your order. With these building blocks, you can customize the kind of feedback you receive.

You might be familiar with a different set of editing terms. To help you understand what you can expect at Scribbr, we created this table:

View an example

When you place an order, you can specify your field of study and we’ll match you with an editor who has familiarity with this area.

However, our editors are language specialists, not academic experts in your field. Your editor’s job is not to comment on the content of your dissertation, but to improve your language and help you express your ideas as clearly and fluently as possible.

This means that your editor will understand your text well enough to give feedback on its clarity, logic and structure, but not on the accuracy or originality of its content.

Good academic writing should be understandable to a non-expert reader, and we believe that academic editing is a discipline in itself. The research, ideas and arguments are all yours – we’re here to make sure they shine!

After your document has been edited, you will receive an email with a link to download the document.

The editor has made changes to your document using ‘Track Changes’ in Word. This means that you only have to accept or ignore the changes that are made in the text one by one.

It is also possible to accept all changes at once. However, we strongly advise you not to do so for the following reasons:

  • You can learn a lot by looking at the mistakes you made.
  • The editors don’t only change the text – they also place comments when sentences or sometimes even entire paragraphs are unclear. You should read through these comments and take into account your editor’s tips and suggestions.
  • With a final read-through, you can make sure you’re 100% happy with your text before you submit!

You choose the turnaround time when ordering. We can return your dissertation within 24 hours , 3 days or 1 week . These timescales include weekends and holidays. As soon as you’ve paid, the deadline is set, and we guarantee to meet it! We’ll notify you by text and email when your editor has completed the job.

Very large orders might not be possible to complete in 24 hours. On average, our editors can complete around 13,000 words in a day while maintaining our high quality standards. If your order is longer than this and urgent, contact us to discuss possibilities.

Always leave yourself enough time to check through the document and accept the changes before your submission deadline.

Scribbr is specialised in editing study related documents. We check:

  • Graduation projects
  • Dissertations
  • Admissions essays
  • College essays
  • Application essays
  • Personal statements
  • Process reports
  • Reflections
  • Internship reports
  • Academic papers
  • Research proposals
  • Prospectuses

Calculate the costs

The fastest turnaround time is 24 hours.

You can upload your document at any time and choose between three deadlines:

At Scribbr, we promise to make every customer 100% happy with the service we offer. Our philosophy: Your complaint is always justified – no denial, no doubts.

Our customer support team is here to find the solution that helps you the most, whether that’s a free new edit or a refund for the service.

Yes, in the order process you can indicate your preference for American, British, or Australian English .

If you don’t choose one, your editor will follow the style of English you currently use. If your editor has any questions about this, we will contact you.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Clin Orthop Surg
  • v.6(1); 2014 Mar

Logo of clinorsurg

How to Do Random Allocation (Randomization)

Jeehyoung kim.

Department of Orthopedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea.

Wonshik Shin

To explain the concept and procedure of random allocation as used in a randomized controlled study.

We explain the general concept of random allocation and demonstrate how to perform the procedure easily and how to report it in a paper.

Randomized controlled trials (RCT) are known as the best method to prove causality in spite of various limitations. Random allocation is a technique that chooses individuals for treatment groups and control groups entirely by chance with no regard to the will of researchers or patients' condition and preference. This allows researchers to control all known and unknown factors that may affect results in treatment groups and control groups.

Allocation concealment is a technique used to prevent selection bias by concealing the allocation sequence from those assigning participants to intervention groups, until the moment of assignment. Allocation concealment prevents researchers from influencing which participants are assigned to a given intervention group. This process must be included in the experiment for the success of any RCT.

Blinding refers to keeping trial participants, health care providers, assessors or data collectors unaware of the assigned intervention, so that they will not be influenced by that knowledge. This process is conducted to minimize possible bias in implementation, dropouts, measurements, etc. Blinding is not always feasible for RCT but should be implemented if possible.

Randomization, allocation concealment and blinding should be well implemented and should be described in the paper.

On the other hand, many researchers are still unfamiliar with how to do randomization, and it has been shown that there are problems in many studies with the accurate performance of the randomization and that some studies are reporting incorrect results. So, we will introduce the recommended way of using statistical methods for a randomized controlled study and show how to report the results properly.

CATEGORIES OF RANDOMIZATION

Simple randomization.

The easiest method is simple randomization. If you assign subjects into two groups A and B, you assign subjects to each group purely randomly for every assignment. Even though this is the most basic way, if the total number of samples is small, sample numbers are likely to be assigned unequally. For this reason, we recommend you to use this method when the total number of samples is more than 100.

Block Randomization

We can create a block to assign sample numbers equally to each group and assign the block.

If we specify two in one block (the so-called block size is two), we can make two possible sequences of AB and BA. When we randomize them, the same sample numbers can be assigned to each group. If the block size is four, we can make six possible sequences; these are AABB, ABAB, ABBA, BAAB, BABA, BBAA, and we randomize them.

However, there is a disadvantage in that the executer can predict the next assignment. We can easily know the fact that B comes after A if the block size is two and if the block size is four; we can predict what every 4th sample is. This is discordant with the principle of randomization. To solve this problem, the allocator must hide the block size from the executer and use randomly mixed block sizes. For example, the block size can be two, four, and six.

Stratified Randomization

Randomization is important because it is almost the only way to assign all the other variables equally except for the factor (A and B) in which we are interested. However, some very important confounding variables can often be assigned unequally to the two groups. This possibility increases when the number of samples is smaller, and we can stratify the variables and assign the two groups equally in this case.

For example, if the smoking status is very important, what will you do? First, we have two methods of randomization that we learned previously. There are two randomly assigned separate sequences for smokers and non-smokers. Smokers are assigned to the smoker's sequences, and non-smokers are assigned to the non-smoker's sequences. Therefore, both smokers and non-smokers groups will be placed equally with the same numbers.

So we can use 'simple randomization with/without stratification' or 'block randomization with/without stratification.' However, if there are multiple stratified variables, it is difficult to place samples in both groups equally with the same numbers. Usually two or fewer stratified variables are recommended.

EXAMPLES OF RANDOMIZATION

Although there are websites or common programs for randomization, let us use an Excel file. Download the attached file in http://cafe.naver.com/easy2know/6427 . It is in a 'Read-only' state, but there is no limit in function; it is in the 'Read-only' state only to prevent accidental modification.

Due to the nature of Excel, if there is a change, it creates a new random number accordingly. If we input any number instead of '2' in the orange-colored cell and click the 'enter key,' it creates new random sequences ( Fig. 1 ). The sequences are the result of simple randomization. The numbers in the right column show the numbers of the total sample. Basically the numbers are up to 1,000, but if you need to, you can extend the numbers with the AutoFill function in Excel.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g001.jpg

Simple randomization sheet.

Fig. 2 shows an example of randomization when the block size is four. Also, there are numbers of the total samples in the right column.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g002.jpg

An example of randomization when the block size is four.

Fig. 3 shows an example of block randomization when the block size is two and four. Total eight kinds of blocks inside of the red-dotted line are assigned at random. The left column is for allocation and the right column is for the total sample size.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g003.jpg

Block randomization when the block size is two and four. Total eight blocks in the red-dotted line are assigned at random. The left column is for allocation and the right column is for the total sample size.

By the way, www.randomization.com can do block randomization for up to four kinds of block sizes and it is very easy to perform as well. Fig. 4 shows the general features and an example.

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g004.jpg

www.randomization.com can do block randomization more easily. In this figure, the block size is 2, 4, and 6 when the total samples are 88.

THE REALITY OF THE RANDOMIZATION PROCEDURE

How to implement these techniques can vary by each trial. The following is only one of the examples of how these can be implemented in real trial. You may change the details of the example for your experiment. Figures of randomization and allocation concealment can also be adjusted to your needs ( Fig. 5 ).

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g005.jpg

The reality of the randomization procedure.

Random Allocation

An independent researcher makes random allocation cards using computer-generated random numbers. He keeps the original random allocation sequences in an inaccessible third place and works with a copy. Since the executers can get confused with the original coding of A and B later, the allocator should record exactly what these codes mean to avoid further confusion.

