Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Statistics LibreTexts

1.3: Visual Representation of Data II - Quantitative Variables

  • Last updated
  • Save as PDF
  • Page ID 7789

  • Jonathan A. Poritz
  • Colorado State University – Pueblo

Now suppose we have a population and quantitative variable in which we are interested. We get a sample, which could be large or small, and look at the values of the our variable for the individuals in that sample. There are two ways we tend to make pictures of datasets like this: stem-and-leaf plots and histograms .

Stem-and-leaf Plots

One somewhat old-fashioned way to handle a modest amount of quantitative data produces something between simply a list of all the data values and a graph. It’s not a bad technique to know about in case one has to write down a dataset by hand, but very tedious – and quite unnecessary, if one uses modern electronic tools instead – if the dataset has more than a couple dozen values. The easiest case of this technique is where the data are all whole numbers in the range \(0-99\) . In that case, one can take off the tens place of each number – call it the stem – and put it on the left side of a vertical bar, and then line up all the ones places – each is a leaf – to the right of that stem. The whole thing is called a stem-and-leaf plot or, sometimes, just a stemplot .

It’s important not to skip any stems which are in the middle of the dataset, even if there are no corresponding leaves. It is also a good idea to allow repeated leaves, if there are repeated numbers in the dataset, so that the length of the row of leaves will give a good representation of how much data is in that general group of data values.

Example 1.3.1. Here is a list of the scores of 30 students on a statistics test: \[\begin{matrix} 86 & 80 & 25 & 77 & 73 & 76 & 88 & 90 & 69 & 93\\ 90 & 83 & 70 & 73 & 73 & 70 & 90 & 83 & 71 & 95\\ 40 & 58 & 68 & 69 & 100 & 78 & 87 & 25 & 92 & 74 \end{matrix}\] As we said, using the tens place (and the hundreds place as well, for the data value \(100\) ) as the stem and the ones place as the leaf, we get

[tab:stemplot1]

One nice feature stem-and-leaf plots have is that they contain all of the data values , they do not lose anything (unlike our next visualization method, for example).

[Frequency] Histograms

The most important visual representation of quantitative data is a histogram . Histograms actually look a lot like a stem-and-leaf plot, except turned on its side and with the row of numbers turned into a vertical bar, like a bar graph. The height of each of these bars would be how many

Another way of saying that is that we would be making bars whose heights were determined by how many scores were in each group of ten. Note there is still a question of into which bar a value right on the edge would count: e.g., does the data value \(50\) count in the bar to the left of that number, or the bar to the right? It doesn’t actually matter which side, but it is important to state which choice is being made.

Example 1.3.2 Continuing with the score data in Example 1.3.1 and putting all data values \(x\) satisfying \(20\le x<30\) in the first bar, values \(x\) satisfying \(30\le x<40\) in the second, values \(x\) satisfying \(40\le x<50\) in the second, etc. – that is, put data values on the edges in the bar to the right – we get the figure

Screen Shot 2020-01-16 at 9.41.07 AM.png

Actually, there is no reason that the bars always have to be ten units wide: it is important that they are all the same size and that how they handle the edge cases (whether the left or right bar gets a data value on edge), but they could be any size. We call the successive ranges of the \(x\) coordinates which get put together for each bar the called bins or classes , and it is up to the statistician to chose whichever bins – where they start and how wide they are – shows the data best.

Typically, the smaller the bin size, the more variation (precision) can be seen in the bars ... but sometimes there is so much variation that the result seems to have a lot of random jumps up and down, like static on the radio. On the other hand, using a large bin size makes the picture smoother ... but sometimes, it is so smooth that very little information is left. Some of this is shown in the following

Example 1.3.3. Continuing with the score data in Example 1.3.1 and now using the bins with \(x\) satisfying \(10\le x<12\) , then \(12\le x<14\) , etc. , we get the histogram with bins of width 2:

Screen Shot 2020-01-16 at 9.43.05 AM.png

If we use the bins with \(x\) satisfying \(10\le x<15\) , then \(15\le x<20\) , etc. , we get the histogram with bins of width 5:

Screen Shot 2020-01-16 at 9.44.18 AM.png

If we use the bins with \(x\) satisfying \(20\le x<40\) , then \(40\le x<60\) , etc. , we get the histogram with bins of width 20:

Screen Shot 2020-01-16 at 9.45.14 AM.png

Finally, if we use the bins with \(x\) satisfying \(0\le x<50\) , then \(50\le x<100\) , and then \(100\le x<150\) , we get the histogram with bins of width 50:

Screen Shot 2020-01-16 at 9.46.31 AM.png

[Relative Frequency] Histograms

Just as we could have bar charts with absolute (§2.1) or relative (§2.2) frequencies, we can do the same for histograms. Above, in §3.2, we made absolute frequency histograms. If, instead, we divide each of the counts used to determine the heights of the bars by the total sample size, we will get fractions or percents – relative frequencies. We should then change the label on the \(y\) -axis and the tick-marks numbers on the \(y\) -axis, but otherwise the graph will look exactly the same (as it did with relative frequency bar charts compared with absolute frequency bar chars).

Example 1.3.4. Let’s make the relative frequency histogram corresponding to the absolute frequency histogram in Example 1.3.2 based on the data from Example 1.3.1 – all we have to do is change the numbers used to make heights of the bars in the graph by dividing them by the sample size, 30, and then also change the \(y\) -axis label and tick mark numbers.

Screen Shot 2020-01-16 at 9.49.16 AM.png

How to Talk About Histograms

Histograms of course tell us what the data values are – the location along the \(x\) value of a bar is the value of the variable – and how many of them have each particular value – the height of the bar tells how many data values are in that bin. This is also given a technical name

[def:distribution] Given a variable defined on a population, or at least on a sample, the distribution of that variable is a list of all the values the variable actually takes on and how many times it takes on these values.

The reason we like the visual version of a distribution, its histogram, is that our visual intuition can then help us answer general, qualitative questions about what those data must be telling us. The first questions we usually want to answer quickly about the data are

  • What is the shape of the histogram?
  • Where is its center ?
  • How much variability [also called spread ] does it show?

When we talk about the general shape of a histogram, we often use the terms

[def:symmskew] A histogram is symmetric if the left half is (approximately) the mirror image of the right half.

We say a histogram is skewed left if the tail on the left side is longer than on the right. In other words, left skew is when the left half of the histogram – half in the sense that the total of the bars in this left part is half of the size of the dataset – extends farther to the left than the right does to the right. Conversely, the histogram is skewed right if the right half extends farther to the right than the left does to the left.

