• Share full article

Advertisement

Electric Cars Are Better for the Planet – and Often Your Budget, Too

By Veronica Penney Jan. 15, 2021

essay on benefits of cars

Electric vehicles are better for the climate than gas-powered cars, but many Americans are still reluctant to buy them. One reason: The larger upfront cost.

New data published Thursday shows that despite the higher sticker price, electric cars may actually save drivers money in the long-run.

To reach this conclusion, a team at the Massachusetts Institute of Technology calculated both the carbon dioxide emissions and full lifetime cost — including purchase price, maintenance and fuel — for nearly every new car model on the market.

They found electric cars were easily more climate friendly than gas-burning ones. Over a lifetime, they were often cheaper, too.

essay on benefits of cars

Average carbon dioxide emissions per mile

Toyota Sequoia

Diesel cars

Traditional gas-powered cars span a range of prices and emissions.

Hybrid and plug-in hybrid vehicles are about the same price as traditional cars, but cut emissions roughly in half.

Honda Civic

Higher emissions

Nissan Leaf

Electric cars have the lowest cost and emissions over time.

Higher cost

Average cost per month

Purchase price, maintenance, fuel

essay on benefits of cars

Hybrid and plug-in hybrid vehicles

essay on benefits of cars

Electric cars have the lowest cost and emissions over time .

essay on benefits of cars

Climate scientists say vehicle electrification is one of the best ways to reduce planet-warming greenhouse gas emissions. In the United States, the transportation sector is the largest source of emissions, most of which come from cars and trucks .

Jessika Trancik, an associate professor of energy studies at M.I.T. who led the research, said she hoped the data would “help people learn about how those upfront costs are spread over the lifetime of the car.”

For electric cars, lower maintenance costs and the lower costs of charging compared with gasoline prices tend to offset the higher upfront price over time. (Battery-electric engines have fewer moving parts that can break compared with gas-powered engines and they don’t require oil changes. Electric vehicles also use regenerative braking, which reduces wear and tear.)

The cars are greener over time, too, despite the more emissions-intensive battery manufacturing process. Dr. Trancik estimates that an electric vehicle’s production emissions would be offset in anywhere from six to 18 months, depending on how clean the energy grid is where the car is charging.

The new data showed hybrid cars, which run on a combination of fuel and battery power, and can sometimes be plugged in, had more mixed results for both emissions and costs. Some hybrids were cheaper and spewed less planet-warming carbon dioxide than regular cars, but others were in the same emissions and cost range as gas-only vehicles.

Traditional gas-burning cars were usually the least climate friendly option, though long-term costs and emissions spanned a wide range. Compact cars were usually cheaper and more efficient, while gas-powered SUVs and luxury sedans landed on the opposite end of the spectrum.

Dr. Trancik’s team released the data in an interactive online tool to help people quantify the true costs of their car-buying decisions — both for the planet and their budget. The new estimates update a study published in 2016 and add to a growing body of research underscoring the potential lifetime savings of electric cars.

Comparing individual cars can be useful — and sometimes surprising .

essay on benefits of cars

Toyota RAV4 XLE

Retail: $27,450

Average carbon dioxide

emissions per mile

Nissan Altima

Retail: $26,800

The hybrid is cheaper and has lower emissions over time, despite the higher price tag.

Toyota RAV4 LE Hybrid

Retail: $28,500

The electric Tesla and gas- powered Nissan end up costing about the same over time.

Tesla Model 3

Retail: $37,990

essay on benefits of cars

The electric Tesla and gas- powered Nissan end up costing about the same.

essay on benefits of cars

Take the Tesla Model 3, the most popular electric car in the United States. The M.I.T. team estimated the lifetime cost of the most basic model as comparable to a Nissan Altima that sells for $11,000 less upfront. (That’s even though Tesla’s federal tax incentive for electric vehicles has ended.)

Toyota’s Hybrid RAV4 S.U.V. also ends up cheaper in the long run than a similar traditional RAV4, a national bestseller, despite a higher retail price.

The charts above use nationwide average prices for gasoline and electricity to estimate lifetime costs, but the results may shift depending on where potential buyers live. (The interactive tool allows users to input their local rates.)

Hawaii, Alaska and parts of New England have some of the highest average electricity costs , while parts of the Midwest, West and South tend to have lower rates. Gas prices are lower along the Gulf Coast and higher in California. But an analysis from the Union of Concerned Scientists still found that charging a vehicle was more cost effective than filling up at the pump across 50 major American cities. “We saw potential savings everywhere,” said David Reichmuth, a senior engineer for the group’s Clean Transportation Program.

Still, the upfront cost of an electric vehicle continues to be a barrier for many would-be owners.

The federal government offers a tax credit for some new electric vehicle purchases, but that does nothing to reduce the initial purchase price and does not apply to used cars. That means it disproportionately benefits wealthier Americans. Some states, like California, offer additional incentives. President-elect Joseph R. Biden Jr. has pledged to offer rebates that help consumers swap inefficient, old cars for cleaner new ones, and to create 500,000 more electric vehicle charging stations, too.

Chris Gearhart, director of the Center for Integrated Mobility Sciences at the National Renewable Energy Laboratory, said electric cars will become more price competitive in coming years as battery prices drop. At the same time, new technologies to reduce exhaust emissions are making traditional cars more expensive. “With that trajectory, you can imagine that even immediately at the purchase price level, certain smaller sedans could reach purchase price parity in the next couple of years,” Dr. Gearhart said.

A herd of bison moves through a grassy valley in Yellowstone National Park

Earth Day Match: Donate to Defend Our Planet

Drilling on public lands, mass wildlife extinctions, worsening climate change—our planet is in crisis. Help us fight back this Earth Day and your gift will be matched $1 for $1.

Why the Electric Vehicle Revolution Can Benefit Everyone

The mainstreaming of EVs will impact everything from the air you breathe to the money you save, even if you don’t drive one. 

A girl sitting on a wall while an electric car is charging

Maskot/Getty

A headshot of Courtney Lindwall

  • Share this page block

Electric vehicles (EVs) currently make up around 1 percent of all the cars, vans, trucks, and SUVs on the road in the United States. But that’s about to change. Last year, one in seven passenger vehicles sold around the world was electric. Car shoppers will soon have dozens of new electric models to choose from as automakers add more accessible options to their lineups. And a wave of states—including California, New Jersey, and New York—will phase out the sale of new gas-powered vehicles by 2035. Meanwhile, both the private and public sectors are racing to electrify their dirtiest diesel fleets, from semis to delivery trucks to city buses, in order to meet U.S. emissions reduction goals.

In other words: The EV revolution is upon us, and the benefits could be far-reaching—even for those of us who never plan to get behind the wheel of an EV. Here’s how: 

Cleaner air and better health

Did you know that gas- and diesel-powered vehicles spew health-harming particulate matter into the air, causing tens of thousands of premature deaths in the United States each year? EVs, by comparison, produce zero tailpipe emissions. So the more EVs used across personal, public, and commercial transportation, the better the outcomes for our public health. 

In California, the state with the highest number of EVs, residents are already starting to benefit. In a recent study focused on California’s EV transition, researchers found that increased EV adoption led to measurably improved air quality and fewer asthma-related hospital visits. Another study predicted that, by 2050, EVs would spare Angelenos alone an estimated $12.6 billion in annual related health-care costs . This kind of impact is particularly vital for low-income people and people of color, whose homes are more likely to sit next to freight hubs and within high-traffic corridors because of a long history of racist policies that used highways to segregate communities . As a result, those communities face compounding sources of air pollution, which result in lung and cardiovascular issues. Making EV adoption more affordable and charging infrastructure more widespread will also be important to this shift. 

essay on benefits of cars

An FedEx zero-emission, all-electric delivery truck in Manhattan

Zhukovsky/Dreamstime

EVs Explained

A person looks at a cell phone while standing next to a charging electric vehicle

Electric Vehicle Charging Explained

An illustration shows an electrical cord forming the outline of a vehicle

Electric vs. Gas Cars: Is It Cheaper to Drive an EV?

essay on benefits of cars

Is Now a Good Time to Buy an Electric Car?

A man and woman in winter clothing sit on a passenger bus

How to Ditch the Biggest Fossil Fuel Offenders in Your Life

New jobs and economic growth .

The EV revolution has the potential to create huge economic opportunities. Between 2020 and 2021, the number of EV jobs grew 26.2 percent in the United States, and a quarter of all announced global EV investments through 2030 are headed for the United States. But making the most of this rapidly expanding market will require investments at the local and federal levels as well as intentional policies and regulations. 

Thankfully, there’s a combined $245 billion in federal EV investment from the Bipartisan Infrastructure Law and the Inflation Reduction Act . This funding is expected to spur domestic production of EVs and their batteries, as well as the construction of the nation’s charging network. Altogether, this will create tens of thousands of new high-quality autoworker, construction, and electrician jobs in communities across the country. In terms of regulations, the U.S. Environmental Protection Agency (EPA) has recently proposed federal clean car standards and clean truck standards covering semis and local delivery trucks. If the EPA adopts the strongest possible version of these standards by the end of the year, the United States would be on a path to ending tailpipe pollution, securing a once-in-a-generation opportunity to clean up our transportation system. 

Lower utility costs

There’s a pretty straightforward explanation for how EVs can lower utility costs. One recent study looked at U.S. consumers’ electric bills in the service regions with the greatest number of EVs on the road. Researchers found that, between 2012 and 2021, EV drivers actually drove down electricity rates for all customers. That’s because people generally plug in their EVs overnight, when electricity demand (and therefore, pressure on the grid) is already low. Traditionally, utility companies would just pocket the extra earnings from these off-peak hours, but “revenue decoupling” policies can redirect these revenues to customers in the form of reduced bills. While these policies are not in place in every state, more and more are introducing them. This promise of cheaper electricity is especially good news for low-income U.S. households, who spend an average of 8.6 percent of their income on energy, nearly three times that of higher-earning households. 

Quieter roads

Chronic noise pollution has been linked to stress, hearing damage, sleep disturbances, and even heart disease. And no one needs to tell you that combustion engines are notoriously noisy, particularly in congested cities and along highways. But compared to combustion-engine vehicles, EVs are nearly silent when traveling at low speeds. So quiet, in fact, that EV manufacturers install external speakers that produce noise when traveling slowly to alert pedestrians and others on the road. As EV adoption picks up, the rush hour soundscape will likely be far quieter—and more pleasant—than the one we hear now. 

Climate benefits 

Transportation makes up the biggest slice of U.S. greenhouse gas emissions, which means cleaning up the transportation system has a direct impact on climate. Already, driving an EV instead of a gas-powered vehicle in the United States cuts your climate pollution by about two-thirds over your car’s life span. But the emissions reductions from EV adoption will only increase as a larger percentage of our electricity is produced by clean energy and as battery technology improves, moving us that much closer to our goal of net-zero emissions by 2050.

Curbing climate change and ending tailpipe pollution is, of course, good news for everyone but especially for those in frontline communities, who are disproportionately affected. The litany of disruptive, dangerous, and costly climate impacts —from extreme storms to sea level rise—are already underway and threaten to get far worse. The EV revolution is fundamental to charting a different kind of climate future. 

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Transportation is the largest source of climate pollution in the United States.

Urge President Biden, the EPA, and the DOT to finalize the strongest possible clean vehicle standards!

essay on benefits of cars

Protect health and fight climate change with cleaner vehicles!

Related stories.

An illustration shows an electrical cord forming the outline of a vehicle

As Demand Grows for Electric Cars, So Does the Market for Green Jobs in the EV Industry

A man and woman in winter clothing sit on a passenger bus

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

Ask MIT Climate

Have a question?

Are electric vehicles definitely better for the climate than gas-powered cars, yes: although electric cars' batteries make them more carbon-intensive to manufacture than gas cars, they more than make up for it by driving much cleaner under nearly any conditions..

October 13, 2022

Although many fully electric vehicles (EVs) carry “zero emissions” badges, this claim is not quite true. Battery-electric cars may not emit greenhouse gases from their tailpipes, but some emissions are created in the process of building and charging the vehicles. Nevertheless, says Sergey Paltsev, Deputy Director of the MIT Joint Program on the Science and Policy of Global Change, electric vehicles are clearly a lower-emissions option than cars with internal combustion engines. Over the course of their driving lifetimes, EVs will create fewer carbon emissions than gasoline-burning cars under nearly any conditions.

“We shouldn't claim victory that with this switch to electric cars, problem solved, we are going to have zero emissions,” he says. “No, that's not the case. But electric cars are actually much, much better in terms of the impact on the climate in comparison to internal combustion vehicles. And in time, that comparative advantage of electric cars is going to grow.”

One source of EV emissions is the creation of their large lithium-ion batteries . The use of minerals including lithium, cobalt, and nickel, which are crucial for modern EV batteries, requires using fossil fuels to mine those materials and heat them to high temperatures. As a result, building the 80 kWh lithium-ion battery found in a Tesla Model 3 creates between 2.5 and 16 metric tons of CO 2 (exactly how much depends greatly on what energy source is used to do the heating). 1 This intensive battery manufacturing means that building a new EV can produce around 80% more emissions than building a comparable gas-powered car. 2

But just like with gasoline cars, most emissions from today’s EVs come after they roll off the production floor. 3 The major source of EV emissions is the energy used to charge their batteries. These emissions, says Paltsev, vary enormously based on where the car is driven and what kind of energy is used there. The best case scenario looks like what’s happening today in Norway, Europe’s largest EV market: the nation draws most of its energy from hydropower, giving all those EVs a minuscule carbon footprint. In countries that get most of their energy from burning dirty coal, the emissions numbers for EVs don’t look nearly as good—but they’re still on par with or better than burning gasoline.

To illustrate how EVs create fewer emissions than their counterparts, Paltsev points to MIT’s Insights Into Future Mobility study from 2019. 4 This study looked at comparable vehicles like the Toyota Camry and Honda Clarity across their gasoline, hybrid, plug-in hybrid, battery electric, and hydrogen fuel cell configurations. The researchers found that, on average, gasoline cars emit more than 350 grams of CO 2 per mile driven over their lifetimes. The hybrid and plug-in hybrid versions, meanwhile, scored at around 260 grams per mile of carbon dioxide, while the fully battery-electric vehicle created just 200 grams. Stats from the U.S. Department of Energy tell a similar story: Using the nationwide average of different energy sources, DOE found that EVs create 3,932 lbs. of CO 2 equivalent per year, compared to 5,772 lbs. for plug-in hybrids, 6,258 lbs. for typical hybrids, and 11,435 lbs. for gasoline vehicles. 5

MIT’s report shows how much these stats can swing based on a few key factors. For example, when the researchers used the average carbon intensity of America’s power grid , they found that a fully electric vehicle emits about 25 percent less carbon than a comparable hybrid car. But if they ran the numbers assuming the EV would charge up in hydropower-heavy Washington State, they found it would emit 61 percent less carbon than the hybrid. When they did the math for coal-heavy West Virginia, the EV actually created more carbon emissions than the hybrid, but still less than the gasoline car.

