Cart

  • SUGGESTED TOPICS
  • The Magazine
  • Newsletters
  • Managing Yourself
  • Managing Teams
  • Work-life Balance
  • The Big Idea
  • Data & Visuals
  • Reading Lists
  • Case Selections
  • HBR Learning
  • Topic Feeds
  • Account Settings
  • Email Preferences

Financial analysis

  • Finance and investing
  • Corporate finance

Strategic Analysis for More Profitable Acquisitions

  • Alfred Rappaport
  • From the July 1979 Issue

research paper financial analysis

How to Talk to Your CFO About Sustainability

  • Tensie Whelan
  • Elyse Douglas
  • From the January–February 2021 Issue

Is It Fair to Blame Fair Value Accounting for the Financial Crisis?

  • Robert C. Pozen
  • From the November 2009 Issue

Content Marketers Need to Act Like Publishers

  • Greg Satell
  • March 21, 2016

Pitfalls in Evaluating Risky Projects

  • James E. Hodder
  • Henry E. Riggs
  • From the January 1985 Issue

research paper financial analysis

If Your Data Is Bad, Your Machine Learning Tools Are Useless

  • Thomas C. Redman
  • April 02, 2018

research paper financial analysis

3 Strategies for Managing Your Profit-Drain Customers

  • Jonathan Byrnes
  • September 08, 2021

What Can You Find on a Balance Sheet?

  • Udit Gandhi
  • August 01, 2022

research paper financial analysis

Get More Funding for Your R&D Initiatives

  • Christoph Loch
  • October 30, 2023

research paper financial analysis

The Board View: Directors Must Balance All Interests

  • Barbara H. Franklin
  • Sarah Cliffe
  • From the May–June 2017 Issue

Lessons from the Past for Financial Services

  • Matthew Sebag-Montefiore
  • Nuno Monteiro
  • From the December 2008 Issue

Today’s Options for Tomorrow’s Growth

  • W. Carl Kester
  • From the March 1984 Issue

What’s It Worth?: A General Manager’s Guide to Valuation

  • Timothy A. Luehrman
  • From the May–June 1997 Issue

How Much Should a Corporation Earn?

  • John J. Scanlon
  • From the January 1967 Issue

CEOs Don’t Care Enough About Capital Allocation

  • José Antonio Marco-Izquierdo
  • April 16, 2015

research paper financial analysis

Outsider CEOs Are on the Rise at the World's Biggest Companies

  • Curt Nickisch
  • April 19, 2016

research paper financial analysis

The Value of Customer Experience, Quantified

  • Peter Kriss
  • August 01, 2014

research paper financial analysis

Why It's So Hard to Predict the Size of New Markets

  • Linda Deeken
  • February 04, 2019

research paper financial analysis

A Refresher on Current Ratio

  • September 14, 2015

Are You Paying Too Much for That Acquisition?

  • Robert G. Eccles
  • Kersten L. Lanes
  • Thomas C. Wilson
  • From the July–August 1999 Issue

research paper financial analysis

Starbucks Corporation: Financial Analysis of a Business Strategy

  • Kathleen Hevert
  • July 01, 2013

Mahindra Finance

  • V.G. Narayanan
  • Tanvi Deshpande
  • March 25, 2019

Mary Chia Holdings Limited: Sell or Hold?

  • Ruth S.K. Tan
  • Zsuzsa R. Huszar
  • Weina Zhang
  • August 28, 2019

Natureview Farm

  • Karen Martinsen Fleming
  • June 07, 2007

PerkinElmer Acquires EUROIMMUN

  • Luann J. Lynch
  • Lauren Sless
  • July 16, 2020

Ratios Tell A Story - 2017

  • Mark E. Haskins
  • June 28, 2018

Health Development Corp.

  • Richard S. Ruback
  • May 04, 2000

Progressive Insurance: Disclosure Strategy

  • Amy P. Hutton
  • James Weber
  • July 09, 2001

AT&T Versus Verizon: A Financial Comparison

  • Joel L. Heilprin
  • June 23, 2017

High Noon at Vail Mountain

  • Albert Sheen
  • Luis M. Viceira
  • Joshua D Coval
  • November 18, 2011

Blackstone Group: Dry Powder in an LBO Drought (B)

  • Mark Simonson
  • June 24, 2020

Introduction to Microsoft Excel

  • Lauren E. Cipriano
  • Gregory S. Zaric
  • June 30, 2016

Pacific Grove Spice Company

  • William E. Fruhan
  • Craig Stephenson
  • November 17, 2011

Sears: A Struggle for Survival

  • Anupam Mehta
  • Sanchit Taneja
  • Utkarsh Goyal
  • July 15, 2019

Finansbank 2006

  • C. Fritz Foley
  • Linnea Meyer
  • May 14, 2008

Clarkson Lumber Co.

  • Thomas R. Piper
  • September 19, 1996

Accounting Red Flags or Red Herrings at Catalent? (B)

  • Joseph Pacelli
  • January 02, 2024

Gazi (C): Getting organized

  • Derek F. Abell
  • August 03, 2015

Financial Statement Analysis

  • David F. Hawkins
  • November 30, 1994

America Online, Inc.

  • Krishna G. Palepu
  • February 13, 1996

research paper financial analysis

HurryDate, Teaching Note

  • Sharon Katz
  • Edward J. Riedl
  • November 06, 2009

Finance Reading: Risk and Return 1: Stock Returns and Diversification, Debrief Slides

  • April 11, 2017

Popular Topics

Partner center.

  • Search Search Please fill out this field.

What Is Financial Analysis?

Understanding financial analysis, corporate financial analysis, investment financial analysis, types of financial analysis, horizontal vs. vertical analysis.

  • Example of Financial Analysis
  • Financial Analysis FAQs

The Bottom Line

  • Corporate Finance
  • Financial statements: Balance, income, cash flow, and equity

Financial Analysis: Definition, Importance, Types, and Examples

research paper financial analysis

Financial analysis is the process of evaluating businesses, projects, budgets, and other finance-related transactions to determine their performance and suitability. Typically, financial analysis is used to analyze whether an entity is stable, solvent , liquid , or profitable enough to warrant a monetary investment.

Key Takeaways

  • If conducted internally, financial analysis can help fund managers make future business decisions or review historical trends for past successes.
  • If conducted externally, financial analysis can help investors choose the best possible investment opportunities.
  • Fundamental analysis and technical analysis are the two main types of financial analysis.
  • Fundamental analysis uses ratios and financial statement data to determine the intrinsic value of a security.
  • Technical analysis assumes a security's value is already determined by its price, and it focuses instead on trends in value over time.

Investopedia / Nez Riaz

Financial analysis is used to evaluate economic trends, set financial policy, build long-term plans for business activity, and identify projects or companies for investment. This is done through the synthesis of financial numbers and data. A financial analyst will thoroughly examine a company's financial statements —the income statement , balance sheet , and cash flow statement . Financial analysis can be conducted in both corporate finance and investment finance settings.

One of the most common ways to analyze financial data is to calculate ratios from the data in the financial statements to compare against those of other companies or against the company's own historical performance.

For example, return on assets (ROA) is a common ratio used to determine how efficient a company is at using its assets and as a measure of profitability. This ratio could be calculated for several companies in the same industry and compared to one another as part of a larger analysis.

There is no single best financial analytic ratio or calculation. Most often, analysts use a combination of data to arrive at their conclusion.

In corporate finance, the analysis is conducted internally by the accounting department and shared with management in order to improve business decision making. This type of internal analysis may include ratios such as net present value (NPV) and internal rate of return (IRR) to find projects worth executing.

Many companies extend credit to their customers. As a result, the cash receipt from sales may be delayed for a period of time. For companies with large receivable balances, it is useful to track days sales outstanding (DSO), which helps the company identify the length of time it takes to turn a credit sale into cash. The average collection period is an important aspect of a company's overall cash conversion cycle .

A key area of corporate financial analysis involves extrapolating a company's past performance, such as net earnings or profit margin , into an estimate of the company's future performance. This type of historical trend analysis is beneficial to identify seasonal trends.

For example, retailers may see a drastic upswing in sales in the few months leading up to Christmas. This allows the business to forecast budgets and make decisions, such as necessary minimum inventory levels, based on past trends.

In investment finance, an analyst external to the company conducts an analysis for investment purposes. Analysts can either conduct a top-down or bottom-up investment approach. A top-down approach first looks for macroeconomic opportunities, such as high-performing sectors, and then drills down to find the best companies within that sector. From this point, they further analyze the stocks of specific companies to choose potentially successful ones as investments by looking last at a particular company's  fundamentals .

A bottom-up approach, on the other hand, looks at a specific company and conducts a similar ratio analysis to the ones used in corporate financial analysis, looking at past performance and expected future performance as investment indicators. Bottom-up investing forces investors to consider  microeconomic  factors first and foremost. These factors include a company's overall financial health, analysis of financial statements, the products and services offered, supply and demand, and other individual indicators of corporate performance over time.

Financial analysis is only useful as a comparative tool. Calculating a single instance of data is usually worthless; comparing that data against prior periods, other general ledger accounts, or competitor financial information yields useful information.

There are two types of financial analysis: fundamental analysis and technical analysis .

Fundamental Analysis

Fundamental analysis uses ratios gathered from data within the financial statements, such as a company's earnings per share (EPS), in order to determine the business's value. Using ratio analysis in addition to a thorough review of economic and financial situations surrounding the company, the analyst is able to arrive at an intrinsic value for the security. The end goal is to arrive at a number that an investor can compare with a security's current price in order to see whether the security is undervalued or overvalued.

Technical Analysis

Technical analysis uses statistical trends gathered from trading activity, such as moving averages (MA). Essentially, technical analysis assumes that a security’s price already reflects all publicly available information and instead focuses on the  statistical analysis of price movements . Technical analysis attempts to understand the market sentiment behind price trends by looking for patterns and trends rather than analyzing a security’s fundamental attributes.

When reviewing a company's financial statements, two common types of financial analysis are horizontal analysis and vertical analysis . Both use the same set of data, though each analytical approach is different.

Horizontal analysis entails selecting several years of comparable financial data. One year is selected as the baseline, often the oldest. Then, each account for each subsequent year is compared to this baseline, creating a percentage that easily identifies which accounts are growing (hopefully revenue) and which accounts are shrinking (hopefully expenses).

Vertical analysis entails choosing a specific line item benchmark, then seeing how every other component on a financial statement compares to that benchmark. Most often, net sales is used as the benchmark. A company would then compare cost of goods sold, gross profit, operating profit, or net income as a percentage to this benchmark. Companies can then track how the percent changes over time.

Examples of Financial Analysis

In the nine-month period ending Sept. 30, 2022, Amazon.com reported a net loss of $3 billion. This was a substantial decline from one year ago where the company reported net income of over $19 billion.

Financial analysis shows some interesting facets of the company's earnings per share (shown above. On one hand, the company's EPS through the first three quarters was -$0.29; compared to the prior year, Amazon earned $1.88 per share. This dramatic difference was not present looking only at the third quarter of 2022 compared to 2021. Though EPS did decline from one year to the next, the company's EPS for each third quarter was comparable ($0.31 per share vs. $0.28 per share).

Analysts can also use the information above to perform corporate financial analysis. For example, consider Amazon's operating profit margins below.

  • 2022: $9,511 / $364,779 = 2.6%
  • 2021: $21,419 / $332,410 = 6.4%

From Q3 2021 to Q3 2022, the company experienced a decline in operating margin, allowing for financial analysis to reveal that the company simply earns less operating income for every dollar of sales.

Why Is Financial Analysis Useful?

The financial analysis aims to analyze whether an entity is stable , liquid, solvent, or profitable enough to warrant a monetary investment. It is used to evaluate economic trends, set financial policies, build long-term plans for business activity, and identify projects or companies for investment.

How Is Financial Analysis Done?

Financial analysis can be conducted in both corporate finance and investment finance settings. A financial analyst will thoroughly examine a company's financial statements—the income statement, balance sheet, and cash flow statement.

One of the most common ways to analyze financial data is to calculate ratios from the data in the financial statements to compare against those of other companies or against the company's own historical performance. A key area of corporate financial analysis involves extrapolating a company's past performance, such as net earnings or profit margin, into an estimate of the company's future performance.

What Techniques Are Used in Conducting Financial Analysis?

Analysts can use vertical analysis to compare each component of a financial statement as a percentage of a baseline (such as each component as a percentage of total sales). Alternatively, analysts can perform horizontal analysis by comparing one baseline year's financial results to other years.

Many financial analysis techniques involve analyzing growth rates including regression analysis, year-over-year growth, top-down analysis such as market share percentage, or bottom-up analysis such as revenue driver analysis .

Last, financial analysis often entails the use of financial metrics and ratios. These techniques include quotients relating to the liquidity, solvency, profitability, or efficiency (turnover of resources) of a company.

What Is Fundamental Analysis?

Fundamental analysis uses ratios gathered from data within the financial statements, such as a company's earnings per share (EPS), in order to determine the business's value. Using ratio analysis in addition to a thorough review of economic and financial situations surrounding the company, the analyst is able to arrive at an intrinsic value for the security. The end goal is to arrive at a number that an investor can compare with a security's current price in order to see whether the security is undervalued or overvalued.

What Is Technical Analysis?

Technical analysis uses statistical trends gathered from market activity, such as moving averages (MA). Essentially, technical analysis assumes that a security’s price already reflects all publicly available information and instead focuses on the statistical analysis of price movements. Technical analysis attempts to understand the market sentiment behind price trends by looking for patterns and trends rather than analyzing a security’s fundamental attributes.

Financial analysis is a cornerstone of making smarter, more strategic decisions based on the underlying financial data of a company. Whether corporate, investment, or technical analysis, analysts use data to explore trends, understand growth, seek areas of risk, and support decision-making. Financial analysis may include investigating financial statement changes, calculating financial ratios, or exploring operating variances.

Amazon. " Amazon.com Announces Third Quarter Results ."

research paper financial analysis

  • Terms of Service
  • Editorial Policy
  • Privacy Policy
  • Your Privacy Choices

Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis

  • Open access
  • Published: 20 January 2024
  • Volume 4 , article number  23 , ( 2024 )

Cite this article

You have full access to this open access article

  • Salman Bahoo 1 ,
  • Marco Cucculelli   ORCID: orcid.org/0000-0003-0035-9454 2 ,
  • Xhoana Goga 2 &
  • Jasmine Mondolo 2  

8057 Accesses

1 Altmetric

Explore all metrics

Over the past two decades, artificial intelligence (AI) has experienced rapid development and is being used in a wide range of sectors and activities, including finance. In the meantime, a growing and heterogeneous strand of literature has explored the use of AI in finance. The aim of this study is to provide a comprehensive overview of the existing research on this topic and to identify which research directions need further investigation. Accordingly, using the tools of bibliometric analysis and content analysis, we examined a large number of articles published between 1992 and March 2021. We find that the literature on this topic has expanded considerably since the beginning of the XXI century, covering a variety of countries and different AI applications in finance, amongst which Predictive/forecasting systems, Classification/detection/early warning systems and Big data Analytics/Data mining /Text mining stand out. Furthermore, we show that the selected articles fall into ten main research streams, in which AI is applied to the stock market, trading models, volatility forecasting, portfolio management, performance, risk and default evaluation, cryptocurrencies, derivatives, credit risk in banks, investor sentiment analysis and foreign exchange management, respectively. Future research should seek to address the partially unanswered research questions and improve our understanding of the impact of recent disruptive technological developments on finance.

Similar content being viewed by others

research paper financial analysis

Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis

Ajitha Kumari Vijayappan Nair Biju, Ann Susan Thomas & J Thasneem

research paper financial analysis

A Survey of Trendy Financial Sector Applications of Machine and Deep Learning

research paper financial analysis

Machine Learning and Finance

Avoid common mistakes on your manuscript.