If the shape of the histogram has one significant peak, then we say it is unimodal , while if it has several such, we say it is multimodal .

It is often easy to point to where the center of a distribution looks like it lies, but it is hard to be precise. It is particularly difficult if the histogram is “noisy,” maybe multimodal. Similarly, looking at a histogram, it is often easy to say it is “quite spread out” or “very concentrated in the center,” but it is then hard to go beyond this general sense.

Precision in our discussion of the center and spread of a dataset will only be possible in the next section, when we work with numerical measures of these features.

Book cover

Excel Data Analysis pp 19–54 Cite as

Presentation of Quantitative Data

  • Hector Guerrero 2  
  • First Online: 01 January 2010

6502 Accesses

We often think of data as being strictly numerical values, and in business, those values are often stated in terms of dollars. Although data in the form of dollars are ubiquitous, it is quite easy to imagine other numerical units: percentages, counts in categories, units of sales, etc. This chapter, and Chap. 3 , discusses how we can best use Excel’s graphics capabilities to effectively present quantitative data ( ratio and interval ), whether it is in dollars or some other quantitative measure, to inform and influence an audience. In Chaps. 4 and 5 we will acknowledge that not all data are numerical by focusing on qualitative ( categorical/nominal or ordinal ) data. The process of data gathering often produces a combination of data types, and throughout our discussions it will be impossible to ignore this fact: quantitative and qualitative data often occur together.

  • Credit Card
  • Data Context
  • Data Collection Effort

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution .

Buying options

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Author information

Authors and affiliations.

Mason School of Business, College of William & Mary, Williamsburg, VA, 23189, USA

Dr. Hector Guerrero

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Hector Guerrero .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter.

Guerrero, H. (2010). Presentation of Quantitative Data. In: Excel Data Analysis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10835-8_2

Download citation

DOI : https://doi.org/10.1007/978-3-642-10835-8_2

Published : 21 January 2010

Publisher Name : Springer, Berlin, Heidelberg

Print ISBN : 978-3-642-10834-1

Online ISBN : 978-3-642-10835-8

eBook Packages : Business and Economics Business and Management (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Library homepage

  • school Campus Bookshelves
  • menu_book Bookshelves
  • perm_media Learning Objects
  • login Login
  • how_to_reg Request Instructor Account
  • hub Instructor Commons
  • Download Page (PDF)
  • Download Full Book (PDF)
  • Periodic Table
  • Physics Constants
  • Scientific Calculator
  • Reference & Cite
  • Tools expand_more
  • Readability

selected template will load here

This action is not available.

Humanities LibreTexts

10.3: Types of Quantitative Data Analysis and Presentation Format

  • Last updated
  • Save as PDF
  • Page ID 194132

If your thesis is quantitative research, you will be conducting various types of analyses (see the following table).

Home Blog Design Understanding Data Presentations (Guide + Examples)

Understanding Data Presentations (Guide + Examples)

Cover for guide on data presentation by SlideModel

In this age of overwhelming information, the skill to effectively convey data has become extremely valuable. Initiating a discussion on data presentation types involves thoughtful consideration of the nature of your data and the message you aim to convey. Different types of visualizations serve distinct purposes. Whether you’re dealing with how to develop a report or simply trying to communicate complex information, how you present data influences how well your audience understands and engages with it. This extensive guide leads you through the different ways of data presentation.

Table of Contents

What is a Data Presentation?

What should a data presentation include, line graphs, treemap chart, scatter plot, how to choose a data presentation type, recommended data presentation templates, common mistakes done in data presentation.

We can label a presentation under the title of data presentation when the aim is to disclose quantitative information to an audience through the usage of visual formats and narrative techniques. The overall purpose of this kind of presentation is to simplify complex concepts, allowing the presenter to highlight trends, patterns, and insights with the core purpose of acting upon the shared information. This process requires a series of tools, such as charts, graphs, tables, infographics, dashboards, and so on, supported by concise textual explanations for better understanding and boosting retention rate.

Data presentations go beyond the mere usage of graphical elements. Seasoned presenters encompass visuals with the art of storytelling with data, so the speech skillfully connects the points through a narrative that resonates with the audience. Depending on the purpose – inspire, persuade, inform, support decision-making processes, etc. – is the data presentation format that is better suited to help us in this journey.

To nail your upcoming data presentation, ensure to count with the following elements:

  • Clear Objectives: Understand the intent of your presentation before selecting the graphical layout and metaphors to make content easier to grasp.
  • Engaging introduction: Use a powerful hook from the get-go. For instance, you can ask a big question or present a problem that your data will answer. Take a look at our guide on how to start a presentation for tips & insights.
  • Structured Narrative: Your data presentation must tell a coherent story. This means a beginning where you present the context, a middle section in which you present the data, and an ending that uses a call-to-action. Check our guide on presentation structure for further information.
  • Visual Elements: These are the charts, graphs, and other elements of visual communication we ought to use to present data. This article will cover one by one the different types of data representation methods we can use, and provide further guidance on choosing between them.
  • Insights and Analysis: This is not just showcasing a graph and letting people get an idea about it. A proper data presentation includes the interpretation of that data, the reason why it’s included, and why it matters to your research.
  • Conclusion & CTA: Ending your presentation with a call to action is necessary. Whether you intend to wow your audience into acquiring your services, inspire them to change the world, or whatever the purpose of your presentation, there must be a stage in which you convey all that you shared and show the path to staying in touch. Plan ahead whether you want to use a thank-you slide, a video presentation, or which method is apt and tailored to the kind of presentation you deliver.
  • Q&A Session: After your speech is concluded, allocate 3-5 minutes for the audience to raise any questions about the information you disclosed. This is an extra chance to establish your authority on the topic. Check our guide on questions and answer sessions in presentations here.

Bar charts are a graphical representation of data using rectangular bars to show quantities or frequencies in an established category. They make it easy for readers to spot patterns or trends. Bar charts can be horizontal or vertical, although the vertical format is commonly known as a column chart. They display categorical, discrete, or continuous variables grouped in class intervals [1] . They include an axis and a set of labeled bars horizontally or vertically. These bars represent the frequencies of variable values or the values themselves. Numbers on the y-axis of a vertical bar chart or the x-axis of a horizontal bar chart are called the scale.