When the purpose of the study is a surgical procedure, instead of using A and B, different names that distinguish exactly between the surgical procedures should be used (for example, 'the anterior approach' and 'the posterior approach'). It is convenient to reproduce the contents of the Excel file to a Word file, and enlarge the text font after replacing A with 'the anterior approach' (page break) and B with 'the posterior approach' (page break). Next, you print it out and put each of the sheets one by one into each envelope ( Fig. 6 ).

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-g006.jpg

MS word can replace A and B with a specific treatment name easily.

Here in Fig. 6 , '^m' is a special character for manual page break. After setting it as shown, you click 'all change' and print it out. Then we can get it printed per sheet. The inside of the envelope should not be visible from the outside, and it has to be printed out for each one and put in an envelope after being folded several times. In some papers, even aluminum foil was used to hide the print to prevent it from being read with a flash of light.

There are serial numbers on the outside of the envelopes. Input date, time, patient ID, results after the procedure, etc. usually will be recorded on the envelope or another sheet inside of the envelope, also.

Drug Preparation

An independent nurse (researcher) prepares syringes with "drug A" and "drug B" and puts them into envelopes according to the allocation orders. These syringes cannot be distinguished because they contain the same colored liquid with the same volume. Or pills or tablets with the same color and shape (placebo) will be put into the envelopes according to the allocation orders.

In the case of surgical treatment, an independent researcher prepares the envelopes, including writing the treatment name on a sheet of paper inside it. In the operation room, another independent nurse (researcher) opens the envelope and informs the doctor to do the treatment that is written on the paper in the envelope.

Another independent nurse injects the drug or the doctor performs the operation according to the order. The patient's ID, date, time and other information are recorded on each envelope. The nurse and the patient would not know what drugs are injected (double blinded). The doctor knows the treatment and the patient does not know it (one blinded). The preparer retrieves the envelopes and checks to see if the operation (and injection) was done as planned.

In the case of broken or lost syringes, the preparer figures out what the number of the envelope it is and replaces the envelope with the same drug according to the allocation.

The envelopes should be opened just before the injection or operation. For example, when a patient comes, an envelope is opened; however, if this does not meet the criteria for the performance of the study, this can be cancelled. Also, if the operator finds out before an operation the tool that is to be inserted, it is impossible to get the operation as planned. For example, even though plate A was assigned to be used, if the patient was indicated to have some other surgery because of infection or severe osteoporosis, you will waste an envelope and it will cause confusion as well as violate the randomization. All these cases should be mentioned as inclusion criteria and exclusion criteria in advance. To avoid this, the envelopes should be opened just before the operation or injection if possible.

However, in cases where the operation tool is so big that two tools cannot be prepared at the same time, or the preparation takes a lot of money (robotic surgery, etc.) or time (liver transplantation, etc.), the envelopes can be opened in advance.

Also, although you open an envelope and choose the procedure that you see, other conditions that affect the outcome can occur. For example, the patient could be admitted to the intensive care unit for medical problems after treatment, or may not get enough rehabilitation treatment for some other reasons.

In this case, it is an important issue whether to consider this as a follow-up loss or exclude this case from the study. We can deal with this issue by focusing on intention-to-treat analysis and per-protocol analysis. We will study this later when we get a chance.

Survey Results

After a period of time, another independent researcher measures the patient's outcome. He does not know the allocation. That is another blinding, so triple blinding is recommended if possible.

Another independent researcher who was not involved in any stage of these procedures will do the statistical analysis (sometimes a statistician). He even does not know the treatment name because the treatment name is hidden, as in A and B.

REPORTING OF RANDOMIZATION METHODS

From 1988 to 2000, 72 of 2,468 papers (2.9%) in the Journal of Born and Joint Surgery were RCTs. 1) It has been suggested that in some of the papers, randomization was not completely done or the result was not properly reported. According to the analysis of RCTs using painkillers from the January issue in 1966 to the June issue in 2006, 23.9% of the papers were inadequate in terms of the randomization. 2) It would be helpful to see a CONSORT checklist and examples. The following were used in the actual papers and extracted from examples in the CONSORT ( http://www.consort-statement.org ).

Sequence Generation

"Independent pharmacists dispensed either active or placebo inhalers according to a computer generated randomization list."

"For allocation of the participants, a computer-generated list of random numbers was used."

Type of Randomization

"Randomization sequence was created using Stata 9.0 (StataCorp, College Station, TX, USA) statistical software and was stratified by center with a 1:1 allocation using random block sizes of 2, 4, and 6."

"Participants were randomly assigned following simple randomization procedures (computerized random numbers) to 1 of 2 treatment groups."

We can apply the above examples to our case as follows: Randomization sequence was created using Excel 2007 (Microsoft, Redmond, WA, USA) with a 1:1 allocation using random block sizes of 2 and 4 by an independent doctor. In this way, sequence generation and type of randomization can be expressed at the same time.

Allocation Concealment Mechanism

"The doxycycline and placebo were in capsule form and identical in appearance. They were pre-packed in bottles and consecutively numbered for each woman according to the randomization schedule. Each woman was assigned an order number and received the capsules in the corresponding pre-packed bottle."

"The allocation sequence was concealed from the researcher (JR) enrolling and assessing participants in sequentially numbered, opaque, sealed and stapled envelopes. Aluminum foil inside the envelope was used to render the envelope impermeable to intense light. To prevent subversion of the allocation sequence, the name and date of birth of the participant was written on the envelope and a video tape made of the sealed envelope with participant details visible. Carbon paper inside the envelope transferred the information onto the allocation card inside the envelope and a second researcher (CC) later viewed video tapes to ensure envelopes were still sealed when participants' names were written on them. Corresponding envelopes were opened only after the enrolled participants completed all baseline assessments and it was time to allocate the intervention."

The second example was described in great detail, and we can guess how important the randomization and concealment were.

Who Generated the Allocation Sequence, Who Enrolled Participants, and Who Assigned Participants to Interventions?

"Determination of whether a patient would be treated by streptomycin and bed-rest (S case) or by bed-rest alone (C case) was made by reference to a statistical series based on random sampling numbers drawn up for each sex at each center by Professor Bradford Hill (this means that the stratification was done by sex and center); the details of the series were unknown to any of the investigators or to the coordinator. After acceptance of a patient by the panel, and before admission to the streptomycin center, the appropriate numbered envelope was opened at the central office; the card inside told, if the patient was to be an S or a C case, and this information was then given to the medical officer of the center."

"Details of the allocated group were given on colored cards contained in sequentially numbered, opaque, sealed envelopes. These were prepared at the NPEU and kept in an agreed location on each ward. Randomization took place at the end of the 2nd stage of labor when the midwife considered a vaginal birth was imminent. To enter a woman into the study, the midwife opened the next consecutively numbered envelope."

"Block randomization was by a computer generated random number list prepared by an investigator with no clinical involvement in the trial. We stratified by admission for an oncology related procedure. After the research nurse had obtained the patient's consent, she telephoned a contact who was independent of the recruitment process for allocation consignment."

If Done, Who Was Blinded after Assignment to Interventions and How

"Whereas patients and physicians allocated to the intervention group were aware of the allocated arm, outcome assessors and data analysts were kept blinded to the allocation."

"Blinding and equipoise were strictly maintained by emphasizing to intervention staff and participants that each diet adheres to healthy principles, and each of them is advocated by certain experts to be superior for long-term weight-loss. Except for the interventionists (dieticians and behavioral psychologists), investigators and staff were kept blind to diet assignment of the participants. The trial adhered to established procedures to maintain separation between staff that take outcome measurements and staff that deliver the intervention. Staffs who obtained outcome measurements were not informed of the diet group assignment. Intervention staffs, dieticians and behavioral psychologists who delivered the intervention did not take outcome measurements. All investigators, staffs, and participants were kept masked to outcome measurements and trial results."

In short, in a paper, we have to report who was kept blinded. In the case of physical therapy or surgery, keeping the surgeon blinded would be difficult or even impossible; however, blinding is possible for the person who measures the outcome. Anyhow, all individuals who were kept blinded must be described in the report.

