To read this content please select one of the options below:

Please note you do not have access to teaching notes, architectural design research in small practices.

Archnet-IJAR

ISSN : 2631-6862

Article publication date: 3 January 2023

Issue publication date: 7 March 2024

There has been a recently growing interest by architects in practice-based research and the impact of research. At the same time, several post-graduate architecture programmes with practice-led research agendas were founded. This shift towards architectural design research is analysed using the notions of “process-driven research”, “output-driven research” and “impact”. The study aims to investigate and unveil the link between graduate programmes and graduates with a research interest and to test the tripartite model of “process-driven research”, “output-driven research” and “impact” in the context of small architectural practices.

Design/methodology/approach

The study uses a qualitative and exploratory research approach that includes 11 in-depth interviews conducted in 2020, during the first nationwide COVID-19 lockdown in the United Kingdom (UK) selected interviews were architects representing (1) members or alumni of practice-related graduate architecture programmes in London and (2) founders of London-based small architectural practices within the last decade.

While focussing on the London context, the paper offers transferable insights for the key potentials of practice-led design research in small architectural practices and the actions that might improve research practice.

Originality/value

This paper addresses a lack of studies on how design research differs between diverse types and sizes of architectural firms, why emerging small architectural practices increasingly engage with research and how this shapes their practice. This knowledge is important to fully understanding architectural design research and its strengths or weaknesses.

  • Architectural design research
  • Architectural practice
  • Architectural education

Acknowledgements

This paper is produced as a part of a postdoctoral research project supervised by Professor Sam Jacoby, funded by the Scientific and Technological Research Council of Turkey (TUBITAK, grant number 1059B191801865) and undertaken at the Royal College of Art, School of Architecture in London.

Aydemir, A.Z. and Jacoby, S. (2024), "Architectural design research in small practices", Archnet-IJAR , Vol. 18 No. 1, pp. 191-205. https://doi.org/10.1108/ARCH-07-2022-0142

Emerald Publishing Limited

Copyright © 2022, Emerald Publishing Limited

Related articles

We’re listening — tell us what you think, something didn’t work….

Report bugs here

All feedback is valuable

Please share your general feedback

Join us on our journey

Platform update page.

Visit emeraldpublishing.com/platformupdate to discover the latest news and updates

Questions & More Information

Answers to the most commonly asked questions here

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

The Potential of Green Engineering Solutions for Energy Conservation in Residential Buildings Towards Sustainability: A Case Study of Saudi Arabia

Journal Description

Architecture.

  • Open Access — free for readers, with article processing charges (APC) paid by authors or their institutions.
  • Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 26.4 days after submission; acceptance to publication is undertaken in 4.5 days (median values for papers published in this journal in the second half of 2023).
  • Recognition of Reviewers:  APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
  • Architecture is a companion journal of  Buildings   and  Sustainability .

Latest Articles

research paper architectural design

Journal Menu

  • Architecture Home
  • Aims & Scope
  • Editorial Board
  • Topical Advisory Panel
  • Instructions for Authors

Special Issues

  • Article Processing Charge
  • Indexing & Archiving
  • Most Cited & Viewed
  • Journal History
  • Editorial Office

Journal Browser

  • arrow_forward_ios Forthcoming issue arrow_forward_ios Current issue
  • Vol. 4 (2024)
  • Vol. 3 (2023)
  • Vol. 2 (2022)
  • Vol. 1 (2021)

Highly Accessed Articles

Latest books, e-mail alert, conferences, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

  • Reference Manager
  • Simple TEXT file

People also looked at

Review article, the embodiment of architectural experience: a methodological perspective on neuro-architecture.

research paper architectural design

  • 1 Biological Psychology and Neuroergonomics, Technische Universität Berlin, Berlin, Germany
  • 2 Department of Architecture, Design and Media Technology, Aalborg University, Aalborg, Denmark

People spend a large portion of their time inside built environments. Research in neuro-architecture—the neural basis of human perception of and interaction with the surrounding architecture—promises to advance our understanding of the cognitive processes underlying this common human experience and also to inspire evidence-based architectural design principles. This article examines the current state of the field and offers a path for moving closer to fulfilling this promise. The paper is structured in three sections, beginning with an introduction to neuro-architecture, outlining its main objectives and giving an overview of experimental research in the field. Afterward, two methodological limitations attending current brain-imaging architectural research are discussed: the first concerns the limited focus of the research, which is often restricted to the aesthetic dimension of architectural experience; the second concerns practical limitations imposed by the typical experimental tools and methods, which often require participants to remain stationary and prevent naturalistic interaction with architectural surroundings. Next, we propose that the theoretical basis of ecological psychology provides a framework for addressing these limitations and motivates emphasizing the role of embodied exploration in architectural experience, which encompasses but is not limited to aesthetic contemplation. In this section, some basic concepts within ecological psychology and their convergences with architecture are described. Lastly, we introduce Mobile Brain/Body Imaging (MoBI) as one emerging brain imaging approach with the potential to improve the ecological validity of neuro-architecture research. Accordingly, we suggest that combining theoretical and conceptual resources from ecological psychology with state-of-the-art neuroscience methods (Mobile Brain/Body Imaging) is a promising way to bring neuro-architecture closer to accomplishing its scientific and practical goals.

A Brief Introduction: From Pre-Neuro-Architecture to Neuro-Architecture

Before the recent development of neuro-architecture as a research field ( Eberhard and Gage, 2003 ; Eberhard, 2009b ; Ruiz-Arellano, 2015 ), many scholars studied psychological and behavioral effects of architectural experiences in their own way. If we consider architecture as “composed structural space,” three themes that reoccur in the history of architecture practice and theory are those of utilitas, firmitas, et venustas , or utility, strength, and beauty ( Pollio, 1914 ), even if this architectural triad has changed in balance and definition at different points in time. For instance, not only were the Egyptian pyramids a utility and structural achievement, but the spatial design decisions were based on beliefs about the passage from this world to the afterworld and the goal of inducing in visitors experiences related to the afterworld ( Fazio et al., 2008 , p. 27–33). Equally, the Greeks, who were deeply inspired by Egyptian culture ( Rutherford, 2016 ), refined their understanding of buildings expressed in their symmetrical and pillared architecture but continued to reserve special places in the city for buildings that were considered important, such as temples. Important buildings are situated in important places, which remains a common way of building today.

Throughout the history of architecture, from Byzantine, Islamic, Medieval and Romanesque eras to Gothic, Renaissance, and Baroque architecture, the conception of architecture continuously approximated a powerful spiritual status ( Fazio et al., 2008 , p. 1–7). Dominating cities and important religious buildings, including churches, temples, and mosques, were carefully designed according to cultural beliefs. The implicit agreement, throughout history, seems to be that architecture, through its utility, strength, and beauty, affects the human perceiver beyond the ordinary, material world as we know it because it affects the soul and mind ( Stendhal, 2010 ). The relation between divinity and architecture was also expressed by applying the laws of nature in spatial ratios and proportions expressed both through the facades and the plan of buildings [see e.g., Palladio (1965) ]. At any rate, although design decisions about the spatial structures had for a long time been guided by metaphysical views about how the space affects the perceiver, in the nineteenth century this came to change as religion, science and technology became more independent cultural forces.

With technological advancements, such as reinforced concrete, architects began exploring how beauty emerged from the structure and utility of the building itself ( Frascari, 1983 ; Frampton, 1985 ; Corbusier, 2013 ). Open spaces with wide-spanning beams and few structural elements commenced a turn toward the performance of the building. Statements of influential architects point to the importance of functionality for architectural design, such as Louis Sullivan 1 , Mies van der Rohe 2 , or Augustus Pugin 3 . Modern architecture has developed into an interdisciplinary field, taking advantage of the experience of other areas of science, and especially ergonomics has increasingly been reflected in modern architecture ( Charytonowicz, 2000 ).

Modernism made one of its marks through the famous 1910 essay by Loos (2019) in which he describes how ornamentation and art had no function and were thus redundant. In European building culture, it became customary for those influenced by these ideas to see any artistic addition or ornamentation to the interior of spaces or the exterior of buildings as superfluous and to be avoided. Instead, the focus was reoriented toward the building performance, e.g., increased window sizes, bigger open spaces, rethinking city infrastructure according to means of transportation, etc. Architects would optimize the building for its conceptual function and consequently base their design decisions on how well the building would perform. The users of the building, on the other hand, have been reduced to a matter of physical proportions ( Corbusier, 1954 ) associated with a series of assumptions on psychological and behavioral impact.

The pre-neuro-architecture belief that spatial configurations alter psychological and behavioral outcomes is clear throughout history. Designing the world meant to design human lives (including their afterlife according to the ancient Egyptians). Yet, exactly how the designed environment affects our lives remains uncovered and typically inaccessible in the writings of architects and architectural scholars. It is not the question of why we place important buildings in important places in the cities, but why we consider places to be important to begin with. If it is due to its visual exposure from within as well as from exterior vantage points, then we must acknowledge that it is based on the properties of human perception. This is precisely where neuro-architecture comes in.

Neuro-Architecture Definition and Objectives

Neuro-architecture can be seen as an emerging field that combines neuroscience, environmental psychology, and architecture to focus on human brain dynamics resulting from action in and interaction with the built environment ( Karakas and Yildiz, 2020 ). Some scholars also describe neuro-architecture as a field where architects collaborate with neuroscientists to scientifically explore the relationship between individuals and their surrounding environment ( Ezzat Ahmed and Kamel, 2021 ). Regarding the rise of this discipline, the necessity of convergence among architects and neuroscientists was first mentioned in 2003 in an interview with Eberhard and Gage (2003 ; see also Azzazy et al., 2021 ). In that year, the first academic organization focusing on neuro-architecture was formed, the Academy of Neuroscience for Architecture (ANFA; Ruiz-Arellano, 2015 ).

According to Azzazy et al. (2021) , the main objective of neuro-architecture is to study the impact of the architectural environment on the neural system. Based on the understanding of how the brain perceives its surroundings, neuroscience can improve the design process, design strategies, and inform regulations that eventually improve human health and well-being in the future ( Eberhard, 2009b ; Dougherty and Arbib, 2013 ; Azzazy et al., 2021 ). One of the primary foci of this framework is to investigate peoples’ experiences in various contexts, such as the role of office space design in the reduction of stress and increase in productivity, how the design of hospital rooms enhances the recovery of patients, or how the design of churches increases the sense of awe and inspiration.

Overview of Research Paradigms and Methods in Neuro-Architecture

With the continuous development of new brain imaging technologies and new experimental paradigms over the last decades, recent neuro-architectural studies have become increasingly sophisticated. The studies can be roughly divided into two categories that either require participants to remain motionless (stationary paradigms) or that allow physical interaction with the environment (mobile paradigms). Stationary neuroimaging protocols present participants with static visual stimuli of architectural environments while they are sitting in a well-controlled laboratory or while lying in a scanner. Stationary imaging methods like magnetoencephalography (MEG), electroencephalography (EEG), or functional magnetic resonance imaging (fMRI) can reveal the neural basis of statically experiencing the built environment. While the experimental control of stationary architectural studies is often high, the ecological validity is usually low as only two-dimensional snapshots of complex three-dimensional environments are presented that do not allow any kind of interaction with the perceived environment. Mobile protocols, in contrast, allow participants to actively experience real or virtual three-dimensional artifacts with high ecological validity, at the cost of introducing noise to the recordings due to uncontrollable environments and movement-related artifacts in the few select imaging methods that are portable ( Gramann et al., 2021 ). Thus, while stationary protocols allow for experimental control they might not be able to measure the neural aspects of humans perceiving and interacting with the built environment, rendering mobile brain imaging methods an important tool to gain deeper insights into the impact of architecture on the human experience and behavior. Together, results from both stationary and mobile brain imaging approaches can complement each other and contribute to a more comprehensive understanding of the human brain. Several studies using stationary protocols provided first important insights into the relationship of architectural design and human brain responses. These will be introduced in the next section.

Neuro-Architecture Research Methods, Findings and Limitations

Previous studies in neuro-architecture.

Most existing neuro-architectural studies are based on stationary protocols with participants focusing on visual stimuli while being seated or lying down to measure the subjective experience of architectural aesthetics. Investigating event-related potentials (ERP) of the EEG, Oppenheim et al. (2009 , 2010) found that buildings that rank high regarding their social status as they are designed to be more important (like government buildings) or sublime (like religious buildings) have more impact on the perception of sublimity than low-ranking buildings (such as buildings associated with economy or the private life). In these studies, the hippocampus was shown to contribute to the processing of architectural ranking. Other studies discovered that participants perceived curvilinear spaces as more beautiful than rectilinear ones ( Vartanian et al., 2013 ). Using fMRI, the authors explored the neural mechanism behind this phenomenon and found that when participants made approach-avoidance decisions, images of curvilinear architectural interiors activated the lingual and the calcarine gyrus in the visual cortex more than images of rectilinear interiors. When contemplating beauty, curvilinear contours activated the anterior cingulate cortex exclusively ( Vartanian et al., 2013 ). Using the same fMRI dataset, Vartanian et al. (2015) also examined the effects of ceiling height and perceived enclosure on aesthetic judgments in architectural design. They found that rooms with higher ceilings were more likely to be judged as beautiful and activated structures involved in visuospatial exploration and attention in the dorsal stream. Open rooms were judged as more beautiful compared with enclosed rooms and activated regions in the temporal lobes associated with perceived visual motion ( Vartanian et al., 2015 ).

While visual sensory information about architectural features directly impacts architectural experience and the accompanying brain dynamics, higher cognitive processes were also shown to provoke changes in brain activity in the context of architectural experience. For example, expectations about aesthetic value moderated people’s aesthetic judgment. Kirk et al. (2009b) found that if the same image was labeled as being sourced from a gallery rather than being computer generated, its aesthetic ratings were significantly higher. The neural mechanisms involved in this difference in aesthetic ratings were traced to the medial orbitofrontal cortex (OFC) and the prefrontal cortex (PFC; Kirk et al., 2009b ). Memories and experience can also moderate architectural aesthetics judgments. This was shown by Kirk et al. (2009b) who found that architects, compared with non-architects, had increased activity of the bilateral medial OFC and the subcallosal cingulate gyrus, when making aesthetic judgments about buildings, rather than faces. These results show that expertise can modulate the response in reward-related brain areas ( Kirk et al., 2009b ).

While most of the above-described studies focused on the impact of architecture on aesthetic judgments and the accompanying brain dynamics, another line of research focuses on the impact of architectural designs on people’s emotional and affective state. As there are too many studies in this area to report in detail [for an overview see Higuera-Trujillo et al. (2021) ], the following exemplary studies suffice to provide the reader with a broad sense of the research questions and imaging methods used in this field. For example, using EEG in a psychophysics experiment, Naghibi Rad et al. (2019) investigated the impact that window shapes in building facades had on the perceivers’ emotional state and cortical activity. Their behavioral results showed that rectangular, square, circular and semi-circular arches were considered as pleasant window shapes, while windows with triangle and triangular arches were determined as unpleasant. Regarding ERP results, the authors found that the effect of pleasant stimuli was larger in the left hemisphere than that of unpleasant ones ( Naghibi Rad et al., 2019 ), consistent with previous notions of lateralization with regards to emotional processes ( Dimond and Farrington, 1977 ; Reuter-Lorenz and Davidson, 1981 ; Canli et al., 1998 ). By using physiological sensors, such as EEG, Galvanic Skin Response (GSR), and eye-tracking (ET), Shemesh et al. (2021) examined the connection between geometrical aspects of architectural spaces (such as scale, proportion, protrusion, and curvature) and the user’s emotional state in expert and non-expert participants (designers and non-designers, respectively). In general, they found that large symmetrical spaces positively affect users. In addition, the more extreme a change of proportion in height P(H) or width P(W) of virtual spaces was displayed, the stronger the response of distress was observed. All physiological measurements demonstrated significantly increased signals in non-designers than those of designers. This study reflected the connection between manipulations in the geometry of the virtual space and the user’s emotional reaction, especially for non-designers ( Shemesh et al., 2021 ). Analyzing the neural response to restorative environments to investigate stress restoration, Martínez-Soto et al. (2013) found that exposure to restorative environments (like buildings with vegetation-surrounding) led to activation of the middle frontal gyrus, middle and inferior temporal gyrus, insula, inferior parietal lobe, and cuneus. Their findings reflected that endogenous, top-down, directed attention is more active during viewing of low restorative potential vs. high restorative potential environments. This article provided empirical evidence that building-integrated vegetation could be considered for architects in order to improve stress-restoration for residents. As a last example, a study by Fich et al. (2014) found that participants immersed in an enclosed virtual room without windows exhibited greater reactivity to a stress test than those in a virtual room with windows. Physiological reactions of this stress state consisted of both heightened and prolonged spikes in salivary cortisol ( Fich et al., 2014 ). This finding is also consistent with the conclusion of Vartanian et al. (2015) , who found that participants were more likely to judge open rooms as beautiful as compared to enclosed rooms.

Methodological Limitations of Existing Neuro-Architecture Research

A recent literature review in the field of neuro-architecture ( Higuera-Trujillo et al., 2021 ) provided a summary of limitations of current neuro-architectural research. The first limitation, according to the authors, is that the majority of studies are confined to architectural aesthetics, not regarding other aspects of architecture like ergonomics, affordances, or functionality. Accordingly, the authors point out that it is not possible to liken architectural experience to the artistic-aesthetic experience because the latter is only one of the components of the cognitive-emotional dimension of architecture ( Higuera-Trujillo et al., 2021 ). Combining architectural ergonomics with architectural aesthetics facilitates architectural research as it leads to a more comprehensive picture of how architecture is perceived and acted upon. That is, the utility and beauty should be investigated in combination along with the underlying neural mechanism of the user interacting with the environment.

A second limitation according to Higuera-Trujillo et al. (2021) is the low ecological validity of established brain imaging methods that come with significant restrictions regarding the mobility of the participant. Data collection in stationary participants experiencing 2D images of architectural designs come with reduced ecological validity in neuro-architecture research ( Higuera-Trujillo et al., 2021 ). Experimental design and techniques that allow participants to freely explore their built environment will provide an ecological account of the psychological and behavioral phenomena underlying human-architecture interactions.

New Horizons for Architectural Neuroscience

There is a demand for new research approaches to neuro-architecture expanding the horizon for neuroscience and resulting in a wider knowledge base for architecture ( Eberhard, 2009a ). Aligned with Eberhard’s proposition, our contention is that current neuro-architecture methodology should be compatible with ecological psychology (one of many aspects of embodied cognitive sciences) and should make use of mobile brain imaging approaches in order to overcome the above-described limitations.

Architectural experiences are embodied in the sense that people physically interact with architectural spaces while moving through a building, opening doors, or taking the stairs to perceive different perspectives of the built environment through movement ( Pektaş, 2021 ). Therefore, the research object of neuro-architecture itself has inherent embodied features and the appropriate research methodology should also correspond to these embodied properties. In general, the proposed methodology for an ecologically more valid neuro-architecture should be in line with an architectural interaction process which is constituted by closely linked perception and action, and by an indispensable connection of our body, brain, and the environment. Architectural environments provide us with action possibilities ( Jelić et al., 2016 ). The possibilities to act emerge from, and are automatically processed by, our brain-body system during active exploration of our surroundings.

In what follows, we first introduce the theoretical foundation of ecological psychology to then address how ecological psychology theories can be integrated with architectural principles and how the neuro-architectural research questions can be extended from aesthetics to ergonomics within an ecological psychology framework. This offers a solution to existing limitations in current neuro-architectural research. Secondly, we will introduce Mobile Brain/Body Imaging (MoBI; Makeig et al., 2009 ; Gramann et al., 2011 , 2014 ) as one emerging brain imaging approach with the potential to improve the ecological validity of neuro-architecture research. By introducing representative MoBI studies, we will elucidate how the neuro-architectural research’s limitation with regards to brain imaging technique can be overcome.

Extending the Research Question From Aesthetics to Ergonomics Using the Framework of Ecological Psychology

Ecological psychology is an embodied, situated, and non-representationalist approach to cognition pioneered by J. J. Gibson (1904–1979) in the field of perception and by E. J. Gibson (1910–2002) in the field of developmental psychology ( Richardson et al., 2008 ; Lobo et al., 2018 ). Theorizing in psychology has traditionally relied on a number of dichotomies, including those of perception and action, of organism and environment, of subject and object, and of mind and body. The “ecological approach” as articulated by Gibson offers an alternative way of understanding psychological phenomena that challenges these concepts and categories. One illustration of this anti-dualism is evident in the name of the approach. Ecology is the branch of biological science concerned with understanding the relations that biological organisms bear to other organisms and to the environment. The Gibsonian approach is “ecological” because, in contrast with the idea that psychology studies the organism (i.e., its mind and behavior), it instead sees relations between organism and environment as the proper level of analysis: in this view, understanding the organism-environment system as a whole is the starting point for understanding mind and behavior (see e.g., Michaels and Palatinus (2014) ).

Following from this, another dichotomy rejected in the ecological approach is the one between perception and action. As it is usually conceived, perception is an “indirect” process in which meaning is attached to otherwise meaningless or ambiguous sensory information via “detailed internal representations” ( Handford et al., 1997 ; Craig and Watson, 2011 ; Rogers, 2017 ); or as the prominent cognitive scientist David Marr put it, “vision is the process of discovering from images what is present in the world and where it is” ( Marr, 1982 , p. 3). Importantly, in this understanding of perception as a matter of internally reconstructing the external world, perception is also seen as distinct and independent from action: moving around can change the input for perception, but it does not significantly alter the perceptual process itself. Ecological psychology challenges this view by treating perception and action as mutual, reciprocal, continuous and symmetrically constraining processes ( Warren, 2006 ; Richardson et al., 2008 ; Heras-Escribano, 2021 ). In the Gibsonian view, perception isn’t merely associated with action, but it is an action, a process of active exploration of the environment: “perceiving is an act, not a response, an act of attention, not a triggered impression, an achievement, not a reflex” ( Gibson, 1979 , p. 149). As a result, in contrast with the description of the visual system as extracting information about the external world from images, Gibson proposed that the visual system is itself constituted by eyes “set in a head that can turn, attached to a body that can move from place to place” ( Gibson, 1979 , p. 53). And besides being inherently active, perception is also for action—a claim that is central to the Gibsonian theory of affordances.

Affordances

“Affordance” is the term that Gibson (1966; 1977; 1979 ) coined to refer to the possibilities for action that the environment offers to a given organism or agent. For example, a chair affords sitting on, a cup affords grasping with one hand and drinking from, and a table affords supporting the cup. For Gibson, we don’t simply perceive chairs, cups and tables as such (i.e., as mere material objects), but rather we perceive the opportunities for action that those objects make possible for us. It is in this sense that, in the ecological view, perception is for action: perception is of affordances. Importantly, however, affordances are not properties of the objects in and of themselves. The uses and meaning that objects have (i.e., their affordances) are relative to some organism or other. For instance, in the examples just given, the cup only affords grasping and holding for agents that have opposable thumbs (or their functional equivalent); for other organisms, the cup affords different uses, including hiding behind or inside (e.g., for an insect) and a place within which to grow (e.g., for a plant, if the cup is used as a vase). Similarly, the chair affords sitting on, and it also affords stepping on (e.g., to change a lightbulb), but only for people of a certain height: for others (e.g., babies) the chair might afford hiding under or support for standing up, but it might be too tall for other uses.

It is for reasons such as these that affordances have been traditionally understood as relational or agent-relative properties: affordances are “relations between the abilities of organisms and features of the environment” [ Chemero, 2003 , p. 189; see also Chemero (2011) ]. In a landmark study that provided early support for this relational understanding of affordances, Warren (1984) found that the boundary between climbable and unclimbable stairways corresponds to a fixed ratio between riser height and leg length. That is, instead of the stairway having the affordance of “climbability” on its own, the affordance is rather a relational property, and one that participants in Warren’s study were found to be perceptually sensitive to Warren (1984) . This research provided a methodology called intrinsic measurement to quantify affordances, since the unit of climbability is not an extrinsic unit such as centimeters, but the unit intrinsic to the body-environment relation that depends on leg lengths ( Warren, 1984 ). In a follow-up study Warren and Whang (1987) found similar results for the visual guidance of walking through apertures like doorways or other gaps on a wall: consistent with the findings from the study on stairways, an aperture’s passability was found to correspond to an objective body-scale ratio (i.e., a relational property) that is visually perceivable ( Warren and Whang, 1987 ).

Other studies have shown that our perceptual access to such action boundaries fixed at body-scale ratios is not static, but can change over time with changes in body-scale: this varies from the short-term effect that wearing a tall wooden block under one’s shoes has on the perception of opportunities for sitting and stair climbing ( Mark, 1987 ) up to comparatively longer-term effect of bodily changes during pregnancy on (the perception of) the passability of apertures ( Franchak and Adolph, 2014 ). Interestingly, some of these and other studies have found that participants were wildly inaccurate when asked to estimate absolute properties (such as heights and widths in centimeters or inches), which suggests that the perception of affordances (i.e., agent-relative properties) is more fundamental than, and independent from, the perception of non-agent-relative properties.

As these examples illustrate, the concept of affordance undermines the dichotomy of perception and action because, in this view, perception is the active exploration of opportunities for action in the environment (i.e., affordances). Moreover, the ecological theory of affordance perception also illustrates the rejection of the dichotomies between organism and environment, subject and object: as relational properties, affordances are features of an organism-environment system as a whole rather than characteristics of the environment and environmental objects on their own. And insofar as affordances constitute the action possibilities that an object or the environment offers some agent, the ecological approach also challenges traditional separations between mind and body. In this view the functional “meaning” of an object does not belong to an immaterial mental dimension separate from the material dimension of the body, as if the mind has to interpret sensory stimulation in order to infer what might be possible to do: rather, affordances are the action opportunities that objects have for some agent (and that the agent can directly perceive) precisely because of the agent’s particular physical structure and bodily activity.

Through embodied experience in architectural spaces we thus encounter possibilities for action that are linked to affective, cognitive, and physiological responses. In this sense, architecture shapes the way we perceive the environment. This should change the view on how architecture influences brain dynamics. Moreover, Warren’s (1984) research can be considered as an exemplary case to combine affordances with ergonomics in an architectural environment. The intrinsic measurement of this study demonstrates that research questions on ergonomic dimensions in architecture can be raised at the ecological scale allowing for a better understanding of the user’s interaction with the architectural environment in terms of complementarity between subjective capacities and objective properties. For instance, inspired by the above studies ( Warren, 1984 ; Mark, 1987 ; Warren and Whang, 1987 ; Franchak and Adolph, 2014 ), in neuro-architectural research the operationalization of experimental variables with regards to architectural affordances should take into account both environmental properties (such as the height of stairs, the size of the apertures, etc.) and participants’ physical capabilities (such as the height of legs, the width changes of the body during pregnancy, etc.). It is promising to investigate this complementarity between architectural properties and the users’ embodied abilities at the ecological scale and also its underlying brain dynamics. In addition, it demonstrates the potential of neuro-architectural research questions to be extended from aesthetics to ergonomics within an ecological psychology framework.

Active Exploration

As just seen, according to ecological psychology agents perceive affordances in a direct process of embodied activity: it is through the agents’ active exploration of the environment ( Michaels and Carello, 1981 ; Heft, 1989 ; Rietveld and Kiverstein, 2014 ) that affordances are perceived, rendering the embodied experience of the built environment a perception-action loop. While in the last section we described how affordances impact active exploration, we now turn to the impact of active exploration on affordances.

Architectural affordances are perceived directly when we move through the built environment. When the observer remains stationary, or when architecture is presented as an image, architectural affordances will be limited to this one specific perspective ( Heft, 2010 ). As stated by Heras-Escribano (2019) , all organisms perceive affordances directly on the condition of unrestricted exploration and sufficient ecological information in their environment. The significance of active exploration is not only reflected in the process to discover new affordances, but also in the process of modifying existing perceptual information. The popular optical illusion of the Ames room (see Figure 1 ; Ittelson, 1952 ) was discussed by Gibson to demonstrate that the illusion could be reduced through unrestricted exploration ( Gibson, 1979 ). Under a single and stationary point of observation of the Ames Room, the eye of the observer is fooled. When an observer views the Ames Room from various angles with binocular information, however, it is easy to notice the sharp sloped floor of the room. Normally, the ceiling and floor are parallel and walls are at a right angle to the ground; but when looking into the Ames Room, the observer can only assume that the room is geometric if active exploration is restricted. Once the observer discovers the abnormal conditions of the Ames room through active exploration, the observer will immediately reject their earlier assumption and also the existing illusory impression ( Gibson, 1979 ). In short, the exploratory activity is crucial for both picking up new affordances and modifying existing ones. Therefore, active exploration is the core ecological approach for investigating an agents’ perception of architectural affordances.

www.frontiersin.org

Figure 1. A sketch of the Ames Room. (A) Displays what the perceiver encounters from a given point. Color-codes are used throughout the diagrams. (B) Displays a conceptual plan-drawing of an Ames Room. The red dashed lines represent the field of view of the perceiver. (C) Reveals the actual conditions under which an Ames room functions. The red dashed lines represent the field of view of the perceiver, while the blue dashed lines represent the outline of a rectangle, which the Ames room illusion suggests to exist from a specific angle (A) .

The Convergence of “Exploration” and “Affordance” With Architectural Design

Ecological psychology provides us with a relational perspective to account for perception and action: perception is for action, and action is for perception. This perception-action loop is neither understood as an organism-only nor an environment-only scale, but as co-depending between organism and environment. As affordances of most environments have been designed either by ourselves (e.g., our private spaces) or by architects (e.g., public spaces), we briefly investigate how architectural affordances relate to active exploration. Providing examples of ergonomic dimensions of architectural experience, the following illustrations demonstrate the convergence of “exploration” and “affordance” with architectural design.

Affordances and active exploration are not only theoretical tenets of ecological psychology, but a practical requirement of architecture: after all, every built environment, whether natural or virtual, has affordances. Instead, we focus on features of architecture that have an inviting affordance that appeals to the physical structure of the organism and its immediate relation. Carlo Scarpa, an Italian architect, was famously known for his capacity to address the rhythm of the body by creating details that invited certain movements in a specific order. Giardino Querini Stampalia (1961–1963) uses strategic changes in the pavement from grass, to small cobblestones and concrete, to intentionally alter the velocity of the walking, moreover all stairs in the garden have each a step for either the right or the left foot [see e.g., Dodds (2000) ]. This eventually also causes different heights between steps which now also invites sitting. The rhythm and affordances of walking have then been designed by confining the actively exploring body in this case to both the velocity of the walkability and the specific order of movement for the climbability of the stairs. The very same applies to the staircase of Scarpa’s Olivetti Showroom (1958). As some of the steps are stretched so they float mid-air, they afford being used as a table or a place to sit ( Carter, 2018 ).

As a second contemporary example, consider the work of RAAAF who explicitly attempts to design the affordances of the environment to make the spaces more suitable for the designed function. Consisting of the ecological psychologist and philosopher Erik Rietveld and the architect Ronald Rietveld, the duo has produced numerous projects that demonstrate how architectural affordances can inherently be used to alter the behavior of users. For instance, the project The End of Sitting (2014) radically challenged the mainstream structure of office landscapes by altering the affordances of “working at a desk” ( Rietveld, 2016 ). Instead, RAAAF designed a physical landscape that invites various body postures suitable while working, e.g., laying, leaning, semi-crouching, and so on. Through active exploration, the users would realize that each part of the landscape provided its unique affordances. These examples all share inviting/suggestive designs that couple the agent with the environment in ways that alter neurobehavioral states.

These are only two of many cases in architecture in which a design principle with regards to active exploration and affordances were applied. We believe that since active exploration and affordances constitute our perception of the environment, including architectural design, any serious investigation of the experience of architecture must provide an active interaction with the environment under investigation. This view raises an important challenge for the field of neuro-architecture: studying the cognitive and neural basis of the effect of architectural features requires an interactive neuroimaging approach. In the next section, we demonstrate one way of overcoming this challenge.

Mobile Brain/Body Imaging as a Practical Basis for Architectural Neuroscience

Mobile Brain/Body Imaging is an emerging brain/body imaging method which allows for investigating the exploratory proposition of ecological psychology with the potential to improve the ecological validity of empirical research ( Parada and Rossi, 2021 ). Several studies in the last few years demonstrated that MoBI can be used to specifically improve the ecological validity in neuro-architectural studies by allowing for active exploration of the built environment ( Banaei et al., 2017 ; Djebbara et al., 2019 , 2021 ). In this section, we will describe how MoBI can improve the ecological validity of research within the field of neuro-architecture providing a brief introduction to the methods and a review of representative studies in the field of neuro-architecture.

Mobile Brain/Body Imaging: Definition, Main Goals and Instruments

Mobile Brain/Body Imaging is defined as a multimethod approach to imaging brain dynamics in humans actively moving through and interacting with the environment ( Jungnickel et al., 2019 ). It requires adequate hardware and software solutions to simultaneously record data streams from brain dynamics, motor behavior, and environmental events, and it requires data-driven analyses methods for multi-modal data to dissociate the brain from non-brain processes ( Makeig et al., 2009 ; Gramann et al., 2011 ). The main goal of MoBI is to model and understand natural cognition during unrestricted exploratory action in the immediate environment ( Gramann et al., 2014 ; Parada, 2018 ; Parada and Rossi, 2021 ).