Presentation of the data through bar charts

Real-Life Application of Bar Charts

Let’s say a sales manager is presenting sales to their audience. Using a bar chart, he follows these steps.

Step 1: Selecting Data

The first step is to identify the specific data you will present to your audience.

The sales manager has highlighted these products for the presentation.

  • Product A: Men’s Shoes
  • Product B: Women’s Apparel
  • Product C: Electronics
  • Product D: Home Decor

Step 2: Choosing Orientation

Opt for a vertical layout for simplicity. Vertical bar charts help compare different categories in case there are not too many categories [1] . They can also help show different trends. A vertical bar chart is used where each bar represents one of the four chosen products. After plotting the data, it is seen that the height of each bar directly represents the sales performance of the respective product.

It is visible that the tallest bar (Electronics – Product C) is showing the highest sales. However, the shorter bars (Women’s Apparel – Product B and Home Decor – Product D) need attention. It indicates areas that require further analysis or strategies for improvement.

Step 3: Colorful Insights

Different colors are used to differentiate each product. It is essential to show a color-coded chart where the audience can distinguish between products.

  • Men’s Shoes (Product A): Yellow
  • Women’s Apparel (Product B): Orange
  • Electronics (Product C): Violet
  • Home Decor (Product D): Blue

Accurate bar chart representation of data with a color coded legend

Bar charts are straightforward and easily understandable for presenting data. They are versatile when comparing products or any categorical data [2] . Bar charts adapt seamlessly to retail scenarios. Despite that, bar charts have a few shortcomings. They cannot illustrate data trends over time. Besides, overloading the chart with numerous products can lead to visual clutter, diminishing its effectiveness.

Line graphs help illustrate data trends, progressions, or fluctuations by connecting a series of data points called ‘markers’ with straight line segments. This provides a straightforward representation of how values change [5] . Their versatility makes them invaluable for scenarios requiring a visual understanding of continuous data. In addition, line graphs are also useful for comparing multiple datasets over the same timeline. Using multiple line graphs allows us to compare more than one data set. They simplify complex information so the audience can quickly grasp the ups and downs of values. From tracking stock prices to analyzing experimental results, you can use line graphs to show how data changes over a continuous timeline. They show trends with simplicity and clarity.

Real-life Application of Line Graphs

To understand line graphs thoroughly, we will use a real case. Imagine you’re a financial analyst presenting a tech company’s monthly sales for a licensed product over the past year. Investors want insights into sales behavior by month, how market trends may have influenced sales performance and reception to the new pricing strategy. To present data via a line graph, you will complete these steps.

First, you need to gather the data. In this case, your data will be the sales numbers. For example:

  • January: $45,000
  • February: $55,000
  • March: $45,000
  • April: $60,000
  • May: $ 70,000
  • June: $65,000
  • July: $62,000
  • August: $68,000
  • September: $81,000
  • October: $76,000
  • November: $87,000
  • December: $91,000

After choosing the data, the next step is to select the orientation. Like bar charts, you can use vertical or horizontal line graphs. However, we want to keep this simple, so we will keep the timeline (x-axis) horizontal while the sales numbers (y-axis) vertical.

Step 3: Connecting Trends

After adding the data to your preferred software, you will plot a line graph. In the graph, each month’s sales are represented by data points connected by a line.

Line graph in data presentation

Step 4: Adding Clarity with Color

If there are multiple lines, you can also add colors to highlight each one, making it easier to follow.

Line graphs excel at visually presenting trends over time. These presentation aids identify patterns, like upward or downward trends. However, too many data points can clutter the graph, making it harder to interpret. Line graphs work best with continuous data but are not suitable for categories.

A data dashboard is a visual tool for analyzing information. Different graphs, charts, and tables are consolidated in a layout to showcase the information required to achieve one or more objectives. Dashboards help quickly see Key Performance Indicators (KPIs). You don’t make new visuals in the dashboard; instead, you use it to display visuals you’ve already made in worksheets [3] .

Keeping the number of visuals on a dashboard to three or four is recommended. Adding too many can make it hard to see the main points [4]. Dashboards can be used for business analytics to analyze sales, revenue, and marketing metrics at a time. They are also used in the manufacturing industry, as they allow users to grasp the entire production scenario at the moment while tracking the core KPIs for each line.

Real-Life Application of a Dashboard

Consider a project manager presenting a software development project’s progress to a tech company’s leadership team. He follows the following steps.

Step 1: Defining Key Metrics

To effectively communicate the project’s status, identify key metrics such as completion status, budget, and bug resolution rates. Then, choose measurable metrics aligned with project objectives.

Step 2: Choosing Visualization Widgets

After finalizing the data, presentation aids that align with each metric are selected. For this project, the project manager chooses a progress bar for the completion status and uses bar charts for budget allocation. Likewise, he implements line charts for bug resolution rates.

Data analysis presentation example

Step 3: Dashboard Layout

Key metrics are prominently placed in the dashboard for easy visibility, and the manager ensures that it appears clean and organized.

Dashboards provide a comprehensive view of key project metrics. Users can interact with data, customize views, and drill down for detailed analysis. However, creating an effective dashboard requires careful planning to avoid clutter. Besides, dashboards rely on the availability and accuracy of underlying data sources.

Treemap charts represent hierarchical data structured in a series of nested rectangles [6] . As each branch of the ‘tree’ is given a rectangle, smaller tiles can be seen representing sub-branches, meaning elements on a lower hierarchical level than the parent rectangle. Each one of those rectangular nodes is built by representing an area proportional to the specified data dimension.

Treemaps are useful for visualizing large datasets in compact space. It is easy to identify patterns, such as which categories are dominant. Common applications of the treemap chart are seen in the IT industry, such as resource allocation, disk space management, website analytics, etc. Also, they can be used in multiple industries like healthcare data analysis, market share across different product categories, or even in finance to visualize portfolios.

Real-Life Application of a Treemap Chart

Let’s consider a financial scenario where a financial team wants to represent the budget allocation of a company. There is a hierarchy in the process, so it is helpful to use a treemap chart. In the chart, the top-level rectangle could represent the total budget, and it would be subdivided into smaller rectangles, each denoting a specific department. Further subdivisions within these smaller rectangles might represent individual projects or cost categories.

Step 1: Define Your Data Hierarchy

While presenting data on the budget allocation, start by outlining the hierarchical structure. The sequence will be like the overall budget at the top, followed by departments, projects within each department, and finally, individual cost categories for each project.