Introduction

The first two decades of the twenty-first century have experienced an unprecedented way of technological progress, which has been driven by advances in the development of cutting-edge digital technologies and applications in Artificial Intelligence (AI). Artificial intelligence is a field of computer science that creates intelligent machines capable of performing cognitive tasks, such as reasoning, learning, taking action and speech recognition, which have been traditionally regarded as human tasks (Frankenfield 2021 ). AI comprises a broad and rapidly growing number of technologies and fields, and is often regarded as a general-purpose technology, namely a technology that becomes pervasive, improves over time and generates complementary innovation (Bresnahan and Trajtenberg 1995 ). As a result, it is not surprising that there is no consensus on the way AI is defined (Van Roy et al. 2020 ). An exhaustive definition has been recently proposed by Acemoglu and Restrepo ( 2020 , p.1), who assert that Artificial Intelligence is “(…) the study and development of intelligent (machine) agents, which are machines, software or algorithms that act intelligently by recognising and responding to their environment.” Even though it is often difficult to draw precise boundaries, this promising and rapidly evolving field mainly comprises machine learning, deep learning, NLP (natural language processing) platforms, predictive APIs (application programming interface), image recognition and speech recognition (Martinelli et al. 2021 ).

The term “Artificial intelligence” was first coined by John McCarthy in 1956 during a conference at Dartmouth College to describe “thinking machines” (Buchanan 2019 ). However, until 2000, the lack of storage capability and low computing power prevented any progress in the field. Accordingly, governments and investors lost their interest and AI fell short of financial support and funding in 1974–1980 and again in 1987–1993. These periods of funding shortage are also known as “AI winters Footnote 1 ”.

However, the most significant development and spread of AI-related technologies is much more recent, and has been prompted by the availability of large unstructured databases, the explosion of computing power, and the rise in venture capital intended to support innovative, technological projects (Ernst et al. 2018 ). One of the most distinctive The term AI winter first appeared in 1characteristics of AI technologies is that, unlike industrial robots, which need to receive specific instructions, generally provided by a software, before they perform any action, can learn for themselves how to map information about the environment, such as visual and tactile data from a robot’s sensors, into instructions sent to the robot’s actuators (Raj and Seamans 2019 ). Additionally, as remarked by Ernst et al. ( 2018 ), whilst industrial robots mostly perform manual tasks, AI technologies are able to carry out activities that, until some years ago, were still regarded as typically human, i.e. what Ernst and co-authors label as “mental tasks”.

The adoption of AI is likely to have remarkable implications for the subjects adopting them and, more in general, for the economy and the society. In particular, it is expected to contribute to the growth of the global GDP, which, according to a study conducted by Pricewater-house-Coopers (PwC) and published in 2017, is likely to increase by up to 14% by 2030. Moreover, companies adopting AI technologies sometimes report better performance (Van Roy et al. 2020 ). Concerning the geographic dimension of this field, North America and China are the leading investors and are expected to benefit the most from AI-driven economic returns. Europe and emerging markets in Asia and South America will follow, with moderate profits owing to fewer and later investments (PwC 2017 ). AI is going to affect labour markets as well. The demand for high-skilled employees is expected to increase, whilst the demand for low-skilled jobs is likely to shrink because of automation; the resulting higher unemployment rate, however, is going to be offset by the new job opportunities offered by AI (Ernst et al. 2018 ; Acemoglu and Restrepo 2020 ).

AI solutions have been introduced in every major sector of the economy; a sector that is witnessing a profound transformation led by the ongoing technological revolution is the financial one. Financial institutions, which rely heavily on Big Data and process automation, are indeed in a “unique position to lead the adoption of AI” (PwC 2020 ), which generates several benefits: for instance, it encourages automation of manufacturing processes which in turn enhances efficiency and productivity. Next, since machines are immune to human errors and psychological factors, it ensures accurate and unbiased predictive analytics and trading strategies. AI also fosters business model innovation and radically changes customer relationships by promoting customised digital finance, which, together with the automation of processes, results in better service efficiency and cost-saving (Cucculelli and Recanatini 2022 ). Furthermore, AI is likely to have substantial implications for financial conduct and prudential supervisors, and it also has the potential to help supervisors identify potential violations and help regulators better anticipate the impact of changes in regulation (Wall 2018 ). Additionally, complex AI/machine learning algorithms allow Fintech lenders to make fast (almost instantaneous) credit decisions, with benefits for both the lenders and the consumers (Jagtiani and John 2018 ). Intelligent devices in Finance are used in a number of areas and activities, including fraud detection, algorithmic trading and high-frequency trading, portfolio management, credit decisions based on credit scoring or credit approval models, bankruptcy prediction, risk management, behavioural analyses through sentiment analysis and regulatory compliance.

In recent years, the adoption of AI technologies in a broad range of financial applications has received increasing attention by scholars; however, the extant literature, which is reviewed in the next section, is quite broad and heterogeneous in terms of research questions, country and industry under scrutiny, level of analysis and method, making it difficult to draw robust conclusions and to understand which research areas require further investigation. In the light of these considerations, we conduct an extensive review of the research on the use of AI in Finance thorough which we aim to provide a comprehensive account of the current state of the art and, importantly, to identify a number of research questions that are still (partly) unanswered. This survey may serve as a useful roadmap for researchers who are not experts of this topic and could find it challenging to navigate the extensive and composite research on this subject. In particular, it may represent a useful starting point for future empirical contributions, as it provides an account of the state of the art and of the issues that deserve further investigation. In doing so, this study complements some previous systematic reviews on the topic, such as the ones recently conducted by Hentzen et al. ( 2022b ) and (Biju et al. 2020 ), which differ from our work in the following main respects: Hentzen and co-authors’ study focuses on customer-facing financial services, whilst the valuable contribution of Biju et al. poses particular attention to relevant technical aspects and the assessment of the effectiveness and the predictive capability of machine learning, AI and deep learning mechanisms within the financial sphere; in doing so, it covers an important issue which, however, is out of the scope of our work.

From our review, it emerges that, from the beginning of the XXI century, the literature on this topic has significantly expanded, and has covered a broad variety of countries, as well as several AI applications in finance, amongst which Predictive/forecasting systems, Classification /detection/early warning systems and Big data Analytics/Data mining /Text mining stand out. Additionally, we show that the selected articles can be grouped into ten main research streams, in which AI is applied to the stock market, trading models, volatility forecasting, portfolio management, performance, risk & default evaluation, cryptocurrencies, derivatives, credit risks in banks, investor sentiment analysis and foreign exchange management, respectively.

The balance of this paper is organised as follows: Sect. “ Methodology ” shortly presents the methodology. Sect. “ A detailed account of the literature on AI in Finance ” illustrates the main results of the bibliometric analysis and the content analysis. Sect. “ Issues that deserve further investigation ” draws upon the research streams described in the previous section to pinpoint several potential research avenues. Sect. “ Conclusions ” concludes. Finally, Appendix 1 clarifies some AI-related terms and definitions that appear several times throughout the paper, whilst Appendix 2 provides more information on some of the articles under scrutiny.

Methodology

To conduct a sound review of the literature on the selected topic, we resort to two well-known and extensively used approaches, namely bibliometric analysis and content analysis. Bibliometric analysis is a popular and rigorous method for exploring and analysing large volumes of scientific data which allows us to unpack the evolutionary nuances of a specific field whilst shedding light on the emerging areas in that field (Donthu et al. 2021 ). In this study, we perform bibliometric analysis using HistCite, a popular software package developed to support researchers in elaborating and visualising the results of literature searches in the Web of Science platform. Specifically, we employ HistCite to recover the annual number of publications, the number of forward citations (which we use to identify the most influential journals and articles) and the network of co-citations, namely, all the citations received and given by journals belonging to a certain field, which help us identify the major research streams described in Sect. “ Identification of the major research streams ”. After that, to delve into the contents of the most pertinent studies on AI in finance, we resort to traditional content analysis, a research method that provides a systematic and objective means to make valid inferences from verbal, visual, or written data which, in turn, permit to describe and quantify specific phenomena (Downe-Wambolt 1992 ).

In order to identify the sample of studies on which bibliometric and content analysis were performed, we proceeded as follows. First, we searched for pertinent articles published in English be-tween 1950 and March 2021. Specifically, we scrutinised the “Finance”, “Economics”, “Business Finance” and “Business” sections of the “Web of Science” (WoS) database using the keyword “finance” together with an array of keywords concerning Artificial Intelligence (i.e. “Finance” AND (“Artificial Intelligence” OR “Machine Learning” OR “Deep Learning” OR “Neural Networks*” OR “Natural Language Processing*” OR “Algorithmic Trading*” OR “Artificial Neural Network” OR “Robot*” OR “Automation” OR “Text Mining” OR “Data Mining” OR “Soft Computing” OR “Fuzzy Logic Analysis” OR “Biometrics*” OR “Geotagging” OR “Wearable*” OR “IoT” OR “Internet of Thing*” OR “digitalization” OR “Artificial Neutral Networks” OR “Big Data” OR “Industry 4.0″ OR “Smart products*” OR Cloud Computing” OR “Digital Technologies*”). In doing so, we ended up with 1,218 articles. Next, two researchers independently analysed the title, abstract and content of these papers and kept only those that address the topic under scrutiny in a non-marginal and non-trivial way. This second step reduced the number of eligible papers to 892, which were used to perform the first part of the bibliometric analysis. Finally, we delved into the contents of the previously selected articles and identified 110 contributions which specifically address the adoption and implications in Finance of AI tools focussing on the economic dimension of the topic, and which are employed in the second part of the bibliometric analysis and in the content analysis.

A detailed account of the literature on AI in Finance

In this section, we explore the patterns and trends in the literature on AI in Finance in order to obtain a compact but exhaustive account of the state of the art. Specifically, we identify some relevant bibliographic characteristics using the tools of bibliometric analysis. After that, focussing on a sub-sample of papers, we conduct a preliminary assessment of the selected studies through a content analysis and detect the main AI applications in Finance. Finally, we identify and briefly describe ten major research streams.

Main results of the bibliometric analysis

First, using HistCite and considering the sample of 892 studies, we computed, for each year, the number of publications related to the topic “AI in Finance”. The corresponding publication trend is shown in Fig.  1 , which plots both the annual absolute number of sampled papers (bar graph in blue) and the ratio between the latter and the annual overall amount of publications (indexed in Scopus) in the finance area (line graph in orange). We also compute relative numbers to see if the trend emerging from the selected studies is not significantly attributable to a “common trend” (i.e. to the fact that, in the meantime, also the total number of publications in the financial area has significantly increased). It can be noted that both graphs exhibit a strong upward trend from 2015 onwards; during the most recent years, the pace of growth and the degree of pervasiveness of AI adoption in the financial sphere have indeed remarkably strengthened, and have become the subject of a rapidly growing number of research articles.

figure 1

Publication Trend, 1992–2021

After that, focussing on the more pertinent (110) articles, we checked the journals in which these studies were published. Table 1 presents the top-ten list of journals reported in the Academic Journal Guide-ABS List 2020 and ranked on the basis of the total global citation score (TGCS), which captures the number of times an article is cited by other articles that deal with the same topic and are indexed in the WoS database. For each journal, we also report the total number of studies published in that journal. We can notice that the most influential journals in terms of TGCS are the Journal of Finance (with a TGCS equal to 1283) and the Journal of Banking and Finance (with a TGCS of 1253), whilst the journals containing the highest number of articles on the topic are Quantitative Finance (68 articles) and Intelligent Systems in Accounting, Finance and Management (43).

Finally, Fig.  2 provides a visual representation of the citation-based relationships amongst papers starting from the most-cited papers, which we obtained using the Java application CiteSpace.

figure 2

Source: authors’ elaboration of data from Web of Science; visualisation produced using CiteSpace

Citation Mapping and identification of the research streams.

Preliminary results of the content analysis

In this paragraph, we shortly illustrate some relevant characteristics of our sub-sample made up of 110 studies, including country and industry coverage, method and underpinning theoretical background. Table 2 comprises the list of countries under scrutiny, and, for each of them, a list of papers that perform their analysis on that country. We can see that our sample exhibits significant geographical heterogeneity, as it covers 74 countries across all continents; however, the most investigated areas are three, that is Europe, the US and China. These results corroborate the fact that the above-mentioned regions are the leaders of the AI-driven financial industry, as suggested by PwC ( 2017 ). The United States, in particular, are considered the “early adopters” of AI and are likely to benefit the most from this source of competitive advantage. More lately, emerging countries in Southeast Asia and the Middle East have received growing interest. Finally, a smaller number of papers address underdeveloped regions in Africa and various economies in South America.

The most investigated sectors are reported in Table  3 . We can notice that, although it primarily deals with banking and financial services, the extant research has addressed the topic in a vast array of industries. This confirms that the application potential of AI is very broad, and that any industry may benefit from it.

Through our analysis, we also detected the key theories and frameworks applied by researchers in the prior literature. As shown in Table  4 , 73 (out of 110) papers explicitly refer to some theoretical framework. Specifically, ten of them (14%) resort to computational learning theory; this theory, which is an extension of statistical learning, provides researchers with a theoretical guide for finding the most suitable learning model for a given problem, and is regarded as one of the most important and most used theories in the field. Specific theories concerning types of neural networks and learning methods are used too, such as the fuzzy set theory, which is mentioned in 8% of the sample, and to a lesser extent, the Naive Bayes theorem, the theory of neural networks, the theory of genetic programming and the TOPSIS analytical framework. Finance theories (e.g. Arbitrage Pricing Theory; Black and Scholes 1973 ) are jointly employed with portfolio management theories (e.g. modern portfolio theory), and the two of them account together for 21% (15) of the total number of papers. Finally, bankruptcy theories support business failure forecasts, whilst other theoretical underpinnings concern mathematical and probability concepts.

The content analysis also provides information on the main types of companies under scrutiny. Table 5 indicates that 30 articles (out of 110) focus on large companies listed on stock exchanges, whilst only 16 studies cover small and medium enterprises. Similarly, trading and digital platforms are examined in 16 papers that deal with derivatives and cryptocurrencies.

Furthermore, Table  6 summarises the key methods applied in the literature, which are divided by category (note that all the papers employ more than one method). Looking at the table, we see that machine learning and artificial neural networks are the most popular ones (they are employed in 41 and 51 articles, respectively). The majority of the papers resort to different approaches to compare their results with those obtained through autoregressive and regression models or conventional statistics, which are used as the benchmark; therefore, there may be some overlaps. Nevertheless, we notice that support vector machine and random forest are the most widespread machine learning methods. On the other hand, the use of artificial neural networks (ANNs) is highly fragmented. Backpropagation, Recurrent, and Feed-Forward NNs are considered basic neural nets and are commonly employed. Advanced NNs, such as Higher-Order Neural network (HONN) and Long Short-Term Memory Networks (LSTM), are more performing than their standard version but also much more complicated to apply. These methods are usually compared to autoregressive models and regressions, such as ARMA, ARIMA, and GARCH. Finally, we observe that almost all the sampled papers are quantitative, whilst only three of them are qualitative and four of them consist in literature reviews.

A taxonomy of AI applications in Finance

After scrutinising some relevant features of the papers, we make a step forward and outline a taxonomy of AI applications used in Finance and tackled by previous literature. The main uses of AI in Finance and the papers that address each of them are summarised in Table  7 .

Many research papers (39 out of 110) employ AI as a predictive instrument for forecasting stock prices, performance and volatility. In 23 papers, AI is employed in classification problems and warning systems to detect credit risk and frauds, as well as to monitor firm or bank performance. The former use of AI permits to classify firms into two categories based on qualitative and quantitative data; for example, we may have distressed or non-distressed, viable–nonviable, bankrupt–non-bankrupt, or financially healthy–not healthy, good–bad, and fraud–not fraud. Warning systems follow a similar principle: after analysing customers’ financial behaviour and classifying potential fraud issues in bank accounts, alert models signal to the bank unusual transactions. Additionally, we see that 14 articles employ text mining and data mining language recognition, i.e. natural language processing, as well as sentiment analysis. This may be the starting point of AI-driven behavioural analysis in Finance. Amongst others, trading models and algorithmic trading are further popular aspects of AI widely analysed in the literature. Moreover, interest in Robo-advisory is growing in the asset investment field. Finally, less studied AI applications concern the modelling capability of algorithms and traditional machine learning and neural networks.

Identification of the major research streams

Drawing upon the co-citation analysis mentioned in Sect. " Methodology ", we detected ten main research streams: (1) AI and the stock market; (2) AI and Trading Models; (3) AI and Volatility Forecasting; (4) AI and Portfolio Management; (5) AI and Performance, Risk, and Default Valuation; (6) AI and Bitcoin, Cryptocurrencies; (7) AI and Derivatives; (8) AI and Credit Risk in Banks; (9) AI and Investor Sentiments Analysis; (10) AI and Foreign Exchange Management. Some research streams can be further divided into sub-streams as they deal with various aspects of the same main topic. In this section, we provide a compact account for each of the aforementioned research streams. More detailed information on some of the papers fuelling them is provided in Appendix 2.