Mobile Imaging means that participants should be allowed to actively explore the environment in order to reflect the neural dynamics underlying embodied cognitive processes. This necessitates small and lightweight measurement instruments. Brain/Body Imaging refers to the investigation of the neural mechanisms of cognitive processes that make use of our physical structure for cognitive goals, and the connection of mind and behavior, perception and action, and sensorimotor coupling on the ecological scale. Both brain and behavioral dynamics have to be recorded in synchrony to explore the bidirectional influence between behavior and brain dynamics. Capturing brain/body dynamics will require multiple sensors to record the different data streams and software to integrate them synchronously (see Figure 2 ).

www.frontiersin.org

Figure 2. The illustration depicts a MoBI setup using mobile EEG hardware combined with virtual reality and motion capture through the VR tracking system [from Djebbara et al. (2021) ; used with permission].

Studies in the real world, while providing high ecological validity, do miss control of unwanted factors and cannot simply repeat stimuli material to gain a better signal-to-noise ratio in the signal of interest. Thus, for controlled and repeated stimulus presentation, head-mounted virtual reality (VR) or augmented reality (AR) displays can be integrated in the MoBI hardware system providing an alternative for presenting participants with different environments that can be actively explored while allowing for experimental control and systematically manipulating experimental variables of interest. Furthermore, other stimulus modalities, such as auditory and tactile stimuli, could also be compatible with head-mounted VR displays ( Jungnickel et al., 2019 ).

Previous Mobile Brain/Body Imaging Studies in Neuro-Architecture

Using MoBI, Banaei et al. (2017) investigated human brain dynamics related to the affective impact of interior forms when the perceiver actively explores an architectural space. The experimental task required participants to naturally walk through different architectural spaces with interior forms extracted from a large corpus of architectural pictures. The rooms represented different combinations of interior forms derived from formal cluster analysis of pictures of the real built environment. Importantly, in order to investigate human brain dynamics related to the affective experience of interior forms during architectural exploration, multimodal data were recorded including EEG and motion capture ( Banaei et al., 2017 ).

The authors found that curvature geometries of interior forms influenced brain activity originating from the anterior cingulate cortex (ACC) while the posterior cingulate cortex and the occipital lobe were involved in the processing of different room perspectives ( Banaei et al., 2017 ). This MoBI architectural neuroscience study demonstrates that both the architectural interior form (such as type, location, scale, and angle) and the exploration of the surroundings will shape the experience of the built environment, providing a neuroscientific basis for architectural design ( Banaei et al., 2017 ). Additionally, this research illustrates the potential of MoBI to investigate human brain dynamics and natural experience of participants actively exploring architectural environments.

Another MoBI study by Djebbara et al. (2019 , 2021) investigated the human brain dynamics during transitions through doors of different widths. The authors aimed to investigate how architectural affordances affect brain dynamics by creating three kinds of transitions differing in their passability. Of the three doors, only one did not afford to be transitioned. In the experimental task, implemented in VR, the participants moved from one room to a second room, passing one of the three doors connecting the rooms. The door width which could either be impassable (narrow), passable (medium), or easily passable (wide) formed the operational definition of architectural affordance in their experiment. For priming different interactions with this environment, the authors used a Go/NoGo paradigm either prompting the person to pass through the door (the Go condition), or indicating that the person should not pass through the door (NoGo condition). EEG was used to record their brain activity during the task and a Self-Assessment Manikin (SAM) questionnaire was used to measure participants’ emotional experience after every trial ( Djebbara et al., 2019 , 2021 ).

The subjective reports from the SAM showed that different transition affordances influenced the architectural experience of participants. Different door widths influenced participants’ emotional experience, especially when instructed to pass through the door (i.e., forced interaction with the environment) as compared to instructions that did not require interactions with the environment. The physiological results, on the other hand, revealed that brain activity in visual sensory regions and motor areas reflected the affordance of the transition already around 200 ms, irrespective of whether participants knew that they should or should not pass into the second room. This reflects an automated processing of the affordance present in the built environment even if no further interaction with the environment is planned. In addition, differences in the post-imperative negative variation (PINV), a component of the event-related potential (ERP) of the EEG, were visible only in trials that required an interaction with the environment (Go-trials) while in the NoGo condition, this architectural affordance effect was not observed. In other words, the possible interactions with the transition automatically activated cortical areas underlying perceptual and motor responses even in the absence of planned interactions while additional affordance-specific modulations of brain activity were observed during interactions with the built environment ( Djebbara et al., 2019 , 2021 ).

The results from Djebbara et al. (2019) support the view that possibilities of imminent actions shape our perception ( Djebbara and Gramann, 2022 ). This view is consistent with the propositions of direct perception and perception-action coupling within ecological psychology ( Djebbara et al., 2019 ; Gepshtein and Snider, 2019 ). The reasons why imminent action possibilities will influence our architectural perception are that the information is exactly embedded inside imminent action and will further emerge and be perceived during the exploration process rather than a signal transformation, representation, and computation process. Much like Warren’s (1984) research helped elucidate the behavioral dimension of architectural experience, the study of Djebbara et al. (2019) is an exemplary case of integrating the theoretical framework of ecological psychology with neuro-architecture.

In short, MoBI makes it possible to discover, quantify and visualize the embodiment of human agents in an architectural environment with all relevant dimensions of architecture such as aesthetics, ergonomics and more, which can’t be realized by a stationary experimental paradigm. MoBI is an efficient technique to study natural cognition in architectural exploration. However, as the interaction with the environment can become relatively complex in terms of sensory information and motor behavior, a cautious and systematic approach is advisable. As suggested by Parada (2018) and King and Parada (2021) , the careful and incremental approach to introducing more complex environments and motor behavior, going from highly controlled setups to more ecologically valid ones, ensures the replicability and control over variables. In other words, by first identifying what to look for, e.g., cortical or behavioral features, in a highly controlled experiment, it is then possible to introduce incremental complexity and assess the quality of the more ecologically valid experiments.

Although neuro-architecture is a thriving field, there are two methodological limitations within neuro-architectural research ( Higuera-Trujillo et al., 2021 ). The existing research in the field of architectural neuroscience mainly addresses aesthetics out of many different relevant architectural aspects. The brain imaging methods that are typically used require participants to remain stationary, which prevents natural interactions with their architectural surroundings.

In the present article, we argued that concepts of ecological psychology like affordance and active exploration could extend the horizon of the research questions within neuro-architecture to include ergonomics in architecture, which widens the theoretical and empirical framework under which neuro-architectural research is conducted leading to a more comprehensive picture. That is, both the utility and beauty in architecture should be investigated including the analyses of the underlying neural mechanism. Accordingly, inspired by several empirical studies, the operational definition of variables with regards to architectural ergonomics could be established from the perspectives of the complementarity between environmental properties and the agent’s physical capacities, as well as the perception-action loop during architectural exploration. This, however, requires new technological solutions to imaging human brain dynamics during active exploration and interaction with the built environment.

Emerging brain imaging techniques like MoBI, implementing the exploration proposition of ecological psychology in experimental protocols, overcome the limitations of prevalent stationary brain imaging methods and improve the ecological validity of empirical neuroscientific research. Based on the potential of MoBI, more ecologically valid experimental research within the field of neuro-architecture can be conducted. Existing MoBI studies already show evidence of how the brain perceives its surroundings. These new insights can be used to improve architectural design strategies and regulations to eventually improve human health and well-being.

In summary, we described an integrative methodological framework to combine ecological psychology with state-of-the-art neuroscience methods for neuro-architectural empirical research, aiming at extending the horizon of the research questions in the field of neuro-architecture and improving the ecological validity of its experimental framework. This is a promising way to push the field of neuro-architecture forward.

Author Contributions

All authors listed have made a substantial, direct, and intellectual contribution to the work, and approved it for publication.

We acknowledge support by the German Research Foundation and Open Access Publication Fund of TU Berlin. SW was funded by a grant from China Scholarship Council (File No. 201906750020).

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Acknowledgments

The authors would like to thank Bilal Arafaat for fruitful discussions and proofreading of the manuscript.

  • ^ “Form follows function.”
  • ^ “Less is more.”
  • ^ “There should be no features about a building which are not necessary for convenience, construction or propriety” (Pugin, 1841).

Azzazy, S., Ghaffarianhoseini, A., GhaffarianHoseini, A., Naismith, N., and Doborjeh, Z. (2021). A critical review on the impact of built environment on users’ measured brain activity. Archit. Sci. Rev. 64, 319–335. doi: 10.1080/00038628.2020.1749980

CrossRef Full Text | Google Scholar

Banaei, M., Hatami, J., Yazdanfar, A., and Gramann, K. (2017). Walking through architectural spaces: the impact of interior forms on human brain dynamics. Front. Hum. Neurosci. 11:477. doi: 10.3389/fnhum.2017.00477

PubMed Abstract | CrossRef Full Text | Google Scholar

Canli, T., Desmond, J. E., Zhao, Z., Glover, G., and Gabrieli, J. D. (1998). Hemispheric asymmetry for emotional stimuli detected with fMRI. Neuroreport 9, 3233–3239. doi: 10.1097/00001756-199810050-00019

Carter, J. (2018). Italy on fifth ave: from the museum of modern art to the olivetti showroom. Mod. Italy 23, 103–122. doi: 10.1017/mit.2017.65

Charytonowicz, J. (2000). “Architecture and ergonomics,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting , Vol. 44, (Los Angeles, CA: SAGE Publications), 6–103. No. 33. doi: 10.1177/154193120004403305

Chemero, A. (2003). An outline of a theory of affordances. Ecol. Psychol. 15, 181–195. doi: 10.4324/9780203726655-5

Chemero, A. (2011). Radical Embodied Cognitive Science. Cambridge, MA: MIT press.

Google Scholar

Corbusier, L. (1954). The Modulor: A Harmonious Measure to the Human Scale Universally Applicable to Architecture and Mechanics , Vol. 1. Cambridge, MA: Harvard University Press.

Corbusier, L. (2013). Towards a New Architecture. North Chelmsford, MA: Courier Corporation.

Craig, C., and Watson, G. (2011). An affordance based approach to decision making in sport: discussing a novel methodological framework. Rev. Psicol. Deport. 20, 689–708.

Dimond, S. J., and Farrington, L. (1977). Emotional response to films shown to the right or left hemisphere of the brain measured by heart rate. Acta Psychol. 41, 255–260. doi: 10.1016/0001-6918(77)90020-8

Djebbara, Z., and Gramann, K. (2022). “Architectural affordances: linking action, perception, and cognition,” in Brain, Beauty, and Art: Essays Bringing Neuroaesthetics into Focus , eds A. Chatterjee and E. Cardillo (Oxford: Oxford University Press).

Djebbara, Z., Fich, L. B., and Gramann, K. (2021). The brain dynamics of architectural affordances during transition. Sci. Rep. 11, 1–15. doi: 10.1038/s41598-021-82504-w

Djebbara, Z., Fich, L. B., Petrini, L., and Gramann, K. (2019). Sensorimotor brain dynamics reflect architectural affordances. Proc. Natl. Acad. Sci. U.S.A 116, 14769–14778. doi: 10.1073/pnas.1900648116

Dodds, G. P. (2000). Landscape and Garden in the Work of Carlo Scarpa. Philadelphia, PA: University of Pennsylvania.

Dougherty, B. O., and Arbib, M. A. (2013). The evolution of neuroscience for architecture: introducing the special issue. Intell. Build. Int. 5, 4–9. doi: 10.1080/17508975.2013.818763

Eberhard, J. P. (2009a). Applying neuroscience to architecture. Neuron 62, 753–756. doi: 10.1016/j.neuron.2009.06.001

Eberhard, J. P. (2009b). Brain Landscape the Coexistence of Neuroscience and Architecture. Oxford: Oxford University Press.

Eberhard, J. P., and Gage, F. H. (2003). An architect and a neuroscientist discuss how neuroscience can influence architectural design. Neurosci. Q. 6–7.

Ezzat Ahmed, D., and Kamel, S. (2021). Exploring the contribution of neuroarchitecture in learning environments design “a review”. Int. J. Archit. Eng. Urban Res. 4, 102–119. doi: 10.2478/dfl-2014-0018

Fazio, M. W., Moffett, M., and Wodehouse, L. (2008). A World History of Architecture. London: Laurence King.

Fich, L. B., Jönsson, P., Kirkegaard, P. H., Wallergård, M., Garde, A. H., and Hansen, Å (2014). Can architectural design alter the physiological reaction to psychosocial stress? a virtual TSST experiment. Physiol. Behav. 135, 91–97. doi: 10.1016/j.physbeh.2014.05.034

Frampton, K. (1985). Studies in Tectonic Culture. Cambridge: Harvard University Graduate School of Design Cambridge.

Franchak, J. M., and Adolph, K. E. (2014). Gut estimates: pregnant women adapt to changing possibilities for squeezing through doorways. Atten. Percept. Psychophys. 76, 460–472. doi: 10.3758/s13414-013-0578-y

Frascari, M. (1983). “The tell-the-tale detail,” in Semiotics 1981 , ed. J. N. Deely (Boston, MA: Springer), 325–336. doi: 10.5840/cpsem198115

Gepshtein, S., and Snider, J. (2019). Neuroscience for architecture: the evolving science of perceptual meaning. Proc. Natl. Acad. Sci. U.S.A 116, 14404–14406. doi: 10.1073/pnas.1908868116

Gibson, J. J. (1966). The Senses Considered as Perceptual Systems. Boston, MS: Houghton Mifflin.

Gibson, J. J. (1977). “The theory of affordances,” in Perceiving, Acting, and Knowing: Toward an Ecological Psychology , eds R. Shaw and J. Bransford (Mahwah, NJ: Lawrence Erlbaum), 67–82.

Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston, MS: Houghton Mifflin.

Gramann, K., Ferris, D. P., Gwin, J., and Makeig, S. (2014). Imaging natural cognition in action. Int. J. Psychophysiol. 91, 22–29. doi: 10.1016/j.ijpsycho.2013.09.003

Gramann, K., Gwin, J. T., Ferris, D. P., Oie, K., Jung, T.-P., Lin, C.-T., et al. (2011). Cognition in action: imaging brain/body dynamics in mobile humans. Rev. Neurosci. 22, 593–608. doi: 10.1515/RNS.2011.047

Gramann, K., McKendrick, R., Baldwin, C., Roy, R. N., Jeunet, C., Mehta, R. K., et al. (2021). Grand field challenges for cognitive neuroergonomics in the coming decade. Front. Neuroergonom. 2:6. doi: 10.3389/fnrgo.2021.643969

Handford, C., Davids, K., Bennett, S., and Button, C. (1997). Skill acquisition in sport: some applications of an evolving practice ecology. J. Sports Sci. 15, 621–640. doi: 10.1080/026404197367056

Heft, H. (1989). Affordances and the body: an intentional analysis of gibson’s ecological approach to visual perception. J. Theory Soc. Behav. 19, 1–30. doi: 10.1111/j.1468-5914.1989.tb00133.x

Heft, H. (2010). Affordances and the perception of landscape. Innovative Approaches to Research Landscape Health: Open Space: People Space Ed C W Thompson and P Aspinall 2, 9–32 Routledge: Abingdon.

Heras-Escribano, M. (2019). The Philosophy of Affordances. London: Palgrave Macmillan.

Heras-Escribano, M. (2021). Pragmatism, enactivism, and ecological psychology: towards a unified approach to post-cognitivism. Synthese 198, 337–363. doi: 10.1007/s11229-019-02111-1

Higuera-Trujillo, J. L., Llinares, C., and Macagno, E. (2021). The cognitive-emotional design and study of architectural space: a scoping review of neuroarchitecture and its precursor approaches. Sensors 21: 2193. doi: 10.3390/s21062193

Ittelson, W. H. (1952). The Ames Demonstrations in Perception; a Guide to their Construction and Use. Princeton, NJ: Princeton University Press.

Jelić, A., Tieri, G., Matteis, F., Babiloni, F., and Vecchiato, G. (2016). The enactive approach to architectural experience: a neurophysiological perspective on embodiment. motivation, and affordances. Front. Psychol. 7:481. doi: 10.3389/fpsyg.2016.00481

Jungnickel, E., Gehrke, L., Klug, M., and Gramann, K. (2019). “MoBI—Mobile brain/body imaging,” in Neuroergonomics The Brain at Work and in Everyday Life , eds H. Ayaz and F. Dehais 59–63. doi: 10.1016/b978-0-12-811926-6.00010-5

Karakas, T., and Yildiz, D. (2020). Exploring the influence of the built environment on human experience through a neuroscience approach: a systematic review. Front. Archit. Res. 9:236–247. doi: 10.1016/j.foar.2019.10.005

King, J. L., and Parada, F. J. (2021). Using mobile brain/body imaging to advance research in arts, health, and related therapeutics. J. Eur. J. Neurosci. 54, 8364–8380. doi: 10.1111/ejn.15313

Kirk, U., Skov, M., Christensen, M. S., and Nygaard, N. (2009a). Brain correlates of aesthetic expertise: a parametric fMRI study. Brain Cogn. 69, 306–315. doi: 10.1016/j.bandc.2008.08.004

Kirk, U., Skov, M., Hulme, O., Christensen, M. S., and Zeki, S. (2009b). Modulation of aesthetic value by semantic context: an fMRI study. Neuroimage 44, 1125–1132. doi: 10.1016/j.neuroimage.2008.10.009

Lobo, L., Heras-Escribano, M., and Travieso, D. (2018). The history and philosophy of ecological psychology. Front. Psychol. 9:2228. doi: 10.3389/fpsyg.2018.02228

Loos, A. (2019). Ornament and Crime. London: Penguin UK.

Makeig, S., Gramann, K., Jung, T.-P., Sejnowski, T. J., and Poizner, H. (2009). Linking brain, mind and behavior. Int. J. Psychophysiol. 73, 95–100. doi: 10.1111/j.1751-228x.2010.01088.x

Mark, L. S. (1987). Eyeheight-scaled information about affordances: a study of sitting and stair climbing. J. Exp. Psychol. Hum. Percept. Perform 13:361. doi: 10.1037//0096-1523.13.3.361

Marr, D. (1982). Vision: a Computational Investigation into the Human Representation and Processing of Visual Information. Cambridge, MS: MIT Press.

Martínez-Soto, J., Gonzales-Santos, L., Pasaye, E., and Barrios, F. A. (2013). Exploration of neural correlates of restorative environment exposure through functional magnetic resonance. Intell. Build. Int. 5, 10–28. doi: 10.1080/17508975.2013.807765

Michaels, C. F., and Carello, C. (1981). Direct Perception. Englewood Cliffs, NJ: Prentice-Hall, 1–208.

Michaels, C. F., and Palatinus, Z. (2014). “A ten commandments for ecological psychology,” in The Routledge Handbook of Embodied Cognition , ed. L. Shapiro (Abingdon: Routledge), 19–28.

Naghibi Rad, P., Shahroudi, A. A., Shabani, H., Ajami, S., and Lashgari, R. (2019). Encoding pleasant and unpleasant expression of the architectural window shapes: an erp study. Front.Behav. Neurosci. 13:186. doi: 10.3389/fnbeh.2019.00186

Oppenheim, I., Mühlmann, H., Blechinger, G., Mothersill, I. W., Hilfiker, P., Jokeit, H., et al. (2009). Brain electrical responses to high-and low-ranking buildings. Clin. EEG Neurosci. Biobehav. Rev. 40, 157–161. doi: 10.1177/155005940904000307

Oppenheim, I., Vannucci, M., Mühlmann, H., Gabriel, R., Jokeit, H., Kurthen, M., et al. (2010). Hippocampal contributions to the processing of architectural ranking. Neuroimage 50, 742–752. doi: 10.1016/j.neuroimage.2009.12.078

Palladio, A. (1965). The Four Books of Architecture , Vol. 1. North Chelmsford, MS: Courier Corporation.

Parada, F. J. (2018). Understanding natural cognition in everyday settings: 3 pressing challenges. Front. Hum. Neurosci. 12:386. doi: 10.3389/fnhum.2018.00386

Parada, F. J., and Rossi, A. (2021). Perfect timing: mobile brain/body imaging scaffolds the 4E-cognition research program. Eur. J. Neurosci. 54, 8081–8091. doi: 10.1111/ejn.14783

Pektaş, Ş.T. (2021). A scientometric analysis and review of spatial cognition studies within the framework of neuroscience and architecture. Archit. Sci. Rev. 64, 1–9.

Pollio, V. (1914). Vitruvius, the Ten Books on Architecture. Cambridge, MA: Harvard university press.

Reuter-Lorenz, P., and Davidson, R. J. (1981). Differential contributions of the two cerebral hemispheres to the perception of happy and sad faces. Neuropsychologia 19, 609–613. doi: 10.1016/0028-3932(81)90030-0

Richardson, M. J., Shockley, K., Fajen, B. R., Riley, M. A., and Turvey, M. T. (2008). “Ecological psychology: Six principles for an embodied–embedded approach to behavior. In,” in Handbook of Cognitive Science , eds P. Calvo and T. Gomila (Amsterdam: Elsevier), 159–187.

Rietveld, E. (2016). Situating the embodied mind in a landscape of standing affordances for living without chairs: materializing a philosophical worldview. Sports Med. 46, 927–932. doi: 10.1007/s40279-016-0520-2

Rietveld, E., and Kiverstein, J. (2014). A rich landscape of affordances. Ecol. Psychol. 26, 325–352. doi: 10.1080/10407413.2014.958035

Rogers, B. (2017). Perception: A very Short Introduction. Oxford: OXFORD University press.

Ruiz-Arellano, M. (2015). Hawaiian Healing Center: A Weaving of Neuro-Architecture and Cultural Practices. Honolulu, HI: University of Hawaii at Manoa. May 2015.

Rutherford, I. (ed.) (2016). Greco-Egyptian Interactions: Literature, Translation, and Culture, 500 BCE-300 CE. Oxford: Oxford University Press.

Shemesh, A., Leisman, G., Bar, M., and Grobman, Y. J. (2021). A neurocognitive study of the emotional impact of geometrical criteria of architectural space. Archit. Sci. Rev. 64, 394–407.

Stendhal (2010). Rome, Naples and Florence . trans. R. N. Coe. Alma Books.

Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Gonzalez-Mora, J. L., Leder, H., et al. (2015). Architectural design and the brain: effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. J. Environ. Psychol. 41, 10–18. doi: 10.1016/j.jenvp.2014.11.006

Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Leder, H., Modroño, C., et al. (2013). Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proc. Natl. Acad. Sci. U.S.A 110(Suppl. 2), 10446–10453. doi: 10.1073/pnas.1301227110

Warren, W. H. (1984). Perceiving affordances: visual guidance of stair climbing. J. Exp. Psychol. Hum. Percept. Perform. 10:683. doi: 10.1037//0096-1523.10.5.683

Warren, W. H. (2006). The dynamics of perception and action. Psychol. Rev. 113:358.

Warren, W. H. Jr., and Whang, S. (1987). Visual guidance of walking through apertures: body-scaled information for affordances. J. Exp. Psychol. Hum. Percept. Perform. 13:371. doi: 10.1037//0096-1523.13.3.371

Keywords : neuro-architecture, ecological psychology, mobile brain/body imaging (MoBI), methodology, aesthetics and ergonomics, ecological validity

Citation: Wang S, Sanches de Oliveira G, Djebbara Z and Gramann K (2022) The Embodiment of Architectural Experience: A Methodological Perspective on Neuro-Architecture. Front. Hum. Neurosci. 16:833528. doi: 10.3389/fnhum.2022.833528

Received: 11 December 2021; Accepted: 30 March 2022; Published: 09 May 2022.

Reviewed by:

Copyright © 2022 Wang, Sanches de Oliveira, Djebbara and Gramann. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

*Correspondence: Sheng Wang, [email protected]

Help | Advanced Search

Computer Science > Computation and Language

Title: architext: language-driven generative architecture design.

Abstract: Architectural design is a highly complex practice that involves a wide diversity of disciplines, technologies, proprietary design software, expertise, and an almost infinite number of constraints, across a vast array of design tasks. Enabling intuitive, accessible, and scalable design processes is an important step towards performance-driven and sustainable design for all. To that end, we introduce Architext, a novel semantic generation assistive tool. Architext enables design generation with only natural language prompts, given to large-scale Language Models, as input. We conduct a thorough quantitative evaluation of Architext's downstream task performance, focusing on semantic accuracy and diversity for a number of pre-trained language models ranging from 120 million to 6 billion parameters. Architext models are able to learn the specific design task, generating valid residential layouts at a near 100% rate. Accuracy shows great improvement when scaling the models, with the largest model (GPT-J) yielding impressive accuracy ranging between 25% to over 80% for different prompt categories. We open source the finetuned Architext models and our synthetic dataset, hoping to inspire experimentation in this exciting area of design research.

Submission history

Access paper:.

  • Other Formats

References & Citations

  • Google Scholar
  • Semantic Scholar

BibTeX formatted citation

BibSonomy logo

Bibliographic and Citation Tools

Code, data and media associated with this article, recommenders and search tools.

  • Institution

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs .

e-architect

How to write a research paper on architecture

Guide to how to write a research paper on architecture, Building writing advice, Online architectural help

How to Write a Research Paper on Architecture

post updated 10 February 2024

Architecture is widely considered one of the most challenging degrees you can choose. Some people go as far as comparing it to a medical degree in terms of the workload and difficulty. If you know someone who studies architecture, you have probably heard about many deadlines, all-nighters, and 18-hour work days. Besides, architecture students need great communication skills for networking and pitching their ideas to clients.

How to write a research paper on architecture

21 December 2020

How to Write a Research Paper on Architecture Design

While some architecture schools are more focused on practical tasks, others may dedicate more attention to research and writing. Whether you have to write research papers on architecture on a weekly basis or just once in a while, this article will help you do it in the best way possible. Why not visit this page .

Determine the scale of your project

Architecture is a very wide field. There are dozens different jobs in the field, hundreds of architectural styles, and millions of niches you can get into in your research paper. That’s why it’s important to keep the scale of your project in mind and make sure you go into just the right amount of detail.

If you are struggling to choose a topic that would work well, consider reaching out to paper writing services so that professional architecture writers can help you. To choose the best service, try looking for a review from students’ who have used the service before. For example, a Paperhelp review can help you decide if the service is right for you.

If you choose a topic that’s too wide, you’ll have a hard time getting your point across. On the other hand, if your topic is too narrow, you might not be able to find enough information about it on the Internet. To prevent that from happening, always do some preliminary research to determine how many sources are available.

Choose your analysis type

In architecture, research papers usually focus on one of the three types of research — visual research, textual analysis, or historical analysis. Visual research is, perhaps, the most interesting and the most creative part of the research. Look at the space and try to think what it reminds you of, how does it make you feel, what impression does it create, etc. If you’re writing a more in-depth paper, textual analysis might be necessary. In order to understand a more complex content or a narrow niche, study the research of people who have looked at it before.

Try to figure out where the writer is coming from, what are their references, inspirations, or goals. If socioeconomic context is important for your topic, do some historical analysis as well. It will help you better understand the buildings, their details, and their significance. If you are analyzing a particular style or movement, looking at different movements that were prominent at that time will give you a better perspective. You might want to focus on one particular analysis type or combine several types. Before making the decision, consider what is the goal of your paper and what type of analysis can help you reach it.

Have a logical structure

Once you’ve chosen your topic, your sources, and your analysis type, you should consider the structure of your paper. Normally, you would start with a short introduction that would give the reader some background information regarding why you choose that topic, what research have you done, and what was your main question or idea. After that, map out your paper in a way so that it makes sense to someone who doesn’t know anything about your topic.

You might want to start with some background information and present some key theory points or describe the time period that you are dealing with. Then you can proceed to more details and your observations of the object. In the conclusion, briefly summarize the main points and findings of your research and give your own opinion on the subject.

When it comes to academic writing, it’s important to be concise. Remember, your research paper is not a magazine article, so you shouldn’t add any fluff, poetic phrases, or your personal sentiments. Stir away from emotionally colored words and sentences such as “a magnificent building” or “I love how(…)” If you are particularly impressed with some aspect of your research subject, explain what makes it stand out among others, highlight the complexity of the structure, or point out why it was so important.

That way, you will express your admiration in a more appropriate manner. Try not to use very long sentences too. Although they might sound natural in your head, the reader will find it much easier to follow your train of thought when the sentences are shorter. Of course, remember not to use any colloquialisms, slang, or contractions.

Say what you think

As we’ve mentioned before, a research paper is not an article or a blogpost, so it cannot be based solely on your personal opinion. However, architecture is a creative field. It’s creativity that attracts people to the field and what is valued most in an architect. That’s why in your research paper, you shouldn’t just paraphrase the opinions of other people and leave it at that. Always include your personal perspective and your opinion on why something is the way it is or how it could have been done differently.

Comments on this guide to How to Write a Research Paper on Architecture article are welcome.

Architecture Essay

Architecture Essays Posts

How To Research For An Architecture Essay In Six Steps

How to write a thrilling architecture essay

Tips on writing a professional architecture essay

How to Write an Architecture Essay

Contemporary Architecture Articles

Tour Eiffel - How to Write a Research Paper on Architecture

Architectural News

Architecture Awards

Architects Office Listings

Comments / photos for the How to Write a Research Paper on Architecture Advice page welcome

  • Review article
  • Open access
  • Published: 18 September 2020

Senses of place: architectural design for the multisensory mind

  • Charles Spence   ORCID: orcid.org/0000-0003-2111-072X 1  

Cognitive Research: Principles and Implications volume  5 , Article number:  46 ( 2020 ) Cite this article

232k Accesses

70 Citations

32 Altmetric

Metrics details

Traditionally, architectural practice has been dominated by the eye/sight. In recent decades, though, architects and designers have increasingly started to consider the other senses, namely sound, touch (including proprioception, kinesthesis, and the vestibular sense), smell, and on rare occasions, even taste in their work. As yet, there has been little recognition of the growing understanding of the multisensory nature of the human mind that has emerged from the field of cognitive neuroscience research. This review therefore provides a summary of the role of the human senses in architectural design practice, both when considered individually and, more importantly, when studied collectively. For it is only by recognizing the fundamentally multisensory nature of perception that one can really hope to explain a number of surprising crossmodal environmental or atmospheric interactions, such as between lighting colour and thermal comfort and between sound and the perceived safety of public space. At the same time, however, the contemporary focus on synaesthetic design needs to be reframed in terms of the crossmodal correspondences and multisensory integration, at least if the most is to be made of multisensory interactions and synergies that have been uncovered in recent years. Looking to the future, the hope is that architectural design practice will increasingly incorporate our growing understanding of the human senses, and how they influence one another. Such a multisensory approach will hopefully lead to the development of buildings and urban spaces that do a better job of promoting our social, cognitive, and emotional development, rather than hindering it, as has too often been the case previously.

Significance statement

Architecture exerts a profound influence over our well-being, given that the majority of the world’s population living in urban areas spend something like 95% of their time indoors. However, the majority of architecture is designed for the eye of the beholder, and tends to neglect the non-visual senses of hearing, smell, touch, and even taste. This neglect may be partially to blame for a number of problems faced by many in society today including everything from sick-building syndrome (SBS) to seasonal affective disorder (SAD), not to mention the growing problem of noise pollution. However, in order to design buildings and environments that promote our health and well-being, it is necessary not only to consider the impact of the various senses on a building’s inhabitants, but also to be aware of the way in which sensory atmospheric/environmental cues interact. Multisensory perception research provides relevant insights concerning the rules governing sensory integration in the perception of objects and events. This review extends that approach to the understanding of how multisensory environments and atmospheres affect us, in part depending on how we cognitively interpret, and/or attribute, their sources. It is argued that the confusing notion of synaesthetic design should be replaced by an approach to multisensory congruency that is based on the emerging literature on crossmodal correspondences instead. Ultimately, the hope is that such a multisensory approach, in transitioning from the laboratory to the real world application domain of architectural design practice, will lead on to the development of buildings and urban spaces that do a better job of promoting our social, cognitive, and emotional development, rather than hindering it, as has too often been the case previously.

Introduction

We are visually dominant creatures (Hutmacher, 2019 ; Levin, 1993 ; Posner, Nissen, & Klein, 1976 ). That is, we all mostly tend to think, reason, and imagine visually. As Finnish architect Pallasmaa ( 1996 ) noted almost a quarter of a century ago in his influential work The eyes of the skin: Architecture and the senses, architects have traditionally been no different in this regard, designing primarily for the eye of the beholder (Bille & Sørensen, 2018 ; Pallasmaa, 1996 , 2011 ; Rybczynski, 2001 ; Williams, 1980 ). Elsewhere, Pallasmaa ( 1994 , p. 29) writes that: “The architecture of our time is turning into the retinal art of the eye. Architecture at large has become an art of the printed image fixed by the hurried eye of the camera . ” The famous Swiss architect Le Corbusier ( 1991 , p. 83) went even further in terms of his unapologetically oculocentric outlook, writing that: “I exist in life only if I can see”, going on to state that: “I am and I remain an impenitent visual—everything is in the visual” and “one needs to see clearly in order to understand”. Commenting on the current situation, Canadian designer Bruce Mau put it thus: “We have allowed two of our sensory domains—sight and sound—to dominate our design imagination. In fact, when it comes to the culture of architecture and design, we create and produce almost exclusively for one sense—the visual.” (Mau, 2018 , p. 20; see also Blesser & Salter, 2007 ).

