The Skeptics Society & Skeptic magazine

SKEPTIC (logo)

SKEPTIC: Reality-based. Really.

critical thinking magazine

Nick Bostrom — Life and Meaning in a Solved World

Bostrom and Shermer discuss: An AI Utopia and Protopia • Trekonomics, post-scarcity economics • the hedonic treadmill and positional wealth values • colonizing the galaxy • The Fermi paradox: Where is everyone? • mind uploading and immortality • Google’s Gemini AI debacle • LLMs, ChatGPT, and beyond • How would we know if an AI system was sentient?

critical thinking magazine

Robert Zubrin — How What We Can Create on the Red Planet Informs Us on How Best to Live on the Blue Planet

Shermer and Zubrin discuss: why not start with the moon? • what it is like on Mars • whether Mars was ever like Earth • how much it will cost to go to Mars • how to get people to Mars • resources on Mars • colonization of Mars • public vs. private enterprise for space exploration • economics, politics, and government on Mars • lessons from the Red Planet for the Blue Planet • liberty in space.

critical thinking magazine

Eve Herold — Robots and the People Who Love Them

Shermer and Herold discuss: social robots, sex robots, robot nannies, robot therapists • flying cars, jetpacks and The Jetsons • Masahiro Mori • emotions, animism, mind • emotional intelligence • artificial intelligence • large language lodels • ChatGPT, GPT-4, GPT-5 and beyond • the alignment problem • robopocalypse • robo soldiers • robot sentience • autonomous vehicles • AI value systems, and their legal and ethical status.

critical thinking magazine

Lance Grande — The Formation, Diversification, and Extinction of World Religions

Lance Grande explores the diversity of religions using evolutionary systematics and philosophy. Grande examines the growth and interrelationships of hundreds of religions throughout history, tracing their formation, extinction, and diversification. Combining evolutionary theory with cultural records, he explores various world religions, including Asian cyclicism, polytheism, and monotheism, shedding new light on the development of organized religion.

critical thinking magazine

Maggie Jackson — Uncertain: The Wisdom and Wonder of Being Unsure

Maggie Jackson — an award-winning author and journalist known for her pioneering writings on social trends, particularly technology’s impact on humanity — explores the importance of uncertainty and the benefits it can bring in an era of unpredictability.

critical thinking magazine

Coleman Hughes — The End of Race Politics

Shermer and Hughes discuss: why he is considered “black” if he is “half-black, half-Hispanic” • what it means to be “colorblind” • population genetics and race differences • Base Rate Neglect, Base Rate Taboos • institutionalized neoracism • viewpoint epistemology • affirmative action • gaps in income, wealth, home ownership, CEO representation, Congressional representation • myths of Black Weakness, No Progress, Undoing the Past • reparations • the future of colorblindness.

critical thinking magazine

Max Stearns — How to Repair America’s Broken Democracy

Law professor and author of dozens of articles and several books on the Constitution, Max Stearns examines the broken state of American democracy and the proposal to transform it into a parliamentary system to address the issues of polarization and dysfunction.

critical thinking magazine

Abigail Shrier — Bad Therapy: Why the Kids Aren’t Growing Up

Shermer and Shrier discuss: Irreversible Damage redux: WPATH Files • what view this book for or against • what is the problem to be solved? • theories: coddling, social media, screen time, generations/life history theory • good and bad therapists and therapies • anxiety, depression, suicidal ideation, autism • ACE (Adverse Childhood Experience) • trauma, stress, PTSD • anti-fragility and resilience • Goodwill Hunting view of therapy • previous quack therapies and psychological pseudoscience that have plagued psychology and psychiatry.

critical thinking magazine

Pain & Profit: Who’s Responsible for the Opioid Crisis?

Gerald Posner discusses the opioid crisis, highlighting the history of opioids, the role of the pharmaceutical industry, and the marketing tactics used to promote drugs like OxyContin. Posner emphasizes the greed, poor government regulation, and missed opportunities that contributed to the crisis. He also mentions the legal actions taken against Purdue Pharma and the Sackler family, who profited from the epidemic. The article provides a comprehensive overview of the opioid crisis and its devastating impact on American society.

critical thinking magazine

It’s The Russians! The Latest 60 Minutes Episode on Havana Syndrome Engages in Tabloid Journalism

In a special double segment that is reminiscent of The National Enquirer in its heyday, 60 Minutes has aired another dramatic story on Havana Syndrome. If it had been a sporting event, the score would have been 8-0: eight people interviewed and not a single skeptic. Billed by CBS News as a “breakthrough” in their […]

critical thinking magazine

Revisiting Colorblindness

Michael H. Bernstein reviews The End of Race Politics: Arguments for a Colorblind America by Coleman Hughes, discussing the author’s analysis of neoracism and the need for a middle ground in discussions of racism.

critical thinking magazine

The Game is Up: New Study Finds No Evidence for Havana Syndrome

On March 18, 2024, the National Institutes of Health released two studies that failed to find any evidence of brain or inner ear damage in victims of Havana Syndrome—a mysterious array of ailments that have befallen U.S. Government personnel in Havana, Cuba, since 2016. The results were published in the prestigious Journal of the American Medical Association (JAMA) and are in stark contrast with two earlier studies published in the same journal in 2018 and 2019 that purported to uncover…

critical thinking magazine

The Moral Arc: How Thinking Like a Scientist Makes the World More Moral

In this, the final lecture of his Chapman University Skepticism 101 course, Dr. Michael Shermer pulls back to take a bigger picture look at what science and reason have done for humanity in the realm of moral progress. Watch The Moral Arc: How Thinking Like a Scientist Makes the World More Moral.

critical thinking magazine

What is Truth, Anyway?

In this lecture Dr. Michael Shermer addresses one of the deepest questions of all: what is truth? How do we know what is true, untrue, or uncertain?

critical thinking magazine

Is Freedom of Speech Harmful for College Students?

In this lecture, Dr. Michael Shermer addresses the growing crisis of free speech in college and culture at large, triggered as it was by the title lecture, which he was tasked to deliver to students at California State University, Fullerton, after a campus paroxysm erupted over Taco Tuesday.

critical thinking magazine

What are Science & Skepticism?

In this lecture, Dr. Michael Shermer presents descriptions of skepticism and science and how they work, along with a discussion of the difference between science and pseudoscience, and some very practical applications of how to test claims and evaluate evidence.

critical thinking magazine

Evolution & Creationism, Part 2: Who says evolution never happened, why do they say it, and what do they claim?

Dr. Michael Shermer continues the discussion of evolution and creationism, focusing on the history of the creationism movement and the four stages it has gone through.

critical thinking magazine

Evolution & Creationism, Part 1

In this lecture on Evolution and Creationism (Part 1), Dr. Michael Shermer takes viewers to the Galápagos Islands to retrace Darwin’s footsteps and show that, in fact, Darwin did not discover natural selection when he was there in September of 1835. He worked out his theory when he returned home, and Shermer shows exactly how Darwin did that, along with the story of the theory’s co-discoverer, Alfred Russel Wallace.

critical thinking magazine

Holocaust Denial

In this lecture on Holocaust Denial, Dr. Shermer employs the methods of science to history, showing how we can determine truth about the past.

critical thinking magazine

Pathways to Evil, Part 2

In his lecture on Pathways to Evil (Part 2), Dr. Michael Shermer fleshes out the themes of Part 1 by exploring how the dials controlling our inner demons and better angels can be dialed up or down depending on circumstances and conditions. Are we all good apples but occasionally bad barrels turn good apples rotten, or do we all harbor the capacity to turn bad?

critical thinking magazine

Pathways to Evil, Part 1

In his Skepticism 101 lecture on Pathways to Evil (Part 1), Dr. Michael Shermer considers the nature of evil in his attempt to answer the question of how you can get normal civilized, educated, and intelligent people to commit murder and even genocide.

critical thinking magazine

How to Think About the Bermuda Triangle

Dr. Michael Shermer examines the claims about the Bermuda Triangle using the tools of skepticism, science, and rationality to reveal that there is no mystery to explain.

critical thinking magazine

Politics of Belief

Dr. Michael Shermer explains how we arrived at the Left-Right spectrum, both historically and evolutionarily, and the numerous metaphors used to wrap our minds around such complex systems as politics and economics.

critical thinking magazine

Deities for Atheists, Skygods for Skeptics: UFOs & ETIs

Dr. Michael Shermer distinguishes between two questions: (1) Are extraterrestrial intelligences (ETIs) out there somewhere in the cosmos? and (2) Have aliens come here? Evidence for both questions is considered in the larger context of why the issue so compels us to answer it almost religiously.

critical thinking magazine

Cults, Myths, and Religion

Dr. Michael Shermer considers the characteristics of cults, how they differ from sects, religions, and myths, the role that myths and religions play in culture and people’s lives, and what Scientologists really believe.

critical thinking magazine

Cognitive Biases & How Thinking Goes Wrong

Dr. Michael Shermer reviews the many ways that our attempts to understand the truth about the world are derailed by cognitive biases, including the anchoring bias, the representative bias, the availability bias, the confirmation bias, the hindsight bias, the self-serving bias, and even the bias bias.

critical thinking magazine

Conspiracies & Conspiracy Theories

Dr. Michael Shermer explains the difference between conspiracies and conspiracy theories, who is more likely to believe which conspiracy theories, the social, political, cultural, and psychological conditions in which conspiracy theories flourish, real conspiracies, and who really killed JFK.

SEP 23 – OCT 10, 2024

Voyage from greenland to nova scotia.

Join Pulitzer-prize-winning author and professor Jared Diamond and fellow travelers next fall as we set off on an expedition to explore the Wonders of the Arctic . In a series of lectures and discussions, Jared will bring his experience and expertise to bear on much that we see and do on this epic voyage of discovery!

Research Center

Skeptic Research Center

REPORT (PADS-009)

Being “liberal” in america.

Ninth report in the Political Accuracy & Divisions Study

Analysts have recognized for decades now that the world is becoming more liberal. It seems that the more removed people are from basic survival concerns, the more liberal their worldviews become, in the sense of being more accepting of cultural differences and more protective of civil rights. Some analysts have noted how paradoxically intolerant and dogmatic this trend has become in Western societies (i.e., the societies most removed from basic survival concerns): amongst many Western progressives, for example, all group disadvantages are assumed to always be a result of oppression, with oppression always being driven by white people (and usually men) … Thus, it would seem that at the extremes, liberalism and the human tendency towards tribalism interact to produce both a demand for equality and justice as well as …

SKEPTIC App

Whether at home or on the go, the SKEPTIC App is the easiest way to read your favorite articles. Within the app, users can purchase the current issue and back issues. Download the app today and get a 30-day free trial subscription.

Skeptic 29.1 (cover)

  • About the Society
  • Skepticism 101
  • Current Issue
  • Subscribe (Print)
  • Subscribe (Digital)
  • Buy Print Issues
  • Buy Digital Issues
  • Submit an article
  • About the Podcast
  • Watch/Listen
  • Apple Podcasts
  • Amazon Music
  • Google Podcasts

Expeditions

  • About Our Expeditions
  • Greenland to Nova Scotia (2024)
  • Ireland to Iceland (2024)
  • Meet the Researchers
  • Become Involved
  • 1-805-576-9396
  • General Inquiries
  • Website Inquiries
  • Orders Support
  • Subscriptions Support
  • Change Address
  • Shop Online
  • Subscriptions
  • Back Issues

Facebook icon

Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Critical Thinking Is About Asking Better Questions

  • John Coleman

critical thinking magazine

Six practices to sharpen your inquiry.

Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep, different, and effective questions. For effective questioning, start by holding your hypotheses loosely. Be willing to fundamentally reconsider your initial conclusions — and do so without defensiveness. Second, listen more than you talk through active listening. Third, leave your queries open-ended, and avoid yes-or-no questions. Fourth, consider the counterintuitive to avoid falling into groupthink. Fifth, take the time to stew in a problem, rather than making decisions unnecessarily quickly. Last, ask thoughtful, even difficult, follow-ups.

Are you tackling a new and difficult problem at work? Recently promoted and trying to both understand your new role and bring a fresh perspective? Or are you new to the workforce and seeking ways to meaningfully contribute alongside your more experienced colleagues? If so, critical thinking — the ability to analyze and effectively break down an issue in order to make a decision or find a solution — will be core to your success. And at the heart of critical thinking is the ability to formulate deep, different, and effective questions.

critical thinking magazine

  • JC John Coleman is the author of the HBR Guide to Crafting Your Purpose . Subscribe to his free newsletter, On Purpose , follow him on Twitter @johnwcoleman, or contact him at johnwilliamcoleman.com.

Partner Center

Articles on Critical thinking

Displaying 1 - 20 of 79 articles.

critical thinking magazine

The hidden risk of letting AI decide – losing the skills to choose for ourselves

Joe Árvai , USC Dornsife College of Letters, Arts and Sciences

critical thinking magazine

Conspiracy theorists seem to favour an intuitive thinking style – here’s why that’s important

Darel Cookson , Nottingham Trent University

critical thinking magazine

Is it OK to let my kids watch the same show over and over again?

Laura Scholes , Australian Catholic University

critical thinking magazine

War in Gaza: An ethicist explains why you shouldn’t turn to social media for information about the conflict or to do something about it

Nir Eisikovits , UMass Boston

critical thinking magazine

Colonialism shaped modern universities in Africa – how they can become truly African

Saleem Badat , University of the Free State

critical thinking magazine

Teachers can nurture students who care about the world: four approaches that would help them

Zayd Waghid , Cape Peninsula University of Technology

critical thinking magazine

Tender Photo: the newsletter that’s creating a new conversation about African photography

Tinashe Mushakavanhu , University of Oxford

critical thinking magazine

Old habits die hard: why teachers in Indonesia still struggle to teach critical thinking

Maya Defianty , Universitas Islam Negeri Syarif Hidayatullah Jakarta and Kate Wilson , University of Canberra

critical thinking magazine

ChatGPT killed the student essay? Philosophers call bullshit

Dylan J. White , University of Guelph and Joshua August (Gus) Skorburg , University of Guelph

critical thinking magazine

Debate: ChatGPT reminds us why good questions matter

Stefaan G. Verhulst , New York University

critical thinking magazine

I introduced social entrepreneurship to my trainee teachers – why it’ll make them better at their jobs

critical thinking magazine

How can you tell if something is true? Here are 3 questions to ask yourself about what you see, hear and read

Bob Britten , West Virginia University

critical thinking magazine

Is the Easter bunny real? How to answer, according to a psychologist

Elizabeth Westrupp , Deakin University

critical thinking magazine

Humanities are essential in understanding the Russian war against Ukraine

Kyle Frackman , University of British Columbia

critical thinking magazine

Journalism has changed. Education must reflect the reality

Franz Krüger , University of the Witwatersrand

critical thinking magazine

Aaron Rodgers dropped the ball on critical thinking – with a little practice you can do better

critical thinking magazine

College can still be rigorous without a lot of homework

KC Culver , University of Southern California

critical thinking magazine

To navigate the dangers of the web, you need critical thinking – but also critical ignoring

Sam Wineburg , Stanford University

critical thinking magazine

3 fallacies that blighted this year’s COVID commentary — have you fallen foul of any of them?

Rachael L. Brown , Australian National University

critical thinking magazine

Climate explained: why do humans instinctively reject evidence contrary to their beliefs?

Peter Ellerton , The University of Queensland

Related Topics

  • Artificial intelligence (AI)
  • Climate change
  • Conspiracy theories
  • Critical thinking skills
  • Misinformation
  • Scientific method
  • Universities

Top contributors

critical thinking magazine

Senior Lecturer in Philosophy and Education; Curriculum Director, UQ Critical Thinking Project, The University of Queensland

critical thinking magazine

Associate professor, Cape Peninsula University of Technology

critical thinking magazine

Dana and David Dornsife Professor of Psychology and Director of the Wrigley Institute for Environment and Sustainability, USC Dornsife College of Letters, Arts and Sciences

critical thinking magazine

Emeritus Professor of Education, University of Derby

critical thinking magazine

Lecturer in Primary Mathematics Education, Deakin University

critical thinking magazine

Professor, Faculty of Education and Arts, Australian Catholic University

critical thinking magazine

Associate Professor of Philosophy, Deakin University

critical thinking magazine

Senior Lecturer, Australian National Centre for the Public Awareness of Science, Australian National University

critical thinking magazine

Senior Lecturer in Psychology, Nottingham Trent University

critical thinking magazine

Associate Professor in Digital Media, Western Sydney University

critical thinking magazine

Associate Professor in Interaction Design, Queensland University of Technology

critical thinking magazine

Research fellow, University of York

critical thinking magazine

Senior Lecturer in Science Education, Sussex School of Education and Social Work, University of Sussex

critical thinking magazine

Associate Professor in Organisation Theory, Cambridge Judge Business School

critical thinking magazine

Associate Professor in Higher Education, The University of Melbourne

  • X (Twitter)
  • Unfollow topic Follow topic
  • Top Courses
  • Online Degrees
  • Find your New Career
  • Join for Free

What Are Critical Thinking Skills and Why Are They Important?

Learn what critical thinking skills are, why they’re important, and how to develop and apply them in your workplace and everyday life.

[Featured Image]:  Project Manager, approaching  and analyzing the latest project with a team member,

We often use critical thinking skills without even realizing it. When you make a decision, such as which cereal to eat for breakfast, you're using critical thinking to determine the best option for you that day.

Critical thinking is like a muscle that can be exercised and built over time. It is a skill that can help propel your career to new heights. You'll be able to solve workplace issues, use trial and error to troubleshoot ideas, and more.

We'll take you through what it is and some examples so you can begin your journey in mastering this skill.

What is critical thinking?

Critical thinking is the ability to interpret, evaluate, and analyze facts and information that are available, to form a judgment or decide if something is right or wrong.

More than just being curious about the world around you, critical thinkers make connections between logical ideas to see the bigger picture. Building your critical thinking skills means being able to advocate your ideas and opinions, present them in a logical fashion, and make decisions for improvement.

Coursera Plus

Build job-ready skills with a Coursera Plus subscription

  • Get access to 7,000+ learning programs from world-class universities and companies, including Google, Yale, Salesforce, and more
  • Try different courses and find your best fit at no additional cost
  • Earn certificates for learning programs you complete
  • A subscription price of $59/month, cancel anytime

Why is critical thinking important?