In fact, Paltsev says, it’s difficult to find a comparison in which EVs fare worse than internal combustion. If electric vehicles had a shorter lifespan than gas cars, that would hurt their numbers because they would have fewer low-emissions miles on the road to make up for the carbon-intensive manufacture of their batteries. Yet when the MIT study calculated a comparison in which EVs lasted only 90,000 miles on the road rather than 180,000 miles, they remained 15 percent better than a hybrid and far better than a gas car.

And while internal combustion engines are getting more efficient, EVs are poised to become greener by leaps and bounds as more countries add more clean energy to their mix. MIT’s report sees gasoline cars dropping from more than 350 grams of CO 2 per mile to around 225 grams by the year 2050. In that same span, however, battery EVs could drop to around 125 grams, and perhaps even down to 50 grams if the price of renewable energy were to drop significantly.

“Once we decarbonize the electric grid—once we get more and more clean sources to the grid—the comparison is getting better and better,” Paltsev says.

Thank you to several readers for sending in related questions, including Ross Burlington of Riverside, California, Lloyd Olson of Webberville, Texas, and Thomas Marshall of Lake Charles, Louisiana. You can submit your own question to Ask MIT Climate here .

Read more Ask MIT Climate

1 These figures are derived from comparison of three recent reports that conducted broad literature reviews of studies attempting to quantify battery manufacturing emissions across different countries, energy mixes, and time periods from the early 2010s to the present. We discard one outlier study from 2016 whose model suggested emissions from manufacturing the battery in our example could total as high as almost 40 metric tons. The lowest estimates typically come from studies of U.S. and European battery manufacturing, while the highest come from studies of Chinese and other East Asian battery manufacturing—which is consistent with the different energy mixes in these regions. For more information, see:

Erik Emilsson and Lisbeth Dahllöf. " Lithium-ion vehicle battery production: Status 2019 on energy use, CO 2 emissions, use of metals, products environmental footprint, and recycling ." IVL Swedish Environmental Research Institute, in cooperation with the Swedish Energy Agency, Report C444, November 2019.

Hans Eric Melin. " Analysis of the climate impact of lithium-ion batteries and how to measure it ." Circular Energy Storage Research and Consulting, July 2019. Commissioned by the European Federation for Transport and Environment.

Dale Hall and Nic Lutsey. " Effects of battery manufacturing on electric vehicle life-cycle greenhouse gas emissions ." The International Council on Clean Transportation, February 2018.

2 This estimate comes from Argonne National Laboratory's GREET (Greenhouse gases, Regulated Emissions, and Energy use in Technologies) Model, sponsored by the U.S. Department of Energy. It assumes comparable models of EV and gas-powered car, and that the EV has a battery with a range of 300 miles, similar to a Tesla Model 3. Different assumptions about battery manufacture would offer different comparisons; in this model, the battery of the EV entails close to 12 metric tons of CO 2 emissions.

3 Using the same GREET figures as above, manufacturing and end-of-life disposal account for around 9% of a gas car’s emissions, and around 29% of an EV’s (more than half of which comes from the battery alone). A plug-in hybrid EV is in the middle at around 17%. This analysis assumes the EV is charged with the average emissions intensity of the U.S. electric grid; that all cars drive around 173,000 miles in their lifetime; and that the gas car gets 30.7 miles to the gallon.

4 MIT Energy Initiative: Insights Into Future Mobility , November 2019.

5 U.S. Department of Energy Alternative Fuels Data Center: Emissions from Electric Vehicles . Accessed October 13, 2022.

Andrew Moseman

More Resources for Learning

Want to learn more.

Listen to this episode of MIT's "Today I Learned: Climate" podcast on electric cars.

Keep Exploring

Check out these related Explainers, written by scientists and experts from MIT and beyond.

city at night

Energy Storage

airplane

Freight Transportation

Related pieces, how is lithium mined, how clean is green hydrogen, why have electric vehicles won out over hydrogen cars (so far), how well can electric vehicle batteries be recycled, mit climate news in your inbox.

  • Your questions answered

Benefits of electric cars

We know electric cars are environmentally friendly, but there are other advantages to enjoy when you make the switch.

Polestar 2

The benefits of electric cars go much further than just a lack of harmful exhaust emissions – although that is of course a huge boon, and the main reason governments around the world are pushing for the full transition from internal-combustion to battery power to happen as soon as possible.

Knowing they're not contributing to local air pollution certainly makes people feel better about using their car to get around, but as most owners of electric vehicles have come to realise, there are myriad other advantages that zero-emissions cars have over their petrol and diesel counterparts.

Here, we've summarised the main plus points that come with owning and driving an electric car.

Twisted electric Land Rover Defender conversion pictures

1. Electric cars are simpler and more reliable

The electric motor and battery combination used to power electric cars is much simpler and has far fewer moving parts than a conventional petrol or diesel engine. This means there's a lot less that could potentially go wrong and much less maintenance and replacement of parts needed due to wear-and-tear. Electric cars often don't need to be serviced as frequently as combustion-engined cars, keeping running costs low for owners.

Mazda MX-30

2. Electric cars are better for the planet

This is the obvious and most important benefit of electric cars: with no exhaust emissions whatsoever, electric cars do not contribute to local air pollution that can cause health issues in the population and damage the environment as a whole. Of course, electric cars are not completely pollution-free; manufacturing them does generate some CO2 emissions and the amount of CO2 they generate in use depends very much on how the electricity used to charge them was generated.

But progress is being made in these areas: manufacturers are increasingly pursuing carbon-neutral production by using renewable energy to power their factories, incorporating sustainable materials into their cars and offsetting emissions in cases where completely eliminating them is not yet possible.

Electricity generation is getting greener all the time, too: the proportion of energy generated from renewable sources is at an all-time high in the UK, and the country frequently goes for long stretches without generating any power from coal-fired plants at all. Electric-car owners can also choose a 'green' electricity tariff for their home, which guarantees the energy they're being supplied is from renewable sources, and many charging-point operators guarantee green power, too.

Renault ZOE

Renault ZOE

3. Electric cars are quiet and relaxing...

One of the first things anyone new to electric cars will notice is their near-silent nature. There's some road, wind and tyre noise, of course, but the engine noise familiar to drivers of petrol and diesel cars is absent. Electric cars have no gears either, so both speeding up and slowing down are smooth and progressive actions.

Electric-car drivers find that all this combined can lead to a calmer and more relaxed frame of mind when behind the wheel – and taking it easy also makes sure you get the most possible range from your car's battery! Another unexpected upside of electric cars' quiet nature for those who enjoy listening to music or podcasts on the move: you don't have to turn up the volume as much to drown out engine roar.

Porsche Taycan

4. ...but can also be fast and exciting!

Electric cars don't mean the end of driving fun. While it's entirely possible to enjoy the laid-back, relaxing driving experience described above, you can also prod the accelerator and enjoy the instant power delivery of electric motors, made famous by numerous YouTube 'reaction clips' of drivers shocking their passengers with sudden acceleration. Models like the Tesla Model S and Porsche Taycan (pictured above) offer supercar-like acceleration.

And while electric cars do tend to be heavier than those powered by petrol or diesel, the bulk of their weight is stored low down in the chassis; battery cells can be arranged to optimise weight distribution, rather than all the weight being together in a large engine block. This results in balanced and predictable handling on track or on a twisty road.

Polestar 2

5. Electric cars are practical – in several ways

Although electric cars need to allow a significant amount of space for battery cells, by their nature they can be laid out flat in the base of the car (sometimes referred to as a 'skateboard' layout). This, along with the absence of a bulky engine and transmission, can pay dividends for interior space. Several electric cars have luggage areas at both the front and rear (the former sometimes referred to as 'frunks') and there tends to be more legroom for occupants, due to the lack of a transmission tunnel running down the centre of the car.

Another practical aspect of electric cars – for those with the ability to charge at home, at least – is that you never have to make a special trip or unplanned detour to fuel up. Charging at home from a wallbox in your garage or next to your driveway means you start every day with a 'full tank of fuel'. Unless you're planning a long-distance trip that needs rapid charging en route , you'll never have to factor a visit to the local garage forecourt into your daily motoring routine.

Vauxhall Mokka-e

6. Electric cars are cheap to own and run

This is another commonly known aspect of electric-car ownership, but it can be surprising just how many ways electric cars save you money, beyond the simple fact that domestic electricity is a lot cheaper than petrol or diesel. In the UK, electric cars (of any price) are currently completely exempt from VED (Vehicle Excise Duty, also known as road tax) – a cost that can run from £140 to £475 a year for drivers of hybrid, petrol or diesel-engined cars.

And during the 2020-21 financial year, those running an electric car as a company car pay no Benefit-in-Kind (BiK) tax . Zero-emissions cars are also exempt from the £15 daily London Congestion Charge until 2025, and are likely to be allowed in any other low or zero-emissions zones introduced in UK cities in the coming years.

Most Popular

New Citroen e-C3 Aircross - front

New Citroen e-C3 Aircross: move over Mercedes EQB, a new 7-seat EV is here

Tesla recall

Tesla Supercharger Membership fee cut with 42 charging sites open to all EVs

hydrogen filling station

Where can I buy hydrogen and where is my nearest hydrogen filling station?

  • What's My Car Worth?
  • Buyer's Guide

Pros and Cons of Electric Cars

There are positives and negatives to owning a battery-electric, hybrid, or plug-in hybrid vehicle.

view of parked electric porsche car connected to the charging station in the garden garage

If the forecasts by regulators and automakers are correct, the future of the automobile is going to be heavily reliant on battery-electric propulsion. But we don't live in the future, we live in the present. It's a time of great transition for the industry, but there are a few kinks that still need working out.

Electric cars are efficient, quiet, and torque-rich. They can also be expensive, tend to be heavy, and are plagued by a limited public charging infrastructure—something we expect will get better in the coming years. There are a number of benefits to choosing some level of electrification in your next vehicle, but some tradeoffs do apply.

What Defines an Electric Car?

In today's automotive landscape, an electric car is defined as a passenger vehicle that uses an electric drive motor for propulsion. This broad definition, which technically encompasses a number of powertrain setups, includes hybrid vehicles.

2021 toyota prius prime

Those in search of emission-free electric driving currently have two options to choose from: hydrogen fuel-cell electric vehicles (HFCVs or FCEVs) and battery-electric vehicles (BEVs). The former setup uses onboard fuel cells to react with hydrogen fuel (stored in an onboard tank) with oxygen to produce electricity to power such a vehicle's electric drive motor. The combination of these two chemicals (hydrogen and oxygen) results in HFCVs exhausting water vapor.

motor vehicle, automotive design, vehicle, land vehicle, grille, transport, headlamp, car, automotive lighting, gas pump,

Alas, the limited hydrogen infrastructure in the U.S. makes it difficult to refuel HFCVs. As such, the two HFCVs currently offered in the U.S., the Toyota Mirai sedan and the Hyundai Nexo SUV, are strictly sold in California, a state with an existing—but still subpar—hydrogen fueling infrastructure.

Thus BEVs are the sole option for those looking to switch to an emissions-free car. Like PHEVs, BEVs feature an external charge port that allows owners to charge their car's onboard battery pack using energy from an external source, such as the local energy grid. Unlike PHEVs, BEVs have no internal-combustion engine (ICE) onboard to serve as a generator or propulsion source. Without an ICE to lug around, BEVs feature larger-capacity battery packs that allow them to drive farther between charges.

2018 honda clarity plug in hybrid

Pros and Cons of Partial Electrification

PRO: Hybrids deliver better fuel economy without lifestyle changes.

Hybrids don't require you to change your driving habits in order to change your impact. These vehicles are not dependent on electricity, as both have internal combustion engines onboard that burn gasoline (or diesel in other markets), which is easy to find at any gas station. PHEVs are just the same, however, they offer owners the opportunity to dip their toe into the proverbial EV pool. Want to limit your emissions? Then plug in and charge the battery pack to enjoy a limited range of strictly battery-electric power.

PRO: PHEVs suit the average commute.

According to the United States Census Bureau, the average one-way commute for American drivers is up to about 28 minutes each way per day. PHEVs, such as the Toyota RAV4 Prime or Kia Sorento Plug-in Hybrid, are capable of driving between 30–40 miles on battery power alone. In PHEVs like these, it's possible you may only find yourself burning gas when you go on an extended drive.

PRO: Charging is less of a concern.

It's not possible to buy a jerrycan's worth of extra electrons (yet) for an EV that runs out of juice. However, all it takes is a couple of gallons of gas to get a hybrid or plug-in hybrid vehicle back on the move. Plus, unlike our charging infrastructure (which, admittedly, continues to improve and grow by the day), there are gas stations everywhere.

CON: Combustion engine maintenance.

Because there's an ICE on board, hybrid and plug-in-hybrid vehicles still require the typical maintenance you expect of any gas-powered car. Electric motors, meanwhile, need comparatively little maintenance. Still, it's not all bad news. Thanks to the use of regenerative braking from the electric motor, an electrified vehicle's brakes often last longer and require less service than those of strictly ICE-powered vehicles.

CON : Still burning fossil fuels.

Gasoline-electric hybrids still burn fossil fuels, which means these vehicles still produce harmful emissions. A PHEVs ability to putter about on battery power alone means it's possible for consumers to largely avoid firing up the gas engine. Still, it will inevitably turn on and begin combusting fuel.

toyota mirai at fueling station 2022

Pros and Cons of Hydrogen Fuel-Cell Electric Vehicles

Pro: the technology works..

The California-only Toyota Mirai has a range of up to 402 miles and can be refueled nearly as quickly as a gasoline-powered car. It's as smooth and refined as an EV, and less complex than a PHEV.

CON: Good luck finding a fuel station.

If the infrastructure for electrical charging is still young, then hydrogen infrastructure is embryonic. Currently, HFCVs really only make sense in limited applications (mostly in California), or perhaps for fleet use.

tesla model s ev charging electric car

Pros and Cons of Battery-Electric Vehicles

Pro: performance and power delivery..