Such visual dominance makes sense or, at the very least, can be explained or accounted for neuroscientifically (Hutmacher, 2019 ; Meijer, Veselič, Calafiore, & Noppeney, 2019 ). After all, it turns out that far more of our brains are given over to the processing of what we see than to dealing with the information from any of our other senses (Gallace, Ngo, Sulaitis, & Spence, 2012 ). For instance, according to Felleman and Van Essen ( 1991 ), more than half of the cortex is engaged in the processing of visual information (see also Eberhard, 2007 , p. 49; Palmer, 1999 , p. 24; though note that others believe that the figure is closer to one third). This figure compares to something like just 12% of the cortex primarily dedicated to touch, around 3% to hearing, and less than 1% given over to the processing of the chemical senses of smell and taste. Footnote 1 Information theorists such as Zimmerman ( 1989 ) arrived at a similar hierarchy, albeit with a somewhat different weighting for each of the five main senses. In particular, Zimmermann estimated a channel capacity (in bits/s) of 10 7 for vision, 10 6 for touch, 10 5 for hearing and olfaction, and 10 3 for taste (gustation).

Figure  1 schematically illustrates the hierarchy of attentional capture by each of the senses as envisioned by Morton Heilig, the inventor of the Sensorama, the world’s first multisensory virtual reality apparatus (Heilig, 1962 ), when writing about the multisensory future of cinema in an article first published in 1955 (see Heilig, 1992 ). Nevertheless, while commentators from many different disciplines would seem to agree on vision’s current pre-eminence, one cannot help but wonder what has been lost as a result of the visual dominance that one sees wherever one looks in the world of architecture (“see” and “look” being especially apposite terms here).

figure 1

Heilig ( 1992 ) ranked the order in which he believed our attention to be captured by the various senses. According to Heilig’s rankings: vision, 70%; audition, 20%; olfaction, 5%; touch, 4%; and taste, 1%. Does the same hierarchy (and weighting) apply to our appreciation of architecture, one might wonder? And is attentional capture the most relevant metric anyway?

While the hegemony of the visual (see Levin, 1993 ) is a phenomenon that appears across most aspects of our daily lives, the very ubiquity of this phenomenon certainly does not mean that the dominance of the visual should not be questioned (e.g., Dunn, 2017 ; Hutmacher, 2019 ). For, as Finnish architect and theoretician Pallasmaa ( 2011 , p. 595) notes: “Spaces, places, and buildings are undoubtedly encountered as multisensory lived experiences. Instead of registering architecture merely as visual images, we scan our settings by the ears, skin, nose, and tongue.” Elsewhere, he writes that: “Architecture is the art of reconciliation between ourselves and the world, and this mediation takes place through the senses” (Pallasmaa, 1996 , p. 50; see also Böhme, 2013 ). We will return later to question the visual dominance account, highlighting how our experience of space, as of anything else, is much more multisensory than most people realize.

Review outline

While architectural practice has traditionally been dominated by the eye/sight, a growing number of architects and designers have, in recent decades, started to consider the role played by the other senses, namely sound, touch (including proprioception, kinesthesis, and the vestibular sense), smell, and, on rare occasions, even taste. It is, then, clearly important that we move beyond the merely visual (not to mention modular) focus in architecture that has been identified in the writings of Juhani Pallasmaa and others, to consider the contribution that is made by each of the other senses (e.g., Eberhard, 2007 ; Malnar & Vodvarka, 2004 ). Reviewing this literature constitutes the subject matter of the next section. However, beyond that, it is also crucial to consider the ways in which the senses interact too. As will be stressed later, to date there has been relatively little recognition of the growing understanding of the multisensory nature of the human mind that has emerged from the field of cognitive neuroscience research in recent decades (e.g., Calvert, Spence, & Stein, 2004 ; Stein, 2012 ).

The principal aim of this review is therefore to provide a summary of the role of the human senses in architectural design practice, both when considered individually and, more importantly, when the senses are studied collectively. For it is only by recognizing the fundamentally multisensory nature of perception that one can really hope to explain a number of surprising crossmodal environmental or atmospheric interactions, such as between lighting colour and thermal comfort (Spence, 2020a ) or between sound and the perceived safety of public spaces (Sayin, Krishna, Ardelet, Decré, & Goudey, 2015 ), that have been reported in recent years.

At the same time, however, this review also highlights how the contemporary focus on synaesthetic design in architecture (see Pérez-Gómez, 2016 ) needs to be reframed in terms of the crossmodal correspondences (see Spence, 2011 , for a review), at least if the most is to be made of multisensory interactions and synergies that affect us all. Later, I want to highlight how accounts of multisensory interactions in architecture in terms of synaesthesia tend to confuse matters, rather than to clarify them. Accounting for our growing understanding of crossmodal interactions (specifically the emerging field of crossmodal correspondences research) and multisensory integration will help to explain how it is that our senses conjointly contribute to delivering our multisensory (and not just visual) experience of space. One other important issue that will be discussed later is the role played by our awareness of the multisensory atmosphere of the indoor environments in which we spend so much of our time.

Looking to the future, the hope is that architectural design practice will increasingly incorporate our growing understanding of the human senses, and how they influence one another. Such a multisensory approach will hopefully lead to the development of buildings and urban spaces that do a better job of promoting our social, cognitive, and emotional development, rather than hindering it, as has too often been the case previously. Before going any further, though, it is worth highlighting a number of the negative outcomes for our well-being that have been linked to the sensory aspects of the environments in which we spend so much of our time.

Negative health consequences of neglecting multisensory stimulation

It has been suggested that the rise in sick building syndrome (SBS) in recent decades (Love, 2018 ) can be put down to neglect of the olfactory aspect of the interior environments where city dwellers have been estimated to spend 95% of their lives (e.g., Ott & Roberts, 1998 ; Velux YouGov Report, 2018 ; Wargocki, 2001 ). Indeed, as of 2010, more people around the globe lived in cities than lived in rural areas (see UN-Habitat, 2010 and United Nations Department of Economic and Social Affairs, 2018 ). One might also be tempted to ask what responsibility, if any, architects bear for the high incidence of seasonal affective disorder (SAD) that has been documented in northern latitudes (Cox, 2017 ; Heerwagen, 1990 ; Rosenthal, 2019 ; Rosenthal et al., 1984 ). To give a sense of the problem of “light hunger” (as Heerwagen, 1990 , refers to it), Terman ( 1989 ) claimed that as many as 2 million people in Manhattan alone experience seasonal affective and behavioural changes severe enough to require some form of additional light stimulation during the winter months.

According to Pallasmaa ( 1994 , p. 34), Luis Barragán, the self-taught Mexican architect famed for his geometric use of bright colour (Gregory, 2016 ) felt that most contemporary houses would be more pleasant with only half their window surface. However, while such a suggestion might well be appropriate in Mexico, where Barragán’s work is to be found, many of us (especially those living in northern latitudes in the dark winter months) need as much natural light as we can obtain to maintain our psychological well-being. That said, Barragán is not alone in his appreciation of darkness and shadow. Some years ago, Japanese writer Junichirō Tanizaki also praised the aesthetic appeal of shadow and darkness in the native architecture of his home country in his extended essay on aesthetics, In praise of shadows (Tanizaki, 2001 ).

One of the problems with the extensive use of windows in northern climates is related to poor heat retention, an issue that is becoming all the more prominent in the era of sustainable design and global warming. One solution to this particular problem that has been put forward by a number of technology-minded researchers is simply to replace windows by the use of large screens that relay a view of nature for those who, for whatever reason, have to work in windowless offices (Kahn Jr. et al., 2008 ). However, the limited research that has been conducted on this topic to date suggests that the beneficial effects of being seated near to the window in an office building cannot easily be captured by seating workers next to such video-screens instead.

Similarly, the failure to fully consider the auditory aspects of architectural design may help to explain some part of the global health crisis associated with noise pollution interfering with our sleep, health, and well-being (Owen, 2019 ). The neglect of architecture’s fundamental role in helping to maintain our well-being is a central theme in Pérez-Gómez’s ( 2016 ) influential book Attunement: Architectural meaning after the crisis of modern science. Pérez-Gómez is the director of the History and Theory of Architecture Program at McGill University in Canada. Along similar lines, geographer J. Douglas Porteous had already noted some years earlier that: “Notwithstanding the holistic nature of environmental experience, few researchers have attempted to interpret it in a very holistic [or multisensory] manner.” (Porteous, 1990 , p. 201). Finally, here, it is perhaps also worth noting that there are even some researchers who have wanted to make a connection between the global obesity crisis and the obesogenic environments that so many of us inhabit (Lieberman, 2006 ). The poor diet of multisensory stimulation that we experience living a primary indoor life has also been linked to the growing sleep crisis apparently facing so many people in society today (Walker, 2018 ).

Designing for the modular mind

Researchers working in the field of environmental psychology have long stressed the impact that the sensory features of the built environment have on us (e.g., Mehrabian & Russell, 1974 , for an influential early volume detailing this approach). Indeed, many years ago, the famous modernist Swiss architect Le Corbusier ( 1948 ) made the intriguing suggestion that architectural forms “work physiologically upon our senses.” Inspired by early work with the semantic differential technique, researchers would often attempt to assess the approach-avoidance, active-passive, and dominant-submissive qualities of a building or urban space. This approach was based on the pleasure, arousal, and dominance (PAD) model that has long been dominant in the field. However, it is important to stress that in much of their research, the environmental psychologists took a separate sense-by-sense approach (e.g., Zardini, 2005 ).

The majority of researchers have tended to focus their empirical investigations on studying the impact of changing the stimulation presented to just one sense at a time. More often than not, in fact, they would focus on a single sensory attribute, such as, for example, investigating the consequences of changing the colour (hue) of the lighting or walls (e.g., Bellizzi, et al., 1983 ; Bellizzi & Hite, 1992 ; Costa, Frumento, Nese, & Predieri, 2018 ; Crowley, 1993 ), or else just modulating the brightness of the ambient lighting (e.g., Gal, Wheeler, & Shiv, 2007 ; Xu & LaBroo, 2014 ). Such a unisensory (and, in some cases, unidimensional) approach undoubtedly makes sense inasmuch as it may help to simplify the problem of studying how design affects us (Malnar & Vodvarka, 2004 ). What is more, such an approach is also entirely in tune with the modular approach to mind that was so popular in the fields of psychology and cognitive neuroscience in the closing decades of the twentieth century (e.g., Barlow & Mollon, 1982 ; Fodor, 1983 ). At the same time, however, it can be argued that this sense-by-sense approach neglects the fundamentally multisensory nature of mind, and the many interactions that have been shown to take place between the senses.

The visually dominant approach to research in the field of environmental psychology also means that far less attention has been given over to studying the impact of the auditory (e.g., Blesser & Salter, 2007 ; Kang et al., 2016 ; Schafer, 1977 ; Southworth, 1969 ; Thompson, 1999 ), tactile, somatosensory or embodied (e.g., Heschong, 1979 ; Pallasmaa, 1996 ; Pérez-Gómez, 2016 ), or even the olfactory qualities of the built environment (e.g., Bucknell, 2018 ; Drobnick, 2002 , 2005 ; Henshaw, McLean, Medway, Perkins, & Warnaby, 2018 ) than on the impact of the visual. Furthermore, until very recently, little consideration has been given by the environmental psychologists to the question of how the senses interact, one with another, in terms of their influence on an individual. This neglect is particularly striking given that the natural environment, the built environment, and the atmosphere of a space are nothing if not multisensory (e.g., Bille & Sørensen, 2018 ). In fact, it is no exaggeration to say that our response to the environments, in which we find ourselves, be they built or natural, is always going to be the result of the combined influence of all the senses that are being stimulated, no matter whether we are aware of their influence or not (this is a point to which we will return later).

Given that those of us living in urban environments, which as we have seen is now the majority of us, spend more than 95% of our lives indoors (Ott & Roberts, 1998 ), architects would therefore seem to bear at least some responsibility for ensuring that the multisensory attributes of the built environment work together to deliver an experience that positively stimulates the senses, and, by so doing, facilitates our well-being, rather than hinders it (see also Pérez-Gómez, 2016 , on this theme). Crucially, however, a growing body of cognitive neuroscience research now demonstrates that while we are often unaware of, or at least pay little conscious attention to the subtle sensory cues that may be conveyed by a space (e.g., Forster & Spence, 2018 ), that certainly does not mean that they do not affect us. In fact, the sensory qualities or attributes of the environment have long been known to affect our health and well-being in environments as diverse as the hospital and the home, and from the office to the gym (e.g., Spence, 2002 , 2003 , 2021 ; Spence & Keller, 2019 ). What is more, according to the research that has been published to date, environmental multisensory stimulation can potentially affect us at the social, emotional, and cognitive levels.

It can be argued, therefore, that we all need to pay rather more attention to our senses and the way in which they are being stimulated than we do at present (see also Pérez-Gómez, 2016 , on this theme). You can call it a mindful approach to the senses (Kabat-Zinn, 2005 ), Footnote 2 though my preferred terminology, coined in an industry report published almost 20 years ago, is “sensism” (see Spence, 2002 ). Sensism provides a key to greater well-being by considering the senses holistically, as well as how they interact, and incorporating that understanding into our everyday lives. The approach also builds on the growing evidence of the nature effect (Williams, 2017 ) and the fact that we appear to benefit from, not to mention actually desire, the kinds of environments in which our species evolved. As support for the latter claim, consider only how it has recently emerged that most people set their central heating to a fairly uniform 17–23 °C, meaning that the average indoor temperature and humidity most closely matches the mild outdoor conditions of west central Kenya or the Ethiopian highlands (i.e., the place where human life is first thought to have evolved), better than anywhere else (Just, Nichols, & Dunn, 2019 ; Whipple, 2019 ).

Architectural design for each of the senses

It is certainly not the case that architects have uniformly ignored the non-visual senses (e.g., see Howes, 2005 , 2014 ; McLuhan, 1961 ; Pallasmaa, 1994 , 2011 ; Ragavendira, 2017 ). For instance, in their 2004 book on Sensory design , Malnar and Vodvarka talk about challenging visual dominance in architectural design practice by giving a more equal weighting to all of the senses (Malnar & Vodvarka, 2004 ; see also Mau, 2019 ). Meanwhile, Howes ( 2014 ) writes of the sensory monotony of the bungalow-filled suburbs and of the corporeal experience of skyscrapers as their presence looms up before those on the sidewalk below. At the same time, however, there is also a sense in which it is the gaze of the inhabitants of those tall buildings who are offered the view that is prioritized over the other senses.

However, very often the approach as, in fact, evidenced by Malnar and Vodvarka ( 2004 ) has been to work one sense at a time. Until recently, that is, one finds exactly the same kind of sense-by-sense (or unisensory) approach in the worlds of interior design (Bailly Dunne & Sears, 1998 ), advertising (Lucas & Britt, 1950 ), marketing (Hultén, Broweus, & Dijk, 2009 ; Krishna, 2013 ; Lindstrom, 2005 ), and atmospherics (see Bille & Sørensen, 2018 , on architectural atmospherics; and Kotler, 1974 , on the theme of store atmospherics). Recently, there has been a growing recognition of the importance of the non-visual senses to various fields of design (Haverkamp, 2014 ; Lupton & Lipps, 2018 ; Malnar & Vodvarka, 2004 ). As yet, however, there has not been sufficient recognition of the extent to which the senses interact. As Williams ( 1980 , p. 5) noted some 40 years ago: “Aside from meeting common standards of performance, architects do little creatively with acoustical, thermal, olfactory, and tactile sensory responses.” As we will see later, it is not clear that much has changed since.

The look of architecture

There are a number of ways in which visual perception science can be linked to architectural design practice. For instance, think only of the tricks played on the eyes by the trapezoidal balconies on the famous The Future apartment building in Manhattan (see Fig.  2 ). They appear to slant downward when viewed from one side while appearing to slope upward instead, if viewed from the other. The causes of such a visual illusion can, at the very least, be meaningfully explained in terms of visual perception research (Bruno & Pavani, 2018 ).

figure 2

The Future apartment building at 200 East 32nd Street in Manhattan. Architectural design that appeals primarily to the eye? [Credit Jeffrey Zeldman, and reprinted under Creative Commons agreement]

Cognitive neuroscientists have recently demonstrated that we have an innate preference for visual curvature, be it in internal space (Vartanian et al., 2013 ), or for the furniture that is found within that space (Dazkir & Read, 2012 ; see also Lee, 2018 ; Thömmes & Hübner, 2018 ). We typically rate curvilinear forms as being more approachable than rectilinear ones (see Fig.  3 ). Angular forms, especially when pointing downward/toward us, may well be perceived as threatening, and hence are somewhat more likely to trigger an avoidance response (Salgado-Montejo, Salgado, Alvarado, & Spence, 2017 ). As Ingrid Lee, former design director at IDEO New York put it in her book, Joyful: The surprising power of ordinary things to create extraordinary happiness : “Angular objects, even if they’re not directly in your path as you move through your home, have an unconscious effect on your emotions. They may look chic and sophisticated, but they inhibit our playful impulses. Round shapes do just the opposite. A circular or elliptical coffee table changes a living room from a space for sedate, restrained interaction to a lively center for conversation and impromptu games” (Lee, 2018 , p. 142). One might consider here whether Lee’s comments can be scaled up to describe how we move through the city. Does the visually striking building shown in Fig.  4 , for instance, really promote joyfulness and a carefree travel through the urban environment. It seems doubtful, given the evidence suggesting that viewing angular shapes, even briefly, has been shown to trigger a fear response in the amygdala, the part of the brain that is involved in emotion (e.g., LeDoux, 2003 ). Meanwhile, Liu, Bogicevic, and Mattila ( 2018 ) have noted how the round versus angular nature of the servicescape also influences the consumer response in service encounters.

figure 3

A selection of the interiors shown to participants in a neuroimaging study designed to assess viewers’ approach-avoidance motivation in response to curvilinear vs. rectilinear spaces. [High/Low roof; Open/Enclosed space.] [Figure reprinted with permission from Vartanian et al., 2013 ]

figure 4

Montcalm Shoreditch Signature Tower Hotel, 151–157 City Road, London, completed 2015 by SMC Alsop Architects. What is lost when architectural design focuses on eye appeal? [Figure copyright Ian Ritchie, RA]

The height of the ceiling has also been shown to exert an influence over our approach-avoidance responses, and perhaps even our style of thinking (Baird, Cassidy, & Kurr, 1978 ; Meyers-Levy & Zhu, 2007 ; Vartanian et al., 2015 ). However, here it should also be born in mind that the visual perception of space is significantly influenced by colour and lighting (Lam, 1992 ; Manav, Kutlu, & Küçükdoğu, 2010 ; Oberfeld, Hecht, & Gamer, 2010 ; von Castell, Hecht, & Oberfeld, 2018 ). Given many such psychological observations, it should perhaps come as no surprise to find that links between cognitive neuroscience and architecture have grown rapidly in recent years (Choo, Nasar, Nikrahei, & Walther, 2017 ; Eberhard, 2007 ; Mallgrave, 2011 ; Robinson & Pallasmaa, 2015 ). At the same time, however, it is also worth remembering that it has primarily been people’s response to examples or styles of architecture that have been presented visually (via a monitor), with the participant lying horizontal, that have been studied to date, given the confines of the brain-scanning environment (though see also Papale, Chiesi, Rampinini, Pietrini, & Ricciardi, 2016 ). Footnote 3

At the same time, however, it is important to realize that it is not just our visual cortex that responds to architecture. For, as Frances Anderton writes in The Architectural Review : “We appreciate a place not just by its impact on our visual cortex but by the way in which it sounds, it feels and smells. Some of these sensual experiences elide, for instance our full understanding of wood is often achieved by a perception of its smell, its texture (which can be appreciated by both looking and feeling) and by the way in which it modulates the acoustics of the space.” (Anderton, 1991 , p. 27). The multisensory appreciation of quality here linking to a growing body of research on multisensory shitsukan perception - shitsukan , the Japanese word for “a sense of material quality” or “material perception” (see Fujisaki, 2020 ; Komatsu & Goda, 2018 ; Spence, 2020b ). The following sub-sections summarize some of the key findings on how the non-visual sensory attributes of the built and urban environment affect us, when considered individually.

The sound of space: are you listening?

What a space sounds like is undoubtedly important (Bavister, Lawrence, & Gage, 2018 ; McLuhan, 1961 ; Porteous & Mastin, 1985 ; Thompson, 1999 ). Sounds can, after all, provide subtle cues as to the identity or proportions of a space, even hinting at its function (Blesser & Salter, 2007 ; Eberhard, 2007 ; Robart & Rosenblum, 2005 ). As Pallasmaa ( 1994 , p. 31) notes: “Every building or space has its characteristic sound of intimacy or monumentality, rejection or invitation, hospitality or hostility.” However, more often than not, discussion around sound and architectural design tends to revolve around how best to avoid, or minimize, unwanted noise (see Owen, 2019 , on growing concerns regarding the latter). Indeed, as J. Douglas Porteous notes: “with the rapid urbanization of the world’s population, far more attention is being given to noise than to environmental sound … Research has concentrated almost entirely upon a single aspect of sound, the concept of noise or ‘unwanted sound.’” (Porteous, 1990 , p. 48). Some years earlier, Schafer ( 1977 , p. 222) had made much the same point when he wrote that: “The modern architect is designing for the deaf …. The study of sound enters modern architecture schools only as sound reduction, isolation and absorption.” The fact that year-on-year, noise continues to be one of the top complaints from restaurant patrons, perhaps tells us all we need to know about how successful designers have been in this regard (see Spence, 2014 , for a review; Wagner, 2018 ).

There is also an emerging story here regarding the deleterious effects of loud background noise, and the often-beneficial effects of music and soundscapes, on the recovery of patients in the hospital/healthcare setting (see Spence & Keller, 2019 , for a review). Meanwhile, one of the main complaints from those office workers forced to move into one of the open plan offices that have become so popular (amongst employers, if not employees) in recent years (see ‘Redesigning the corporate office’, 2019 ) is around noise distraction (Borzykowski, 2017 ; Burkus, 2016 ; Evans & Johnson, 2000 ). Footnote 4 Once again, one might want to ask what responsibility architects bear. Experimental evidence documenting the deleterious effect of open-plan working has been reported by a number of researchers (e.g., Bernstein & Turban, 2018 ; De Croon, Sluiter, Kuijer, & Frings-Dresen, 2005 ; Otterbring, Pareigis, Wästlund, Makrygiannis, & Lindström, 2018 ).

There is research ongoing in a number of countries to investigate the use of nature sounds, such as, for example, the sound of running water, to help mask other people’s distracting conversations (Hongisto, Varjo, Oliva, Haapakangas, & Benway, 2017 ). Intriguingly, however, it turns out that people’s beliefs about the source of masking sounds, especially in the case of ambiguous noise, can sometimes influence how much relief they provide (Haga, Halin, Holmgren, & Sörqvist, 2016 ). So, for instance, Haga and her colleagues played the same ambiguous pink noise with interspersed white noise to three groups of office-workers. To one control group, the experimenters said nothing, a second group of participants was told that they could hear industrial machinery noise, while a third group was told that they were listening to nature sounds, based on a waterfall, instead. Intriguingly, subjective restoration was significantly higher amongst those who thought that they were listening to the nature sounds than in those who thought that they were listening to industrial noise instead. As might have been expected, the results of the control group, fell somewhere in between.

Paley Park in New York has often been put forward as a particularly elegant solution to the problem of negating unwanted traffic noise in the context of urban design (e.g., Carroll, 1967 ; Prochnik, 2009 ). In 1967, the empty lot resulting from the demolition of the Stork Club on 53rd Street was transformed into a small public park (a so-called pocket park). The space was developed by Zion and Breen. In this case, the acoustic space, think only of the sounds, or better said noise, of the city, is effectively masked by the presence of a waterfall at the far end of the lot (see Fig.  5 ). What is more, the free-standing chairs allow the visitor to move closer to the waterfall should they feel the need to drown out a little more of the urban noise. The greenery growing thickly along the side walls also likely helps to absorb the noise of the city.

figure 5

Paley Park, New York, by Zion and Breen in 1967. [Credit Jim Henderson, and reprinted under Creative Commons agreement]

Music plays an important role in our experience of the built environment - think here only of the Muzak of decades gone by (Lanza, 2004 ). This is as true of the guest’s hotel experience (e.g., when entering the lobby) as it is elsewhere (e.g., in a shopping centre or bar, say). Footnote 5 The sound that greets customers in the lobby is apparently very important to Ian Schrager, the Brooklyn-born entrepreneur who created fabled nightclub Studio 54 in New York. In recent years, he has been working with Marriott to launch The EDITION hotels in a number of major cities, including London and New York. Music plays a key role in the Schrager experience. As the entrepreneur puts it: “The sound of a hotel lobby is often dictated by monotonous, vapid lounge muzak – a zombie-like drone of new jazz and polite house, with the sole purpose of whiling away the waiting time between check-in and check-out.” As might have been expected, the music in the lobbies of The EDITION hotels is carefully curated (Eriksen, 2014 , p. 27). However, the thumping noise of the music from the nightclub/bar that is often also an integral part of the experience offered by these hip venues means that meticulous architectural design is also required in order to limit the spread of unwanted noise through the rest of the building (e.g., so as not to disturb the sleep of those who may be resting in the rooms upstairs). Note here that there are also some increasingly sophisticated solutions - including sound-absorbing panels, as well as active noise cancellation systems - to dampen unwanted sound in open spaces such as restaurants and offices (Clynes, 2012 ).

Designing for “the eyes of the skin”

The tactile element of architecture is often ignored. In fact, very often, the first point of physical contact with a building typically occurs when we enter or leave. Or, as Pallasmaa ( 1994 , p. 33) once evocatively put it: “The door handle is the handshake of the building”. However, once inside a building, it is worth remembering that we will also typically make contact with flooring (Tonetto, Klanovicz, & Spence, 2014 ), hand rails (Spence, 2020d ), elevator buttons, furniture, and the like (though this is, of course, likely to change somewhat in the era of pandemia). As Richard Sennett, author of Flesh and Stone, laments in his critical take on the sensory order of modernity: “sensory deprivation which seems to curse most modern buildings; the dullness, the monotony, and the tactile sterility which afflicts the urban environment” (Sennett, 1994 , p. 15). The absence of tactile interest is also something that Witold Rybczynski author of The Look of Architecture acknowledges when writing that: “Although architecture is often defined in terms of abstractions such as space, light and volume, buildings are above all physical artifacts. The experience of architecture is palpable: the grain of wood, the veined surface of marble, the cold precision of steel, the textured pattern of brick.” (Rybczynski, 2001 , p. 89). Notice here how Rybczynski mentions both texture and temperature, two of the key attributes of tactile sensation(see also Henderson, 1939 ). Temperature change, and change in the flooring material (tatami matting or cedarwood), is also something that the Tom museum for the blind in Tokyo also plays with deliberately (Classen, 1998 , p. 150; Vorreiter, 1989 ; Wagner, 1989 ). There is also a braille poen on the knob of the exit door too.

The careful use of material can evoke tactility as the viewer (or occupant) imagines or mentally simulates what it would feel like to reach out and touch or caress an intriguing surface (Sigsworth, 2019 ; see also Lupton, 2002 ). Juhani Pallasmaa, who has perhaps written more than anyone else on the theme of the tactile, or haptic in architecture, writes that “Natural materials - stone, brick and wood - allow the gaze to penetrate their surfaces and they enable us to become convinced of the veracity of matter … But the materials of today - sheets of glass, enamelled metal and synthetic materials - present their unyielding surfaces to the eye without conveying anything of their material essence or age.” (Pallasmaa, 1994 , p. 29).

Lisa Heschong, architect, and partner of architectural research firm Heschong Mahone Group, has written extensively on the theme of thermal (as opposed to textural) aspects of architectural design in her book Thermal Delight in Architecture (Heschong, 1979 ) . There, she points to examples such as the hearth, the sauna, and Roman and Japanese baths as archetypes of thermal delight about which rituals have developed, the shared experience reinforcing social bonds of affection and ceremony (see also Lupton, 2002 ; Papale et al., 2016 ). At this point, one might also want to mention the much-admired Therme Vals Spa by Peter Zumthor, in Switzerland with their use of different temperatures of both water and touchable surfaces (Ryan, 1997 , though see also Mairs, 2017 ). The tactile element is, in other words, fundamental to the total (multisensory) experience of architectural design. This is true no matter whether the materiality is touched directly or not (i.e., merely seen, inferred, or imagined). So, for example, here one might only think about how looking at a cheap fake marble or wood veneer can make one feel, to realize that touch in often not required to assess material quality, or the lack thereof (see also Karana, 2010 ).

An architecture of the chemical senses

Talking of an architecture of scent, or of taste (these two of the so-called chemical senses), might seem like a step too far. That said, one does come across titles such as Eating Architecture (Horwitz & Singley, 2004 ) and An Architecture of Smell (McCarthy, 1996 ; see also Barbara & Perliss, 2006 ). Footnote 6 Unfortunately, however, all too often, consideration of the olfactory in architectural design practice has focused on the elimination of negative odours. When thinking about the mundane experience of odours in buildings, what immediately comes to mind includes the smell of wood (i.e., building materials), dust, mould, cleaning products, and flowers. As Eberhard ( 2007 , p. 47) puts it: “We all have our favorite smells in a building, as well as ones that are considered noxious. A cedar closet in the bedroom is an easy example of a good smell. The terrible smell of a house that was ravaged by fire or floods is seared in the memory of those who have endured one of these disasters.” This is perhaps no coincidence, given that it tends to be the bad odours, rather than the neutral or positive ones, that have generally proved most effective in immersing us in an experience (Baus & Bouchard, 2017 ; see also Aggleton & Waskett, 1999 ). Research by Schifferstein, Talke, and Oudshoorn ( 2011 ) investigated whether the nightlife experience could be enhanced by the use of pleasant fragrance to mask the stale odour after the indoor smoking ban was introduced a few years ago. Once again, notice how the focus here is on the elimination of the negative stale odours rather than necessarily the introduction of the positive (the latter merely being introduced in order to mask the former).

Jim Drohnik captures the idea of olfactory absence when talking about not just the “white cube” mentality but the “anosmic cube” (Drobnick, 2005 ). The former phrase was famously coined by O’Doherty ( 1999 , 2009 ) in order to describe the then-popular practice of displaying art in gallery spaces that were devoid of colour or any other form of visual distraction. Footnote 7 Some years later, Jim Drobnik introduced the latter phrase in order to highlight the fact that too many spaces are seemingly deliberately designed to have no smell, nor to leave any lasting olfactory trace, either. Footnote 8 And yet, at the same time, it is clear that odour of a space can be incredibly evocative too, as anecdotally noted by Pallasmaa ( 1994 , p. 32) in the following quote: “The strongest memory of a space is often its odor; I cannot remember the appearance of the door to my grandfather’s farm-house from my early childhood, but I do remember the resistance of its weight, the patina of its wood surface scarred by a half century of use, and I recall especially the scent of home that hit my face as an invisible wall behind the door.” And thinking back to my memories of visiting my own grandfather, long since deceased, on his fairground wagon in Bradford, it was undoubtedly the intense smell of “derv” (English slang for diesel-engine road vehicle), the liquid diesel oil that was used for trucks at the time, that I can still remember better than anything else. The residents of buildings tend to adapt to the positive and neutral smells in the buildings we inhabit. This is evidenced by the fact that we are typically only aware of the smell of our own home, what some call building odour, or BO for short, when we return after a long trip away (Dalton & Wysocki, 1996 ; McCooey, 2008 ).

Sick building syndrome and the problem of poor olfactory design

Improving indoor air quality might well also provide an effective means of helping to alleviate some of the symptoms of sick building syndrome (SBS) that were mentioned earlier (Guieysse et al., 2008 ). It is certainly striking how many large outbreaks of this still-mysterious condition reported in the 1980s were linked to the presence of an unfamiliar smell in closed office buildings with little natural ventilation (Wargocki, Wyon, Baik, Clausen, & Fanger, 1999 ; Wargocki, Wyon, Sundell, Clausen, & Fanger, 2000 ). For instance, in June 1986, more that 12% of the workforce of 2500 people working at the Harry S. Truman State Office Building in Missouri came down with the symptoms of SBS over a 3-day period (Donnell Jr. et al., 1989 ). The symptoms presented by some of the workers (including dizziness and difficulty in breathing) were so severe they had to be rushed to the local hospital for emergency treatment. And while a thorough examination of the building subsequently failed to reveal the presence of any particular toxic airborne pollutants that might have been responsible for the outbreak, in the majority of cases, it turned out that the symptoms of SBS were preceded by the perception of unusual odours and inadequate airflow in the building.

According to Donnell Jr. et al. ( 1989 ), these complaints of odours may well have heightened the perception of poor air quality by some employees in the building. This, in turn, may have led to an epidemic anxiety state resulting in the SBS outbreak (Faust & Brilliant, 1981 ). In fact, workers suffering from SBS were more than twice as likely to have noticed a particular odour in the work area before the onset of their symptoms than those who were working in the same building who were unaffected by the outbreak. Footnote 9 At the same time, however, it should also be borne in mind that our tendency to focus on what we see and hear means that we often exhibit olfactory anosmia to ambient scents (Forster & Spence, 2018 ).