  • Top-level rectangle: Total Budget
  • Second-level rectangles: Departments (Engineering, Marketing, Sales)
  • Third-level rectangles: Projects within each department
  • Fourth-level rectangles: Cost categories for each project (Personnel, Marketing Expenses, Equipment)

Step 2: Choose a Suitable Tool

It’s time to select a data visualization tool supporting Treemaps. Popular choices include Tableau, Microsoft Power BI, PowerPoint, or even coding with libraries like D3.js. It is vital to ensure that the chosen tool provides customization options for colors, labels, and hierarchical structures.

Here, the team uses PowerPoint for this guide because of its user-friendly interface and robust Treemap capabilities.

Step 3: Make a Treemap Chart with PowerPoint

After opening the PowerPoint presentation, they chose “SmartArt” to form the chart. The SmartArt Graphic window has a “Hierarchy” category on the left.  Here, you will see multiple options. You can choose any layout that resembles a Treemap. The “Table Hierarchy” or “Organization Chart” options can be adapted. The team selects the Table Hierarchy as it looks close to a Treemap.

Step 5: Input Your Data

After that, a new window will open with a basic structure. They add the data one by one by clicking on the text boxes. They start with the top-level rectangle, representing the total budget.  

Treemap used for presenting data

Step 6: Customize the Treemap

By clicking on each shape, they customize its color, size, and label. At the same time, they can adjust the font size, style, and color of labels by using the options in the “Format” tab in PowerPoint. Using different colors for each level enhances the visual difference.

Treemaps excel at illustrating hierarchical structures. These charts make it easy to understand relationships and dependencies. They efficiently use space, compactly displaying a large amount of data, reducing the need for excessive scrolling or navigation. Additionally, using colors enhances the understanding of data by representing different variables or categories.

In some cases, treemaps might become complex, especially with deep hierarchies.  It becomes challenging for some users to interpret the chart. At the same time, displaying detailed information within each rectangle might be constrained by space. It potentially limits the amount of data that can be shown clearly. Without proper labeling and color coding, there’s a risk of misinterpretation.

A heatmap is a data visualization tool that uses color coding to represent values across a two-dimensional surface. In these, colors replace numbers to indicate the magnitude of each cell. This color-shaded matrix display is valuable for summarizing and understanding data sets with a glance [7] . The intensity of the color corresponds to the value it represents, making it easy to identify patterns, trends, and variations in the data.

As a tool, heatmaps help businesses analyze website interactions, revealing user behavior patterns and preferences to enhance overall user experience. In addition, companies use heatmaps to assess content engagement, identifying popular sections and areas of improvement for more effective communication. They excel at highlighting patterns and trends in large datasets, making it easy to identify areas of interest.

We can implement heatmaps to express multiple data types, such as numerical values, percentages, or even categorical data. Heatmaps help us easily spot areas with lots of activity, making them helpful in figuring out clusters [8] . When making these maps, it is important to pick colors carefully. The colors need to show the differences between groups or levels of something. And it is good to use colors that people with colorblindness can easily see.

Check our detailed guide on how to create a heatmap here.

Pie charts are circular statistical graphics divided into slices to illustrate numerical proportions. Each slice represents a proportionate part of the whole, making it easy to visualize the contribution of each component to the total.

The size of the pie charts is influenced by the value of data points within each pie. The total of all data points in a pie determines its size. The pie with the highest data points appears as the largest, whereas the others are proportionally smaller. However, you can present all pies of the same size if proportional representation is not required [9] . Sometimes, pie charts are difficult to read, or additional information is required. A variation of this tool can be used instead, known as the donut chart , which has the same structure but a blank center, creating a ring shape. Presenters can add extra information, and the ring shape helps to declutter the graph.

Pie charts are used in business to show percentage distribution, compare relative sizes of categories, or present straightforward data sets where visualizing ratios is essential.

Real-Life Application of Pie Charts

Consider a scenario where you want to represent the distribution of the data. Each slice of the pie chart would represent a different category, and the size of each slice would indicate the percentage of the total portion allocated to that category.

Step 1: Define Your Data Structure

Imagine you are presenting the distribution of a project budget among different expense categories.

  • Column A: Expense Categories (Personnel, Equipment, Marketing, Miscellaneous)
  • Column B: Budget Amounts ($40,000, $30,000, $20,000, $10,000) Column B represents the values of your categories in Column A.

Step 2: Insert a Pie Chart

Using any of the accessible tools, you can create a pie chart. The most convenient tools for forming a pie chart in a presentation are presentation tools such as PowerPoint or Google Slides.  You will notice that the pie chart assigns each expense category a percentage of the total budget by dividing it by the total budget.

For instance:

  • Personnel: $40,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 40%
  • Equipment: $30,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 30%
  • Marketing: $20,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 20%
  • Miscellaneous: $10,000 / ($40,000 + $30,000 + $20,000 + $10,000) = 10%

You can make a chart out of this or just pull out the pie chart from the data.

Pie chart template in data presentation

3D pie charts and 3D donut charts are quite popular among the audience. They stand out as visual elements in any presentation slide, so let’s take a look at how our pie chart example would look in 3D pie chart format.

3D pie chart in data presentation

Step 03: Results Interpretation

The pie chart visually illustrates the distribution of the project budget among different expense categories. Personnel constitutes the largest portion at 40%, followed by equipment at 30%, marketing at 20%, and miscellaneous at 10%. This breakdown provides a clear overview of where the project funds are allocated, which helps in informed decision-making and resource management. It is evident that personnel are a significant investment, emphasizing their importance in the overall project budget.

Pie charts provide a straightforward way to represent proportions and percentages. They are easy to understand, even for individuals with limited data analysis experience. These charts work well for small datasets with a limited number of categories.

However, a pie chart can become cluttered and less effective in situations with many categories. Accurate interpretation may be challenging, especially when dealing with slight differences in slice sizes. In addition, these charts are static and do not effectively convey trends over time.

Histograms present the distribution of numerical variables. Unlike a bar chart that records each unique response separately, histograms organize numeric responses into bins and show the frequency of reactions within each bin [10] . The x-axis of a histogram shows the range of values for a numeric variable. At the same time, the y-axis indicates the relative frequencies (percentage of the total counts) for that range of values.

Whenever you want to understand the distribution of your data, check which values are more common, or identify outliers, histograms are your go-to. Think of them as a spotlight on the story your data is telling. A histogram can provide a quick and insightful overview if you’re curious about exam scores, sales figures, or any numerical data distribution.