BEVs have the potential to be insanely quick. Just look at the Rivian R1T , a more than 7000-pound electric pickup truck that shot to 60 mph in 3.0 seconds under our watch. But the benefits of an electric motor are not limited strictly to straight-line acceleration. Thanks to the near-instant torque production of an electric motor, even more modestly powered BEVs tend to feel pretty peppy in typical driving situations.

PRO: Clean motoring.

With no exhaust (and thus no tailpipe emissions), electric motors are far cleaner than gas engines. Of course, just how much cleaner electric cars are compared to their gas-powered kin is dependent on a number of factors. For instance, if your local power plant produces electricity by burning fossil fuels, then the net environmental benefits of your EV lessen. That said, not all is lost. While many of America's power plants do burn fossil fuels, solar and wind farms can supplement the grid, further countering any emissions indirectly produced by EVs.

PRO: Less maintenance.

Due to the fact electric motors have fewer moving parts than combustion engines, electric vehicles require less maintenance relative to their gas- and diesel-powered counterparts. Even better, the fact EVs use regenerative braking to slow down, means these vehicles use their mechanical brakes less frequently. As such, the braking components on EVs tend to wear at a much slower rate than those of cars with combustion engines.

CON: Battery blues.

According to the U.S. Department of Energy, the expected life of an EV's battery pack is between 10 and 12 years. That said, battery packs can last longer than their estimate. Once a battery pack bites the dust, though, replacing it is rather pricey. As of this writing, new battery packs cost thousands, if not tens of thousands, of dollars to replace. These prices will likely come down as more battery-electric vehicles enter service. Likewise, consumers can save some money by purchasing a refurbished battery pack for their EV.

CON: Charging hassles.

America's EV charging infrastructure is still rather weak, which means it can be difficult to find an available charger, let alone a functioning one, in public places. On the plus side, the most cost-effective and efficient way to charge an EV is via an at-home charger. Specifically, when hooked up to a 240-volt Level 2 charger, which ought to ensure your EV gets a sufficient charge overnight. Depending on the specific EV you own, the range added overnight should be more than enough to cover your daily driving needs.

CON: Towing troubles.

The hassles of America's charging infrastructure are exacerbated when towing, too. With the likes of the Ford F-150 Lightning and Rivian R1T capable of towing up to 10,000 and 11,000 pounds, respectively, the era of towing with an EV is upon us. Unfortunately, doing so takes a toll on range . We discovered both the Lightning and R1T's EPA-rated ranges were cut by nearly two-thirds when towing a 6100-pound camper. Unless the campsite or boat ramp is close by, then you may still be better off relying on a vehicle with an internal combustion engine to do your towing duties, as, in today's environment, it's far easier to find a reliable gas station over a charging station.

the track club

.css-190qir1:before{background-color:#000000;color:#fff;left:0;width:50%;border:0 solid transparent;bottom:48%;height:0.125rem;content:'';position:absolute;z-index:-10;} Electric Vehicles .css-188buow:after{background-color:#000000;color:#fff;right:0;width:50%;border:0 solid transparent;bottom:48%;height:0.125rem;content:'';position:absolute;z-index:-10;}

2024 gmc sierra ev denali edition 1

Electric Vehicle FAQs

engine, vehicle, luxury vehicle, car, auto part, personal luxury car, automotive engine part, metal,

Aston Martin to Continue Selling Gas-Engined Cars

2025 mercedes benz eqs

2025 Mercedes-Benz EQS Debuts New Look, More Range

tesla model 3 on the production line

Report: Tesla Pulls the Plug on Sub-$30K Model 2

composite image of future electric vehicles

Future EVs: Every Electric Vehicle Coming Soon

2025 polestar 4

2025 Polestar 4 Pricing Information Revealed

nissan concept vehicles group shot

Nissan to Launch 7 New Models in the U.S. by 2026

several major automakers pledge to expand electric vehicle charging network throughout us

How Long Does It Take to Charge an Electric Car?

tesla model s plaid, lucid air dream edition performance, and porsche taycan turbo s cross turismo

Quickest EVs Tested: 60 MPH in under 3.5 Seconds

2021 car and driver ev of the year

These EVs Get the $3750 or $7500 Federal Credit

ford supercharger access

Other EVs Can Now Use Tesla Superchargers

How the Automobile Changed the World, for Better or Worse

New MoMA exhibition explores artists’ responses to the beauty, brutality and environmental devastation of cars and car culture

Nora McGreevy

Nora McGreevy

Correspondent

A view of a museum gallery with a bright red car on display in front of a light green Beetle; on the wall, an enormous lithograph of a human eye with the words Watch the Fords Go By

In the early 20th century, cars roared into society and revolutionized modern life. Automobiles and their attendant culture molded labor practices , the fight for civil rights , cities, the arts, social life and the environment in radical—and dangerous—ways.

Artists who observed these changes responded with a range of emotions, from fervent admiration to horror. Now, “ Automania ”—a new exhibition at the Museum of Modern Art (MoMA) in New York City—takes readers on a ride through some of these responses, from an Andy Warhol silkscreen to Robert Frank photographs and a car hood painted by Judy Chicago.

As Lawrence Ulrich reports for the New York Times , the show takes its title from “ Automania 2000 ,” an Oscar-nominated 1963 short animated by married British artists Joy Batchelor and John Halas . In the film, which art enthusiasts can watch online , a consumer craze for automobiles leads scientists to develop “40-foot supercars” that house families consigned to eating petroleum-based foods and ceaselessly watching television. Eventually, the crush of vehicles clogs roads, and the cars themselves spin out of control.

The bulk of the exhibition takes place on MoMA’s third floor. But viewers can also wander downstairs to the outdoor sculpture garden and peer into the windows of several exceptional car designs. Per a statement , nine cars from the museum’s permanent collection are stationed throughout the show, including a famed mint-green “ Beetle ” and a rare Cisitalia 202 , a cherry-red 1946 racing car that owes it curved, seamless appearance to Italian workers who hammered its metal frame by hand.

YouTube Logo

Brett Berk of Vanity Fair notes that MoMA was among the first museums to treat cars as design objects, hosting the exhibition “ 8 Automobiles ” in 1951. In the show’s catalog , then-curator Arthur Drexler made the (intentionally) provocative claim that automobiles were a kind of “hollow, rolling sculpture,” according to the Times .

Some artists found themselves enamored with the form and power of these new machines. In Italian futurist Giacomo Balla’s Speeding Automobile (1912), shards of white, black, red and green seem to explode out of the canvas in an abstract composition evocative of the energy of a race car.

Other artists reckoned with cars’ deadly potential. Today, crash injuries are estimated to be the eighth leading cause of death for people of all ages around the world. Pop artist Andy Warhol probed the routine horror of fatal crashes and their coverage in the media in Orange Car Crash Fourteen Times (1963), which reproduced the same newspaper image of a deadly collision on an enormous 9- by 14-foot canvas, as Peter Saenger reports for the Wall Street Journal .

Beyond the immediate bodily harm posed by vehicles, artists have also reckoned with their vast environmental cost. In a series of photocollages from the late 1960s, Venezuelan architect Jorge Rigamonti captured the dystopian industrial landscape of his home country, which is one of the biggest exporters of oil in the world. Pollutants also appear in an 1898 lithograph by French post-Impressionist Henri de Toulouse-Lautrec, which shows a male motorist speeding ahead, spewing a cloud of thick smoke over a nearby woman and dog.

essay on benefits of cars

Visitors unable to explore the exhibition in person can listen to online audio tours adapted for both adults and children . In one recording, Chicago—the groundbreaking artist who created The Dinner Party (1979) and ushered in a new wave of American feminist art —explains that her work in the exhibition, Flight Hood , was inspired by her time as the only woman in a 250-person auto body school. In 2011, she painted this car hood with a “nascent butterfly” form that references her first husband, who died in an automobile crash.

Cars and car culture have long been tied to Western notions of manliness and rugged individuality . By using a piece of metal so often associated with masculinity as her canvas, Chicago subverted expectations.

“This work is based on a series of paintings that my painting instructors hated,” she recalls in the clip. “… I understood, intuitively, that this imagery that my male painting teachers had rejected because it was so female centered, that there was something subversive about mounting it on the most masculine of forms—a car hood.”

essay on benefits of cars

Lead curator Juliet Kinchin , who organized the exhibition with Paul Galloway and Andrew Gardner, also sought to emphasize women’s contributions to the male-dominated auto design industry. Relevant artifacts include textile artist Anni Albers’ upholstery materials and designer Lilly Reich’s 1930 sketches for a folding car seat .

“Women have actually been featured in these stories from the beginning,” Kinchin tells Vanity Fair . “That was something we wanted to tease out.”

All told, Galloway says that he hopes the exhibition pushes museumgoers to reconsider their relationships with their vehicles.

“This is absolutely a moment when we’re rethinking our history with things that we used to love and cherish,” he tells Vanity Fair , “and acknowledging that some of those things maybe were poisonous, or bad ideas, or death traps.”

“ Automania ” is on view at the Museum of Modern Art (MoMA) in New York City through January 2, 2022.

Get the latest stories in your inbox every weekday.

Nora McGreevy

Nora McGreevy | | READ MORE

Nora McGreevy is a former daily correspondent for Smithsonian . She is also a freelance journalist based in Chicago whose work has appeared in Wired , Washingtonian , the Boston Globe , South Bend Tribune , the New York Times and more.

This is what happens when cities ban cars from the roads

People take their dog for a walk as others ride bikes in the city center, which has been transformed into a car-free zone for the day as part of "Mobility Week", in Brussels, Belgium, September 16, 2018. REUTERS/Eric Vidal - RC14E5E4B300

A car-free day in Brussels, Belgium Image:  REUTERS/Eric Vidal - RC14E5E4B300

.chakra .wef-1c7l3mo{-webkit-transition:all 0.15s ease-out;transition:all 0.15s ease-out;cursor:pointer;-webkit-text-decoration:none;text-decoration:none;outline:none;color:inherit;}.chakra .wef-1c7l3mo:hover,.chakra .wef-1c7l3mo[data-hover]{-webkit-text-decoration:underline;text-decoration:underline;}.chakra .wef-1c7l3mo:focus,.chakra .wef-1c7l3mo[data-focus]{box-shadow:0 0 0 3px rgba(168,203,251,0.5);} Marcela Guerrero Casas

essay on benefits of cars

.chakra .wef-9dduvl{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-9dduvl{font-size:1.125rem;}} Explore and monitor how .chakra .wef-15eoq1r{margin-top:16px;margin-bottom:16px;line-height:1.388;font-size:1.25rem;color:#F7DB5E;}@media screen and (min-width:56.5rem){.chakra .wef-15eoq1r{font-size:1.125rem;}} Cities and Urbanization is affecting economies, industries and global issues

A hand holding a looking glass by a lake

.chakra .wef-1nk5u5d{margin-top:16px;margin-bottom:16px;line-height:1.388;color:#2846F8;font-size:1.25rem;}@media screen and (min-width:56.5rem){.chakra .wef-1nk5u5d{font-size:1.125rem;}} Get involved with our crowdsourced digital platform to deliver impact at scale

Stay up to date:, cities and urbanization.

A future in which everyone travels in driverless flying cars may still dominate the popular imagination, particularly when it comes to media and marketing hype. But if we are to meet the UN’s Sustainable Development Goals ( SDG ) on sustainable cities and communities, a more revolutionary (albeit more low-tech) picture will unfold, in which people are moving freely and swiftly - but not by car.

Reducing our dependence on petrol cars is not only better for the planet and our individual wellbeing , it will pave the way to a better future for our cities. From improving mobility and ensuring civic participation in how cities are designed, run and experienced, to public health and strengthening the social fabric that will make our communities more resilient, a shift towards fewer cars can help our cities not only survive, but thrive.

The process may not be simple, but there is a practical and easy strategy that can help people see streets differently: temporarily taking cars off the street.

essay on benefits of cars

How to get people out of their cars continues to be a global challenge. Even in cities where public space and public transport are safe and reliable, this can be difficult; it is especially so in places where these amenities are unsafe, unaffordable and unreliable. This is where temporary interventions such as car-free days can unlock a whole new approach to movement and mobility.

In the mid-1970s, Colombia’s capital city, Bogotá, saw the birth of what would become a global movement to make streets safer, more inclusive and more appealing to city dwellers. It is called Ciclovia, often known as ‘open streets’ in English-speaking countries, and entails the creation of car-free routes throughout the city every Sunday and public holiday.

The swarms of cyclists that take over city streets on these occasions is a real spectacle. Even though the impact on mobility patterns has not yet been fully understood, it is clear that in places like Bogotá, Ciclovía was the genesis of bicycle infrastructure in the city and perhaps the country. Culture and environment has helped the movement to grow bicycling in Colombia: people have relied on the bicycle to travel for more than 100 years and professional cycling is a source of national pride. This might not be the case everywhere, but the worldwide frenzy around urban cycling makes this an opportune moment to try car-free street programmes and put them to the test.

On most days, our city streets are clogged with motorised traffic and, in some cases, crime and pollution. Temporary car-free space thus becomes a platform to exercise our right to the city and to co-create a new urban vision.

In most Latin American capitals, governments run a weekly Open Streets programme. As acknowledged at a recent congress of Ciclovia initiatives in the region , many local officials have bought into the concept and one of the key objectives of this programme is to bring happiness to their citizens. This, as far as non-material infrastructure goes, is what city-making is really about: the sense of belonging, involvement and self-determination, which is best expressed in physical joy.

Great efforts have been made to measure the impact of Ciclovia in Latin American cities’ public health. In Colombia, for instance, researchers from Los Andes University have demonstrated that for every dollar spent on the programme, three dollars are saved on public health. The Ministry of Sport has also helped create a national network to promote the programme in more cities and towns of the country and continues to carry out rigorous studies to ascertain what type of physical activity curriculum is most effective. In getting a regular dosage of physical activity as recommended by medical practitioners, there is no better place than kilometres of car-free space in which thousands – and in the case of Bogotá, millions – are also exercising and moving. As the Latin American network likes to explain, “it is a healthy epidemic ”. And it is one that keeps growing, not only in Latin America but across the globe, with African cities most recently joining through the creation of Open Streets programmes in places like Cape Town , Johannesburg, Addis Ababa , Abuja , Nairobi, Kigali and more.

Have you read?

Now's the time to take up cycling - here are 6 reasons why, why we need to encourage cycling everywhere, cut congestion by taking cars off the road. and moving them underground.