Critical thinking is useful in many areas of your life, including your career. It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice.

According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]:

Crucial for the economy

Essential for improving language and presentation skills

Very helpful in promoting creativity

Important for self-reflection

The basis of science and democracy 

Critical thinking skills are used every day in a myriad of ways and can be applied to situations such as a CEO approaching a group project or a nurse deciding in which order to treat their patients.

Examples of common critical thinking skills

Critical thinking skills differ from individual to individual and are utilized in various ways. Examples of common critical thinking skills include:

Identification of biases: Identifying biases means knowing there are certain people or things that may have an unfair prejudice or influence on the situation at hand. Pointing out these biases helps to remove them from contention when it comes to solving the problem and allows you to see things from a different perspective.

Research: Researching details and facts allows you to be prepared when presenting your information to people. You’ll know exactly what you’re talking about due to the time you’ve spent with the subject material, and you’ll be well-spoken and know what questions to ask to gain more knowledge. When researching, always use credible sources and factual information.

Open-mindedness: Being open-minded when having a conversation or participating in a group activity is crucial to success. Dismissing someone else’s ideas before you’ve heard them will inhibit you from progressing to a solution, and will often create animosity. If you truly want to solve a problem, you need to be willing to hear everyone’s opinions and ideas if you want them to hear yours.

Analysis: Analyzing your research will lead to you having a better understanding of the things you’ve heard and read. As a true critical thinker, you’ll want to seek out the truth and get to the source of issues. It’s important to avoid taking things at face value and always dig deeper.

Problem-solving: Problem-solving is perhaps the most important skill that critical thinkers can possess. The ability to solve issues and bounce back from conflict is what helps you succeed, be a leader, and effect change. One way to properly solve problems is to first recognize there’s a problem that needs solving. By determining the issue at hand, you can then analyze it and come up with several potential solutions.

How to develop critical thinking skills

You can develop critical thinking skills every day if you approach problems in a logical manner. Here are a few ways you can start your path to improvement:

1. Ask questions.

Be inquisitive about everything. Maintain a neutral perspective and develop a natural curiosity, so you can ask questions that develop your understanding of the situation or task at hand. The more details, facts, and information you have, the better informed you are to make decisions.

2. Practice active listening.

Utilize active listening techniques, which are founded in empathy, to really listen to what the other person is saying. Critical thinking, in part, is the cognitive process of reading the situation: the words coming out of their mouth, their body language, their reactions to your own words. Then, you might paraphrase to clarify what they're saying, so both of you agree you're on the same page.

3. Develop your logic and reasoning.

This is perhaps a more abstract task that requires practice and long-term development. However, think of a schoolteacher assessing the classroom to determine how to energize the lesson. There's options such as playing a game, watching a video, or challenging the students with a reward system. Using logic, you might decide that the reward system will take up too much time and is not an immediate fix. A video is not exactly relevant at this time. So, the teacher decides to play a simple word association game.

Scenarios like this happen every day, so next time, you can be more aware of what will work and what won't. Over time, developing your logic and reasoning will strengthen your critical thinking skills.

Learn tips and tricks on how to become a better critical thinker and problem solver through online courses from notable educational institutions on Coursera. Start with Introduction to Logic and Critical Thinking from Duke University or Mindware: Critical Thinking for the Information Age from the University of Michigan.

Article sources

University of the People, “ Why is Critical Thinking Important?: A Survival Guide , https://www.uopeople.edu/blog/why-is-critical-thinking-important/.” Accessed May 18, 2023.

Keep reading

Coursera staff.

Editorial Team

Coursera’s editorial team is comprised of highly experienced professional editors, writers, and fact...

This content has been made available for informational purposes only. Learners are advised to conduct additional research to ensure that courses and other credentials pursued meet their personal, professional, and financial goals.

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

The University of Utah Magazine

critical thinking magazine

As the “landscape” of Utah evolves through six defining changes, the U is helping guide the state to a prosperous future.

Illustration of a woman looking at a single pellet falling out of a large pill capsule

Behind the Drug Shortages

A U service is shedding light on America’s medication shortages, providing crucial info to hospitals nationwide.

critical thinking magazine

Here’s to 75 years of the College of Fine Arts redefining the creative landscape and lighting the way for students to make their mark on the world.

Departments

On thin ice - outside, serving the new utah - president’s perspective, helping nasa solve a cosmic conundrum - imagine, celebrating 20 years of community connections - community, rediscovering humanity with literary masterpieces - faves, this meeting couldve been an email - diagram, success on the slopes - stats, nursing legacy honored - number, news from the u, utahs ai leap, winter 2024 news roundup, healing hearts and souls, renowned author and civic leader eboo patel named u impact scholar, sustainable futures, study unimpeded environmental risks amplify financial consequences, a decade of growth, new program aims to help undergraduates start research sooner, ground shaking fan energy, sports briefs winter 2024, university of utah to host 2024 presidential debate, never too late to learn, purposeful living, rankings roundup, u welcomes record high academically elite freshman class, from our readers winter 2024, rallying to success, elevating fitness - expert, wade c roberts - humans, igniting potential and rekindling purpose, winter 2024 alumni news roundup, class notes winter 2024, 75 years of sharing new knowledge - reflect, utah mag archives.

critical thinking magazine

At the back of a sixth-grade classroom, two students are giggling while playing a game called Dino Lab. They’re building a dinosaur by combining different torsos, tails, heads, and limbs and seeing whether their creation can survive a series of challenges—beginning with the ability to stand. Pair scrawny legs with a massive body and the dinosaur will fall apart in a clatter of bones. If you build a sturdy creature, you move on to the next challenge: seeing if it has the right features to defend itself from predators. To the kids, it’s a game. But they’re learning to closely observe and analyze how an ani­mal’s physical traits help it function and succeed in the wild.

Dino Lab is part of Research Quest , a web-based educational program cre­ated by the University of Utah’s Natural History Museum of Utah (NHMU) that aims to teach kids critical thinking. In the wilds of the digital world, where information overload is a daily threat and fake news can spread like wildfire, critical thinking is the essential skill kids need to separate fact from fiction, make evidence-based decisions, and become well-informed citizens.

An Essential Digital-Age Skill

In 2016, Stanford University researchers asked 170 high schoolers to evaluate a social media post with a picture of strange-looking flowers supposedly near the site of a nuclear power plant disaster. “Not much more to say, this is what happens when flowers get nuclear birth defects,” the post said.

When asked to evaluate the legitimacy of the post’s claims, less than 20 percent of respondents showed what the researchers deemed a mastery of critical thinking skills—like questioning the poster’s credentials or sug­gesting the image could have been Photoshopped. In the same study, more than 80 percent of middle schoolers believed that an advertisement labeled as sponsored content was actually a news story.

A 2022 Digital Media trends survey from Deloitte showed that about half of Generation Z gets its news from social media. That includes sites like TikTok, where a 2022 NewsGuard investigation found that 1 in 5 videos contained misinformation.

Spreading false claims is nothing new, but social media takes it in “potentially damaging” directions, according to the book Social Engineering by U com­munications professor Sean Lawson and his York University colleague Robert Gehl. “It shifts from relatively harmless, interpersonal discussions to masspersonal media—especially because Facebook and other corporate social media are built to ampli­fy messages our contacts share with us.”

During the COVID-19 pandemic, theories and con­jecture seemed to spread on the internet faster than the virus itself. The World Health Organization (WHO) calls this phenomenon an “infodemic”—an overload of information that “can intensify or lengthen out­breaks when people are unsure about what they need to do to protect their health and the health of people around them.”

NHMU’s trove of specimens is the backbone of real-world investigations into scientific mysteries. Butterfly image above: UMNH.ent.0041981, Papilio palinurus daedalus

ALL IMAGES COURTESY OF THE NATURAL HISTORY MUSEUM OF UTAH (UMNH) AND THE BUREAU OF LAND MANAGEMENT

critical thinking magazine

Whether in politics or health care, deep thinking skills can help people make evidence-based deci­sions. And the usefulness of those skills extends be­yond those realms into the workplace as well. The National Academies of Sciences, Engineering, and Medicine calls critical and analytical thinking a fundamental skill workers need today. In the age of AI, say employment experts, employees with strong “human” skills like critical thinking will become more in demand.

“Going forward, people will still need to know specific bodies of knowledge to be effective in the workplace,” says Northeastern University President Joseph E. Aoun in his book Robot-Proof: Higher Education in the Age of Artificial Intelligence . “But that alone will not be enough when intelligent machines are doing much of the heavy lifting of information.”

In Search of a New Learning Tool

It was concern about kids encountering misinformation on social media that led to the birth of Research Quest. About a decade ago, members of the Rosenblatt family noticed younger kids were joining Facebook, Instagram, and other social platforms. “There was no real approach to teaching them to be critical about the in­formation they were receiving,” says Toby Rosenblatt.

The Rosenblatts—longtime supporters of the U who are dedi­cated to the field of education—turned to the U to start discussions about helping develop and fund a program that would teach kids critical thinking skills. Toby’s niece, Jody Rosenblatt, suggested they approach the Natural History Museum of Utah.

“Initially, we thought that natural history didn’t sound like a very strong connection,” says Toby. “But she persuaded us to talk to them.”

Jody knew the impact an NHMU educational program could have on young minds. She had participated in the museum’s school programs when she was growing up. As the state’s official natural history museum, part of NHMU’s mission is to promote science education and serve as a resource for K-12 teachers throughout Utah. NHMU hosts field trips, of course, but it also brings the museum to the classroom through initiatives like Museum-on-the-Move —a traveling collection of artifacts. NHMU’s programs made such an impact on Jody Rosenblatt that she fell in love with science. Today, she’s a cell biologist.

critical thinking magazine

After meeting with the Rosenblatts, leaders at NHMU were on board with the idea. They put together a team charged with cre­ating a program that would be accessible to a wide number of teachers and students—in Utah and beyond—and would have measurable impact. The Joseph and Evelyn Rosenblatt Charita­ble Fund would support research and development of the program.

The team—which included university research scientists, expert teachers, and curriculum developers, along with profes­sionals from the worlds of digital learning, museums, and game design—began with the question, What is critical thinking?

“There isn’t a ubiquitous definition,” says Madlyn Larson, as­sociate director of education initiatives at NHMU and project director for the development of Research Quest. “So we defined discrete skills we wanted to effect: how to make strong observations and inferences, how to en­gage in analysis, and how to develop arguments based on evidence.”

That requires going beyond the shallow learning of regurgitating facts, says Kirsten Butcher, a professor of educational psycholo­gy at the U. “What works best is if we design investigation contexts where learners are challenged to integrate new information with prior knowledge, generate new ideas, and be critical of their assumptions,” she says.

As director of the U’s Instructional Design and Educational Technology Program , Butcher was brought onto the team to help create an en­gaging web-based program that resulted in meaningful and mea­surable increases in student knowledge. The team put together prototypes that had students investigating scientific mysteries, in­corporating lots of multimedia and interactive games—like Dino Lab—developed by designers in the U's Division of Games (formerly the Entertainment Arts & Engineering program). Data from pre-and post-assessments showed that the students who used the investigations scored significantly better than their control group peers on reasoning with evidence. The successful program was ready to be launched far and wide.

Investigation over Memorization

Back when she went to school, says Rachael Coleman, science was all about memorization. “There were certain students who wanted to be chemists because they loved memorizing the peri­odic table,” says Coleman, a science specialist at Jordan School District. “But when you get to be a chemist, you realize that’s not really what you’re doing.”

Coleman and her district colleague Lynn Gutzwiller say they focus on teaching kids critical thinking because, simply put, that’s what scientists do. And that’s why they find Research Quest so valuable.

critical thinking magazine

“There is a deep, dark void of online virtual investigations that are free, high quality, and help students access critical thinking and deeper learning skills,” says Gutzwiller. Research Quest strikes the right balance of engaging and educational, she asserts. It aligns with rigorous Next Generation Science Standards, “but it isn’t so collegiate that it’s out of the realm of understanding for a sixth grader.”

At the heart of every Research Quest module is a real-world sci­entific mystery. One investigation begins with a video of an NHMU educator in a lodgepole pine forest. Dry branches crack under her feet as she walks through a stand of bare gray trunks. “What is killing all these trees?” she asks. “Something strange is going on.” In another investigation, a paleontologist stands next to fossils discovered at Cleveland-Lloyd Dinosaur Quarry. “I’d like you to develop a hypothesis to answer the question, What dinosaur did these bones come from?” she says.

Each investigation involves a set of virtual activities where stu­dents explore digitized museum collections and data to gather their own evidence for the research question at hand. “We give kids the opportunity to collect their own data so they understand where data comes from,” says Larson.

The Cleveland-Lloyd module, for example, has kids studying 3D fossils on the screen, rotating them this way and that for a de­tailed view. After writing down their observations, students watch the paleontologist explain her own findings.

“It shows students that this is the depth of answer we’re look­ing for,” Coleman notes. Instead of just saying, “It looks like a claw,” they’re encouraged to ask deeper questions—what, exact­ly, makes it look like a claw?

“What’s Killing These Trees?” was the first investigation Kris Larsh and his students tried out. “The kids were like, hey, this is really neat,” says Larsh, who teaches middle school science at Stonewall Public Schools in Stonewall, Oklahoma. Larsh found Research Quest while searching Google for a free science resource that wasn’t just another worksheet. The more investigations his students tried, the more Larsh noticed how engrossed they were. “I was trying to get them off their Chromebooks, but they were still playing around with the triceratops.”

What’s more, he says, the kids began to think like scientists.

“I could sit all day and break down the scientific method. But it wasn’t setting in,” says Larsh. “But when they listened to the sci­entists talk in Research Quest, I knew they were starting to really home in on what the scientific method was.” Their science fair projects became about more than just throwing Mentos into a bottle of Coke and seeing it foam up. “The kids started saying, ‘What if I change the variables?’ That’s when I knew magic had happened.”

critical thinking magazine

Extensive data from the Research Quest team’s studies proves its effectiveness. The team employs several methods, such as listening to student conversations as they work on the investigations.

“That allows us to understand the depth of the processes they’re using to gather evidence and make decisions,” says Butcher. The team uses their observations to keep improving the program, she explains. “One thing we have found as we’ve devel­oped our approach over time is that students are really digging in deeply. They’re using evidence in much more principled and stra­tegic ways than they did before, and they’re realizing one piece of evidence is never sufficient. You need a pattern of evidence.”

“In the earlier iterations, we saw kids latching onto an idea early,” Larson adds. “That ran counter to our desire to create flexible thinking.” After tweaking the modules to increase time spent on data collection, she notes, “students were able to argue with evidence more effectively and stay open to new information as they progressed.”

Gutzwiller says students who want yes or no answers some­times get frustrated at first, but they learn that it’s okay to take risks as they learn. “They realize, ‘I don’t have to have the ‘right’ answer as long as I can support my answer with evidence,’ ” she says. “I think that’s really powerful. That might be the best thing they take away from Research Quest.”

Amplifying the Impact of Research Quest

Today, Research Quest has been used by more than 1,300 teachers whose students have logged into the investigations more than 400,000 times. The proven effectiveness has earned the program recognition—along with funding from the Utah State Legisla­ture’s Informal Science Education Enhancement program and a $1.3 million grant from the National Science Foundation. In addi­tion, Research Quest receives ongoing philanthropic support from the Joseph and Evelyn Rosenblatt Charitable Fund and the I.J. and Jeanné Wagner Charitable Foundation.

“I think it’s beneficial for NHMU to be able to count on long-term funding for this innovative initiative,” says Toby Rosenblatt.

Larson says an unplanned secondary goal has emerged: to share their framework for how to create an effective digital edu­cational program that leverages natural history collections.

“I’m always mindful that as part of an academic community, we have an obligation to contribute to the creation and dissemination of new knowledge,” she notes. “This, for us, is one important way we can impact critical thinking in young people—by sharing what we’ve learned with others interested in doing similar work.”

Lisa Anderson is associate editor of Utah Magazine .

Comments are moderated, so there may be a slight delay. Those that are off-topic or deemed inappropriate may not be posted. Your email address will not be published. Required fields are marked with an asterisk (*).

Critical thinking is so important…as a graduate in Cultural Anthropology from the U of U in 1979 at age 40 and then going into teaching when I completed my BA in Elementary education in 1980…Critical thinking was at the core of many of my methods, from dinosaurs to community development in in 2nd grade, making fossils, books, bringing in science activities into reading enrichment. Shift to 3rd grade and introducing critical thinking to these 8 year olds included taking a strong look at China’s use of children in their productions, breaking them into groups, lots of discussion of China made vs. USA made and their parents’ pocket books…Every year during learning more about Rosa Park and Martin Luther King, showing films of the marches in the south, etc…talking about discrimination. I was thrilled one day when one of the students came running to me during recess, said one of the boys was picking on a girl…and I asked him to point out the girl…he said the “girl in the red and white dress”…It was the only black student we had. That was a winner! I’m 84 now, and still miss those days and opportunities to enrich children’s lives.But, I have grandchildren in the wings!

I graduated from the U and would love to share the critical thinking app/program with my grandchildren – is there a way to do that? Thanks!

Hi Dave, Absolutely! Visit https://researchquest.org/investigations.php to get started. Best of luck!

You have discovered the digital-age, evolutionary missing link conceptualized in A Wrinkle in Time. Your critical thinking-based approach is the vital link to maintaining the human race’s fitness to survive the inevitable global A.I. tsunami. Only a few standing on the watchtowers have, even imaged the juggernaut, let alone have been able to predict its consequences on human growth, development, learning, and intelligence. (Funny thing;I am relying on Grammarly to check my text and it didn’t catch that I spelled intelligence wrong. I had to have Siri spell it for me, I hate to admit to how many advanced degrees I have.). I can imagine a digital gap wider than the Grand Canyon eroding civil societies in a just a few months instead of eons of time. There will not be many standing on the advantageous side of the gap unless we align education systems to promote the evolution of critical thinking in line with the digital age. This basic tenant must be instilled in everyone from birth to last breath, that continous brain development and learning makes us human. Hopefully, we learn to thrive not just survive as in the dystopic movies Wall-E or even darker, The Matrix. ( I hope I spelled everything right, Grammarly, wants me to upgrade my dependence on them to a paid subscription so I think it it messing with me.) In today’s digital age in the face of machine learning let’s turn the tide to create educational forces that are empowered by critical thinking and the capacity to use A.I. wisely and ethically. Let’s join forces in a state-wide learning quest to prioritize critical thinking at the foundation of all human intelligence. Always Learning, Susan Leora Knott Educational Leadership and Policy Doctoral Candidate U of Utah

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Share full article

Advertisement

Supported by

Guest Essay

How to Think Outside Your Brain

critical thinking magazine

By Annie Murphy Paul

Ms. Paul is a science writer who has reported extensively on cognition and learning.