Stream 01: AI and the stock market

The stream “AI and the Stock Market” comprises two sub-streams, namely algorithmic trading and stock market, and AI and stock price prediction. The first sub-stream deals with the impact of algorithmic trading (AT) on financial markets. In this regard, Herdershott et al. ( 2011 ) argue that AT increases market liquidity by reducing spreads, adverse selection, and trade-related price discovery. This results in a lowered cost of equity for listed firms in the medium–long term, especially in emerging markets (Litzenberger et al. 2012 ). As opposed to human traders, algorithmic trading adjusts faster to information and generates higher profits around news announcements thanks to better market timing ability and rapid executions (Frino et al. 2017 ). Even though high-frequency trading (a subset of algorithmic trading) has sometimes increased volatility related to news or fundamentals, and transmitted it within and across industries, AT has overall reduced return volatility variance and improved market efficiency (Kelejian and Mukerji 2016 ; Litzenberger et al. 2012 ).

The second sub-stream investigates the use of neural networks and traditional methods to forecast stock prices and asset performance. ANNs are preferred to linear models because they capture the non-linear relationships between stock returns and fundamentals and are more sensitive to changes in variables relationships (Kanas 2001 ; Qi 1999 ). Dixon et al. ( 2017 ) argue that deep neural networks have strong predictive power, with an accuracy rate equal to 68%. Also, Zhang et al. ( 2021 ) propose a model, the Long Short-Term Memory Networks (LSTM), that outperforms all classical ANNs in terms of prediction accuracy and rational time cost, especially when various proxies of online investor attention (such as the internet search volume) are considered.

Stream 02: AI and trading models

From the review of the literature represented by this stream, it emerges that neural networks and machine learning algorithms are used to build intelligent automated trading systems. To give some examples, Creamer and Freund ( 2010 ) create a machine learning-based model that analyses stock price series and then selects the best-performing assets by suggesting a short or long position. The model is also equipped with a risk management overlayer preventing the transaction when the trading strategy is not profitable. Similarly, Creamer ( 2012 ) uses the above-mentioned logic in high-frequency trading futures: the model selects the most profitable and less risky futures by sending a long or short recommendation. To construct an efficient trading model, Trippi and DeSieno ( 1992 ) combine several neural networks into a single decision rule system that outperforms the single neural networks; Kercheval and Zhang ( 2015 ) use a supervised learning method (i.e. multi-class SVM) that automatically predicts mid-price movements in high-frequency limit order books by classifying them in low-stationary-up; these predictions are embedded in trading strategies and yield positive payoffs with controlled risk.

Stream 03: AI and volatility forecasting

The third stream deals with AI and the forecasting of volatility. The volatility index (VIX) from Chicago Board Options Exchange (CBOE) is a measure of market sentiment and expectations. Forecasting volatility is not a simple task because of its very persistent nature (Fernandes et al. 2014 ). According to Fernandes and co-authors, the VIX is negatively related to the SandP500 index return and positively related to its volume. The heterogeneous autoregressive (HAR) model yields the best predictive results as opposed to classical neural networks (Fernandes et al. 2014 ; Vortelinos 2017 ). Modern neural networks, such as LSTM and NARX (nonlinear autoregressive exogenous network), also qualify as valid alternatives (Bucci 2020 ). Another promising class of neural networks is the higher-order neural network (HONN) used to forecast the 21-day-ahead realised volatility of FTSE100 futures. Thanks to its ability to capture higher-order correlations within the dataset, HONN shows remarkable performance in terms of statistical accuracy and trading efficiency over multi-layer perceptron (MLP) and the recurrent neural network (RNN) (Sermpinis et al. 2013 ).

Stream 04: AI and portfolio management

This research stream analyses the use of AI in portfolio selection. As an illustration, Soleymani and Vasighi ( 2020 ) consider a clustering approach paired with VaR analysis to improve asset allocation: they group the least risky and more profitable stocks and allocate them in the portfolio. More elaborate asset allocation designs incorporate a bankruptcy detection model and an advanced utility performance system: before adding the stock to the portfolio, the sophisticated neural network estimates the default probability of the company and asset’s contribution to the optimal portfolio (Loukeris and Eleftheriadis 2015 ). Index-tracking powered by deep learning technology minimises tracking error and generates positive performance (Kim and Kim 2020 ). The asymmetric copula method for returns dependence estimates further promotes the portfolio optimization process (Zhao et al. 2018 ). To sum up, all papers show that AI-based prediction models improve the portfolio selection process by accurately forecasting stock returns (Zhao et al. 2018 ).

Stream 05: AI and performance, risk, default valuation

This research stream comprises three sub-streams, namely AI and Corporate Performance, Risk and Default Valuation; AI and Real Estate Investment Performance, Risk, and Default Valuation; AI and Banks Performance, Risk and Default Valuation.

The first sub-stream examines corporate financial conditions to predict financially distressed companies (Altman et al. 1994 ). As an illustration, Jones et al. ( 2017 ) and Gepp et al. ( 2010 ) determine the probability of corporate default. Sabău Popa et al. ( 2021 ) predict business performance based on a composite financial index. The findings of the aforementioned papers confirm that AI-powered classifiers are extremely accurate and easy to interpret, hence, superior to classic linear models. A quite interesting paper surveys the relationship between face masculinity traits in CEOs and firm riskiness through image processing (Kamiya et al. 2018 ). The results reveal that firms lead by masculine-faced CEO have higher risk and leverage ratios and are more frequent acquirers in MandA operations.

The second sub-stream focuses on mortgage and loan default prediction (Feldman and Gross 2005 ; Episcopos, Pericli, and Hu, 1998 ). For instance, Chen et al. ( 2013 ) evaluate real estate investment returns by forecasting the REIT index; they show that the industrial production index, the lending rate, the dividend yield and the stock index influence real estate investments. All the forecasting techniques adopted (i.e. supervised machine learning and ANNs) outperform linear models in terms of efficiency and precision.

The third sub-stream deals with banks’ performance. In contradiction with past research, a text mining study argues that the most important risk factors in banking are non-financial, i.e. regulation, strategy and management operation. However, the findings from text analysis are limited to what is disclosed in the papers (Wei et al. 2019 ). A highly performing NN-based study on the Malaysian and Islamic banking sector asserts that negative cost structure, cultural aspects and regulatory barriers (i.e. low competition) lead to inefficient banks compared to the U.S., which, on the contrary, are more resilient, healthier and well regulated (Wanke et al. 2016a, b, c, d; Papadimitriou et al. 2020 ).

Stream 06: AI and cryptocurrencies

Although algorithms and AI advisors are gaining ground, human traders still dominate the cryptocurrency market (Petukhina et al. 2021 ). For this reason, substantial arbitrage opportunities are available in the Bitcoin market, especially for USD–CNY and EUR–CNY currency pairs (Pichl and Kaizoji 2017 ). Concerning daily realised volatility, the HAR model delivers good results. Likewise, the feed-forward neural network effectively approximates the daily logarithmic returns of BTCUSD and the shape of their distribution (Pichl and Kaizoji 2017 ).

Additionally, the Hierarchical Risk Parity (HRP) approach, an asset allocation method based on machine learning, represents a powerful risk management tool able to manage the high volatility characterising Bitcoin prices, thereby helping cryptocurrency investors (Burggraf 2021 ).

Stream 07: AI and derivatives

ANNs and machine learning models are accurate predictors in pricing financial derivatives. Jang and Lee ( 2019 ) propose a machine learning model that outperforms traditional American option pricing models: the generative Bayesian NN; Culkin and Das ( 2017 ) use a feed-forward deep NN to reproduce Black and Scholes’ option pricing formula with a high accuracy rate. Similarly, Chen and Wan ( 2021 ) suggest a deep NN for American option and deltas pricing in high dimensions. Funahashi ( 2020 ), on the contrary, rejects deep learning for option pricing due to the instability of the prices, and introduces a new hybrid method that combines ANNs and asymptotic expansion (AE). This model does not directly predict the option price but measures instead, the difference between the target (i.e. derivative price) and its approximation. As a result, the ANN becomes faster, more accurate and “lighter” in terms of layers and training data volume. This innovative method mimics a human learning process when one learns about a new object by recognising its differences from a similar and familiar item (Funahashi 2020 ).

Stream 08: AI and credit risk in banks

The research stream labelled “AI and Credit Risk in Banks” Footnote 2 includes the following sub-streams: AI and Bank Credit Risk; AI and Consumer Credit Risk and Default; AI and Financial Fraud detection/ Early Warning System; AI and Credit Scoring Models.

The first sub-stream addresses bank failure prediction. Machine learning and ANNs significantly outperform statistical approaches, although they lack transparency (Le and Viviani 2018 ). To overcome this limitation, Durango‐Gutiérrez et al. ( 2021 ) combine traditional methods (i.e. logistic regression) with AI (i.e. Multiple layer perceptron -MLP), thus gaining valuable insights on explanatory variables. With the scope of preventing further global financial crises, the banking industry relies on financial decision support systems (FDSSs), which are strongly improved by AI-based models (Abedin et al. 2019 ).

The second sub-stream compares classic and advanced consumer credit risk models. Supervised learning tools, such as SVM, random forest, and advanced decision trees architectures, are powerful predictors of credit card delinquency: some of them can predict credit events up to 12 months in advance (Lahmiri 2016 ; Khandani et al. 2010 ; Butaru et al. 2016 ). Jagric et al. ( 2011 ) propose a learning vector quantization (LVQ) NN that better deals with categorical variables, achieving an excellent classification rate (i.e. default, non-default). Such methods overcome logit-based approaches and result in cost savings ranging from 6% up to 25% of total losses (Khadani et al. 2010 ).

The third group discusses the role of AI in early warning systems. On a retail level, advanced random forests accurately detect credit card fraud based on customer financial behaviour and spending pattern, and then flag it for investigation (Kumar et al. 2019 ). Similarly, Coats and Fant ( 1993 ) build a NN alert model for distressed firms that outperforms linear techniques. On a macroeconomic level, systemic risk monitoring models enhanced by AI technologies, i.e. k-nearest neighbours and sophisticated NNs, support macroprudential strategies and send alerts in case of global unusual financial activities (Holopainen, and Sarlin 2017 ; Huang and Guo 2021 ). However, these methods are still work-in-progress.

The last group studies intelligent credit scoring models, with machine learning systems, Adaboost and random forest delivering the best forecasts for credit rating changes. These models are robust to outliers, missing values and overfitting, and require minimal data intervention (Jones et al. 2015 ). As an illustration, combining data mining and machine learning, Xu et al. ( 2019 ) build a highly sophisticated model that selects the most important predictors and eliminates noisy variables, before performing the task.

Stream 09: AI and investor sentiment analysis

Investor sentiment has become increasingly important in stock prediction. For this purpose, sentiment analysis extracts investor sentiment from social media platforms (e.g. StockTwits, Yahoo-finance, eastmoney.com) through natural language processing and data mining techniques, and classifies it into negative or positive (Yin et al. 2020 ). The resulting sentiment is regarded either as a risk factor in asset pricing models, an input to forecast asset price direction, or an intraday stock index return (Houlihan and Creamer 2021 ; Renault 2017 ). In this respect, Yin et al. ( 2020 ) find that investor sentiment has a positive correlation with stock liquidity, especially in slowing markets; additionally, sensitivity to liquidity conditions tends to be higher for firms with larger size and a higher book-to-market ratio, and especially those operating in weakly regulated markets. As for predictions, daily news usually predicts stock returns for few days, whereas weekly news predicts returns for longer period, from one month to one quarter. This generates a return effect on stock prices, as much of the delayed response to news occurs around major events in company life, specifically earnings announcement, thus making investor sentiment a very important variable in assessing the impact of AI in financial markets. (Heston and Sinha 2017 ).

Stream 10: AI and foreign exchange management

The last stream addresses AI and the management of foreign exchange. Cost-effective trading or hedging activities in this market require accurate exchange rate forecasts (Galeshchuk and Mukherjee 2017 ). In this regard, the HONN model significantly outperforms traditional neural networks (i.e. multi-layer perceptron, recurrent NNs, Psi sigma-models) in forecasting and trading the EUR/USD currency pair using ECB daily fixing series as input data (Dunis et al. 2010 ). On the contrary, Galeshchuk and Mukherjee ( 2017 ) consider these methods as unable to predict the direction of change in the forex rates and, therefore, ineffective at supporting profitable trading. For this reason, they apply a deep NN (Convolution NNs) to forecast three main exchange rates (i.e. EUR/USD, GBP/USD, and JPY/USD). The model performs remarkably better than time series models (e.g. ARIMA: Autoregressive integrated moving average) and machine learning classifiers. To sum up, from this research stream it emerges that AI-based models, such as NARX and the above-mentioned techniques, achieve better prediction performance than statistical or time series models, as remarked by Amelot et al. ( 2021 ).

Issues that deserve further investigation

As shown in Sect. " A detailed account of the literature on AI in Finance ", the literature on Artificial Intelligence in Finance is vast and rapidly growing as technological progress advances. There are, however, some aspects of this subject that are unexplored yet or that require further investigation. In this section, we further scrutinise, through content analysis, the papers published between 2015 and 2021 (as we want to focus on the most recent research directions) in order to define a potential research agenda. Hence, for each of the ten research streams presented in Sect. " Identification of the major research streams ", we report a number of research questions that were put forward over time and are still at least partly unaddressed. The complete list of research questions is enclosed in Table  8 .

AI and the stock market

This research stream focuses on algorithmic trading (AT) and stock price prediction. Future research in the field could analyse more deeply alternative AI-based market predictors (e.g. clustering algorithms and similar learning methods) and draw up a regime clustering algorithm in order to get a clearer view of the potential applications and benefits of clustering methodologies (Law, and Shawe-Taylor 2017 ). In this regard, Litzenberger et al. ( 2012 ) and Booth et al. ( 2015 ) recommend broadening the study to market cycles and regulation policies that may affect AI models’ performance in stock prediction and algorithmic trading, respectively. Footnote 3 Furthermore, forecasting models should be evaluated with deeper order book information, which may lead to a higher prediction accuracy of stock prices (Tashiro et al. 2019 ).

AI and trading models

This research stream builds on the application of AI in trading models. Robo advisors are the evolution of basic trading models: they are easily accessible, cost-effective, profitable for investors and, unlike human traders, immune to behavioural biases. Robo advisory, however, is a recent phenomenon and needs further performance evaluations, especially in periods of financial distress, such as the post-COVID-19 one (Tao et al. 2021 ), or in the case of the so-called “Black swan” events. Conversely, trading models based on spatial neural networks (an advanced ANN) outperform all statistical techniques in modelling limit order books and suggest an extensive interpretation of the joint distribution of the best bid and best ask. Given the versatility of such a method, forthcoming research should resort to it with the aim of understanding whether neural networks with more order book information (i.e. order flow history) lead to better trading performance (Sirignano 2018 ).

AI and volatility forecasting

As previously mentioned, volatility forecasting is a challenging task. Although recent studies report solid results in the field (see Sermpinis et al. 2013 ; Vortelinos 2017 ), future work could deploy more elaborated recurrent NNs by modifying the activation function of the processing units composing the ANNs, or by adding hidden layers and then evaluate their performance (Bucci 2020 ). Since univariate time series are commonly used for realised volatility prediction, it would be interesting to also inquire about the performance of multivariate time series.

AI and portfolio management

This research stream examines the use of AI in portfolio selection strategies. Past studies have developed AI models that are capable of replicating the performance of stock indexes (known as index tracking strategy) and constructing efficient portfolios with no human intervention. In this regard, Kim and Kim ( 2020 ) suggest focussing on optimising AI algorithms to boost index-tracking performance. Soleymani and Vasighi ( 2020 ) recognise the importance of clustering algorithms in portfolio management and propose a clustering approach powered by a membership function, also known as fuzzy clustering, to further improve the selection of less risky and most profitable assets. For this reason, analysis of asset volatility through deep learning should be embedded in portfolio selection models (Chen and Ge 2021 ).