In cities where people have been historically segregated and economic disparity continues to dig deep trenches between communities, creating a space of inclusion can be powerful. In Bogotá, the impact is such that areas which are normally out of bounds, both because they exclude the poor or because they are deemed to be too dangerous, become welcoming spaces for everyone to experience and enjoy.

Similarly, in Cape Town, where the programme has been tested in different parts of a city where spaces of racial and social integration are rare, Open Streets is a symbol of a new future, because young people are able to experience a city where streets are democratised and inclusive of all ages, races and backgrounds.

To ensure sustainable cities all around, we must take steps to shift away from the current over-dependency on the automobile. We can begin this process by thinking how we re-organize and utilize public space for the benefit of not only new design and infrastructure, but also for new generations to think of that space differently and therefore create new narratives around it. Temporary interventions work with existing assets and focus on shifting people’s perception which will ultimately shape how we view and exercise sustainable urban planning in the long term.

Don't miss any update on this topic

Create a free account and access your personalized content collection with our latest publications and analyses.

License and Republishing

World Economic Forum articles may be republished in accordance with the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License, and in accordance with our Terms of Use.

The views expressed in this article are those of the author alone and not the World Economic Forum.

The Agenda .chakra .wef-n7bacu{margin-top:16px;margin-bottom:16px;line-height:1.388;font-weight:400;} Weekly

A weekly update of the most important issues driving the global agenda

.chakra .wef-1dtnjt5{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;} More on Cities and Urbanization .chakra .wef-17xejub{-webkit-flex:1;-ms-flex:1;flex:1;justify-self:stretch;-webkit-align-self:stretch;-ms-flex-item-align:stretch;align-self:stretch;} .chakra .wef-nr1rr4{display:-webkit-inline-box;display:-webkit-inline-flex;display:-ms-inline-flexbox;display:inline-flex;white-space:normal;vertical-align:middle;text-transform:uppercase;font-size:0.75rem;border-radius:0.25rem;font-weight:700;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;line-height:1.2;-webkit-letter-spacing:1.25px;-moz-letter-spacing:1.25px;-ms-letter-spacing:1.25px;letter-spacing:1.25px;background:none;padding:0px;color:#B3B3B3;-webkit-box-decoration-break:clone;box-decoration-break:clone;-webkit-box-decoration-break:clone;}@media screen and (min-width:37.5rem){.chakra .wef-nr1rr4{font-size:0.875rem;}}@media screen and (min-width:56.5rem){.chakra .wef-nr1rr4{font-size:1rem;}} See all

essay on benefits of cars

How Kiel became a pioneering Zero Waste City, and what it can teach the rest of the world

Victoria Masterson

April 17, 2024

essay on benefits of cars

From São Paulo to Venice: 15 cities with ambitious zero-carbon projects

April 12, 2024

essay on benefits of cars

The world is facing a 70% supply shortfall in low-carbon buildings, new report says – here’s why

April 11, 2024

essay on benefits of cars

How cities can flex their purchasing power to stimulate innovation

Sam Markey and Andrew Watkins

April 5, 2024

essay on benefits of cars

Global earthquakes underscore the importance of resilient infrastructure

H. Kit Miyamoto, Olivia Nielsen, Ommid Saberi and Guido Licciardi

March 27, 2024

essay on benefits of cars

Paris aims to host the most sustainable Olympics ever – here's how the city is preparing