WEBSITES AND SYSTEMS HELPING THESE PROCEDURES

To help with all the procedures of a fully qualified RCT, the following systems including electronic case report forms (eCRFs) are available for researchers.

iCReaT (clinical research and trial management system) in Korea Centers for Disease Control & Prevention (KCDC; http://icreat.nih.go.kr ): free for pre-educated and qualified researchers; there are regular education programs once a month, and some hospitals (for example, Severance Hospital) have their own educational programs. An English version will be available soon for non-Korean researchers.

MRCC ( https://mrcc.snuh.org ): for Seoul National University Hospital only. It is relatively inexpensive and includes statistical counseling.

Velos ( http://eresearch.ncc.re.kr ): a world-famous system and very expensive; it is available at National Cancer Center in Korea ( http://ncc.re.kr/crcc/ ).

eCRFs are very convenient as well as helpful to improve the quality of research and their advantages are summarized in the table ( Table 1 ).

Comparisons between Paper CRFs and e-CRFs of Web-based Clinical Research Management System

An external file that holds a picture, illustration, etc.
Object name is cios-6-103-i001.jpg

CRF: case report form.

In RCT, random assignment is important and performing it is easy if you know how to do it. Besides the practice of randomization, correct reporting of the randomization process is also important and it should be done very accurately.

No potential conflict of interest relevant to this article was reported.

  • Open supplemental data
  • Reference Manager
  • Simple TEXT file

People also looked at

Clinical trial article, milk-based culture of penicillium camemberti and its component oleamide affect cognitive function in healthy elderly japanese individuals: a multi-arm randomized, double-blind, placebo-controlled study.

the random assignment of participants to groups

  • 1 Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd., Tokyo, Japan, Tokyo, Japan
  • 2 Diastep Medical Corporation, Tokyo, Japan
  • 3 HUMA R&D Corporation, Tokyo, Japan

Dairy products and fermented foods have a reported association with maintained cognitive function. Camembert cheese, a dairy product fermented by the white mold Penicillium camemberti , has also been shown to enhance cognitive function in vivo . Oleamide, derived from the fermentation of the white mold, is a candidate for an active component, and expected to improve both cognitive function and sleep conditions. Thus, this study investigated whether the milk-based culture of white mold (MCW), and oleamide, could improve cognitive function and sleep state clinically. A multi-arm randomized, double-blind, placebo-controlled trial was conducted in Tokyo, Japan. 60 healthy Japanese individuals aged 50–75 who were aware of their cognitive decline were randomly and equally divided into three groups of 20 participants using computer-generated random numbers. Participants took either MCW (equivalent to 60 μg/day of oleamide), 60 μg/day of oleamide, or placebo capsules for 12 weeks. Serum BDNF, cognitive function by Cognitrax as primary and MCI Screen as secondary outcome, and sleep status using the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J) were assessed before and after intervention. The participants, outcome assessors and analysts, and research assistants were blinded to the group assignment. Of the 60 participants, 58 completed the study and were analyzed. No adverse events related to test foods were observed. The placebo group showed a negative rate of change in serum BDNF (−10.5% ± 19.7%), whereas the MCW and oleamide groups showed positive changes (2.0% ± 27.1% and 1.3% ± 13.5%, respectively). Cognitrax scores increased after 12 weeks in all groups. Conversely, the MPI score of the MCI Screen demonstrated a significant improvement in the MCW and oleamide groups compared to the placebo group ( p  = 0.013 and p  < 0.001, respectively). The subscales, immediate free recall and delayed free recall, also significantly increased in them compared to the placebo group. Although PSQI-J revealed no significant differences among groups, the MCW and oleamide groups showed significant improvement after intervention in overall score, subjective sleep quality, and sleep latency. Our results suggest that MCW and its component, oleamide, are safe and contribute to maintaining cognitive functions, particularly short-term and working memory, and improving sleep state.

Clinical trial registration : https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000054792 , identifier UMIN-CTR UMIN000048084.

1 Introduction

With ongoing advancements in science, technology, and medicine enhancing life expectancy, the global population is experiencing rapid aging. Conversely, healthy life expectancy has not elongated, and the health of older individuals has not improved from the previous generation, even in some regions of high-income countries ( 1 ). This is due to age-related declines in physical and cognitive functions. To prolong the healthy lifespan of the elderly, maintaining cognitive function along with physical function through daily life is essential ( 2 ).

The relationship between cognitive function and diet has been well-established. Examples include the consumption of n-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) ( 3 – 5 ), dietary fiber, and fermented foods ( 6 , 7 ). Recent reports have also discussed the impact of dairy products on cognitive function. The Hisayama Cohort study in Japan indicates that consuming a high amount of milk and dairy products can lower the risk of dementia among the Japanese ( 8 , 9 ). An epidemiological study in the United States has also showed a correlation between dairy product consumption and cognitive function ( 10 ). Cheese, a fermented dairy product, generates numerous bioactive compounds during ripening and may have health benefits ( 11 ). Kim et al. showed an inverse association between cheese consumption and lower cognitive function. These studies indicate that the intake of dairy and fermented dairy products may enhance cognitive function ( 12 ).

Nowadays, research specifically focusing on Camembert cheese and its components has also been conducted. Suzuki et al. carried out a clinical study involving elderly women with mild cognitive impairment, in which the participants consistently consumed either Camembert cheese or processed cheese over a three-month period ( 13 ). The study revealed that consuming Camembert cheese continuously for 3 months increased the levels of serum brain-derived neurotrophic factor (BDNF), a factor closely associated with cognitive function, compared to that of processed cheese. Ano et al. demonstrated through in vivo studies that Camembert cheese and its extracts can reduce the accumulation of amyloid-β, suppress the release of inflammatory cytokines, and enhance the production of hippocampal neurotrophic factor ( 14 ). Beta-lactopeptide, dehydroergosterol, and oleamide are potential components contributing to these effects ( 14 – 16 ). Above all, oleamide has been suggested to have physiological functions associated with cognitive function and sleep ( 17 , 18 ). Oleamide naturally occurs in foods such as Camembert cheese, jujube ( Ziziphus jujuba ), and the essential oil of mountain celery seeds ( 19 , 20 ). In Camembert cheese, it is considered that oleamide is produced through the amide bonding of ammonia and oleic acid derived from milk during the fermentation process by P . camemberti ( 14 ). Oleamide is reported to suppress inflammation and enhance microglial phagocytosis in the central nervous system ( 14 ). Additionally, administering oleamide to neonatal mice enhanced their learning and memory-related skills. Thus, oleamide is considered as one of the components in certain foods that contributes to cognitive enhancement ( 21 ). At the same time, oleamide is a lipid found from cerebrospinal fluids of sleep derived cats ( 22 ). It has been revealed that the intraperitoneal administration of oleamide in rats reduce sleep latency, slow-wave sleep, and motor activity, potentially enhancing sleep quality ( 17 , 23 ). Thus, followed by additional findings, oleamide has long been described to have relationship with sleep state ( 24 – 26 ). Moreover, jujube fruit is also shown to prolong sleeping time and to decrease its locomotor activities, and although not stated in this review, oleamide contained in them could be one of the reasons of this effect ( 19 ). One possibility for the mechanism of these findings is that oleamide is an endogenous agonist of the cannabinoid receptor 1, in which its enhancement is known to be involved in cognition, motor function, memory, nociception, and sleep ( 27 , 28 ). The efficacy of oleamide on cognitive function and sleep state has only been proven in animal experiments, and not in clinical trials.

We have developed a milk culture enriched with oleamide, using the white mold P. camemberti , based on the manufacturing method of Camembert cheese. To evaluate the impact of continuous intake of milk-based culture of white mold (MCW) and its active ingredient, oleamide, on cognitive function, a randomized, double-blind, placebo-controlled, parallel-group comparative study was carried out in healthy elderly individuals experiencing cognitive decline. Additionally, the impact of oleamide on sleep quality was assessed using patient-reported outcomes.

2.1 Ethical considerations

The study adhered to the Declaration of Helsinki, the Ethical Guidelines for Life Sciences and Medical Research Involving Human Subjects, and the Act on the Protection of Personal Information. The study was conducted after review and approval by the Yoga Allergy Clinic Clinical Research Ethics Review Committee (approval number: RD11002TS04). The study was pre-registered with the University Hospital Medical Information Network Clinical Trials Registry (registration number: UMIN000048084; registration on 17 June 2023).