To give a sense of the potential scale of the problem, Woods ( 1989 ) estimated that 30–70 million people in the USA alone are exposed to offices that manifest SBS. As such, anything (and everything) that can be done to reduce the symptoms associated with this reaction to the indoor environment (Finnegan, Pickering, & Burge, 1984 ) will likely have a beneficial effect on the health and well-being of many people. At the same time, however, it is perhaps also worth bearing in mind here that the incidence of SBS would seem to have declined in recent years (though see also Joshi, 2008 ; Magnavita, 2015 ; Redlich, Sparer, & Cullen, 1997 ), perhaps suggesting that building design/ventilation has improved as a result of the earlier outbreaks. Footnote 10 That said, it is perhaps also worth noting that there continues to be some uncertainty as to whether the very real symptoms of SBS should be attributed to airborne pollutants, or may instead be better understood as a psychosomatic response to a particular environmental atmosphere (see Fletcher, 2005 and Love, 2018 ). What is more, there has been a move by some researchers to talk in terms of the less pejorative-sounding building-related symptoms (BRS) instead (Niemelä, Seppänen, Korhonen, & Reijula, 2006 ). One more psychological factor that may be relevant here concerns the feeling of a lack of control over one’s multisensory environment that many of those working in ventilated buildings where the windows cannot be opened manually have may indeed play a role in the elicitation of SBS.

Scent and the city: designing fragrant spaces

There are, however, signs that the situation is slowly starting to change with regards to the emphasis placed on olfaction in both architectural and urban design practice. For instance, a number of commentators have noted, not to mention sometimes been puzzled by, the distinctive, yet unexplained, pleasant - and hence, one assumes, deliberately introduced - fragrances that some new constructions appear to have. Just take the case of the Barclays Center arena in Brooklyn, NY, home of the Brooklyn Nets, as a case in point. On its opening in 2013, various commentators in the press drew attention to the distinctive, if not immediately identifiable, scent that appeared to pervade the space, and which appeared to have been added deliberately - almost as if it were intended to be a signature scent for the space (e.g., Albrecht, 2013 ; Doll, 2013 ; Martinez, 2013 ). That said, the idea of fragrancing public spaces dates back at least as far as 1913. In that year, at the opening of the Marmorhaus cinema in Berlin, the fragrance of Marguerite Carré, a perfume by Bourjois, Paris, was deliberately (and innovatively, at least for the time) wafted through the auditorium (Berg-Ganschow & Jacobsen, 1987 ). Meanwhile, in what may well be a sign of things to come, synaesthetic perfumer Dawn Goldsworthy and her scent design company 12:29 recently made the press after apparently creating a bespoke scent for a new US$40 million apartment in Miami (Schroeder, 2018 ). What further opportunities might there be to design distinctive “signature” scents for spaces/buildings, one might ask (Henshaw et al., 2018 ; Jones, 2006 ; Trivedi, 2006 )?

Evidence that the olfactory element of design can be used to affect behaviour change positively includes, for example, the observation that people tend to engage in more cleaning behaviours when there is a hint of citrus in the air (De Lange, Debets, Ruitenburg, & Holland, 2012 ; Holland, Hendriks, & Aarts, 2005 ). In the future, it may not be too much of a stretch to imagine public spaces filled with aromatic flowers and blossoming trees, introduced with the aim of helping to discourage people from littering, and who knows, perhaps even reducing vandalism (see also Steinwald, Harding, & Piacentini, 2014 ). In terms of the cognitive mechanism underlying such crossmodal effects of scent on behaviour, the suggestion, at least in the citrus cleaning example just mentioned, is that smelling an ambient scent that we associate with clean and cleaning then activates, or primes, the associated concepts (Smeets & Dijksterhuis, 2014 ). Having been primed, the suggestion is thus that this makes it that bit more likely that we will engage in behaviours that are congruent or consistent with the primed concept (though see Doyen, Klein, Pichon, & Cleeremans, 2012 ).

Elsewhere, researchers have already demonstrated the beneficial effects that lavender, and other scents normally associated with aromatherapy, have on those who are exposed to them. So, for instance, the latter tend to show reduced stress, better sleep, and even enhanced recovery from illness (see Herz, 2009 ; Spence, 2003 , for reviews; though see also Haehner, Maass, Croy, & Hummel, 2017 ). According to one commentator writing in The New York Times: “While these findings have obvious implications for health care, the opportunities for architecture and urban planning are particularly intriguing. Designers are trained to focus mostly on the visual, but the science of design could significantly expand designers’ sensory palette. Call it medicinal urbanism.” (Hosey, 2013 ). Effects on people’s mood resulting from exposure to ambient scent have been reported in some by no means all studies (Glass & Heuberger, 2016 ; Glass, Lingg, & Heuberger, 2014 ; Haehner et al., 2017 ; Weber & Heuberger, 2008 ). It remains somewhat uncertain though whether the beneficial effects of aromatherapy scents can be explained by priming effects, based on associative learning, as in the case of the clean citrus scents mentioned above (see Herz, 2009 ), versus via a more direct (i.e., less cognitively mediated) physiological route (cf. Harada, Kashiwadani, Kanmura, & Kuwaki, 2018 ).

The olfactory scentscapes, and scent maps of cities, that have been discussed by various researchers (see Fig.  6 ) have also helped to draw people’s attention to the often rich olfactory landscapes offered by many urban spaces (e.g., https://sensorymaps.com/ ; Bucknell, 2018 ; Henshaw, 2014 ; Henshaw et al., 2018 ; Lipps, 2018 ; Lupton & Lipps, 2018 ; Margolies, 2006 ).

figure 6

Scentscape of the city. Spring scents and smells of the city of Amsterdam by Kate McLean. [Credit “Spring Scents & Smells of the City of Amsterdam” © 2013-2014. Digital print. 2000 x 2000 mm. Courtesy of Kate McLean]

The notion of the healing garden has also seen something of a resurgence in recent years, and the benefits now, as historically, are likely to revolve, at least in part, around the healing, or restorative effect of the smell of flowers and plants (e.g., Pearson, 1991 ; see also Ottoson & Grahn, 2005 ). One building that is often mentioned in this regard, namely in terms of its olfactory design credentials, is the Silicon House by architects, SelgasCano, situated on the outskirts of Madrid ( https://www.architectmagazine.com/project-gallery/silicon-house-6143 ). This house is set in what has been described as “a garden of smells”, which emphasize the olfactory, while also stressing the tactile elements of the design. Hence, while the olfactory aspects of architectural design practice have long been ignored, there are at least signs of a revival of interest in stimulating this sense through both architectural and urban design practice.

Architectural taste

The British writer and artist Adrian Stokes once wrote of the “oral invitation of Veronese marble” (Stokes, 1978 , p. 316). And while I must admit that I have never felt the urge to lick a brick, Pallasmaa ( 1996 , p. 59) vividly recounts the urge that he once experienced to explore/connect with architecture using his tongue. He writes that: “Many years ago when visiting the DL James Residence in Carmel, California, designed by Charles and Henry Greene, I felt compelled to kneel and touch the delicately shining white marble threshold of the front door with my tongue. The sensuous materials and skilfully crafted details of Carlo Scarpa’s architecture as well as the sensuous colours of Luis Barragan’s houses frequently evoke oral experiences. Deliciously coloured surfaces of stucco lustro , a highly polished colour or wood surfaces also present themselves to the appreciation of the tongue.”

Perhaps aware of many readers’ presumed scepticism on the theme of the gustatory contribution to architecture, Footnote 11 Pallasmaa writes elsewhere that: “The suggestions that the sense of taste would have a role in the appreciation of architecture may sound preposterous. However, polished and coloured stone as well as colours in general, and finely crafted wood details, for instance, often evoke an awareness of mouth and taste. Carlo Scarpa’s architectural details frequently evoke sensation of taste.” (Pallasmaa, 2011 , p. 595). The suggestion here that “colours in general … often evoke … [a] taste” seemingly linking to the widespread literature on the crossmodal correspondences that have increasingly been documented between colour and basic tastes (see Spence et al., 2015 , for a review). However, rather than describing this in terms of architecture that one can taste, one might more fruitfully refer to the growing literature on crossmodal correspondences instead (see below for more on this theme).

When, in his book Architecture and the brain , Eberhard ( 2007 , p. 47) talks about what the sense of taste has to do with architecture, he suggests that: “You may not literally taste the materials in a building, but the design of a restaurant can have an impact on your ‘conditioned response’ to the taste of the food.” Environmental multisensory effects on tasting is undoubtedly an area that has grown markedly in interest in recent years (e.g., see Spence, 2020c , for a review). It is though worth noting that just as for the olfactory case, some atmospheric effects on tasting may be more cognitively-mediated (e.g., associated with the priming of notions of luxury/expense, or lack thereof) while others may be more direct, as when changing the colour (see Oberfeld, Hecht, Allendorf, & Wickelmaier, 2009 ; Spence, Velasco, & Knoeferle, 2014 ; Torrico et al., 2020 ) or brightness (Gal et al., 2007 ; Xu & LaBroo, 2014 ) of the ambient lighting changes taste/flavour perception.

“An architecture of the seven senses”?

So far in this section, we have briefly reviewed the unisensory contributions of architectural design organized around each of the five main senses (vision audition, touch, smell, and taste). However, seemingly not content with the traditional five, Pallasmaa ( 1994 ) goes further in the title of one of his early articles entitled “An architecture of the seven senses.” While the text itself is not altogether clear, or explicit, on this point, the skeleton and muscles would appear to be the extra senses that Pallasmaa has in mind here. Indeed, the embodied response of people to architecture is definitely something that has captured the imagination, not to mention intrigued, a number of architectural theorists in recent years (e.g., see Bloomer & Moore, 1977 ; Pallasmaa, 2011 ; Pérez-Gómez, 2016 ).

The vestibular sense is also worthy of mention here (see Gulden & Grüsser, 1998 ; Indovina et al., 2005 ). Anyone who has tried out one of the VR simulations of walking along the outside ledge of a tall building will have had the feeling of vertigo. Normally, architects presumably avoid designing structures that may give rise to such discombobulating feelings. That said, the recent increase in popularity of transparent viewing platforms, and bridges, shows that, on occasion, architects are not beyond emphasizing the important contribution made by this normally “silent” sense. For instance, The Grand Canyon Skywalk is a horseshoe-shaped cantilever bridge with a glass walkway at Eagle Point, Arizona that allows visitors to stand 500–800 ft. (150–240 m) above the canyon floor (Yost, 2007 ). Opened in 2007, by 2015, it had attracted more than a million visitors (see Fig.  7 ). While popular, it is perhaps worth noting that a number of such attractions have recently been closed down in parts of China due to safety fears (Ellis-Petersen, 2019 ). Walking on such structures likely also make people more aware of their own corporeality too, thus engaging the proprioceptive and kinaesthetic senses too. On a more mundane level, Heschong ( 1979 , p. 34) draws attention to the importance of bodily movement in the case of the porch swing whose self-propelled movement, prior to air-conditioning, would have been a thermal necessity in the summer months in the southern states of the USA.

figure 7

Skywalk from outside ledge. [Attribution: Complexsimplellc at English Wikipedia reprinted under Creative Commons agreement]

Consideration of the putatively embodied response to architecture might lead one back to Hall’s ( 1966 ) seminal early notion of “proxemics”. Hall used the latter term to describe the differing response to stimuli as a function of their distance from the viewer’s body. It is certainly easy to imagine this linking to contemporary notions concerning the different regions of personal space that have been documented around an observer (e.g., Previc, 1998 ; Spence, Lee, & Stoep, 2017 ). However, while these terms might sound more or less synonymous to cognitive neuroscientists, Malnar and Vodvarka ( 2004 ), both licensed architects, choose to take a much more cautious stance concerning these terms, treating them as referencing distinct phenomena in their own book on sensory design.

Interim summary

While the impact of each of the senses, however many there might be, can undoubtedly be analysed in isolation, as has largely been attempted in the preceding sections, the fact of the matter is that they interact one with another in terms of determining our response to the environment, be it built or natural. So, having briefly addressed the contribution of each of the senses to architectural design practice, when studied individually, the next question to consider is how the senses interact in the perception of environment/atmosphere, as they do in many other aspects of our everyday perception. After all, as Malnar notes: “The point of immersing people within an environment is to activate the full range of the senses.” (Malnar, 2017 , p. 146). Pallasmaa ( 2000 , p. 78) makes a similar point writing that: “Every significant experience of architecture is multi-sensory; qualities of matter, space and scale are measured by the eye, ear, nose, skin, tongue, skeleton and muscle.” (cf. Rasmussen, 1993 ).

Malnar and Vodvarka ( 2004 , p. ix) set the scene for the discussion with the opening lines of the preface of their book on sensory design in architecture, where they write: “What if we designed for all our senses? Suppose, for a moment, that sound, touch, and odour were treated as the equals of sight, and that emotion was as important as cognition. What would our built environment be like is sensory response, sentiment, and memory were critical design factors, more vital even than structure and program?” Indeed, those who take up the challenge of designing for the multisensory mind might well take a tip from one commentator, writing in Advertising Age when talking about product innovation who suggested that: “… the most successful new products appeal on both rational and emotional levels to as many senses as possible.” (Neff, 2000 , p. 22). Architectural design practice, I suggest, would be well-advised to strive for much the same in order to optimally stimulate the multisensory mind.

Although not the primary interest of the present review, it is perhaps also worth noting in passing, how a very similar debate on the importance of designing for the non-visual senses has been playing out amongst those interested specifically in landscape design/architecture (Lynch & Hack, 1984 ; Mahvash, 2007 ; Treib, 1995 ). The garden is a multisensory space and as Mark Treib wrote once in an essay entitled “Must landscape mean?”: “Today might be a good time to once more examine the garden in relation to the senses.”

Designing for the multisensory mind: architectural design for all the senses

The architect must act as a composer that orchestrates space into a synchronization for function and beauty through the senses – and how the human body engages space is of prime importance. As the human body moves, sees, smells, touches, hears and even tastes within a space – the architecture comes to life.
The rhythm of an architecture can be felt by occupants as a result of the architect’s composition – or arrangement of all the sensorial qualities of space. By arranging spatial sensorial features, an architect can lead occupants through the functional and aesthetic rhythms of a created place. Architectural building for all the senses can serve to move occupants – elevating their experience. (quote from a blogpost by Lehman, 2009 ).

One of the most exciting developments in cognitive neuroscience in recent decades has been the growing realization that perception/experience is far more multisensory than anyone had realized (e.g., Bruno & Pavani, 2018 ; Calvert et al., 2004 ; Levent & Pascual-Leone, 2014 ; Stein, 2012 ). That is, what we hear and smell, and what we think about the experience, is often influenced by what we see, and vice versa (Calvert et al., 2004 ; Stein, 2012 ). The senses talk to, and hence influence, one another all the time, though we often remain unaware of these cross-sensory interactions and influences. In fact, wherever neuroscientists look in the human brain, activity appears to be modulated by what is going on in more than one sense, leading, increasingly, to talk of the multisensory mind (Ghazanfar & Schroeder, 2006 ; Talsma, 2015 ). The key question here must therefore be what implications this growing realization of the ubiquity of multisensory cross-talk has for the field of architectural design practice?

The problem is that, as yet, there has been relatively little research directed at the question of how atmospheric/environmental multisensory cues actually interact. Mattila and Wirtz ( 2001 , pp. 273–274) drew attention to this lacuna some years ago when writing that: “Past studies have examined the effects of individual pleasant stimuli such as music, color or scent on consumer behavior, but have failed to examine how these stimuli might interact.” At the outset, when starting to consider the multisensory perception of architecture, it is worth noting that it is rarely something that we attend to. Indeed, as Benjamin ( 1968 , p. 239) once noted: “Architecture has always represented the prototype of a work of art the reception of which is consummated in a state of distraction.” To the extent that such a view is correct, one can say that multisensory architecture is rarely foregrounded in our attention/experience. Juhani Pallasma, meanwhile, has suggested that: “An architectural experience silences all external noise; it focuses attention on one’s very existence.” (Pallasmaa, 1994 , p. 31). Once again, the suggestion here would appear to be that attention is directed away from the building and toward the individual and their place in the world. Given that, on an everyday basis, architecture is typically not foregrounded in our attention/experience, one might legitimately wonder as to whether the multisensory integration of atmospheric/environmental cues takes place, given that they are so often unattended.

According to the laboratory research that has been published on this question to date, the evidence would appear to suggest that while the multisensory integration of unattended cues relating to an object or event certainly can occur, it is by no means guaranteed to do so (see Spence & Frings, 2020 , for a review). Perhaps the more fundamental question here, though, is whether we need to attend to ambient/environmental sensory cues for them to influence us. However, the research that has been published to date would appear to suggest that very often environmental cues influence us even when we are not consciously aware of, or thinking about them.

One particularly striking example of this was reported by researchers who manipulated whether French or German music was played in a supermarket (North, et al., 1997 , 1999 ). The results showed that the majority of the wine purchased was French when French music was played, with this reversing to a majority of German wines being sold when German music was played. The even more striking aspect of these results was the fact that the majority of those interviewed after coming away from the tills denied that the background music had any influence over the choices they made. A number of studies have also shown that scents that we are unaware of, either because they are presented just below the perceptual threshold or because we have become functionally anosmic to their constant presence, can nevertheless still influence us (Li, Moallem, Paller, & Gottfried, 2007 ). Similarly, there is also a suggestion that inaudible infrasound waves (i.e., < 20 Hz) may also affect people without their necessarily being aware of their presence (Weichenberger et al., 2017 ). Meanwhile, in terms of visual annoyance, it has been reported that flickering LED lights that look no different to the naked eye can nevertheless trigger a significantly greater number of headaches that non-flickering lights (e.g., see Wilkins, 2017 ; Wilkins, Nimmo-Smith, Slater, & Bedocs, 1989 ). Once again, therefore, this suggests that ambient sensory phenomena do not necessarily need to be perceptible in order to affect us, adversely or otherwise.

On the benefits of multisensory design: bringing it all together

One demonstration of just how dramatic the benefits of designing for multiple senses can be was reported by Kroner, Stark-Martin, and Willemain ( 1992 ) in a technical report. These researchers examined the effects of an office make-over when a company moved to a new office building. The employees in the new office were given individual control of the temperature, lighting, air quality, and acoustic conditions where they were working. Productivity increased by approximately 15% in the new building. When the individual control of the ambient multisensory environment was disabled in the new building, performance fell by around 2% instead. Trying to balance the influence of each of the senses is one of the aims of Finnish architect Juhani Pallasmaa, whose name we have come across at several points already in this text. As Steven Holl notes in the preface to Pallasmaa’s The eyes of the skin : “I have experienced the architecture of Juhani Pallasmaa, … The way spaces feel, the sound and smell of these places, has equal weight to the way things look.” (Pallasmaa, 1996 , p. 7). One example of multisensory architectural design to which Juhani Pallasmaa draws attention in several of his writings is the Ira Keller Fountain, Portland Oregon (see Fig.  8 ).

figure 8

The Ira Keller Fountain, Portland Oregon. According to Pallasmaa ( 2011 ), p. 596) this is “An architecture for all the senses including the kinaesthetic and olfactory senses.” Once again, the auditory element is provided by the sound of falling water

On the multisensory integration of atmospheric/environmental cues

To date, only a relatively small number of studies have directly studied the influence of combined ambient/atmospheric cues on people’s perception, feelings, and/or behaviour. Mattila and Wirtz ( 2001 ) conducted one of the first sensory marketing studies to be published in this area. These researchers manipulated the olfactory environment (no scent, a low-arousal scent (lavender), or a high-arousal scent (grapefruit)) while simultaneously manipulating the presence of music (no music, low-arousal music, or high-arousal music). When the scent and music were congruent in terms of their arousal potential, the customers rated the store environment more positively, exhibited higher levels of approach and impulse-buying behaviour, and expressed more satisfaction. There is, though, always a very real danger of sensory overload if the combined multisensory input becomes too stimulating (see Malhotra, 1984 ; Simmel, 1995 ).

Meanwhile, in another representative field study, Sayin et al. ( 2015 ) investigated the impact of presenting ambient soundscapes in an underground car park in Paris. In particular, they assessed the effects of introducing western European birdsong or classical instrumental music by Albinoni to the three normally silent stairwells used by members of the general public when exiting the car park. A total of 77 drivers were asked about their feelings on their way out. Birdsong was found to work best in terms of enhancing the perceived safety of the situation - in this case by around 6%. This despite the fact that all of those who were quizzed realized that the sounds that they had heard were coming from loudspeakers. Footnote 12 In an accompanying series of laboratory studies, Sayin et al.’s participants were shown a 60-s first-person perspective video that had been taken in the same Paris car park, or else a short video of someone walking through a metro station in Istanbul. Once again, participants were asked about how safe it felt, about perceived social presence, and about their willingness to purchase a monthly metro pass. Even under these somewhat contrived experimental conditions, the presence of an ambient soundscape once again increased perceived safety as well as the participants’ self-reported intention to purchase a season ticket. It was, though, the sound of people singing Alleluia that proved most effective in terms of enhancing perceived safety amongst those watching the videos. Footnote 13 It is, however, worth bearing in mind here that many of the key results reported in this study were only borderline significant. As such, adequately-powered replication would be a good idea before too much weight is given to these intriguing findings.

Recently, Ba and Kang ( 2019 ) documented crossmodal interactions between ambient sound and smell in a laboratory study that was designed to capture the sensory cues that might be encountered in a typical urban environment. These researchers decided to pair the sounds of birds, conversation, and traffic, with the smells of flowers (lilac, osmanthus), coffee, or bread, at one of three levels (low, medium, or high) in each modality. A complex array of interactions was observed, with increasing stimulus intensity sometimes enhancing the participants’ comfort ratings, while sometimes leading to a negative response instead. While Ba and Kang’s results defy any simple synopsis, given the complex pattern of results reported, their findings nevertheless clearly suggest that sound and scent interact in terms of influencing people’s evaluation of urban design.

The colour of the ambient lighting in an indoor environment has also been shown to influence the perceived ambient temperature and thermal comfort of an environment (e.g., Candas & Dufour, 2005 ; Tsushima, et al., 2020 ; Winzen, Albers, & Marggraf-Micheel, 2014 ). For instance, in one representative study, Winzen and colleagues reported that illuminating a simulated aircraft cabin in warm yellow vs. cool blue-coloured lighting exerted a significant influence over people’s self-reported thermal comfort. The participants rated the environment as feeling significantly warmer under the warm (as compared to the cool) lighting colour. One can only really make sense of such findings from a multisensory perspective (see Spence, 2020a , for a review).

Taken together, then, the results of the representative selection of studies reported in this section demonstrate that our perception of, and/or response to, multisensory environments are undoubtedly influenced by the combined influence of environmental/atmospheric cues in different sensory modalities. So, in contrast to the quote from Mattila and Wirtz ( 2001 ) that we came across a few pages ago, there is now a growing body of empirical research out there demonstrating that atmospheric cues presented in different sensory modalities, such as music, scents, and visual stimuli combine to influence how alerting, or pleasant, a particular environment, or stimulus (such as, for example, a work of art), is rated as being (e.g., Banks, Ng, & Jones-Gotman, 2012 ; Battacharya & Lindsen, 2016 ).

Sensory congruency

In their book, Spaces speak, are you listening ?, Blesser and Salter draw the reader’s attention to the importance of audiovisual congruency in architectural design. They write that: “Aural architecture, with its own beauty, aesthetics, and symbolism, parallels visual architecture. Visual and aural meanings often align and reinforce each other. For example, the visual vastness of a cathedral communicates through the eyes, while its enveloping reverberation communicates through the ears.” (Blesser & Salter, 2007 , p. 3). However, they also draw attention to the incongruency that one experiences sometimes: “Although we expect the visual and aural experience of a space to be mutually supportive, this is not always the case. Consider dining at an expensive restaurant whose decorations evoke a sense of relaxed and pampered elegance, but whose reverberating clatter produces stress, anxiety, isolation, and psychological tension, undermining the possibility of easy social exchange. The visual and aural attributes produce a conflicting response.” (Blesser & Salter, 2007 , p. 3).

Regardless of whether atmospheric/environmental sensory cues are integrated or not, one general principle underpinning our response to multisensory combinations of environmental cues is that those combinations of stimuli that are “congruent” (whatever that term means in this context) will tend to be processed more fluently, and hence be liked more, than those combinations that are deemed incongruent, and hence will often prove more difficult, and effortful, to process (Reber, 2012 ; Reber, Schwarz, & Winkielman, 2004 ; Reber, Winkielman, & Schwartz, 1998 ; Winkielman, Schwarz, Fazendeiro, & Reber, 2003 ; Winkielman, Ziembowicz, & Nowak, 2015 ). Footnote 14 Indeed, it was the putative sensory incongruency between a relaxing slow-tempo music and arousing citrus scent that was put forward as a possible explanation for why Morrin and Chebat ( 2005 ) found that adding scent and sound in the setting of the shopping mall reduced unplanned purchases as compared to either of the unisensory interventions amongst almost 800 shoppers in one North American Mall (see Fig.  9 ).

figure 9

Morrin and Chebat ( 2005 ). Sales figures (unplanned purchases) in mall as a function of music, scent, or the combination of the two. In this case, multisensory stimulation led to a significant reduction in sales, perhaps because low-tempo music was combined with a likely-alerting citrus scent

Congruency can, of course, be defined at multiple levels. For instance, as we have seen already in this section, sensory cues may be more or less congruent in terms of their arousal/relaxation potential (e.g., Homburg, Imschloss, & Kühnl, 2012 ; Mattila & Wirtz, 2001 ). Mahvash ( 2007 , pp. 56–57) talks about the use of congruent cues to convey the notion of coolness: “… the Persian garden with its patterns of light and shadow, reflecting pools, gurgling fountains, scents of flowers and fruits, and gentle cool breezes 'offers an amazing richness of variety of sensory experiences which all serve to reinforce the pervasive sense of coolness'.” However, different sensory inputs may also be deemed congruent or not in terms of their artistic style (see Hasenfus, Martindale, & Birnbaum, 1983 ; Muecke & Zach, 2007 ; cf. Hersey, 2000 , pp. 37–41). It was stylistic congruency that was manipulated in a couple of experiments, conducted both online and in the laboratory by Siefkes and Arielli ( 2015 ). These researchers had their participants explicitly concentrate on and evaluate the style of the buildings shown in one of two architectural styles (baroque or modern - a short video showing five baroque buildings; there were also a short video, focusing on five modern buildings instead). Their results revealed that the buildings were rated as looking more balanced, more coherent, and to a certain degree, more complete, Footnote 15 when viewed while listening to music that was congruent (e.g., baroque architecture with baroque music - specifically Georg Philipp Telemann’s, Concerto Grosso in D major, TWV 54:D3 (1716)) rather than incongruent (e.g., baroque architecture with Philip Glass track from the soundtrack to the movie Koyaanisqatsi).

Before moving on, though, it is worth noting that in this study, as in many of the other studies reported in this section, there is a possibility that the design of the experiments themselves may have resulted in the participants concerned paying rather more attention to the atmospheric/environmental cues (and possibly also their congruency) than is normally likely to be the case when, as was mentioned earlier, the architecture itself fades into the background. Ecological validity may, in other words, have been compromised to a certain degree.

One of the other examples of incongruency that one often comes across is linked to the growing interest in biophilic design. As Pallasmaa ( 1996 , p. 41) notes: “A walk through a forest is invigorating and healing due to the constant interaction of all sense modalities; Bachelard speaks of ‘the polyphony of the senses’. The eye collaborates with the body and the other senses. One’s sense of reality is strengthened and articulated by this constant interaction. Architecture is essentially an extension of nature into the man-made realm …” Footnote 16 No wonder, then, that many designers have been exploring the benefits of bringing elements of nature into interior spaces in order to boost the occupants’ mood and aid relaxation (Spence, 2021 ). However, one has to ask whether the benefits of adding the sounds of a tropical rainforest to a space such as the shopping area of Glasgow airport, say (Treasure, 2007 ), really outweigh the cognitive dissonance likely elicited by hearing such sounds in such an incongruous setting? Similarly, a jungle soundscape was incorporated into the children’s section of Harrods London Department store a few years ago (Harrods’ Toy Kingdom - The Sound Agency | Sound Branding” https://www.youtube.com/watch?v=EVUUG6VvFKQ ). Nature soundscapes have also been introduced into Audi car salesrooms, not to mention BP petrol station toilet facilities (Bashford, 2010 ; Treasure, 2007 ). It is worth noting here that given the important role that congruency has been shown to play at the level of multisensory object/event perception, there is currently a stark paucity of research that has systematically investigated the relevance/importance of congruency at the level of multisensory ambient, or environmental, cues. As the quotes earlier in this section make clear, it is something to which some architects are undoubtedly sensitive, and on which they already have an opinion. Yet the relevant underpinning research still needs to be conducted.

Ultimately, therefore, while the congruency of atmospheric/environmental cues can be defined in various ways, and while incongruency is normally negatively valenced (because it is hard to process), Footnote 17 issues of (in)congruency may often simply not be an issue for the occupants of specific environments. This may either be because the latter simply do not pay attention to the atmospheric/environmental cues (and hence do not register their incongruency) and/or because they have no reason to believe that the stimuli should be combined in the first place.

Sensory dominance

One common feature of configurations of multisensory stimuli that are in some sense incongruent is sensory dominance. And very often, under laboratory conditions, this tends to be vision that dominates (e.g., Hutmacher, 2019 ; Meijer et al., 2019 ; Posner et al., 1976 ). Under conditions of multisensory conflict, the normally more reliable sense sometimes completely dominates the experience of the other senses, as when wine experts can be tricked into thinking that they are drinking red or rosé wine simply by adding some red food dye to white wine (Wang & Spence, 2019 ). Similarly, people’s assessment of building materials has also been shown to be dominated by the visual rather than by the feel (Wastiels, Schifferstein, Wouters, & Heylighen, 2013 ; see also Karana, 2010 ).

At the same time, however, while we are largely visually dominant, the other senses can also sometimes drive our behaviour. For instance, according to an article that appeared in the Wall Street Journal , many people will apparently refuse to check in to a hotel if there is funny smell in the lobby (Pacelle, 1992 ). Such admittedly anecdotal observations, were they to be backed up by robust empirical data, would then support the notion that olfactory atmospheric cues can, at least under certain conditions, also dominate in terms of determining our approach-avoidance behaviour. Meanwhile, a growing number of diners have also reported how they will sometimes leave a restaurant if the noise is too loud (see Spence, 2014 , for a review; Wagner, 2018 ), resonating with the quote from Blesser and Salter ( 2007 ) that we came across a little earlier.

One other potentially important issue to bear in mind here concerns the “assumption of unity”, or coupling/binding priors that constitute an important factor modulating the extent of crossmodal binding in the case of multisensory object/event perception, according to the literature on the currently popular Bayesian causal inference (see Chen & Spence, 2017 ; Rohe, Ehlis, & Noppeney, 2019 , for reviews). Coupling priors can be thought of as the internalized long-term statistics of the environment (e.g., Girshick, Landy, & Simoncelli, 2011 ). Does it, I wonder, make sense to suggest that we have such priors concerning the unification of environmental/atmospheric cues? Or might it be, perhaps, that in a context in which we are regularly exposed to incongruent environmental/atmospheric multisensory cues - just think of how music is played from loudspeakers without any associated visual referent - that out priors concerning whether to integrate what we see, hear, smell, and feel will necessarily be related, in any meaningful sense, may well be reduced substantially. See Badde, Navarro, and Landy ( 2020 ) and Gau and Noppeney ( 2016 ) on the role of context in the strength of the common-source priors multisensory binding.

Hence, no matter whether one wants to create a tranquil space (Pheasant, Horoshenkov, Watts, & Barret, 2008 ) or one that arouses (Mattila & Wirtz, 2001 ), the senses interact as they do in various other configurations and situations (e.g., Jahncke, Eriksson, & Naula, 2015 ; Jiang, Masullo, & Maffei, 2016 ). There are, in fact, numerous examples where the senses have been shown to interact in the experience and rating of urban environments (e.g., Ba & Kang, 2019 ; Van Renterghem & Botteldooren, 2016 ).

Crossmodal correspondences in architectural design practice

The field of synaesthetic design has grown rapidly in recent years (e.g., Haverkamp, 2014 ; Merter, 2017 ; Spence, 2012b ). According to architectural historian, Alberto Pérez-Gómez, mentioned earlier, the Philips Pavilion designed by Le Corbusier for the 1958 Brussels world’s fair (Fig.  10 ) attempted to deliver a multisensory experience, or atmosphere by means of “forced” synaesthesia (Pérez-Gómez, 2016 , p. 19). Footnote 18 The interior audiovisual environment was mostly designed by Le Corbusier and Iannis Xenakis (see Sterken, 2007 ). From those descriptions that have survived there were many coloured lights and projections and a looping soundscape that was responsive to people’s movement through the space (Lootsma, 1998 ; Muecke & Zach, 2007 ).

figure 10

Philips pavilion was a World’s Fair pavilion designed for Expo 1958 in Brussels by the office of Le Corbusier. The building, which was commissioned by the electronics manufacturer Philips, was designed to house a multimedia spectacle of sound, light and projections celebrating post-war technological progress. Iannis Xenakis was responsible for much of the project management. [Figure copyright Wikimedia Commons: Wouter Hagens]

True to his oculocentric approach, mentioned at the start of this piece, Le Corbusier apparently concentrated on the visual aspects of the “Poème Electronique”, the multimedia show that was projected inside the pavilion. Meanwhile, his site manager, Iannis Xenakis created “Concret PH” - the soundscape, broadcast over 300 loudspeakers, that accompanied it. It is, though, unclear how much connection there actually was between the auditory and visual components of this multimedia presentation. The notion of parallel, but unconnected, stimulation to eye and ear comes through in Xenakis’ quote that: “we are capable of speaking two languages at the same time. One is addressed to the eyes, the other to the ears.” (Varga, 1996 , p. 114). Moreover, in his later work (e.g., Polytopes), Xenakis pursued the idea of creating a total dissociation between visual and aural perception in large abstract sound and light installations (Sterken, 2007 , p. 33).