March 26, 2024

  • Search Menu
  • Browse content in A - General Economics and Teaching
  • Browse content in A1 - General Economics
  • A10 - General
  • A11 - Role of Economics; Role of Economists; Market for Economists
  • A12 - Relation of Economics to Other Disciplines
  • A13 - Relation of Economics to Social Values
  • A14 - Sociology of Economics
  • Browse content in A2 - Economic Education and Teaching of Economics
  • A20 - General
  • A29 - Other
  • A3 - Collective Works
  • Browse content in B - History of Economic Thought, Methodology, and Heterodox Approaches
  • Browse content in B0 - General
  • B00 - General
  • Browse content in B1 - History of Economic Thought through 1925
  • B10 - General
  • B11 - Preclassical (Ancient, Medieval, Mercantilist, Physiocratic)
  • B12 - Classical (includes Adam Smith)
  • B13 - Neoclassical through 1925 (Austrian, Marshallian, Walrasian, Stockholm School)
  • B14 - Socialist; Marxist
  • B15 - Historical; Institutional; Evolutionary
  • B16 - History of Economic Thought: Quantitative and Mathematical
  • B17 - International Trade and Finance
  • B19 - Other
  • Browse content in B2 - History of Economic Thought since 1925
  • B20 - General
  • B21 - Microeconomics
  • B22 - Macroeconomics
  • B23 - Econometrics; Quantitative and Mathematical Studies
  • B24 - Socialist; Marxist; Sraffian
  • B25 - Historical; Institutional; Evolutionary; Austrian
  • B26 - Financial Economics
  • B27 - International Trade and Finance
  • B29 - Other
  • Browse content in B3 - History of Economic Thought: Individuals
  • B30 - General
  • B31 - Individuals
  • Browse content in B4 - Economic Methodology
  • B40 - General
  • B41 - Economic Methodology
  • B49 - Other
  • Browse content in B5 - Current Heterodox Approaches
  • B50 - General
  • B51 - Socialist; Marxian; Sraffian
  • B52 - Institutional; Evolutionary
  • B53 - Austrian
  • B54 - Feminist Economics
  • B55 - Social Economics
  • B59 - Other
  • Browse content in C - Mathematical and Quantitative Methods
  • Browse content in C0 - General
  • C00 - General
  • C02 - Mathematical Methods
  • Browse content in C1 - Econometric and Statistical Methods and Methodology: General
  • C10 - General
  • C12 - Hypothesis Testing: General
  • C13 - Estimation: General
  • C14 - Semiparametric and Nonparametric Methods: General
  • C18 - Methodological Issues: General
  • C19 - Other
  • Browse content in C2 - Single Equation Models; Single Variables
  • C20 - General
  • C21 - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
  • C22 - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
  • C23 - Panel Data Models; Spatio-temporal Models
  • C25 - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
  • Browse content in C3 - Multiple or Simultaneous Equation Models; Multiple Variables
  • C30 - General
  • C32 - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
  • C34 - Truncated and Censored Models; Switching Regression Models
  • C38 - Classification Methods; Cluster Analysis; Principal Components; Factor Models
  • Browse content in C4 - Econometric and Statistical Methods: Special Topics
  • C43 - Index Numbers and Aggregation
  • C44 - Operations Research; Statistical Decision Theory
  • Browse content in C5 - Econometric Modeling
  • C50 - General
  • Browse content in C6 - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
  • C60 - General
  • C61 - Optimization Techniques; Programming Models; Dynamic Analysis
  • C62 - Existence and Stability Conditions of Equilibrium
  • C63 - Computational Techniques; Simulation Modeling
  • C65 - Miscellaneous Mathematical Tools
  • C67 - Input-Output Models
  • Browse content in C8 - Data Collection and Data Estimation Methodology; Computer Programs
  • C82 - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
  • C89 - Other
  • Browse content in C9 - Design of Experiments
  • C90 - General
  • C91 - Laboratory, Individual Behavior
  • C92 - Laboratory, Group Behavior
  • C93 - Field Experiments
  • Browse content in D - Microeconomics
  • Browse content in D0 - General
  • D01 - Microeconomic Behavior: Underlying Principles
  • D02 - Institutions: Design, Formation, Operations, and Impact
  • D03 - Behavioral Microeconomics: Underlying Principles
  • Browse content in D1 - Household Behavior and Family Economics
  • D10 - General
  • D11 - Consumer Economics: Theory
  • D12 - Consumer Economics: Empirical Analysis
  • D13 - Household Production and Intrahousehold Allocation
  • D14 - Household Saving; Personal Finance
  • Browse content in D2 - Production and Organizations
  • D20 - General
  • D21 - Firm Behavior: Theory
  • D22 - Firm Behavior: Empirical Analysis
  • D23 - Organizational Behavior; Transaction Costs; Property Rights
  • D24 - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
  • D25 - Intertemporal Firm Choice: Investment, Capacity, and Financing
  • Browse content in D3 - Distribution
  • D30 - General
  • D31 - Personal Income, Wealth, and Their Distributions
  • D33 - Factor Income Distribution
  • D39 - Other
  • Browse content in D4 - Market Structure, Pricing, and Design
  • D40 - General
  • D41 - Perfect Competition
  • D42 - Monopoly
  • D43 - Oligopoly and Other Forms of Market Imperfection
  • D46 - Value Theory
  • Browse content in D5 - General Equilibrium and Disequilibrium
  • D50 - General
  • D51 - Exchange and Production Economies
  • D57 - Input-Output Tables and Analysis
  • D58 - Computable and Other Applied General Equilibrium Models
  • Browse content in D6 - Welfare Economics
  • D60 - General
  • D61 - Allocative Efficiency; Cost-Benefit Analysis
  • D62 - Externalities
  • D63 - Equity, Justice, Inequality, and Other Normative Criteria and Measurement
  • D64 - Altruism; Philanthropy
  • D69 - Other
  • Browse content in D7 - Analysis of Collective Decision-Making
  • D71 - Social Choice; Clubs; Committees; Associations
  • D72 - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior
  • D73 - Bureaucracy; Administrative Processes in Public Organizations; Corruption
  • D74 - Conflict; Conflict Resolution; Alliances; Revolutions
  • Browse content in D8 - Information, Knowledge, and Uncertainty
  • D80 - General
  • D81 - Criteria for Decision-Making under Risk and Uncertainty
  • D82 - Asymmetric and Private Information; Mechanism Design
  • D83 - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
  • D84 - Expectations; Speculations
  • D85 - Network Formation and Analysis: Theory
  • D86 - Economics of Contract: Theory
  • D87 - Neuroeconomics
  • Browse content in D9 - Micro-Based Behavioral Economics
  • D91 - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making
  • Browse content in E - Macroeconomics and Monetary Economics
  • Browse content in E0 - General
  • E00 - General
  • E01 - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
  • E02 - Institutions and the Macroeconomy
  • Browse content in E1 - General Aggregative Models
  • E10 - General
  • E11 - Marxian; Sraffian; Kaleckian
  • E12 - Keynes; Keynesian; Post-Keynesian
  • E13 - Neoclassical
  • E16 - Social Accounting Matrix
  • E17 - Forecasting and Simulation: Models and Applications
  • Browse content in E2 - Consumption, Saving, Production, Investment, Labor Markets, and Informal Economy
  • E20 - General
  • E21 - Consumption; Saving; Wealth
  • E22 - Investment; Capital; Intangible Capital; Capacity
  • E23 - Production
  • E24 - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
  • E25 - Aggregate Factor Income Distribution
  • E26 - Informal Economy; Underground Economy
  • E27 - Forecasting and Simulation: Models and Applications
  • Browse content in E3 - Prices, Business Fluctuations, and Cycles
  • E30 - General
  • E31 - Price Level; Inflation; Deflation
  • E32 - Business Fluctuations; Cycles
  • E37 - Forecasting and Simulation: Models and Applications
  • Browse content in E4 - Money and Interest Rates
  • E40 - General
  • E41 - Demand for Money
  • E42 - Monetary Systems; Standards; Regimes; Government and the Monetary System; Payment Systems
  • E43 - Interest Rates: Determination, Term Structure, and Effects
  • E44 - Financial Markets and the Macroeconomy
  • E49 - Other
  • Browse content in E5 - Monetary Policy, Central Banking, and the Supply of Money and Credit
  • E50 - General
  • E51 - Money Supply; Credit; Money Multipliers
  • E52 - Monetary Policy
  • E58 - Central Banks and Their Policies
  • Browse content in E6 - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook
  • E60 - General
  • E61 - Policy Objectives; Policy Designs and Consistency; Policy Coordination
  • E62 - Fiscal Policy
  • E63 - Comparative or Joint Analysis of Fiscal and Monetary Policy; Stabilization; Treasury Policy
  • E64 - Incomes Policy; Price Policy
  • E65 - Studies of Particular Policy Episodes
  • Browse content in F - International Economics
  • Browse content in F0 - General
  • F00 - General
  • F01 - Global Outlook
  • F02 - International Economic Order and Integration
  • Browse content in F1 - Trade
  • F10 - General
  • F11 - Neoclassical Models of Trade
  • F12 - Models of Trade with Imperfect Competition and Scale Economies; Fragmentation
  • F13 - Trade Policy; International Trade Organizations
  • F14 - Empirical Studies of Trade
  • F15 - Economic Integration
  • F16 - Trade and Labor Market Interactions
  • F17 - Trade Forecasting and Simulation
  • F18 - Trade and Environment
  • Browse content in F2 - International Factor Movements and International Business
  • F20 - General
  • F21 - International Investment; Long-Term Capital Movements
  • F22 - International Migration
  • F23 - Multinational Firms; International Business
  • Browse content in F3 - International Finance
  • F30 - General
  • F31 - Foreign Exchange
  • F32 - Current Account Adjustment; Short-Term Capital Movements
  • F33 - International Monetary Arrangements and Institutions
  • F34 - International Lending and Debt Problems
  • F35 - Foreign Aid
  • F36 - Financial Aspects of Economic Integration
  • F37 - International Finance Forecasting and Simulation: Models and Applications
  • F39 - Other
  • Browse content in F4 - Macroeconomic Aspects of International Trade and Finance
  • F40 - General
  • F41 - Open Economy Macroeconomics
  • F42 - International Policy Coordination and Transmission
  • F43 - Economic Growth of Open Economies
  • F44 - International Business Cycles
  • F45 - Macroeconomic Issues of Monetary Unions
  • F47 - Forecasting and Simulation: Models and Applications
  • Browse content in F5 - International Relations, National Security, and International Political Economy
  • F50 - General
  • F51 - International Conflicts; Negotiations; Sanctions
  • F53 - International Agreements and Observance; International Organizations
  • F54 - Colonialism; Imperialism; Postcolonialism
  • F55 - International Institutional Arrangements
  • F59 - Other
  • Browse content in F6 - Economic Impacts of Globalization
  • F60 - General
  • F61 - Microeconomic Impacts
  • F62 - Macroeconomic Impacts
  • F63 - Economic Development
  • F64 - Environment
  • F65 - Finance
  • Browse content in G - Financial Economics
  • Browse content in G0 - General
  • G00 - General
  • G01 - Financial Crises
  • Browse content in G1 - General Financial Markets
  • G10 - General
  • G11 - Portfolio Choice; Investment Decisions
  • G12 - Asset Pricing; Trading volume; Bond Interest Rates
  • G13 - Contingent Pricing; Futures Pricing
  • G14 - Information and Market Efficiency; Event Studies; Insider Trading
  • G15 - International Financial Markets
  • G18 - Government Policy and Regulation
  • G19 - Other
  • Browse content in G2 - Financial Institutions and Services
  • G20 - General
  • G21 - Banks; Depository Institutions; Micro Finance Institutions; Mortgages
  • G22 - Insurance; Insurance Companies; Actuarial Studies
  • G23 - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
  • G24 - Investment Banking; Venture Capital; Brokerage; Ratings and Ratings Agencies
  • G28 - Government Policy and Regulation
  • Browse content in G3 - Corporate Finance and Governance
  • G30 - General
  • G32 - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
  • G33 - Bankruptcy; Liquidation
  • G34 - Mergers; Acquisitions; Restructuring; Corporate Governance
  • G35 - Payout Policy
  • G38 - Government Policy and Regulation
  • Browse content in G5 - Household Finance
  • G51 - Household Saving, Borrowing, Debt, and Wealth
  • Browse content in H - Public Economics
  • Browse content in H1 - Structure and Scope of Government
  • H10 - General
  • H11 - Structure, Scope, and Performance of Government
  • H12 - Crisis Management
  • Browse content in H2 - Taxation, Subsidies, and Revenue
  • H20 - General
  • H22 - Incidence
  • H23 - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
  • H25 - Business Taxes and Subsidies
  • H26 - Tax Evasion and Avoidance
  • Browse content in H3 - Fiscal Policies and Behavior of Economic Agents
  • Browse content in H4 - Publicly Provided Goods
  • H40 - General
  • H41 - Public Goods
  • Browse content in H5 - National Government Expenditures and Related Policies
  • H50 - General
  • H53 - Government Expenditures and Welfare Programs
  • H55 - Social Security and Public Pensions
  • H56 - National Security and War
  • Browse content in H6 - National Budget, Deficit, and Debt
  • H60 - General
  • H62 - Deficit; Surplus
  • H63 - Debt; Debt Management; Sovereign Debt
  • H68 - Forecasts of Budgets, Deficits, and Debt
  • Browse content in H7 - State and Local Government; Intergovernmental Relations
  • H70 - General
  • H74 - State and Local Borrowing
  • H77 - Intergovernmental Relations; Federalism; Secession
  • Browse content in I - Health, Education, and Welfare
  • Browse content in I0 - General
  • I00 - General
  • Browse content in I1 - Health
  • I10 - General
  • I12 - Health Behavior
  • I14 - Health and Inequality
  • I15 - Health and Economic Development
  • Browse content in I2 - Education and Research Institutions
  • I20 - General
  • I21 - Analysis of Education
  • I23 - Higher Education; Research Institutions
  • I24 - Education and Inequality
  • I26 - Returns to Education
  • Browse content in I3 - Welfare, Well-Being, and Poverty
  • I30 - General
  • I31 - General Welfare
  • I32 - Measurement and Analysis of Poverty
  • I38 - Government Policy; Provision and Effects of Welfare Programs
  • Browse content in J - Labor and Demographic Economics
  • Browse content in J0 - General
  • J00 - General
  • J01 - Labor Economics: General
  • J08 - Labor Economics Policies
  • Browse content in J1 - Demographic Economics
  • J10 - General
  • J13 - Fertility; Family Planning; Child Care; Children; Youth
  • J15 - Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination
  • J16 - Economics of Gender; Non-labor Discrimination
  • J18 - Public Policy
  • Browse content in J2 - Demand and Supply of Labor
  • J20 - General
  • J21 - Labor Force and Employment, Size, and Structure
  • J22 - Time Allocation and Labor Supply
  • J23 - Labor Demand
  • J24 - Human Capital; Skills; Occupational Choice; Labor Productivity
  • J26 - Retirement; Retirement Policies
  • J28 - Safety; Job Satisfaction; Related Public Policy
  • J29 - Other
  • Browse content in J3 - Wages, Compensation, and Labor Costs
  • J30 - General
  • J31 - Wage Level and Structure; Wage Differentials
  • J32 - Nonwage Labor Costs and Benefits; Retirement Plans; Private Pensions
  • J33 - Compensation Packages; Payment Methods
  • J38 - Public Policy
  • Browse content in J4 - Particular Labor Markets
  • J40 - General
  • J41 - Labor Contracts
  • J42 - Monopsony; Segmented Labor Markets
  • J44 - Professional Labor Markets; Occupational Licensing
  • J45 - Public Sector Labor Markets
  • J46 - Informal Labor Markets
  • J48 - Public Policy
  • J49 - Other
  • Browse content in J5 - Labor-Management Relations, Trade Unions, and Collective Bargaining
  • J50 - General
  • J51 - Trade Unions: Objectives, Structure, and Effects
  • J52 - Dispute Resolution: Strikes, Arbitration, and Mediation; Collective Bargaining
  • J53 - Labor-Management Relations; Industrial Jurisprudence
  • J54 - Producer Cooperatives; Labor Managed Firms; Employee Ownership
  • J58 - Public Policy
  • Browse content in J6 - Mobility, Unemployment, Vacancies, and Immigrant Workers
  • J60 - General
  • J61 - Geographic Labor Mobility; Immigrant Workers
  • J62 - Job, Occupational, and Intergenerational Mobility
  • J63 - Turnover; Vacancies; Layoffs
  • J64 - Unemployment: Models, Duration, Incidence, and Job Search
  • J65 - Unemployment Insurance; Severance Pay; Plant Closings
  • J68 - Public Policy
  • J69 - Other
  • Browse content in J7 - Labor Discrimination
  • J71 - Discrimination
  • J78 - Public Policy
  • Browse content in J8 - Labor Standards: National and International
  • J80 - General
  • J81 - Working Conditions
  • J83 - Workers' Rights
  • J88 - Public Policy
  • Browse content in K - Law and Economics
  • Browse content in K0 - General
  • K00 - General
  • Browse content in K1 - Basic Areas of Law
  • K11 - Property Law
  • K12 - Contract Law
  • K13 - Tort Law and Product Liability; Forensic Economics
  • Browse content in K2 - Regulation and Business Law
  • K20 - General
  • K21 - Antitrust Law
  • K22 - Business and Securities Law
  • K23 - Regulated Industries and Administrative Law
  • K25 - Real Estate Law
  • Browse content in K3 - Other Substantive Areas of Law
  • K31 - Labor Law
  • K39 - Other
  • Browse content in K4 - Legal Procedure, the Legal System, and Illegal Behavior
  • K40 - General
  • K41 - Litigation Process
  • K42 - Illegal Behavior and the Enforcement of Law
  • Browse content in L - Industrial Organization
  • Browse content in L0 - General
  • L00 - General
  • Browse content in L1 - Market Structure, Firm Strategy, and Market Performance
  • L10 - General
  • L11 - Production, Pricing, and Market Structure; Size Distribution of Firms
  • L12 - Monopoly; Monopolization Strategies
  • L13 - Oligopoly and Other Imperfect Markets
  • L14 - Transactional Relationships; Contracts and Reputation; Networks
  • L16 - Industrial Organization and Macroeconomics: Industrial Structure and Structural Change; Industrial Price Indices
  • Browse content in L2 - Firm Objectives, Organization, and Behavior
  • L20 - General
  • L21 - Business Objectives of the Firm
  • L22 - Firm Organization and Market Structure
  • L23 - Organization of Production
  • L24 - Contracting Out; Joint Ventures; Technology Licensing
  • L25 - Firm Performance: Size, Diversification, and Scope
  • L26 - Entrepreneurship
  • L29 - Other
  • Browse content in L3 - Nonprofit Organizations and Public Enterprise
  • L30 - General
  • L31 - Nonprofit Institutions; NGOs; Social Entrepreneurship
  • L32 - Public Enterprises; Public-Private Enterprises
  • L33 - Comparison of Public and Private Enterprises and Nonprofit Institutions; Privatization; Contracting Out
  • L39 - Other
  • Browse content in L4 - Antitrust Issues and Policies
  • L40 - General
  • L41 - Monopolization; Horizontal Anticompetitive Practices
  • L44 - Antitrust Policy and Public Enterprises, Nonprofit Institutions, and Professional Organizations
  • Browse content in L5 - Regulation and Industrial Policy
  • L50 - General
  • L52 - Industrial Policy; Sectoral Planning Methods
  • Browse content in L6 - Industry Studies: Manufacturing
  • L60 - General
  • L61 - Metals and Metal Products; Cement; Glass; Ceramics
  • L66 - Food; Beverages; Cosmetics; Tobacco; Wine and Spirits
  • L67 - Other Consumer Nondurables: Clothing, Textiles, Shoes, and Leather Goods; Household Goods; Sports Equipment
  • Browse content in L7 - Industry Studies: Primary Products and Construction
  • L78 - Government Policy
  • Browse content in L8 - Industry Studies: Services
  • L80 - General
  • L82 - Entertainment; Media
  • Browse content in L9 - Industry Studies: Transportation and Utilities
  • L97 - Utilities: General
  • L98 - Government Policy
  • Browse content in M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics
  • Browse content in M0 - General
  • M00 - General
  • Browse content in M1 - Business Administration
  • M10 - General
  • M12 - Personnel Management; Executives; Executive Compensation
  • M13 - New Firms; Startups
  • M16 - International Business Administration
  • Browse content in M2 - Business Economics
  • M21 - Business Economics
  • Browse content in M3 - Marketing and Advertising
  • M37 - Advertising
  • Browse content in M4 - Accounting and Auditing
  • M41 - Accounting
  • M49 - Other
  • Browse content in M5 - Personnel Economics
  • M51 - Firm Employment Decisions; Promotions
  • M52 - Compensation and Compensation Methods and Their Effects
  • M54 - Labor Management
  • M55 - Labor Contracting Devices
  • Browse content in N - Economic History
  • Browse content in N0 - General
  • N00 - General
  • N01 - Development of the Discipline: Historiographical; Sources and Methods
  • Browse content in N1 - Macroeconomics and Monetary Economics; Industrial Structure; Growth; Fluctuations
  • N10 - General, International, or Comparative
  • N11 - U.S.; Canada: Pre-1913
  • N12 - U.S.; Canada: 1913-
  • N13 - Europe: Pre-1913
  • N14 - Europe: 1913-
  • N15 - Asia including Middle East
  • N17 - Africa; Oceania
  • Browse content in N2 - Financial Markets and Institutions
  • N20 - General, International, or Comparative
  • N23 - Europe: Pre-1913
  • N24 - Europe: 1913-
  • N25 - Asia including Middle East
  • N26 - Latin America; Caribbean
  • Browse content in N3 - Labor and Consumers, Demography, Education, Health, Welfare, Income, Wealth, Religion, and Philanthropy
  • N30 - General, International, or Comparative
  • N32 - U.S.; Canada: 1913-
  • N34 - Europe: 1913-
  • Browse content in N4 - Government, War, Law, International Relations, and Regulation
  • N43 - Europe: Pre-1913
  • Browse content in N5 - Agriculture, Natural Resources, Environment, and Extractive Industries
  • N50 - General, International, or Comparative
  • N51 - U.S.; Canada: Pre-1913
  • N52 - U.S.; Canada: 1913-
  • N55 - Asia including Middle East
  • N7 - Transport, Trade, Energy, Technology, and Other Services
  • Browse content in N8 - Micro-Business History
  • N80 - General, International, or Comparative
  • Browse content in O - Economic Development, Innovation, Technological Change, and Growth
  • Browse content in O1 - Economic Development
  • O10 - General
  • O11 - Macroeconomic Analyses of Economic Development
  • O12 - Microeconomic Analyses of Economic Development
  • O13 - Agriculture; Natural Resources; Energy; Environment; Other Primary Products
  • O14 - Industrialization; Manufacturing and Service Industries; Choice of Technology
  • O15 - Human Resources; Human Development; Income Distribution; Migration
  • O16 - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance
  • O17 - Formal and Informal Sectors; Shadow Economy; Institutional Arrangements
  • O18 - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
  • O19 - International Linkages to Development; Role of International Organizations
  • Browse content in O2 - Development Planning and Policy
  • O20 - General
  • O23 - Fiscal and Monetary Policy in Development
  • O24 - Trade Policy; Factor Movement Policy; Foreign Exchange Policy
  • O25 - Industrial Policy
  • Browse content in O3 - Innovation; Research and Development; Technological Change; Intellectual Property Rights
  • O30 - General
  • O31 - Innovation and Invention: Processes and Incentives
  • O32 - Management of Technological Innovation and R&D
  • O33 - Technological Change: Choices and Consequences; Diffusion Processes
  • O34 - Intellectual Property and Intellectual Capital
  • O35 - Social Innovation
  • O38 - Government Policy
  • O39 - Other
  • Browse content in O4 - Economic Growth and Aggregate Productivity
  • O40 - General
  • O41 - One, Two, and Multisector Growth Models
  • O43 - Institutions and Growth
  • O44 - Environment and Growth
  • O47 - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
  • Browse content in O5 - Economywide Country Studies
  • O50 - General
  • O51 - U.S.; Canada
  • O52 - Europe
  • O53 - Asia including Middle East
  • O54 - Latin America; Caribbean
  • O55 - Africa
  • Browse content in P - Economic Systems
  • Browse content in P0 - General
  • P00 - General
  • Browse content in P1 - Capitalist Systems
  • P10 - General
  • P11 - Planning, Coordination, and Reform
  • P12 - Capitalist Enterprises
  • P13 - Cooperative Enterprises
  • P14 - Property Rights
  • P16 - Political Economy
  • P17 - Performance and Prospects
  • Browse content in P2 - Socialist Systems and Transitional Economies
  • P20 - General
  • P21 - Planning, Coordination, and Reform
  • P25 - Urban, Rural, and Regional Economics
  • Browse content in P3 - Socialist Institutions and Their Transitions
  • P30 - General
  • P31 - Socialist Enterprises and Their Transitions
  • P35 - Public Economics
  • P36 - Consumer Economics; Health; Education and Training; Welfare, Income, Wealth, and Poverty
  • P37 - Legal Institutions; Illegal Behavior
  • Browse content in P4 - Other Economic Systems
  • P40 - General
  • P41 - Planning, Coordination, and Reform
  • P46 - Consumer Economics; Health; Education and Training; Welfare, Income, Wealth, and Poverty
  • P48 - Political Economy; Legal Institutions; Property Rights; Natural Resources; Energy; Environment; Regional Studies
  • Browse content in P5 - Comparative Economic Systems
  • P50 - General
  • P51 - Comparative Analysis of Economic Systems
  • P52 - Comparative Studies of Particular Economies
  • Browse content in Q - Agricultural and Natural Resource Economics; Environmental and Ecological Economics
  • Browse content in Q0 - General
  • Q00 - General
  • Q01 - Sustainable Development
  • Browse content in Q1 - Agriculture
  • Q15 - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
  • Q18 - Agricultural Policy; Food Policy
  • Browse content in Q3 - Nonrenewable Resources and Conservation
  • Q30 - General
  • Browse content in Q4 - Energy
  • Q41 - Demand and Supply; Prices
  • Q42 - Alternative Energy Sources
  • Q48 - Government Policy
  • Browse content in Q5 - Environmental Economics
  • Q50 - General
  • Q54 - Climate; Natural Disasters; Global Warming
  • Q56 - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
  • Q57 - Ecological Economics: Ecosystem Services; Biodiversity Conservation; Bioeconomics; Industrial Ecology
  • Browse content in R - Urban, Rural, Regional, Real Estate, and Transportation Economics
  • Browse content in R0 - General
  • R00 - General
  • Browse content in R1 - General Regional Economics
  • R10 - General
  • R11 - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
  • R12 - Size and Spatial Distributions of Regional Economic Activity
  • R15 - Econometric and Input-Output Models; Other Models
  • Browse content in R2 - Household Analysis
  • R20 - General
  • Browse content in R3 - Real Estate Markets, Spatial Production Analysis, and Firm Location
  • R30 - General
  • R31 - Housing Supply and Markets
  • R4 - Transportation Economics
  • Browse content in R5 - Regional Government Analysis
  • R51 - Finance in Urban and Rural Economies
  • R58 - Regional Development Planning and Policy
  • Browse content in Y - Miscellaneous Categories
  • Browse content in Y1 - Data: Tables and Charts
  • Y10 - Data: Tables and Charts
  • Browse content in Y3 - Book Reviews (unclassified)
  • Y30 - Book Reviews (unclassified)
  • Browse content in Y8 - Related Disciplines
  • Y80 - Related Disciplines
  • Browse content in Z - Other Special Topics
  • Browse content in Z0 - General
  • Z00 - General
  • Browse content in Z1 - Cultural Economics; Economic Sociology; Economic Anthropology
  • Z10 - General
  • Z11 - Economics of the Arts and Literature
  • Z12 - Religion
  • Z13 - Economic Sociology; Economic Anthropology; Social and Economic Stratification
  • Z18 - Public Policy
  • Browse content in Z2 - Sports Economics
  • Z29 - Other
  • Advance articles
  • Editor's Choice
  • Author Guidelines
  • Submission Site
  • Open Access
  • About Cambridge Journal of Economics
  • About the Cambridge Political Economy Society
  • Editorial Board
  • Advertising and Corporate Services
  • Self-Archiving Policy
  • Dispatch Dates
  • Terms and Conditions
  • Journals on Oxford Academic
  • Books on Oxford Academic