2.2 Study participants

2.2.1 participants.

Healthy Japanese adult men and women aged 50 to 75 years, who were aware of their cognitive decline, were recruited as volunteers. A total of 148 volunteers were briefed about the study details and provided written consent. After conducting screening tests, 60 participants who met all inclusion criteria and none of the exclusion criteria outlined in Table 1 were enrolled in the study. Under enrollment, people whose scores of MMSE are 22 or 23, who may be suspected of mild cognitive impairment, were judged as healthy by the principal doctor based on the results of the screening tests. The study collected data from participants at DiaStep Tokyo Skytree Ekimae Internal Medicine, Tokyo, Japan, between September and December 2022.

www.frontiersin.org

Table 1 . Inclusion and exclusion criteria for this study.

2.2.2 Determination of sample size

We referred to a three-arm clinical trial studying changes in cognitive function through consumption of various food components using Cognitrax, as there were no prior studies evaluating cognitive function with oleamide. In the study by Baba et al., significant results were obtained from testing 17 participants in each group ( 29 ). Assuming a potential 10–15% dropout rate from previous studies, we aimed to have 60 participants in total for this study, divided evenly across three groups to have 20 participants each.

2.3 Design of the study

The study was conducted as a multi-arm, randomized, double-blind, placebo-controlled, parallel-group comparative study. The study group allocator stratified and randomized 60 participants who were selected through a screening test (SCR) to oleamide, MCW, or placebo groups. Stratified randomization was conducted based on gender, age, and neurocognitive index (NCI) score from Cognitrax at SCR, aiming for equal distribution among groups. The similarity of conditions between groups after distribution was ensured based on computer-generated random numbers.

The study group allocator, independent from the contract research organization and research institute, maintained seal and strictly kept of the food randomization list until unblinding. The codebreaking was conducted after all data were finalized. The blinding was properly maintained for all parties and study participants, except for the study group allocator. The test foods were consumed for 12 weeks, with evaluations conducted before and after this 12-week period. On the day of the post-intervention test, study participants fasted for 6 h before undergoing various tests; urinalysis, vital signs and physical measurements, the Japanese version of the Pittsburgh Sleep Quality Index (PSQI-J), blood tests (including blood biochemistry, hematology, BDNF), the Japanese version of the MCI Screen, and Cognitrax. The Cognitrax test was conducted only at SCR and after intervention.

2.4 Intervention

The MCW group was given capsules containing 300 mg of lyophilized powder of milk-based culture of white mold P. camemberti (MCW). On the other hand, the oleamide group received capsules containing oleamide (Nootropics Depot, United States). Both capsules were formulated to administrate equivalent doses of 60 μg oleamide per serving. The placebo capsules primarily contained cellulose, without oleamide or MCW. Detailed composition of each test food is shown in Table 2 . The study participants were given test foods each month, packaged in identical soft capsules that were indistinguishable in color, odor, and flavor, and sealed in aluminum bags. The test food was to be taken as four capsules daily after the same meal of the day, and taken with either cold or lukewarm water, until the day before the post-intervention test. If participants forgot to take the test food after the pre-determined meal and realized the mistake during the same day, they were allowed to take it on that day only. Research assistants supervised the consumption of test foods through the lifestyle questionnaire that the participants were asked to fill out daily. If the test food had not been consumed, the research assistants made a phone call to the participant to ask the reason and to remind them to consume it every day.

www.frontiersin.org

Table 2 . Composition of test foods in this study.

2.5 Outcomes

2.5.1 primary outcomes.

Serum BDNF and Cognitrax were chosen as the primary outcomes. Measurement of serum BDNF concentrations was contracted to Healthcare Systems Co., Ltd. (Aichi, Japan), using sandwich enzyme-linked immunosorbent assay (ELISA) kits for BDNF (DuoSet; R&D Systems, Minneapolis, MN, United States), and was performed according to the manufacturer’s protocol. Blood samples for BDNF were collected in the morning from 10:00 to 10:30 on the day of the pre-intervention test and on the day of post-intervention test at 12 weeks. The BDNF assays were conducted using the same batch of kits.

Cognitrax is an online cognitive function assessment test using computer. It provides a comprehensive evaluation of various domains including memory, attention, processing speed, and executive function ( 30 ). Cognitrax results are normalized according to age and educational level and are evaluated based on 12 different indices: Neurocognition Index (NCI), Composite Memory, Verbal Memory, Visual Memory, Psychomotor Speed, Reaction Time, Complex Attention, Cognitive Flexibility, Processing Speed, Executive Functioning, Simple Visual Attention, and Motor Speed. Cognitrax was assessed at SCR and the post-intervention test.

2.5.2 Secondary outcomes

The secondary outcomes were determined using the Japanese version of the MCI Screen and PSQI-J. The MCI Screen is a cognitive function test that accurately differentiates normal cognitive function and mild cognitive impairment (MCI) or mild dementia. The MCI Screen comprises the following three stages: (1) The assessor recites 10 words, and the participant immediately repeats them. This process is repeated three times; (2) The assessor asks 10 questions where the participant shall identify the odd one out among three animals; and (3) The participant repeats the words from step (1) that they can remember without the assessor reciting any. Based on the results of (1) to (3), Z-scores were calculated for both immediate and delayed free recall. Additionally, an overall index, the Memory Performance Index (MPI) score ranging from 0 to 100, was derived using demographic data such as gender, age, and years of learning experience. In this research, we utilized the Japanese version of the MCI Screen, which is validated in Japanese ( 31 ).

PSQI-J was utilized to evaluate sleep state ( 32 , 33 ). Participants were to grade their average subjective sleep state over the past month based on seven factors: sleep quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbance, use of sleep medication, and daytime dysfunction. The total score was used to determine PSQI-J.

The MCI Screen and PSQI-J were carried out twice, at the pre-intervention test and the post-intervention test.

2.5.3 Safety evaluation

Safety was assessed through vital signs (systolic and diastolic blood pressure and pulse rate), physical measurements (body weight and body mass index), and blood biochemical tests [triglyceride (TG), total cholesterol (T-Cho), blood urea nitrogen (BUN), total bilirubin (T-Bil), total protein (TP), albumin (Alb), γ-glutamyl transpeptidase (γ-GTP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine (Cr), uric acid (UA), LDL-cholesterol (LDL-Cho), blood glucose, HDL-cholesterol (HDL-Cho), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), hemoglobin A1c (HbA1c)], hematological tests [white blood cell (WBC), red blood cell (RBC), hemoglobin (Hb), hematocrit (Ht), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet (PLT)], urinalysis (pH, specific gravity, protein qualitative, glucose qualitative, urobilinogen, occult blood reaction, bilirubin, ketone bodies) and adverse events. These parameters were measured thrice: during SCR, pre-intervention test, and post-intervention test. To account for diurnal variation, blood samples for the pre-intervention test and post-intervention test were collected in the morning from 10:00 to 10:30.

2.6 Statistical analysis

This study analyzed the Per-Protocol Set (PPS) population. The Dunnett test was used to compare the BDNF, Cognitrax, and MCI Screen among groups, while the paired t-test was used for comparison between before and after the intake of test foods. PSQI-J results were compared among different groups using the Steel test, and these results were further compared with pre-intervention results using the Wilcoxon signed rank test. The backgrounds of the study participants were compared using analysis of variance. Safety endpoints were analyzed among groups using Dunnett, Steel, and Fisher’s exact probability tests, and compared to pre-intervention test results using paired t-test and Wilcoxon signed-rank test, based on specific data characteristics. The significance level for all tests was 5% two-sided, and statistical analysis was performed using statistical analysis software (IBM Ⓡ : SPSS Ⓡ Statistics 27 and EZR version 1.55). The mean, standard deviation, and 95% confidence interval are displayed for the participant background and efficacy endpoints (excluding PSQI-J), and interquartile range are displayed for PSQI-J.

3.1 Characteristics of the study participants

The disposition of study participants is shown in Figure 1 . From June to July 2022, 148 individuals were recruited and screened for the study. 60 healthy male and female participants were enrolled in this study, and randomly allocated evenly across three groups of 20 participants: MCW, oleamide, and placebo.

www.frontiersin.org

Figure 1 . CONSORT flow diagram of study participants. MCW, Milk-Based Culture of White Mold.