At several points throughout his book Pérez-Gómez ( 2016 ), stresses the importance of “synaesthesia” to architecture, without, unfortunately, ever really quite defining what he means by the term. All one finds are quotes such as the following: “primordial synesthetic perception ” , p. 11; “perception is primordially synesthetic”, p. 20; “synaesthesia as the primary modality of human perception”, p. 71. Pérez-Gómez ( 2016 , p. 149) draws heavily on Merleau-Ponty’s ( 1962 , p. 235) Phenomenology of Perception , quoting lines such as: “The senses translate each other without any need of an interpreter, they are mutually comprehensible without the intervention of any idea.” A few pages later he cites Heidegger “truths as correspondence” (Pérez-Gómez, 2016 , p. 162). This does, though, sound more like a description of the ubiquitous crossmodal correspondences (Marks, 1978 ; Spence, 2011 ) than necessarily fitting with contemporary definitions of synaesthesia, though the distinction between the two phenomena admittedly remains fiercely contested (e.g., Deroy & Spence, 2013 ; Sathian & Ramachandran, 2020 ). Abath ( 2017 ) has done a great job of highlighting the confusion linked to Merleau-Ponty’s incoherent use of the term synaesthesia, that has, in turn, gone on to “infect” the writings of other architectural theorists, such as Pérez-Gómez ( 2016 ).

Talking of synaesthetic design may then be something of a misnomer (Spence, 2015 ), the fundamental idea here is to base one’s design decisions on the sometimes surprising connections between the senses that we all share, such as, for example, between high-pitched sounds and small, light, fast-moving objects (e.g., Spence, 2011 , 2012a ). It is important to highlight the fact that while these crossmodal correspondences are often confused with synaesthesia, they actually constitute a superficially similar, but fundamentally quite different empirical phenomenon (see Deroy & Spence, 2013 ).

We have already come across a number of examples of crossmodal correspondences being incorporated, knowingly or otherwise, in design decisions. Just think about the use of temperature-hue correspondences (Tsushima et al., 2020 ; see Spence, 2020a , for a review). The lightness-elevation mapping (crossmodal correspondence) might also prove useful from a design perspective (Sunaga, Park, & Spence, 2016 ). And colour-taste and sound-taste correspondences have already been incorporated into the design of multisensory experiential spaces (e.g., Spence et al., 2014 ; see also Adams & Doucé, 2017 ; Adams & Vanrie, 2018 ). Once one accepts the importance of crossmodal correspondences to environmental design, then this represents an additional level at which sensory atmospheric cues may be judged as congruent (e.g., see Spence et al., 2014 ). One of the important questions that remains for future research, though, is to determine whether there may be a priority of one kind of crossmodal congruency over others when they are manipulated simultaneously.

Conclusions

While it would seem unrealistic that the dominance, or hegemony (Levin, 1993 ), of the visual will be overturned any time soon, that does not mean that we should not do our best to challenge it. As critic David Michael Levin puts it: “I think it is appropriate to challenge the hegemony of vision – the ocular-centrism of our culture. And I think we need to examine very critically the character of vision that predominates today in our world. We urgently need a diagnosis of the psychosocial pathology of everyday seeing – and a critical understanding of ourselves as visionary beings.” (Levin, 1993 , p. 205). While not specifically talking about architecture, what we can all do is to adopt a more multisensory perspective and be more sensitive to the way in which the senses interact, be it in architecture or in any other aspect of our everyday experiences.

By designing experiences that congruently engage more of the senses we may be better able to enhance the quality of life while at the same time also creating more immersive, engaging, and memorable multisensory experiences (Bloomer & Moore, 1977 ; Gallace & Spence, 2014 ; Garg, 2019 ; Spence, 2021 ; Ward, 2014 ). Stein and Meredith ( 1993 , p. xi), two of the foremost multisensory neuroscientists of the last quarter century, summarized this idea when they suggesting in the preface to their influential volume The merging of the senses that: “The integration of inputs from different sensory modalities not only transforms some of their individual characteristics, but does so in ways that can enhance the quality of life. Integrated sensory inputs produce far richer experiences than would be predicted from their simple coexistence or the linear sum of their individual products.”

There is growing interest across many fields of endeavour in design that moves beyond this one dominant, or perhaps even overpowering, sense (Lupton & Lipps, 2018 ). The aim is increasingly to design for experience rather than merely for appearance. At the same time, however, it is also important to note that progress has been slow in translating the insights from the academic field of multisensory research to the world of architectural design practice, as noted by licensed architect Joy Monice Malnar when writing about her disappointment with the entries at the 2015 Chicago Architecture Biennial. There, she writes: “So, where are we? What is the current state of the art? Sadly, the current research on multisensory environments appearing in journals such as The Senses & Society does not appear to be impacting artists and architects participating in the Chicago Biennial. Nor are the discoveries in neuroscience offering new information about how the brain relates to the physical environment.” (Malnar, 2017 , p. 153). Footnote 19 At the same time, however, the adverts for at least one new residential development in Barcelona promising residents the benefits of “Sensory living” ( The New York Times International Edition in 2019, August 31–September 1, p. 13), suggests that at least some architects/designers are starting to realize the benefits of engaging their clients’/customers’ senses. The advert promised that the newly purchased apartment would “provoke their senses”.

Ultimately, it is to be hoped that as the growing awareness of the multisensory nature of human perception continues to spread beyond the academic community, those working in the field of architectural design practice will increasingly start to incorporate the multisensory perspective into their work; and, by so doing, promote the development of buildings and urban spaces that do a better job of promoting our social, cognitive, and emotional well-being.

Availability of data and materials

Not applicable.

It is, though, worth highlighting the fact that the denigration of the sense of smell in humans, something that is, for example, also found in older volumes on advertising (Lucas & Britt, 1950 ), turns out to be based on somewhat questionable foundations. For, as noted by McGann ( 2017 ) in the pages of Science , the downplaying of olfaction can actually be traced back to early French neuroanatomist Paul Broca wanting to make more space in the frontal parts of the brain (i.e., the frontal lobes) for free will in the 1880s. In order to do so, he apparently needed to reduce the size of the olfactory cortex accordingly.

Or, as Tuan ( 1977 , p. 18) once put it: “an object or place achieves concrete reality when our experience of it is total, that is, through all the senses as well as with the active and reflective mind”

Relevant here, Mitchell ( 2005 ) has suggested that there are, in fact, no uniquely visual media.

This an issue close to my own heart currently, as the Department where I work was closed due to the discovery of large amounts of asbestos (see BBC News, 2017 ). The university and the latest firm of architects involved in the project are currently battling it out to determine how much of the new building will be given over to individual offices versus shared open-plan offices and hot-desking. The omens, I have to say (at least pre-pandemic), from what is happening elsewhere in the education sector, do not look good (Kinman & Garfield, 2015 ).

Here, one might also consider the Abercrombie & Fitch clothing brand. For a number of years, the chain also managed to craft a distinctive dance sound to match the dark nightclub-like appearance of their interiors.

Writer Tanizaki ( 2001 ), in his essay on aesthetics In Praise of Shadows , also draws attention to the close interplay that exists, or better said, once existed, between architectural design and food/plateware design in traditional Japanese culture.

Intriguingly, Kirshenblatt-Gimblett ( 1991 , p. 416) describes the white cube as an apparatus for “single-sense epiphanies”.

This despite Baudelaire’s line that the smell of a room is “the soul of the apartment” (quoted in Corbin, 1986 , p. 169).

It is also worth noting how suggestible people can be concerning the presence of an odour, as first demonstrated by Slosson’s ( 1899 ) classic classroom demonstration of students in the lecture theatre detecting a fictitious odour in the air.

It has also been suggested that the energy crisis in the 1970s may also have been partly to blame, as that tended to result in lower ventilation standards.

Indeed, one might wonder whether the latter quote refers more to oral stereoagnosis (Jacobs, Serhal, & van Steenberghe, 1998 ), than specifically to gustation (see also Waterman Jr., 1917 , for the suggestion that the tongue can be more revealing than the hand).

This response is very different from the aesthetic disappointment, or even disgust, felt by the man once hypothetically described by the philosopher Immanuel Kant who was very much enjoying listening to a nightingale’s song until realizing that he was listening to a mechanical imitation instead (Kant, 2000 ).

The owner of the car park did not like the sound of this particular sonic intervention, meaning that the researchers were unable to try it out in the field.

At the same time, however, one might consider how marble, one of the most highly prized building materials is in some sense incongruent, given the rich textured patterning of the veined appearance of the surface is typically perfectly smooth to the touch.

These were the anchors on three of the bipolar semantic differential scales used in this study.

The value of connecting with nature in architectural design practice was stressed by an advertorial for an arctic hideaway that suggests that: “True luxury today is connecting with nature and feeling that your senses work again” as appeared in an article in Blue Wings magazine (December 2019, p. 38).

It should, though, be remembered, that sometimes incongruency may be precisely what is wanted. Just take the following quote regarding the crossmodal contrast of thermal heat combined with visual coolness from Japan as but one example: “In the summer the householder likes to hang a picture of a waterfall, a mountain stream, or similar view in the Tokonama and enjoy in its contemplation a feeling of coolness.” (Tetsuro, 1955 , p. 16).

Though Pérez-Gómez ( 2016 , p. 65) seems to be using a rather unconventional definition of synaesthesia, as a little later in his otherwise excellent work, he defines perceptual synaesthesia as “the integrated sensory modalities”, Pérez-Gómez ( 2016 , p. 65). The majority of cognitive neuroscientists would, I presume, take this as a definition of multisensory perception, rather than synaesthesia. Synaesthesia, note, is typically defined as the automatic elicitation of an idiosyncratic concurrent, not normally experienced, in response to the presence of an inducing stimulus (Grossenbacher & Lovelace, 2001 ).

Eberhard ( 2007 , p. xv) sounds a similarly pessimistic note writing that: “I doubt very much that neuroscientific findings will ever usurp intuition and inspiration as a guiding principle within architecture”.

Abath, A. (2017). Merleau-Ponty and the problem of synaesthesia. In O. Deroy (Ed.), Sensory blending: New essays on synaesthesia , (pp. 151–165). Oxford: Oxford University Press.

Google Scholar  

Adams, C., & Doucé, L. (2017). What’s in a scent? Meaning, shape, and sensorial concepts elicited by scents. Journal of Sensory Studies , 32 , e12256.

Article   Google Scholar  

Adams, C., & Vanrie, J. (2018). The added value of designing by crossmodal correspondences: Effect on consumer reactions. In Paper presented at the 4th International Colloquium on Design, Branding and Marketing, UHasselt, Hasselt, Belgium, December 5 th –7 th http://hdl.handle.net/1942/27514 .

Aggleton, J. P., & Waskett, L. (1999). The ability of odours to serve as state-dependent cues for real-world memories: can Viking smells aid the recall of Viking experiences? British Journal of Psychology , 90 , 1–7.

Article   PubMed   Google Scholar  

Albrecht, L. (2013). Barclays Center’s “signature scent” tickles noses, curiosity. http://dnainfo.com/new-york/20130520/prospect-heights/barclays-centers-signature-scent-tickles-noses-curiosity .

Anderton, F. (1991). Architecture for all senses. Architectural Review , 189 (1136), 27.

Ba, M., & Kang, J. (2019). A laboratory study of the sound-odour interaction in urban environments. Building and Environment , 147 , 314–326.

Badde, S., Navarro, K. T., & Landy, M. S. (2020). Modality-specific attention attenuates visual-tactile integration and recalibration effects by reducing prior expectations of a common source for vision and touch. Cognition , 197 , 104170.

Article   PubMed   PubMed Central   Google Scholar  

Bailly Dunne, C., & Sears, M. (1998). Interior designing for all five senses . New York: St. Martin’s Press.

Baird, J. C., Cassidy, B., & Kurr, J. (1978). Room preference as a function of architectural features and user activities. Journal of Applied Psychology , 63 , 719–727.

Banks, S. J., Ng, V., & Jones-Gotman, M. (2012). Does good + good = better? The effect of combining hedonically valenced smells and images. Neuroscience Letters , 514 , 71–76.

Barbara, A., & Perliss, A. (2006). Invisible architecture: Experiencing places through the sense of smell . Milan: Skira.

Barlow, H., & Mollon, J. (Eds.) (1982). The senses . Cambridge: Cambridge University Press.

Bashford, S. (2010). Breaking the sound barrier . The Grocer July 24th. http://www.thegrocer.co.uk/fmcg/breaking-the-sound-barrier/211258.article .

Battacharya, J., & Lindsen, J. P. (2016). Music for a brighter world: Brightness judgment bias by musical emotion. PLoS One , 11 , e0148959.

Baus, O., & Bouchard, S. (2017). Exposure to an unpleasant odour increases the sense of presence in virtual reality. Virtual Reality , 21 , 59–74.

Bavister, P., Lawrence, F., & Gage, S. (2018). Artificial intelligence and the generation of emotional response to sound and space. Proceedings of the Institute of Acoustics, 40(3), 8 pages.

BBC News (2017). Asbestos find closes Oxford University building for two years . BBC News February 10th. https://www.bbc.co.uk/news/uk-england-oxfordshire-38934959 .

Bellizzi, J. A., Crowley, A. E., & Hasty, R. W. (1983). The effects of color in store design. Journal of Retailing, 59 (Spring), 21–45.

Bellizzi, J. A., & Hite, R. E. (1992). Environmental color, consumer feelings, and purchase likelihood. Psychology and Marketing, 9, 347–363.

Benjamin, W. (1968). Illuminations [Trans. H. Zohn] . New York: Schocken Books (First published 1955).

Berg-Ganschow, U., & Jacobsen, W. (1987). … Film … Stadt … Kino … Berlin . USA: Argon.

Bernstein, E. S., & Turban, S. (2018). The impact of the ‘open’ workspace on human collaboration. Philosophical Transactions of the Royal Society B , 373 , 20170239.

Bille, M., & Sørensen, T. F. (2018). Atmospheric architecture: Elements, processes and practices. In D. Howes (Ed.), Senses and sensation: Critical and primary sources , (vol. 4, pp. 137–154). London: Bloomsbury.

Blesser, B., & Salter, L.-R. (2007). Spaces speak, are you listening? Cambridge: MIT Press.

Bloomer, K. C., & Moore, C. W. (1977). Body, memory, and architecture . London: Yale University Press.

Böhme, G. (2013). Atmosphere as mindful physical presence in space. OASE: Journal for Architecture , 91 , 21–32.

Borzykowski, B. (2017). Why open offices are bad for us . BBC January 11th. https://www.bbc.com/worklife/article/20170105-open-offices-are-damaging-our-memories .

Bruno, N., & Pavani, F. (2018). Perception: A multisensory perspective . Oxford: Oxford University Press.

Book   Google Scholar  

Bucknell, A. (2018). Architecture you can smell? A brief history of multisensory design . Metropolis Magazine October 11th. https://www.metropolismag.com/architecture/multisensory-architecture-design-history/ .

Burkus, D. (2016). Why your open office workspace doesn’t work . Forbes June 21st. https://www.forbes.com/sites/davidburkus/2016/06/21/why-your-open-office-workspace-doesnt-work/#188f073a435f .

Calvert, G., Spence, C., & Stein, B. E. (Eds.) (2004). The handbook of multisensory processing . Cambridge: MIT Press.

Candas, V., & Dufour, A. (2005). Thermal comfort: multisensory interactions? Journal of Physiological Anthropology , 24 , 33–36.

Carroll, M. (1967). Paley Park: A corner of quiet delights amid city’s bustle; 53rd St. haven has something for everyone . The New York Times September 20th.  https://www.nytimes.com/1967/09/20/archives/paley-park-a-corner-of-quiet-delights-amid-citys-bustle-53d-st.html

Chen, Y.-C., & Spence, C. (2017). Assessing the role of the ‘unity assumption’ on multisensory integration: a review. Frontiers in Psychology , 8 , 445.

Choo, H., Nasar, J., Nikrahei, B., & Walther, D. B. (2017). Neural codes of seeing architectural styles. Scientific Reports , 7 , 40201. https://doi.org/10.1038/srep40201 .

Classen, C. (1998). The color of angels: Cosmology, gender and the aesthetic imagination. London: Routledge.

Clynes, T. (2012). A restaurant with adjustable acoustics . Popular Science http://www.popsci.com/technology/article/2012-08/restaurant-adjustable-acoustics .

Corbin, A. (1986). The foul and the fragrant: Odor and the French social imagination . Cambridge: Harvard University Press.

Costa, M., Frumento, S., Nese, M., & Predieri, I. (2018). Interior color and psychological functioning in a university residence hall. Frontiers in Psychology , 9 , 1580.

Cox, D. (2017). The science of SAD: Understanding the causes of ‘winter depression’ . The Guardian October 30th. https://www.theguardian.com/lifeandstyle/2017/oct/30/sad-winter-depression-seasonal-affective-disorder?utm_source=esp&utm_medium=Email&%E2%80%A6 .

Crowley, A. E. (1993). The two-dimensional impact of color on shopping. Marketing Letters , 4 , 59–69.

Dalton, P., & Wysocki, C. J. (1996). The nature and duration of adaptation following long-term odor exposure. Perception & Psychophysics , 58 , 781–792.

Dazkir, S. S., & Read, M. A. (2012). Furniture forms and their influence on our emotional responses toward interior environments. Environment and Behavior , 44 , 722–734.

De Croon, E., Sluiter, J., Kuijer, P. P., & Frings-Dresen, M. (2005). The effect of office concepts on worker health and performance: A systematic review of the literature. Ergonomics , 48 , 119–134.

De Lange, M., Debets, L., Ruitenburg, K., & Holland, R. (2012). Making less of a mess: Scent exposure as a tool for behavioral change. Social Influence , 7 (2), 90–97.

Deroy, O., & Spence, C. (2013). Why we are not all synesthetes (not even weakly so). Psychonomic Bulletin & Review , 20 , 643–664.

Doll, J. (2013). The ‘signature scent’ of Brooklyn’s Barclays Center is mysterious . The Atlantic May 20th. https://www.theatlantic.com/national/archive/2013/05/signature-scent-brooklyns-barclays-center-mysterious/315078/ .

Donnell Jr., H. D., Bagby, J. R., Harmon, R. G., Crellin, J. R., Chaski, H. C., Bright, M. F., … Metzger, R. W. (1989). Report of an illness outbreak at the Harry S Truman state office building. American Journal of Epidemiology , 129 , 550–558.

Doyen, S., Klein, O., Pichon, C., & Cleeremans, A. (2012). Behavioural priming: It’s all in the mind, but whose mind? PLoS One , 7 (1), e29081.

Drobnick, J. (2002). Volatile architectures. In B. Miller, & M. Ward (Eds.), Crime and ornament: In the shadow of Adolf Loos , (pp. 263–282). Toronto: YYZ Books.

Drobnick, J. (2005). Volatile effects: Olfactory dimensions in art and architecture. In D. Howes (Ed.), Empire of the senses: The sensual culture reader , (pp. 265–280). Oxford: Berg.

Dunn, N. S. (2017). Shadowplay: Liberation and exhilaration in cities at night. In I. Heywood (Ed.), Sensory arts and design (Sensory Studies Series) , (pp. 31–48). London: Bloomsbury Academic.

Eberhard, J. P. (2007). Architecture and the brain: A new knowledge base from neuroscience . Atlanta: Greenway Communications.

Ellis-Petersen, H. (2019). Chinese province closes all glass bridges over safety fears . The Guardian October 30th. https://www.theguardian.com/world/2019/oct/30/chinese-province-closes-its-glass-bridges-over-safety-fears .

Eriksen, L. (2014). Room with a cue. B&O Play: The Journal , Autumn (3), 26–27.

Evans, G. W., & Johnson, D. (2000). Stress and open-office noise. Journal of Applied Psychology , 85 , 779–783.

Faust, H. S., & Brilliant, L. B. (1981). Is the diagnosis of “mass hysteria” an excuse for incomplete investigation of low-level environmental contamination? Journal of Occupational Medicine , 23 , 22–26.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex , 1 , 1–47.

Finnegan, M. J., Pickering, C. A. C., & Burge, P. S. (1984). The Sick Building Syndrome: Prevalence studies. British Medical Journal , 289 , 1573–1575.

Fletcher, C. (2005). Dystoposthesia: Emplacing environmental sensitivities. In D. Howes (Ed.), Empire of the senses: The sensual culture reader , (pp. 380–396). Oxford: Berg.

Fodor, J. A. (1983). The modularity of mind . Cambridge: MIT Press.

Forster, S., & Spence, C. (2018). “What smell?” Temporarily loading visual attention induces a prolonged loss of olfactory awareness. Psychological Science , 29 , 1642–1652.

Fujisaki, W. (2020). Multisensory shitsukan perception. Acoustical Science & Technology , 41 , 189–195.

Gal, D., Wheeler, S. C., & Shiv, B. (2007, unpublished manuscript). Cross-modal influences on gustatory perception. Available at SSRN: http://ssrn.com/abstract=1030197 .

Gallace, A., Ngo, M. K., Sulaitis, J., & Spence, C. (2012). Multisensory presence in virtual reality: Possibilities & limitations. In G. Ghinea, F. Andres, & S. Gulliver (Eds.), Multiple sensorial media advances and applications: New developments in MulSeMedia , (pp. 1–40). Hershey: IGI Global.

Gallace, A., & Spence, C. (2014). In touch with the future: The sense of touch from cognitive neuroscience to virtual reality . Oxford: Oxford University Press.

Garg, P. (2019). How multi-sensory design can help you create memorable experiences . UX Collective July 28th. https://uxdesign.cc/multi-sensory-design-can-help-you-create-memorable-designs-95dfc0f58da5 .

Gau, R., & Noppeney, U. (2016). How prior expectations shape multisensory perception. NeuroImage , 124 , 876–886.

Ghazanfar, A. A., & Schroeder, C. E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences , 10 , 278–285.

Girshick, A. R., Landy, M. S., & Simoncelli, E. P. (2011). Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience , 14 , 926–932.

Glass, S. T., & Heuberger, E. (2016). Effects of a pleasant natural odor on mood: No influence of age. Natural Product Communications , 11 , 1555–1559.

Glass, S. T., Lingg, E., & Heuberger, E. (2014). Do ambient urban odors evoke basic emotions? Frontiers in Psychology , 5 , 340.

Gregory, A. (2016). The architect who became a diamond . The New Yorker July 16th. https://www.newyorker.com/magazine/2016/08/01/how-luis-barragan-became-a-diamond .

Grossenbacher, P. G., & Lovelace, C. T. (2001). Mechanisms of synesthesia: Cognitive and physiological constraints. Trends in Cognitive Sciences , 5 , 36–41.

Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., & Revah, S. (2008). Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnology Advances , 26 , 398–410.

Gulden, W. O., & Grüsser, O.-J. (1998). Is there a vestibular cortex? Trends in Neurosciences , 21 , 254–259.

Haehner, A., Maass, H., Croy, I., & Hummel, T. (2017). Influence of room fragrance on attention, anxiety and mood. Flavour and Fragrance Journal , (1), 24–28.

Haga, A., Halin, N., Holmgren, M., & Sörqvist, P. (2016). Psychological restoration can depend on stimulus-source attribution: A challenge for the evolutionary account. Frontiers in Psychology , 7 , 1831.

Hall, E. T. (1966). The hidden dimension: Man’s use of space in public and private . London: Bodley Head.

Harada, H., Kashiwadani, H., Kanmura, Y., & Kuwaki, T. (2018). Linalool odor-induced anxiolytic effects in mice. Frontiers in Behavioral Neuroscience , 12 , 241. https://doi.org/10.3389/fnbeh.2018.00241 .

Hasenfus, N., Martindale, C., & Birnbaum, D. (1983). Psychological reality of cross-media artistic styles. Journal of Experimental Psychology: Human Perception and Performance , 9 , 841–863.

PubMed   Google Scholar  

Haverkamp, M. (2014). Synesthetic design: Handbook for a multisensory approach . Basel: Birkhäuser.

Heerwagen, J. H. (1990). Affective functioning, “light hunger,” and room brightness preferences. Environment and Behavior , 22 , 608–635.

Heilig, M. (1962). Sensorama stimulator. U.S. Patent #3,050,870.

Heilig, M. L. (1992). El cine del futuro: The cinema of the future. Presence: Teleoperators, and Virtual Environments , 1 , 279–294.

Henderson, W. B. (1939). Air-conditioning a factor in comfort and profit. Super Market Merchandizing, July (6), 23.

Henshaw, V. (2014). Urban smellscapes: Understanding and designing city smell environments . New York: Routledge.

Henshaw, V., McLean, K., Medway, D., Perkins, C., & Warnaby, G. (Eds.) (2018). Designing with smell: Practices, techniques and challenges . New York: Routledge.

Hersey, G. (2000). Architecture and geometry in the age of the Baroque . Chicago: University of Chicago Press.

Herz, R. S. (2009). Aromatherapy facts and fictions: A scientific analysis of olfactory effects on mood, physiology and behavior. International Journal of Neuroscience , 119 , 263–290.

Heschong, L. (1979). Thermal delight in architecture . Cambridge: MIT Press.

Holland, R. W., Hendriks, M., & Aarts, H. (2005). Smells like clean spirit. Nonconscious effects of scent on cognition and behavior. Psychological Science , 16 , 689–693.

Homburg, C., Imschloss, M., & Kühnl, C. (2012). Of dollars and scents – Does multisensory marketing pay off? Institute for Marketing Oriented Management http://imu2.bwl.uni-mannheim.de/fileadmin/files/imu/files/ap/ri/RI009.pdf .

Hongisto, V., Varjo, J., Oliva, D., Haapakangas, A., & Benway, E. (2017). Perception of water-based masking sounds—Long-term experiment in an open-plan office. Frontiers in Psychology , 8 , 1177.

Horwitz, J., & Singley, P. (Eds.) (2004). Eating architecture . Cambridge: MIT Press.

Hosey, L. (2013). Scent and the city . The New York Times October 5th. https://nyti.ms/HlWGto .

Howes, D. (2005). Architecture of the senses. In M. Zardini (Ed.), Sense of the city: An alternate approach to urbanism , (pp. 322–331). Montreal: Lars Müller Publishers.

Howes, D. (Ed.) (2014). A cultural history of the senses in the modern age . London: Bloomsbury Academic.

Hultén, B., Broweus, N., & van Dijk, M. (2009). Sensory marketing. Basingstoke: Palgrave Macmillan.

Hutmacher, F. (2019). Why is there so much more research on vision than on any other sensory modality? Frontiers in Psychology , 10 , 2246. https://doi.org/10.3389/fpsyg.2019.02246 .

Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., & Lacquanita, F. (2005). Representation of visual gravitational motion in the human vestibular cortex. Science , 308 , 416–419.

Jacobs, R., Serhal, C. B., & van Steenberghe, D. (1998). Oral stereognosis: A review of the literature. Clinical Oral Investigations , 2 , 3–10.

Jahncke, H., Eriksson, K., & Naula, S. (2015). The effects of auditive and visual settings on perceived restoration likelihood. Noise & Health , 17 , 1–10.

Jiang, L., Masullo, M., & Maffei, L. (2016). Effect of odour on multisensory environmental evaluations of road traffic. Environmental Impact Assessment Review , 60 , 126–133.

Jones, C. A. (2006). The mediated sensorium. In C. A. Jones (Ed.), Sensorium: Embodied experience, technology, and contemporary art , (pp. 5–49). Cambridge: MIT Press.

Joshi, S. M. (2008). The sick building syndrome. Indian Journal of Occupational and Environmental Medicine , 12 (2), 61–64.

Just, M. G., Nichols, L. M., & Dunn, R. R. (2019). Human indoor climate preferences approximate specific geographies. Royal Society Open Science , 6 (3), 180695.

Kabat-Zinn, J. (2005). Coming to our senses: Healing ourselves and the world through mindfulness . New York: Hyperion.

Kahn Jr., P. H., Friedman, B., Gill, B., Hagman, J., Severson, R. L., Freier, N. G., et al. (2008). A plasma display window? The shifting baseline problem in a technologically-mediated natural world. Journal of Environmental Psychology , 28 , 192–199.

Kang, J., Aletta, F., Gjestland, T. T., Brown, L. A., Botteldooren, D., Schulte-Fortkamp, B., et al. (2016). Ten questions on the soundscapes of the built environment. Building and Environment , 108 , 284–294.

Kant, I. (2000). Critique of the power of judgment . Cambridge: Cambridge University Press.

Karana, E. (2010). How do materials obtain their meanings? METU Journal of the Faculty of Architecture , 27 , 271–285.

Kinman, G., & Garfield, I. (2015). The open-plan university – Noisy nightmare or buzzing ideas hub? The Guardian October 16th. https://www.theguardian.com/higher-education-network/2015/oct/16/the-open-plan-university-noisy-nightmare-or-buzzing-ideas-hub .

Kirshenblatt-Gimblett, B. (1991). Objects of ethnography. In I. Karp, & S. Lavine (Eds.), Exhibiting cultures: The poetics and politics of museum display , (pp. 386–443). Washington, DC: Smithsonian Institution Press.

Komatsu, H., & Goda, N. (2018). Neural mechanisms of material perception: Quest on Shitsukan. Neuroscience , 392 , 329–347.

Kotler, P. (1974). Atmospherics as a marketing tool. Journal of Retailing , 49 (Winter), 48–64.

Krishna, A. (2013). Customer sense: How the 5 senses influence buying behaviour . New York: Palgrave Macmillan.

Kroner, W. M., Stark-Martin, J., & Willemain, T. (1992). The West Bend Mutual study . Troy: Center for Architectural Research, School of Architecture, Rensselaer Polytechnic Institute.

Lam, W. M. (1992). Perception and lighting as form-givers for architecture . New York: Van Nostrand Reinhold.

Lanza, J. (2004). Elevator music: A surreal history of Muzak, easy-listening, and other moodsong . Ann Arbor: University of Michigan Press.

Le Corbusier (1948). Towards a new architecture . London: Architectural Press.

Le Corbusier (1991). Precisions . Cambridge: MIT Press.

LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology , 23 , 727–738.

Lee, I. F. (2018). Joyful: The surprising power of ordinary things to create extraordinary happiness . London: Rider.

Lehman, L. M. (2009) Architectural building for all the senses: Bringing space to life. https://marialorenalehman.com/post/architectural-building-for-all-the-senses .

Levent, N., & Pascual-Leone, A. (Eds.) (2014). The multisensory museum: Cross-disciplinary perspectives on touch, sound, smell, memory and space . Plymouth: Rowman & Littlefield.

Levin, M. D. (Ed.) (1993). Modernity and the hegemony of vision . Berkeley: University of California Press.

Li, W., Moallem, I., Paller, K. A., & Gottfried, J. A. (2007). Subliminal smells can guide social preferences. Psychological Science , 18 , 1044–1049.

Lieberman, L. S. (2006). Evolutionary and anthropological perspectives on optimal foraging in obesogenic environments. Appetite , 47 , 3–9.

Lindstrom, M. (2005). Brand sense: How to build brands through touch, taste, smell, sight and sound . London: Kogan Page.

Lipps, A. (2018). Scentscapes. In E. Lupton, & A. Lipps (Eds.), The senses: Design beyond vision , (pp. 108–121). Hudson: Princeton Architectural Press.

Liu, Q., Bogicevic, V., & Mattila, A. S. (2018). Circular vs. angular servicescape: “Shaping” customer response to a fast service encounter pace. Journal of Business Research , 89 , 47–56.

Lootsma, B. (1998). En route to a new tectonics. Daidalos , 68 , 34–47.

Love, S. (2018). Sick building syndrome: Is it the buildings or the people who need treatment? The Independent May 14th. https://www.independent.co.uk/news/long_reads/sick-building-syndrome-treatment-finland-health-mould-nocebo-a8323736.html .

Lucas, D. B., & Britt, S. H. (1950). Advertising psychology and research: An introductory book . New York: McGraw-Hill Book Company.

Lupton, E. (2002). Skin: Surface substance + design . New York: Princeton Architectural Press.

Lupton, E., & Lipps, A. (2018). The senses: Design beyond vision . Hudson: Princeton Architectural Press.

Lynch, K., & Hack, G. (1984). Site design. In Site planning , (3rd ed., pp. 127–129). Cambridge: MIT Press.

Magnavita, N. (2015). Work-related symptoms in indoor environments: A puzzling problem for the occupational physician. International Archives of Occupational and Environmental Health , 88 , 185–196.

Mahvash, K. (2007). Site + sound: Space. In M. W. Muecke, & M. S. Zach (Eds.), Resonance: Essays on the intersection of music and architecture , (pp. 53–75). Ames: Culicidae Press.

Mairs, J. (2017). Therme Vals spa has been destroyed says Peter Zumthor . DeZeen May 11th. https://www.dezeen.com/2017/05/11/peter-zumthor-vals-therme-spa-switzerland-destroyed-news/ .