AI and performance, risk, default valuation

Bankruptcy and performance prediction models rely on binary classifiers that only provide two outcomes, e.g. risky–not risky, default–not default, good–bad performance. These methods may be restrictive as sometimes there is not a clear distinction between the two categories (Jones et al. 2017 ). Therefore, prospective research might focus on multiple outcome domains and extend the research area to other contexts, such as bond default prediction, corporate mergers, reconstructions, takeovers, and credit rating changes (Jones et al. 2017 ). Corporate credit ratings and social media data should be included as independent predictors in credit risk forecasts to evaluate their impact on the accuracy of risk-predicting models (Uddin et al. 2020 ). Moreover, it is worth evaluating the benefits of a combined human–machine approach, where analysts contribute to variables’ selection alongside data mining techniques (Jones et al. 2017 ). Forthcoming studies should also address black box and over-fitting biases (Sariev and Germano 2020 ), as well as provide solutions for the manipulation and transformation of missing input data relevant to the model (Jones et al. 2017 ).

AI and cryptocurrencies

The use of AI in the cryptocurrency market is in its infancy, and so are the policies regulating it. As the digital currency industry has become increasingly important in the financial world, future research should study the impact of regulations and blockchain progress on the performance of AI techniques applied in this field (Petukhina et al., 2021 ). Cryptocurrencies, and especially Bitcoins, are extensively used in financial portfolios. Hence, new AI approaches should be developed in order to optimise cryptocurrency portfolios (Burggraf 2021 ).

AI and derivatives

This research stream examines derivative pricing models based on AI. A valuable research area that should be further explored concerns the incorporation of text-based input data, such as tweets, blogs, and comments, for option price prediction (Jang and Lee 2019 ). Since derivative pricing is an utterly complicated task, Chen and Wan ( 2021 ) suggest studying advanced AI designs that minimise computational costs. Funahashi ( 2020 ) recognises a typical human learning process (i.e. recognition by differences) and applies it to the model, significantly simplifying the pricing problem. In the light of these considerations, prospective research may also investigate other human learning and reasoning paths that can improve AI reasoning skills.

AI and credit risk in banks

Bank default prediction models often rely solely on accounting information from banks’ financial statements. To enhance default forecast, future work should consider market data as well (Le and Viviani 2018 ). Credit risk includes bank account fraud and financial systemic risk. Fraud detection based on AI needs further experiments in terms of training speed and classification accuracy (Kumar et al. 2019 ). Early warning models, on the other hand, should be more sensitive to systemic risk. For this reason, subsequent studies ought to provide a common platform for modelling systemic risk and visualisation techniques enabling interaction with both model parameters and visual interfaces (Holopainen and Sarlin 2017 ).

AI and investor sentiment analysis

Sentiment analysis builds on text-based data from social networks and news to identify investor sentiment and use it as a predictor of asset prices. Forthcoming research may analyse the effect of investor sentiment on specific sectors (Houlihan and Creamer 2021 ), as well as the impact of diverse types of news on financial markets (Heston and Sinha 2017 ). This is important for understanding how markets process information. In this respect, Xu and Zhao ( 2022 ) propose a deeper analysis of how social networks’ sentiment affects individual stock returns. They also believe that the activity of financial influencers, such as financial analysts or investment advisors, potentially affects market returns and needs to be considered in financial forecasts or portfolio management.

AI and foreign exchange management

This research stream investigates the application of AI models to the Forex market. Deep networks, in particular, efficiently predict the direction of change in forex rates thanks to their ability to “learn” abstract features (i.e. moving averages) through hidden layers. Future work should study whether these abstract features can be inferred from the model and used as valid input data to simplify the deep network structure (Galeshchuk and Mukherjee 2017 ). Moreover, the performance of foreign exchange trading models should be assessed in financial distressed times. Further research may also compare the predictive performance of advanced times series models, such as genetic algorithms and hybrid NNs, for forex trading purposes (Amelot et al. 2021 ).

Conclusions

Despite its recent advent, Artificial Intelligence has revolutionised the entire financial system, thanks to advanced computer science and Big Data Analytics and the increasing outflow of data generated by consumers, investors, business, and governments’ activities. Therefore, it is not surprising that a growing strand of literature has examined the uses, benefits and potential of AI applications in Finance. This paper aims to provide an accurate account of the state of the art, and, in doing so, it would represent a useful guide for readers interested in this topic and, above all, the starting point for future research. To this purpose, we collected a large number of articles published in journals indexed in Web of Science (WoS), and then resorted to both bibliometric analysis and content analysis. In particular, we inspected several features of the papers under study, identified the main AI applications in Finance and highlighted ten major research streams. From this extensive review, it emerges that AI can be regarded as an excellent market predictor and contributes to market stability by minimising information asymmetry and volatility; this results in profitable investing systems and accurate performance evaluations. Additionally, in the risk management area, AI aids with bankruptcy and credit risk prediction in both corporate and financial institutions; fraud detection and early warning models monitor the whole financial system and raise expectations for future artificial market surveillance. This suggests that global financial crises or unexpected financial turmoil will be likely to be anticipated and prevented.

All in all, judging from the rapid widespread of AI applications in the financial sphere and across a large variety of countries, and, more in general, based on the growth rate exhibited by technological progress over time, we expect that the use of AI tools will further expand, both geographically, across sectors and across financial areas. Hence, firms that still struggle with coping with the latest wave of technological change should be aware of that, and try to overcome this burden in order to reap the potential benefits associated with the adoption of AI and remain competitive. In the light of these considerations, policymakers should motivate companies, especially those that have not adopted yet, or have just begun to introduce AI applications, to catch up, for instance by providing funding or training courses aimed to strengthen the complex skills required by employees dealing with these sophisticated systems and languages.

This study presents some limitations. For instance, it tackles a significant range of interrelated topics (in particular, the main financial areas affected by AI which have been the main object of past research), and then presents a concise description for each of them; other studies may decide to focus on only one or a couple of subjects and provide a more in-depth account of the chosen one(s). Also, we are aware that technological change has been progressing at an unprecedented fast and growing pace; even though we considered a significantly long time-frame and a relevant amount of studies have been released in the first two decades of the XXI century, we are aware that further advancements have been made from 2021 (the last year included in the time frame used to the select our sample); for instance, in the last few years, AI experts, policymakers, and also a growing number of scholars have been debating the potential and risks of AI-related devices, such as chatGBT and the broader and more elusive “metaverse” (see for instance Mondal et al. 2023 and Calzada 2023 , for an overview). Hence, future contributions may advance our understanding of the implications of these latest developments for finance and other important fields, such as education and health.

Data availability

Full data are available from authors upon request.

The term AI winter first appeared in 1984 as the topic of a public debate at the annual meeting of the American Association of Artificial Intelligence (AAAI). It referred to hype generated by over promises from developers, unrealistically high expectations from end users, and extensive media promotion.

Since credit risk in the banking industry remarkably differs from credit risk in firms, the two of them are treated separately.

As this issue has not been addressed in the latest papers, we include these two papers although their year of publication lies outside the established range period.

Abdou HA, Ellelly NN, Elamer AA, Hussainey K, Yazdifar H (2021) Corporate governance and earnings management Nexus: evidence from the UK and Egypt using neural networks. Int J Financ Econ 26(4):6281–6311. https://doi.org/10.1002/ijfe.2120

Article   Google Scholar  

Abedin MZ, Guotai C, Moula F, Azad AS, Khan MS (2019) Topological applications of multilayer perceptrons and support vector machines in financial decision support systems. Int J Financ Econ 24(1):474–507. https://doi.org/10.1002/ijfe.1675

Acemoglu D, Restrepo P (2020) The wrong kind of AI? Artificial intelligence and the future of labor demand. Cambr J Reg Econ Soc, Cambr Pol Econ Soc 13(1):25–35

Altman EI, Marco G, Varetto F (1994) Corporate distress diagnosis: comparisons using linear discriminant analysis and neural networks (the Italian experience). J Bank Finance 18(3):505–529. https://doi.org/10.1016/0378-4266(94)90007-8

Amelot LM, Subadar Agathee U, Sunecher Y (2021) Time series modelling, narx neural network and HYBRID kpca–svr approach to forecast the foreign exchange market in Mauritius. Afr J Econ Manag Stud 12(1):18–54. https://doi.org/10.1108/ajems-04-2019-0161

Bekiros SD, Georgoutsos DA (2008) Non-linear dynamics in financial asset returns: The predictive power of the CBOE volatility index. Eur J Fin 14(5):397–408. https://doi.org/10.1080/13518470802042203

Biju AKVN, Thomas AS, Thasneem J (2020) Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere—a bibliometric analysis. Qual Quant Online First. https://doi.org/10.1007/s11135-023-01673-0

Black F, Scholes M (1973) The pricing of Options and corporate liabilities. J Pol Econ 81(3):637–654

Article   MathSciNet   Google Scholar  

Booth A, Gerding E, McGroarty F (2015) Performance-weighted ensembles of random forests for predicting price impact. Quant Finance 15(11):1823–1835. https://doi.org/10.1080/14697688.2014.983539

Bresnahan TF, Trajtenberg M (1995) General purpose technologies ‘Engines of growth’? J Econom 65(1):83–108. https://doi.org/10.1016/0304-4076(94)01598-T

Bucci A (2020) Realized volatility forecasting with neural networks. J Financ Econom 3:502–531. https://doi.org/10.1093/jjfinec/nbaa008

Buchanan, B. G. (2019). Artificial intelligence in finance - Alan Turing Institute. https://www.turing.ac.uk/sites/default/files/2019-04/artificial_intelligence_in_finance_-_turing_report_0.pdf .

Burggraf T (2021) Beyond risk parity – a machine learning-based hierarchical risk parity approach on cryptocurrencies. Finance Res Lett 38:101523. https://doi.org/10.1016/j.frl.2020.101523

Butaru F, Chen Q, Clark B, Das S, Lo AW, Siddique A (2016) Risk and risk management in the credit card industry. J Bank Finance 72:218–239. https://doi.org/10.1016/j.jbankfin.2016.07.015

Caglayan M, Pham T, Talavera O, Xiong X (2020) Asset mispricing in peer-to-peer loan secondary markets. J Corp Finan 65:101769. https://doi.org/10.1016/j.jcorpfin.2020.101769

Calomiris CW, Mamaysky H (2019) How news and its context drive risk and returns around the world. J Financ Econ 133(2):299–336. https://doi.org/10.1016/j.jfineco.2018.11.009

Calzada I (2023) Disruptive technologies for e-diasporas: blockchain, DAOs, data cooperatives, metaverse, and ChatGPT. Futures 154:103258. https://doi.org/10.1016/j.futures.2023.103258

Cao Y, Liu X, Zhai J, Hua S (2022) A Two-stage Bayesian network model for corporate bankruptcy prediction. Int J Financ Econ 27(1):455–472. https://doi.org/10.1002/ijfe.2162

Chaboud AP, Chiquoine B, Hjalmarsson E, Vega C (2014) Rise of the machines: Algorithmic trading in the foreign exchange market. J Financ 69(5):2045–2084. https://doi.org/10.1111/jofi.12186

Chen S, Ge L (2021) A learning-based strategy for portfolio selection. Int Rev Econ Financ 71:936–942. https://doi.org/10.1016/j.iref.2020.07.010

Chen Y, Wan JW (2021) Deep neural network framework based on backward stochastic differential equations for pricing and hedging American options in high dimensions. Quant Finance 21(1):45–67. https://doi.org/10.1080/14697688.2020.1788219

Article   MathSciNet   CAS   Google Scholar  

Chen J, Chang T, Ho C, Diaz JF (2013) Grey relational analysis and neural Network forecasting of reit returns. Quantitative Finance 14(11):2033–2044. https://doi.org/10.1080/14697688.2013.816765

Coats PK, Fant LF (1993) Recognizing financial distress patterns using a neural network tool. Financ Manage 22(3):142. https://doi.org/10.2307/3665934

Corazza M, De March D, Di Tollo G (2021) Design of adaptive Elman networks for credit risk assessment. Quantitative Finance 21(2):323–340. https://doi.org/10.1080/14697688.2020.1778175

Cortés EA, Martínez MG, Rubio NG (2008) FIAMM return persistence analysis and the determinants of the fees charged. Span J Finance Account Revis Esp De Financ Y Contab 37(137):13–32. https://doi.org/10.1080/02102412.2008.10779637

Creamer G (2012) Model calibration and automated trading agent for euro futures. Quant Finance 12(4):531–545. https://doi.org/10.1080/14697688.2012.664921

Creamer G, Freund Y (2010) Automated trading with boosting and expert weighting. Quant Finance 10(4):401–420. https://doi.org/10.1080/14697680903104113

Cucculelli M, Recanatini M (2022) Distributed Ledger technology systems in securities post-trading services. Evid Eur Global Syst Banks Eur J Finance 28(2):195–218. https://doi.org/10.1080/1351847X.2021.1921002

Culkin R, Das SR (2017) Machine learning in finance: The case of deep learning for option pricing. J Invest Management 15(4):92–100

Google Scholar  

D’Hondt C, De Winne R, Ghysels E, Raymond S (2020) Artificial intelligence alter egos: Who might benefit from robo-investing? J Empir Financ 59:278–299. https://doi.org/10.1016/j.jempfin.2020.10.002

Deku SY, Kara A, Semeyutin A (2020) The predictive strength of mbs yield spreads during asset bubbles. Rev Quant Financ Acc 56(1):111–142. https://doi.org/10.1007/s11156-020-00888-8

Dixon M, Klabjan D, Bang JH (2017) Classification-based financial markets prediction using deep neural networks. Algorithmic Finance 6(3–4):67–77. https://doi.org/10.3233/af-170176

Donthu N, Kumar S, Mukherjee D, Pandey N, Lim WM (2021) How to conduct a bibliometric analysis: an overview and guidelines. J Bus Res 133:285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

Downe-Wamboldt B (1992) Content analysis: method, applications, and issues. Health Care Women Int 13(3):313–321. https://doi.org/10.1080/07399339209516006

Article   CAS   PubMed   Google Scholar  

Dubey RK, Chauhan Y, Syamala SR (2017) Evidence of algorithmic trading from Indian equity Market: Interpreting the transaction velocity element of financialization. Res Int Bus Financ 42:31–38. https://doi.org/10.1016/j.ribaf.2017.05.014

Dunis CL, Laws J, Sermpinis G (2010) Modelling and trading the EUR/USD exchange rate at the ECB fixing. Eur J Finance 16(6):541–560. https://doi.org/10.1080/13518470903037771

Dunis CL, Laws J, Karathanasopoulos A (2013) Gp algorithm versus hybrid and mixed neural networks. Eur J Finance 19(3):180–205. https://doi.org/10.1080/1351847x.2012.679740

Durango-Gutiérrez MP, Lara-Rubio J, Navarro-Galera A (2021) Analysis of default risk in microfinance institutions under the Basel Iii framework. Int J Financ Econ. https://doi.org/10.1002/ijfe.2475

Episcopos A, Pericli A, Hu J (1998) Commercial mortgage default: A comparison of logit with radial basis function networks. J Real Estate Finance Econ 17(2):163–178

Ernst, E., Merola, R., and Samaan, D. (2018). The economics of artificial intelligence: Implications for the future of work. ILO Futur Work Res Paper Ser No. 5.