During the study, one participant in the placebo group withdrew due to personal reasons, leaving a total of 59 participants (20 in the MCW group, 20 in the oleamide group, and 19 in the placebo group) by the end of the study. After intervention, one placebo participant was excluded due to a protocol violation involving medication that could affect cognitive ability. Consequently, 58 participants remained in the PPS: 20 in the MCW group, 20 in the oleamide group, and 18 in the placebo group. However, Cognitrax results of two participants, one from the oleamide group and the other in the placebo group, were excluded from the PPS analysis due to reliability concerns: operational error of the computer by one participant and partial non-calculation of the results for the other.

The demographic characteristics of the participants at baseline are summarized in Table 3 . There were no significant differences between the placebo group and the other two groups.

www.frontiersin.org

Table 3 . Characteristics of participants.

3.2 Primary outcomes

At 12 weeks, the oleamide group had significantly higher BDNF levels than those of the placebo group ( Table 4 , p  = 0.005). The MCW and oleamide groups exhibited a positive rate of change in BDNF levels, whereas a negative rate of change was observed in the placebo group. However, no significant differences in the rate of change were found among the groups ( Table 4 ; Figure 2 ).

www.frontiersin.org

Table 4 . Comparison of serum BDNF.

www.frontiersin.org

Figure 2 . Rate of Change in BDNF from the baseline to week-12. The bars represent the average rate of change, while the error bars denote the standard deviation. MCW, Milk-Based Culture of White Mold.

3.2.2 Cognitrax

After 12 weeks of intake, all parameters improved in all groups, except for Simple Visual Attention in the MCW group, as compared to baseline ( Table 5 ). However, there were no significant differences at 12 weeks among the groups ( Table 5 ).

www.frontiersin.org

Table 5 . Comparison of standardized scores on Cognitrax.

3.3 Secondary outcomes

3.3.1 mci screen.

The changes of the MPI score at 12 weeks (Δ MPI score) was significantly greater in the MCW and oleamide groups compared to the placebo group ( Figure 3A ; Table 6 ; p  = 0.013 in the MCW group and p  < 0.001 in the oleamide group).

www.frontiersin.org

Figure 3 . Changes in MCI Screen. (A) Δ MPI score, (B) Δ immediate free recall, and (C) Δ delayed free recall. The bars represent the mean, while the error bars denote the standard deviation. * p  < 0.05, ** p  < 0.01, analyzed by Dunnett’s test (vs. placebo). MCW, Milk-Based Culture of White Mold; MPI, Memory Performance Index.

www.frontiersin.org

Table 6 . Comparison of MCI screen scores.

The changes of the Z-scores for immediate and delayed free recall (Δ Immediate free recall and Δ Delayed free recall, respectively) were also significantly greater in the MCW and oleamide groups compared to the placebo group ( Figure 3B ; Table 6 : immediate free recall; p  = 0.010 in the MCW group and p  < 0.001 in the oleamide group; Figure 3C ; Table 6 : delayed free recall; p  = 0.010 in the MCW group and p < 0.001 in the oleamide group).

3.3.2 PSQI-J

After 12 weeks of consumption, both the MCW and oleamide groups showed significantly lower overall scores than baseline ( p  = 0.002 in the MCW group and p  = 0.003 in the oleamide group). Conversely, the placebo group exhibited no significant changes ( Figure 4A ; Table 7 ). Furthermore, the MCW group and the oleamide group both showed significant improvement in sleep quality and sleep latency scores after intervention ( p  < 0.001, p  = 0.033 in the MCW group and p  < 0.001, p  = 0.014 in the oleamide group, respectively; Figures 4B , C ; Table 7 ). However, no significant differences were observed among the groups at 12 weeks ( Figure 4 ; Table 7 ).

www.frontiersin.org

Figure 4 . Changes in PSQIG Score. (A) PSQIG Score, (B) Subjective sleep quality, and (C) Sleep latency. Box plot indicates interquartile range (IQR). White boxes show the participants’ state at baselines and gray ones show their state at week-12. # p  < 0.05, ## p  < 0.01, performed by Wilcoxon signed rank test (vs. baseline). Oleamide and MCW groups showed no significance compared to placebo group (analyzed by Steel’s test). PSQIG, Pittsburgh Sleep Quality Index Global score; MCW, Milk-Based Culture of White Mold.

www.frontiersin.org

Table 7 . Comparison of PSQI-J scores.

3.4 Safety evaluations

After 12 weeks of intervention, vital signs, physical measurements, blood parameters, and urinalysis were within normal range, although there were significant differences in some parameters compared to the placebo group ( Supplementary Tables 1 – 5 ). During the study period, four participants experienced seven adverse events, all of which were deemed by the investigators to be unrelated to the test foods. The incidence of adverse events did not significantly differ among the three groups ( p  = 0.532). In conclusion, the safety of the test foods was confirmed over a 12-week intervention period.

4 Discussion

In this randomized, double-blind, placebo-controlled study, we examined the effects of MCW and its potential active ingredient, oleamide, on cognitive function in healthy older Japanese individuals experiencing subjective cognitive decline. The results demonstrated that both 60 μg of oleamide and MCW containing 60 μg of oleamide, which were administered for 12 weeks, significantly improved the MPI score of the MCI Screen compared to placebo, indicating a positive effect on cognitive function. Additionally, both the MCW and oleamide groups demonstrated significant improvement in immediate and delayed free recall scores, a sub-category of the MCI Screen, compared to the placebo group. Even though the primary outcome, which was set as Cognitrax, was not achieved in this study, these findings well indicate that continuous consumption of oleamide effectively preserves cognitive abilities, particularly working and short-term memory, in older individuals who are aware of their cognitive decline. This is the first study to directly present the efficacy of oleamide on cognitive function in a clinical trial. Short-term and working memory process verbal, audio, visual, and spatial information encountered in our daily and social interactions. Generally, aging leads to a decline in short-term and working memory ( 34 ). Furthermore, it has been extensively debated that enhancing and maintaining short-term and working memory functions could potentially inhibit the onset and progression of dementia ( 35 ). This study suggests that intake of oleamide or oleamide-rich foods could potentially prevent dementia by preserving short-term and working memory functions.

Results from our research presented that while the MCI Screen demonstrated significant improvement, the Cognitrax did not show a noticeable difference compared to the placebo ( Figure 3 ; Table 5 ). This contradiction may be attributed to the different target populations of the two tests. The Cognitrax test is designed for a broad spectrum of individuals, ranging from people with normal cognitive function to patients with dementia ( 30 ). The MCI Screen is designed to evaluate cognitive function in healthy individuals and individuals with mild cognitive impairment (MCI) ( 36 ). It can distinguish between healthy individuals and individuals with MCI with an accuracy of 97%–99% ( 31 ). Given this discrepancy, it is inferred that the MCI Screen is more sensitive to individuals with near-normal cognitive function than the Cognitrax. Indeed, this study involved elderly participants aware of their cognitive decline. However, their baseline values for both tests were high (Cognitrax: mean 90–100; Table 5 , MCI Screen: mean 57–60; Figure 3 ; Table 6 ) in contrast to our prediction, indicating that their cognitive functions were relatively well-maintained. Therefore, in this study, significant differences were only observed in the MCI Screen, which we infer to be highly sensitive to individuals with near-normal cognitive function. Apart from our research, there have been clinical studies in healthy participants that detected the efficacy of foods on cognitive function. These effects are more sensitively detected by the MCI Screen compared to Cognitrax, as the MCI Screen aligns more closely with the original test target. A clinical study evaluating supplements containing propolis extract, curcumin, and other substances found significant differences in the MCI Screen results, but not in Cognitrax ( 37 ). According to our current research and the previous study ( 37 ), the MCI Screen may have had been more effective than Cognitrax in detecting changes in cognitive function in healthy participants in human clinical studies like this trial. Also, neither the mechanism-based difference between the two assessments nor the mode of action of oleamide has been revealed to this day. The aspects mentioned above will be of concern in the future studies.