Real-Life Application of a Histogram

In the histogram data analysis presentation example, imagine an instructor analyzing a class’s grades to identify the most common score range. A histogram could effectively display the distribution. It will show whether most students scored in the average range or if there are significant outliers.

Step 1: Gather Data

He begins by gathering the data. The scores of each student in class are gathered to analyze exam scores.

After arranging the scores in ascending order, bin ranges are set.

Step 2: Define Bins

Bins are like categories that group similar values. Think of them as buckets that organize your data. The presenter decides how wide each bin should be based on the range of the values. For instance, the instructor sets the bin ranges based on score intervals: 60-69, 70-79, 80-89, and 90-100.

Step 3: Count Frequency

Now, he counts how many data points fall into each bin. This step is crucial because it tells you how often specific ranges of values occur. The result is the frequency distribution, showing the occurrences of each group.

Here, the instructor counts the number of students in each category.

  • 60-69: 1 student (Kate)
  • 70-79: 4 students (David, Emma, Grace, Jack)
  • 80-89: 7 students (Alice, Bob, Frank, Isabel, Liam, Mia, Noah)
  • 90-100: 3 students (Clara, Henry, Olivia)

Step 4: Create the Histogram

It’s time to turn the data into a visual representation. Draw a bar for each bin on a graph. The width of the bar should correspond to the range of the bin, and the height should correspond to the frequency.  To make your histogram understandable, label the X and Y axes.

In this case, the X-axis should represent the bins (e.g., test score ranges), and the Y-axis represents the frequency.

Histogram in Data Presentation

The histogram of the class grades reveals insightful patterns in the distribution. Most students, with seven students, fall within the 80-89 score range. The histogram provides a clear visualization of the class’s performance. It showcases a concentration of grades in the upper-middle range with few outliers at both ends. This analysis helps in understanding the overall academic standing of the class. It also identifies the areas for potential improvement or recognition.

Thus, histograms provide a clear visual representation of data distribution. They are easy to interpret, even for those without a statistical background. They apply to various types of data, including continuous and discrete variables. One weak point is that histograms do not capture detailed patterns in students’ data, with seven compared to other visualization methods.

A scatter plot is a graphical representation of the relationship between two variables. It consists of individual data points on a two-dimensional plane. This plane plots one variable on the x-axis and the other on the y-axis. Each point represents a unique observation. It visualizes patterns, trends, or correlations between the two variables.

Scatter plots are also effective in revealing the strength and direction of relationships. They identify outliers and assess the overall distribution of data points. The points’ dispersion and clustering reflect the relationship’s nature, whether it is positive, negative, or lacks a discernible pattern. In business, scatter plots assess relationships between variables such as marketing cost and sales revenue. They help present data correlations and decision-making.

Real-Life Application of Scatter Plot

A group of scientists is conducting a study on the relationship between daily hours of screen time and sleep quality. After reviewing the data, they managed to create this table to help them build a scatter plot graph:

In the provided example, the x-axis represents Daily Hours of Screen Time, and the y-axis represents the Sleep Quality Rating.

Scatter plot in data presentation

The scientists observe a negative correlation between the amount of screen time and the quality of sleep. This is consistent with their hypothesis that blue light, especially before bedtime, has a significant impact on sleep quality and metabolic processes.

There are a few things to remember when using a scatter plot. Even when a scatter diagram indicates a relationship, it doesn’t mean one variable affects the other. A third factor can influence both variables. The more the plot resembles a straight line, the stronger the relationship is perceived [11] . If it suggests no ties, the observed pattern might be due to random fluctuations in data. When the scatter diagram depicts no correlation, whether the data might be stratified is worth considering.

Choosing the appropriate data presentation type is crucial when making a presentation . Understanding the nature of your data and the message you intend to convey will guide this selection process. For instance, when showcasing quantitative relationships, scatter plots become instrumental in revealing correlations between variables. If the focus is on emphasizing parts of a whole, pie charts offer a concise display of proportions. Histograms, on the other hand, prove valuable for illustrating distributions and frequency patterns. 

Bar charts provide a clear visual comparison of different categories. Likewise, line charts excel in showcasing trends over time, while tables are ideal for detailed data examination. Starting a presentation on data presentation types involves evaluating the specific information you want to communicate and selecting the format that aligns with your message. This ensures clarity and resonance with your audience from the beginning of your presentation.

1. Fact Sheet Dashboard for Data Presentation

a common graphical presentation of quantitative data is a

Convey all the data you need to present in this one-pager format, an ideal solution tailored for users looking for presentation aids. Global maps, donut chats, column graphs, and text neatly arranged in a clean layout presented in light and dark themes.

Use This Template

2. 3D Column Chart Infographic PPT Template

a common graphical presentation of quantitative data is a

Represent column charts in a highly visual 3D format with this PPT template. A creative way to present data, this template is entirely editable, and we can craft either a one-page infographic or a series of slides explaining what we intend to disclose point by point.

3. Data Circles Infographic PowerPoint Template

a common graphical presentation of quantitative data is a

An alternative to the pie chart and donut chart diagrams, this template features a series of curved shapes with bubble callouts as ways of presenting data. Expand the information for each arch in the text placeholder areas.

4. Colorful Metrics Dashboard for Data Presentation

a common graphical presentation of quantitative data is a

This versatile dashboard template helps us in the presentation of the data by offering several graphs and methods to convert numbers into graphics. Implement it for e-commerce projects, financial projections, project development, and more.

5. Animated Data Presentation Tools for PowerPoint & Google Slides

Canvas Shape Tree Diagram Template

A slide deck filled with most of the tools mentioned in this article, from bar charts, column charts, treemap graphs, pie charts, histogram, etc. Animated effects make each slide look dynamic when sharing data with stakeholders.

6. Statistics Waffle Charts PPT Template for Data Presentations

a common graphical presentation of quantitative data is a

This PPT template helps us how to present data beyond the typical pie chart representation. It is widely used for demographics, so it’s a great fit for marketing teams, data science professionals, HR personnel, and more.

7. Data Presentation Dashboard Template for Google Slides

a common graphical presentation of quantitative data is a

A compendium of tools in dashboard format featuring line graphs, bar charts, column charts, and neatly arranged placeholder text areas. 

8. Weather Dashboard for Data Presentation

a common graphical presentation of quantitative data is a

Share weather data for agricultural presentation topics, environmental studies, or any kind of presentation that requires a highly visual layout for weather forecasting on a single day. Two color themes are available.