Malhotra, N. K. (1984). Information and sensory overload. Information and sensory overload in psychology and marketing. Psychology & Marketing , 1 (3–4), 9–21.

Mallgrave, H. F. (2011). The architect’s brain: Neuroscience, creativity, and architecture . Chichester: Wiley-Blackwell.

Malnar, J. M. (2017). The 2015 Chicago Architecture Biennial: The state of sensory design. In I. Heywood (Ed.), Sensory arts and design (Sensory Studies Series) , (pp. 137–156). London: Bloomsbury Academic.

Malnar, J. M., & Vodvarka, F. (2004). Sensory design . Minneapolis: University of Minnesota Press.

Manav, B., Kutlu, R. G., & Küçükdoğu, M. S. (2010). The effects of colour and light on space perception. In Colour and Light in Architecture First International Conference 2010 Proceedings , (pp. 173–177).

Margolies, E. (2006). Vagueness gridlocked: A map of the smells of New York. In J. Drobnick (Ed.), The smell culture reader , (pp. 107–117). Oxford: Berg.

Marks, L. (1978). The unity of the senses: Interrelations among the modalities . New York: Academic.

Martinez, J. (2013). The Barclays Center has its own signature scent . Complex Media May 20th. https://www.complex.com/sports/2013/05/the-barclays-center-has-its-own-signature-scent .

Mattila, A. S., & Wirtz, J. (2001). Congruency of scent and music as a driver of in-store evaluations and behavior. Journal of Retailing , 77 , 273–289.

Mau, B. (2018). Designing LIVE. In E. Lupton, & A. Lipps (Eds.), The senses: Design beyond vision , (pp. 20–23). Hudson: Princeton Architectural Press.

Mau, B. (2019). Bruce Mau’s ‘designing for the five senses’ presented by Freeman . SXSW March 13th. https://schedule.sxsw.com/2019/events/OE38314 .

McCarthy, B. (1996). Multi-source synthesis: An architecture of smell. Architectural Design , 121, 66 (5/6), ii–v.

McCooey, C. (2008). Scenting success , (p. 1). The Financial Times, February 3rd (House & Home).

McGann, J. P. (2017). Poor human olfaction is a 19th-century myth. Science , 356 , eaam7263.

McLuhan, M. (1961). Inside the five sense sensorium. Canadian Architect , 6 (6), 49–54 (Reprinted in Howes, D. (Ed.). (2004). Empire of the senses: the sensual culture reader (pp. 42–52). Oxford, UK: Berg.).

Mehrabian, A. R., & Russell, J. A. (1974). An approach to environmental psychology . Cambridge: MIT Press.

Meijer, D., Veselič, S., Calafiore, C., & Noppeney, U. (2019). Integration of audiovisual spatial signals is not consistent with maximum likelihood estimation. Cortex , 119 , 74–88.

Merleau-Ponty, M. (1962). Phenomenology of perception [trans. C. Smith] . London: Routledge and Kegan Paul.

Merter, S. (2017). Synesthetic approach in the design process for enhanced creativity and multisensory experiences. The Design Journal , 20 (supp. 1), S4519–S4528.

Meyers-Levy, J., & Zhu, R. (2007). The influence of ceiling height: The effect of priming on the type of processing that people use. Journal of Consumer Research , 34 , 174–186.

Mitchell, W. J. T. (2005). There are no visual media. Journal of Visual Culture , 4 , 257–266.

Morrin, M., & Chebat, J. C. (2005). Person-place congruency: The interactive effects of shopper style and atmospherics on consumer expenditures. Journal of Service Research , 8 , 181–191.

Muecke, M. W., & Zach, M. S. (Eds.) (2007). Resonance: Essays on the intersection of music and architecture . Ames: Culicidae Press.

Neff, J. (2000). Product scents hide absence of true innovation . Advertising Age February 21st, 22. http://adage.com/article/news/product-scents-hide-absence-true-innovation/59353/ .

Niemelä, R., Seppänen, O., Korhonen, P., & Reijula, K. (2006). Prevalence of building-related symptoms as an indicator of health and productivity. American Journal of Industrial Medicine , 49 , 819–825.

North, A. C., Hargreaves, D. J., & McKendrick, J. (1997). In-store music affects product choice. Nature, 390, 132.

North, A. C., Hargreaves, D. J., & McKendrick, J. (1999). The influence of in-store music on wine selections. Journal of Applied Psychology, 84, 271–276.

O’Doherty, B. (1999). Inside the white cube: On the ideology of the gallery space, (1976) . Berkeley: University of California Press.

O’Doherty, B. (2009). Beyond the ideology of the white cube . Barcelona: MACBA.

Oberfeld, D., Hecht, H., Allendorf, U., & Wickelmaier, F. (2009). Ambient lighting modifies the flavor of wine. Journal of Sensory Studies , 24 , 797–832.

Oberfeld, D., Hecht, H., & Gamer, M. (2010). Surface lightness influences perceived room height. Quarterly Journal of Experimental Psychology , 63 , 1999–2011.

Ott, W. R., & Roberts, J. W. (1998). Everyday exposure to toxic pollutants. Scientific American , 278 (February), 86–91.

Otterbring, T., Pareigis, J., Wästlund, E., Makrygiannis, A., & Lindström, A. (2018). The relationship between office type and job satisfaction: Testing a multiple mediation model through ease of interaction and well-being. Scandinavian Journal of Work & Environmental Health , 44 , 330–334.

Ottoson, J., & Grahn, P. (2005). A comparison of leisure time spent in a garden with leisure time spent indoors: On measures of restoration in residents in geriatric care. Landscape Research , 30 , 23–55.

Owen, D. (2019). Is noise pollution the next big public-health crisis? The New Yorker May 13th. https://www.newyorker.com/magazine/2019/05/13/is-noise-pollution-the-next-big-public-health-crisis .

Pacelle, M. (1992). Many people refuse to check in if a hotel has odors in the lobby . Wall Street Journal July 28th, B1.

Pallasmaa, J. (1994). An architecture of the seven senses. In S. Holl, J. Pallasmaa, & A. Perez-Gomez (Eds.), Architecture and urbanism: Questions of perception: Phenomenology and architecture (Special issue), July, (pp. 27–37).

Pallasmaa, J. (1996). The eyes of the skin: Architecture and the senses (Polemics) . London: Academy Editions.

Pallasmaa, J. (2000). Hapticity and time: Notes on fragile architecture. Architectural Review , 207 , 78–84.

Pallasmaa, J. (2011). Architecture and the existential sense: Space, body, and the senses. In F. Bacci, & D. Melcher (Eds.), Art and the senses , (pp. 579–598). Oxford: Oxford University Press.

Palmer, S. E. (1999). Vision science: Photons to phenomenology . Cambridge: MIT Press.

Papale, P., Chiesi, L., Rampinini, A. C., Pietrini, P., & Ricciardi, E. (2016). When neuroscience ‘touches’ architecture: From hapticity to a supramodal functioning of the human brain. Frontiers in Psychology , 7 , 866.

Pearson, D. (1991). Making sense of architecture. Architectural Review, 10: Sensuality and Architecture , October , 68–70.

Pérez-Gómez, A. (2016). Attunement: Architectural meaning after the crisis of modern science . Cambridge: MIT Press.

Pheasant, R. J., Horoshenkov, K., Watts, G., & Barret, B. T. (2008). The acoustic and visual factors influencing the construction of tranquil space in urban and rural environments tranquil spaces-quiet places? Journal of the Acoustical Society of America , 123 , 1446–1457.

Porteous, J. D. (1990). Landscapes of the mind: Worlds of sense and metaphor . Toronto: University of Toronto Press.

Porteous, J. D., & Mastin, J. F. (1985). Soundscape. Journal of Architectural and Planning Research , 2 , 169–186.

Posner, M. I., Nissen, M. J., & Klein, R. M. (1976). Visual dominance: An information-processing account of its origins and significance. Psychological Review , 83 , 157–171.

Previc, F. H. (1998). The neuropsychology of 3-D space. Psychological Bulletin , 124 , 123–164.

Prochnik, G. (2009). City of earthly delights . The New York Times December 12th. https://www.nytimes.com/2009/12/13/opinion/13prochnik.html .

Ragavendira, R. (2017). Architecture and human senses. International Journal of Innovations in Engineering and Technology (IJIET) , 8 (2), 131–135.

Rasmussen, S. E. (1993). Experiencing architecture . Cambridge: MIT Press.

Reber, R. (2012). Processing fluency, aesthetic pleasure, and culturally shared taste. In A. P. Shimamura, & S. E. Palmer (Eds.), Aesthetic science: Connecting minds, brains, and experience , (pp. 223–249). Oxford: Oxford University Press.

Reber, R., Schwarz, N., & Winkielman, P. (2004). Processing fluency and aesthetic pleasure: Is beauty in the perceiver’s processing experience? Personality and Social Psychology Review , 8 , 364–382.

Reber, R., Winkielman, P., & Schwartz, N. (1998). Effects of perceptual fluency on affective judgments. Psychological Science , 9 , 45–48.

Redesigning the corporate office (2019). The Economist, September 28th. https://www.economist.com/business/2019/09/28/redesigning-the-corporate-office .

Redlich, C. A., Sparer, J., & Cullen, M. R. (1997). Sick building syndrome. Lancet , 349 , 1013–1016.

Robart, R. L., & Rosenblum, L. D. (2005). Hearing space: Identifying rooms by reflected sound. In H. Heft, & K. L. Marsh (Eds.), Studies in perception and action XIII , (pp. 152–156). Hillsdale: Lawrence Erlbaum Associates.

Robinson, S., & Pallasmaa, J. (Eds.) (2015). Mind in architecture: Neuroscience, embodiment, and the future of design . Cambridge: MIT Press.

Rohe, T., Ehlis, A. C., & Noppeney, U. (2019). The neural dynamics of hierarchical Bayesian causal inference in multisensory perception. Nature Communications , 10 , 1907.

Rosenthal, N. E. (2019). Winter blues: Everything you need to know to beat seasonal affective disorder . New York: Guilford Press.

Rosenthal, N. E., Sack, D. A., Gillin, J. C., Lewy, A. J., Goodwin, F. K., Davenport, Y., et al. (1984). Seasonal affective disorder: A description of the syndrome and preliminary findings with light therapy. Archives of General Psychiatry , 41 , 72–80.

Ryan, R. (1997). Thermal baths in Vals, Switzerland by Peter Zumthor . Architectural Review August 16th. https://www.architectural-review.com/buildings/thermal-baths-in-vals-switzerland-by-peter-zumthor/8616979.article?blocktitle=1990s-grid&contentID=24955 .

Rybczynski, W. (2001). The look of architecture . New York: The New York Public Library.

Salgado-Montejo, A., Salgado, C., Alvarado, J., & Spence, C. (2017). Simple lines and shapes are associated with, and communicate, distinct emotions. Cognition & Emotion , 31 , 511–525.

Sathian, K., & Ramachandran, V. S. (Eds.) (2020). Multisensory perception: From laboratory to clinic . San Diego: Elsevier.

Sayin, E., Krishna, A., Ardelet, C., Decré, G. B., & Goudey, A. (2015). “Sound and safe”: The effect of ambient sound on the perceived safety of public spaces. International Journal of Research in Marketing , 32 , 343–353.

Schafer, R. M. (1977). The tuning of the world . New York: Knopf.

Schifferstein, H. N. J., Talke, K. S. S., & Oudshoorn, D.-J. (2011). Can ambient scent enhance the nightlife experience? Chemosensory Perception , 4 , 55–64.

Schroeder, J. (2018). Inside the $30m Miami condo that comes with its own ‘scent identity’: Olfactory specialist spends 6months with new buyers to design their personal scent that is diffused through the HVAC system . Daily Mail Online July 10th. http://www.dailymail.co.uk/news/article-5936585/29million-condo-Miami-comes-custom-scent-identity.html .

Sennett, R. (1994). Flesh and stone: The body and the city in western civilization . New York: Norton.

Siefkes, M., & Arielli, E. (2015). An experimental approach to multimodality: How musical and architectural styles interact in aesthetic perception. In J. Wildfeuer (Ed.), Building bridges for multimodal research: International perspectives on theories and practices of multimodal analysis , (pp. 247–265). New York: Peter Lang.

Sigsworth, W. (2019). Architect Chris Downey lost sight, yet brought a new focus on touch to his architecture. Changing lives. Sappi Europe & J. Brown, Reach out and touch: The joy of the physical in the digital age (22–27). London: John Brown & Brussels: Sappi Europe.

Simmel, G. (1995). The metropolis and mental life. In P. Kasinitz (Ed.), Metropolis: Centre and symbol of our times . London: Macmillan.

Slosson, E. E. (1899). A lecture experiment in hallucination. Psychological Review , 6 , 407–408.

Smeets, M. A. M., & Dijksterhuis, G. B. (2014). Smelly primes – When olfactory primes do or do not work. Frontiers in Psychology , 5 , 96.

Southworth, M. (1969). The sonic environment of cities. Environment and Behavior , 1 (1), 49–70.

Spence, C. (2002). The ICI report on the secret of the senses . London: The Communication Group.

Spence, C. (2003). A new multisensory approach to health and well-being. In Essence, 2 , 16–22.

Spence, C. (2011). Crossmodal correspondences: A tutorial review. Attention, Perception, & Psychophysics , 73 , 971–995.

Spence, C. (2012a). Managing sensory expectations concerning products and brands: Capitalizing on the potential of sound and shape symbolism. Journal of Consumer Psychology , 22 , 37–54.

Spence, C. (2012b). Synaesthetic marketing: Cross sensory selling that exploits unusual neural cues is finally coming of age. In The Wired World in 2013, November , (pp. 104–107).

Spence, C. (2014). Noise and its impact on the perception of food and drink. Flavour , 3 , 9.

Spence, C. (2015). Book review: Synaesthetic design. Multisensory Research , 28 , 245–248.

Spence, C. (2020a). Temperature-based crossmodal correspondences: Causes & consequences. Multisensory Research, 33, 645-682. https://doi.org/10.1163/22134808-20191494 .

Spence, C. (2020b). Shitsukan – The multisensory perception of quality. Multisensory Research . https://doi.org/10.1163/22134808-bja10003 .

Spence, C. (2020c). Atmospheric effects on eating and drinking: A review. In H. Meiselman (Ed.), Handbook of eating and drinking , (pp. 257–276). Cham: Springer.

Chapter   Google Scholar  

Spence, C. (2021). Sensehacking . London: Viking Penguin.

Spence, C. (2020d). Designing for the multisensory mind. Architectural Design, December, 42-49.

Spence, C., & Frings, C. (2020). Multisensory feature integration in (and out) of the focus of spatial attention. Attention, Perception, & Psychophysics , 82 , 363–376.

Spence, C., & Keller, S. (2019). Medicine’s melodies: On the costs and benefits of music, soundscapes, and noise in healthcare settings. Music and Medicine , 11 , 211–225.

Spence, C., Lee, J., & van der Stoep, N. (2017). Responding to sounds from unseen locations: Crossmodal attentional orienting in response to sounds presented from the rear. European Journal of Neuroscience, 51, 1137–1150.

Spence, C., Velasco, C., & Knoeferle, K. (2014). A large sample study on the influence of the multisensory environment on the wine drinking experience. Flavour , 3 , 8.

Spence, C., Wan, X., Woods, A., Velasco, C., Deng, J., Youssef, J., & Deroy, O. (2015). On tasty colours and colourful tastes? Assessing, explaining, and utilizing crossmodal correspondences between colours and basic tastes. Flavour , 4 , 23.

Stein, B. E. (Ed.) (2012). The new handbook of multisensory processing . Cambridge: MIT Press.

Stein, B. E., & Meredith, M. A. (1993). The merging of the senses . Cambridge: MIT Press.

Steinwald, M., Harding, M. A., & Piacentini, R. V. (2014). Multisensory engagement with real nature relevant to real life. In N. Levent, & A. Pascual-Leone (Eds.), The multisensory museum: Cross-disciplinary perspectives on touch, sound, smell, memory and space (pp. 45–60). Plymouth: Rowman & Littlefield.

Sterken, S. (2007). Music as an art of space: Interactions between music and architecture in the work of Iannis Xenakis. In M. W. Muecke, & M. S. Zach (Eds.), Resonance: Essays on the intersection of music and architecture , (pp. 21–51). Ames: Culicidae Press.

Stokes, A. (1978). Smooth and rough. In The critical writings of Adrian Stokes , (vol. 2, pp. 213–256). London: Thames & Hudson.

Sunaga, T., Park, J., & Spence, C. (2016). Effects of lightness-location consumers’ purchase decision-making. Psychology & Marketing , 33 , 934–950.

Talsma, D. (2015). Predictive coding and multisensory integration: An attentional account of the multisensory mind. Frontiers in Integrative Neuroscience , 9 , 19.

Tanizaki, J. (2001). In praise of shadows (Trans. By T. J. Harper & E. G. Seidenstickker) . London: Vintage Books.

Terman, M. (1989). On the question of mechanism in phototherapy for seasonal affective disorder: Considerations of clinical efficacy and epidemiology. In N. E. Rosenthal, & M. C. Blehar (Eds.), Seasonal affective disorders and phototherapy , (pp. 357–376). New York: Guilford.

Tetsuro, Y. (1955). The Japanese house and garden . New York: Frederick Praeger.

Thömmes, K., & Hübner, R. (2018). Instagram likes for architectural photos can be predicted by quantitative balance measures and curvature. Frontiers in Psychology: Perception Science , 9 , 1050. https://doi.org/10.3389/fpsyg.2018.01050 .

Thompson, E. (1999). Listening to/for modernity: Architectural acoustics and the development of modern spaces in America. In P. Galison, & E. Thompson (Eds.), The architecture of science , (pp. 253–280). Cambridge: MIT Press.

Tonetto, L., Klanovicz, C. P., & Spence, C. (2014). Modifying action sounds influences people’s emotional responses and bodily sensations. i-Perception , 5 , 153–163.

Torrico, D. D., Han, Y. Sharma, C. Fuentes, S., Gonzalez Viejo, C., & Dunshea, F. R. (2020). Effects of context and virtual reality environments on the wine tasting experience, acceptability, and emotional responses of consumers. Foods, 9:191; https://doi.org/10.3390/foods9020191 .

Article   PubMed Central   Google Scholar  

Treasure, J. (2007). Sound business . Cirencester: Management Books 2000 Ltd.

Treib, M. (1995). Must landscape mean? Approaches to significance in recent landscape architecture. Landscape Journal , 14 (1), 47–62.

Trivedi, B. (2006). Recruiting smell for the hard sell. New Scientist , 2582 , 36–39.

Tsushima, Y., Okada, S., Kawai, Y., Sumita, A., Ando, H., & Miki, M. (2020). Effect of illumination on perceived temperature. PLoS One,  15(8): e0236321.

Tuan, Y. F. (1977). Space and place: the perspective of experience . Minneapolis: University of Minnesota Press.

UN-Habitat (2010). State of the world’s cities 2010/2011: Bridging the urban divide. http://www.unhabitat.org/documents/SOWC10/R7.pdf .

United Nations Department of Economic and Social Affairs (2018). 68% of the world population projected to live in urban areas by 2050, says UN. May 16th. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html .

Van Renterghem, T., & Botteldooren, D. (2016). View on outdoor vegetation reduces noise annoyance for dwellers near busy roads. Landscape and Urban Planning , 148 , 203–215.

Varga, B. A. (1996). Conversations with Iannis Xenakis . London: Faber and Faber.

Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Gonzalez-Mora, J. L., Leder, H., et al. (2015). Architectural design and the brain: Effects of ceiling height and perceived enclosure on beauty judgments and approach-avoidance decisions. Journal of Environmental Psychology , 41 , 10–18.

Vartanian, O., Navarrete, G., Chatterjee, A., Fich, L. B., Leder, H., Modroño, C., et al. (2013). Impact of contour on aesthetic judgments and approach-avoidance decisions in architecture. Proceedings of the National Academy of Sciences of the USA , 110 (Supple 2), 10446–10453.

Velux YouGov Report (2018). The indoor generation: effects of modern indoor living on health, wellbeing and productivity. www.velux.nn/indoorgeneration .

von Castell, C., Hecht, H., & Oberfeld, D. (2018). Bright paint makes interior-space surfaces appear farther away. PLoS ONE, 13(9):e0201976. https://doi.org/10.1371/journal.pone.0201976 .

Vorreiter, G. (1989). Theatre of touch. The Architectural Review, 185, 66–69.

Wagner, M. (1989). Theater of touch. Interiors, 149, 98–99.

Wagner, K. (2018). How restaurants got so loud . Atlantic Monthly November 27th. https://www.theatlantic.com/technology/archive/2018/11/how-restaurants-got-so-loud/576715/ .

Walker, M. (2018). Why we sleep . London: Penguin.

Wang, Q. J., & Spence, C. (2019). Drinking through rosé-coloured glasses: Influence of wine colour on the perception of aroma and flavour in wine experts and novices. Food Research International , 126 , 108678.

Ward, J. (2014). Multisensory memories. In N. Levent, & A. Pascual-Leone (Eds.), The multisensory museum: Cross-disciplinary perspectives on touch, sound, smell, memory and space , (pp. 273–284). Plymouth: Rowman & Littlefield.

Wargocki, P. (2001). Measurements of the effects of air quality on sensory perception. Chemical Senses , 26 , 345–348.

Wargocki, P., Wyon, D. P., Baik, Y. K., Clausen, G., & Fanger, P. O. (1999). Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity in an office with two different pollution loads. Indoor Air , 9 , 165–179.

Wargocki, P., Wyon, D. P., Sundell, J., Clausen, G., & Fanger, P. O. (2000). The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air , 10 , 222–236.

Wastiels, L., Schifferstein, H. N. J., Wouters, I., & Heylighen, A. (2013). Touching materials visually: About the dominance of vision in building material assessment. International Journal of Design , 7 , 31–41.

Waterman Jr., C. N. (1917). Hand-tongue space perception. Journal of Experimental Psychology , 2 , 289–294.

Weber, S. T., & Heuberger, E. (2008). The impact of natural odors on affective states in humans. Chemical Senses , 33 , 441–447.

Weichenberger, M., Bauer, M., Kühler, R., Hensel, J., Forlim, C. G., Ihlenfeld, A., et al. (2017). Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold – Evidence from fMRI. PLoS One , 12 (4), e0174420.

Whipple, T. (2019). Why we like our homes to be as warm as Africa , (p. 13). The Times, March 20th.

Wilkins, A. J. (2017). The scientific reason you don’t like LED bulbs—And the simple way to fix them . Scientific American August 1st. https://www.scientificamerican.com/article/the-scientific-reason-you-dont-like-led-bulbs-mdash-and-the-simple-way-to-fix-them/ .

Wilkins, A. J., Nimmo-Smith, I., Slater, I. A., & Bedocs, L. (1989). Fluorescent lighting, headaches and eyestrain. Lighting Research and Technology , 21 , 11–18.

Williams, A. R. (1980). The urban stage: A reflection of architecture and urban design . San Franciso: San Francisco Center for Architecture and Urban Studies.

Williams, F. (2017). The nature fix: Why nature makes us happier, healthier, and more creative . London: W. W. Norton & Company.

Winkielman, P., Schwarz, N., Fazendeiro, T., & Reber, R. (2003). The hedonic marking of processing fluency: Implications for evaluative judgment. In J. Musch, & K. C. Klauer (Eds.), The psychology of evaluation: Affective processes in cognition and emotion , (pp. 189–217). Mahwah: Erlbaum.

Winkielman, P., Ziembowicz, M., & Nowak, A. (2015). The coherent and fluent mind: How unified consciousness is constructed from cross-modal inputs via integrated processing experiences. Frontiers in Psychology , 6 , 83.

Winzen, J., Albers, F., & Marggraf-Micheel, C. (2014). The influence of coloured light in the aircraft cabin on passenger thermal comfort. Lighting Research Technology , 46 , 465–475.

Woods, J. E. (1989). Cost avoidance and productivity in owning and operating buildings. In J. E. Cone & M. J. Hodgson (Eds.), Problem-buildings: Building-associated illness and the sick building syndrome. Occupational Medicine: State of the Art Reviews , 4 , 753–770.

Xu, A. J., & Labroo, A. A. (2014). Incandescent affect: Turning on the hot emotional system with bright light. Journal of Consumer Psychology , 24 , 207–216.

Yost, M. (2007). Close to the edge . Wall Street Journal April 10th.

Zardini, M. (Ed.) (2005). Sense of the city: An alternate approach to urbanism: The Canadian Centre for Architecture . Montreal: Lars Müller Publishers.

Zimmerman, M. (1989). The nervous system in the context of information theory. In R. F. Schmidt, & G. Thews (Eds.), Human physiology (2nd. complete ed.) , (pp. 166–173). Berlin: Springer-Verlag.

Download references

Acknowledgements

Completion of this review was supported by AHRC “Rethinking the Senses” Grant AH/L007053/1.

Author information

Authors and affiliations.

Department of Experimental Psychology, Crossmodal Research Laboratory, University of Oxford, Anna Watts Building, Oxford, OX2 6GG, UK

Charles Spence

You can also search for this author in PubMed   Google Scholar

Contributions

The author wrote all parts of this manuscript. The author(s) read and approved the final manuscript.

Corresponding author

Correspondence to Charles Spence .

Ethics declarations

Ethics approval and consent to participate, consent for publication.

The author confirms that he has consent to publish this work.

Competing interests

There are no competing interests to declare.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Spence, C. Senses of place: architectural design for the multisensory mind. Cogn. Research 5 , 46 (2020). https://doi.org/10.1186/s41235-020-00243-4

Download citation

Received : 01 May 2020

Accepted : 05 August 2020

Published : 18 September 2020

DOI : https://doi.org/10.1186/s41235-020-00243-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Multisensory perception
  • Architecture
  • Crossmodal correspondences

research paper architectural design

The Application of Virtual Reality Technology in Architectural Design

  • Conference paper
  • First Online: 05 November 2020
  • Cite this conference paper

research paper architectural design

  • Lili Peng 17 ,
  • Yihui Du 17 &
  • Zijing Zhang 17  

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1283))

Included in the following conference series:

  • International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy

1440 Accesses

Under the background of the rapid development of information technology and Internet globalization, the buildings and cities that people depend on have undergone earth-shaking changes, and architectural design tools and design models are constantly updated. Architecture is unique. The method continues to expand its development space. Construction engineering is a complex and large-scale dynamic system, which involves not only many but also more complicated links. Because there are complex structures inside general buildings. This article focuses on the application of virtual reality technology in architectural engineering design from the basic concepts and characteristics of virtual reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Zhao, N.: Research on the application of virtual simulation technology in architectural design. Changsha Univ. Sci. Technol. 5 , 23–26 (2019). (in Chinese)

Article   Google Scholar  

Li, S.: Research on the application of virtual reality technology in architecture and urban planning. Changsha Univ. Sci. Technol. 12 (03), 112–115 (2018). (in Chinese)

Google Scholar  

Zhang, L.: Research on the application of virtual reality technology in architectural heritage protection. Jiangnan Univ. 11 (03), 34–37 (2019). (in Chinese)

Chen, Z., Li, X., Yan, W.: Application of virtual reality technology in the field of architecture. Eng. Constr. Des. 8 , 88–90 (2015). (in Chinese)

Wang, D., Zhang, J.: Building structure design based on virtual reality technology. Struct. Eng. 11 (5), 61–63 (2014). (in Chinese)

Zhu, X., Peng, S.: Application of virtual reality technology for construction safety. Anhui Sci. Technol. 3 (11), 44–46 (2014). (in Chinese)

Yang, Q., Lin, D.: Application and promotion strategy of VR technology in architectural design. Constr. Technol. 4 (08), 733–735 (2016). (in Chinese)

Bai, S., Zhang, Y.: Application value analysis of VR technology in prefabricated buildings. Constr. Econ. 6 (11), 106–109 (2015). (in Chinese)

Yuan, S., Wei, J., Zhai, M.: Building construction curriculum reform based on BIM virtual reality. J. Hunan Ind. Vocat. Tech. Coll. 6 (4), 97–99 (2017). (in Chinese)

Liu, J.: Talk about the application of VR technology in construction engineering. Archit. Eng. Technol. Des. 6 (08), 251–253 (2016). (in Chinese)

Gu, Z.: Analysis of application practice based on virtual construction technology. Constr. Eng. Technol. Des. 2 (08), 130–132 (2015). (in Chinese)

Liu, X., Wu, F.: The innovative application of BIM-based virtual reality technology (VR) in construction engineering. Chin. Foreign Archit. 4 , 134–136 (2018). (in Chinese)

Download references

Author information

Authors and affiliations.

Chongqing College of Architecture and Technology, Chongqing, China

Lili Peng, Yihui Du & Zijing Zhang

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Lili Peng .

Editor information

Editors and affiliations.

David Goldman Informatics Centre, University of Sunderland, Sunderland, UK

John MacIntyre

University of Shanghai for Science and Technology, Shanghai, China

Jinghua Zhao

Shenzhen University, Shenzen, Guangdong, China

Xiaomeng Ma

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Cite this paper.

Peng, L., Du, Y., Zhang, Z. (2021). The Application of Virtual Reality Technology in Architectural Design. In: MacIntyre, J., Zhao, J., Ma, X. (eds) The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. SPIOT 2020. Advances in Intelligent Systems and Computing, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-030-62746-1_34

Download citation

DOI : https://doi.org/10.1007/978-3-030-62746-1_34

Published : 05 November 2020

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-62745-4

Online ISBN : 978-3-030-62746-1

eBook Packages : Intelligent Technologies and Robotics Intelligent Technologies and Robotics (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Archinect Logo

A Cambridge University research paper explores the challenges faced by architectural design practitioners in embracing inclusive design

Josh Niland

New research produced by the University of Cambridge has identified key strategies to better effect a widespread implementation of inclusive design beyond its current status as a nascent set of concepts that have yet to be fully adopted by practitioners in almost every sector.

The paper’s lead investigators, Dr. Matteo Zallio and Professor P John Clarkson, surveyed a total of 114 different practitioners of architecture to produce an assessment of the current perceptions and challenges inherent in designing for inclusivity. The results are a reminder of how far the industry still has to go in terms of raising awareness and dispelling misconceptions about inclusive design by identifying critical gaps in client and practitioner awareness.

For example, the paper states “only 41.6% of clients were reported to have requested guidance on regulatory and legal compliance in the pre-design process.” A post-design evaluation of occupants' usability using available tools is another key lagging area, compounded even further by project budgets and time constraints.

research paper architectural design

The study calls for further efforts to develop post-occupancy evaluation tools for architects, access consultants, and facility managers. The development of such assets is a hurtle that can be bridged, the paper concludes by saying. A new, AI-driven IDEA (Inclusion, Diversity, Equity, and Accessibility) Audit tool that was produced through the research will be made available later for the benefit of each key group.

"This narrative encapsulates a transformative journey, interweaving the challenges, opportunities, and the shared vision of architectural practitioners working towards a future where every design inherently embodies principles of inclusivity, diversity, equity, and accessibility," the authors state in summation.

The results of the study can be found here .

Similar articles on Archinect that may interest you...

Battle over "stramp" accessibility upgrades in British Columbia takes shape

Related Archinect Profiles

research paper architectural design

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Sensors (Basel)

Logo of sensors

The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches

Juan luis higuera-trujillo.

1 Institute for Research and Innovation in Bioengineering (i3B), Universitat Politècnica de València, 46022 Valencia, Spain; se.vpu.pmo@eranillc

2 Escuela de Arquitectura, Arte y Diseño (EAAD), Tecnologico de Monterrey, Monterrey 72453, Mexico

Carmen Llinares

Eduardo macagno.

3 Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0116, USA; ude.dscu@ongacame

Associated Data

Not applicable.

Humans respond cognitively and emotionally to the built environment. The modern possibility of recording the neural activity of subjects during exposure to environmental situations, using neuroscientific techniques and virtual reality, provides a promising framework for future design and studies of the built environment. The discipline derived is termed “neuroarchitecture”. Given neuroarchitecture’s transdisciplinary nature, it progresses needs to be reviewed in a contextualised way, together with its precursor approaches. The present article presents a scoping review, which maps out the broad areas on which the new discipline is based. The limitations, controversies, benefits, impact on the professional sectors involved, and potential of neuroarchitecture and its precursors’ approaches are critically addressed.

1. Introduction

Architecture has various effects on people. Studies have been undertaken into architectural aspects most open to objectification such as those related to structure, construction, and installations of buildings. There exists a broad background with standards and norms, that supports these aspects [ 1 ]. However, these are not the only factors involved. The environment also has effects on humans at the cognitive level (understood as the processing and appraisal of perceived information) and the emotional level (understood as the adaptive reactions to the perceived information), which both operate through closely interrelated systems [ 2 ]. For example, it has been found that noise and a lack of vegetation can generate stress [ 3 , 4 ], and stress associated with the built environment can even negatively affect life expectancy [ 5 ]. Studies on specific spaces have shown a variety of cognitive-emotional impacts, such as poorer patient recoveries in hospital rooms that lack relaxing external views of greenery [ 6 ]. Thus, the architecture has cognitive-emotional repercussions.