Issue Cover

Article Contents

1. introduction, 2. paris purposes and the future we made, 3. the problem of unmaking, 4. conclusion: unmaking and is paris possible, conflict of interest statement, bibliography.

  • < Previous

Electric vehicles: the future we made and the problem of unmaking it

  • Article contents
  • Figures & tables
  • Supplementary Data

Jamie Morgan, Electric vehicles: the future we made and the problem of unmaking it, Cambridge Journal of Economics , Volume 44, Issue 4, July 2020, Pages 953–977, https://doi.org/10.1093/cje/beaa022

  • Permissions Icon Permissions

The uptake of battery electric vehicles (BEVs), subject to bottlenecks, seems to have reached a tipping point in the UK and this mirrors a general trend globally. BEVs are being positioned as one significant strand in the web of policy intended to translate the good intentions of Article 2 of the Conference of the Parties 21 Paris Agreement into reality. Governments and municipalities are anticipating that a widespread shift to BEVs will significantly reduce transport-related carbon emissions and, therefore, augment their nationally determined contributions to emissions reduction within the Paris Agreement. However, matters are more complicated than they may appear. There is a difference between thinking we can just keep relying on human ingenuity to solve problems after they emerge and engaging in fundamental social redesign to prevent the trajectories of harm. BEVs illustrate this. The contribution to emissions reduction per vehicle unit may be less than the public initially perceive since the important issue here is the lifecycle of the BEV and this is in no sense zero-emission. Furthermore, even though one can make the case that BEVs are a superior alternative to the fossil fuel-powered internal combustion engine, the transition to BEVs may actually facilitate exceeding the carbon budget on which the Paris Agreement ultimately rests. Whether in fact it does depends on the nature of the policy that shapes the transition. If the transition is a form of substitution that conforms to rather than shifts against current global scales and trends in private transportation, then it is highly likely that BEVs will be a successful failure. For this not to be the case, then the transition to BEVs must be coordinated with a transformation of the current scales and trends in private transportation. That is, a significant reduction in dependence on and individual ownership of powered vehicles, a radical reimagining of the nature of private conveyance and of public transportation.

According to the UK Society of Motor Manufacturers and Traders (SMMT), the Tesla Model 3 sold 2,685 units in December 2019, making it the 9th best-selling car in the country in that month (by new registrations; in August, a typically slow month for sales, it had been 3rd with 2,082 units sold; Lea, 2019; SMMT, 2019 ). As of early 2020, battery electric vehicles (BEVs) such as the new Hyundai Electric Kona had a two-year waiting list for delivery and the Kia e-Niro a one-year wait. The uptake of electric vehicles, subject to bottlenecks, seems to have reached a tipping point in the UK and this transcends the popularity of any given model. This possible tipping point mirrors a general trend globally (however, see later for quite what this means). At the regional, national and municipal scale, public health and environmentally informed legislation are encouraging vehicle manufacturers to invest heavily in alternative fuel vehicles and, in particular, BEVs and plug-in hybrid vehicles (PHEVs), which are jointly categorised within ‘ultra-low emission vehicles’ (ULEVs). 1 According to a report by Deloitte, more than 20 major cities worldwide announced plans in 2017–18 to ban petrol and diesel cars by 2030 or sooner ( Deloitte, 2018 , p. 5). All the major manufacturers have or are launching BEV models, and so vehicles are becoming available across the status and income spectrum that has in the past determined market segmentation. According to the consultancy Frost & Sullivan (2019) , there were 207 models (143 BEVs, 64 PHEVs) available globally in 2018 compared with 165 in 2017.

In 2018, the UK government published its Road to Zero policy commitment and introduced the Automated and Electric Vehicles Act 2018 , which empowers future governments to regulate regarding the required infrastructure. Road to Zero announced an ‘expectation’ that between 50% and 70% of new cars and vans will be electric by 2030 and the intention to ‘end the sale of new conventional petrol and diesel cars and vans by 2040’, with the ‘ambition’ that by 2050 almost all vehicles on the road will be ‘zero-emission’ at the point of use ( Department for Transport, 2018 ). Progress towards these goals was to be reviewed 2025. 2 However, on 4 February 2020, Prime Minister Boris Johnson announced that in the run-up to Conference of the Parties (COP)26 in Glasgow (now postponed), Britain would bring forward its 2040 goal to 2035. The UK is a member of the Clean Energy Ministerial Campaign (CEM), which launched the EV30@30 initiative in 2017, and its Road to Zero policy commitments broadly align with those of many European countries. 3 Norway has longstanding generous incentives for BEVs ( Holtsmark and Skonhoft, 2014 ) and 31% of all cars sold in 2018 and just under 50% in the first half of 2019 in Norway were BEVs. According to the International Energy Agency (IEA), Norway is the per capita global leader in electric vehicle uptake ( IEA, 2019A ). 4

BEVs, then, are being positioned as one significant strand in the web of policy intended to translate the good intentions of Article 2 of the COP 21 Paris Agreement into reality (see Morgan, 2016 ; IEA, 2019A , pp. 11–2). Clearly, governments and municipalities are anticipating that a widespread shift to electric vehicles will significantly reduce transport-related carbon emissions and, therefore, augment their nationally determined contributions (NDCs) to emissions reduction within the Paris Agreement. And, since the BEV trend is global, the impacts potentially also apply to countries whose relation to Paris is more problematic, including the USA (for Trump and his context, see Gills et al. , 2019 ). However, matters are more complicated than they may appear. Clearly, innovation and technological change are important components in our response to the challenge of climate change. However, there is a difference between thinking we can just keep relying on human ingenuity to solve problems after they emerge and engaging in fundamental social redesign to prevent the trajectories of harm. BEVs illustrate this. In what follows we explore the issues.

The aim of this paper, then, is to argue that it is a mistake to claim, assert or assume that BEVs are necessarily a panacea for the emissions problem. To do so would be an instance of what ecological economists refer to as ‘technocentrism’, as though simply substituting BEVs for existing internal combustion engine (ICE) vehicles was sufficient. The literature on this is, of course, vast, if one consults specialist journals or recent monographs (e.g. Chapman, 2007 ; Bailey and Wilson, 2009 ; Williamson et al. , 2018 ), but remains relatively under-explored in general political economy circles at a time of ‘Climate Emergency’, and so warrants discussion in introductory and indicative fashion, setting out, however incompletely, the range of issues at stake. To be clear, the very fact that there is a range is itself important. BEVs are technology, technologies have social contexts and social contexts include systemic features and related attitudes and behaviours. Technocentrism distracts from appropriate recognition of this. At its worse, technocentrism fails to address and so works to reproduce a counter-productive ecological modernisation: the technological focus facilitates socio-economic trends, which are part of the broader problem rather than solutions to it. In the case of BEVs, key areas to consider and points to make include:

Transport is now one of, if not, the major source of carbon emissions in the UK and in many other countries. Transport emissions stubbornly resist reduction. The UK, like many other countries, exhibits contradictory trends and policy claims regarding future carbon emissions reductions. As such, it is an error to simply assume prior emissions reduction trends will necessarily continue into the future, and the new net-zero goal highlights the short time line and urgency of the problem.

Whilst BEVs are, from an emissions point of view, a superior technology to ICE vehicles, this is less than an ordinary member of the public might think. ‘Embodied emissions’, ‘energy mix’ and ‘life cycle’ analysis all matter.

There is a difference between ‘superior technology’ and ‘superior choice’, the latter must also take account of the scale of and general trend growth in vehicle ownership and use. It is this that creates a meaningful context for what substitution can be reasonably expected to achieve.

A 1:1 substitution of BEVs for ICE vehicles and general growth in the number of vehicles potentially violates the Precautionary Principle. It creates a problem that did not need to exist, e.g. since there is net growth, it involves ‘emission reductions’ within new emissions sources and this is reckless. Inter alia , a host of fallacies and other risks inherent to the socio-economy of BEVs and resource extraction/dependence also apply.

As such, it makes more sense to resist rather than facilitate techno-political lock-in or path-dependence on private transportation and instead to coordinate any transition to BEVs with a more fundamental social redesign of public transport and transport options.

This systematic statement should be kept in mind whilst reading the following. Cumulatively, the points stated facilitate appropriate consideration of the question: What kind of solution are BEVs to what kind of problem? And we return to this in the conclusion. It is also worth bearing in mind, though it is not core to the explicit argument pursued, that an economy is a complex evolving open system and economics has not only struggled to adequately address this in general, it has particularly done so in terms of ecological issues (for relevant critique, see especially the work of Clive Spash and collected, Fullbrook and Morgan, 2019 ). 5 Since we assume limited prior knowledge on the part of the reader, we begin by briefly setting out the road to the current carbon budget problem.

The United Nations Framework Convention on Climate Change (UNFCCC) was created in 1992. Article 2 of the Convention states its goal as, the ‘stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system’ ( UNFCCC, 1992 , p. 4; Gills and Morgan, 2019 ). Emissions are cumulative because emitted CO 2 can stay in the atmosphere for well over one hundred years (other greenhouse gases [GHGs] tend to be of shorter duration). Our climate future is made now. The Intergovernmental Panel on Climate Change (IPCC) collates existent models to produce a forecast range and has typically used atmospheric CO 2 of 450 ppm as a level likely to trigger a 2°C average warming. This has translated into a ‘carbon budget’ restricting total cumulative emissions to the lower end of 3,000+ Gigatonnes of CO 2 (GtCO 2 ). In the last few years, climate scientists have begun to argue that positive feedback loops with adverse warming and other climatological and ecological effects may be underestimated in prior models (see Hansen et al. , 2017 ; Steffen et al. , 2018 ). Such concerns are one reason why Article 2 of the UNFCCC COP 21 Paris Agreement included a goal of at least trying to do better than the 2°C target—restricting warming to 1.5°C. This further restricts the available carbon budget. However, current Paris Agreement country commitments stated as NDCs look set to exceed the 3,000+ target in a matter of a few short years ( UNFCCC, 2015 ; Morgan, 2016 , 2017 ).

Since the industrial revolution began, we have already produced more than 2,000 GtCO 2 . Total annual emissions have increased rather than decreased over the period in which the problem has been recognised. The United Nations Environment Program (UNEP) publishes periodic ‘emissions gap’ reports. Its recent 10-year summary report notes that emissions grew at an average 1.6% per year from 2008 to 2017 and ‘show no signs of peaking’ ( Christensen and Olhoff, 2019 , p. 3). In 2018, the 9th Report stated that annual emissions in 2017 stood at a record of 53.5 Gigatonnes of CO 2 and equivalents (GtCO 2e ) ( UNEP, 2018 , p. xv). This compares to less than 25 GtCO 2 in 2000 and far exceeds on a global basis the level in the Kyoto Protocol benchmark year of 1990. According to the 9th Emissions Gap Report, 184 parties to the Paris Agreement had so far provided NDCs. If these NDCs are achieved, annual emissions in 2030 are projected to still be 53 GtCO 2e . However, if the current ‘implementation deficit’ continues global annual emissions could increase by about 10% to 59 GtCO 2e . This is because current emissions policy is not sufficient to offset the ‘key drivers’ of ‘economic growth and population growth’ ( Christensen and Olhoff, 2019 , p. 3). By sharp contrast, the IPCC Global Warming of 1.5 ° C report states that annual global emissions must fall by 45% from the 2017 figure by 2030 and become net zero by mid-century in order to achieve the Paris target ( IPCC, 2018 ). According to the subsequent 10th Emissions Gap Report, emissions increased yet again to 55.3 GtCO 2e in 2018 and, as a result of this adverse trend, emissions need to fall by 7.6% per year from 2020 to 2030 to achieve the IPCC goal, and this contrasts with less than 4% had reductions begun in 2010 and 15% if they are delayed until 2025 ( UNEP 2019A ). Current emissions trends mean that we will achieve an additional 500 GtCO 2 quickly and imply an average warming of 3 to 4°C over the rest of the century and into the next. We are thus on track for the ‘dangerous anthropogenic interference with the climate system’ that the COP process is intended to prevent ( UNFCCC, 1992 , p. 4). According to the 10th Emissions Gap Report, 78% of all emissions derive from the G-20 nations, and whilst many countries had recognised the need for net zero, only 5 countries of the G-20 had committed to this and none had yet submitted formal strategies. COP 25, December 2019, meanwhile, resulted in no overall progress other than on measurement and finance (for detailed analysis, see Newell and Taylor, 2020 ). As such, the situation is urgent and becoming more so.