Feldman D, Gross S (2005) Mortgage default: classification trees analysis. J Real Estate Finance Econ 30(4):369–396. https://doi.org/10.1007/s11146-005-7013-7

Fernandes M, Medeiros MC, Scharth M (2014) Modeling and predicting the CBOE market volatility index. J Bank Finance 40:1–10. https://doi.org/10.1016/j.jbankfin.2013.11.004

Frankenfield, J. (2021). How Artificial Intelligence Works. Retrieved June 11, 2021, from https://www.investopedia.com/terms/a/artificial-intelligence-ai.asp

Frino A, Prodromou T, Wang GH, Westerholm PJ, Zheng H (2017) An empirical analysis of algorithmic trading around earnings announcements. Pac Basin Financ J 45:34–51. https://doi.org/10.1016/j.pacfin.2016.05.008

Frino A, Garcia M, Zhou Z (2020) Impact of algorithmic trading on speed of adjustment to new information: Evidence from interest rate derivatives. J Futur Mark 40(5):749–760. https://doi.org/10.1002/fut.22104

Funahashi H (2020) Artificial neural network for option pricing with and without asymptotic correction. Quant Finance 21(4):575–592. https://doi.org/10.1080/14697688.2020.1812702

Galeshchuk S, Mukherjee S (2017) Deep networks for predicting direction of change in foreign exchange rates. Intell Syst Account Finance Manage 24(4):100–110. https://doi.org/10.1002/isaf.1404

Gao M, Liu Y, Wu W (2016) Fat-finger trade and market quality: the first evidence from China. J Futur Mark 36(10):1014–1025. https://doi.org/10.1002/fut.21771

Gepp A, Kumar K, Bhattacharya S (2010) Business failure prediction using decision trees. J Forecast 29(6):536–555. https://doi.org/10.1002/for.1153

Guotai C, Abedin MZ (2017) Modeling credit approval data with neural networks: an experimental investigation and optimization. J Bus Econ Manag 18(2):224–240. https://doi.org/10.3846/16111699.2017.1280844

Hamdi M, Aloui C (2015) Forecasting crude oil price using artificial neural networks: a literature survey. Econ Bull 35(2):1339–1359

Hendershott T, Jones CM, Menkveld AJ (2011) Does algorithmic trading improve liquidity? J Financ 66(1):1–33. https://doi.org/10.1111/j.1540-6261.2010.01624.x

Hentzen JK, Hoffmann A, Dolan R, Pala E (2022a) Artificial intelligence in customer-facing financial services: a systematic literature review and agenda for future research. Int J Bank Market 40(6):1299–1336. https://doi.org/10.1108/IJBM-09-2021-0417

Hentzen JK, Hoffmann AOI, Dolan RM (2022b) Which consumers are more likely to adopt a retirement app and how does it explain mobile technology-enabled retirement engagement? Int J Consum Stud 46:368–390. https://doi.org/10.1111/ijcs.12685

Heston SL, Sinha NR (2017) News vs sentiment: predicting stock returns from news stories. Financial Anal J 73(3):67–83. https://doi.org/10.2469/faj.v73.n3.3

Holopainen M, Sarlin P (2017) Toward robust early-warning models: a horse race, ensembles and model uncertainty. Quant Finance 17(12):1933–1963. https://doi.org/10.1080/14697688.2017.1357972

Houlihan P, Creamer GG (2021) Leveraging social media to predict continuation and reversal in asset prices. Comput Econ 57(2):433–453. https://doi.org/10.1007/s10614-019-09932-9

Huang X, Guo F (2021) A kernel fuzzy twin SVM model for early warning systems of extreme financial risks. Int J Financ Econ 26(1):1459–1468. https://doi.org/10.1002/ijfe.1858

Huang Y, Kuan C (2021) Economic prediction with the fomc minutes: an application of text mining. Int Rev Econ Financ 71:751–761. https://doi.org/10.1016/j.iref.2020.09.020

IBM Cloud Education. (2020). What are Neural Networks? Retrieved May 10, 2021, from https://www.ibm.com/cloud/learn/neural-networks

Jagric T, Jagric V, Kracun D (2011) Does non-linearity matter in retail credit risk modeling? Czech J Econ Finance Faculty Soc Sci 61(4):384–402

Jagtiani J, Kose J (2018) Fintech: the impact on consumers and regulatory responses. J Econ Bus 100:1–6. https://doi.org/10.1016/j.jeconbus.2018.11.002

Jain A, Jain C, Khanapure RB (2021) Do algorithmic traders improve liquidity when information asymmetry is high? Q J Financ 11(01):1–32. https://doi.org/10.1142/s2010139220500159

Article   CAS   Google Scholar  

Jang H, Lee J (2019) Generative Bayesian neural network model for risk-neutral pricing of American index options. Quant Finance 19(4):587–603. https://doi.org/10.1080/14697688.2018.1490807

Jiang Y, Jones S (2018) Corporate distress prediction in China: a machine learning approach. Account Finance 58(4):1063–1109. https://doi.org/10.1111/acfi.12432

Jones S, Wang T (2019) Predicting private company failure: a multi-class analysis. J Int Finan Markets Inst Money 61:161–188. https://doi.org/10.1016/j.intfin.2019.03.004

Jones S, Johnstone D, Wilson R (2015) An empirical evaluation of the performance of binary classifiers in the prediction of credit ratings changes. J Bank Finance 56:72–85. https://doi.org/10.1016/j.jbankfin.2015.02.006

Jones S, Johnstone D, Wilson R (2017) Predicting corporate bankruptcy: an evaluation of alternative statistical frameworks. J Bus Financ Acc 44(1–2):3–34. https://doi.org/10.1111/jbfa.12218

Kamiya S, Kim YH, Park S (2018) The face of risk: Ceo facial masculinity and firm risk. Eur Financ Manag 25(2):239–270. https://doi.org/10.1111/eufm.12175

Kanas A (2001) Neural network linear forecasts for stock returns. Int J Financ Econ 6(3):245–254. https://doi.org/10.1002/ijfe.156

Kelejian HH, Mukerji P (2016) Does high frequency algorithmic trading matter for non-at investors? Res Int Bus Financ 37:78–92. https://doi.org/10.1016/j.ribaf.2015.10.014

Kercheval AN, Zhang Y (2015) Modelling high-frequency limit order book dynamics with support vector machines. Quant Finance 15(8):1315–1329. https://doi.org/10.1080/14697688.2015.1032546

Khandani AE, Kim AJ, Lo AW (2010) Consumer credit-risk models via machine-learning algorithms. J Bank Finance 34(11):2767–2787. https://doi.org/10.1016/j.jbankfin.2010.06.001

Kim S, Kim D (2014) Investor sentiment from internet message postings and the predictability of stock returns. J Econ Behav Organ 107:708–729. https://doi.org/10.1016/j.jebo.2014.04.015

Kim S, Kim S (2020) Index tracking through deep latent representation learning. Quant Finance 20(4):639–652. https://doi.org/10.1080/14697688.2019.1683599

Kumar G, Muckley CB, Pham L, Ryan D (2019) Can alert models for fraud protect the elderly clients of a financial institution? Eur J Finance 25(17):1683–1707. https://doi.org/10.1080/1351847x.2018.1552603

Lahmiri S (2016) Features selection, data mining and financial risk classification: a comparative study. Intell Syst Account Finance Managed 23(4):265–275. https://doi.org/10.1002/isaf.1395

Lahmiri S, Bekiros S (2019) Can machine learning approaches predict corporate bankruptcy? evidence from a qualitative experimental design. Quant Finance 19(9):1569–1577. https://doi.org/10.1080/14697688.2019.1588468

Law T, Shawe-Taylor J (2017) Practical Bayesian support vector regression for financial time series prediction and market condition change detection. Quant Finance 17(9):1403–1416. https://doi.org/10.1080/14697688.2016.1267868

Le HH, Viviani J (2018) Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios. Res Int Bus Financ 44:16–25. https://doi.org/10.1016/j.ribaf.2017.07.104

Li J, Li G, Zhu X, Yao Y (2020) Identifying the influential factors of commodity futures prices through a new text mining approach. Quant Finance 20(12):1967–1981. https://doi.org/10.1080/14697688.2020.1814008

Litzenberger R, Castura J, Gorelick R (2012) The impacts of automation and high frequency trading on market quality. Annu Rev Financ Econ 4(1):59–98. https://doi.org/10.1146/annurev-financial-110311-101744

Loukeris N, Eleftheriadis I (2015) Further higher moments in portfolio Selection and a priori detection of bankruptcy, under multi-layer perceptron neural Networks, HYBRID Neuro-genetic MLPs, and the voted perceptron. Int J Financ Econ 20(4):341–361. https://doi.org/10.1002/ijfe.1521

Lu J, Ohta H (2003) A data and digital-contracts driven method for pricing complex derivatives. Quant Finance 3(3):212–219. https://doi.org/10.1088/1469-7688/3/3/307

Lu Y, Shen C, Wei Y (2013) Revisiting early warning signals of corporate credit default using linguistic analysis. Pac Basin Financ J 24:1–21. https://doi.org/10.1016/j.pacfin.2013.02.002

Martinelli A, Mina A, Moggi M (2021) The enabling technologies of industry 4.0: examining the seeds of the fourth industrial revolution. Ind Corp Chang 2021:1–28. https://doi.org/10.1093/icc/dtaa060

Mondal S, Das S, Vrana VG (2023) How to bell the cat? a theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies 11(2):44. https://doi.org/10.3390/technologies11020044

Moshiri S, Cameron N (2000) Neural network versus econometric models in forecasting inflation. J Forecast 19(3):201–217. https://doi.org/10.1002/(sici)1099-131x(200004)19:33.0.co;2-4

Mselmi N, Lahiani A, Hamza T (2017) Financial distress prediction: the case of French small and medium-sized firms. Int Rev Financ Anal 50:67–80. https://doi.org/10.1016/j.irfa.2017.02.004

Nag AK, Mitra A (2002) Forecasting daily foreign exchange rates using genetically optimized neural networks. J Forecast 21(7):501–511. https://doi.org/10.1002/for.838

Papadimitriou T, Goga P, Agrapetidou A (2020) The resilience of the US banking system. Int J Finance Econ. https://doi.org/10.1002/ijfe.2300

Parot A, Michell K, Kristjanpoller WD (2019) Using artificial neural networks to forecast exchange rate, including Var-vecm residual analysis and prediction linear combination. Intell Syst Account Finance Manage 26(1):3–15. https://doi.org/10.1002/isaf.1440

Petukhina AA, Reule RC, Härdle WK (2020) Rise of the machines? intraday high-frequency trading patterns of cryptocurrencies. Eur J Finance 27(1–2):8–30. https://doi.org/10.1080/1351847x.2020.1789684

Petukhina A, Trimborn S, Härdle WK, Elendner H (2021) Investing with cryptocurrencies – evaluating their potential for portfolio allocation strategies. Quant Finance 21(11):1825–1853. https://doi.org/10.1080/14697688.2021.1880023

Pichl L, Kaizoji T (2017) Volatility analysis of bitcoin price time series. Quant Finance Econ 1(4):474–485. https://doi.org/10.3934/qfe.2017.4.474

Pompe PP, Bilderbeek J (2005) The prediction of bankruptcy of small- and medium-sized industrial firms. J Bus Ventur 20(6):847–868. https://doi.org/10.1016/j.jbusvent.2004.07.003

PricewaterhouseCoopers-PwC (2017). PwC‘s global Artificial Intelligence Study: Sizing the prize. Retrieved May 10, 2021, from https://www.PwC.com/gx/en/issues/data-and-analytics/publications/artificial-intelligence-study.html .

PricewaterhouseCoopers- PwC (2018). The macroeconomic impact of artificial intelligence. Retrieved May 17, 2021, from https://www.PwC.co.uk/economic-services/assets/macroeconomic-impact-of-ai-technical-report-feb-18.pdf .

PricewaterhouseCoopers- PwC (2020). How mature is AI adoption in financial services? Retrieved May 15, 2021, from https://www.PwC.de/de/future-of-finance/how-mature-is-ai-adoption-in-financial-services.pdf .

Qi M (1999) Nonlinear predictability of stock returns using financial and economic variables. J Bus Econ Stat 17(4):419. https://doi.org/10.2307/1392399

Qi M, Maddala GS (1999) Economic factors and the stock market: a new perspective. J Forecast 18(3):151–166. https://doi.org/10.1002/(sici)1099-131x(199905)18:33.0.co;2-v

Raj M, Seamans R (2019) Primer on artificial intelligence and robotics. J Organ Des 8(1):1–14. https://doi.org/10.1186/s41469-019-0050-0

Rasekhschaffe KC, Jones RC (2019) Machine learning for stock selection. Financ Anal J 75(3):70–88. https://doi.org/10.1080/0015198x.2019.1596678

Reber B (2014) Estimating the risk–return profile of new venture investments using a risk-neutral framework and ‘thick’ models. Eur J Finance 20(4):341–360. https://doi.org/10.1080/1351847x.2012.708471

Reboredo JC, Matías JM, Garcia-Rubio R (2012) Nonlinearity in forecasting of high-frequency stock returns. Comput Econ 40(3):245–264. https://doi.org/10.1007/s10614-011-9288-5

Renault T (2017) Intraday online investor sentiment and return patterns in the U.S. stock market. J Bank Finance 84:25–40. https://doi.org/10.1016/j.jbankfin.2017.07.002

Rodrigues BD, Stevenson MJ (2013) Takeover prediction using forecast combinations. Int J Forecast 29(4):628–641. https://doi.org/10.1016/j.ijforecast.2013.01.008

Van Roy V, Vertesy D, Damioli G (2020). AI and robotics innovation. In K. F., Zimmermann (ed.), Handbook of Labor, Human Resources and Population Economics (pp. 1–35) Springer Nature

Sabău Popa DC, Popa DN, Bogdan V, Simut R (2021) Composite financial performance index prediction – a neural networks approach. J Bus Econ Manag 22(2):277–296. https://doi.org/10.3846/jbem.2021.14000

Sariev E, Germano G (2020) Bayesian regularized artificial neural networks for the estimation of the probability of default. Quant Finance 20(2):311–328. https://doi.org/10.1080/14697688.2019.1633014

Scholtus M, Van Dijk D, Frijns B (2014) Speed, algorithmic trading, and market quality around macroeconomic news announcements. J Bank Finance 38:89–105. https://doi.org/10.1016/j.jbankfin.2013.09.016

Sermpinis G, Laws J, Dunis CL (2013) Modelling and trading the realised volatility of the ftse100 futures with higher order neural networks. Eur J Finance 19(3):165–179. https://doi.org/10.1080/1351847x.2011.606990

Sirignano JA (2018) Deep learning for limit order books. Quant Finance 19(4):549–570. https://doi.org/10.1080/14697688.2018.1546053

Soleymani F, Vasighi M (2020) Efficient portfolio construction by means OF CVaR and K -means++ CLUSTERING analysis: evidence from the NYSE. Int J Financ Econ. https://doi.org/10.1002/ijfe.2344

Sun T, Vasarhelyi MA (2018) Predicting credit card delinquencies: an application of deep neural networks. Intell Syst Account Finance Manage 25(4):174–189. https://doi.org/10.1002/isaf.1437

Szczepański, M. (2019). Economic impacts of artificial intelligence. Retrieved May 10, 2021, from https://www.europarl.europa.eu/RegData/etudes/BRIE/2019/637967/EPRS_BRI(2019)637967_EN.pdf

Tao R, Su C, Xiao Y, Dai K, Khalid F (2021) Robo advisors, algorithmic trading and investment management: Wonders of fourth industrial revolution in financial markets. Technol Forecast Soc Chang 163:120421. https://doi.org/10.1016/j.techfore.2020.120421

Tashiro D, Matsushima H, Izumi K, Sakaji H (2019) Encoding of high-frequency order information and prediction of short-term stock price by deep learning. Quant Finance 19(9):1499–1506. https://doi.org/10.1080/14697688.2019.1622314

Trinkle BS, Baldwin AA (2016) Research opportunities for neural networks: the case for credit. Intell Syst Account Finance Manage 23(3):240–254. https://doi.org/10.1002/isaf.1394

Trippi RR, DeSieno D (1992) Trading equity index futures with a neural network. J Portf Manage 19(1):27–33. https://doi.org/10.3905/jpm.1992.409432

Uddin MS, Chi G, Al Janabi MA, Habib T (2020) Leveraging random forest in micro-enterprises credit risk modelling for accuracy and interpretability. Int J Financ Econ. https://doi.org/10.1002/ijfe.2346

Varetto F (1998) Genetic algorithms applications in the analysis of insolvency risk. J Bank Finance 22(10–11):1421–1439. https://doi.org/10.1016/s0378-4266(98)00059-4

Vortelinos DI (2017) Forecasting realized Volatility: HAR against principal components combining, neural networks and GARCH. Res Int Bus Financ 39:824–839. https://doi.org/10.1016/j.ribaf.2015.01.004

Wall LD (2018) Some financial regulatory implications of artificial intelligence. J Econ Bus 100:55–63. https://doi.org/10.1016/j.jeconbus.2018.05.003

Wanke P, Azad MA, Barros C (2016a) Predicting efficiency in Malaysian islamic banks: a two-stage TOPSIS and neural networks approach. Res Int Bus Financ 36:485–498. https://doi.org/10.1016/j.ribaf.2015.10.002

Wanke P, Azad MA, Barros CP, Hassan MK (2016c) Predicting efficiency in Islamic banks: an integrated multicriteria decision Making (MCDM) Approach. J Int Finan Markets Inst Money 45:126–141. https://doi.org/10.1016/j.intfin.2016.07.004

Wei L, Li G, Zhu X, Li J (2019) Discovering bank risk factors from financial statements based on a new semi-supervised text mining algorithm. Account Finance 59(3):1519–1552. https://doi.org/10.1111/acfi.12453

Xu Y, Zhao J (2022) Can sentiments on macroeconomic news explain stock returns? evidence from social network data. Int J Financ Econ 27(2):2073–2088. https://doi.org/10.1002/ijfe.2260

Xu D, Zhang X, Feng H (2019) Generalized fuzzy soft sets theory-based novel hybrid ensemble credit scoring model. Int J Financ Econ 24(2):903–921. https://doi.org/10.1002/ijfe.1698

Yang Z, Platt MB, Platt HD (1999) Probabilistic neural networks in bankruptcy prediction. J Bus Res 44(2):67–74. https://doi.org/10.1016/s0148-2963(97)00242-7

Yin H, Wu X, Kong SX (2020) Daily investor sentiment, order flow imbalance and stock liquidity: Evidence from the Chinese stock market. Int J Financ Econ. https://doi.org/10.1002/ijfe.2402

Zhang Y, Chu G, Shen D (2021) The role of investor attention in predicting stock prices: the long short-term memory networks perspective. Financ Res Lett 38:101484. https://doi.org/10.1016/j.frl.2020.101484

Zhao Y, Stasinakis C, Sermpinis G, Shi Y (2018) Neural network copula portfolio optimization for exchange traded funds. Quant Finance 18(5):761–775. https://doi.org/10.1080/14697688.2017.1414505

Zheng X, Zhu M, Li Q, Chen C, Tan Y (2019) Finbrain: When finance meets ai 2.0. Front Inform Technol Electr Eng 20(7):914–924. https://doi.org/10.1631/fitee.1700822

Download references

Open access funding provided by Università Politecnica delle Marche within the CRUI-CARE Agreement. This study has not received specific funding. We are granted with research funds by our institution which would allow us to cover the publication costs.