“Designerly ways of knowing” (distinct from the best-known scientific forms of knowledge [ 7 ]) has been, traditionally, the main way to address the cognitive-emotional dimension of architecture [ 8 ]. Through this way, which offers a great economy of means, architects have explored and exploited some of the perceptual foundations of the experience of space. However, it is particularly linked to subjective issues in decision-making [ 9 ], whose use may result in biases [ 10 ]. This can lead to inadequate results in responding to the users’ cognitive-emotional needs. Although many approaches have addressed this dimension of architecture, they have not overcome some of these intrinsic limitations and, in part, because of this, have not been adopted as practical design tools.

Neuroscience studies the nervous system from different areas, some of which are promising in this respect [ 11 , 12 ]. At a general level, the application of neuroscience to architecture is often termed “neuroarchitecture” [ 13 ]. Although bidirectional human-space influence, and its impact on neural activity [ 14 ], is not new, the modern recording of experimental subjects’ neural activity during exposure to physical and simulated environmental situations provides a framework for future design and studies. For example, neuroarchitecture has allowed researchers to study some design variables in-depth, which reduce the stress, previously mentioned, in hospital spaces [ 15 ]. Accordingly, the cognitive-emotional effects of architecture have been addressed through different approaches and, more recently, through neuroscience. This novel, complex transdisciplinary nature of neuroarchitecture make it important to review its progress. However, although reviews have been undertaken of the application of neuroscience to other arts, such as dance [ 16 ] to aesthetics [ 17 ] and to architectural aesthetics [ 18 ], and more recently to compile findings on the effects of architecture, as measured by neurophysiological recordings [ 19 , 20 , 21 , 22 ], the authors’ found no previous study that reviews the application of neuroscience to architecture (sometimes referred to as “built space”) to study its cognitive-emotional dimension in a holistic and contextualised way (for which it is necessary to incorporate its precursor approaches, in a complementary way for the vision of some authors in this respect [ 23 ]). The objective of this article is to present a scoping review of neuroarchitecture and its precursor approaches. This type of literature review is aimed at mapping the broad areas in which a discipline is based.

In this sense, it is worth highlighting the shared ground between architecture, art, and aesthetics, which means that the results of the latter two may be, in some way, transferable to the former (for example, much of what has been studied on colour or geometry). Tackling this type of review requires a broad and interrelated perspective, which is characteristic of scoping reviews [ 24 ]. This is especially useful in the case of disciplines that are complex [ 25 ] and have not previously been reviewed at this level, like neuroarchitecture.

To address this broad objective, the following sub-objectives were set: (a) to provide a global vision of related scientific production, showing the trends of the different approaches in terms of type and date of publication, (b) to expose the need to investigate the impact of architecture on people, (c) to synthesise the main precursor approaches of neuroarchitecture to study the cognitive-emotional dimension of architecture, (d) to overview the progress of tools and methods in neuroscience and virtual reality, on which the new discipline is based, (e) define the state of-the-art application of neuroscience to the field of art and aesthetics, due to its similarity with architecture, and (f) to describe the main context, lines of research, and specific results of the application of neuroscience to architecture. In addition, the current status of the discipline is discussed. Therefore, a literature review was conducted.

2. Materials and Methods

Literature reviews examine articles to provide further knowledge about topics [ 26 , 27 ]. There are various types. The present work was tackled by means of a scoping review [ 28 ]. This strategy aligns with alternatives to present a broad perspective on complex issues involving heterogeneous sources [ 29 ]. In addition, this leads to highly explanatory articles [ 30 ] that update professionals from different fields [ 31 ]. These updates of the state-of-the-art applications are essential to support the development of the neuroarchitecture discipline. Overall, preventative measures were taken to avoid biases, using a rigorous and transparent protocol [ 32 ]. Denyer and Tranfield’s proposals [ 33 ] were used to structure the methodology: (1) formulation of objectives, (2) locating studies, (3) selection of studies, (4) analysis and synthesis, and (5) the presentation of the results. All the phases are detailed ( Figure 1 ). The objectives of the study are described in the “Introduction” section. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines [ 34 ] for systematic reviews were followed for the location and selection of the studies.

An external file that holds a picture, illustration, etc.
Object name is sensors-21-02193-g001.jpg

Expository and methodological structure, the PRISMA flow diagram, and its methods.

The studies were located through searches of various sources. First, the studies were found in publishers’ electronic databases (Avery index to architectural periodicals, Cogprints, Elsevier, Emerald, IEEE, NDLTD, PsycINFO, PubMed/Medline, Springer, Taylor & Francis, Urbadoc, and Wiley) and repositories (Dialnet, SciELO, Google Scholar). Second, other reference lists exist, but they contain only redundant information, including content already provided by the first lists searched: Academy of Neuroscience for Architecture ( https://www.anfarch.org/research/recommended-reading ), Neuroscience+Architecture ( http://dilab.uos.ac.kr/neuroarch/ ), and International Network for Neuroaesthetics ( https://neuroaesthetics.net/books , and https://neuroaesthetics.net/papers ). To keep the data updated, all searches were carried out four times between 28 February 2012 and 19 July 2019 (see “location of studies” in Figure 1 ). The same search terms and criteria were used throughout. It is worth highlighting some aspects. Regarding terminology, due to architecture’s artistic and aesthetic impacts, the following concepts were considered: (architecture * OR spa * OR urban * OR “town planning”) AND (neuroscien * OR percept * OR emoti * OR cogniti * OR affect *) OR neuro?architectur *; where “*” denotes truncation and “?” any character. Three criteria were stablished: language, publication category, and study type. The language criterion was that the search was to be conducted in English, Spanish, German, and Italian. This involved repeating the process with translations of the various terms. The publication-type criterion was three-fold. The most useful sources for literature reviews are usually peer-reviewed journals and conference papers [ 35 ]. Reference books were added to help address sub-objectives a, b, and c. It should be noted that, within these types of publications, no discard criteria were considered for indications of publisher quality. Thus, the suitability of references for this review was assessed independently throughout the selection process detailed below. The third criterion was that the studies had to be human-based. Given that much neuroscientific research is animal-based, this represented a significant restriction. It should be noted that, due to the temporal diversity of the approaches involved in sub-objective c, filtering by date of publication was not applied. The bibliographic references of the works retrieved were also reviewed. Therefore, these references were not localised using the above terms and language criteria. The saturation point was assumed to have been reached when most of the references were found to be redundant.

The selection process followed the bibliographic search. This consisted of four sequential actions: (1) elimination of duplicates, using Excel ( http://www.microsoft.com/excel ) and Mendeley ( http://www.mendeley.com ) software, (2) screening to evaluate relevance of the titles, and to make the final decision on inclusion, (3) abstract evaluation, and (4) full-text evaluation. Regarding the latter action, it should be noted that the criterion of “not appropriate for the review’s objective” refers to information that is irrelevant or was not considered to be of quality judging by its overall content (discarding, among other references, a number of bachelor’s or master’s degree final projects), but was not adequately filtered at the abstract stage. The criterion of “not original data” refers to information that is redundant, or for which more representative information has been found in another article by the same authors ( Figure 1 ). All the actions were centralised, to avoid mismatches in such a comprehensive reference base. The sequence made it possible to eliminate the references that did not strictly contribute to achieving the review’s objectives.

Subsequently, the information selected was analysed and synthesised. Several methods are available [ 36 ]. The content analysis synthesis framework was selected due to its ability to interpret content [ 37 ] and adapt to the heterogeneous nature of reviews [ 38 ]. Two approaches were followed. The first is to categorise and group the information we undertook as a “conventional content analysis”. The second is to recalculate and compare the information we undertook as a “summative content analysis”. The conventional content analysis was undertaken following Reference [ 39 ], which identified relevant categories. The summative content analysis was structured in two phases. The first is through compiling the neurophysiological and design aspects, and the second is by grouping these aspects. This latter analysis resulted in summary tables. Collecting the effects of different design variables can be useful for different objectives within the design and study of the cognitive-emotional dimension of the architecture. For example, in decision-making prior to experimental development (to consider variables that may influence the human response, and, among other actions, to choose the appropriate sample), to guide the analysis (to bring forward brain areas on which to focus data processing, among other actions), and even directly in design (given that some of these questions can be understood as design guidelines). A qualitative analysis software, Atlas.ti ( https://atlasti.com ), was used due to the support it offers to reviews [ 40 ]. Three researchers, who are specialists in architecture, behavioural sciences, and neuroscience, independently carried out analyses. The varied profiles of the researchers helped address the heterogeneous nature of the references and reduce the effect of possible professional deformation. The analyses were shared and discussed until consensus was reached. This gives greater reliability to the findings [ 41 , 42 ]. The content obtained from the analyses, which was focused on meeting the sub-objectives, was organised into appropriate sections.

This section synthesises the proposed sub-objectives.

3.1. Classification of References and Their Descriptive Analysis

The process identified 612 references that fulfilled the search criteria. A total of 327,058 were originally identified, with 289,146 from electronic databases, 37,635 from repositories, and 278 from reference lists ( Table 1 ).

Number of references identified in each source.

Of the 205,462 references remaining after duplicates were removed, only 520 were included after a full-text search. In addition, 92 references were added by following a review of the reference bibliography. Of the 612 references, 130 are books, 31 are book chapters, 380 are journal papers, 55 are conference papers, 6 are posters, and 10 are of other natures. Figure 2 presents the proportions chronologically.

An external file that holds a picture, illustration, etc.
Object name is sensors-21-02193-g002.jpg

Number of references included, based on type and publication date.

In terms of focus, 141 references of the 612 references explicitly examine the application of neuroscience to architecture. The remaining 471 focus on the precursor approaches to the cognitive-emotional study of architectural space. Two aspects are remarkable about the neuroscience in architecture approach references. First, more references might have been expected, but this can be explained by the relatively recent emergence of the topic. Most were published after 2000 and the trend seems to indicate an increase in the next few years. The second aspect focused on the high volume of recently published books. Regarding the publication dates, only first editions were considered. In addition to references that explicitly address the issue, the others were considered relevant because they mentioned, or addressed topics related to, the review’s sub-objectives.

The information in the references was categorised following the previously mentioned methodology. Each reference was able to satisfy more than one category. The categories and sub-categories are shown in Table 2 . This organisation serves as a structure for the rest of the results section (sub-objectives b to f). In this sense, Figure 3 provides a map of the general contents of this article.

An external file that holds a picture, illustration, etc.
Object name is sensors-21-02193-g003.jpg

Expository structure and key-concepts map of the paper.

Categories and sub-categories linked to the references.

Figure 4 provides temporal information about the sub-category references relating to approaches of the cognitive-emotional dimension of architecture. The following should be noted: (1) the different approaches that have addressed the human-space relationship have enjoyed moments of greater popularity, and (2) neuroscience was applied to architecture later than to art and aesthetics. Both aspects suggest that including all the sub-categories helps address the issues that motivate this review.

An external file that holds a picture, illustration, etc.
Object name is sensors-21-02193-g004.jpg

Number of references included, grouped by the categorisation of the approaches to the cognitive-emotional dimension, and date of publication.

3.2. Holistic Framework of the Issue

This issue comprises various topics. Addressing it requires a holistic approach. The expository sequence follows the structure shown in Table 2 .

3.2.1. The Impact of Architecture on Human Beings and Directly Associated Research

The influence of architecture on human beings that acts of spatial planning have led to the current built space [ 43 ], which is our largest artifact [ 44 , 45 ]. Beyond its utilitarian character, architecture has complementary cognitive-emotional impacts [ 46 ]. Architecture can both elicit brain activation and modulate genetic function [ 47 ]. Consequently, changes in the environment have important impacts [ 48 ]. Its physiological and social effects should be emphasised. At the physiological level, the consequences for human development, performance, and stress are illustrative. Regarding development, a balanced environment can improve creativity [ 49 ] and cognitive function [ 50 ]. In fact, poor environmental stimulation affects brain development [ 51 ]. Environmental effects are not limited to growth stages. The environmental stimulation provoked by classroom design can improve students’ performance by using cold colours [ 52 ] or smaller spaces. As to stress, some environmental elements such as noise or the absence of vegetation have been shown to have negative consequences [ 3 , 53 ]. Among these impacts are poorer patient recovery [ 54 ] and shorter life expectancy [ 5 ]. On the other hand, in line with the concept of a “healing environment” [ 55 ], various studies have underlined the curative benefits of architecture [ 56 ]. At the social level, it has been found that, for example, the environment can promote collectivism [ 57 ], attract candidates for posts in organisations [ 58 ], and improve citizens’ sense of belonging [ 59 ] and behaviour [ 60 ]. It should be noted that the impact of environmental effects depends on the user’s sensitivity [ 61 ], and non-architectural elements may also have effects [ 62 ].

Architects have been aware of this impact [ 63 ] and that, when designing architecture, experience is designed [ 64 ]. As Aalto noted, humanising architecture involves “a functionalism much larger than the merely technical” [ 65 ]. “When I enter a space, the space enters me and transforms me” [ 66 ]. These statements make it clear that addressing the cognitive-emotional state of the users is a transcendental function of architecture [ 67 , 68 ]. Despite this, the aspects most likely to be objectified have been extensively studied, and the cognitive-emotional dimension has been underexplored [ 69 , 70 ].

The fundamental limitation of this research is that the architectural design process is very complex [ 71 ] because the myriad of design solutions (the possible configurations of all design variables) makes it impossible to test them all. In addition, the problems that the design solutions try to resolve are diverse and vary over time (e.g., the individuals’ needs from their houses can vary as they age). Although there has been extensive research into the built environment, which indicates that a certain level of analysis is possible, architectural design is infrequently, scientifically approached. Hence, the cognitive-emotional dimension of architecture has formed only a small part of the formative content [ 72 ], and the implementation of the design has been mostly based on an amalgam of practices and motivations specific to the architectural project that are part of the ”designerly ways of knowing” [ 7 ].

With this as the main way of approaching the cognitive-emotional dimension of architecture, more of the objectives of architectural design have shifted to more tangible and easily quantifiable issues, such as those closely related to the constructive processes of buildings. This has been pointed out from different perspectives: “Architecture and the modern cities that have been built tend to be inhumane” [ 73 ]. Have we turned our space into an economic-cosmetic product that ignores our primitive codes [ 74 ]? The importance of the built environment cannot be underestimated. “Any future construction must be preceded by a profound study of the relationships between spaces and feelings” [ 75 ]. In this sense, new tools that show the future of neuroarchitecture have been incorporated into the traditional architectural spectrum [ 76 ].

3.2.2. Base Approaches to the Cognitive-Emotional Dimension of Architecture

Architectural space has been the focus of thinking and research at the cognitive-emotional level. The concept has been addressed at different times. Therefore, knowledge of these bases allows us to contextualise current developments in the application of neuroscience to architecture and to understand the context of current practice [ 23 ]. This section exposes the base approaches organized as follows: (1) geometry, (2) phenomenology of space and geographical experience, and (3) philosophy, environmental psychology, and evidence-based design. This classification acknowledges the relationships between the base approaches.

Geometric Approach

Although users might not experience the exact dimensions of proportions, they will feel the underlying harmony [ 77 ]. Architects have worked with geometric proportions to address the cognitive-emotional dimension of architecture. Thus, the geometric approach is a valid starting point from which to understand how architects work and establish bridges that can lead to the development of design tools [ 71 ].

The geometric connection between the human body and architecture has historically been addressed by two fundamental approaches, known as theomorphism and anthropomorphism. Theomorphism has existed from classical Greek architecture [ 78 ]. A well-known example is the Parthenon, fundamentally based on geometric proportions. The cognitive-emotional effect of the Parthenon’s geometric proportions is similar to that sought centuries later by architects, such as Palladio [ 79 ] and Le Corbusier [ 80 ], through a series of geometric-mathematical rules. Anthropomorphism has a long tradition. Examples are found in the classical Roman world, such as temples based on the symmetry of the human body [ 81 ], and, more recently, in the Renaissance and the Baroque periods, where human bodies appeared in some buildings [ 82 ]. However, this architecture-body metaphor has been subjected to different efforts to mathematise it, which shows that these two approaches are not mutually exclusive. For example, Alberti’s attempts to humanise space based on the geometry of the human body [ 83 , 84 ]. This line was exploited with Rationalism, as opposed to speaking architecture [ 85 ], which led to works by Klint [ 86 ], Bataille’s anthropomorphic architecture [ 87 ], the organic architecture of Zevi [ 88 ], the close association with daily human needs of Smithson [ 89 ], and Niemeyer’s [ 90 ] and Mollino’s designs directed toward life actions [ 91 ].

Many of these geometric concepts are recurring. On the one hand, geometrical relationships found to be aesthetic, such as the nine-square pattern [ 92 ], or the golden section, have been validated experimentally [ 93 ], with the latter even using virtual reality [ 94 ] and neuroscientific bases [ 95 ]. On the other hand, the new attempts to quantify geometric properties to capture the cognitive-emotional dimension of architecture are worthy of mention. Among these are isovist analysis, the volume of space visible from a given point in space [ 96 ], and the application of artificial intelligence to distinguish formal categories, based on different features [ 97 ]. The recent mathematical-geometric analysis of architectural images is also noteworthy [ 98 , 99 , 100 ], through its use in architectural spaces of spatial metrics, such as edge density (number of straight and curved edges), fractal dimension (visual complexity), entropy (randomness), and colour metrics, such as hue (the dominant wavelength), saturation (the intensity of colour), and brightness (the darkness of colour). Hence, the geometric approach has not been abandoned.

The Phenomenology of Space and Geographical Experience Approach

Phenomenology is the study and description of phenomena as experienced through the senses in the first person. It is based on phenomena capable of being felt [ 101 ]. Architects have found affinities with this approach, likely because it is related to intuition.

One of the first studies into subjective space was Husserl’s exposition of his ideas about the external world [ 102 ]. Heidegger continued with these influences in “Being and Time” [ 103 ], addressing the spatiality of humans and the concept of “Stimmung” (or state of mind), which is fundamental for understanding subjective space: “being impregnated by an environment”. Some of the first explicit formulations were made by References [ 104 , 105 ], focusing on vital space. Some of the advances were compiled in “Situation” [ 106 ]. Later, the concepts of hodological space and distance including the way in which people evaluate the routes with the preference being based on subjective and objective influences, were introduced by Lewin [ 107 ], and developed by Sartre [ 108 ]. Bachelard [ 109 ] developed his space poetics, a concept widely embraced in the theory of architecture, that seeks to explain the human being’s relationship with the world through poetic images. Rasmussen [ 110 ] presented a phenomenological vision of architecture, which exemplified the syncretism between phenomenology and architecture. Bollnow [ 111 ] presented concepts involved in subjective space: “[...] Unlike mathematical space, subjective space is characterised by its lack of homogeneity”. This is because subjective space derives from the human’s relationship with space. This has led, even, to suggestions that objective space does not exist because it is always perceived [ 112 ]. These concepts (objective space and subjective space) have been embraced by many authors in different approaches to the cognitive-emotional dimension of architecture. At the same time, the concepts have been developed in geographical experience [ 113 ], and have practical applications in urban planning [ 114 ]. Lynch work [ 115 ], which shows the influence of environmental psychology on the phenomenology of space, is representative of its beginnings [ 116 ]. More recently, Pallasmaa, influenced by previous authors, examined the phenomenology of space in architecture [ 117 , 118 ] that claimed architecture takes account of the human biological dimension. Pallasmaa’s line here is shared with Holl and Pérez-Gómez [ 119 , 120 ]. The phenomenology of space has more recently gained momentum under new approaches based on the concept of atmospheres [ 121 , 122 ]: quasi-things, without discrete or visible limits, that exist because of our emotional encounter with the environment [ 123 , 124 ]. Thus, the phenomenology of space and geographical experience have not been neglected.

The Philosophy, Environmental Psychology, and Evidence-Based Design Approach

Psychology addresses the behaviours and mental processes involved in its experience [ 125 ]. Its focus on space is “environmental psychology” [ 126 , 127 ]. Environmental psychology takes phenomenology as one of its substrates [ 128 ]. Hence, it is sometimes difficult to distinguish them nor is it easy to discern the philosophical origins of environmental psychology [ 129 ].

It is illustrative to consider philosophical milestones. Burke [ 130 ] presented an influential philosophical exposition on aesthetics, theorising about beauty through psychophysiological concepts. Burke’s ideas attracted the attention of Kant, who identified space and time as the mental structure of things that we know [ 131 ]. A series of works contributed to the expansion of psychology. Among these are Zeising, who combined geometry and psychology [ 132 ], art, physiology, and emotion linked by Friedrich Theodor Vischer [ 133 ] and Robert Vischer [ 134 ] (who coined the term “einfühlung”: aesthetic empathy, the process through which humans project their emotions onto objects), Fechner, who combined physiology and psychology [ 135 ], Wundt [ 136 ] and Stumpf [ 137 ], who combined psychophysiology and philosophy. Later, Wertheimer, Koffka, and Köhler (students of Stumpf) established gestalt psychology [ 138 ]. Gestalt psychology established principles, or laws, [ 139 ] about the organisation of scenes ( Table 3 ). Many design professionals, including architects, have often embraced these principles. It is noteworthy that Koffka [ 140 ] studied the organisation of the visual field, and Köhler developed the concept of “isomorphism” including the correlation between experience and neural activity [ 141 ] and experience as a sensory sum [ 142 ]. At this historic point, the connections between psychology and neuroscience were evident. Although subsequent studies may have rejected some of these findings, some have been accepted and the works themselves have been recognised as meritorious [ 143 ].

Compilation of some gestalt principles.

One of the advantages of environmental psychology for addressing the cognitive-emotional dimension of architecture is its evaluation instruments. Semantic differential is among the most used [ 144 ]. This is based on the idea that a concept can acquire meaning when a sign (word) provokes the response associated with what it represents, which suggests the existence of an underlying structure. The models of Küller [ 145 , 146 , 147 ] and Russell & Mehrabian [ 148 ], which described the affective-emotional states elicited by the experience of space, should be highlighted. One of its first applications was in architecture [ 149 ]. More recently, it has been used to quantify the relative importance of different design variables [ 150 ]. In this respect, it should be noted that some variables, such as the presence of vegetation and illumination, have been examined, but others, such as those focused on spatial geometry, have been less explored (probably, in part, because of the experimental difficulty involved in modifying them in a controlled manner). Semantic differential has also been used in the context of Kansei engineering, which is a product development method that translates the underlying structure into configurations of variables [ 151 ]. It has been applied in different contexts, including the architectural [ 152 , 153 , 154 ] and urban planning [ 153 , 155 ].

A more practical application of the tools available in environmental psychology is an evidence-based design (EBD) approach: “the process of basing decisions about the built environment on credible research” [ 156 ]. Its origins can be found in the medical field, as an extension of evidence-based medicine [ 157 ] to architectural design [ 158 ]. Illustrative are the plan analyses [ 159 ] and post-occupancy evaluations [ 160 ]. Since Ulrich demonstrated the influence of the environment on patient recovery [ 6 ], it has been widely applied in healthcare spaces [ 161 , 162 , 163 , 164 , 165 , 166 ]. One of the reasons that EBD is so widely used is that it is available for any organisation [ 167 ]. Various aspects have been studied. For example, some aspects include reducing pain [ 168 ] and stress [ 169 ], improving rest [ 170 ], spatial orientation [ 171 ], wandering [ 172 ], privacy and security [ 173 ], social cohesion [ 174 ], overall well-being and satisfaction [ 175 ], and the design of children-tailored environments [ 176 ]. Table 4 compiles effects generated by different design variables, according to different studies both in environmental psychology and EBD.

Effects generated by variables or aspects of architectural design frequently studied in the environmental psychology and EBD approach.

3.2.3. New Tools in Architectural Research and Practice

The base approaches, in general, have two limitations: (1) the validity of the selected stimuli, and (2) the applicability of the evaluations. Regarding the stimuli, although representations may be valid [ 199 ], they are limited. For example, photos and videos, frequently used, offer little interactivity. This reduces virtual immersion [ 200 ] and impoverishes the experience. When environmental simulation differs from reality, the results can be distorted. Moreover, these stimuli do not allow environmental parameters to be controlled. Regarding evaluations, self-reports are prone to bias [ 201 ], as they record only the conscious aspects of human responses. This is important, given that most cognitive and emotional processes occur at the unconscious level [ 202 ]. Taking these points into account, the results must be contextualised.

Regarding new approaches to the cognitive-emotional dimension of architecture, we try to overcome these limitations. New research tools provide: (1) artificial stimuli that are more similar to physical, real stimuli (in the represented spaces), and (2) new, more objective evaluations of cognitive-emotional responses. Virtual reality (VR) is frequently used to provide stimuli. VR simulates environments in a realistic, immersive, and interactive way [ 203 ] under controlled laboratory conditions [ 204 ]. As for evaluation, neuroscience and its related technologies allow researchers to record and interpret human behavioural, physiological, and neurological reactions [ 205 ], providing high levels of objectivity [ 206 ] and continuous monitoring [ 207 , 208 ]. Although neuroscientific techniques have been available for decades, their application is currently expanding.

Neuroscience

Neuroscience focuses on the brain and nervous system [ 209 ]. On the basis that normal human brains are very similar, neuroscience has provided insights into the functioning of the nervous system [ 210 , 211 ]. Resorting to the brain is starting from the root [ 212 ]. Neuroscience has different areas of expertise [ 213 ]. This has allowed its results, methodologies, and tools to also have an implication on issues directly related to other disciplines. For example, cognitive neuroscience, behavioural neuroscience, neurophysiological neuroscience, and sensory neuroscience shed light on perception in general [ 214 ] and on space in particular [ 215 ]. Given neuroscience’s applicability to architecture [ 216 ], the discipline can contribute to quantifying architecture’s impact on humans [ 217 , 218 ]. Thus, designs that contribute to their users’ quality of life can be produced [ 219 , 220 ].

However, human nervous system studies have had few avenues to explore human brain function. They have generally been limited to examining patients with neural injuries or suffering from neurodegenerative diseases [ 221 ]. Studies into the effects of neuronal injuries on art production have followed this approach [ 222 ]. For example, it has been found that frontotemporal dementia changes musical taste [ 223 ], that damage to the amygdala impairs the identification of sad music [ 224 ], and that damage to one hemisphere causes spatial neglect on the opposite side in drawings [ 225 , 226 , 227 ]. Paradoxically, neuronal injuries can sometimes improve artistic skills [ 228 , 229 , 230 ]. Due to the paucity of this form of study, they have sometimes been considered “informative anecdotes” [ 17 ]. The clearest conclusions have only been able to be drawn after the joint analysis of cases [ 231 ].

Neuroimaging techniques open new paths. Based on the non-invasive recording of brain responses [ 232 , 233 ], they allow observation of the responses of healthy individuals under controlled conditions. From their first applications to art, studies have made substantial progress [ 234 , 235 ]. These techniques are essential in the exploration of the neural processes involved in art generation and appreciation. Various tools are used to obtain the recordings [ 236 ] from the central (CNS), the autonomic (ANS), and the somatic (SNS) nervous systems.

The CNS is made up of the brain and the spinal cord. The tools most commonly used to study CNS functions in living humans are functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG). fMRI measures neuronal activity indirectly by detecting changes in magnetic properties related to blood flow [ 237 ]. Although its temporal resolution is poor, fMRI yields better spatial resolution and deep structure identification than other methods. fMRI has been used to study aspects such as memory [ 238 ]. EEG measures electric field fluctuations due to the ionic currents generated by neuronal activity in the brain, mainly the cortical areas because they are the most superficial [ 239 ]. The analysis of the recordings generally involves the classification of power spectral densities within defined frequency bands, on the basis that the brain is made up of different networks that operate at its frequency, and the relationships between these networks [ 240 ]. The high temporal resolution of EEG allows the analysis of stereotyped fluctuations generated by discrete stimuli [ 241 ]. EEG has been used to study, for example, mental workload [ 242 ]. In contrast, MEG measures the magnetic fields generated by the ionic current [ 243 ]. Although its infrastructure has drawbacks (MEG equipment is not wearable or portable), the skull and scalp distort the magnetic fields less than the electric. This advantage makes MEG a powerful tool for exploring the functions of deeper cellular structures, such as the hippocampal’s role in cognition [ 244 ]. In parallel, it is possible to stimulate brain areas using transcranial magnetic stimulation (TMS), which is a technique used in various fields [ 245 ].

The ANS, which is part of the peripheral nervous system, controls involuntary actions. The tools most commonly used to study ANS function monitor electrodermal activity (EDA, called Galvanic Skin Response, or GSR), heart rate variability (HRV), and pupillometry. EDA measures variations in electrodermal properties, particularly electrical conductivity [ 246 ]. Sudomotor activity is related to sympathetic nervous system activity [ 247 ], so it is appropriate for tracking arousal [ 248 ]. EDA has been used to study attention [ 249 ]. HRV measures the variation in time between heartbeats [ 250 ]. HRV measurements are generally grouped into time-domain and frequency-domain with both having clinical and cognitive-emotional significance [ 251 ]. It has been used to study issues such as stress [ 252 ]. Pupillometry is the measurement of the diameter of the pupil of the eye [ 253 ]. Although the pupil diameter is directly affected by a light level, it has also been related to arousal [ 254 ] and cognitive load [ 255 ]. While ANS activity has been considered insufficient to study the nuances of emotion [ 256 ], it has more recently been favoured [ 257 ].

The SNS is the part of the peripheral nervous system associated with voluntary movement. Eye tracking and electromyography (EMG) are commonly used tools. Eye tracking is the measure of gaze movement [ 258 ]. Eye movements, to an extent, identify the focus of our attention (voluntary and involuntary), and are influenced by cognitive-emotional states [ 259 ]. Various metrics are used to measure eye movements, based on the parametrization of the movements [ 260 ]. For example, eye tracking has been used to study engagement [ 261 ]. EMG measures the electrical activity of the muscles [ 262 ]. To measure facial expressions related to emotion [ 263 ], recordings are usually made of the corrugator supercilii [ 264 ] and the zygomaticus major [ 265 ], which are muscles strongly influenced by emotional valence [ 266 ]. Thus, EMG has been frequently used to study basic emotions [ 267 ]. There is, in addition, automatic image-based facial expression recognition (facial coding). Some architectural studies have applied physical eye tracking [ 268 , 269 , 270 ] and eye tracking simulated by software [ 271 ] and facial coding [ 272 ].

Given the complexity of neural activity, these tools are insufficient to fully explain it. However, they offer information about its bases and are compatible with other approaches. They make a contribution that, in architecture, recalls the optimism that Frampton attributed to the technique to “replace the devalued motives [...] of our environment and turn it into an authentic place” [ 273 ].

Virtual Reality

Environmental simulations are representations of actual environments [ 274 ]. There are different types [ 275 ]. VR generates interactive real-time computer representations that replace the visual information normally provided by the physical world and create the feeling of “being there” [ 276 ]. It is possible, though seldom done, to create virtual representations using other sensory channels. This type of stimulation is especially interesting. For example, head transfer function (a response to how a sound emitted from a point is received after the sound arrives at the listener) is involved in how we perceive physical and virtual environments [ 277 ]. Hapticity plays an important role in the supramodal experience of architecture [ 278 ], and smell has important cognitive-emotional effects in certain situations, such as stress reduction [ 15 ].

Various devices are used to reproduce VR formats. It is common to classify them according to immersion: the degree to which the hardware isolates the user from the physical world [ 279 ]. Thus, there are non-immersive devices, such as computer monitors, semi-immersive devices, such as the cave automatic virtual environment (CAVE), and fully-immersive devices, such as head-mounted displays (HMDs). Greater immersion generates a greater sense of presence, that is, the user’s perceptual illusion of non-mediation [ 280 , 281 ]. Greater presence also involves the allocation of more brain resources for cognitive/motor control [ 282 ]. Although non-immersive devices inherently offer the advantage of collaborative viewing [ 283 ], the majority of current interests focus on the other two types of device and HMDs are now within reach in terms of usability and affordability [ 284 ]. This increasing popularisation has contributed to VR being used in other fields.

In architecture, VR has given rise to an explosion of applications [ 285 ]. VR allows us to modify variables in the same space in isolation and record human interaction with the environment, quickly and at low cost [ 286 ]. VR, thus, is an optimal tool for evaluating human responses to architecture [ 287 ] at both behavioural and neurophysiological levels [ 288 , 289 ] and even its cartographic representation [ 290 ]. For example, it has been used to study relationships between experience and space variables [ 291 ], facilitate design decision-making [ 292 ], and assess accessibility [ 293 , 294 ] and orientation inside buildings [ 295 ], including in emergency situations [ 296 ]. Thus, VR provides knowledge beyond that provided by the physical world.

The interactivity inherent in VR gives rise to a fundamental aspect that should be addressed: navigation. Two components of navigation are usually discussed: wayfinding and travel [ 297 ]. Wayfinding is the cognitive process of establishing a route [ 298 , 299 ]. It has been suggested that wayfinding performance in virtual environments is poorer than in physical environments [ 300 , 301 ]. The travel component, related to the task of moving from one point to another, has been found to be strongly affected by the navigation metaphor used to perform the navigation. Many navigation metaphors, classified as physical or artificial, are available. Physical metaphors are varied. For example, room-scale based metaphors, such as real walking inside a physical space, is the most naturalistic metaphor but is highly limited by the physical tracked area [ 302 ]. Motion-based metaphors, such as walking-in-place, is a pseudo-naturalistic metaphor where the user performs virtual locomotion, while remaining stationary (e.g., moving the hands), to navigate [ 303 ], or redirected walking, known as a metaphor where users perceive they are walking while they are unknowingly being manipulated by the virtual display, which allows navigation in an environment larger than the physical tracked area [ 304 ]. Artificial metaphors facilitate direct movements using joysticks, keyboards, or similar devices [ 305 ]. Among these are teleportation-based metaphors, which allow users instantaneous movement to a selected point [ 306 ]. There is no consensus as to which is the most appropriate [ 307 ]. Since navigation can radically condition space perception and, therefore, subsequent human responses, it is a key aspect that needs to be considered.