9. Social Media Marketing Dashboard Data Presentation Template

a common graphical presentation of quantitative data is a

Intended for marketing professionals, this dashboard template for data presentation is a tool for presenting data analytics from social media channels. Two slide layouts featuring line graphs and column charts.

10. Project Management Summary Dashboard Template

a common graphical presentation of quantitative data is a

A tool crafted for project managers to deliver highly visual reports on a project’s completion, the profits it delivered for the company, and expenses/time required to execute it. 4 different color layouts are available.

11. Profit & Loss Dashboard for PowerPoint and Google Slides

a common graphical presentation of quantitative data is a

A must-have for finance professionals. This typical profit & loss dashboard includes progress bars, donut charts, column charts, line graphs, and everything that’s required to deliver a comprehensive report about a company’s financial situation.

Overwhelming visuals

One of the mistakes related to using data-presenting methods is including too much data or using overly complex visualizations. They can confuse the audience and dilute the key message.

Inappropriate chart types

Choosing the wrong type of chart for the data at hand can lead to misinterpretation. For example, using a pie chart for data that doesn’t represent parts of a whole is not right.

Lack of context

Failing to provide context or sufficient labeling can make it challenging for the audience to understand the significance of the presented data.

Inconsistency in design

Using inconsistent design elements and color schemes across different visualizations can create confusion and visual disarray.

Failure to provide details

Simply presenting raw data without offering clear insights or takeaways can leave the audience without a meaningful conclusion.

Lack of focus

Not having a clear focus on the key message or main takeaway can result in a presentation that lacks a central theme.

Visual accessibility issues

Overlooking the visual accessibility of charts and graphs can exclude certain audience members who may have difficulty interpreting visual information.

In order to avoid these mistakes in data presentation, presenters can benefit from using presentation templates . These templates provide a structured framework. They ensure consistency, clarity, and an aesthetically pleasing design, enhancing data communication’s overall impact.

Understanding and choosing data presentation types are pivotal in effective communication. Each method serves a unique purpose, so selecting the appropriate one depends on the nature of the data and the message to be conveyed. The diverse array of presentation types offers versatility in visually representing information, from bar charts showing values to pie charts illustrating proportions. 

Using the proper method enhances clarity, engages the audience, and ensures that data sets are not just presented but comprehensively understood. By appreciating the strengths and limitations of different presentation types, communicators can tailor their approach to convey information accurately, developing a deeper connection between data and audience understanding.

[1] Government of Canada, S.C. (2021) 5 Data Visualization 5.2 Bar Chart , 5.2 Bar chart .  https://www150.statcan.gc.ca/n1/edu/power-pouvoir/ch9/bargraph-diagrammeabarres/5214818-eng.htm

[2] Kosslyn, S.M., 1989. Understanding charts and graphs. Applied cognitive psychology, 3(3), pp.185-225. https://apps.dtic.mil/sti/pdfs/ADA183409.pdf

[3] Creating a Dashboard . https://it.tufts.edu/book/export/html/1870

[4] https://www.goldenwestcollege.edu/research/data-and-more/data-dashboards/index.html

[5] https://www.mit.edu/course/21/21.guide/grf-line.htm

[6] Jadeja, M. and Shah, K., 2015, January. Tree-Map: A Visualization Tool for Large Data. In GSB@ SIGIR (pp. 9-13). https://ceur-ws.org/Vol-1393/gsb15proceedings.pdf#page=15

[7] Heat Maps and Quilt Plots. https://www.publichealth.columbia.edu/research/population-health-methods/heat-maps-and-quilt-plots

[8] EIU QGIS WORKSHOP. https://www.eiu.edu/qgisworkshop/heatmaps.php

[9] About Pie Charts.  https://www.mit.edu/~mbarker/formula1/f1help/11-ch-c8.htm

[10] Histograms. https://sites.utexas.edu/sos/guided/descriptive/numericaldd/descriptiven2/histogram/ [11] https://asq.org/quality-resources/scatter-diagram

a common graphical presentation of quantitative data is a

Like this article? Please share

Data Analysis, Data Science, Data Visualization Filed under Design

Related Articles

All About Using Harvey Balls

Filed under Presentation Ideas • January 6th, 2024

All About Using Harvey Balls

Among the many tools in the arsenal of the modern presenter, Harvey Balls have a special place. In this article we will tell you all about using Harvey Balls.

How to Design a Dashboard Presentation: A Step-by-Step Guide

Filed under Business • December 8th, 2023

How to Design a Dashboard Presentation: A Step-by-Step Guide

Take a step further in your professional presentation skills by learning what a dashboard presentation is and how to properly design one in PowerPoint. A detailed step-by-step guide is here!

Data Flow Diagram Demystified: What They Are and How to Use Them

Filed under Business • November 20th, 2023

Data Flow Diagram Demystified: What They Are and How to Use Them

Master the art of Data Flow Diagrams with our in-depth guide! Discover the steps to create, interpret, and leverage DFDs to optimize processes.

Leave a Reply

a common graphical presentation of quantitative data is a

Module 11: Statistics: Describing Data

Presenting quantitative data graphically, learning outcomes.

  • Create a histogram that represents a data set
  • Analyze a frequency polygon graph that compares two variables

Visualizing Numbers

Blue background with magnetic numbers attached to it. 1-5 are arranged sequentially at the top, while remaining digits are clustered at the bottom right

Quantitative, or numerical, data can also be summarized into frequency tables.

A teacher records scores on a 20-point quiz for the 30 students in his class. The scores are:

19 20 18 18 17 18 19 17 20 18 20 16 20 15 17 12 18 19 18 19 17 20 18 16 15 18 20 5 0 0

These scores could be summarized into a frequency table by grouping like values:

Using the table from the first example, it would be possible to create a standard bar chart from this summary, like we did for categorical data:

Bar graph. Vertical measures Frequency, in increments of 1 from 0-8. Horizontal measures Score, in irregular increments from 0-20. 18 is the highest frequency score, at 8, while 5 and 12 are the lowest frequency scores, at 1 each.

A histogram is like a bar graph, but where the horizontal axis is a number line.

For the values above, a histogram would look like:

Bar graph. Vertical measures Frequency, in increments of 1 from 0-9. Horizontal measures Score, in increments of 1 from 0-21. This includes several empty scores, denoting 0 frequency, while keeping data of earlier bar graph on this page.

Notice that in the histogram, a bar represents values on the horizontal axis from that on the left hand-side of the bar up to, but not including, the value on the right hand side of the bar. Some people choose to have bars start at ½ values to avoid this ambiguity.