Years ago, when I was in college, I visited the dorm room of a fellow student I was dating. On the wall above his desk he had posted a handwritten sign. “Just do it,” it read, in blocky letters. Nike’s slogan was intended to capture an attitude toward athletic endeavors, but this undergrad was applying it to mental exertions. I pictured him sitting at his desk, working hour after hour on his German verb conjugations or econ problem sets. At some point he would become restless, lose focus — then look up at his sign, set his jaw and turn back to his studies, determined to crush them like a 100-meter dash.

My classmate back then was doing exactly what our culture commands when we are faced with challenging cognitive tasks: Buckle down, apply more effort, work the brain ever harder. This, we’re told, is how we get good at thinking. The message comes at us from multiple directions. Psychology promotes a tireless kind of grit as the quality essential to optimal performance; the growth mind-set advises us to imagine the brain as a muscle and to believe that exercising it vigorously will make it stronger. Popular science accounts of the brain extol its power and plasticity, calling it astonishing, extraordinary, unfathomably complex. This impressive organ, we’re led to understand, can more than meet any demands we might make of it.

In the 25 years since I graduated from college, such demands have relentlessly ratcheted up. The quantity and complexity of the mental work expected of successful students and professionals have mounted; we’ve responded by pushing ever harder on that lump of gray matter in our heads. This tendency became more pronounced during the Covid-19 pandemic, when many of us had to take on new duties or adjust to new procedures. Without even a commute or a coffee-station chat to provide a break in our cognitive labors, we’ve been forcing our brains to toil continuously from morning till night.

The result has not been a gratifying bulking up of our neural “muscle.” On the contrary, all the mental effort we’ve mustered over the past year has left many of us feeling depleted and distracted, unequal to the tasks that never stop arriving in our inboxes. When the work we’re putting in doesn’t produce the advertised rewards, we’re inclined to find fault with ourselves. Maybe we’re insufficiently gritty; maybe, we think, we’re just not smart enough. But this interpretation is incorrect. What we’re coming up against are universal limits, constraints on the biological brain that are shared by every human on the planet. Despite the hype, our mental endowment is not boundlessly powerful or endlessly plastic. The brain has firm limits — on its ability to remember , its capacity to pay attention , its facility with abstract and nonintuitive concepts — and the culture we have created for ourselves now regularly exceeds these limits.

The escalating mental demands of the past quarter-century represent the latest stage of a trend that has been picking up speed for more than 100 years. Starting in the early decades of the 20th century, school, work and even the routines of daily life became more cognitively complex: less grounded in the concrete and more bound up in the theoretical and abstract. For a time, humanity was able to keep up with this development, resourcefully finding ways to use the brain better. As their everyday environments grew more intellectually demanding, people responded by upping their cognitive game. Continual engagement with the mental rigors of modern life coincided in many parts of the world with improving nutrition, rising living conditions and reduced exposure to pathogens. These factors produced a century-long climb in average I.Q. scores — a phenomenon known as the Flynn effect, after James Flynn, the political philosopher who identified it.

But this upward trajectory is now leveling off . In recent years, I.Q. scores have stopped rising or have even begun to drop in countries like Finland, Norway, Denmark, Germany, France and Britain. (The reverse Flynn effect has not yet been detected in the United States.) Some researchers suggest that we have pushed our mental equipment as far as it can go. It may be that “our brains are already working at near-optimal capacity,” write the neuroscientist Peter Reiner and his student Nicholas Fitz in the journal Nature. Efforts to wrest more intelligence from this organ, they add, “bump up against the hard limits of neurobiology.” This collision point — where the urgent imperatives of contemporary life confront the stubbornly intractable limits of the brain — is the place where we live at the moment, and rather unhappily. Our determination to drive the brain ever harder is the source of the agitation we feel as we attempt the impossible each day.

Fortunately, there is an alternative. It entails inducing the brain to play a different role: less workhorse, more orchestra conductor. Instead of doing so much in our heads, we can seek out ways to shift mental work onto the world around us and to supplement our limited neural resources with extraneural ones. These platforms for offloading, these resources for supplementation, are readily available and close at hand.

They fall into four categories, the first and most obvious being our tools. Technology is designed to fulfill just this function — who remembers telephone numbers anymore, now that our smartphones can supply them? — and we’re accustomed to using our devices to both unburden the mind and augment its capacity.

But there are other resources, perhaps even more powerful, that we often overlook. For example, our bodies. The burgeoning field of embodied cognition has demonstrated that the body — its sensations, gestures and movements — plays an integral role in the thought processes that we usually locate above the neck. The body is especially adept at alerting us to patterns of events and experience, patterns that are too complex to be held in the conscious mind. When a scenario we encountered before crops up again, the body gives us a nudge: communicating with a shiver or a sigh, a quickening of the breath or a tensing of the muscles. Those who are attuned to such cues can use them to make more-informed decisions. A study led by a team of economists and neuroscientists in Britain, for instance, reported that financial traders who were better at detecting their heartbeats — a standard test of what is known as interoception, or the ability to perceive internal signals — made more profitable investments and lasted longer in that notoriously volatile profession.

The body is also uniquely capable of grounding abstract concepts in the concrete terms that the brain understands best. Abstract concepts are the order of the day in physics class; conventional modes of instruction, like lectures and textbooks, often fail to convey them effectively. Some studies in the field of physics education found that students’ understanding of the subject is less accurate after an introductory college physics course. What makes a difference is offering students a bodily experience of the topic they’re learning about. They might encounter torque, for example, by holding an axle on which two bicycle wheels have been mounted. When the wheels are spun and the axle is tilted from horizontal to vertical, the student handling it feels the resistive force that causes objects to rotate. Such exposures produce a deeper level of comprehension, psychological research has found, leading to higher test scores, especially on more challenging theoretical questions.

Another extraneural resource available for our use is physical space. Moving mental contents out of our heads and onto the space of a sketch pad or whiteboard allows us to inspect it with our senses, a cognitive bonus that the psychologist Daniel Reisberg calls “the detachment gain.” That gain was evident in a study published in 2016, in which experimenters asked seventh- and eighth-grade students to illustrate with drawings the operation of a mechanical system (a bicycle pump) and a chemical system (the bonding of atoms to form molecules). Without any further instruction, these students sketched their way to a more accurate understanding of the systems they drew. Turning a mental representation into shapes and lines on a page helped them to elucidate more fully what they already knew while revealing with ruthless rigor what they did not yet comprehend.

Three-dimensional space offers additional opportunities for offloading mental work and enhancing the brain’s powers. When we turn a problem to be solved into a physical object that we can interact with, we activate the robust spatial abilities that allow us to navigate through real-world landscapes. This suite of human strengths, honed over eons of evolution, is wasted when we sit still and think. A series of studies conducted by Frédéric Vallée-Tourangeau, a professor of psychology at Kingston University in Britain; Gaëlle Vallée-Tourangeau, a professor of behavioral science at Kingston; and their colleagues, has explored the benefits of such interactivity . In these studies, experimenters pose a problem; one group of problem solvers is permitted to interact physically with the properties of the problem, while a second group must only think through the problem. Interactivity “inevitably benefits performance,” they report .

This holds true for a wide variety of problem types — including basic arithmetic, complex reasoning, planning and challenges that require creative insight. People who are permitted to manipulate concrete tokens representing elements of the problem to be solved bear less of a cognitive load and enjoy increased working memory. They learn more and are better able to transfer their learning to new situations. They are less likely to engage in symbol pushing, or moving numbers and words around in the absence of understanding. They are more motivated and engaged and experience less anxiety. They even arrive at correct answers more quickly. (As the title of a research paper that the Vallée-Tourangeaus wrote with Lisa G. Guthrie puts it, “Moves in the World Are Faster Than Moves in the Head.”)

One last resource for augmenting our minds can be found in other people’s minds. We are fundamentally social creatures, oriented toward thinking with others. Problems arise when we do our thinking alone — for example, the well-documented phenomenon of confirmation bias, which leads us to preferentially attend to information that supports the beliefs we already hold. According to the argumentative theory of reasoning , advanced by the cognitive scientists Hugo Mercier and Dan Sperber, this bias is accentuated when we reason in solitude. Humans’ evolved faculty for reasoning is not aimed at arriving at objective truth, Mercier and Sperber point out; it is aimed at defending our arguments and scrutinizing others’. It makes sense, they write , “for a cognitive mechanism aimed at justifying oneself and convincing others to be biased and lazy. The failures of the solitary reasoner follow from the use of reason in an ‘abnormal’ context’” — that is, a nonsocial one. Vigorous debates, engaged with an open mind, are the solution. “When people who disagree but have a common interest in finding the truth or the solution to a problem exchange arguments with each other, the best idea tends to win,” they write, citing evidence from studies of students, forecasters and jury members.

The minds of other people can also supplement our limited individual memory. Daniel Wegner, a psychologist at Harvard, named this collective remembering “ transactive memory .” As he explained it, “Nobody remembers everything. Instead, each of us in a couple or group remembers some things personally — and then can remember much more by knowing who else might know what we don’t.” A transactive memory system can effectively multiply the amount of information to which an individual has access. Organizational research has found that groups that build a strong transactive memory structure — in which all members of the team have a clear and accurate sense of what their teammates know — perform better than groups for which that structure is less defined. Linda Argote, a professor of organizational behavior and theory at Carnegie Mellon University, reported last year that results from an observational study showed that when a trauma resuscitation team developed a robust shared memory system and used it to direct tasks to the team members most qualified to take them on, their patients had shorter hospital stays.

All four of these extraneural resources — technology, the body, physical space, social interaction — can be understood as mental extensions that allow the brain to accomplish far more than it could on its own. This is the theory of the extended mind, introduced more than two decades ago by the philosophers Andy Clark and David Chalmers. A 1998 article of theirs published in the journal Analysis began by posing a question that would seem to have an obvious answer: “Where does the mind stop and the rest of the world begin?” They went on to offer an unconventional response. The mind does not stop at the usual “boundaries of skin and skull,” they maintained. Rather, the mind extends into the world and augments the capacities of the biological brain with outside-the-brain resources.

Much of the initial reaction to their thesis focused on disputes over whether the stuff of the world could really constitute an element of the thought process. For a culture so neurocentric — so brain-bound, as Mr. Clark later called it — this was an insupportable notion, a bridge too far. But their claim acquired more plausibility as daily life in the digital age provided a continuous proof of concept, with people extending their minds with their devices. Initially derided as wacky, the theory of the extended mind eventually came to seem rather prescient. Ned Block, a professor of philosophy at New York University, said that Mr. Clark and Mr. Chalmers’s thesis was false when it was written but subsequently became true.

Mr. Block’s quip notwithstanding, the fact is that humans have been extending their minds for millenniums. Ancient peoples frequently engaged in offloading their mental contents and augmenting their brainpower with external resources, as evidenced by objects they left behind. Sumerians employed clay tokens to keep track of livestock and other goods when trading; Incas tied knots in long cords, called quipus, to memorialize events; administrators and merchants across a broad swath of the ancient world used abacuses and counting boards. Likewise, the notes and sketches of artists and thinkers over the centuries bear testament to “that wordless conversation between the mind and the hand,” as the psychologist Barbara Tversky puts it in “Mind in Motion: How Action Shapes Thought.” When Leonardo da Vinci sought to understand “the flow of blood in arteries and the flow of water in rivers,” Dr. Tversky observed elsewhere, he leaned on both body and space, using “the actions of his hand as he drew as if they were mirroring the actions of nature.” And of course, history offers a rich record of how groups of people thinking together have managed to do what a single person could not. The unaccommodated brain is a poor, bare thing indeed. Mental extension is involved in most of humanity’s feats, from the transcendent to the mundane.

We, too, extend our minds, but not as well as we could. We do it haphazardly, without much intention or skill — and it’s no wonder this is the case. Our efforts at education and training, as well as management and leadership, are aimed principally at promoting brain-bound thinking. Beginning in elementary school, we are taught to sit still, work quietly, think hard — a model for mental activity that will dominate during the years that follow, through high school and college and into the workplace. The skills we develop and the techniques we are taught are mostly those that involve using our individual, unaided brains: committing information to memory, engaging in internal reasoning and deliberation, mustering our mental powers from within. Compared to the attention we lavish on the brain, we expend relatively little effort on cultivating our ability to think outside the brain.

The limits of this approach have become painfully evident. The days when we could do it all in our heads are over. Our knowledge is too abundant, our expertise too specialized, our challenges too enormous. The best chance we have to thrive in the extraordinarily complex world we’ve created is to allow that world to assume some of our mental labor. Our brains can’t do it alone.

Annie Murphy Paul ( @anniemurphypaul ) is a Learning Sciences Exchange fellow at New America and the author of “ The Extended Mind : The Power of Thinking Outside the Brain,” from which this essay is adapted.

The Times is committed to publishing a diversity of letters to the editor. We’d like to hear what you think about this or any of our articles. Here are some tips . And here’s our email: [email protected] .

Follow The New York Times Opinion section on Facebook , Twitter (@NYTopinion) and Instagram .

Brought to you by:

Rotman Management Magazine

Learning the Art of Critical Thinking

By: Richard Paul, Linda Elder

No matter what your circumstances or goals, the authors assure us of one thing: we will be better off if we are skilled thinkers. Critical thinking, they say, is the disciplined art of ensuring that…

  • Length: 5 page(s)
  • Publication Date: Jan 1, 2014
  • Discipline: Strategy
  • Product #: ROT221-PDF-ENG

What's included:

  • Educator Copy

$4.50 per student

degree granting course

$7.95 per student

non-degree granting course

Get access to this material, plus much more with a free Educator Account:

  • Access to world-famous HBS cases
  • Up to 60% off materials for your students
  • Resources for teaching online
  • Tips and reviews from other Educators

Already registered? Sign in

  • Student Registration
  • Non-Academic Registration
  • Included Materials

No matter what your circumstances or goals, the authors assure us of one thing: we will be better off if we are skilled thinkers. Critical thinking, they say, is the disciplined art of ensuring that you use the best thinking you are capable of in any set of circumstances; but to maximize the quality of your thinking, you have to make learning about thinking a priority. They present four recommendations which, when applied, result in a mind practicing skilled thinking. These include 'clarify your thinking' and 'question questions'. In the end, they say the best thinkers are those who understand the development of thinking as a process occurring throughout many years of practice.

Jan 1, 2014

Discipline:

Rotman Management Magazine

ROT221-PDF-ENG

We use cookies to understand how you use our site and to improve your experience, including personalizing content. Learn More . By continuing to use our site, you accept our use of cookies and revised Privacy Policy .

critical thinking magazine

critical thinking magazine

JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.

  • Order Tracking
  • Create an Account

critical thinking magazine

200+ Award-Winning Educational Textbooks, Activity Books, & Printable eBooks!

  • Compare Products

Reading, Writing, Math, Science, Social Studies

  • Search by Book Series
  • Algebra I & II  Gr. 7-12+
  • Algebra Magic Tricks  Gr. 2-12+
  • Algebra Word Problems  Gr. 7-12+
  • Balance Benders  Gr. 2-12+
  • Balance Math & More!  Gr. 2-12+
  • Basics of Critical Thinking  Gr. 4-7
  • Brain Stretchers  Gr. 5-12+
  • Building Thinking Skills  Gr. Toddler-12+
  • Building Writing Skills  Gr. 3-7
  • Bundles - Critical Thinking  Gr. PreK-9
  • Bundles - Language Arts  Gr. K-8
  • Bundles - Mathematics  Gr. PreK-9
  • Bundles - Multi-Subject Curriculum  Gr. PreK-12+
  • Bundles - Test Prep  Gr. Toddler-12+
  • Can You Find Me?  Gr. PreK-1
  • Complete the Picture Math  Gr. 1-3
  • Cornell Critical Thinking Tests  Gr. 5-12+
  • Cranium Crackers  Gr. 3-12+
  • Creative Problem Solving  Gr. PreK-2
  • Critical Thinking Activities to Improve Writing  Gr. 4-12+
  • Critical Thinking Coloring  Gr. PreK-2
  • Critical Thinking Detective  Gr. 3-12+
  • Critical Thinking Tests  Gr. PreK-6
  • Critical Thinking for Reading Comprehension  Gr. 1-5
  • Critical Thinking in United States History  Gr. 6-12+
  • CrossNumber Math Puzzles  Gr. 4-10
  • Crypt-O-Words  Gr. 2-7
  • Crypto Mind Benders  Gr. 3-12+
  • Daily Mind Builders  Gr. 5-12+
  • Dare to Compare Math  Gr. 2-7
  • Developing Critical Thinking through Science  Gr. 1-8
  • Dr. DooRiddles  Gr. PreK-12+
  • Dr. Funster's  Gr. 2-12+
  • Editor in Chief  Gr. 2-12+
  • Fun-Time Phonics!  Gr. PreK-2
  • Half 'n Half Animals  Gr. K-4
  • Hands-On Thinking Skills  Gr. K-1
  • Inference Jones  Gr. 1-6
  • James Madison  Gr. 10-12+
  • Jumbles  Gr. 3-5
  • Language Mechanic  Gr. 4-7
  • Language Smarts  Gr. 1-4
  • Mastering Logic & Math Problem Solving  Gr. 6-9
  • Math Analogies  Gr. K-9
  • Math Detective  Gr. 3-8
  • Math Games  Gr. 3-8
  • Math Mind Benders  Gr. 5-12+
  • Math Ties  Gr. 4-8
  • Math Word Problems  Gr. 4-10
  • Mathematical Reasoning  Gr. Toddler-11
  • Middle School Science  Gr. 6-8
  • Mind Benders  Gr. PreK-12+
  • Mind Building Math  Gr. K-1
  • Mind Building Reading  Gr. K-1
  • Novel Thinking  Gr. 3-6
  • OLSAT® Test Prep  Gr. PreK-K
  • Organizing Thinking  Gr. 2-8
  • Pattern Explorer  Gr. 3-9
  • Practical Critical Thinking  Gr. 8-12+
  • Punctuation Puzzler  Gr. 3-8
  • Reading Detective  Gr. 3-12+
  • Red Herring Mysteries  Gr. 4-12+
  • Red Herrings Science Mysteries  Gr. 4-9
  • Science Detective  Gr. 3-6
  • Science Mind Benders  Gr. PreK-3
  • Science Vocabulary Crossword Puzzles  Gr. 4-6
  • Sciencewise  Gr. 4-12+
  • Scratch Your Brain  Gr. 2-12+
  • Sentence Diagramming  Gr. 3-12+
  • Smarty Pants Puzzles  Gr. 3-12+
  • Snailopolis  Gr. K-4
  • Something's Fishy at Lake Iwannafisha  Gr. 5-9
  • Teaching Technology  Gr. 3-12+
  • Tell Me a Story  Gr. PreK-1
  • Think Analogies  Gr. 3-12+
  • Think and Write  Gr. 3-8
  • Think-A-Grams  Gr. 4-12+
  • Thinking About Time  Gr. 3-6
  • Thinking Connections  Gr. 4-12+
  • Thinking Directionally  Gr. 2-6
  • Thinking Skills & Key Concepts  Gr. PreK-2
  • Thinking Skills for Tests  Gr. PreK-5
  • U.S. History Detective  Gr. 8-12+
  • Understanding Fractions  Gr. 2-6
  • Visual Perceptual Skill Building  Gr. PreK-3
  • Vocabulary Riddles  Gr. 4-8
  • Vocabulary Smarts  Gr. 2-5
  • Vocabulary Virtuoso  Gr. 2-12+
  • What Would You Do?  Gr. 2-12+
  • Who Is This Kid? Colleges Want to Know!  Gr. 9-12+
  • Word Explorer  Gr. 6-8
  • Word Roots  Gr. 3-12+
  • World History Detective  Gr. 6-12+
  • Writing Detective  Gr. 3-6
  • You Decide!  Gr. 6-12+