In this study, the oleamide group showed a significantly higher serum BDNF level than that of the placebo group after 12 weeks of intake. Moreover, the placebo group exhibited a negative rate of change, whereas both the oleamide and MCW groups displayed a positive rate of change, with no regression to the mean observed. Previous reports suggest an association between serum BDNF levels and cognitive function ( 38 ). Suzuki et al. demonstrated that the continuous intake of Camembert cheese raises serum BDNF levels ( 13 ). They partially attributed this association to the presence of oleamide in Camembert cheese ( 13 ). Our result is consistent with this prior study, suggesting that consuming foods containing oleamide could enhance cognitive function through BDNF elevation. Nevertheless, the increase of serum BDNF level in the MCW group was insignificant despite the amount of oleamide ingested. The reason for this result is two-fold: relatively high baseline BDNF level in the oleamide group compared to the MCW group and significant decrease in blood BDNF levels in the placebo group at 12 weeks. Additionally, the current study revealed that the intake of MCW and oleamide exhibited similar changes not only in serum BDNF levels but also in the MCI Screen. Generally, consuming mixtures of different elements like extracts or fermented products may not yield the same effects as consuming a single component. The current findings indicate that MCW and oleamide exhibit similar efficacy on human cognitive function.

The efficacy of oleamide consumption on sleep quality was also assessed in this study. Both the MCW and oleamide groups demonstrated significant improvement from baseline, although not significant when compared to the placebo group. While the potential efficacy of oleamide intake on sleep has been demonstrated in rats ( 17 , 23 ), this is the first study to report its effect on human sleep. Although further evidence needs to be accumulated focusing on sleep quality, this study indicates that the consumption of oleamide may have a beneficial effect on sleep in humans as well.

While MCW and oleamide both showed their contribution to the improvement on cognitive abilities and sleep state, it is fairly possible that agents other than oleamide have also contributed to the improvement of the participants’ cognitive abilities or sleep states. In fact, MCW did seem to be more effective than oleamide concerning PSQI-J scores. On the other hand, when we look at the results shown in Figures 1 – 4 , it could be observed that the extent of their improvement on each measure is fairly the same when comparing MCW and oleamide alone. Therefore, while we cannot completely defy the contribution of other components, we consider that oleamide is the main active constituent.

One limitation of this study is that the demographics of the participants were minimal. We have only tested on healthy individuals whose ages range from 50 to 75. This implies that this study cannot note the efficacy of oleamide on individuals with more progressed cognitive decline or who are diagnosed as dementia. Also, this study cannot refer to its effect on individuals aged younger than 50 or older than 75. Further research is necessary to consider the effect of oleamide on the vast population. In addition, this intervention was solely targeted at the Japanese population. Thus, this study does not guarantee the effect of oleamide on the worldwide population. On the other hand, this clinical trial was conducted on both genders, a broad age range of middle-aged and elderly individuals, and those with relatively high cognitive levels. Therefore, this study suggests that continuous intake of oleamide could potentially improve cognitive function of elderly Japanese individuals in various conditions. If these results are universal, it could possibly benefit a broad spectrum of healthy elderly individuals in any ethnicity who are experiencing subjective cognitive decline. Additional research is warranted to understand the mechanism of action of oleamide on cognitive ability and to clarify its generalizability.

There are two potential future applications for oleamide functions. The initial step involves conducting other clinical studies to evaluate the effectiveness of MCW and oleamide on cognitive functions, particularly working memory and short-term memory. This new study will allow us to better understand the efficacy of MCW and oleamide on human cognitive function. This idea could be achieved by choosing an evaluation index that aligns more accurately with the participants’ characteristics and the specific cognitive functions we aim to study. Another option is to reexamine the efficacy of oleamide, focusing primarily on sleep function. This study showed significant improvements in sleep quality in both the MCW and oleamide groups when compared to the baseline; however, these improvements were not significantly different from that in the placebo group. Future studies on humans with sleep disorders could be conducted to gather evidence and clarify the beneficial effects of oleamide on sleep.

The current study revealed that the continuous intake of 60 μg of oleamide and MCW, which contains the same amount of oleamide, significantly improved the MPI score and both immediate and delayed free recall scores compared to placebo. This was observed after 12 weeks of intervention by elderly Japanese participants who were aware of their cognitive decline. Furthermore, oleamide significantly elevated the serum BDNF level. Taken together, these findings suggest that the continuous consumption of oleamide could help preserve or improve working and short-term memory in elderly Japanese individuals experiencing cognitive decline. In an aging society, strategies to prevent cognitive decline are crucial. Oleamide and foods containing it may aid in this endeavor. Moreover, MCW and oleamide have demonstrated the potential to improve sleep quality. This is the first clinical trial to report the efficacy of oleamide and oleamide-rich foods on cognitive function and sleep. Future studies should focus on providing more clinical evidence and understanding the underlying mechanism.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Yoga Allergy Clinic’s Institutional Review Board. The studies were conducted in accordance with the local legislation and institutional requirements. The participants provided their written informed consent to participate in this study.

Author contributions

MS: Writing – review & editing, Investigation, Methodology, Resources, Validation. CO: Conceptualization, Investigation, Methodology, Resources, Validation, Writing – review & editing. KN: Conceptualization, Investigation, Methodology, Project administration, Resources, Writing – review & editing. HTa: Data curation, Investigation, Writing – review & editing. HTo: Data curation, Formal analysis, Validation, Visualization, Writing – original draft. KF: Conceptualization, Funding acquisition, Supervision, Writing – review & editing.

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This research received funding from Meiji Co., Ltd.

Acknowledgments

The authors are grateful to the members of Huma R&D Co., Ltd. for their collaboration in this study. We extend our gratitude to Taketo Yamaji, Kaori Iwasawa, Megumi Koganei, Keiko Okazaki, Akio Tanaka, and Nobuko Jinno for their technical support.

Conflict of interest

MS, CO, KN, and KF were employed by Meiji Co., Ltd. HTo was employed by HUMA R&D Corporation. HTa was employed by Diastep Medical Corporation.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fnut.2024.1357920/full#supplementary-material

1. Chatterji, S, Byles, J, Cutler, D, Seeman, T, and Verdes, E. Health, functioning, and disability in older adults--present status and future implications. Lancet . (2015) 385:563–75. doi: 10.1016/S0140-6736(14)61462-8

PubMed Abstract | Crossref Full Text | Google Scholar

2. Livingston, G, Huntley, J, Sommerlad, A, Ames, D, Ballard, C, Banerjee, S, et al. Dementia prevention, intervention, and care: 2020 report of the lancet commission. Lancet . (2020) 396:413–46. doi: 10.1016/S0140-6736(20)30367-6

3. Yurko-Mauro, K, Alexander, DD, and Van Elswyk, ME. Docosahexaenoic acid and adult memory: a systematic review and meta-analysis. PLoS One . (2015) 10:e0120391. doi: 10.1371/journal.pone.0120391

4. Titova, OE, Sjögren, P, Brooks, SJ, Kullberg, J, Ax, E, Kilander, L, et al. Dietary intake of eicosapentaenoic and docosahexaenoic acids is linked to gray matter volume and cognitive function in elderly. Age . (2013) 35:1495–505. doi: 10.1007/s11357-012-9453-3

5. Welty, FK . Omega-3 fatty acids and cognitive function. Curr Opin Lipidol . (2023) 34:12–21. doi: 10.1097/MOL.0000000000000862

Crossref Full Text | Google Scholar

6. Berding, K, Carbia, C, and Cryan, JF. Going with the grain: Fiber, cognition, and the microbiota-gut-brain-axis. Exp Biol Med . (2021) 246:796–811. doi: 10.1177/1535370221995785

7. Kumar, MR, Azizi, NF, Yeap, SK, Abdullah, JO, Khalid, M, Omar, AR, et al. Clinical and preclinical studies of fermented foods and their effects on Alzheimer's disease. Antioxidants . (2022) 11:883. doi: 10.3390/antiox11050883

8. Ozawa, M, Ohara, T, Ninomiya, T, Hata, J, Yoshida, D, Mukai, N, et al. Milk and dairy consumption and risk of dementia in an elderly Japanese population: the Hisayama study. J Am Geriatr Soc . (2014) 62:1224–30. doi: 10.1111/jgs.12887