This video demonstrates the creation of the histogram from this data.

Unfortunately, not a lot of common software packages can correctly graph a histogram. About the best you can do in Excel or Word is a bar graph with no gap between the bars and spacing added to simulate a numerical horizontal axis.

If we have a large number of widely varying data values, creating a frequency table that lists every possible value as a category would lead to an exceptionally long frequency table, and probably would not reveal any patterns. For this reason, it is common with quantitative data to group data into class intervals .

Class Intervals

Class intervals are groupings of the data. In general, we define class intervals so that

  • each interval is equal in size. For example, if the first class contains values from 120-129, the second class should include values from 130-139.
  • we have somewhere between 5 and 20 classes, typically, depending upon the number of data we’re working with.

Suppose that we have collected weights from 100 male subjects as part of a nutrition study. For our weight data, we have values ranging from a low of 121 pounds to a high of 263 pounds, giving a total span of 263-121 = 142. We could create 7 intervals with a width of around 20, 14 intervals with a width of around 10, or somewhere in between. Oftentimes we have to experiment with a few possibilities to find something that represents the data well. Let us try using an interval width of 15. We could start at 121, or at 120 since it is a nice round number.

A histogram of this data would look like:

Bar graph. Vertical measures Frequency, in increments of 5 from 0-30. Horizontal measures Weights (pounds), in increments of 15 from 120-270. Measurements are noted between the 15-pound ranges, so that everyone weighing between 165-180, for instance, falls in the same category of measurement.

In many software packages, you can create a graph similar to a histogram by putting the class intervals as the labels on a bar chart.

Bar graph. Vertical measures Frequency, in increments of 5 from 0-30. Horizontal measures Weights (pounds), in increments of 15 from 120-270. Measurements are noted between the 15-pound ranges, so that everyone weighing between 165-180, for instance, falls in the same category of measurement.

The following video walks through this example in more detail.

Other graph types such as pie charts are possible for quantitative data. The usefulness of different graph types will vary depending upon the number of intervals and the type of data being represented. For example, a pie chart of our weight data is difficult to read because of the quantity of intervals we used.

Pie graph, Weights (pounds). 10 colors are noted with a key on the right side. The biggest slice is aqua, for 165-179.

To see more about why a pie chart isn’t useful in this case, watch the following.

On campus, 36 students were surveyed and asked what they had paid for textbooks that term. The given responses are below. Create a histogram for this data.

The first step is to organize our data from least to greatest:

Next we will simplify this table to just show score and frequency:

Next we will simplfiy the table even more by creating intervals:

The range of data is from 140 to 460

460-140 = 320

Let’s try 9 intervals of $40, starting at $120 and ending at $479

Create a histogram chart on graph paper.

Histogram with 9 intervals. Column chart comparing textbook costs to frequency.

Now we’ll see what happens when we try fewer, but larger intervals.

Let’s try 6 intervals of $60, starting at $120 and ending at $479

Histogram with 6 intervals. Column chart comparing textbook costs to frequency.

Which do you prefer, and why? Does one paint a better “picture” of the data?

When collecting data to compare two groups, it is desirable to create a graph that compares quantities.

The data below came from a task in which the goal is to move a computer mouse to a target on the screen as fast as possible. On 20 of the trials, the target was a small rectangle; on the other 20, the target was a large rectangle. Time to reach the target was recorded on each trial.

One option to represent this data would be a comparative histogram or bar chart, in which bars for the small target group and large target group are placed next to each other.

Bar graph. Vertical measures Frequency, in increments of 2 from 0-10. Horizontal measures Reaction time (milliseconds), in increments of 100 from 300-399 to 1100-1199. Two colors of bars are given, noted by a key on the right: blue is small target, purple is large target. The large target is more dominant in 400-499 and 500-599 ranges, while the small target is noted in more columns and is more frequent in 600-699 and 700-799 milliseconds.

Frequency polygon

An alternative representation is a frequency polygon . A frequency polygon starts out like a histogram, but instead of drawing a bar, a point is placed in the midpoint of each interval at height equal to the frequency. Typically the points are connected with straight lines to emphasize the distribution of the data.

This graph makes it easier to see that reaction times were generally shorter for the larger target, and that the reaction times for the smaller target were more spread out.

Line graph. Vertical measures Frequency, in increments of 2 from 0-10. Horizontal measures Reaction time (milliseconds), in increments of 100 from 350-1150. Large target, depicted in pink, shows a dramatic increase and decrease, spiking at 550. Small target, in blue, shows a more erratic progression, gradually increasing to 650 and decreasing with bumps after.

The following video explains frequency polygon creation for this example.

  • Revision and Adaptation. Provided by : Lumen Learning. License : CC BY: Attribution
  • Presenting Quantitative Data Graphically. Authored by : David Lippman. Located at : http://www.opentextbookstore.com/mathinsociety/ . Project : Math in Society. License : CC BY-SA: Attribution-ShareAlike
  • numbers-education-kindergarten. Authored by : karanja. Located at : https://pixabay.com/en/numbers-education-kindergarten-738068/ . License : CC0: No Rights Reserved
  • Creating a histogram. Authored by : OCLPhase2's channel. Located at : https://youtu.be/180FgZ_cTrE . License : CC BY: Attribution
  • Defining class intervals for a frequency table or histogram. Authored by : OCLPhase2's channel. Located at : https://youtu.be/JhshitTtdP0 . License : CC BY: Attribution
  • When not use a pie chart. Authored by : OCLPhase2's channel. Located at : https://youtu.be/FQ8zmZ56-XA . License : CC BY: Attribution
  • Frequency polygons. Authored by : OCLPhase2's channel. Located at : https://youtu.be/rxByzA9MFFY . License : CC BY: Attribution

Footer Logo Lumen Waymaker

VIDEO

  1. Presentation Of Quantitative Data

  2. Lesson 4 [PRACTICAL RESEARCH 1] Differentiates Quantitative from Qualitative Research II Sir JayTV

  3. Methods of Quantitative Data Presentation

  4. Quantitative Presentation: October 27, 2023

  5. Introduction to Quantitative Data Analysis

  6. Graphical Displays For One Quantitative Variable With R

COMMENTS

  1. quiz 2.3 Flashcards

    Study with Quizlet and memorize flashcards containing terms like The most common graphical presentation of quantitative data is a bar chart histogram stem and leaf display pie chart, Histograms based on data on housing prices and salaries typically are skewed to the left skewed to the right stacked symmetric, The total number of data items with a value less than the upper limit for the class ...