critical thinking magazine

  • Special of the Month
  • Sign Up for our Best Offers
  • Bundles = Greatest Savings!
  • Sign Up for Free Puzzles
  • Sign Up for Free Activities
  • Toddler (Ages 0-3)
  • PreK (Ages 3-5)
  • Kindergarten (Ages 5-6)
  • 1st Grade (Ages 6-7)
  • 2nd Grade (Ages 7-8)
  • 3rd Grade (Ages 8-9)
  • 4th Grade (Ages 9-10)
  • 5th Grade (Ages 10-11)
  • 6th Grade (Ages 11-12)
  • 7th Grade (Ages 12-13)
  • 8th Grade (Ages 13-14)
  • 9th Grade (Ages 14-15)
  • 10th Grade (Ages 15-16)
  • 11th Grade (Ages 16-17)
  • 12th Grade (Ages 17-18)
  • 12th+ Grade (Ages 18+)
  • Test Prep Directory
  • Test Prep Bundles
  • Test Prep Guides
  • Preschool Academics
  • Store Locator
  • Submit Feedback/Request
  • Sales Alerts Sign-Up
  • Technical Support
  • Mission & History
  • Articles & Advice
  • Testimonials
  • Our Guarantee
  • New Products
  • Free Activities
  • Libros en Español

Since 1958, our award-winning products have helped students of all abilities achieve better academic results with highly effective lessons that sharpen the mind as they teach standards-based reading, writing, mathematics, science, and history. Our products are fun, easy to use, and guaranteed to produce better grades and higher test scores.

We design critical thinking into our reading, writing, math, science, and history lessons so students carefully analyze what they are learning. Deeper analysis produces deeper understanding, which results in better grades and higher test scores. Over time, students who practice critical thinking learn to apply it throughout their education and lives.

"If we teach children everything we know, their knowledge is limited to ours. If we teach children to think, their knowledge is limitless." - Michael Baker, President

We do not teach through drill and memorization or teach to the tests—we empower the mind! Our goals are higher grades, top test scores, and problem solving skills to meet all of life’s challenges. The Critical Thinking Co.™ is recommended by Learning® Magazine , The Well-Trained Mind , College Prep Genius , Creative Child Magazine , Dr. Toy, and used by Sylvan Learning® Centers, Club Z In-Home Tutoring, leading U.S. public schools, and gifted and talented programs in 57 countries throughout the world. We guarantee better grades and higher test scores—or your money back.

Children love our products and you'll love what our products do for your child.

Mission Statement

The Critical Thinking Co.™ is committed to developing students' critical thinking skills for better grades, higher test scores, and success in life. We do not teach through drill and memorization or teach to the tests—we empower the mind!

We encourage you to contact us whenever we can provide products, services, information, or support to meet your student’s learning needs.

The company was founded by John Baker in 1958 under the name Midwest Publications as a math and textbook company, combining powerful logic problems with high educational and editorial standards. The Critical Thinking Co.™ now boasts over 200 titles in reading, writing, math, science, and social studies and remains a family-owned business under the guidance of John’s son, Michael Baker.

In 1976, the company changed its name to Critical Thinking Press and Software. The name was further changed to Critical Thinking Books & Software in 1997. The current moniker, The Critical Thinking Co.™ was adopted in November of 2003.

What Is Critical Thinking?

Critical thinking is identifying and evaluating evidence to guide decision making. Critical thinkers use in-depth analysis of evidence to make decisions and communicate their beliefs clearly and accurately. Learn More »

  • Questions/Suggestions?

Share your Success Stories and let people know how Critical Thinking has worked for you! View Details »

We provide quality educational products that are safe for children of all ages and abilities. Read More »

Higher Grades and Top Test Scores! We guarantee Higher Grades & Top Test Scores! Our riddles, puzzles, games, and lessons develop thinking skills and improve standards-based learning. Each activity requires students to analyze, synthesize, and apply what they learn. The more students think about what they are learning, the more students understand what they are learning.

Empower the Mind! Critical thinking doesn’t just guarantee academic success, it prepares children for the countless challenges they will encounter throughout their lives. Empowering the mind through critical thinking is one of the best ways to prepare for life's journey.

Learning Becomes Fun! Our thinking approach makes learning fun, motivating and effective. Students enjoy our products and ask for them by name.

  • Articles & Advice
  • Workshops & Training
  • Awards & Honors
  • Success Stories
  • Product Safety Testing
  • Company Guarantee

critical thinking magazine

Future Education Magazine Logo

A Deep Dive into 10 Thought-Provoking Critical Thinking Exercises

A Deep Dive into 10 Thought-Provoking Critical Thinking Exercises | Future Education Magazine

Today, information bombards us from all directions, and the ability to think critically has become a paramount skill. Beyond the rote memorization of facts, critical thinking exercises involve the analysis, evaluation, and synthesis of information to make informed decisions. In this comprehensive guide, we’ll explore ten engaging and effective critical thinking exercises designed to enhance cognitive abilities, foster intellectual agility, and contribute to overall cognitive excellence.

List of Critical Thinking Exercises: 

1. socratic questioning: unlocking wisdom through dialogue.

A Deep Dive into 10 Thought-Provoking Critical Thinking Exercises | Future Education Magazine

The Socratic method, with its roots in ancient philosophy, serves as a foundational exercise for critical thinking. It involves posing open-ended questions stimulating thoughtful dialogue and exploring complex topics. The exercise encourages individuals to engage in structured discussions, challenging assumptions, and dissecting various perspectives on a chosen subject matter.

Exercise: Organize or participate in Socratic discussion groups where participants tackle topics ranging from ethical dilemmas to societal issues. The goal is to foster an environment where thoughtful questioning leads to a deeper understanding of the subject matter.

2. Brain Teasers and Puzzles: Nurturing Analytical Thinking

Solving puzzles, riddles, and brain teasers is a classic exercise for enhancing problem-solving skills and developing cognitive flexibility. Engaging in these activities challenges the mind, fostering creativity and adaptability.

Exercise: Dedicate regular time to solving Sudoku, crosswords, or logic puzzles. These exercises provide mental stimulation and improve memory, concentration, and logical reasoning.

3. Debate Club Participation: Sharpening Persuasive and Analytical Skills

Joining a debate club provides a platform to practice constructing persuasive arguments, critically evaluating opposing viewpoints, and refining communication skills. The exercise encourages individuals to think on their feet, respond to counterarguments, and strengthen their ability to convey ideas convincingly.

Exercise: Actively participate in structured debates on topics ranging from current affairs to philosophical dilemmas. This fosters the development of not only critical thinking but also effective communication.

4. Case Study Analysis: Applying Critical Thinking to Real-World Scenarios

A Deep Dive into 10 Thought-Provoking Critical Thinking Exercises | Future Education Magazine

Analyzing real or hypothetical case studies allows individuals to apply critical thinking exercises to assess situations and propose effective solutions. This exercise mimics the problem-solving demands of various professions and prepares individuals to think critically in real-world contexts.

Exercise: Review business case studies, legal scenarios, or medical cases, identifying key issues and recommending strategic approaches. This hands-on approach enhances decision-making skills.

5. Concept Mapping: Visualizing Complex Ideas for Better Understanding

Creating visual representations of ideas, relationships, and hierarchies through concept mapping enhances understanding and promotes analytical thinking. This exercise encourages individuals to see the interconnectedness of concepts and improves visual-spatial thinking.

Exercise: Utilize mind maps or concept maps to illustrate complex concepts or plan projects. This visual approach aids in organizing thoughts, identifying relationships between ideas, and enhancing overall comprehension.

6. Decision-Making Simulations: Learning Through Virtual Scenarios

Participation in decision-making simulations replicates real-world scenarios, encouraging thoughtful analysis and strategic thinking. This exercise allows individuals to make decisions within a controlled environment, experiencing the consequences of their choices.

Exercise: Explore online simulations or business strategy games that require strategic decision-making. These simulations provide a risk-free environment for learning and testing different decision-making approaches.

7. Read Diverse Perspectives: Broadening Horizons through Literature

Exposure to a variety of perspectives, cultures, and ideologies through literature and diverse media broadens understanding and encourages critical thinking. This exercise prompts individuals to consider alternative viewpoints and challenges preconceived notions.

Exercise: Read books, and articles, or watch documentaries from authors with differing viewpoints. This exposure to diverse perspectives fosters empathy, cultural awareness, and a more nuanced understanding of the world.

8. Critical Writing Exercises: Articulating Coherent Arguments

A Deep Dive into 10 Thought-Provoking Critical Thinking Exercises | Future Education Magazine

Developing analytical writing skills involves articulating coherent arguments and supporting them with evidence, fostering clarity and logical reasoning. This exercise enhances the ability to express complex thoughts in a structured and persuasive manner.

Exercise: Engage in writing essays or analyses on thought-provoking topics. Focus on constructing compelling arguments with evidence-based reasoning. This exercise not only hones critical thinking exercises but also improves written communication.

9. Ethical Dilemma Deliberation: Exploring Morality and Decision-Making

Delving into ethical dilemmas requires individuals to examine the moral implications of decisions, considering multiple ethical frameworks. This exercise encourages individuals to think critically about the consequences of their actions on both a personal and societal level.

Exercise: Engage in discussions and analyze ethical scenarios, exploring the ethical dimensions of various decisions. This exercise prompts individuals to consider the broader implications of their choices.

10. Data Analysis Challenges: Making Informed Decisions Based on Data

Enhancing quantitative critical thinking involves interpreting and drawing conclusions from data, promoting data literacy. This exercise empowers individuals to make informed decisions based on quantitative information.

Exercise: Work with datasets, analyze trends, and draw meaningful insights. Developing proficiency in data analysis enhances the ability to make evidence-based decisions in various contexts.

Conclusion:

Cultivating cognitive excellence through critical thinking exercises is a journey that requires active engagement in diverse exercises. The ten exercises presented in this guide offer a comprehensive range of activities to foster cognitive agility. From engaging in Socratic questioning to tackling ethical dilemmas and analyzing data, these exercises empower individuals to approach challenges with a discerning and analytical mindset. Embrace the journey of continuous intellectual development through these practical and stimulating critical thinking exercises, and witness the transformative power of a sharpened mind.

Also Read: 10 Team-Building Games That Promote Critical Thinking

Most popular stories.

The 20-20-20 Rule: Protecting Your Eyes in the Digital Age

The 20-20-20 Rule: Protecting Your Eyes in the Digital Age

In today's digital age, our eyes are constantly bombarded with screens - from computers at work to smartphones in our

Mark O’Maley Urges Caution: Zoie Saunders’ Confirmation as Secretary of Education

Mark O’Maley Urges Caution: Zoie Saunders’ Confirmation as Secretary of Education

Source-VTDigger As the confirmation vote for Zoie Saunders as the potential next secretary of education for Vermont approaches, Mark O’Maley,

Wisconsin’s Education Crisis: DPI Report Reveals Alarming Teacher Turnover Trends

Wisconsin’s Education Crisis: DPI Report Reveals Alarming Teacher Turnover Trends

Source- Spectrum News In a recent report released by the Department of Public Instruction (DPI), alarming trends in Wisconsin’s education

Demystifying the Doctorate: A Guide to Doctoral Programs and Their Impact

Demystifying the Doctorate: A Guide to Doctoral Programs and Their Impact

Have you ever felt a burning desire to truly understand a subject, to push the boundaries of knowledge in a

Canadian School Boards Take Legal Action Against Social Media Giants for Disrupting Education

Canadian School Boards Take Legal Action Against Social Media Giants for Disrupting Education

Source- Turkiye Newspaper Canadian school boards have initiated legal proceedings against TikTok, Meta, and Snapchat, alleging that these platforms are

The Push for Bilingual Education Sparks Debate Over Migrant Children’s Future

The Push for Bilingual Education Sparks Debate Over Migrant Children’s Future

Source - New York Post New York City, Denver, Chicago, and several other urban centers are facing a pressing need

Public schools wasted COVID funds, Biden’s education budget tacitly admits

Public schools wasted COVID funds, Biden’s education budget tacitly admits

Source - EducationWeek President Biden’s signature education initiative has proven to be a costly failure for students. And now the

Brain-Based Learning: A Paradigm Shift in Education

Brain-Based Learning: A Paradigm Shift in Education

In the field of education, there is a continuous effort to enhance learning methods. Educators and researchers have been exploring

Join Our Newsletter!

Get the latest education updates delivered to your inbox.

Future Education Magazine Logo White

Future Education Magazine is an exceptional source of knowledge and resources for those looking to choose the right path in education. Whether you are a student, parent, educator, or education enthusiast, our magazine is committed to providing you with insightful and valuable content.

  • Higher Education
  • Professional Courses
  • Privacy Policy
  • Terms & Conditions
  • [email protected]
  • +1 (408) 520-9503
  • 3277 S White Rd #41 San Jose, CA 95148, United States

Copyright © 2024: Future Education Magazine | All rights reserved.

Bookmark this page

  • Defining Critical Thinking
  • A Brief History of the Idea of Critical Thinking
  • Critical Thinking: Basic Questions & Answers
  • Our Conception of Critical Thinking
  • Sumner’s Definition of Critical Thinking
  • Research in Critical Thinking
  • Critical Societies: Thoughts from the Past

Translate this page from English...

*Machine translated pages not guaranteed for accuracy. Click Here for our professional translations.

Critical Thinking: Basic Questions & Answers

Before viewing our online resources, please seriously consider supporting our work with a financial contribution. As a 501(c)(3) non-profit organization, we cannot do our work without your charitable gifts. We hope you will help us continue to advance fairminded critical societies across the world.

For full copies of many other critical thinking articles, books, videos, and more, join us at the Center for Critical Thinking Community Online - the world's leading online community dedicated to critical thinking!   Also featuring interactive learning activities, study groups, and even a social media component, this learning platform will change your conception of intellectual development.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Scribbr Citation Checker New

The AI-powered Citation Checker helps you avoid common mistakes such as:

  • Missing commas and periods
  • Incorrect usage of “et al.”
  • Ampersands (&) in narrative citations
  • Missing reference entries

critical thinking magazine

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

critical thinking magazine

Try for free

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved April 15, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, unlimited academic ai-proofreading.

✔ Document error-free in 5minutes ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Christopher Dwyer Ph.D.

Thinking About Kahneman’s Contribution to Critical Thinking

A nobel laureate on the importance of 'thinking slow.'.

Updated April 11, 2024 | Reviewed by Lybi Ma

  • Kahneman won a Nobel Memorial Prize in Economics for his work.
  • He found that people are often irrational about economics.

During my Ph.D. studies, I recall focusing on reconceptualising what we know of as critical thinking to include reflective judgment (not jumping to conclusions and taking your time in your decision-making to consider the nature limits, and certainty of knowing) on par with the commonly accepted skills and dispositions components. The importance of reflective judgment wasn’t a particularly novel idea – a good deal of research on reflective judgment and similar processes akin to critical thinking had already been conducted (see King and Kitchener, 1994; Kuhn, 1999; 2000; Stanovich, 1999). However, reflective judgment – as opposed to intuitive judgment – didn’t seem to have ‘the presence’ in the discussion of critical thinking that it does today.

The same month I submitted my Ph.D. back in 2011, a book was released that massively helped to accomplish what I had been working to help facilitate – changing the terrain of thought surrounding critical thinking: Thinking, Fast, and Slow . Its author, Daniel Kahneman, passed away a couple of weeks ago at age 90. Psychology students will likely recognise the name associated with Amos Tversky and their classic work together in the 1970s on the availability, representativeness, and anchoring and adjustment heuristics (for example, Tversky and Kahneman, 1974). Indeed, such heuristics, alongside the affect heuristic (Kahneman and Frederick, 2002; Slovic and colleagues, 2002) play a large role in how we think about thinking and barriers to critical thought. In 2002, Kahneman won a Nobel Memorial Prize in Economics for his work on prospect theory concerning loss aversion and people’s often irrational approach to economics. Indeed, Kahneman’s resume is full of awards and achievements.

However, the accomplishment I will remember him best for is the publication of Thinking, Fast, and Slow and its contribution to the field of critical thinking. Funny enough, I don’t recall the term, critical thinking being used very often in the book, if at all – and I read it two or three times. No, critical thinking was not the focus of his book; rather system 1 (fast) and 2 (slow) thinking (see also Stanovich, 1999) – intuitive and reflective judgment. Not only did this book put into the spotlight many of the mechanics of reflective judgment for fellow academics and researchers of cognitive psychology, it also did so l for non-academic audiences – becoming a New York Times bestseller. Moreover, it won the Los Angeles Times Book Award for Current Interest, and the National Academy of Sciences Communication Award for Best Book (both in 2011). Good thinking was cool again in popular culture.