However, VR does have some problems. These are generally of a technical nature, such as the previously discussed navigation [ 308 , 309 ], level of detail [ 310 ], and negative symptoms and effects [ 311 ]. In architecture, an important limitation is that, although VR can be combined with auditory and tactile stimulation [ 312 ], the richness of the experience is limited [ 313 ]. A simulation will always be a simulation [ 314 ], an abstraction of a complex reality [ 315 ], and, thus, VR cannot reproduce physical environments [ 316 ]. Therefore, studies that employ VR must be validated in physical environments [ 317 , 318 , 319 ]. Despite these drawbacks, synthetic environments have been shown to elicit behavioural responses similar to physical environments [ 320 ] and VR has its uses in various fields [ 321 ] and, in particular, in architecture. It is a tool for architects and cognitive scientists interested in spatial perception and cognition.

Combined Neuroscientific and Virtual Reality Technologies

Neuroscience and VR can be combined [ 322 ]. This combination allows researchers to develop virtual environments and record the neurophysiological and behavioural responses of experimental subjects [ 323 , 324 , 325 , 326 , 327 , 328 ]. It has been suggested that this combination is more rigorous than research in physical settings using self-reports [ 329 ]. This is attractive for neuropsychological research [ 330 ] and architecture [ 331 ]. Thus, combined VR/neuroscience techniques are increasingly being used to examine the psychological [ 332 ] and neural bases of different aspects of the human-space relationship [ 333 ]. The techniques are being used in visuomotor [ 334 ] and spatial learning [ 335 ], evaluations of cognitive rehabilitation [ 336 ], assessments of social situations [ 337 ], training in simulated environments [ 338 ], quantification of sense of presence [ 339 ], and studies exploring the neurophysiological foundations of cognitive-emotional states, such as arousal [ 340 , 341 , 342 , 343 ], stress [ 344 , 345 , 346 , 347 ], and fear [ 348 , 349 ]. The combined approach allows us to evaluate the cognitive-emotional influence of architecture from a new perspective [ 350 ].

3.2.4. The Cognitive-Emotional Dimension of Architecture Measured through Neuro-Aesthetics

Neuroscientific and virtual reality technologies have been extensively used in experiments in the related fields of art and aesthetics. They have provided a very valuable source of results and methodologies. The discipline derived from applying neuroscience to aesthetics has been called “neuro-aesthetics”. Neuro-aesthetic research is an example of how technologies can contribute to the study of art [ 351 , 352 ] and, since architecture shares lines of action with art and aesthetics, understanding the most illustrative innovations that have taken place in art and aesthetics represents an important new knowledge source for architecture [ 353 ]. However, although a certain degree of extrapolation could be presumed, it should be noted that the current state of development of neuroarchitecture does not yet make it possible to determine to what extent extrapolation is possible. Below, we discuss some landmarks that have been considered of special importance and affinity with architecture, considering contributions from different artistic contexts and, therefore, sensory modalities.

Psychology has developed various levels of analysis over the last century [ 354 ]. Some of these analytical levels have focused on the “objective” and “subjective” aspects that influence the aesthetic experience [ 93 ].

Among the “objective” aspects related to the characteristics of objects are: (1) symmetry, (2) centre, (3) complexity, (4) order, (5) proportion, (6) colour, (7) context, and (8) processing fluency. Table 5 presents some effects and, where appropriate, related neurophysiological activity (RNA) and their Brede Database WOROI (a hierarchically structured directory of brain structures) codes. Many of these objective aspects have been approached intuitively, from different artistic disciplines, but applying a psychological approach provides new knowledge that can be of interest both to artists and researchers. For example, symmetry, which has been used frequently from early times in some architectural trends and styles, has been associated with faster cognitive processing of stimuli, but also with a certain aesthetic rigidity. Other less studied aspects are typicity [ 355 ] and semantic content, as opposed to formal qualities [ 356 ] and style [ 357 ]. Many of these aspects are grouped in Ramachandran and Hirstein’s [ 358 ] theory of aesthetic experience. This conceptualises eight principles: peak shift effect, isolating single clues, perceptual grouping, contrast, perceptual problem solving, generic viewpoint, metaphor, and symmetry.

Effects generated by the “objective” aspects frequently studied in psychology applied to art. The table incorporates some points about the neuronal activities involved (the nomenclature of the sources is followed, and WOROI codes are added).

Among the “subjective” aspects, related to personal factors, are: (1) emotional state, (2) familiarity and novelty, (3) pre-classification, and (4) others of a social nature. Table 6 summarises some effects. These aspects complement the objective aspects, and play an important role [ 397 ]. Subjective aspects have been addressed using different evaluation instruments, which highlights the variety of psychological tools available for application to art. For example, tools such as fMRI and EEG have been recently used to study the neuro-behavioural effects of familiarity and novelty of stimuli, whose impacts on aesthetic judgement were already known at the psychometric level. In fact, neuroscience is advancing rapidly [ 398 ]. Since the first event-related potentials in aesthetic judgment studies were published in 2000, a large number focused on aesthetics in painting have appeared [ 399 ]. Later, specific aspects of painting and other forms of artistic expression were addressed [ 400 ]. A growing trend exists that is revealing the neurophysiological bases of the (previously discussed) objective and subjective aspects that influence the aesthetic experience.

Effects generated by the “subjective” aspects frequently studied by psychology applied to art. The table incorporates some points about the neuronal activities involved (the nomenclature of the sources is followed, and WOROI codes are added).

Distinctions are normally made between the neurophysiological foundations of attention, judgement, and emotion [ 432 ]. Table 7 summarises some effects. Taking attention, it has been found that visual processing occurs both in parallel and hierarchically [ 433 ], as more complex issues are gradually solved [ 434 ]. In terms of artistic judgement, there are two stages known as a general impression of works at around 300 ms and a deeper aesthetic evaluation at around 600 ms [ 435 ]. Regarding emotion, aesthetics is a complex experience that involves different affective-emotional processes that activate reward-related brain regions [ 436 ]. Reward is understood as the positive value attributed to something [ 437 ]. Hemispheric specialisation has also received attention [ 438 ]. Some studies have seemed to suggest that there are asymmetric functions in the brain hemispheres, and while they might be activated by the same stimuli, they react in different ways [ 439 ]. Thus, while two parts of the brain might be activated by the same stimuli, only one would be the final controller. However, aesthetic experience involves different aspects [ 440 ], processed through the same systems used in other areas [ 441 ]. In this sense, mirror neurons are interesting. Mirror neurons are activated both when carrying out an action and when observing it. The observers’ neurons “mirror” (hence, the name) the behaviour of the individual carrying out an action, as if the observers themselves were performing it. It has been suggested that the behaviour of mirror neurons is important to social life-linked cognitive capacities, such as empathy [ 442 ], but also to the empathic understanding of art [ 443 ], and, therefore, in the specific context of architecture [ 444 ].

Neurophysiological foundations of the aesthetic experience (the nomenclature of the sources is followed, and WOROI codes are added).

Neural activities have been identified in relation to aspects studied in psychology. Table 6 and Table 7 display some of these. The fact that the structures involved are both subcortical and cortical, which are commonly associated with emotion and reason, is the basis of romantic hypotheses about the complexity of art, and the difficulty of producing beauty, in comparison to perceiving it. Given the close coordination between these structures [ 480 ], it would make sense to accept that the interaction between the structures is both bottom-up and top-down [ 481 ].

Different models establish links between studies. On the one hand, the psychological model of Leder [ 482 ] emphasised the interdependence of emotion and aesthetic judgment (they occur simultaneously: the first is the source of aesthetic preference, the second is the output of affective-emotional states) and established five phases of aesthetic experience (perception, explicit classification, implicit classification, cognitive mastering, and evaluation). On the other hand, the Chatterjee neuroscientific model [ 483 ] proposes that, in addition to affective-emotional output, there is a decision-making process. The model establishes five phases (processing of simple components, attention to prominent properties, attention modulation, feed-back/feed-forward processes uniting the attentional and attributional circuits, and intervention of the emotional systems). The fundamentals of the Chatterjee’s model have recently been contextualised in architecture [ 484 ]. Both frameworks represent the aesthetic experience, and have been useful for interpreting later results [ 485 ]. However, further research is needed.

3.2.5. Neuroscience in Architecture

Neuroscience is being incorporated into the study of the cognitive-emotional dimension of architecture [ 486 ]. Seen in retrospect, certain gestalt psychology-influenced developments link the use of neuroscience in architecture [ 487 ]. Von Hayek’s work [ 488 ] and Arnheim’s research [ 489 ] into the psychology of art and perception of images are examples. Beyond gestalt, and, strictly outside art, Reference [ 490 ] made a contribution to the application of neuroscience to behaviour by developing a theory of how complex psychological phenomena can be produced by brain activity. Paired with his ideas, Neutra made one of the first more explicit contemporary formulations of the incorporation of neuroscientific knowledge into architecture [ 491 ]. He explained that architecture should satisfy the neurological needs of its users by incorporating the research available into the development of architectural designs. In addition, inspirational is the holistic understanding of human life that Moholy-Nagy expected from architects [ 492 ]. The point at which this knowledge began to be accessible to architects, according to some authors [ 493 ], was with the publication of “The Embodied Mind” [ 494 ]. In this work, the authors coined the term “neurophenomenology,” and tried to reconcile the scientific approach with experience [ 495 ]. In this sense, Einfühlung has also acquired a neuroscientific substrate in recent years. Freedberg & Gallese [ 443 ] proposed that mirror neurons are responsible for what certain phenomenology authors called “resonance”. In this way, neuroscience applications, compared to base approaches, offer substantial benefits [ 496 ].

Two lines stand out in the exploration of architecture’s bases: the design process, and the experience of architecture [ 497 ]. The first line has been widely developed in art in general, and has made progress in the architectural field such as in proposals on how to incorporate the knowledge derived from neuroscience’s application to architecture into the design process [ 498 , 499 , 500 ], and in studies into brain development generated by acquired expertise [ 405 , 501 ]. These studies share common ground with neuro-aesthetic research. Frequently examined aspects of the second line are orientation, light, and acoustics. Orientation is part of the daily activity of most people [ 502 ]. Studies of diverse natures have tried to explain the principles involved in wayfinding [ 503 , 504 , 505 ] with VR being an effective tool [ 506 ]. These studies have direct relevance when it comes to improving navigation strategies. There is a long tradition of using light for aesthetic purposes. Since the discovery of the eye’s photoreceptive ganglion cells, and their influence on circadian rhythms [ 507 , 508 ], light-centred studies have been complemented by health-focused research [ 509 ]. The application of the recommendations based on the results of light-based research could improve the experience of users, especially those with time/light challenges (e.g., night shift workers) [ 510 ]. Regarding acoustics, there is a relationship between noise and consequences for humans at different levels [ 511 ]. For example, studies have been undertaken into stress recovery during exposure to sounds of a different quality [ 512 ]. Leaving aside artistic arguments, the treatment of space acoustics is of considerable importance. In addition to these aspects (orientation, etc.), studies that identify the mechanisms of exposure to restorative environments should be highlighted [ 513 ], as should studies into the quantification, based on neurophysiological measures, of the effects of restorative environments in interior [ 514 ] and exterior spaces [ 515 , 516 ], the capture of the emotional impact of museum experiences [ 517 , 518 , 519 , 520 ], the modification of recommended house design variables [ 521 ], and works with mixed design aspects [ 522 ]. The results of some studies appear in Table 8 . Beyond the relative prominence of wayfinding studies, in this table, it can be seen that some variables attract more attention (as do environmental psychology and EBD). The variable contours and ornament, which is a basic architectural design aspect, stands out. These advances show the usefulness of the neuro-architectural approach to the cognitive-emotional dimension of architecture [ 523 , 524 , 525 ]. However, although neuroscientific research is extensive and rigorous, its application to architecture is an emerging discipline [ 526 , 527 ]. Thus, there are, as yet, few practical works exclusively focused on improving architectural design. The efforts are dispersed, and a common framework has yet to be established.

Neurophysiological foundations of the cognitive-emotional dimension of architecture, and the neuro-behavioural effects generated by architectural design variables studied in the application of neuroscience to architecture.

4. Discussion

Based on the scoping review of neuroarchitecture and its precursor approaches, four aspects of the application of neuroscience to architecture were identified: (1) limitations of the approaches, (2) the problems in addressing the cognitive-emotional dimension of architecture, (3) ways to solve the problems, and (4) the limitations of this work.

4.1. Limitations of the Approaches to the Study of Cognitive-Emotional Dimension of Architecture

The study of the cognitive-emotional dimension of architecture is complex. New approaches are helping to overcome the limitations of the base approaches and to identify data that can support the validity of design proposals. However, neither approach is without its limitations.

The base approaches to the cognitive-emotional dimension of architecture are generally limited in relation to the environmental stimuli and the evaluation systems used. The new approaches, to an extent, try to overcome these limitations by incorporating VR and neuroscience. Their application to aesthetics and art provides a basis for their application to architecture. However, the fact that art and architecture are related fields does not make them equivalent. Thus, the extrapolation of other knowledge bases to architecture must be undertaken with caution. These aspects are discussed below at ontological, epistemological, and methodological levels.

At an ontological level, the limitations are derived from the perceptual breadth of the experiences. Two deficiencies stand out: (1) the modality of the stimuli used, and (2) the aspects studied. The first limitation involves unimodality. Previous studies have generally focused on the visual domain [ 570 ]. Although most of the information we process is in the visual domain [ 571 , 572 ], limiting the exposure to only unimodal stimuli in architecture reduces the richness of the experience [ 573 , 574 ]. The second limitation fundamentally involves beauty and pleasure. On the one hand, although beauty plays a central role in people’s concept of aesthetics, art, and, therefore, architecture [ 575 ]. Non-beautiful works can be art [ 576 ]. On the other hand, although pleasure may be derived from the aesthetic or artistic experience [ 577 ], pleasurable feelings may be generated for reasons outside the work of art or architecture. Thus, beauty and pleasure are not enough [ 578 ].

At the epistemological level, the limitations derive from the difficulty of explaining these experiences in exclusively physiological terms. Two stand out: (1) the neurology-experience relationship, and (2) the various influential aspects. The first limitation generates the risk of drawing invalid inferences since a brain area can be related to several processes [ 579 ]. Emotions are especially complex in this regard [ 580 ]. The second limitation relates to the number of aspects that influence artistic and aesthetic experiences [ 221 ]. These experiences may seem simple because they are simple to recognize, but not at a neuro-psychological level.

At a methodological level, the limitations derive from the wide variety of stimuli and the many ways in which works can be displayed. Two stand out: (1) procedural conflicts and (2) technical restrictions. The first limitation involves several questions. On the one hand, ceteris paribus logic sacrifices the complexity of the stimuli. In addition, the rigidity of neuroimaging protocols and the laboratory context can alter results. On the other hand, the multiple cognitive-emotional processes involved do not occur simultaneously [ 581 ], which may misalign the causal assignment of the recordings. The second limitation relates to the restrictions associated with neurophysiological recording technologies such as the immobility of fMRI. Although these limitations can now be considerably addressed using other devices, such as wearable EEG caps [ 582 ] and recordings that can be made outside the laboratory [ 583 , 584 , 585 ], they must be taken into account. The limitations all contribute to the lack of a commonly accepted methodology. In a certain way, this lack also obstructs the understanding between different research groups and the comparability of results. While sometimes studies might provide divergent results, it may be because they are reflecting different components of the experience [ 586 ]. This leads to the point that the results are also difficult to extrapolate into design guidelines for practical application in architecture.

4.2. Problems in Addressing the Cognitive-Emotional Dimension of Architecture

In addition to the limitations discussed above (applicable to the entire domain of art and aesthetics), there are more specific architecture-based limitations. Mainly two: (1) it is not possible to liken architecture to the artistic-aesthetic, and (2) the experience is not one-off. The first limitation arises from the depth of the architectural function. Architecture tries to meet broad human needs [ 587 ]. Although architecture is one of the “Fine Arts” [ 588 ], the artistic-aesthetic experience is only one of the components of the cognitive-emotional dimension of architecture. The second limitation is that architecture is an experiential continuum [ 589 ]. The transition from one space to another can condition the experience [ 590 ], with the “architectural narrative” being significant [ 560 ]. In addition, peripheral vision is of special importance [ 591 ]. In fact, architecture could be experienced in two ways: intellectually, through focal processing, and in terms of atmosphere, through ambient processing [ 592 ]. Furthermore, architecture engages all sensory modalities [ 278 , 593 ], so the visual is insufficient to describe it [ 96 ]. This is very important in terms of the study of sensory interaction [ 594 ]. Both limitations impede the fragmentation of the cognitive-emotional dimension of architecture, which encourages the tendency toward case studies [ 595 ]. In summary, the application of neuroscience to other fields must be cautiously extrapolated to architecture.

The debate on the universality of art should not be forgotten [ 596 , 597 ]. Fundamentally, a perspective based on objective principles might be considered [ 598 ], but differences between individuals makes the artistic experience widely subjective [ 599 ], which is a circumstance echoed in architecture [ 600 ]. To deploy ideas about the universality of art requires retrospective exposition. To begin with, art has developed in parallel with human evolution [ 601 ]. It is an exclusively human capacity apart from the structures that some animals produce based on their genetic programming [ 493 ]. This is not a reference to the denaturation of art [ 602 ], but to its human focus. The key point is that the brain adapts to the environment [ 603 ], which is a process known as “neuroplasticity” [ 604 ]. Thus, our artistic (and, therefore, architectural) experience is conditioned by biological and environmental factors [ 605 ], with the latter having a major impact [ 606 ]. Additionally, human brains may change through pathologies (e.g., Alzheimer’s disease). Achieving universal art or architecture may not be possible. In fact, there is less agreement when it comes to judging artifacts than natural elements [ 607 ]. However, all humans have innately similar brains [ 608 , 609 ], which allows bridges to be built between individuals, societies, and times [ 610 ]. Therefore, some common architectural design guidelines may be developed.

4.3. Beyond the Current State: The Challenges Facing Neuroarchitecture and Its Constituent Disciplines

Hitherto, there has been no general study of the foundations underlying the cognitive-emotional dimension of architecture. In this sense, neuroarchitecture has potential. The new discipline makes a contribution to an architecture that supports the cognitive-emotional dimension [ 611 ], and does not fall into the reductionism of exclusively aspiring to provide relaxation [ 92 ]. This might embrace the contemporary emphasis on sustainability and the social dimension [ 612 ]. The examples are as varied as the spaces: hospitals that contribute to healing [ 613 ], classrooms that support cognitive processes [ 614 ], work environments that encourage collaboration [ 615 ], museums perceptually adapted to the works that they house [ 583 ], restaurants where multisensory integration enhances the gastronomic experience [ 616 ], and, among others, urban planning activities [ 617 , 618 , 619 , 620 ], where one of the challenges lies in the diversity of groups. Designing for specific groups, including those with specific pathologies such as dementia [ 621 , 622 , 623 ], involves a frontal confrontation with design for the masses. The success of the different applications of neuroarchitecture will, in part, depend on the ability of its constituent disciplines to overcome its inherent challenges.

User experience is the main issue in VR. Increasing the capacity of VR set-ups to generate the illusion of being in a place (characterised as “place illusion”), and the credibility of the scenarios, to meet the viewer’s expectations (characterised as “plausibility illusion”), is crucial. Although there is limited understanding what affects the sense of presence, there is consensus on two factors, known as exteroception and interoception. Exteroception factors, which are directly related to the experimental set-up (such as interactivity), increase the sense of presence particularly in virtual environments not designed to induce specific emotions [ 624 ]. Interoception factors, defined by the content displayed, increase the presence if the user feels emotionally affected [ 625 ]. For example, previous studies have found a strong correlation between arousal and presence [ 626 ]. This suggests that, in neuroarchitecture, both factors may be critical. There is a robust interdisciplinary community [ 627 ] that is certainly helpful in meeting this challenge. Furthermore, neuroarchitecture and VR share a synergistic relationship in which the former can help us understand and improve virtual spaces with which we interact more.

The analysis of neurophysiological data is challenging [ 628 ]. Affective computing, which is an interdisciplinary field based on psychology, computer science, and biomedical engineering [ 629 ], will likely play an important role. Several studies have focused on identifying the cognitive-emotional state of subjects by using machine-learning algorithms and by achieving high levels of accuracy [ 630 , 631 ]. Many neuroimaging techniques have been used [ 632 ]. Affective computing can be transversally applied to many human behaviour topics. Although one of the first applications of affective computing was to neuroeconomics research due to the important relationship that has been found between emotions and decision-making [ 633 ], there are revealing and important examples of its application to architecture [ 634 ]. In fact, very recent applications in virtual architectural spaces have produced encouraging results [ 635 , 636 , 637 ]. For neuroarchitecture, the definition of neurophysiological indices in relation to the cognitive-emotional dimension of architecture would contribute to the development of an actual architectural design tool. These would allow the effect of the architecture on users to be measured in an easy-to-interpret way (e.g., stress through neurophysiological measures expressed in well-defined ranges). The fact that these indices have not yet been fully developed and made available for academic and professional use is one of the reasons that may be holding back the growth of neuroarchitecture. Developed in real time, these could even contribute to adapting spaces to emotional states [ 638 ] (for example, automatically modify the lighting of the environment in order to respond to a stressful situation of its user). In this matter, the combination with virtual reality could potentially present yet another facet of the synergy between neuroimaging and virtual reality techniques. For example, by means of augmented reality displayed on HMDs, the user could be stimulated to reduce their stress without physically modifying variables of the environment (which could affect other users who do not meet the same needs). Thus, neuroarchitecture would not only help to answer questions about the cognitive-emotional dimension of architecture, but also to develop a technological layer that supports our cognitive-emotional processes [ 639 ].

However, humans are not just neurological entities. Thus, it is not surprising that the cognitive-emotional dimension of architecture has been approached from such different directions. The polyhedral nature of the cognitive-emotional dimension of architecture means that a solution can hardly be derived from one source. Although neuroscience applied to architecture helps to answer questions about the cognitive-emotional dimension of architecture, it does not hold all the answers. Moreover, architecture has traditionally been based on designerly ways of knowing. The architect intuitively explores and exploits some of its perceptual foundations. This offers an economy of means that, sometimes, is ahead of science [ 640 ]. Thus, if the ultimate goal is to improve architecture, attention must be paid to both the bases and execution. To do this, it will be necessary to take into account how architects work. “Scientists and artists need to identify common ground” [ 641 ]. Only in this way will it be possible to develop the broad and deep knowledge needed to generate a true design tool.

4.4. Limitations of the Work

The present study has some limitations. Fundamentally, (1) the work may be over-exhaustive, and (2) possible significant references were not discovered. Exhaustiveness is due to the multiple disciplines involved. Although some overlap exists, the integration of the approaches examined offers a broad view of the issue. As for undiscovered references, it is possible that some interesting works have not been addressed including “grey literature” [ 642 ].

5. Conclusions

The application of neuroscience to architecture is gaining prominence. The term “neuroarchitecture” seems to work in a promotional sense, likely, in part, due to the tendency to consider neuroscientific content credible [ 643 ]. However, it does not seem appropriate at other levels such as computerised searches (mixed with neural architectural issues or artificial intelligence), conceptual (does not do justice to neuroscience or architecture), and technical (does not make clear if it includes works not strictly based on neurophysiological recordings). The ease in translating the term into different languages, and the amount of documentation generated, makes it difficult to adopt more appropriate terms, such as “emotional architecture” or “mental architecture”.

In another vein, neuroarchitecture is often decontextualized without considering its main precursor approaches. This creates biases about its current possibilities and future developments and, as with social sciences [ 644 ], neuroscientific applications generate some controversy. From some conservative points of view, accepting external guidelines infringes on issues deeply established in the project process. Most of the changes generate neophobic impulses, and the advent and development of neuroarchitecture may mark a paradigm shift. However, the application of neuroscience to architecture is not intended to reduce design to universal standards. Understanding the fundamentals on the cognitive-emotional dimension of architecture does not make it less relevant nor will it remove the need for architects. It will only complement their tool set, that already includes tools (more or less used in practice), such as geometry, phenomenology, geographical experience, philosophy, and, more recently, psychological and EBD approaches. The knowledge offered by neuroarchitecture will help more broadly meet users’ needs. A building might not collapse due to poor cognitive-emotional adaptation, but its users might. Although it will take years to design projects entirely using principles and knowledge derived from neuroscientific explorations of the built environment, today, we can take steps to improve the human cognitive-emotional response in the built architectural environment. This includes modifying existing spaces and improving decision-making for the design of new spaces. The combination of advances in neuroscience and environmental simulation will expand the impact of the new discipline. The next great architects may be those who can embrace, without prejudice, these new possibilities. The challenge looks exciting.

Author Contributions

Conceptualization, J.L.H.-T. Methodology, J.L.H.-T. Formal analysis, J.L.H.-T., C.L., and E.M. Investigation, J.L.H.-T., C.L., and E.M. Writing—original draft preparation, J.L.H.-T. Writing—review & editing, J.L.H.-T. Visualization, J.L.H.-T. Supervision, C.L. and E.M. Project administration, J.L.H.-T. Funding acquisition, C.L. All authors have read and agreed to the published version of the manuscript.

This work was supported by the Ministerio de Economía, Industria y Competitividad of Spain (Project BIA2017-86157-R). The first author is supported by funding from Ministerio de Economía, Industria y Competitividad of Spain (PRE2018-084051), and the Academy of Neuroscience for Architecture (John Paul Eberhard Fellow).

Institutional Review Board Statement

Informed consent statement, data availability statement, conflicts of interest.

The authors declare no conflict of interest. The funders had no role in the design of the study, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

IMAGES

  1. Architectural Design Essay Example

    research paper architectural design

  2. (PDF) Contemporary architecture in a historical context

    research paper architectural design

  3. Architectural Design Thesis

    research paper architectural design

  4. Architecture Presentation Board Tips

    research paper architectural design

  5. ARCHITECTURAL DESIGN THESIS REPORT by UTech, FOBE CSA, Design Computing

    research paper architectural design

  6. ARCHITECTURAL DESIGN THESIS REPORT by UTech, FOBE CSA, Design Computing

    research paper architectural design

VIDEO

  1. Welcome to the Aga Khan Award for Architecture

  2. "Importance of Research in Architecture" by Ar. Pushkar Kanvinde

  3. AA Design Research Lab MArch Jury 2018 (Day 2)

  4. Architectural Drafting Series

  5. Paper Architecture : Abstract model

  6. Sketching Perspective

COMMENTS

  1. Full article: Architectural design research: Drivers of practice

    Output-driven research in architecture. Archer (Citation 1995) states that research is 'a systematic inquiry whose goal is communicable knowledge', which has become a widely accepted definition of research (Fraser Citation 2013).Architects produce knowledge through design ideas and practice (Fraser Citation 2013), with architectural design research increasingly expected to form part of the ...

  2. Frontiers of Architectural Research

    Frontiers of Architectural Research is an international journal that publishes original research papers, review articles, and case studies to promote rapid communication and exchange among scholars, architects, and engineers. This journal introduces and reviews significant and pioneering …. View full aims & scope. $1500. Article publishing ...

  3. Design research, architectural research, architectural design research

    The claim that design is a discipline in its own right (Cross, 1982) marked a distinct point in the history of design research.It was a departure from the Design Methods movement's search for underlying universal structures (for a science of design), instead arguing that design has its own ways of knowing (Archer, 1979a, Archer, 1979b).Design has its own epistemics in the construction of a new ...

  4. Journal of Architectural and Planning Research

    1970-1973 •. The Journal of Architectural and Planning Research is the major international interdisciplinary resource for professionals and scholars in architecture, design, and planning. Reporting internationally both recent research findings and innovative new practices, JAPR provides a link between theory and practice for researchers and ...

  5. Architectural design research in small practices

    This paper addresses a lack of studies on how design research differs between diverse types and sizes of architectural firms, why emerging small architectural practices increasingly engage with research and how this shapes their practice. This knowledge is important to fully understanding architectural design research and its strengths or ...

  6. Architecture

    Architecture is an international, peer-reviewed, open access journal on studies related to architectural research published quarterly online by MDPI.. Open Access — free for readers, with article processing charges (APC) paid by authors or their institutions.; Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 26.4 days after submission ...

  7. A Systematic Review of Design Creativity in the Architectural Design Studio

    Creativity is fundamental to design problem-solving. This paper sets out a systematic review of the literature in relation to its role in the architectural design studio in order to identify central issues that impact upon this activity. Challenges and best practices in relation to systematic reviews are outlined, and the procedure followed in this context is set out in detail. This involves ...

  8. Architectural design, visual attention, and human cognition: exploring

    It tests the results of the 2020 National Civic Art Society survey that found 72% of Americans prefer traditional federal buildings over modern designs. To gain a neuro-biological perspective on these results, eye-tracking emulation software is used to evaluate the relationship between architectural design, visual attention, and human preferences.

  9. Buildings

    To bridge this research gap, in this paper, we present the results of implementing a novel architecture crowdsourcing process to produce concept design. ... In Proceedings of the 23rd International Conference on Computer-Aided Architectural Design Research in Asia, CAADRIA 2018, Beijing, China, 17-19 May 2018; pp. 297-306. [Google Scholar]

  10. Design and science: Content analysis of published peer-reviewed

    The research presented in this article is based on a methodology developed for this study to select, evaluate, and interpret peer-reviewed journal publications incorporating science in architectural design. The proposed research method is transparently structured into three main steps (Fig. 1). The first step reviews the peer-reviewed ...

  11. (PDF) Exploring the architectural design process assisted in

    The architectural design process is a unique process that has its inherent phases with specific activities within. Exploring and identifying the real design process which occurs within the ...

  12. Frontiers

    Research in neuro-architecture—the neural basis of human perception of and interaction with the surrounding architecture—promises to advance our understanding of the cognitive processes underlying this common human experience and also to inspire evidence-based architectural design principles. This paper examines the current state of the ...

  13. (PDF) Architectural design research: Drivers of practice

    Architectural design research is understood as practice-led research centered on architectural design practice and design thinking [25]. The focus of this study is on the utilization of housing ...

  14. Exploring the architectural design process assisted in ...

    Exploring the architectural design studio process and its practice was the key focus of this article. An architectural design studio is a learning process that consists of unique and specific processes adopted on designing (Schön, 2016).Architects create human-friendly living spaces for various functions (Abdullah et al., 2011).The question is if those design solutions address the needs of ...

  15. Architectural Research for Sustainable Environmental Design

    Simos Yannas Architectural Research for Sustainable Environmental Design ENHSA Conference October 2013. 2. their environmental expectations). This is the environmental inheritance of the ...

  16. Design studio practice in the context of architectural education: a

    The primary selection criteria for the articles focused on identifying papers containing data and empirical studies on the architectural design studio context, which explains the design process of the students. ... Breaking and Mending—Proceedings of the 16th International Conference on Computer-Aided Architectural Design Research in Asia ...

  17. Architext: Language-Driven Generative Architecture Design

    Architectural design is a highly complex practice that involves a wide diversity of disciplines, technologies, proprietary design software, expertise, and an almost infinite number of constraints, across a vast array of design tasks. Enabling intuitive, accessible, and scalable design processes is an important step towards performance-driven and sustainable design for all. To that end, we ...

  18. How to write a research paper on architecture

    In architecture, research papers usually focus on one of the three types of research — visual research, textual analysis, or historical analysis. Visual research is, perhaps, the most interesting and the most creative part of the research. Look at the space and try to think what it reminds you of, how does it make you feel, what impression ...

  19. Senses of place: architectural design for the multisensory mind

    Traditionally, architectural practice has been dominated by the eye/sight. In recent decades, though, architects and designers have increasingly started to consider the other senses, namely sound, touch (including proprioception, kinesthesis, and the vestibular sense), smell, and on rare occasions, even taste in their work. As yet, there has been little recognition of the growing understanding ...

  20. The Application of Virtual Reality Technology in Architectural Design

    The application of the VR system in architectural design can run through the entire process, from the feasibility study at the initial stage, site condition analysis, to conceptual design, spatial shape combination at the development stage, architectural details, integration with the environment… until the technology at the construction stage ...

  21. The Practice of Architectural Research: How to start

    Architectural design-based research Architectural Research Generation_©Yasser Mahgoub. Create your research paper topic; Identifying a research topic is the first line of action in starting research. Architecture is a broad field of study with different research areas such as architectural history, philosophy of architecture, design theory ...

  22. A Cambridge University research paper explores the ...

    New research produced by the University of Cambridge has identified key strategies to better effect a widespread implementation of inclusive design beyond its current status as a nascent set of concepts that have yet to be fully adopted by practitioners in almost every sector.. The paper's lead investigators, Dr. Matteo Zallio and Professor P John Clarkson, surveyed a total of 114 different ...

  23. The Cognitive-Emotional Design and Study of Architectural Space: A

    The fundamental limitation of this research is that the architectural design process is very complex because the myriad of design solutions (the possible configurations of all design variables) makes it impossible to test them all. In addition, the problems that the design solutions try to resolve are diverse and vary over time (e.g., the ...