9. Ninomiya, T . Japanese legacy cohort studies: the Hisayama study. J Epidemiol . (2018) 28:444–51. doi: 10.2188/jea.JE20180150

10. Park, KM, and Fulgoni, VL 3rd. The association between dairy product consumption and cognitive function in the National Health and nutrition examination survey. Br J Nutr . (2013) 109:1135–42. doi: 10.1017/S0007114512002905

11. Santiago-Lopez, L, Aguilar-Toala, JE, Hernandez-Mendoza, A, Vallejo-Cordoba, B, Liceaga, AM, and Gonzalez-Cordova, AF. Invited review: bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. J Dairy Sci . (2018) 101:3742–57. doi: 10.3168/jds.2017-13465

12. Hunkyung Kim, YO, Kojima, N, Sasai, H, Nakamura, K, Oba, C, Sasaki, M, et al. Inverse association between cheese consumption and lower cognitive function in Japanese community-dwelling older adults based on a cross-sectional study. Nutrients . (2023) 15:3181. doi: 10.3390/nu15143181

13. Suzuki, T, Kojima, N, Osuka, Y, Tokui, Y, Takasugi, S, Kawashima, A, et al. The effects of Mold-fermented cheese on brain-derived neurotrophic factor in community-dwelling older Japanese women with mild cognitive impairment: a randomized, controlled, crossover trial. J Am Med Dir Assoc . (2019) 20:1509–14. doi: 10.1016/j.jamda.2019.06.023

14. Ano, Y, Ozawa, M, Kutsukake, T, Sugiyama, S, Uchida, K, Yoshida, A, et al. Preventive effects of a fermented dairy product against Alzheimer's disease and identification of a novel oleamide with enhanced microglial phagocytosis and anti-inflammatory activity. PLoS One . (2015) 10:e0118512. doi: 10.1371/journal.pone.0118512

15. Ano, Y, Ayabe, T, Kutsukake, T, Ohya, R, Takaichi, Y, Uchida, S, et al. Novel lactopeptides in fermented dairy products improve memory function and cognitive decline. Neurobiol Aging . (2018) 72:23–31. doi: 10.1016/j.neurobiolaging.2018.07.016

16. Ano, Y, and Nakayama, H. Preventive effects of dairy products on dementia and the underlying mechanisms. Int J Mol Sci . (2018) 19:927. doi: 10.3390/ijms19071927

17. Huitron-Resendiz, S, Gombart, L, Cravatt, BF, and Henriksen, SJ. Effect of oleamide on sleep and its relationship to blood pressure, body temperature, and locomotor activity in rats. Exp Neurol . (2001) 172:235–43. doi: 10.1006/exnr.2001.7792

18. Heo, H . Effects of Oleamide on acetyltransferase and cognitive activities. Biosci Biotechnol Biochem . (2003) 67:1284–91. doi: 10.1271/bbb.67.1284

19. Chen, J, Liu, X, Li, Z, Qi, A, Yao, P, Zhou, Z, et al. A review of dietary Ziziphus jujuba fruit (jujube): developing health food supplements for brain protection. Evid Based Complement Alternat Med . (2017) 2017:1–10. doi: 10.1155/2017/3019568

20. Cheng, MC, Ker, YB, Yu, TH, Lin, LY, Peng, RY, and Peng, CH. Chemical synthesis of 9(Z)-octadecenamide and its hypolipidemic effect: a bioactive agent found in the essential oil of mountain celery seeds. J Agric Food Chem . (2010) 58:1502–8. doi: 10.1021/jf903573g

21. Tao, R, Huang, S, Zhou, J, Ye, L, Shen, X, Wu, J, et al. Neonatal supplementation of Oleamide during suckling promotes learning ability and memory in adolescent mice. J Nutr . (2022) 152:889–98. doi: 10.1093/jn/nxab442

22. Lerner, RA, Siuzdak, G, Prospero-Garcia, O, Henriksen, SJ, Boger, DL, and Cravatt, BF. Cerebrodiene: a brain lipid isolated from sleep-deprived cats. Proc Natl Acad Sci USA . (1994) 91:9505–8. doi: 10.1073/pnas.91.20.9505

23. Yang, JY, Wu, CF, Wang, F, Song, HR, Pan, WJ, and Wang, YL. The serotonergic system may be involved in the sleep-inducing action of oleamide in rats. Naunyn Schmiedeberg's Arch Pharmacol . (2003) 368:457–62. doi: 10.1007/s00210-003-0843-z

24. Huidobro-Toro, JP, and Harris, RA. Brain lipids that induce sleep are novel modulators of 5-hydroxytrypamine receptors. Proc Natl Acad Sci USA . (1996) 93:8078–82. doi: 10.1073/pnas.93.15.8078

25. Basile, AS, Hanus, L, and Mendelson, WB. Characterization of the hypnotic properties of oleamide. Neuroreport . (1999) 10:947–51. doi: 10.1097/00001756-199904060-00010

26. Kesner, AJ, and Lovinger, DM. Cannabinoids, endocannabinoids and sleep. Front Mol Neurosci . (2020) 13:125. doi: 10.3389/fnmol.2020.00125

27. Murillo-Rodríguez, E . The role of the CB1 receptor in the regulation of sleep. Prog Neuro-Psychopharmacol Biol Psychiatry . (2008) 32:1420–7. doi: 10.1016/j.pnpbp.2008.04.008

28. Miranzadeh Mahabadi, H, Bhatti, H, Laprairie, RB, and Taghibiglou, C. Cannabinoid receptors distribution in mouse cortical plasma membrane compartments. Mol Brain . (2021) 14:89. doi: 10.1186/s13041-021-00801-x

29. Baba, Y, Inagaki, S, Nakagawa, S, Kobayashi, M, Kaneko, T, and Takihara, T. Effects of daily Matcha and caffeine intake on mild acute psychological stress-related cognitive function in middle-aged and older adults: a randomized placebo-controlled study. Nutrients . (2021) 13:700. doi: 10.3390/nu13051700

30. Gualtieri, CT, and Johnson, LG. Reliability and validity of a computerized neurocognitive test battery. CNS Vital Signs Arch Clin Neuropsychol . (2006) 21:623–43. doi: 10.1016/j.acn.2006.05.007

31. Cho, A, Sugimura, M, Nakano, S, and Yamada, T. The Japanese MCI screen for early detection of Alzheimer's disease and related disorders. Am J Alzheimers Dis Other Dement . (2008) 23:162–6. doi: 10.1177/1533317507312624

32. Doi, YMM, Okawa, M, and Uchiyama, M. Development of the Japanese version of the Pittsburgh sleep quality index. Japan J Psychiatry Treatment . (1998) 13:755–63.

Google Scholar

33. Doi, Y, Minowa, M, Uchiyama, M, Okawa, M, Kim, K, Shibui, K, et al. Psychometric assessment of subjective sleep quality using the Japanese version of the Pittsburgh sleep quality index (PSQI-J) in psychiatric disordered and control subjects. Psychiatry Res . (2000) 97:165–72. doi: 10.1016/S0165-1781(00)00232-8

34. Luo, L, and Craik, FI. Aging and memory: a cognitive approach. Can J Psychiatr . (2008) 53:346–53. doi: 10.1177/070674370805300603

35. Perry, RJ, and Hodges, JR. Attention and executive deficits in Alzheimer's disease. A critical review. Brain . (1999) 122:383–404. doi: 10.1093/brain/122.3.383

36. Shankle, WR, Romney, AK, Hara, J, Fortier, D, Dick, MB, Chen, JM, et al. Methods to improve the detection of mild cognitive impairment. Proc Natl Acad Sci USA . (2005) 102:4919–24. doi: 10.1073/pnas.0501157102

37. Asama, T, Hiraoka, T, Ohkuma, A, Okumura, N, Yamaki, A, Igase, M, et al. Cognitive improvement and safety assessment of a composite dietary supplement containing propolis extract, gingko biloba extract, phosphatidylserine and curcumin in healthy mid—to senior age Japanese adults—a placebo—controlled, randomized, parallel—group, double—blind human clinical study—. Jpn Pharmacol Ther . (2020) 48:1805–19.