In the critical thinking literature, reflective judgment – regardless of what you want to call it (for example, system 2 thinking, epistemological understanding, ‘taking your time’) – is becoming more accepted as a core component of critical thinking. The field of critical thinking research and psychology more broadly, owes Kahneman a debt of gratitude for his contributions in helping shine a light on the importance of ‘thinking slow’. Thank you .

Kahneman, D. (2011). Thinking, fast and slow . 2UK: Penguin.

Kahneman, D., & Frederick, S. (2002). Representativeness revisited: Attribute substitution in intuitive judgment. Heuristics and biases: The Psychology of Intuitive Judgment , 49 (49-81), 74.

King, P. M., & Kitchener, K. S. (1994). Developing Reflective Judgment: Understanding and Promoting Intellectual Growth and Critical Thinking in Adolescents and Adults. CA: Jossey-Bass.

King, P. M., & Kitchener, K. S. (2004). Reflective judgment: Theory and research on the development of epistemic assumptions through adulthood. Educational Psychologist, 39 (1), 5–15.

Kuhn, D. (1999). A developmental model of critical thinking. Educational Researcher , 28 (2), 16-46.

Kuhn, D. (2000). Metacognitive development. Current Directions in Psychological Science , 9 (5), 178-181.

Slovic, P., Finucane, M., Peters, E., & MacGregor, D. G. (2002). Rational actors or rational fools: Implications of the affect heuristic for behavioral economics. The Journal of Socio-economics , 31 (4), 329-342.

Stanovich, K.E. (1999) Who is rational? Studies of individual differences in reasoning. Mahwah, Erlbaum.

Tversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science , 185 (4157), 1124-1131.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Teletherapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Therapy Center NEW
  • Diagnosis Dictionary
  • Types of Therapy

March 2024 magazine cover

Understanding what emotional intelligence looks like and the steps needed to improve it could light a path to a more emotionally adept world.

  • Coronavirus Disease 2019
  • Affective Forecasting
  • Neuroscience

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Front Psychol

Fostering Creativity and Critical Thinking in College: A Cross-Cultural Investigation

Ji hoon park.

1 Department of Psychology, Pace University, New York, NY, United States

2 Developmental and Educational Research Center for Children's Creativity, Faculty of Education, Beijing Normal University, Beijing, China

Heavon Allen

Associated data.

The original contributions presented in the study are included in the article/supplementary material, further inquiries can be directed to the corresponding author.

Enhancing creativity and critical thinking have garnered the attention of educators and researchers for decades. They have been highlighted as essential skills for the 21st century. A total of 103 United States students (53 female, 24 male, two non-binary, and 24 non-reporting) and 166 Chinese students (128 female, 30 male, one non-binary, and seven non-reporting) completed an online survey. The survey includes the STEAM-related creative problem solving, Sternberg scientific reasoning tasks, psychological critical thinking (PCT) exam, California critical thinking (CCT) skills test, and college experience survey, as well as a demographic questionnaire. A confirmatory factor analysis (CFA) yields a two-factor model for all creativity and critical thinking measurements. Yet, the two latent factors are strongly associated with each other ( r =0.84). Moreover, Chinese students outperform American students in measures of critical thinking, whereas Americans outperform Chinese students in measures of creativity. Lastly, the results also demonstrate that having some college research experience (such as taking research method courses) could positively influence both United States and Chinese students’ creativity and critical thinking skills. Implications are discussed.

Introduction

Creativity and critical thinking have been recognized as essential skills in the 21st century ( National Education Association, 2012 ). Many researchers and educators have focused on these two skills, including acquisition, enhancement, and performance. In addition, numerous studies have been devoted to understanding the conceptual complexities involved in creativity and critical thinking. Although similar to each other, creativity and critical thinking are distinctive by definition, each with a different emphasis.

The concept of creativity has evolved over the years. It was almost exclusively conceptualized as divergent thinking when Guilford (1956 , 1986) proposed divergent thinking as a part of intelligence. Earlier measures of creativity took the approach of divergent thinking, measuring creative potential ( Wallach and Kogan, 1965 ; Torrance, 1966 , 1988 ; Runco and Albert, 1986 ; Kim, 2005 ). In 1990s, many creativity scholars challenged the validity of tests of divergent thinking, and suggested that divergent thinking only captures the trivial sense of creativity, and proposed to use the product-oriented method to measure creativity ( Csikszentmihalyi, 1988 ; Amabile, 1996 ; Sternberg and Lubart, 1999 ). A system model of creativity, which recognizes the important roles individual, field, and domain have played, was used as a framework to conceptualize creativity. A widely accepted definition for creativity is a person’s ability to generate an idea or product that is deemed as both novel and appropriate by experts in a field of human activities ( Scott and Bruce, 1994 ; Amabile, 1996 ; Csikszentmihalyi, 1999 ; Sternberg and Lubart, 1999 ; Hunter et al., 2007 ). Corazza and Lubart (2021) recently proposed a dynamic definition of creativity, in which creativity is defined as a context-embedded phenomenon that is tightly related to the cultural and social environment. Based on this new definition, measures of creativity should be context-specific and culturally relevant, especially when it is examined cross-culturally.

Similarly, the conceptualization of critical thinking has also evolved over the years. Earlier definitions emphasized the broad multidimensional aspects of critical thinking, including at least three aspects: attitude, knowledge, and skills ( Glaser, 1941 ). The definition has been evolved to include specific components for each aspect ( Watson and Glaser, 1980 ). For example, critical thinking is recognized as the ability to use cognitive skills or strategies to increase the probability of a desirable outcome ( Halpern, 1999 ). More specifically, cognitive skills such as evaluation, problem-solving, reflective thinking, logical reasoning, and probability thinking are recognized as parts of critical thinking skills in research and assessments ( Ennis, 1987 , Scriven and Paul, 1987 , Halpern, 1999 ). Moving into the 21st century, metacognition and self-regulatory skills have also become essential components for critical thinking in addition to the cognitive skills recognized by earlier scholars ( Korn, 2014 , Paul and Elder, 2019 ).

Similar to the concept of creativity, critical thinking is also viewed as multidimensional and domain specific ( Bensley and Murtagh, 2012 ). For example, critical thinking in psychology, also referred to as psychological critical thinking (PCT), is defined as one’s ability to evaluate claims in a way that explicitly incorporates basic principles of psychological science ( Lawson, 1999 ). As one of the important hub sciences, psychology is often regarded as a foundational course for scientific training in American higher education ( Boyack et al., 2005 ). In psychological discourse, critical thinking is often defined in tandem with scientific thinking, which places significance on hypothesis-testing and problem-solving in order to reduce bias and erroneous beliefs ( Halpern, 1984 ; American Psychological Association, 2016 ; Lamont, 2020 ; Sternberg and Halpern, 2020 ). Based on this definition, measures of critical thinking should assess cognitive skills (i.e., evaluation, logical reasoning) and ability to utilize scientific methods for problem-solving.

In addition to the evolution of the definitions of critical thinking and creativity, research into these two concepts has led to the development of various measurements. For both concepts, there have been numerous measurements that have been studied, utilized, and improved.

The complexities associated with creativity (i.e., context-relevant and domain-specificity) pose a major issue for its measurement. Many different types of creativity measures have been developed in the past. Measures using a divergent thinking approach, such as the Torrance Tests of Creative Thinking ( Torrance, 1974 ) and Alternate Uses Test ( Guilford et al., 1960 ), a product-oriented approach, a third person nomination approach, as well as a self-report approach measuring personality ( Gough, 1979 ), creative behavior ( Hocevar and Michael, 1979 ; Rodriguez-Boerwinkle et al., 2021 ), and creative achievement ( Carson et al., 2005 ; Diedrich et al., 2018 ).

Both the divergent thinking and the product-oriented approaches have been widely used in the creativity literature to objectively measure creativity. The tasks of both approaches are generally heuristic, meaning that no correct answer is expected and the process does not need to be rational. When scoring divergent thinking, the number of responses (i.e., fluency) and the rareness of the response (i.e., originality) were used to represent creativity. When scoring products using the product-orientated approach, a group of experts provides their subjective ratings on various dimensions such as originality, appropriateness, and aesthetically appealing to these products using their subjective criteria. When there is a consensus among the experts, average ratings of these expert scores are used to represent the creativity of the products. This approach is also named as Consensual Assessment Technique (CAT; Amabile, 1982 , 1996 ). Some scholars viewed the CAT approach as focusing on the convergent aspect of creativity ( Lubart et al., 2013 ). Recognizing the importance of divergent and convergent thinking in conceptualizing creativity, Lubart et al. (2013) have suggested including divergent thinking and product-oriented approach (i.e., CAT) to objective measures of creativity ( Barbot et al., 2011 ).

Similar to measures of creativity, measurements of critical thinking are also multilevel and multi-approach. In an article reviewing the construction of critical thinking in psychological studies, Lamont (2020) argues that critical thinking became a scientific object when psychologists attempted to measure it. Different from measures of creativity, where the tasks are heuristic in nature, measures of critical thinking require participants to engage in logical thinking. Therefore, the nature of critical thinking tasks is more algorithmic.

The interest in the study of critical thinking is evident in the increased efforts in the past decades to measure such a complex, multidimensional skill. Watson-Glaser Tests for Critical Thinking ( Watson and Glaser, 1938 ) is widely recognized as the first official measure of critical thinking. Since then, numerous measurements of critical thinking have been developed to evaluate both overall and domain-specific critical thinking, such as the PCT Exam ( Lawson, 1999 ; See Mueller et al., 2020 for list of assessments). A few of the most commonly used contemporary measures of critical thinking include the Watson-Glaser Test for Critical Thinking Appraisals ( Watson and Glaser, 1980 ), Cornell Critical Thinking Test ( Ennis et al., 1985 ), and California Critical Thinking (CCT) Skills Test ( Facione and Facione, 1994 ). As the best established and widely used standardized critical thinking measures, these tests have been validated in various studies and have been used as a criterion for meta-analyses ( Niu et al., 2013 ; Ross et al., 2013 ).

There have also been concerns regarding the usage of these standardized measures of critical thinking on its own due to its emphasis on measuring general cognitive abilities of participants, while negating the domain-specific aspect of critical thinking ( Lamont, 2020 ). The issues associated with standardized measures are not unique to standardized critical thinking measures, as same types of criticisms have been raised for standardized college admissions measures such as the Graduate Record Exam (GRE). To develop an assessment that encompasses a broader range of student abilities that is more aligned to scientific disciplines, Sternberg and Sternberg (2017) developed a scientific inquiry and reasoning measure. This measure is aimed to assess participants’ ability to utilize scientific methods and to think scientifically in order to investigate a topic or solve a problem ( Sternberg and Sternberg, 2017 ). The strength of this measure is that it assesses students’ abilities (i.e., ability to think critically) that are domain-specific and relevant to the sciences. Considering the multidimensional aspect of critical thinking, a combination of a standardized critical thinking measure, an assessment measuring cognitive abilities involved in critical thinking; and a measure that assesses domain-specific critical thinking, would provide a comprehensive evaluation of critical thinking.

The Relationship Between Creativity and Critical Thinking

Most of the studies thus far referenced have investigated creativity and critical thinking separately; however, the discussion on the relationship between creativity and critical thinking spans decades of research ( Barron and Harrington, 1981 ; Glassner and Schwartz, 2007 ; Wechsler et al., 2018 ; Akpur, 2020 ). Some earlier studies on the relationship between divergent thinking and critical thinking have observed a moderate correlation ( r =0.23, p <0.05) between the two ( Gibson et al., 1968 ). Using measures of creative personality, Gadzella and Penland (1995) also found a moderate correlation ( r =0.36, p <0.05) between creative personality and critical thinking.

Recent studies have further supported the positive correlation between critical thinking and creativity. For example, using the creative thinking disposition scale to measure creativity, Akpur (2020) found a moderate correlation between the two among college students ( r =0.27, p <0.05). Similarly, using the critical thinking disposition scale to measure critical thinking and scientific creativity scale and creative self-efficacy scale to measure creativity, Qiang et al. (2020) studied the relationship between critical thinking and creativity to a large sample of high school students ( n =1,153). They found that the relationship between the two varied depending on the type of measurement of creativity. More specifically, the correlation between critical thinking disposition and creative self-efficacy was r =0.045 ( p <0.001), whereas the correlation between critical thinking disposition and scientific creativity was r =0.15 ( p <0.01).

Recognizing the moderate relationship between the two, researchers have also aimed to study the independence of creativity and critical thinking. Some studies have found evidence that these constructs are relatively autonomous. The results of Wechsler et al. (2018) study, which aimed to investigate whether creativity and critical thinking are independent or complementary processes, found a relative autonomy of creativity and critical thinking and found that the variables were only moderately correlated. The researchers in this study suggest that a model that differentiated the two latent variables associated with creativity and critical thinking dimensions was the most appropriate method of analysis ( Wechsler et al., 2018 ). Evidence to suggest that creativity and critical thinking are fairly independent processes was also found in study of Ling and Loh (2020) . The results of their research, which examined the relationship of creativity and critical thinking to pattern recognition, revealed that creativity is a weak predictor of pattern recognition. In contrast, critical thinking is a good predictor ( Ling and Loh, 2020 ).

It is worth noting that a possible explanation for the inconsistencies in these studies’ results is the variance in the definition and the measures used to evaluate creativity and critical thinking. Based on the current literature on the relationship between creativity and critical thinking, we believe that more investigation was needed to further clarify the relationship between creativity and critical thinking which became a catalyst for the current study.

Cross-Cultural Differences in Creativity and Critical Thinking Performance

Results from various cross-cultural studies suggest that there are differences in creativity and critical thinking skills among cultures. A common belief is that individuals from Western cultures are believed to be more critical and creative compared to non-Westerners, whereas individuals from non-Western cultures are believed to be better at critical thinking related tasks compared to Westerners ( Ng, 2001 ; Wong and Niu, 2013 ; Lee et al., 2015 ). For example, Wong and Niu (2013) found a persistent cultural stereotype regarding creativity and critical thinking skills that exist cross-culturally. In their study, both Chinese and Americans believed that Chinese perform better in deductive reasoning (a skill comparable to critical thinking) and that Americans perform better on creativity. This stereotype belief was found to be incredibly persistent as participants did not change their opinions even when presented with data that contradicted their beliefs.

Interestingly, research does suggest that such a stereotype might be based on scientific evidence ( Niu et al., 2007 ; Wong and Niu, 2013 ). In the same study, it was revealed that Chinese did in fact perform better than Americans in deductive reasoning, and Americans performed better in creativity tests ( Wong and Niu, 2013 ). Similarly, Lee et al. (2015) found that compared to American students, Korean students believed that they are more prone to use receptive learning abilities (remembering and reproducing what is taught) instead of critical and creative learning abilities.

Cultural Influence on Critical Thinking

Other studies investigating the cultural influence on critical thinking have had more nuanced findings. Manalo et al. (2013) study of university students from New Zealand and Japan found that culture-related factors (self-construal, regulatory mode, and self-efficacy) do influence students’ critical thinking use. Still, the differences in those factors do not necessarily equate to differences in critical thinking. Their results found that students from Western and Asian cultural environments did not have significant differences in their reported use of critical thinking. The researchers in this study suggest that perhaps the skills and values nurtured in the educational environment have a more significant influence on students’ use of critical thinking ( Manalo et al., 2013 ).

Another study found that New Zealand European students performed better on objective measures of critical thinking than Chinese students. Still, such differences could be explained by the student’s English proficiency and not dialectical thinking style. It was also revealed in this study that Chinese students tended to rely more on dialectical thinking to solve critical thinking problems compared to the New Zealand European students ( Lun et al., 2010 ). Other research on the cultural differences in thinking styles revealed that Westerners are more likely to use formal logical rules in reasoning. In contrast, Asians are more likely to use intuitive experience-based sense when solving critical thinking problems ( Nisbett et al., 2001 ).

These studies suggest that culture can be used as a broad taxonomy to explain differences in critical thinking use. Still, one must consider the educational environment and thinking styles when studying the nature of the observed discrepancies. For instance, cultural differences in thinking style, in particular, might explain why Westerners perform better on some critical thinking measures, whereas Easterners perform better on others.

Cultural Influence on Creative Performance

Historically, creativity studies have suggested that individuals from non-Western cultures are not as creative as Westerners ( Torrance, 1974 ; Jellen and Urban, 1989 ; Niu and Sternberg, 2001 ; Tang et al., 2015 ). For example, in one study, Americans generated more aesthetically pleasing artworks (as judged by both American and Chinese judges) than Chinese ( Niu and Sternberg, 2001 ). However, recent creativity research has suggested that cross-cultural differences are primarily attributable to the definition of creativity rather than the level of creativity between cultures. As aforementioned, creativity is defined as an idea or product that is both novel and appropriate. Many cross-cultural studies have found that Westerners have a preference and perform better in the novelty aspect, and Easterners have a preference and perform better in the appropriateness aspect. In cross-cultural studies, Rockstuhl and Ng (2008) found that Israelis tend to generate more original ideas than their Singaporean counterparts. In contrast, Singaporeans tend to produce more appropriate ideas. Bechtoldt et al. (2012) found in their study that Koreans generated more useful ideas, whereas Dutch students developed more original ideas. Liou and Lan (2018) found Taiwanese tend to create and select more useful ideas, whereas Americans tend to generate and choose more novel ideas. The differences in creativity preference and performance found in these studies suggest that cultural influence is a prominent factor in creativity.

In summary, cross-cultural studies have supported the notion that culture influences both creativity and critical thinking. This cultural influence seems relatively unambiguous in creativity as it has been found in multiple studies that cultural background can explain differences in performance and preference to the dual features of creativity. Critical thinking has also been influenced by culture, albeit in an opaquer nature in comparison to creativity. Critical thinking is ubiquitous in all cultures, but the conception of critical thinking and the methods used to think critically (i.e., thinking styles) are influenced by cultural factors.