Problems, moreover, have already begun to manifest ( UNEP 2019B , 2019B ; IPCC 2019A , 2019B ). Climate change does not respect borders, some countries may be more adversely affected sooner than others, but there is no reason to assume that cumulative effects will be localised. Moreover, there is no reason to assume that they will be manageable based on our current designs for life. In November 2019, several prominent systems and climate scientists published a survey essay in Nature highlighting nine critical climate tipping points that we are either imminently approaching or may have already exceeded ( Lenton et al. , 2018 ). In that same month, more than 11,250 scientists from 153 countries (the Alliance of World Scientists) signed a letter published in BioScience concurring that we now face a genuine existential ‘Climate Emergency’ and warning of ‘ecocide’ if ‘major transformations’ are not forthcoming ( Ripple et al. , 2019 ). We live in incredibly complex interconnected societies based on long supply chains and just in time delivery–few of us (including nations) are self-sufficient. Global human civilisation is extremely vulnerable and the carbon emission problem is only one of several conjoint problems created by our expansionary industrialised-consumption system. Appropriate and timely policy solutions are, therefore, imperative. Cambridge now has a Centre for the Study of Existential Risk and Oxford a Future of Humanity Institute (see also Servigne and Stevens, 2015 ). This is serious research, not millenarian cultishness. The Covid-19 outbreak only serves to underscore the fragility of our systems. As Michael Marmot, Professor of epidemiology has commented, the outbreak reveals not only how political decisions can make systems more vulnerable, but also how governments can, when sufficiently motivated, take immediate and radical action (Harvey, 2020). To reiterate, however, according to both the IPCC and UNEP, emissions must fall drastically. 6

Policy design and implementation are mainly national (domestic). As such, an initial focus on the UK provides a useful point of departure to contextualise what the transition to BEVs might be expected to achieve.

The UK is a Kyoto and Paris signatory. It is a member of the European Emissions Trading Scheme (ETS). The UK Climate Change Act 2008 was the world’s first long-term legally binding national framework for targeted statutory reductions in emissions. The Act required the UK to reduce its emissions by at least 80% by 2050 (below the 1990 baseline; this has been broadly in line with subsequent EU policy on the subject). 7 The Act put in place a system of five yearly ‘carbon budgets’ to keep the UK on an emissions reduction pathway to 2050. The subsequent carbon budgets have been produced with input from the Committee on Climate Change (CCC), an independent body created by the 2008 Act to advise the government. In November 2015, the CCC recommended a target of 57% below 1990 levels by the early 2030s (the fifth carbon budget). 8 Following the Paris Agreement’s new target of 1.5°C and the IPCC and UNEP reports late 2018, the CCC published the report Net Zero: The UK’s contribution to stopping global warming ( CCC, 2019 ). 9 The CCC report recognises that Paris creates additional responsibility for the UK to augment and accelerate its targets within the new bottom-up Paris NDC procedure. The CCC recommended an enhanced UK net-zero GHG emissions target (formally defined in terms of long-term and short-term GHGs) by 2050. This included emissions from aviation and shipping and with no use of strategies that offset or swap real emissions. In June 2019, Theresa May, then UK Prime Minister, committed to adopt the recommendation using secondary legislation (absorbed into the 2008 Act—but without the offset commitment). So, the UK is one of the few G-20 countries to, so far, provide a formal commitment on net zero, though as the UNEP notes, a commitment is not itself necessarily indicative of a realisable strategy. The CCC responded to the government announcement:

This is just the first step. The target must now be reinforced by credible UK policies, across government, inspiring a strong response from business, industry and society as a whole. The government has not yet moved formally to include international aviation and shipping within the target , but they have acknowledged that these sectors must be part of the whole economy strategy for net zero. We will assist by providing further analysis of how emissions reductions can be delivered in these sectors through domestic and international frameworks. 10

The development of policy is currently in flux during the Covid-19 lockdown and whilst Brexit reaches some kind of resolution. As noted in the Introduction section, however, May’s replacement, Boris Johnson has signalled his government’s commitment to achieving its statutory commitments. However, this has been met with some scepticism, not least because it has not been clear what new powers administrative bodies would have and over and above this many of the Cabinet are from the far right of the Conservative Party, and are on record as climate change sceptics or have a voting record of opposing environmentally focussed investment, taxes, subsidies and prohibitions (including the new Environment Secretary, George Eustice, formerly of UKIP). The policy may and hopefully will change, becoming more concrete, but it is still instructive to assess context and general trends.

The UK has one of the best records in the world on reducing emissions. However, given full context, this is not necessarily a cause for congratulation or confidence. It would be a mistake to think that emissions reduction exhibits a definite rate that can be projected from the past into the future. 11 This applies both nationally and globally. Some sources of relative reduction that are local or national have different significance on a global basis (they are partial transfers) and overall the closer one approaches net zero the more resistant or difficult it is likely to become to achieve reductions. The CCC has already begun to signal that the UK is now failing to meet its existent budgets. This follows periods of successive emissions reductions. According to the CCC, the UK has reduced its GHG emissions by approximately one-third since 1990. ‘Per capita emissions are now close to the global average at 7–8 tCO 2 e/person, having been over 50% above in 2008’ ( CCC, 2019 , p. 46). Other analyses are even more positive. According to Carbon Brief, emissions have fallen in seven consecutive years from 2013 to 2019 and by 40% compared with the 1990 benchmark. Carbon Brief claim that since 2010 the UK has the fastest rate of emissions reduction of any major economy. However, it concurs with the CCC that future likely reductions are less than the UK’s carbon budgets and that the new net-zero commitment requires: amounting to only an additional 10% reduction over the next decade to 2030. 12

Moreover, all analyses agree that the reduction has mainly been achieved by reducing coal output for use in electricity generation (switching to natural gas) and by relative deindustrialisation as the UK economy has continued to grow—manufacturing is a smaller part of a larger service-based economy. 13 And , the data are based on a production focussed accounting system. The accounting system does not include all emissions sources. It does not include those that the UK ‘imports’ based on consumption. UK consumption-based emissions per year are estimated to be about 70% greater than the production measure (for different methods, see DECC, 2015 ). 14 If consumption is included, the main estimates for falling emissions change to around a 10% reduction since 1990. Moreover, much of this has been achieved by relatively invisible historic transitions as the economy has evolved in lock-step with globalisation. That is, reductions have been ones that did not require the population to confront behaviours as they have developed. No onerous interventions have been imposed, as yet . 15 However, it does not follow that this can continue, since future reductions are likely to be more challenging. The UK cannot deindustrialise again (nor can the global economy, as is, simply deindustrialise in aggregate if final consumption remains the primary goal), and the UK has already mainly switched from coal energy production. Emissions from electricity generation may fall but it also matters what the electricity is being used to power. In any case, future emissions reductions, in general, require more effective changes in other sectors, and this necessarily seems to require everyone to question their socio-economic practices. Transport is a key issue.

As a ‘satellite’ of its National Accounts, the UK Office for National Statistics (ONS) publishes Environmental Accounts and these data are used to measure progress. Much of the data refer to the prior year or earlier. In 2017, UK GHG emissions were reported to be 566 million tonnes CO 2 e (2% less than 2016 and, as already noted about one-third of the 1990 level; ONS, 2019 ). The headline accounts break this down into four categories (for which further subdivisions are produced by various sources) and we can usefully contrast 1990 and recent data ( ONS, 2019 , p. 4):

The Environmental Accounts’ figures indicate some shifting in the relative sources of emissions over the last 30 years. As we have intimated, electricity generation and manufacturing have experienced reduced emissions, though they are far from zero; household and transport, meanwhile, have remained stubbornly high. Moreover, the accounts are also slightly misleading for the uninitiated, since transport refers to the industry and not all transport. Domestic car ownership and use are part of the household sector, and it is the continued dependence on car ownership that provides, along with heating and insulation issues, one of the major sources of the persistently high level of household emissions. The UK Department for Business, Energy and Industrial Strategy (DBEIS) provides differently organised statistics and attributes cars to its transport category and uses a subsequent residential category rather than household category. The Department’s statistical release in 2018 thus attributes a higher 140 MtCO 2 e to transport for 2016, whilst the residential category is a correspondingly lower figure of approximately 106 MtCO 2 e. The 140 MtCO 2 e is just slightly less than the equivalent figure for 1990, although transport achieved a peak of about 156 MtCO 2 e in 2005 ( DBEIS, 2018 , pp. 8–9). As of 2016, transport becomes the largest source of emissions based on DBEIS data (exceeding energy supply) whilst households become the largest in the Environmental Accounts. In any case, looking across both sets of accounts, the important point here is that since 1990 transport as a source of emissions has remained stubbornly high. Transport emissions have been rising as an industrial sector in the Environmental Accounts or relatively consistent and recently rising in its total contribution in the DBEIS data. The CCC Net Zero report draws particular attention to this. Drawing on the DBEIS data, it states that ‘Transport is now the largest source of UK GHG emissions (23% of the total) and saw emissions rise from 2013 to 2017’ ( CCC, 2019 , p. 48). More generally, the report states that despite some progress in terms of the UK carbon budgets, ‘policy success and progress in reducing emissions has been far from universal’ ( CCC, 2019 , p. 48). The report recommends ( CCC, 2019 , pp. 23–6, 34):

A fourfold increase by 2050 in low carbon (renewables) electricity

Developing energy storage (to enhance the use of renewables such as wind)

Energy-efficient buildings and a shift from gas central heating and cooking

Halting the accumulation of biodegradable waste in landfills

Developing carbon capture technology

Reducing agricultural emissions (mainly dairy but also fertiliser use)

Encouraging low or no meat diets

Land management to increase carbon retention/absorption

Rapid transition to electric vehicles and public transport

As we noted in the Introduction section, the UK Department for Transport Road To Zero document stated a goal of ending the sale of conventional diesel- and petrol-powered ICE vehicles by 2040. The CCC suggested improving on this:

Electric vehicles. By 2035 at the latest all new cars and vans should be electric (or use a low-carbon alternative such as hydrogen). If possible, an earlier switchover (e.g. 2030) would be desirable, reducing costs for motorists and improving air quality. This could help position the UK to take advantage of shifts in global markets. The Government must continue to support strengthening of the charging infrastructure, including for drivers without access to off-street parking. ( CCC, 2019 , p. 34)

The UK government’s response to these and other similar suggestions has been to bring the target date forward to 2035 and to propose that the prohibition will also apply to hybrids. However, the whole is set to go out to consultation and no detail has so far (early 2020) been forthcoming. In its 11 March 2020 Budget, the government also committed £1 billion to ‘green transport solutions’, including £500 million to support the rollout of the electric vehicle charging infrastructure, whilst extending the current grant/subsidy scheme for new electric vehicles (albeit at a reduced rate of £3000 from £3500 per new registration). It has also signalled that it may tighten the timeline for sales prohibition further to 2030. 16 As a policy, much of this is, ostensibly at least, positive, but there is a range of issues that need to be considered regarding what is being achieved. The context of transition matters and this may transcend the specifics of current policy.

3.1 BEV transition: life cycles?

The CCC is confident that a transition to electric vehicles can be a constructive contribution to achieving net-zero emissions by mid-century. However, the point is not unequivocal. The previously quoted CCC communique following the UK government’s commitment to implement Net Zero uses the phrase ‘credible UK policies, across government, inspiring a strong response from business, industry and society as a whole’, and the CCC report places an emphasis on BEVs and a transition to public transport. The relative dependence between these two matters (and see Conclusion). BEVs are potentially (almost) zero emissions in use. But they are not zero emissions in practice. Given this, then the substitution of BEVs for current carbon-powered ICEs is potentially problematic, depending on trends in ownership of and use of powered vehicles (private transportation). These points will become clearer as we proceed.

BEVs are not zero emission in context and based on the life cycle. This is for two basic reasons. First, a BEV is a powered vehicle and so the source of power can be from carbon-based energy supply sources (and this varies with the ‘energy mix’ of electricity production in different countries; IEA, 2019A , p. 8). Second, each new vehicle is a material product. Each vehicle is made of metals, plastics, rubber and so forth. Just the cabling in a car can be 60 kg of metals. All the materials must be mined and processed, or synthesised, the parts must be manufactured, transported and assembled, transported again for sale and then delivered. For example, according to the SMMT in 2016, only 12% of cars sold in the UK were built in the UK and 80% of those built in the UK were exported in that year. Some components (such as a steering column) enter and exit the UK multiple times whilst being built and modified and before final assembly. Vehicle manufacture is a global business in terms of procuring materials and a mainly regional (in the international sense) business in terms of component manufacture for assembly and final sales. Power is used throughout this process and many miles are travelled. Moreover, each vehicle must be maintained and serviced thereafter, which compounds this utilisation of resources. BEVs are a subcategory of vehicles and production locations are currently more concentrated than for vehicles in general (Tesla being the extreme). 17 In any case, producing a BEV is an economic activity and it is not environmentally costless. As Georgescu-Roegen (1971) noted long ago and ecologically minded economists continue to highlight (see Spash, 2017 ; Holt et al. , 2009 ), production cannot evade thermodynamic consequences. In terms of BEVs, the primary focus of analysis in this second sense of manufacturing as a source of contributory emissions has been the carbon emissions resulting from battery production. Based on current technology, batteries are heavy (a significant proportion of the weight of the final vehicle) and energy intensive to produce.