  2. 7.3: Presenting Quantitative Data Graphically

    This graph makes it easier to see that reaction times were generally shorter for the larger target, and that the reaction times for the smaller target were more spread out. This page titled 7.3: Presenting Quantitative Data Graphically is shared under a CC BY-SA license and was authored, remixed, and/or curated by David Lippman ( The ...

  3. Statistics

    The most common tabular summary of data for two variables is a cross tabulation, a two-variable analogue of a frequency distribution. ... A histogram is the most common graphical presentation of quantitative data that have been summarized in a frequency distribution. The values of the quantitative variable are shown on the horizontal axis.

  4. 2.2: Quantitative Data

    The graph of a frequency distribution for quantitative data is called a frequency histogram or just histogram for short. Definition 2.2.1 2.2. 1: Histogram. A Histogram is a graph of the frequencies on the vertical axis and the class boundaries on the horizontal axis.

  5. 8.2: Presenting Quantitative Data Graphically

    The first step is to divide each number into 2 parts, the stem (such as the leftmost digit) and the leaf (such as the rightmost digit). There are no set rules, you just have to look at the data and see what makes sense. Example 8.2.6 8.2. 6. The following are the percentage grades of 25 students from a statistics course.

  6. Presentation of Quantitative Data: Data Visualization

    2.6 Some Final Practical Graphical Presentation Advice. This chapter has presented a number of topics related to graphical presentation and visualization of quantitative data. Many of the topics are an introduction to data analysis, which we will visit in far greater depth in later chapters.

  7. 2: Graphical Representations of Data

    Histograms are typically used for large, continuous, quantitative data sets. A frequency polygon can also be used when graphing large data sets with data points that repeat. 2.4: Using Excel to Create Graphs Using technology to create graphs will make the graphs faster to create, more precise, and give the ability to use larger amounts of data.

  8. 2.2: Organizing and Graphing Quantitative Data

    A frequency is the number of times a value of the data occurs. According to Table 2.2.1 2.2. 1, there are three students who work two hours, five students who work three hours, and so on. The sum of the values in the frequency column, 20, represents the total number of students included in the sample.

  9. Quantitative data

    Other articles where quantitative data is discussed: statistics: Graphical methods: …most common graphical presentation of quantitative data that have been summarized in a frequency distribution. The values of the quantitative variable are shown on the horizontal axis. A rectangle is drawn above each class such that the base of the rectangle is equal to the width of the class interval…

  10. Data Presentation

    Abstract. In Chapter 2 we discussed various ways (several graphical and one tabular) of presenting qualitative data. In all the example we considered, the data arose from a nominal measuring scale. Although nominal (i.e. qualitative) data often occurs in business and economics, more common is quantitative data, arising from the use of ordinal ...

  11. 5.3: Presenting Quantitative Data Graphically

    In many software packages, you can create a graph similar to a histogram by putting the class intervals as the labels on a bar chart. Other graph types such as pie charts are possible for quantitative data. The usefulness of different graph types will vary depending upon the number of intervals and the type of data being represented.

  12. Presenting Quantitative Data Graphically

    2. 255 - 269. 3. A histogram of this data would look like: In many software packages, you can create a graph similar to a histogram by putting the class intervals as the labels on a bar chart. The following video walks through this example in more detail. Defining class intervals for a frequency table or histogram.

  13. Stats Midterm Flashcards

    Study with Quizlet and memorize flashcards containing terms like A common graphical presentation of quantitative data is a _____. Select one: a. histogram b. bar chart c. relative frequency d. pie chart, A researcher asked 20 people for their zip code. The respondents zip codes are an example of _____. Select one: a. categorical data b. quantitative data c. label data d. category data, Excel's ...

  14. 1.3: Visual Representation of Data II

    The most important visual representation of quantitative data is a histogram. Histograms actually look a lot like a stem-and-leaf plot, except turned on its side and with the row of numbers turned into a vertical bar, like a bar graph. The height of each of these bars would be how many.

  15. Business Statistics CH 2 Flashcards

    The most common graphical presentation of quantitative data is a a. histogram. b. bar chart. c. stem and leaf display. d. pie chart. a. histogram. 5. Data that indicate how much or how many are known as a. categorical data. b. quantitative data. c. relative data. d. cumulative data. b. quantitative data. 6. The numbers of hours worked (per week ...

  16. Presentation of Quantitative Data

    This will provide a simple method for preparing our data for graphical presentation. 2.6 Some Final Practical Graphical Presentation Advice. This chapter has presented a number of topics related to graphical presentation of quantitative data. Many of the topics are an introduction to data analysis which we will visit in far greater depth in ...

  17. 10.3: Types of Quantitative Data Analysis and Presentation Format

    Table 10.1 - Some Common Forms of Quantitative Analysis; Type of Analysis Appropriate Quantitative Analysis Presentation Format; Univariate: Descriptive statistics (range, mean, median, mode, standard deviation, skewness, kurtosis)

  18. Understanding Data Presentations (Guide + Examples)

    Common Mistakes Done in Data Presentation; ... We can label a presentation under the title of data presentation when the aim is to disclose quantitative information to an audience through the usage of visual formats and narrative techniques. ... To present data via a line graph, you will complete these steps. Step 1: Selecting Data. First, you ...

  19. Presenting Quantitative Data Graphically

    Class intervals are groupings of the data. In general, we define class intervals so that. each interval is equal in size. For example, if the first class contains values from 120-129, the second class should include values from 130-139. we have somewhere between 5 and 20 classes, typically, depending upon the number of data we're working with.

  20. Module 2 Quiz Flashcards

    The most common graphical presentation of quantitative data is a ... quantitative data. Data that indicate how much or how many are known as. cumulative frequency distribution. The total number of data items with a value less than the upper limit for the class is given by the.

  21. Solved The most common graphical presentation of

    Question: The most common graphical presentation of quantitative data is aSelect one:a.histogram.b.bar chart.c.stem and leaf display.d.pie chart. The most common graphical presentation of quantitative data is a. a.

  22. Business stat chap 2 Flashcards

    In a stem-and-leaf display, _____. a single digit is used to define each stem, and one digit is used to define each leaf. A common graphical presentation of quantitative data is a _____. histogram. A researcher asked 20 people for their zip code. The respondents zip codes are an example of _____. Refer to Exhibit 2-4.