Influence of College Experience on Creativity and Critical Thinking

Given its significance as a core academic ability, the hypothesis of many colleges and universities emphasize that students will gain critical thinking skills as the result of their education. Fortunately, studies have shown that these efforts have had some promising outcomes. Around 92% of students in multi-institution research reported gains in critical thinking. Only 8.9% of students believed that their critical thinking had not changed or had grown weaker ( Tsui, 1998 ). A more recent meta-analysis by Huber and Kuncel (2016) found that students make substantial gains in critical thinking during college. In addition, the efforts to enhance necessary thinking skills have led to the development of various skill-specific courses. Mill et al. (1994) found that among three groups of undergraduate students, a group that received tutorial sessions and took research methodology and statistics performed significantly better on scientific reasoning and critical thinking abilities tests than control groups. Penningroth et al. (2007) found that students who took a class in which they were required to engage in active learning and critical evaluation of claims by applying scientific concepts, had greater improvement in psychological critical thinking than students in the comparison groups. There have also been studies in which students’ scientific inquiry and critical thinking skills have improved by taking a course designed with specific science thinking and reasoning modules ( Stevens and Witkow, 2014 ; Stevens et al., 2016 ).

Using a Survey of Undergraduate Research Experience (SURE), Lopatto (2004 , 2008) found that research experience can help students gain various learning skills such as ability to integrate theory and practice, ability to analyze data, skill in the interpretation of results, and understanding how scientists work on problem. All of these learning skills correspond to at least one of the dimensions mentioned earlier in the definition of critical thinking (i.e., evaluation, analytical thinking, and problem solving through). Thus, results of SURE provide evidence that critical thinking can be enhanced through research experience ( Lopatto, 2004 , 2008 ).

In comparison to critical thinking, only a few studies have examined the interaction between creativity and college experience. Previous research on STEM provides some evidence to suggest that STEM education can promote the learner’s creativity ( Land, 2013 , Guo and Woulfin, 2016 , Kuo et al., 2018 ). Notably, study of Kuo et al. (2018) suggest that project-based learning in STEM has the merits of improving one’s creativity. They found that the STEM Interdisciplinary Project-Based Learning (IPBL) course is a practical approach to improve college student’s creativity ( Kuo et al., 2018 ). College research experience in particular, has been reported as important or very important by faculty and students for learning how to approach problems creatively ( Zydney et al., 2002 ).

Although specific college courses aimed to enhance creativity have been scarce, some training programs have been developed specifically to improve creativity. Scott et al. (2004) conducted a quantitative review of various creativity training and found that divergent thinking, creative problem solving, and creativity performance can be enhanced through skill-specific training programs. Embodied creativity training programs, consisting of creativity fitness exercises and intensive workshops, have also been effective in enhancing participants’ creative production and improving their creative self-efficacy ( Byrge and Tang, 2015 ).

Both critical thinking and creativity were also found to be important in students’ learning. Using a longitudinal design for one semester to 52 graduate students in biology, Siburian et al. (2019) studied how critical thinking and creative thinking contribute to improving cognitive learning skills. They found that both critical and creative thinking significantly contributes to enhancing cognitive learning skills ( R 2 =0.728). They each contribute separately to the development of cognitive learning skills ( b was 0.123 between critical thinking and cognitive learning and 0.765 between creative thinking and cognitive learning). The results from research on creativity and critical thinking indicate that training and experiences of students in college can enhance both of these skills.

Current Study

Previous literature on creativity and critical thinking suggests that there is a positive correlation between these two skills. Moreover, cultural background influences creativity and critical thinking conception and performance. However, our literature review suggests that there are only a few studies that have investigated creativity and critical thinking simultaneously to examine whether cultural background is a significant influence in performance. In addition, most of the past research on creativity and critical thinking have relied on dispositions or self-reports to measure the two skills and the investigation on the actual performance have been scarce. Lastly, past studies suggest that the acquisition and enhancement of these skills are influenced by various factors. Notably, college experience and skill-specific training have been found to improve both creativity and critical thinking. However, it is not yet clear how college experience aids in fostering creativity and critical thinking and which elements of college education are beneficial for enhancing these two skills. The cultural influence on creativity and critical thinking performance also needs further investigation.

The current study aimed to answer two questions related to this line of thought. How does culture influence creativity and critical thinking performance? How does college experience affect creativity and critical thinking? Based on past findings, we developed three hypotheses. First, we hypothesized that there is a positive association between critical thinking and creativity. Second, we suggest that college students from different countries have different levels of creativity and critical thinking. More specifically, we predicted that United States students would perform better than Chinese students on both creativity and critical thinking. Last, we hypothesized that having college research experience (through courses or research labs) will enhance creativity and critical thinking.

Materials and Methods

Participants.

The study was examined by the Internal Review Board by the host university in the United States and obtained an agreement from a partner university in China to meet the ethical standard of both countries.

Participants include 103 university students from the United States and 166 university students from Mainland China. Among all participants, 181 were female (67.3%), 54 were male (20.1%), non-binary or gender fluid ( n =3, 1.1%), and some did not report their gender ( n =31, 11.5%). The majority of participants majored in social sciences ( n =197, 73.2%). Other disciplines include business and management ( n =38, 14.1%), engineering and IT ( n =20, 7.4%), and sciences ( n =14, 5.2%). A Chi-square analysis was performed to see if the background in major was different between the American and Chinese samples. The results showed that the two samples are comparable in college majors, X 2 (3, 265) =5.50, p =0.138.

The American participants were recruited through campus recruitment flyers and a commercial website called Prolific (online survey distribution website). Ethnicities of the American participants were White ( n =44, 42.7%), Asian ( n =13, 12.6%), Black or African American ( n =11, 10.7%), Hispanic or Latinos ( n =5, 4.9%), and some did not report their ethnicity ( n =30, 29.1%). The Chinese participants were recruited through online recruitment flyers. All Chinese students were of Han ethnicity.

After reviewing and signing an online consent form, both samples completed a Qualtrics survey containing creativity and critical thinking measures.

Measurements

Steam related creative problem solving.

This is a self-designed measurement, examining participant’s divergent and convergent creative thinking in solving STEAM-related real-life problems. It includes three vignettes, each depicting an issue that needs to be resolved. Participants were given a choice to pick two vignettes to which they would like to provide possible solutions for. Participants were asked to provide their answers in two parts. In the first part, participants were asked to provide as many solutions as they can think of for the problem depicted (divergent). In the second part, participants were asked to choose one of the solutions they gave in the first part that they believe is the most creative and elaborate on how they would carry out the solution (convergent).

The responses for the first part of the problem (i.e., divergent) were scored based on fluency (number of solutions given). Each participant received a score on fluency by averaging the number of solutions given across three tasks. In order to score the originality of the second part of the solution (i.e., convergent), we invited four graduate students who studied creativity for at least 1year as expert judges to independently rate the originality of all solutions. The Cronbach’s Alpha of the expert ratings was acceptable for all three vignette solutions (0.809, 0.906, and 0.703). We then averaged the originality scores provided by the four experts to represent the originality of each solution. We then averaged the top three solutions as rated by the experts to represent the student’s performance on originality. In the end, each student received two scores on this task: fluency and originality.

Psychological Critical Thinking Exam

We adopted an updated PCT Exam developed by Lawson et al. (2015) , which made improvements to the original measure ( Lawson, 1999 ). We used PCT to measure the participants’ domain-specific critical thinking: critical thinking involved in the sciences. The initial assessment aimed to examine the critical thinking of psychology majors; however, the updated measure was developed so that it can be used to examine students’ critical thinking in a variety of majors. The split-half reliability of the revised measurement was 0.88, and test-retest reliability was 0.90 ( Lawson et al., 2015 ). Participants were asked to identify issues with a problematic claim made in two short vignettes. For example, one of the questions states:

Over the past few years, Jody has had several dreams that apparently predicted actual events. For example, in one dream, she saw a car accident and later that week she saw a van run into the side of a pickup truck. In another dream, she saw dark black clouds and lightning and 2days later a loud thunderstorm hit her neighborhood. She believes these events are evidence that she has a psychic ability to predict the future through her dreams. Could the event have occurred by chance? State whether or not there is a problem with the person’s conclusions and explain the problem (if there is one).

Responses were scored based on the rubric provided in the original measurement ( Lawson et al., 2015 ). If no problem was identified the participants would receive zero points. If a problem was recognized but misidentified, the participants would receive one point. If the main problem was identified and other less relevant problems were identified, the participants received two points. If participants identified only the main problem, they received three points. Following the rubric, four graduate students independently rated the students’ critical thinking task. The Cronbach’s Alpha of the expert ratings was acceptable for both vignettes (0.773 and 0.712). The average of the four scores given by the experts was used as the final score for the participants.

California Critical Thinking Skills Test

This objective measure of critical thinking was developed by Facione and Facione (1994) . We used CCT to measure a few of the multidimensions of critical thinking such as evaluation, logical reasoning, and probability thinking. Five sample items provided from Insight Assessment were used instead of the standard 40-min long CCT. Participants were presented with everyday scenarios with 4–6 answer choices. Participants were asked to make an accurate and complete interpretation of the question in order to correctly answer the question by choosing the right answer choice (each correct answer was worth one point). This test is commonly used to measure critical thinking, and previous research has reported its reliability as r =0.86 ( Hariri and Bagherinejad, 2012 ).

Sternberg Scientific Inquiry and Reasoning

This measure was developed by Sternberg and Sternberg (2017) as an assessment of scientific reasoning. We used this assessment as a domain-specific assessment to measure participants’ scientific creativity (generating testable hypotheses) and scientific critical thinking involved in generating experiments. For this two-part measure, participants were asked to read two short vignettes. For one of the vignettes, participants were asked to generate as many hypotheses as possible to explain the events described in the vignette. For the other, create an experiment to test the hypothesis mentioned in the vignette.

After carefully reviewing the measurement, we notice that the nature of the tasks in the first part of this measure (hypothesis generation) relied on heuristics, requiring participants to engage in divergent thinking. The number of valid hypotheses provided (i.e., fluency) was used to represent the performance of this task. We, therefore, deem that this part measures creativity. In contrast, the second part of the measure, experiment generation, asked participants to use valid scientific methods to design an experiment following the procedure of critical thinking such as evaluation, problem-solving, and task evaluation. Its scoring also followed algorithms so that a correct answer could be achieved. For the above reasons, we believe hypotheses generation is a measurement of creativity and experiment generation is a measurement for critical thinking.

Based on the recommended scoring manual, one graduate student calculated the fluency score from the hypothesis generation measurement. Four experts read through all students’ responses to the experiment generation. They discussed a rubric on how to score these responses, using a four-point scale, with a “0” representing no response or wrong response, a “1” representing partially correct, a “2” representing correct response. An additional point (the three points) was added if the participant provided multiple design methods. Based on the above rubric, the four experts independently scored this part of the questionnaire. The Cronbach’s Alpha of the four expert ratings was 0.792. The average score of the four judges was used to represent their critical thinking scores on this task.

College Experience Survey

Participants were asked about their past research experience, either specifically in psychology or in general academia. Participants were asked to choose between three choices: no research experience, intermediate research experience (i.e., research work for class, research work for lab), and advanced research experience (i.e., professional research experience, published works).

Demographic and Background Questionnaire

Series of standard demographic questions were asked, including participants’ age, gender, and ethnicity.

We performed a Pearson correlation to examine the relationship between creativity and critical thinking (the two-c), which include performances on three measures on creativity ( creativity originality , creativity fluency , and hypothesis generation ) and three measures on critical thinking ( experiment generation , CCT , and PCT ).

Most of the dependent variables had a significantly positive correlation. The only insignificant correlation was found between Sternberg hypothesis generation and CCT, r (247) =0.024, p =0.708 (see Table 1 ).

Correlation coefficients for study variables.

Confirmatory factor analysis (CFA) was conducted by applying SEM through AMOS 21 software program and the maximum likelihood method. One-factor and two-factor models have been analyzed, respectively (see Figure 1 ).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-760351-g001.jpg

The comparison of the two confirmatory factor analysis (CFA) models: one-factor vs. two-factor.

As it is demonstrated in Table 2 , the value ranges of the most addressed fit indices used in the analysis of SEM are presented. Comparing two models, χ 2 /df of the two-factor model is in a good fit, while the index of the one-factor model is in acceptable fit. The comparison of the two models suggest that the two-factor model is a better model than the one-factor model.

Recommended values for evaluation and the obtained values.

RMSEA,root mean square error of approximation; NFI, normed fit index; CFI, comparative fit index; GFI, goodness-of-fit index; and AGFI, adjusted goodness-of-fit-index ( Schermelleh-Engel et al., 2003 ).

Cross-Cultural Differences in Critical Thinking and Creativity

We conducted a 2 (Country: the United States vs. China)×2 (Two-C: Creativity and Critical Thinking) ANOVA to investigate the cultural differences in critical thinking and creativity. We averaged scores of three critical thinking measurement ( experiment generation , PCT , and CCT ) to represent critical thinking and averaged three creativity scores ( creativity originality , creativity fluency , and hypothesis generation ).

This analysis revealed a significant main effect for the type of thinking (i.e., creative vs. critical thinking), F (1,247) =464.77, p <0.01, η p 2 =0.653. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and type of thinking, F (1,247) =62.00, p <0.01, η p 2 =0.201. More specifically, Chinese students ( M =1.32, SD =0.59) outperformed American students ( M =1.02, SD =0.44) on critical thinking. In contrast, American students ( M =2.59, SD =1.07) outperformed Chinese students ( M =2.05, SD =0.83) on creativity.

Influence of Research Experience on Critical Thinking and Creativity

The last hypothesis states that having college research experience (through courses or research lab) would enhance students’ creativity and critical thinking from both countries. We performed a 2 (Two-C: Creativity and Critical Thinking)×2 (Country: the United States vs. China)×3 (Research Experience: Advanced vs. Some vs. No) ANOVA to test this hypothesis. This analysis revealed a significant main effect for research experience, F (2,239) =4.05, p =0.019, η p 2 =0.033. Moreover, there was a significant interaction between country (i.e., the United States vs. China) and research experience, F (2,239) =5.77, p =0.004, η p 2 =0.046. In addition, there was a three-way interaction among country, two-C, and research experience. More specifically, with an increase of research experience for American students, both critical thinking and creativity improved. In contrast, for Chinese students, the impact of research experience was not significant for creativity. However, some research experience positively impacted Chinese students’ critical thinking (see Figure 2 ).

An external file that holds a picture, illustration, etc.
Object name is fpsyg-12-760351-g002.jpg

Estimated marginal means of Two-C for the United States and Chinese samples.

The current study aimed to investigate the relationship between creativity and critical thinking, how culture influences creativity and critical thinking, and how college research experience affects creativity and critical thinking. Our results supported the first hypothesis regarding the positive correlation among all of the dependent variables. The mean correlation between the measures of creativity and critical thinking was 0.230. This result was in line with the findings from previous research ( Gibson et al., 1968 ; Gadzella and Penland, 1995 ; Siburian et al., 2019 ; Akpur, 2020 ; Qiang et al., 2020 ). Moreover, our confirmatory factor analysis yielded similar results as analysis of Wechsler et al. (2018) and Akpur (2020) and provides more evidence of the relative independence between creativity and critical thinking. We found that at the latent variable level, the two skills are highly correlated to each other ( r =0.84). In addition, we found that although the one-factor model was an acceptable fit, a two-factor model was a better fit for analysis. This result suggests that despite the correlation between creativity and critical thinking, the two skills should be studied as separate factors for an appropriate and comprehensive analysis.

The results of this study partially confirmed our second hypothesis and replicated the findings from past studies ( Niu et al., 2007 ; Lun et al., 2010 ; Wong and Niu, 2013 ; Tang et al., 2015 ). As predicted, there was a significant main effect for culture in students’ performance for all six measures in the two-C analysis model. United States students performed better than Chinese students in all three creativity measures, and Chinese students performed better than United States students in all critical thinking measures. Given the diversity in the type of measures used in this study, the results suggest that United States and Chinese students’ performance aligns with the stereotype belief found in study of Wong and Niu (2013) . The findings from the current study suggest that the stereotype belief observed in both United States and Chinese students (United States students generally perform better on creativity tasks, while Chinese students perform typically better on critical thinking tasks) is not entirely unfounded. Furthermore, the clear discrepancy in performance between United States and Chinese students provides more evidence to suggest that creativity and critical thinking are relatively autonomous skills. Although, a high correlation between these two skills was found in our study, the fact that students from two different cultures have two different development trajectories in critical thinking and creativity suggests that these two skills are relatively autonomous.

Lastly, the results also confirmed our third hypothesis, that is, college research experience did have a positive influence on students’ creativity and critical thinking. Compared to students with no research experience, students with some research experience performed significantly better in all measures of creativity and critical thinking. This finding is consistent with the previous literature ( Mill et al., 1994 ; Penningroth et al., 2007 ; Stevens and Witkow, 2014 ; Stevens et al., 2016 ; Kuo et al., 2018 ). The result of our study suggests that college research experience is significant to enhance both creativity and critical thinking. As research experience becomes a more essential component of college education, our results suggest that it not only can add credential for applying to graduate school or help students learn skills specific to research, but also help students enhance both creativity and critical thinking. Furthermore, it is worth noting that this nature held true for both Chinese and American students. To our knowledge, this is a first investigation examining the role of research experience in both creativity and critical thinking cross-culturally.

In addition to the report of our findings, we would like to address some limitations of our study. First, we would like to note that this is a correlational and cross-sectional study. A positive correlation between research experience and the two dependent variables does not necessarily mean causation. Our results indeed indicate a positive correlation between research experience and the two-C variables; however, we are not sure of the nature of this relationship. It is plausible that students with higher creativity and critical thinking skills are more engaged in research as much as it is to argue in favor of a reversed directional relationship. Second, we would like to note the sample bias in our study. Majority of our participants were female, majoring in the social sciences and a relatively high number of participants chose not to report their gender. Third, we would like to note that our study did not measure all creativity and critical thinking dimensions, we discussed in the introduction. Instead, we focused on a few key dimensions of creativity and critical thinking. Our primary focus was on divergent thinking, convergent thinking, and scientific creativity as well as few key dimensions of critical thinking (evaluation, logical reasoning, and probability thinking), scientific critical thinking involved in problem solving and hypothesis testing. Moreover, our results do not show what specific components of research training are beneficial for the enhancement of creativity and critical thinking.

For future research, a longitudinal design involving a field experiment will help investigate how different research training components affect the development of creativity and critical thinking. In addition, a cross-cultural study can further examine how and why the students from different cultures differ from each other in the development of these two potentials. As such, it might shed some light on the role of culture in creativity and critical thinking.