Author information

Authors and affiliations.

Department of Strategy and Management, EDC Paris Business School, 10074m, Puteaux Cedex, La Défense, 92807, Paris, France

Salman Bahoo

Department of Economics and Social Sciences, Marche Polytechnic University, Piazzale Martelli 8, 60100, Ancona, Italy

Marco Cucculelli, Xhoana Goga & Jasmine Mondolo

You can also search for this author in PubMed   Google Scholar

Contributions

Conceptualization: MC and SB. Methodology: SB. Investigation: MC, XG, SB. Writing: Marco Cucculelli, Xhoana Goga, Salman Bahoo and JM. Writing – Review and Editing: JM. Supervision: MC . Project Administration: MC.

Corresponding author

Correspondence to Marco Cucculelli .

Ethics declarations

Conflict of interest.

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 50 kb)

Rights and permissions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Bahoo, S., Cucculelli, M., Goga, X. et al. Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis. SN Bus Econ 4 , 23 (2024). https://doi.org/10.1007/s43546-023-00618-x

Download citation

Received : 25 April 2023

Accepted : 13 December 2023

Published : 20 January 2024

DOI : https://doi.org/10.1007/s43546-023-00618-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Machine learning
  • Bibliometric analysis
  • Content analysis

JEL Classification

  • Find a journal
  • Publish with us
  • Track your research

research paper financial analysis

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  •  We're Hiring!
  •  Help Center

Financial Analysis

  • Most Cited Papers
  • Most Downloaded Papers
  • Newest Papers
  • Save to Library
  • Last »
  • ERP / CRM Implementation Follow Following
  • Enterprise Resource Planning (ERP) Follow Following
  • Finance Follow Following
  • SAP Finance Follow Following
  • Management Follow Following
  • Accounting Follow Following
  • Financial Economics Follow Following
  • Corporate Finance Follow Following
  • Company Valuation Methods Follow Following
  • Investment analysis and valuation Follow Following

Enter the email address you signed up with and we'll email you a reset link.

  • Academia.edu Publishing
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Financial Research Paper Topics: Interesting Finance Questions to Uncover

Are you having trouble thinking of a good topic for your finance research paper? Believe it or not, you are not alone. It might be difficult to find the perfect financial research topic time and time again. After all, picking the right subject is crucial to your financial field. Whether you’re putting together a presentation, penning an essay, or doing research papers, your choice of subject is of critical significance.

To aid you in overcoming this obstacle, we have compiled a detailed list of organized finance topics for research papers. If you want to be sure you choose the right subject for your financial management efforts, we’ve provided a concise guide with crucial advice.

How to Choose Topics for a Finance Research Paper?

If you need assistance deciding on a subject for your finance research paper, here are some pointers. But before we get into those pointers, it’s important to keep in mind that custom writing services may be a great resource for choosing finance topics for your research paper. You may save yourself time and effort by relying on their staff of seasoned writers to help you choose a subject that is both interesting and applicable to your assignment. The following are three guidelines for deciding on a subject for a finance research paper:

  • Find Unanswered Questions : Try to pinpoint issues that haven’t received enough attention so far in financial research. You may add to the corpus of knowledge already available by identifying information gaps. Investigate financial management, traditional finance, corporate finance, personal finance and similar topics in order to develop a workable solution or to provide novel ideas.
  • Review Existing Literature : Gaining familiarity with the state of the art in finance research requires reading theses and academic articles. Doing so will aid you in pinpointing certain niches in which you may excel. Search the literature for broad perspectives or recurring themes that might help you zero in on a particular issue.
  • Stay Updated and Seek Input : Conduct internet research to keep up with the latest financial concerns. Investigate pressing concerns in the industry, such as the effects of the global financial crisis or new developments in the financial markets. You should also talk about your topic with others who have written research papers, such as your friends, classmates, or professors. Getting their thoughts might help you hone your subject and provide vital information.

Where to Get Data for Finance Papers?

It is crucial to get accurate and up-to-date information while conducting studies in the financial sector. One efficient method is to pay for papers or to hire a finance researcher and analysts to do the work for you, especially when it comes to personal finance.

  • ProQuest is a significant tool since it provides access to scholarly literature from every field of study in the form of periodicals, newspapers, industry reports, dissertations, and profiles of prominent businesses.
  • Scopus and Web of Science provide a plethora of resources, including journals, books, and conference proceedings, that provide comprehensive coverage across academic subjects.
  • Global Financial Data (GFD) is one such database that caters only to finance research, and its extensive research has a wealth of data on various asset classes, prices, indexes, and currency exchange rates.
  • Bloomberg, Thomson Reuters Datastream, and WRDS provide faculty and researchers with institutional access to a plethora of financial data and tools. This includes real-time market data, financial statements, economic indicators, and personal finance topics to write about.

List of Finance Research Topics

This exhaustive list covers everything you need, whether you’re an MBA student, a finance management professional, or a college student. Explore the exciting field of finance research, delving into areas like healthcare financing, the latest developments in the field, corporate finance, and the aftereffects of the global financial crisis. The finance research papers” in this volume will keep you interested and well-informed.

Finance Research Topics for MBA

Investment analysis, financial management, and personal finance are just a few of the many disciplines that fall under the umbrella of finance research subjects for MBA students. Such topics in finance are essential because they provide MBA students with a solid grounding in financial theory and practice. Here are a few suggestions for MBA students looking for research topics in finance:

  • Risk Management Strategies in Financial Institutions.
  • Behavioral Finance in Investment Decision-Making.
  • Financial Inclusion and Economic Development.
  • Comparative Analysis of IFRS Adoption and Financial Reporting Quality.
  • Impact of Financial Technology (Fintech) on Traditional Banking.

Finance Management Research Topics

Finance management topics include a broad spectrum of areas that dive into the complexities of managing financial resources in different contexts. Investment analysis, risk management, financial markets, and corporate finance all fall under finance management. Writing a finance research paper helps you understand financial decision-making, develop effective strategies, and advance the field. Before commencing your research paper, consider the following finance research paper ideas:

  • Corporate Risk Management Strategies On Firm Performance.
  • Benefit Investment Management Practices In Pension Funds.
  • Assessing Financial Risks And Mitigation Techniques In Developing Market Multinationals.
  • Electronic Banking And Financial Inclusion In Developed And Developing Nations.
  • An Empirical Study Of Investor Behavior And Global Finance Data.

Healthcare Finance Research Topics

Explore the application of financial theory to the healthcare sector while writing about finance research paper topics. This financial research is essential for expanding our knowledge of healthcare economics, investment strategies, cost control, and healthcare policy. Finance researchers may also investigate intricate monetary systems to enhance healthcare services and the health of patients. Some healthcare finance topics might include the following:

  • Impact Of Healthcare Policy On Financial Sustainability.
  • Cost-Effectiveness Analysis Of Healthcare Interventions.
  • Healthcare Reimbursement Models And Their Impact On Healthcare Providers.
  • Economic Evaluation Of Preventive Healthcare Programs.
  • Healthcare Financing And Access To Care For Underserved Populations.

Interesting Finance Dissertation Topics

For the purposes of writing finance research papers and finishing a dissertation, investigating interesting finance topics is essential. You can gain a more thorough comprehension of economic principles and their real-world applications. In order to have a high-quality research paper done quickly and with no effort, it’s a good idea to look into help with dissertation writing services. For your next research paper, you can consider the following interesting financial topics:

  • The banking sector and digital transformation: customer experience and operational effectiveness.
  • Corporate risk management strategies in the banking industry: Traditional vs. developing risk management procedures.
  • A case study of emerging nations and how well-functioning financial systems foster economic progress.
  • Financial aid programs in promoting access to higher education
  • A post-pandemic examination of banking institutions’ resilience and regulatory measures’ systemic risk mitigation.

Current Research Topics in Finance

Examining current finance research paper topics is essential due to the dynamic nature of the financial industry. By digging into current financial topics to write about, you learn more about the market, investing methods, risk management, and more. This financial research supports decision-making, policy-making, and the development of new financial solutions. Here are a few lists of subjects to consider if you are looking for current financial topics to write about.

  • Financial Statement Analysis And Investment Decisions In Different Industries.
  • Exploring The Effectiveness Of Machine Learning Algorithms In Predicting Financial Asset Prices.
  • The Role Of Financial Derivatives In Managing Risk And Enhancing Returns In The Business Sector.
  • Corporate Governance Practices On Financial Performance And Asset Valuation.
  • Sustainable Finance Projects In Promoting Environmental, Social, And Governance (ESG) Goals.

Best Finance Research Topics

A finance research paper topic requires the identification of intriguing subjects for extensive research. The best financial research opens the door to explorations of many facets of finance, including investing tactics and the stock market. As you start to write research papers on finance topics, you’ll open up opportunities for self-discovery, theory-building, and prudent decision-making. You’ll also help them become better researchers and writers, leading to better articles.

  • Artificial Intelligence and Financial Decision-Making.
  • Financial Risk Management in the Age of Cryptocurrencies.
  • Behavioral Finance and Investment Decision-Making.
  • The Effectiveness of Financial Regulations in Preventing Market Manipulation.
  • The Role of Fintech in Financial Inclusion: Case Studies from the United States.

Interesting Finance Topics for College Students

Among the many subsets that make up the umbrella term finance topics for college students are financial research and finance topics for paper. Financial research topics are important because they help students learn the fundamentals of finance, get them ready for the issues they’ll face in the real world, and develop the analytical thinking they’ll need to make sound judgments in the future. Here are a few examples of finance topics to talk about among college students:

  • A Comparative Study of E-commerce on Traditional Retail Banking.
  • Comparing Interest Rate Changes with Stock Market Volatility in Developed and Emerging Markets.
  • The Effectiveness of Microfinance Institutions in Alleviating Poverty.
  • Financial Education Programs and College Students’ Financial Decision-Making.
  • Initial Public Offering (IPO) Underpricing: Comparative Study of Developed and Developing Markets.

Finance Research Paper Topics for University Students

Investing, banking, corporate finance, and other areas fall under the umbrella of finance-related topics for the purposes of a university research paper. Because it deepens their knowledge, sparks new ideas, and helps the financial sector expand, topics in finance are more important for college students to study. Students who buy custom assignments benefit from individualized attention, time savings, and the insight of subject matter experts. Check out our extensive finance research topic list to uncover interesting topics for your next paper.

  • Interest Rate Changes On Corporate Borrowing And Investment Decisions.
  • Financial Literacy And Investment Behavior Among University Students.
  • Impact Of International Trade And Globalization On Financial Markets.
  • Factors Influencing Mergers And Acquisitions In The Financial Industry.
  • Financial Derivatives In Managing Risk In The Stock Market.

Public Finance Research Topics

Research Topics in Public Finance include a broad spectrum of questions concerning fiscal and monetary policy at the national, state, and local levels of government. Understanding the effects of government spending and fiscal policies on GDP growth, income distribution, and social welfare is essential, which is why studies in this field are so important. Policymakers can do better for the world when they have access to information on financial research paper topics to read about.

  • The potential of digital currencies as financial assets in public finance management.
  • Impact of Tax Policy on Economic Growth: A Comparative Study.
  • Government Debt and its Implications on Fiscal Sustainability.
  • Public-Private Partnerships in Infrastructure Development.
  • Effectiveness of Fiscal Stimulus Packages in Times of Economic Crisis.

Corporate Finance Research Topics

Corporate Finance Research explores various financial management topics within businesses. Conducting research in this area is crucial for understanding financial decision-making, risk management, capital structure, and valuation. It helps companies optimize their financial strategies, make informed investment decisions, and enhance overall financial performance.

  • Corporate Governance and Financial Performance: An Industry Comparison.
  • Debt Financing in Manufacturing Sector Corporate Investment Decisions.
  • Corporate Taxation and Capital Structure Decisions: A Comparative Study of Countries.
  • Corporate Venture Capital and Startup Financing: A Comparative Analysis.
  • Corporate Governance Mechanisms and Capital Allocation Efficiency: Emerging Markets.

Business Finance Research Topics

Subjects that fall under the umbrella of business finance topics include any and all discussions of how businesses handle their money, from budgeting to investing to making important business decisions. Researching business finance is essential since it reveals new tendencies, aids in the creation of cutting-edge tactics, and boosts monetary output. It helps companies maintain competitiveness in a fast-paced industry and make well-informed choices. These samples can assist you whether you are looking for financial research paper topics or investment research paper ideas.

  • Corporate Social Responsibility and Financial Performance.
  • Exchange Rate Fluctuations on International Business Transactions.
  • Financial Innovation and SME Financing.
  • Financial Markets in Economic Development.
  • Financial Leverage and Firm Value in Different Industries.

Related posts:

  • Proposal Essay Topics Ideas

200 Best Ideas for Research Paper Topics in 2023

  • Good Essay Topics & Ideas for College by Edusson
  • Medical Research Paper Topics: Ideas on Healthcare and Medical Science

Improve your writing with our guides

Psychology Essay Topic: Theories Explaining Human growth and Development

Psychology Essay Topic: Theories Explaining Human growth and Development

Best research paper topics 2018

Reflection Paper Topics: Art

Get 15% off your first order with edusson.

Connect with a professional writer within minutes by placing your first order. No matter the subject, difficulty, academic level or document type, our writers have the skills to complete it.

100% privacy. No spam ever.

research paper financial analysis

Asking the better questions that unlock new answers to the working world's most complex issues.

Trending topics

AI insights

EY podcasts

EY webcasts

Operations leaders

Technology leaders

Marketing and growth leaders

Cybersecurity and privacy leaders

Risk leaders

EY Center for Board Matters

EY helps clients create long-term value for all stakeholders. Enabled by data and technology, our services and solutions provide trust through assurance and help clients transform, grow and operate.

Artificial Intelligence (AI)

Strategy, transaction and transformation consulting

Technology transformation

Tax function operations

Climate change and sustainability services

EY Ecosystems

Supply chain and operations

EY Partner Ecosystem

Explore Services

We bring together extraordinary people, like you, to build a better working world.