38. Shimada, H, Makizako, H, Doi, T, Yoshida, D, Tsutsumimoto, K, Anan, Y, et al. A large, cross-sectional observational study of serum BDNF, cognitive function, and mild cognitive impairment in the elderly. Front Aging Neurosci . (2014) 6:69. doi: 10.3389/fnagi.2014.00069

Keywords: oleamide, Penicillium camemberti , brain-derived neurotrophic factor, cognitive function, working memory, elderly people, sleep, clinical trial

Citation: Sasaki M, Oba C, Nakamura K, Takeo H, Toya H and Furuichi K (2024) Milk-based culture of Penicillium camemberti and its component oleamide affect cognitive function in healthy elderly Japanese individuals: a multi-arm randomized, double-blind, placebo-controlled study. Front. Nutr . 11:1357920. doi: 10.3389/fnut.2024.1357920

Received: 19 December 2023; Accepted: 15 March 2024; Published: 27 March 2024.

Reviewed by:

Copyright © 2024 Sasaki, Oba, Nakamura, Takeo, Toya and Furuichi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Kentaro Nakamura, [email protected]

This article is part of the Research Topic

Epidemiological Studies on Japanese Diets, Health, and Nutritional Outcomes

IMAGES

  1. Random Assignment in Experiments

    the random assignment of participants to groups

  2. Introduction to Random Assignment -Voxco

    the random assignment of participants to groups

  3. Solved Researchers randomly divide participants into groups.

    the random assignment of participants to groups

  4. Research Methods

    the random assignment of participants to groups

  5. PPT

    the random assignment of participants to groups

  6. Matched Pairs Design: An Introduction

    the random assignment of participants to groups

VIDEO

  1. random sampling & assignment

  2. 3/4 Break Random Team Assignment

  3. Random Assignment- 2023/24 UD Series 2 #2 & #4 Full Case Random With A Twist! (3/6/24)

  4. Random Assignment

COMMENTS

  1. Random Assignment in Experiments

    Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used ...

  2. Random Assignment in Psychology: Definition & Examples

    Random selection (also called probability sampling or random sampling) is a way of randomly selecting members of a population to be included in your study. On the other hand, random assignment is a way of sorting the sample participants into control and treatment groups. Random selection ensures that everyone in the population has an equal ...

  3. The Definition of Random Assignment In Psychology

    Random assignment refers to the use of chance procedures in psychology experiments to ensure that each participant has the same opportunity to be assigned to any given group in a study to eliminate any potential bias in the experiment at the outset. Participants are randomly assigned to different groups, such as the treatment group versus the control group.

  4. Random assignment

    Random assignment or random placement is an experimental technique for assigning human participants or animal subjects to different groups in an experiment (e.g., a treatment group versus a control group) using randomization, such as by a chance procedure (e.g., flipping a coin) or a random number generator. This ensures that each participant or subject has an equal chance of being placed in ...

  5. Random Assignment in Experiments

    Random sampling is a process for obtaining a sample that accurately represents a population. Random assignment uses a chance process to assign subjects to experimental groups. Using random assignment requires that the experimenters can control the group assignment for all study subjects. For our study, we must be able to assign our participants ...

  6. Random Assignment in Psychology (Definition + 40 Examples)

    It's essential to distinguish between random assignment and random selection, as the two terms, while related, have distinct meanings in the realm of research. Random assignment refers to how participants are placed into different groups in an experiment, aiming to control for confounding variables and help determine causes.

  7. Purpose and Limitations of Random Assignment

    In an experimental study, random assignment is a process by which participants are assigned, with the same chance, to either a treatment or a control group. The goal is to assure an unbiased assignment of participants to treatment options. Random assignment is considered the gold standard for achieving comparability across study groups, and therefore is the best method for inferring a causal ...

  8. 6.1.1 Random Assignation

    Random assignation is associated with experimental research methods. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition (e.g., a 50% chance of being assigned to each of two conditions). The second is that each participant is assigned to a ...

  9. Random Assignment

    The assignment of the randomly drawn participants to the groups has to be at random as well in order to ensure any measures computed from cases within a group which are still random variables. Leaving aside the fundamentals of statistical inference and random variables, it is easy to imagine cases in which nonrandom distribution of the subjects ...

  10. Random Assignment in Psychology (Intro for Students)

    Random assignment is a research procedure used to randomly assign participants to different experimental conditions (or 'groups'). This introduces the element of chance, ensuring that each participant has an equal likelihood of being placed in any condition group for the study. It is absolutely essential that the treatment condition and the ...

  11. What Is Random Assignment in Psychology?

    So random sampling affects how participants are chosen for a study, while random assignment affects how participants are then assigned to groups. Examples of Random Assignment. Imagine that a psychology researcher is conducting an experiment to determine if getting adequate sleep the night before an exam results in better test scores.

  12. Elements of Research : Random Assignment

    Random assignment is a procedure used in experiments to create multiple study groups that include participants with similar characteristics so that the groups are equivalent at the beginning of the study. The procedure involves assigning individuals to an experimental treatment or program at random, or by chance (like the flip of a coin).

  13. When randomisation is not good enough: Matching groups in intervention

    Comparison of assignment to groups using (a) variance minimisation and (b) random assignment.When a new participant joins a study, variance minimisation assigns the participant to the group that minimises the variance between groups along with the pre-defined variables (i.e., V); in this case intelligence (IQ), executive functions (EFs), attentional performance (AP), and gender, while keeping ...

  14. Issues in Outcomes Research: An Overview of Randomization Techniques

    Many procedures have been proposed for random group assignment of participants in clinical trials. 11 Simple, block, stratified, and covariate adaptive randomizations are some examples. Each technique has advantages and disadvantages, which must be carefully considered before a method is selected. Our purpose is to introduce the concept and ...

  15. 8.1 Experimental design: What is it and when should it be used?

    Random assignment uses a random number generator or some other random process to assign people into experimental and control groups. Random assignment is important in experimental research because it helps to ensure that the experimental group and control group are comparable and that any differences between the experimental and control groups ...

  16. 6.2 Experimental Design

    Random assignment is a method for assigning participants in a sample to the different conditions, and it is an important element of all experimental research in psychology and other fields too. In its strictest sense, random assignment should meet two criteria. One is that each participant has an equal chance of being assigned to each condition ...

  17. Random Assignment in Experiments

    Random sampling (also called probability sampling or random selection) is a way of selecting members of a population to be included in your study. In contrast, random assignment is a way of sorting the sample participants into control and experimental groups. While random sampling is used in many types of studies, random assignment is only used ...

  18. An overview of randomization techniques: An unbiased assessment of

    Second, proper randomization ensures no a priori knowledge of group assignment (i.e., allocation concealment). That is, researchers, subject or patients or participants, and others should not know to which group the subject will be assigned. ... Many procedures have been proposed for the random assignment of participants to treatment groups in ...

  19. How do you randomly assign participants to groups?

    To implement random assignment, assign a unique number to every member of your study's sample. Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

  20. When randomisation is not good enough: Matching groups in intervention

    Comparison of assignment to groups using (a) variance minimisation and (b) random assignment.When a new participant joins a study, variance minimisation assigns the participant to the group that minimises the variance between groups along with the pre-defined variables (i.e., V); in this case intelligence (IQ), executive functions (EFs), attentional performance (AP), and gender, while keeping ...

  21. How do you randomly assign participants to a group?

    To implement random assignment, assign a unique number to every member of your study's sample. Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a die to randomly assign participants to groups.

  22. Psych 230 Flashcards

    Random assignment of participants to the various groups in an experiment a. guarantees that the independent variable will affect the dependent variable. b. ... each participant in one group is equated with another participant in another group on selected extraneous variables (e.g., education level). ...

  23. How to Do Random Allocation (Randomization)

    "Participants were randomly assigned following simple randomization procedures (computerized random numbers) to 1 of 2 treatment groups." We can apply the above examples to our case as follows: Randomization sequence was created using Excel 2007 (Microsoft, Redmond, WA, USA) with a 1:1 allocation using random block sizes of 2 and 4 by an ...

  24. Frontiers

    The participants, outcome assessors and analysts, and research assistants were blinded to the group assignment. Of the 60 participants, 58 completed the study and were analyzed. ... their cognitive decline were randomly and equally divided into three groups of 20 participants using computer-generated random numbers. Participants took either MCW ...