Conclusion and Implication

The result of our study provides few insights to the study of creativity and critical thinking. First, creativity and critical thinking are a different construct yet highly correlated. Second, whereas Americans perform better on creativity measures, Chinese perform better on critical thinking measures. Third, for both American and Chinese students, college research experience is a significant influence on the enhancement of creativity and critical thinking. As research experience becomes more and more essential to college education, its role can not only add professional and postgraduate credentials, but also help students enhance both creativity and critical thinking.

Based on our results, we recommend that research training be prioritized in higher education. Moreover, each culture has strengths to develop one skill over the other, hence, each culture could invest more in developing skills that were found to be weaker in our study. Eastern cultures can encourage more creativity and Western cultures can encourage more critical thinking.

To conclude, we would like to highlight that, although recognized globally as essential skills, methods to foster creativity and critical thinking skills and understanding creativity and critical thinking as a construct requires further research. Interestingly, our study found that experience of research itself can help enhance creativity and critical thinking. Our study also aimed to expand the knowledge of creativity and critical thinking literature through an investigation of the relationship of the two variables and how cultural background influences the performance of these two skills. We hope that our findings can provide insights for researchers and educators to find constructive methods to foster students’ essential 21st century skills, creativity and critical thinking, to ultimately enhance their global competence and life success.

Data Availability Statement

Ethics statement.

The studies involving human participants were reviewed and approved by Institutional Review Board at Pace University. The participants provided their informed consent online prior to participating in the study.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication., conflict of interest.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

This work was supported by the International Joint Research Project of Faculty of Education, Beijing Normal University (ICER201904), and a scholarly research funding by Pace University.

  • Akpur U. (2020). Critical, reflective, creative thinking and their reflections on academic achievement . Think. Skills Creat. 37 :100683. doi: 10.1016/j.tsc.2020.100683 [ CrossRef ] [ Google Scholar ]
  • Amabile T. M. (1982). Social psychology of creativity: a consensual assessment technique . J. Pers. Soc. Psychol. 43 , 997–1013. doi: 10.1037/0022-3514.43.5.997 [ CrossRef ] [ Google Scholar ]
  • Amabile T. M. (1996). Creativity in Context: Update to “The Social Psychology of Creativity. ” Boulder, CO: Westview Press. [ Google Scholar ]
  • American Psychological Association (2016). Guidelines for the undergraduate psychology major: version 2.0 . Am. Psychol. 71 , 102–111. doi: 10.1037/a0037562, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Barbot B., Besançon M., Lubart T. (2011). Assessing creativity in the classroom . Open Educ. J. 4 , 58–66. doi: 10.2174/1874920801104010058 [ CrossRef ] [ Google Scholar ]
  • Barron F., Harrington D. M. (1981). Creativity, intelligence, and personality . Annu. Rev. Psychol. 32 , 439–476. doi: 10.1146/annurev.ps.32.020181.002255 [ CrossRef ] [ Google Scholar ]
  • Bechtoldt M., Choi H., Nijstad A. B. (2012). Individuals in mind, mates by heart: individualistic self-construal and collective value orientation as predictors of group creativity . J. Exp. Soc. Psychol. 48 , 838–844. doi: 10.1016/j.jesp.2012.02.014 [ CrossRef ] [ Google Scholar ]
  • Bensley D. A., Murtagh M. P. (2012). Guidelines for a scientific approach to critical thinking assessment . Teach. Psychol. 39 , 5–16. doi: 10.1177/0098628311430642 [ CrossRef ] [ Google Scholar ]
  • Boyack K. W., Klavans R., Börner K. (2005). Mapping the backbone of science . Scientometrics 64 , 351–374. doi: 10.1007/s11192-005-0255-6 [ CrossRef ] [ Google Scholar ]
  • Byrge C., Tang C. (2015). Embodied creativity training: effects on creative self-efficacy and creative production . Think. Skills Creat. 16 , 51–61. doi: 10.1016/j.tsc.2015.01.002 [ CrossRef ] [ Google Scholar ]
  • Carson S. H., Peterson J. B., Higgins D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire . Creat. Res. J. 17 , 37–50. doi: 10.1207/s15326934crj1701_4 [ CrossRef ] [ Google Scholar ]
  • Corazza G. E., Lubart T. (2021). Intelligence and creativity: mapping constructs on the space-time continuum . J. Intell. 9 :1. doi: 10.3390/jintelligence9010001, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Csikszentmihalyi M. (1988). “ Society, culture, and person: A systems view of creativity ” in The Nature of Creativity: Contemporary Psychological Perspectives. ed. Sternberg R. J. (New York: Cambridge University Press; ), 325–339. [ Google Scholar ]
  • Csikszentmihalyi M. (1999). “ Implications of a systems perspective for the study of creativity ” in Handbook of Creativity. ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 313–335. [ Google Scholar ]
  • Diedrich J., Jauk E., Silvia P. J., Gredlein J. M., Neubauer A. C., Benedek M. (2018). Assessment of real-life creativity: the inventory of creative activities and achievements (ICAA) . Psychol. Aesthet. Creat. Arts 12 , 304–316. doi: 10.1037/aca0000137 [ CrossRef ] [ Google Scholar ]
  • Ennis R. H. (1987). “ A taxonomy of critical thinking dispositions and abilities ” in Teaching Thinking Skills: Theory and Practice. eds. Baron J. B., Sternberg R. J. (New York, NY: W H Freeman/Times Books/Henry Holt & Co.), 9–26. [ Google Scholar ]
  • Ennis R. H., Millman J., Tomko T. N. (1985). Cornell Critical Thinking Test Level x and Level z Manual. 3rd Edn . Pacific Grove, CA: Midwest Publications. [ Google Scholar ]
  • Facione P. A., Facione N. (1994). The California Critical Thinking Skills Test: Test Manual. Millbrae, CA: California Academic Press. [ Google Scholar ]
  • Gadzella B. M., Penland E. (1995). Is creativity related to scores on critical thinking? Psychol. Rep. 77 , 817–818. doi: 10.2466/pr0.1995.77.3.817 [ CrossRef ] [ Google Scholar ]
  • Gibson J. W., Kibler R. J., Barker L. L. (1968). Some relationships between selected creativity and critical thinking measures . Psychol. Rep. 23 , 707–714. doi: 10.2466/pr0.1968.23.3.707, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Glaser E. M. (1941). An Experiment in the Development of Critical Thinking. New York, NY: Teachers College, Columbia University. [ Google Scholar ]
  • Glassner A., Schwartz B. (2007). What stands and develops between creative and critical thinking? Argumentation? Think. Skills Creat. 2 , 10–18. doi: 10.1016/j.tsc.2006.10.001 [ CrossRef ] [ Google Scholar ]
  • Gough H. G. (1979). A creative personality scale for the adjective check list . J. Pers. Soc. Psychol. 37 , 1398–1405. doi: 10.1037/0022-3514.37.8.1398 [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1956). The structure of intellect . Psychol. Bull. 53 , 267–293. doi: 10.1037/h0040755, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Guilford J. P. (1986). Creative Talents: Their Nature, Uses and Development. Buffalo, NY: Bearly Ltd. [ Google Scholar ]
  • Guilford J. P., Christensen P. R., Merrifield P. R., Wilson R. C. (1960). Alternate Uses Manual. Menlo Park, CA: Mind Garden, Inc. [ Google Scholar ]
  • Guo J., Woulfin S. (2016). Twenty-first century creativity: an investigation of how the partnership for 21st century instructional framework reflects the principles of creativity . Roeper Rev. 38 , 153–161. doi: 10.1080/02783193.2016.1183741 [ CrossRef ] [ Google Scholar ]
  • Halpern D. F. (1984). Thought and Knowledge: An Introduction to Critical Thinking. Hillsdale, NJ: Erlbaum. [ Google Scholar ]
  • Halpern D. F. (1999). Teaching for critical thinking: helping college students develop the skills and dispositions of a critical thinker . New Dir. Teach. Learn. 1999 , 69–74. doi: 10.1002/tl.8005 [ CrossRef ] [ Google Scholar ]
  • Hariri N., Bagherinejad Z. (2012). Evaluation of critical thinking skills in students of health faculty, Mazandaran university of medical sciences . J. Mazand. Univ. Med. Sci. 21 , 166–173. [ Google Scholar ]
  • Hocevar D., Michael W. B. (1979). The effects of scoring formulas on the discriminant validity of tests of divergent thinking . Educ. Psychol. Meas. 39 , 917–921. doi: 10.1177/001316447903900427 [ CrossRef ] [ Google Scholar ]
  • Huber C. R., Kuncel N. R. (2016). Does college teach critical thinking? A meta-analysis . Rev. Educ. Res. 86 , 431–468. doi: 10.3102/0034654315605917 [ CrossRef ] [ Google Scholar ]
  • Hunter S. T., Bedell K. E., Mumford M. D. (2007). Climate for creativity: a quantitative review . Creat. Res. J. 19 , 69–90. doi: 10.1080/10400410709336883 [ CrossRef ] [ Google Scholar ]
  • Jellen H. U., Urban K. (1989). Assessing creative potential worldwide: the first cross-cultural application of the test for creative thinking–drawing production (TCT–DP) . Gifted Educ. 6 , 78–86. doi: 10.1177/026142948900600204 [ CrossRef ] [ Google Scholar ]
  • Kim K. H. (2005). Can only intelligent people be creative? A meta-analysis . J. Sec. Gifted Educ. 16 , 57–66. doi: 10.4219/jsge-2005-473 [ CrossRef ] [ Google Scholar ]
  • Korn M. (2014). Bosses Seek ‘Critical Thinking,’ but What Is That? Wall Street Journal. Available at: https://online.wsj.com/articles/bosses-seek-critical-thinking-but-what-is-that-1413923730 (Accessed October 18, 2021).
  • Kuo H.-C., Tseng Y.-C., Yang Y.-T. C. (2018). Promoting college student's learning motivation and creativity through a STEM interdisciplinary PBL human-computer interaction system design and development course . Think. Skills Creat. 31 , 1–10. doi: 10.1016/j.tsc.2018.09.001 [ CrossRef ] [ Google Scholar ]
  • Lamont P. (2020). The construction of "critical thinking": between how we think and what we believe . Hist. Psychol. 23 , 232–251. doi: 10.1037/hop0000145, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Land M. H. (2013). Full STEAM ahead: the benefits of integrating the arts into STEM . Compl. Adapt. Syst. 20 , 547–552. doi: 10.1016/j.procs.2013.09.317 [ CrossRef ] [ Google Scholar ]
  • Lawson T. J. (1999). Assessing psychological critical thinking as a learning outcome for psychology majors . Teach. Psychol. 26 , 207–209. doi: 10.1207/S15328023TOP260311 [ CrossRef ] [ Google Scholar ]
  • Lawson T. J., Jordan-Fleming M. K., Bodle J. H. (2015). Measuring psychological critical thinking . Teach. Psychol. 42 , 248–253. doi: 10.1177/0098628315587624 [ CrossRef ] [ Google Scholar ]
  • Lee H.-J., Lee J., Makara K. A., Fishman B. J., Hong Y. I. (2015). Does higher education foster critical and creative learners? An exploration of two universities in South Korea and the USA . High. Educ. Res. Dev. 34 , 131–146. doi: 10.1080/07294360.2014.892477 [ CrossRef ] [ Google Scholar ]
  • Ling M. K. D., Loh S. C. (2020). Relationship of creativity and critical thinking to pattern recognition among Singapore private school students . J. Educ. Res. 113 , 59–76. doi: 10.1080/00220671.2020.1716203 [ CrossRef ] [ Google Scholar ]
  • Liou S., Lan X. (2018). Situational salience of norms moderates cultural differences in the originality and usefulness of creative ideas generated or selected by teams . J. Cross-Cult. Psychol. 49 , 290–302. doi: 10.1177/0022022116640897 [ CrossRef ] [ Google Scholar ]
  • Lopatto D. (2004). Survey of undergraduate research experiences (SURE): first findings . Cell Biol. Educ. 3 , 270–277. doi: 10.1187/cbe.04-07-0045, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Lopatto D. (2008). “ Exploring the benefits of undergraduate research experiences: The SURE survey ” in Creating Effective Undergraduate Research Programs in Science eds. R. Taraban and R. L. Blanton (New York: Teachers College Press; ), 112–132. [ Google Scholar ]
  • Lubart T., Zenasni F., Barbot B. (2013). Creative potential and its measurement . Int. J. Talent Dev. Creat. 1 , 41–50. [ Google Scholar ]
  • Lun V. M.-C., Fischer R., Ward C. (2010). Exploring cultural differences in critical thinking: is it about my thinking style or the language I speak? Learn. Individ. Differ. 20 , 604–616. doi: 10.1016/j.lindif.2010.07.001 [ CrossRef ] [ Google Scholar ]
  • Manalo E., Kusumi T., Koyasu M., Michita Y., Tanaka Y. (2013). To what extent do culture-related factors influence university students' critical thinking use? Think. Skills Creat. 10 , 121–132. doi: 10.1016/j.tsc.2013.08.003 [ CrossRef ] [ Google Scholar ]
  • Mill D., Gray T., Mandel D. R. (1994). Influence of research methods and statistics courses on everyday reasoning, critical abilities, and belief in unsubstantiated phenomena . Can. J. Behav. Sci. 26 , 246–258. doi: 10.1037/0008-400X.26.2.246 [ CrossRef ] [ Google Scholar ]
  • Mueller J. F., Taylor H. K., Brakke K., Drysdale M., Kelly K., Levine G. M., et al.. (2020). Assessment of scientific inquiry and critical thinking: measuring APA goal 2 student learning outcomes . Teach. Psychol. 47 , 274–284. doi: 10.1177/0098628320945114 [ CrossRef ] [ Google Scholar ]
  • National Education Association (2012). Preparing 21st Century Students for a Global Society: An educator's Guide to the "Four Cs". Alexandria, VA: National Education Association. [ Google Scholar ]
  • Ng A.K. (2001). Why Asians Are less Creative than Westerners. Singapore: Prentice Hall. [ Google Scholar ]
  • Nisbett R. E., Peng K., Choi I., Norenzayan A. (2001). Culture and systems of thought: holistic versus analytic cognition . Psychol. Rev. 108 , 291–310. doi: 10.1037/0033-295X.108.2.291, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Niu L., Behar-Horenstein L. S., Garvan C. W. (2013). Do instructional interventions influence college students' critical thinking skills? A meta-analysis . Educ. Res. Rev. 9 , 114–128. doi: 10.1016/j.edurev.2012.12.002 [ CrossRef ] [ Google Scholar ]
  • Niu W., Sternberg R. J. (2001). Cultural influences on artistic creativity and its evaluation . Int. J. Psychol. 36 , 225–241. doi: 10.1080/00207590143000036 [ CrossRef ] [ Google Scholar ]
  • Niu W., Zhang J. X., Yang Y. (2007). Deductive reasoning and creativity: a cross-cultural study . Psychol. Rep. 100 , 509–519. doi: 10.2466/pr0.100.2.509-519, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Paul R., Elder L. (2019). The Miniature Guide to Critical Thinking Concepts and Tools. 8th Edn . Lanham, MD: Foundation for Critical Thinking. [ Google Scholar ]
  • Penningroth S. L., Despain L. H., Gray M. J. (2007). A course designed to improve psychological critical thinking . Teach. Psychol. 34 , 153–157. doi: 10.1080/00986280701498509 [ CrossRef ] [ Google Scholar ]
  • Qiang R., Han Q., Guo Y., Bai J., Karwowski M. (2020). Critical thinking disposition and scientific creativity: the mediating role of creative self-efficacy . J. Creat. Behav. 54 , 90–99. doi: 10.1002/jocb.347 [ CrossRef ] [ Google Scholar ]
  • Rockstuhl T., Ng K.-Y. (2008). The effects of cultural intelligence on interpersonal trust in multicultural teams . In Handbook of Cultural Intelligence: Theory, Measurement, and Applications. (eds.) Ang S., Dyne L.. Armonk, NY: M.E. Sharpe. 206–220. [ Google Scholar ]
  • Rodriguez-Boerwinkle R., Silvia P., Kaufman J. C., Reiter-Palmon R., Puryear J. S. (2021). Taking inventory of the creative behavior inventory: an item response theory analysis of the CBI. [Preprint]. doi: 10.31234/osf.io/b7cfd [ CrossRef ]
  • Ross D., Loeffler K., Schipper S., Vandermeer B., Allan G. M. (2013). Do scores on three commonly used measures of critical thinking correlate with academic success of health professions trainees? A systematic review and meta-analysis . Acad. Med. 88 , 724–734. doi: 10.1097/ACM.0b013e31828b0823, PMID: [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Runco M. A., Albert R. S. (1986). The threshold theory regarding creativity and intelligence: an empirical test with gifted and nongifted children . Creat. Child Adult Q. 11 , 212–218. [ Google Scholar ]
  • Schermelleh-Engel K., Moosbrugger H., Müller H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures . Methods of Psychological Research 8 , 23–74. [ Google Scholar ]
  • Scott S. G., Bruce R. A. (1994). Determinants of innovative behavior: a path model of individual innovation in the workplace . Acad. Manag. J. 37 , 580–607. [ Google Scholar ]
  • Scott G., Leritz L. E., Mumford M. D. (2004). The effectiveness of creativity training: a quantitative review . Creat. Res. J. 16 , 361–388. doi: 10.1080/10400410409534549 [ CrossRef ] [ Google Scholar ]
  • Scriven M., Paul R. (1987). Defining Critical Thinking. In 8th Annual International Conference on Critical Thinking and Education Reform ; August 2–5, 1987.
  • Siburian J., Corebima A. D., Ibrohim, Saptasari M. (2019). The correlation between critical and creative thinking skills on cognitive learning results . Eurasian J. Educ. Res. 19 , 99–114. doi: 10.14689/EJER.2019.81.6 [ CrossRef ] [ Google Scholar ]
  • Sternberg R. J., Halpern D. F. (eds.) (2020). Critical Thinking in Psychology. 2nd Edn . Cambridge: Cambridge University Press. [ Google Scholar ]
  • Sternberg R. J., Lubart T. I. (1999). “ The concept of creativity: prospects and paradigms ” in Handbook of Creativity. ed. Sternberg R. J. (New York, NY: Cambridge University Press; ), 3–15. [ Google Scholar ]
  • Sternberg R. J., Sternberg K. (2017). Measuring scientific reasoning for graduate admissions in psychology and related disciplines . J. Intell. 5 , 29. doi: 10.3390/jintelligence5030029, PMID: [ PMC free article ] [ PubMed ] [ CrossRef ] [ Google Scholar ]
  • Stevens C., Witkow M. R. (2014). Training scientific thinking skills: evidence from an MCAT 2015 aligned classroom module . Teach. Psychol. 41 , 115–121. doi: 10.1177/0098628314530341 [ CrossRef ] [ Google Scholar ]
  • Stevens C., Witkow M. R., Smelt B. (2016). Strengthening scientific reasoning skills in introductory psychology: evidence from community college and liberal arts classrooms . Scholarsh. Teach. Learn. Psychol. 2 , 245–260. doi: 10.1037/stl0000070 [ CrossRef ] [ Google Scholar ]
  • Tang M., Werner C., Cao G., Tumasjan A., Shen J., Shi J., et al.. (2015). Creative expression and its evaluation on work-related verbal tasks: a comparison of Chinese and German samples . J. Creat. Behav. 52 , 91–103. doi: 10.1002/jocb.134 [ CrossRef ] [ Google Scholar ]
  • Torrance E. P. (1966). The Torrance Tests of Creative Thinking-Norms-Technical Manual Research Edition-Verbal Tests, Forms A and B Figural Tests, Forms A and B. Princeton, NJ: Personnel Press. [ Google Scholar ]
  • Torrance E. P. (1974). Torrance Tests of Creativity Thinking: Norms–Technical Manual. Lexington, MA: Ginn. [ Google Scholar ]
  • Torrance E. P. (1988). “ The nature of creativity as manifest in its testing ” in The Nature of Creativity. ed. Sternberg R. J. (New York: Cambridge University Press; ), 43–73. [ Google Scholar ]
  • Tsui L. (1998). Fostering Critical Thinking in College Students: A Mixed-Methods Study of Influences Inside and Outside of the Classroom (Doctoral dissertation). Available from ProQuest Dissertations and Theses database. (UMI No. 9917229)
  • Wallach M. A., Kogan N. (1965). Modes of Thinking in Young Children: A Study of the Creativity-Intelligence Distinction. New York: Holt, Rinehart & Winston. [ Google Scholar ]
  • Watson G. B., Glaser E. M. (1938). The Watson-Glaser Tests of Critical Thinking. New York, NY: Institute for Propaganda Analysis. [ Google Scholar ]
  • Watson G. B., Glaser E. M. (1980). WGCTA Watson-Glaser Critical Thinking Appraisal Manual: Forms A and B. San Antonio: The Psychological Corporation. [ Google Scholar ]
  • Wechsler S. M., Saiz C., Rivas S. F., Vendramini C. M. M., Almeida L. S., Mundim M. C., et al.. (2018). Creative and critical thinking: independent or overlapping components? Think. Skills Creat. 27 , 114–122. doi: 10.1016/j.tsc.2017.12.003 [ CrossRef ] [ Google Scholar ]
  • Wong R., Niu W. (2013). Cultural difference in stereotype perceptions and performances in nonverbal deductive reasoning and creativity . J. Creat. Behav. 47 , 41–59. doi: 10.1002/jocb.22 [ CrossRef ] [ Google Scholar ]
  • Zydney A. L., Bennett J. S., Shahid A., Bauer K. W. (2002). Faculty perspectives regarding the undergraduate research experience in science and engineering . J. Eng. Educ. 91 , 291–297. doi: 10.1002/j.2168-9830.2002.tb00706.x [ CrossRef ] [ Google Scholar ]