Experienced professionals

MBA and advanced-degree students

Student and entry level programs

Contract workers

EY-Parthenon careers

Discover how EY insights and services are helping to reframe the future of your industry.

Case studies

Energy and resources

How data analytics can strengthen supply chain performance

13-Jul-2023 Ben Williams

How Takeda harnessed the power of the metaverse for positive human impact

26-Jun-2023 Edwina Fitzmaurice

Banking and Capital Markets

How cutting back infused higher quality in transaction monitoring

11-Jul-2023 Ron V. Giammarco

At EY, our purpose is building a better working world. The insights and services we provide help to create long-term value for clients, people and society, and to build trust in the capital markets.

EY is now carbon negative

19-Sep-2022 Carmine Di Sibio

Our commitment to audit quality

13-Nov-2023 Julie A. Boland

No results have been found

 alt=

Recent Searches

research paper financial analysis

BEPS 2.0: as policies evolve, engagement is key

It remains to be seen whether the US will align its tax law with the OECD/G20’s global BEPS 2.0 rules. MNEs will feel the impact in 2024. Learn more.

research paper financial analysis

How GenAI strategy can transform innovation

Companies considering or investing in a transformative GenAI strategy should tie generative artificial intelligence use cases to revenue, cost and expense. Learn more

research paper financial analysis

Top five private equity trends for 2024

Read about the five key trends private equity firms will emphasize in 2024 as they create value

Select your location

close expand_more

Young family having fun together at park

How life insurers can provide differentiated retirement benefits

Justin Singer

EY Americas Retirement Leader Principal, Ernst & Young LLP

Related topics

Benefits of integrating insurance products into a retirement plan (pdf), permanent life insurance and deferred income annuities with increasing income potential outperform investment-only approaches in our analysis..

  • By 2030, gaps in investors’ retirement savings and needed protections are projected to exceed hundreds of trillions of dollars in the US.
  • This presents an opportunity for insurance companies to better serve customers to bridge these chasms, through modified investment approaches.

A lthough facing challenges, the US life insurance and retirement industry has enormous potential to grow. Our analysis reveals insights on how best to capitalize on this opportunity.

EY researchers estimate that by 2030, there will be a $240 trillion retirement savings gap and a $160 trillion protection gap. Insurers are uniquely positioned to address these gaps with products that offer legacy protection, tax-deferred savings growth and guaranteed income for life.

In this article, we explore how two products can be used to meet investors’ savings and protection needs: permanent life insurance  (PLI) and a deferred income annuity with increasing income potential (DIA with IIP), which represents deferred income annuities with persistency bonuses and non-guaranteed dividends. Can integrating PLI and a DIA with IIP into a retirement plan provide value beyond an investment-only strategy?

It is a complex question to answer. To judge the impact of PLI and DIAs with IIP, we analyzed five strategies, conducted across three different starting ages: 25, 35 and 45. For each strategy, our Monte Carlo analysis generated 1,000 scenarios based on randomized input from a range of factors, such as interest rates, inflation rates, equity returns and bond returns. The high-level results are shown in this summary article and elaborated upon in our full report.

Download the full report

The five strategies compared.

We examined a baseline of traditional investment strategies and then compared them against those that also factor in PLI and DIAs with IIP:

EY strategies and product specifications

For strategies that include PLI and a DIA with IIP, the value of these products is included in the total financial assets and considered part of the fixed income allocation. Thus, for strategies where an investor allocates a portion of their wealth to an insurance product, the amount invested in bonds decreases compared to the investment-only strategy.

In our analysis, PLI cash value (accessed via surrenders or loans) are used to fund retirement income during periods of market volatility, allowing investors to avoid liquidating assets from their traditional investments that have fallen in value.

We divided the investor’s assets between the investments and the insurance products. Different product allocation combinations were simulated in increments of 10% of total annual savings for PLI and projected wealth at age 55 for DIA with IIP. Allocation percentages were capped at 60% for PLI and 30% for DIAs with IIP. For each allocation combination, we calculated the after tax retirement income that an investor can sustain in over 90% of the market return scenarios.  We also calculated the legacy value at the end of the time horizon. 

The benefit to investors

Following this methodology, strategies involving PLI and DIAs with IIP excelled overall against investment-only approaches — although the implications must be couched in a bit of nuance, depending on whether the investor is focused more on retirement income than legacy. Here are six key insights on how the strategies compare:

1. PLI + investments strategies outperform investment-only and term life + investments strategies.

PLI tends to provide superior returns over fixed income in long-run scenarios, while the term premium acts as a drag on portfolio performance. PLI loans act as a buffer against market volatility as well, improving returns since the investor does not have to sell and realize losses on investments. 

2. DIA with IIP + investments strategies outperform other strategies in retirement income.

With DIAs with IIP + investments, the investor uses a portion of the balance to purchase the DIA with IIP and does not receive that balance upon death, boosting retirement income compared to other strategies. Projected legacy tends to be lower than PLI + investments but higher than the legacy from the investment-only strategy. The latter observation is a result of the DIA with IIP outperforming fixed income due to mortality credits and dividends.

3. Integrated strategies are more efficient than investment-only strategies.

For example, a strategy allocating 30% of annual savings to PLI and 30% of assets at age 55 to a DIA with IIP produced 5% higher retirement income and 19% more legacy than the investment-only strategy, because PLI and DIA with IIP both outperform fixed income. 

4. For investors with a higher risk appetite, integrated strategies remain better. 

We performed the same exercise described above, except that we calculated the retirement income (and legacy values) based on the amount that the investor can sustain in over 75% of the market return scenarios, reflecting the expectations of an investor with higher risk. Income and legacy do not improve as much, yet an integrated portfolio still provides benefits relative to an investment-only strategy.

5. Integrated strategies provide investors with the flexibility to focus on the financial outcomes most important to them: retirement income, legacy or a balance in between.

 We found that PLI and a DIA with IIP mix well together, whether a person is focused on retirement income, legacy or a balance. Higher allocations to a DIA with IIP emphasize retirement income, while higher PLI boosts legacy protection. The right mix depends on the investor’s preferences.

6. Allocation up to 30% of annual savings to PLI and up to 30% of wealth at age 55 to DIA with IIP may be appropriate when optimizing retirement income and legacy value outcomes. 

Results varied by investor starting age. But the projected retirement income and legacy values generally supported allocations of 10% to 30% to both PLI and DIAs with IIPs. An investor solely focused on maximizing legacy may still opt to allocate more to PLI, but when that allocation redirects too many assets away from equities, the reduction to retirement income can be substantial.

The results point to the value of PLI and DIAs with IIPs in a retirement plan: an integrated approach can give comfort and peace of mind to retirement investors by providing legacy protection, tax-deferred savings growth, and guaranteed income for life without sacrificing their present lifestyle. Insurers can use these products to strengthen their relationships with investors, seizing upon the possibilities in a marketplace that has proved challenging.

This article has been authored by Christopher Raham, Justin Singer, Ben Yahr, Ben Lee, and Annie E Mayer.

Investment-only approaches do not deliver as promising returns as those that are combined with PLI and DIAs with increasing income potential, an EY analysis shows, although there are distinctions to consider depending on whether more retirement income or legacy value is desired. Allocation levels should be approached with care.

About this article

research paper financial analysis

  • Connect with us
  • Our locations
  • Do Not Sell or Share My Personal Information
  • Legal and privacy
  • Accessibility
  • Open Facebook profile
  • Open X profile
  • Open LinkedIn profile
  • Open Youtube profile

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients.

Numbers, Facts and Trends Shaping Your World

Read our research on:

Full Topic List

Regions & Countries

  • Publications
  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

What the data says about abortion in the U.S.

Pew Research Center has conducted many surveys about abortion over the years, providing a lens into Americans’ views on whether the procedure should be legal, among a host of other questions.

In a  Center survey  conducted nearly a year after the Supreme Court’s June 2022 decision that  ended the constitutional right to abortion , 62% of U.S. adults said the practice should be legal in all or most cases, while 36% said it should be illegal in all or most cases. Another survey conducted a few months before the decision showed that relatively few Americans take an absolutist view on the issue .

Find answers to common questions about abortion in America, based on data from the Centers for Disease Control and Prevention (CDC) and the Guttmacher Institute, which have tracked these patterns for several decades:

How many abortions are there in the U.S. each year?

How has the number of abortions in the u.s. changed over time, what is the abortion rate among women in the u.s. how has it changed over time, what are the most common types of abortion, how many abortion providers are there in the u.s., and how has that number changed, what percentage of abortions are for women who live in a different state from the abortion provider, what are the demographics of women who have had abortions, when during pregnancy do most abortions occur, how often are there medical complications from abortion.

This compilation of data on abortion in the United States draws mainly from two sources: the Centers for Disease Control and Prevention (CDC) and the Guttmacher Institute, both of which have regularly compiled national abortion data for approximately half a century, and which collect their data in different ways.

The CDC data that is highlighted in this post comes from the agency’s “abortion surveillance” reports, which have been published annually since 1974 (and which have included data from 1969). Its figures from 1973 through 1996 include data from all 50 states, the District of Columbia and New York City – 52 “reporting areas” in all. Since 1997, the CDC’s totals have lacked data from some states (most notably California) for the years that those states did not report data to the agency. The four reporting areas that did not submit data to the CDC in 2021 – California, Maryland, New Hampshire and New Jersey – accounted for approximately 25% of all legal induced abortions in the U.S. in 2020, according to Guttmacher’s data. Most states, though,  do  have data in the reports, and the figures for the vast majority of them came from each state’s central health agency, while for some states, the figures came from hospitals and other medical facilities.

Discussion of CDC abortion data involving women’s state of residence, marital status, race, ethnicity, age, abortion history and the number of previous live births excludes the low share of abortions where that information was not supplied. Read the methodology for the CDC’s latest abortion surveillance report , which includes data from 2021, for more details. Previous reports can be found at  stacks.cdc.gov  by entering “abortion surveillance” into the search box.

For the numbers of deaths caused by induced abortions in 1963 and 1965, this analysis looks at reports by the then-U.S. Department of Health, Education and Welfare, a precursor to the Department of Health and Human Services. In computing those figures, we excluded abortions listed in the report under the categories “spontaneous or unspecified” or as “other.” (“Spontaneous abortion” is another way of referring to miscarriages.)

Guttmacher data in this post comes from national surveys of abortion providers that Guttmacher has conducted 19 times since 1973. Guttmacher compiles its figures after contacting every known provider of abortions – clinics, hospitals and physicians’ offices – in the country. It uses questionnaires and health department data, and it provides estimates for abortion providers that don’t respond to its inquiries. (In 2020, the last year for which it has released data on the number of abortions in the U.S., it used estimates for 12% of abortions.) For most of the 2000s, Guttmacher has conducted these national surveys every three years, each time getting abortion data for the prior two years. For each interim year, Guttmacher has calculated estimates based on trends from its own figures and from other data.

The latest full summary of Guttmacher data came in the institute’s report titled “Abortion Incidence and Service Availability in the United States, 2020.” It includes figures for 2020 and 2019 and estimates for 2018. The report includes a methods section.

In addition, this post uses data from StatPearls, an online health care resource, on complications from abortion.

An exact answer is hard to come by. The CDC and the Guttmacher Institute have each tried to measure this for around half a century, but they use different methods and publish different figures.

The last year for which the CDC reported a yearly national total for abortions is 2021. It found there were 625,978 abortions in the District of Columbia and the 46 states with available data that year, up from 597,355 in those states and D.C. in 2020. The corresponding figure for 2019 was 607,720.

The last year for which Guttmacher reported a yearly national total was 2020. It said there were 930,160 abortions that year in all 50 states and the District of Columbia, compared with 916,460 in 2019.

  • How the CDC gets its data: It compiles figures that are voluntarily reported by states’ central health agencies, including separate figures for New York City and the District of Columbia. Its latest totals do not include figures from California, Maryland, New Hampshire or New Jersey, which did not report data to the CDC. ( Read the methodology from the latest CDC report .)
  • How Guttmacher gets its data: It compiles its figures after contacting every known abortion provider – clinics, hospitals and physicians’ offices – in the country. It uses questionnaires and health department data, then provides estimates for abortion providers that don’t respond. Guttmacher’s figures are higher than the CDC’s in part because they include data (and in some instances, estimates) from all 50 states. ( Read the institute’s latest full report and methodology .)

While the Guttmacher Institute supports abortion rights, its empirical data on abortions in the U.S. has been widely cited by  groups  and  publications  across the political spectrum, including by a  number of those  that  disagree with its positions .

These estimates from Guttmacher and the CDC are results of multiyear efforts to collect data on abortion across the U.S. Last year, Guttmacher also began publishing less precise estimates every few months , based on a much smaller sample of providers.

The figures reported by these organizations include only legal induced abortions conducted by clinics, hospitals or physicians’ offices, or those that make use of abortion pills dispensed from certified facilities such as clinics or physicians’ offices. They do not account for the use of abortion pills that were obtained  outside of clinical settings .

(Back to top)

A line chart showing the changing number of legal abortions in the U.S. since the 1970s.

The annual number of U.S. abortions rose for years after Roe v. Wade legalized the procedure in 1973, reaching its highest levels around the late 1980s and early 1990s, according to both the CDC and Guttmacher. Since then, abortions have generally decreased at what a CDC analysis called  “a slow yet steady pace.”

Guttmacher says the number of abortions occurring in the U.S. in 2020 was 40% lower than it was in 1991. According to the CDC, the number was 36% lower in 2021 than in 1991, looking just at the District of Columbia and the 46 states that reported both of those years.

(The corresponding line graph shows the long-term trend in the number of legal abortions reported by both organizations. To allow for consistent comparisons over time, the CDC figures in the chart have been adjusted to ensure that the same states are counted from one year to the next. Using that approach, the CDC figure for 2021 is 622,108 legal abortions.)

There have been occasional breaks in this long-term pattern of decline – during the middle of the first decade of the 2000s, and then again in the late 2010s. The CDC reported modest 1% and 2% increases in abortions in 2018 and 2019, and then, after a 2% decrease in 2020, a 5% increase in 2021. Guttmacher reported an 8% increase over the three-year period from 2017 to 2020.

As noted above, these figures do not include abortions that use pills obtained outside of clinical settings.

Guttmacher says that in 2020 there were 14.4 abortions in the U.S. per 1,000 women ages 15 to 44. Its data shows that the rate of abortions among women has generally been declining in the U.S. since 1981, when it reported there were 29.3 abortions per 1,000 women in that age range.

The CDC says that in 2021, there were 11.6 abortions in the U.S. per 1,000 women ages 15 to 44. (That figure excludes data from California, the District of Columbia, Maryland, New Hampshire and New Jersey.) Like Guttmacher’s data, the CDC’s figures also suggest a general decline in the abortion rate over time. In 1980, when the CDC reported on all 50 states and D.C., it said there were 25 abortions per 1,000 women ages 15 to 44.

That said, both Guttmacher and the CDC say there were slight increases in the rate of abortions during the late 2010s and early 2020s. Guttmacher says the abortion rate per 1,000 women ages 15 to 44 rose from 13.5 in 2017 to 14.4 in 2020. The CDC says it rose from 11.2 per 1,000 in 2017 to 11.4 in 2019, before falling back to 11.1 in 2020 and then rising again to 11.6 in 2021. (The CDC’s figures for those years exclude data from California, D.C., Maryland, New Hampshire and New Jersey.)

The CDC broadly divides abortions into two categories: surgical abortions and medication abortions, which involve pills. Since the Food and Drug Administration first approved abortion pills in 2000, their use has increased over time as a share of abortions nationally, according to both the CDC and Guttmacher.

The majority of abortions in the U.S. now involve pills, according to both the CDC and Guttmacher. The CDC says 56% of U.S. abortions in 2021 involved pills, up from 53% in 2020 and 44% in 2019. Its figures for 2021 include the District of Columbia and 44 states that provided this data; its figures for 2020 include D.C. and 44 states (though not all of the same states as in 2021), and its figures for 2019 include D.C. and 45 states.

Guttmacher, which measures this every three years, says 53% of U.S. abortions involved pills in 2020, up from 39% in 2017.

Two pills commonly used together for medication abortions are mifepristone, which, taken first, blocks hormones that support a pregnancy, and misoprostol, which then causes the uterus to empty. According to the FDA, medication abortions are safe  until 10 weeks into pregnancy.