Become an Insider

Sign up today to receive premium content.

Home

Why Teaching Students How to Use Artificial Intelligence Could Make Them Employable Adults

Wendy jones

Wendy Jones is a K–12 Education Strategist Manager for CDW•G.

Jennette Vanderpool

Jennette Vanderpool is an Education Strategist at CDW.

K–12 schools looking to adequately prepare students to participate successfully in a rapidly changing 21st century economy can no longer avoid artificial intelligence. There is an increasing consensus that teaching students to use AI is more than just a nice-to-have — it will make them competitive job candidates later in life. Harvard Business School professor Karim Lakhani, who has long studied AI and machine learning in the workplace, says, “ AI is not going to replace humans , but humans with AI are going to replace humans without AI.”  

The Department of Education's Office of Educational Technology recently produced a report noting that teachers play a critical role in the AI revolution: “Teachers and other people must be ‘in the loop’ whenever AI is applied in order to notice patterns and automate educational processes. We call upon all constituents to adopt Humans-in-the-Loop as a key criteria.”

Click the banner to unlock complimentary resources from CDW for your modern K–12 classroom.

Without Understanding AI, Graduates Risk Becoming Unemployable

Frankly, schools that do not integrate AI into the K–12 curriculum could be exacerbating the digital divide, especially for traditionally disadvantaged groups. The recent National Educational Technology Plan noted that one of the three digital divides in K–12 is the digital use divide, which describes the opportunities students have to use technology to further their learning.

According to the Office of Educational Technology’s release on the plan, this includes “dynamic applications of technology to explore, create and engage in critical analysis of academic content and knowledge.” What this means is that while students may have access to devices and other technology, they may only be using it to passively consume content instead of using it as a tool for creation.

No matter how many new technologies crop up that allow students to learn on their own, teachers remain subject matter experts and can still serve as a guide to help guide students. Such is the case with AI exploration. Unfortunately, students who get few or no opportunities to explore this new technology risk falling behind in the new economy, threatening their ability to secure AI-supported employment.

LEARN MORE: Check out new AI guidance from the Department of Education .

How Embracing AI Can Improve Critical Thinking in K–12

For those educators who worry that AI will negatively impact learning, it might help to think of it more as a resource that students can use to expand their efficiency and capacity. In the pre-internet era, students seeking to better understand a subject matter would go to libraries and hunt through physical encyclopedias for information. Today, students can do the same with generative AI. Much more powerful and efficient than legacy forms of information-gathering, AI can quickly collect and summarize data from across the web and present it in an easy-to-digest format.

What this means is that educators and librarians still have a job to do. They must understand AI in order to help students properly vet these sources. This is, in fact, not unlike how students learned to evaluate and cite references before generative AI became publicly available. This has also been part of the digital literacy wave that’s washed over K–12. As students are bombarded by millions of pieces of information everywhere they turn — from social media to traditional print and broadcast sources — more schools are implementing a digital citizenship curriculum to help students think critically and question more deeply the flood of information and disinformation that they face each day. When students produce projects informed by subject matter experts, websites or books, we ask them to properly cite their sources. Educators must teach them how to do the same thing with ChatGPT or other forms of AI. In fact, professional style guides such as MLA and APA already include entries on how to correctly cite generative AI.

Karim Lakhani

Karim Lakhani Professor, Harvard Business School

Teaching prompt engineering in high school would not only help students learn what questions to ask but also how to validate the answers received, as generative AI is not always accurate. California State University, Sacramento recently established an AI institute where teachers are developing AI-driven assignments. In one such course “students will learn to use chatbots by inputting and refining various prompts and assessing the output via written response. … Faculty will then assess the work to determine if students’ written essays show the same command of the subject matter.”

It is well within reason to see how students with a firm grasp on using AI could leave school today and become competitive in the workforce. A recent work trends report found that there has been a jump in roles on LinkedIn that mention generative pretrained models — and this wouldn’t just apply to students planning for college-prep careers.

Students who take career and technology education routes to the workforce are already being affected. For example, students who go into the auto industry must know how to operate the computers that are built into each new car, and it’s conceivable that AI’s presence will grow in that industry. Students who go into the beauty industry could also lean on AI to help create 3D models to build and test beauty products or even help clients with color analysis .

DIVE DEEPER: K–12 schools can use AI in education.

How Schools Can Get Started with AI Today

If your school is still on the sidelines with AI, know that the longer you wait, the more you risk students falling through the cracks. Become better informed today so you can prepare your students tomorrow. Getting students ready for the AI workforce starts with taking a systemic approach and putting the best frameworks in place. Here are some things to consider:

Create an AI task force. Include participants from disciplines across your district, along with parents. A comprehensive approach will require that educators consider all the ways implementing this new tool might impact those inside and outside the classroom.

One of the responsibilities of the task force would be to help inform board policy on AI , create syllabi, define AI tool use, address cybersecurity, and discuss how AI could improve efficiency at the central office and in the classroom.

Select AI tools with an educational context. As more generative AI tech pops up on the market, schools need to consider how these tools could impact student data privacy. Merlyn Mind , an AI assistant that employs an education-based large language model, was specifically designed for education . Other AI tools may have privacy concerns or age restrictions. Before you bring AI into the classroom, vet the tool.

Incorporate AI learning into professional development. Because teachers already have a heavy workload, and the teacher shortage is ongoing, some of the best advocates for AI could be teachers who benefit from the tools. AI can help teachers write lesson plans or create rubrics for lessons. Once the tools allows teachers to become more productive without adding more hours to their workday, they will be more comfortable passing their AI knowledge on to students. This would require schools to provide professional development dedicated to AI, and is why board policies and creating memoranda of understanding around regular PD on AI should be included in teachers union contracts.

RELATED: AI can help reduce teacher burnout and boost productivity.

Work with your technology partners. Getting an outside perspective can be a valuable investment in your AI journey. Partners such as CDW can help you avoid costly mistakes and get your school set up for success. Connect with your CDW account manager or educational strategist to discuss AI offerings , such as CDW’s Mastering Operational AI Transformation strategy or its work with Aisera, a maker of generative AI solutions that can help resolve back-end IT issues.

Check out these slides from our AI in education presentation for more information.

This article is part of the  ConnectIT: Bridging the Gap Between Education and Technology  series. Please join the discussion on Twitter by using the  #ConnectIT  hashtag.

critical thinking magazine

  • Digital Transformation
  • Professional Development
  • Artificial Intelligence

Related Articles

illustration of IT pros cleaning up their files and applications

Unlock white papers, personalized recommendations and other premium content for an in-depth look at evolving IT

Copyright © 2024 CDW LLC 200 N. Milwaukee Avenue , Vernon Hills, IL 60061 Do Not Sell My Personal Information

Designing Technologies to Support Critical Thinking in an Age of Misinformation

Ieee account.

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

IMAGES

  1. Critical Thinking : This book includes: Mental Models and Problem

    critical thinking magazine

  2. Critical Thinking: Theories, Methods and Challenges

    critical thinking magazine

  3. Critical Thinking Skills

    critical thinking magazine

  4. 14 Of The Best Critical Thinking Books That Come Packed With Examples

    critical thinking magazine

  5. Critical Thinking

    critical thinking magazine

  6. Developing 21st-Century Critical Thinkers: Your Students’ Path to

    critical thinking magazine

VIDEO

  1. The future of Self Regulation and CBDC policy? Adelle Nazarian discusses

  2. Schools aren't designed to teach critical thinking

  3. Independent Thinking Magazine

  4. CRITICAL THINKING

  5. Critical Thinking Bootcamp 2023

  6. MEET ME HERE MAGAZINE PODCAST

COMMENTS

  1. The Critical Thinking Co.

    Thanks to The Critical Thinking Co.™, my son scores high on his standardized and placement tests." "U.S. History Detective® is fabulous. You have to do more than just figure out the correct answer -- you have to give the sentence number (s) that best supports your answer.

  2. The Skeptics Society & Skeptic magazine

    The Skeptics Society is a nonprofit organization that investigates extraordinary claims and promotes science and critical thinking. ... The Skeptics Society & Skeptic magazine. Search; Menu; SKEPTIC: Reality-based. Really. Robert Zubrin — How What We Can Create on the Red Planet Informs Us on How Best to Live on the Blue Planet .

  3. A Crash Course in Critical Thinking

    Magazine. Current. March 2024 ... A Guide to Critical Thinking, has been a pioneer in presenting critical thinking as a question-based approach to making sense of the world around us. His newest ...

  4. News and Announcements

    The Critical Thinking: Going Deeper Podcast Reaches Its 20th Episode - June 6, 2023. In Critical Thinking: Going Deeper, Drs. Linda Elder and Gerald Nosich go beyond the fundamentals to explore deeper layers of critical thinking theory and how these more complex ideas can be applied to learning, teaching, work, and life.Today, the series released its 20th episode.

  5. Critical Thinking Is About Asking Better Questions

    Critical thinking is the ability to analyze and effectively break down an issue in order to make a decision or find a solution. At the heart of critical thinking is the ability to formulate deep ...

  6. Critical thinking News, Research and Analysis

    Joe Árvai, USC Dornsife College of Letters, Arts and Sciences. Critical thinking means seeking out new information - especially facts that might run contrary to what you believe - and being ...

  7. What Are Critical Thinking Skills and Why Are They Important?

    It makes you a well-rounded individual, one who has looked at all of their options and possible solutions before making a choice. According to the University of the People in California, having critical thinking skills is important because they are [ 1 ]: Universal. Crucial for the economy. Essential for improving language and presentation skills.

  8. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  9. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. The application of critical thinking includes self-directed, self-disciplined, self-monitored, and self-corrective habits of the mind, thus a critical thinker is a person who practices the ...

  10. A Quest for Critical Thinking

    A Quest for Critical Thinking - The University of Utah Magazine. Fall 2023. At the back of a sixth-grade classroom, two students are giggling while playing a game called Dino Lab. They're building a dinosaur by combining different torsos, tails, heads, and limbs and seeing whether their creation can survive a series of challenges ...

  11. Opinion

    How to Think Outside Your Brain. Ms. Paul is a science writer who has reported extensively on cognition and learning. Years ago, when I was in college, I visited the dorm room of a fellow student ...

  12. Thinking Well Changes Everything

    Thinking Well Changes Everything Critical thinking expert Jon Guy says clear cognition is a life-and-death issue. Posted August 29, 2022 | Reviewed by Davia Sills

  13. Critical thinking

    Critical thinking is a key skill for HR and all people professionals - it's the ability to think well and to reflect objectively on the ideas, opinions and arguments of others. It can help us solve complex problems and make better decisions, bringing clarity to confusion and increasing our potential to succeed when others look to us and our ...

  14. Learning the Art of Critical Thinking

    No matter what your circumstances or goals, the authors assure us of one thing: we will be better off if we are skilled thinkers. Critical thinking, they say, is the disciplined art of ensuring that you use the best thinking you are capable of in any set of circumstances; but to maximize the quality of your thinking, you have to make learning about thinking a priority. They present four ...

  15. About Us, Our History, and What Is Critical Thinking

    The Critical Thinking Co.™ is recommended by Learning® Magazine, The Well-Trained Mind, College Prep Genius, Creative Child Magazine, Dr. Toy, and used by Sylvan Learning® Centers, Club Z In-Home Tutoring, leading U.S. public schools, and gifted and talented programs in 57 countries throughout the world. We guarantee better grades and ...

  16. A Deep Dive into 10 Thought-Provoking Critical Thinking Exercises

    2. Brain Teasers and Puzzles: Nurturing Analytical Thinking. Solving puzzles, riddles, and brain teasers is a classic exercise for enhancing problem-solving skills and developing cognitive flexibility. Engaging in these activities challenges the mind, fostering creativity and adaptability. Exercise: Dedicate regular time to solving Sudoku ...

  17. Critical Thinking: Basic Questions & Answers

    Abstract In this interview for Think magazine (April ''92), Richard Paul provides a quick overview of critical thinking and the issues surrounding it: defining it, common mistakes in assessing it, its relation to communication skills, self-esteem, collaborative learning, motivation, curiosity, job skills for the future, national standards, and assessment strategies.

  18. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  19. Assessing Critical Thinking in Higher Education: Current State and

    Critical thinking is one of the most frequently discussed higher order skills, believed to play a central role in logical thinking, decision making, and problem solving (Butler, 2012; Halpern, 2003).It is also a highly contentious skill in that researchers debate about its definition; its amenability to assessment; its degree of generality or specificity; and the evidence of its practical ...

  20. Thinking About Kahneman's Contribution to Critical Thinking

    No, critical thinking was not the focus of his book; rather system 1 (fast) and 2 (slow) thinking (see also Stanovich, 1999) - intuitive and reflective judgment. ... Magazine. March 2024

  21. Thinking Critically

    Critical thinking more generally has some of the same goals as the historical-critical method. The goal of critical thinking is to help students mitigate their own bias and draw on a number of different means and methods to examine and solve problems. One of the best definitions of critical thinking comes from Michael Scriven and Richard Paul:

  22. Teaching Critical Thinking

    Critical thinking is the process of analyzing, synthesizing or evaluating information with the intent of forming more evaluative and holistic beliefs or actions. When we think critically, we are able approach the world with more clarity, relevance, reason and depth. ... you agree to receive email correspondence from Giggle Magazine. Your free ...

  23. Fostering Creativity and Critical Thinking in College: A Cross-Cultural

    The results of Wechsler et al. (2018) study, which aimed to investigate whether creativity and critical thinking are independent or complementary processes, found a relative autonomy of creativity and critical thinking and found that the variables were only moderately correlated. The researchers in this study suggest that a model that ...

  24. The Politics of Critical Thinking

    One of those rare areas, at least in principle, is the need for a populace capable of critical thinking. Critical thinking is necessary for businesses to remain competitive by fostering innovation, and it's essential for the health of our society through supporting democratic norms of debate and dissent. However, it turns out that this most ...

  25. Why Teaching Students How to Use Artificial Intelligence Could Make

    How Embracing AI Can Improve Critical Thinking in K-12. For those educators who worry that AI will negatively impact learning, it might help to think of it more as a resource that students can use to expand their efficiency and capacity. In the pre-internet era, students seeking to better understand a subject matter would go to libraries and ...

  26. Designing Technologies to Support Critical Thinking in an Age of

    Abstract: Algorithms increasingly curate the information we see online, prioritizing attention and engagement. By catering to personal preferences, they confirm existing opinions and reinforce cognitive biases. When it comes to polarizing topics such as climate change or abortion rights, the combination of algorithmic information curation and cognitive biases can easily skew our perception and ...

  27. A trip to the bookstore

    Critical and creative thinking. Barnes, who is currently a Schools Library Advisory Committee Member at ALIA (the Australian Library and Information Association), is dedicated to creating an environment where students want to read and goes to great lengths to achieve this.