Surgical abortions conducted  during the first trimester  of pregnancy typically use a suction process, while the relatively few surgical abortions that occur  during the second trimester  of a pregnancy typically use a process called dilation and evacuation, according to the UCLA School of Medicine.

In 2020, there were 1,603 facilities in the U.S. that provided abortions,  according to Guttmacher . This included 807 clinics, 530 hospitals and 266 physicians’ offices.

A horizontal stacked bar chart showing the total number of abortion providers down since 1982.

While clinics make up half of the facilities that provide abortions, they are the sites where the vast majority (96%) of abortions are administered, either through procedures or the distribution of pills, according to Guttmacher’s 2020 data. (This includes 54% of abortions that are administered at specialized abortion clinics and 43% at nonspecialized clinics.) Hospitals made up 33% of the facilities that provided abortions in 2020 but accounted for only 3% of abortions that year, while just 1% of abortions were conducted by physicians’ offices.

Looking just at clinics – that is, the total number of specialized abortion clinics and nonspecialized clinics in the U.S. – Guttmacher found the total virtually unchanged between 2017 (808 clinics) and 2020 (807 clinics). However, there were regional differences. In the Midwest, the number of clinics that provide abortions increased by 11% during those years, and in the West by 6%. The number of clinics  decreased  during those years by 9% in the Northeast and 3% in the South.

The total number of abortion providers has declined dramatically since the 1980s. In 1982, according to Guttmacher, there were 2,908 facilities providing abortions in the U.S., including 789 clinics, 1,405 hospitals and 714 physicians’ offices.

The CDC does not track the number of abortion providers.

In the District of Columbia and the 46 states that provided abortion and residency information to the CDC in 2021, 10.9% of all abortions were performed on women known to live outside the state where the abortion occurred – slightly higher than the percentage in 2020 (9.7%). That year, D.C. and 46 states (though not the same ones as in 2021) reported abortion and residency data. (The total number of abortions used in these calculations included figures for women with both known and unknown residential status.)

The share of reported abortions performed on women outside their state of residence was much higher before the 1973 Roe decision that stopped states from banning abortion. In 1972, 41% of all abortions in D.C. and the 20 states that provided this information to the CDC that year were performed on women outside their state of residence. In 1973, the corresponding figure was 21% in the District of Columbia and the 41 states that provided this information, and in 1974 it was 11% in D.C. and the 43 states that provided data.

In the District of Columbia and the 46 states that reported age data to  the CDC in 2021, the majority of women who had abortions (57%) were in their 20s, while about three-in-ten (31%) were in their 30s. Teens ages 13 to 19 accounted for 8% of those who had abortions, while women ages 40 to 44 accounted for about 4%.

The vast majority of women who had abortions in 2021 were unmarried (87%), while married women accounted for 13%, according to  the CDC , which had data on this from 37 states.

A pie chart showing that, in 2021, majority of abortions were for women who had never had one before.

In the District of Columbia, New York City (but not the rest of New York) and the 31 states that reported racial and ethnic data on abortion to  the CDC , 42% of all women who had abortions in 2021 were non-Hispanic Black, while 30% were non-Hispanic White, 22% were Hispanic and 6% were of other races.

Looking at abortion rates among those ages 15 to 44, there were 28.6 abortions per 1,000 non-Hispanic Black women in 2021; 12.3 abortions per 1,000 Hispanic women; 6.4 abortions per 1,000 non-Hispanic White women; and 9.2 abortions per 1,000 women of other races, the  CDC reported  from those same 31 states, D.C. and New York City.

For 57% of U.S. women who had induced abortions in 2021, it was the first time they had ever had one,  according to the CDC.  For nearly a quarter (24%), it was their second abortion. For 11% of women who had an abortion that year, it was their third, and for 8% it was their fourth or more. These CDC figures include data from 41 states and New York City, but not the rest of New York.

A bar chart showing that most U.S. abortions in 2021 were for women who had previously given birth.

Nearly four-in-ten women who had abortions in 2021 (39%) had no previous live births at the time they had an abortion,  according to the CDC . Almost a quarter (24%) of women who had abortions in 2021 had one previous live birth, 20% had two previous live births, 10% had three, and 7% had four or more previous live births. These CDC figures include data from 41 states and New York City, but not the rest of New York.

The vast majority of abortions occur during the first trimester of a pregnancy. In 2021, 93% of abortions occurred during the first trimester – that is, at or before 13 weeks of gestation,  according to the CDC . An additional 6% occurred between 14 and 20 weeks of pregnancy, and about 1% were performed at 21 weeks or more of gestation. These CDC figures include data from 40 states and New York City, but not the rest of New York.

About 2% of all abortions in the U.S. involve some type of complication for the woman , according to an article in StatPearls, an online health care resource. “Most complications are considered minor such as pain, bleeding, infection and post-anesthesia complications,” according to the article.

The CDC calculates  case-fatality rates for women from induced abortions – that is, how many women die from abortion-related complications, for every 100,000 legal abortions that occur in the U.S .  The rate was lowest during the most recent period examined by the agency (2013 to 2020), when there were 0.45 deaths to women per 100,000 legal induced abortions. The case-fatality rate reported by the CDC was highest during the first period examined by the agency (1973 to 1977), when it was 2.09 deaths to women per 100,000 legal induced abortions. During the five-year periods in between, the figure ranged from 0.52 (from 1993 to 1997) to 0.78 (from 1978 to 1982).

The CDC calculates death rates by five-year and seven-year periods because of year-to-year fluctuation in the numbers and due to the relatively low number of women who die from legal induced abortions.

In 2020, the last year for which the CDC has information , six women in the U.S. died due to complications from induced abortions. Four women died in this way in 2019, two in 2018, and three in 2017. (These deaths all followed legal abortions.) Since 1990, the annual number of deaths among women due to legal induced abortion has ranged from two to 12.

The annual number of reported deaths from induced abortions (legal and illegal) tended to be higher in the 1980s, when it ranged from nine to 16, and from 1972 to 1979, when it ranged from 13 to 63. One driver of the decline was the drop in deaths from illegal abortions. There were 39 deaths from illegal abortions in 1972, the last full year before Roe v. Wade. The total fell to 19 in 1973 and to single digits or zero every year after that. (The number of deaths from legal abortions has also declined since then, though with some slight variation over time.)

The number of deaths from induced abortions was considerably higher in the 1960s than afterward. For instance, there were 119 deaths from induced abortions in  1963  and 99 in  1965 , according to reports by the then-U.S. Department of Health, Education and Welfare, a precursor to the Department of Health and Human Services. The CDC is a division of Health and Human Services.

Note: This is an update of a post originally published May 27, 2022, and first updated June 24, 2022.

Portrait photo of staff

Support for legal abortion is widespread in many countries, especially in Europe

Nearly a year after roe’s demise, americans’ views of abortion access increasingly vary by where they live, by more than two-to-one, americans say medication abortion should be legal in their state, most latinos say democrats care about them and work hard for their vote, far fewer say so of gop, positive views of supreme court decline sharply following abortion ruling, most popular.

1615 L St. NW, Suite 800 Washington, DC 20036 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Age & Generations
  • Coronavirus (COVID-19)
  • Economy & Work
  • Family & Relationships
  • Gender & LGBTQ
  • Immigration & Migration
  • International Affairs
  • Internet & Technology
  • Methodological Research
  • News Habits & Media
  • Non-U.S. Governments
  • Other Topics
  • Politics & Policy
  • Race & Ethnicity
  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

Copyright 2024 Pew Research Center

Terms & Conditions

Privacy Policy

Cookie Settings

Reprints, Permissions & Use Policy

IMAGES

  1. Business Financial Analysis

    research paper financial analysis

  2. FREE 10+ Financial Analysis Report Samples [ Performance, Ratio, Project ]

    research paper financial analysis

  3. Financial Analysis Report

    research paper financial analysis

  4. Mtm4 white paper financial ratio and statement analysis

    research paper financial analysis

  5. Financial Analysis

    research paper financial analysis

  6. (PDF) Financial Analysis

    research paper financial analysis

VIDEO

  1. Financial Management Regular Question Paper Solution l Semester 3 l Jan 24 Exams l B Com l

  2. Financial Accounting

  3. BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

  4. Financial Reporting And Analysis

  5. Financial Management

  6. SPPU Question Paper Solution October 2023 Financial analysis and Control Part 2

COMMENTS

  1. (PDF) Analysis of Financial Statements

    Financial analysis is a study of the company's finan cial statements by analyzing the reports. Report. analysis is a tool that easily calculates and interprets reports that are used by investors ...

  2. Financial Statement Analysis: A Review and Current Issues

    In this paper, I review the extant research on financial statement analysis. I then provide some preliminary evidence using Chinese data and offer suggestions for future research, with a focus on utilising unique features of the Chinese business environment as motivation.

  3. (PDF) Financial Analysis

    PDF | On Apr 12, 2021, Aown Alshowishin published Financial Analysis | Find, read and cite all the research you need on ResearchGate

  4. PDF Financial Analysis A Study

    5. Financial analysis helps the managers in taking certain decisions for improving the profitability or reducing the losses of the firm. 6. Helps in judging the solvency i.e. the capacity of the business to repay their loans. 7. Financial statement analysis is a significance tool in predicting the bankruptcy and failure of the

  5. 50589 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on FINANCIAL STATEMENT ANALYSIS. Find methods information, sources, references or conduct a literature ...

  6. Full article: Reporting matters: the real effects of financial

    In this paper, I provide an overview of the research on the real effects of financial reporting on investing and financing decisions made by firms. Accounting can improve investment efficiency and affect nearly every aspect of the financing decision by reducing information asymmetry and improving monitoring.

  7. Financial analysis

    Financial analysis Magazine Article. Alfred Rappaport. Less than a decade after the frantic merger activity of the late 1960s, we are again in the midst of a major wave of corporate acquisitions ...

  8. The Journal of Finance

    The Journal of Finance publishes leading research across all the major fields of financial research. It is the most widely cited academic journal on finance. Each issue of the journal reaches over 8,000 academics, finance professionals, libraries, government and financial institutions around the world. Published six times a year, the journal is the official publication of The American Finance ...

  9. Fundamental Analysis Models in Financial Markets

    We will clarify many of the empirical studies, which focused on studying the relationship between the various fundamental analysis models, and show how its predictive ability of future stock value in different financial markets; developed and emerging as follows. 3.1. In the developed markets: In a study by Penman and Sougiannis (1998) aimed at ...

  10. Robust Regression Analysis in Analyzing Financial ...

    Regression analysis is a statistical method to analyze financial data, commonly using the least square regression technique. The regression analysis has significance for all the fields of study, and almost all the fields apply least square regression methods for data analysis. However, the ordinary least square regression technique can give misleading and wrong results in the presence of ...

  11. Financial Analysis: Definition, Importance, Types, and Examples

    Financial analysis is the process of evaluating businesses, projects, budgets and other finance-related entities to determine their performance and suitability. Typically, financial analysis is ...

  12. PDF FINANCIAL ANALYSIS OF A SELECTED COMPANY

    research papers faculty of materials science and technology in trnava slovak university of technology in bratislava 2016 volume 24, number 37 financial analysis of a selected company dušan baran1, andrej pastÝr1, daniela baranovÁ2 1 slovak university of technology in bratislava, faculty ...

  13. PDF A Conceptual Research on Financial Statement Analysis

    It also throws light on various parties interested in the analysis of financial statements. Finally, it presents tools and techniques for analysis of financial statements. This research paper will helpful to understand the throw knowledge of analysis and interpretation through analysis of financial statements.

  14. Artificial intelligence in Finance: a comprehensive review through

    Over the past two decades, artificial intelligence (AI) has experienced rapid development and is being used in a wide range of sectors and activities, including finance. In the meantime, a growing and heterogeneous strand of literature has explored the use of AI in finance. The aim of this study is to provide a comprehensive overview of the existing research on this topic and to identify which ...

  15. Financial Analysis Research Papers

    The analysis of the key financial ratios relating to profitability, liquidity, solvency and efficiency of these companies reveals that the smaller auto ancillary companies are not financially healthy. 1/3rd of the companies (17 out of 51) having annual revenue of less than INR 500 Crores category is in financial distress and there is a ...

  16. Financial Research Paper Topics: Interesting Finance Questions to Uncover

    Here are a few suggestions for MBA students looking for research topics in finance: Risk Management Strategies in Financial Institutions. Behavioral Finance in Investment Decision-Making. Financial Inclusion and Economic Development. Comparative Analysis of IFRS Adoption and Financial Reporting Quality.

  17. (PDF) Financial Analysis of a Selected Company

    1.1 Financial analysis - Ex post. A financial situation anal ysis is the foundation of the company's economic performance. analysis and usually proceeds down to primary fie lds and results as ...

  18. PDF ISSN : 2454-9150 A Study on the Financial Performance Analysis of

    International Journal for Research in Engineering Application & Management (IJREAM) ISSN : 2454-9150 Vol-09, Issue-01, Apr 2023 ... KEYWORDS: Financial Analysis, Operating Efficiency, Growth Strategy, Profitability, Solvency, Fast Moving Consumer Goods (FMCG).

  19. The Relationship Between Key Financial Ratios To The Revenue Growth And

    The global oil and gas sector, a crucial driver of economic vitality, remains a focal point for investors navigating the dynamic energy market. According to the Handbook of Energy and Economic Statistics of Indonesia, the oil and gas industry constitutes a significant portion, approximately 43.5%, of the country's energy mix in 2022, equivalent to about 797 million barrels of oil equivalent ...

  20. Enhancing Financial Inclusion and Regulatory Challenges: A ...

    This paper explores the dual impact of digital banks and alternative lenders on financial inclusion and the regulatory challenges posed by their business models. It discusses the integration of digital platforms, machine learning (ML), and Large Language Models (LLMs) in enhancing financial services accessibility for underserved populations.

  21. PDF A Study on Financial Performance Analysis of Selected Public ...

    RESEARCH METHODOLOGY Research methodology is a systematic approach to solving a research topic. It entails a number of procedures that a researcher will often take while investigating a problem, as well as the thinking behind them. The goal of this research was to examine the financial performance of a few public and private sector banks.

  22. PDF A Study on Financial Performance of Bajaj Auto Limited

    Alagumurugan V (2022), analyzed the financial performance analysis of Bajaj auto ltd. The study was focused on the analysis of the financial performance of Bajaj auto ltd from period of five years 2018-2022. Liquidity ratio, Profitability ratio, Solvency ratio, Turnover ratio, and Earning ratio were the ratios used in the study for accurate ...

  23. How insurance and investments can improve financial wellness

    3. Integrated strategies are more efficient than investment-only strategies. For example, a strategy allocating 30% of annual savings to PLI and 30% of assets at age 55 to a DIA with IIP produced 5% higher retirement income and 19% more legacy than the investment-only strategy, because PLI and DIA with IIP both outperform fixed income. 4.

  24. Financial Performance Analysis of Select Indian It Companies: a

    Financial analysis of in formation and technology industry of India (a case study of Wipro Ltd and Infosys Ltd). Journal of Accounting, Finance and Auditing Studies 3/3 (2017) 1-13 , 13.

  25. What the data says about abortion in the U.S.

    The CDC says that in 2021, there were 11.6 abortions in the U.S. per 1,000 women ages 15 to 44. (That figure excludes data from California, the District of Columbia, Maryland, New Hampshire and New Jersey.) Like Guttmacher's data, the CDC's figures also suggest a general decline in the abortion rate over time.

  26. (PDF) Finance Research Papers

    Research Papers in Finance, Marketing. Typology of Technology (Dimension I) Source: Author's compilation ... • M.Com. Financial Analysis (FA)

  27. Economic analysis for impact of some monetary policy variables on the

    The research aims to analysis the impact of some economic policy variables on the value of agricultural resultant in Iraq for the period (2004-2020) using quarterly time series. The independent variables were used (foreign exchange window FC, narrow money supply M1, equilibrium exchange rate CE, interest rate imposed on agricultural loans R, value of agricultural imports M, while the value of ...

  28. A STUDY ON FINANCIAL ANALYSIS AND PERFORMANCE OF HDFC BANK

    The study entitled the financial performance analysis and Company. ... International Journal of Accounting and Financial Management Research (IJAFMR),3(4), 89-96. ... This paper is an attempt to ...