Comparative estimates regarding the relative life cycle emissions of BEVs with equivalent fossil fuel-powered vehicles are not new. 18 Over the last decade, the number of life cycle studies has steadily risen as the interest in and uptake of BEVs have increased. Clearly, there is great scope for variation in findings, since the energy mix for electricity supply varies by country and the assumptions applied to manufacturing can vary between studies. At the same time, the general trend over the last decade has been for the energy mix in many countries to include more renewables and for manufacturing to become more energy efficient. This is partly reflected in metrics based on emissions per $GDP, which in conjunction with relative expansion in service sectors are used to establish ‘relative decoupling’. So, given that both the energy mix of power production and the emissions derived from production can improve, then one might expect a general trend of improved emissions claims for BEVs in recent years and this seems to be the case.

For example, if we go back to 2010, the UK Royal Academy of Engineering found that technology would likely favour PHEVs over BEVs in the near future because the current energy mix and state of battery technology indicated that emissions deriving from charging were typically higher for BEVs than an average ordinary car’s fuel consumption—providing a reason to persist with ICE vehicles or, more responsibly, choose hybrids over pure electric ( Royal Academy of Engineering, 2010 ). Using data up to 2013, but drawing on the previous decade, Holtsmark and Skonhoft (2014) come to similar conclusions based on the most advanced BEV market—Norway. Focussing mainly on energy mix (with acknowledgement that a full life cycle needs to be assessed) they are deeply sceptical that BEVs are a significant net reduction in carbon emissions ( Holtsmark and Skonhoft, 2014 , pp. 161, 164). Neither the Academy nor Holtsmark and Skonhoft are merely sceptical. The overall point of the latter was that more needed to be done to accelerate the use of low or no carbon renewables for power infrastructure (a point the CCC continues to make). This, of course, has happened in many places, including the UK. That is, acceleration of the use of renewables, though it is by no means the case government can take direct credit for this in the UK (and there is also evidence on a global level that a transition to clean energy from fossil fuel forms is much slower than some data sources indicate; see Smil, 2017A , 2017B ). 19 In terms of BEVs, however, recent analyses are considerably more optimistic regarding emissions potential per BEV (e.g. Hoekstra, 2019 ; Regett et al. , 2019 ). Research by Staffell et al. (2019) at Imperial for the power corporation, Drax, provides some interesting insights and contemporary metrics.

Staffell et al. split BEVs into three categories based on conjoint battery and vehicle size: a 30–45 kWh battery car, equivalent to a mid-range or standard car; a heavier, longer-range, 90–100 kWh battery car, equivalent to a luxury or SUV model; and a 30–40 kWh battery light van. They observe that a 40-litre tank of petrol releases 90–100 kgCO 2 when burnt and the ‘embodied’ emissions represented by the manufacture of a standard lithium-ion battery are estimated at 75–125 kgCO 2 per kWh. They infer that every kWh of power embodied in the manufacture of a battery is, therefore, approximately equivalent to using a full tank of petrol. For example, a 30 kWh battery embodies thirty 40-litre petrol tank’s worth of emissions. The BEV’s are also a source of emissions based on the energy mix used to charge the battery for use. The in-use emissions for the BEV are a consequence of the energy consumed per km and this depends on the weight of car and efficiency of the battery. 20 They estimate 33 gCO 2 per km for standard BEVs, 44–54 gCO 2 for luxury and SUVs and 40 gCO 2 for vans. In all cases, this is significantly less than an equivalent fossil-fuel vehicle.

The insight that the estimates and comparisons are leading towards is that the battery embodies an ‘upfront carbon cost’ which can be gradually ‘repaid’ by the saving on emissions represented by driving a BEV compared with driving an equivalent fossil fuel-powered vehicle. That is, the environmental value of opting for BEVs increases over time. Moreover, if the energy mix is gradually becoming less carbon based, this effect is likely to improve further. Based on these considerations, Staffell et al. estimate that it may take 2–4 years to repay the embodied emissions in the battery for a standard BEV and 5 to 6 for the luxury or SUV models. Fundamentally, assuming 15 years to be typical for the on-the-road life expectancy of a vehicle, they find lifetime emissions for each BEV category are lower than equivalent fossil-fuel vehicles.

Still, the implication is that BEVs are not zero emission. Moreover, the degree to which this is so is likely to be significantly greater than a focus on the battery alone indicates. Romare and Dahlöff (2017) , assess the life-cycle of battery production (not use), and in regard of the stages of battery production find that the manufacturing stages account for about 50% of the emissions and the mining and processing stages about the same. They infer that there is significant scope for further emissions reductions as manufacturing processes improve and the Drax study seems to confirm this. However, whilst the battery may be the major component, as we have already noted, vehicle manufacture is a major process in terms of all components and in terms of distance travelled in production and distribution. It is also worth noting that the weight of batteries creates strong incentives to opt for lighter materials for other parts of the vehicle. Most current vehicles are steel based. An aluminium vehicle is lighter, but the production of aluminium is more carbon intensive than steel, so there are also further hidden trade-offs that the positive narrative for BEVs must consider. 21

The general point worth emphasising here is that there is basic uncertainty built into the complex evolving process of transition and change. There is a basic ontology issue here familiar in economic critique: there is no simple way to model the changes with confidence, and in broader context confidence in modelling may itself be a problem here when translated into policy, since it invites complacency. 22 That said, the likely direction of travel is towards further improvements in the energy mix and improvements in battery technology. Both these may be incremental or transformational depending on future technologies (fusion for energy mix and organics and solid-state technologies for batteries perhaps). 23 But one must still consider time frames and ultimate context. 24 The context is a carbon budget and the need for radical reductions in emissions by 2030 and net zero by mid-century. Consider: if just the battery of a car requires four years to be paid back then there is no significant difference in the contribution to emissions from the vehicle into the mid 2020s. For larger vehicles, this becomes the later 2020s, and each year of delay in transition for the individual owner is another year closer to 2030. Since transport is (stubbornly) the major source of emissions in the UK and a major source in the world, this is not irrelevant. BEVs can readily be a successful failure in Paris terms. This brings us to the issue of trends in vehicle ownership and substitutions. This also matters for what we mean by transition.

3.2 Substitutions and transformations: successful failure?

There are many ways to consider the problem of transition. Consider the ‘Precautionary Principle’. This is Principle 15 of the 1992 Rio Declaration: ‘In order to protect the environment, the precautionary principle shall be widely applied by the States [UN members] according to their capabilities. Where there are threats of serious or irreversible damage, lack of full scientific certainty shall not be used as a reason for postponing cost-effective measures to prevent environmental degradation’ (UNCED). Assuming we can simply depend on unrealised technology potentially violates the Principle. Why is this so? If BEVs are a source of net emissions, then each new vehicle continues to contribute to overall emissions. The current number of vehicles to be replaced, therefore, is a serious consideration, as is any growth trend. Here, social redesign rather than merely adopting new technology is surely more in accordance with the Precautionary Principle. BEVs may be sources of lower emissions than fossil fuel-powered vehicles, but it does not follow that we are constrained to choose between just these two options or that it makes sense to do so in aggregate, given the objective of radical and rapid reduction in emissions. If time is short and numbers of vehicles are large and growing then the implication is that substitution of BEVs should (from a precautionary point of view) occur in a context that is oppositional to this growing trend. That is, the goal should be one of reducing private car ownership and use, and increasing the availability, pervasiveness and use of public transport (and alternatives to private vehicle ownership). This is an issue compounded by the finding that there is an upfront carbon cost from BEVs. Some consideration of current vehicle numbers and trends in the UK and globally serve to reinforce the point.

The UK Department for Transport publishes annual statistics for vehicle licensing. According to the 2019 statistical release for 2018 data, there were 38.2 million licensed vehicles in Britain and 39.4 million including Northern Ireland ( Department for Transport, 2019 ). Vehicles are categorised into cars, light goods vehicles, heavy goods vehicles, motorcycles and buses and coaches. Cars comprised 31.5 million of the total (82%) and the total represented a 1.2% increase in the year 2017. There is, furthermore, a long-term year-on-year trend increase in vehicles since World War II and over the last 20 years that growth (the net change as new vehicles are licensed and old vehicles taken off the road) has averaged 630,000 vehicles per year ( Department for Transport, 2019 , p. 7). This is partly accounted for not only by population growth, and business growth, but also by an increase in the number of vehicles per household. According to the statistical release, 2.9 million new vehicles were registered in 2018, and though this was about 5% fewer than 2017 the figure remained broadly consistent with long-term trends in numbers and still represented growth (contributing to the stated 1.2% increase). 25 Of the total new registrations in 2018, 2.3 million were cars and 360,000 were light goods vehicles. Around 2 million has been typical for cars.

The point to take from these metrics is that numbers are large and context matters. Cars represent 31.5 million emission sources and there are 39.4 million vehicles in the UK. Replacing these 1:1 reproduces an emissions problem. Replacing them in conjunction with an ownership growth trend exacerbates the emissions problem that then has to be resolved. If around 2 million new cars are registered per year then the point at which the BEVs amongst these new registrations can be assumed to begin payback for embodied emissions prior to the point at which they become net sources of reduced (and not zero ) emissions is staggered over future years based on the rate of switching. There are then also net new vehicles. Given there are 31.5 million cars to be replaced over time (plus net growth), there is a high likelihood of significant transport emissions up to and beyond 2030. The problem, of course, is implicit in the Department for Transport policy commitment to end sales of petrol and diesel vehicles by 2035 and ensure all vehicles are zero-emission in use by 2050. Knowingly committing to this ingrained emission problem, given we have already recognised the urgency and challenge of the carbon budget and the ‘stubbornness’ of transport emissions, is not prudent, if alternatives exist . It is producing a problem that need not exist purely because enabling car ownership and use is a line of least resistance in policy terms (it requires the least change in behaviour and thus provokes limited opposition). It is also worth noting that the UK, like most countries, has an ‘integrated’ transport policy. However, the phrasing disguises the relative levels of investment between different modes of transport. Austerity politics may have resulted in declining road quality in the UK but, in general terms, the UK is still committed to heavy investment in and expansion of its road system. 26 This infrastructure investment not only seems ‘economically rational’, but it is also a matter of relative emphasis and ‘lock-in’. The future policy is predicated on the dominance of road use and thus vehicle use.

The crux of the matter here is how we view political expedience. Surely this hinges on the consequences of policy failure. That is, the failure to implement an effective policy given the genuine problem expressed in the goal of 1.5 or 2°C. ‘Alternatives’ may seem unrealistic, but this is a matter of will and policy—of rational social design rather than impossibility. The IPCC and other sources suggest that achieving the Paris goals requires mobilisation of a kind not previously seen outside of wartime. Policy can pivot on this quite quickly, even if perhaps this can seem unlikely in 2020. Climate events may make this necessary and popular pressure and opinion may be transformed. This is currently uncertain. Positions on this may yet move quite quickly.

Lock-in also implies an underlying sociological issue. This is important to consider regarding simply opting for substitution without greater emphasis on reduction. Even if substitution occurs smoothly, it places greater pressure on areas of reduction over which we have less control as societies and involves an orientation that has further potential policy consequences that cannot be readily quantified and which increase the overall uncertainty regarding NDCs. As any modern historian, urban geographer or sociologist will attest, car ownership has been imbricate with the development and design—the configuration—of modern societies, and it has been deeply integrated into identity. Cars are social technologies and philosophers also have much to say about this sociality in general (e.g. Faulkner and Runde, 2013 ; Lawson, 2017 ). Cars are more than merely convenient; they are sources of autonomy and status (e.g. John Urry explored the sociology of ‘automobility’; see, Dennis and Urry, 2009 ). As such, the more that environmental and transport policy validate the car, then the more that the car is normalised through socialisation for the citizen, perhaps leading to citizens being more prepared to countenance locked-in harms (congestion, etc.) prior to change, in turn, making it less likely (sub)urban spaces are redesigned in ways predicated on the absence of (or severe limits to) private transport. The trend in many countries over the car era has been that building roads leads to more car use, which leads to congestion, which leads to more roads (especially in concentrated zones around [sub]urban spaces).

According to the UK Ordnance Survey, Britain has increased its total road surface by 132 square miles over the decade since 2010 (a 9% increase). According to the UK Department for Transport, vehicle traffic increased by 0.8% in 2019 (September to September) to 330.1 billion miles travelled and car travel, as a subset, increased to 258 billion miles (a 1.5% increase). 27 The 11 March 2020 Budget seems to confirm the trend. Whilst it commits around £1 billion to ‘green transport solutions’, this is in the context of a £27 billion announced investment in roads, including upgrading and a proposed 4,000 miles of new road. As the Green Party MP, Caroline Lucas, noted there is a basic disconnect here, since this seems set to increase the UK’s dependence on private transport, when it makes more sense to begin to curtail that dependence, given how significant the UK’s transport emissions are. 28 So, within the various tensions in policy, there seems to be a tendency to facilitate techno-political lock-in or path-dependence on private transportation. As Mattioli et al. (2020) argue, the multiple strands of policy and practice that maintain car dependence contribute to ‘carbon lock-in’. The systemic consequences matter both for the perpetuation of fossil fuel vehicle use in the short term and, given they are not net zero for emissions, powered vehicles in the longer term. Not only does this matter in the UK, but it also matters globally. All the issues stated are reproduced globally. Moreover, in some ways, they are compounded for countries where widespread car ownership is relatively new.

3.3 The fallacy of composition, problems that need not exist and resource risk

Estimates vary for the global total number of vehicles. According to Wards Intelligence, the global total was 1.32 billion in 2016 ( Petit, 2017 ). Extrapolated estimations imply that the total likely increased to more than 1.5 billion in 2019. In 1976, the figure was 342 million and in 1996, 670 million, so the trend implies an approximate doubling every 20 years, which if it continued would imply a figure approaching 3 billion by end of the 2030s. Clearly, it is problematic to simply extrapolate a linear trend, but it is not unreasonable to assume a general trend of growth. Observed experience is that many ‘developed’ country middle-class households have accommodated more than one car per household. This is classically the case in the USA. In 2017, the USA, with a population of 325.7 million in that year, reported a total of 272.5 million registered vehicles compared with 193 million in 1990 ( Statista, 2019A ). In any case, the world population is still growing, incomes are growing and many countries are far from a position of one car per household. China with a population of 1.3 billion overtook the USA in the total number of registered vehicles around 2016 to 2017, with 300.3 million registered vehicles in March of 2017 (Zheng, 2017). Growth is rapid and the China Traffic Bureau of the Ministry of Public Security reported a total of 325 million registered vehicles, December 2018, an increase of 15.56 million in the year ( China Daily , 2018 ). The People’s Republic is now the world’s largest car market and the number of registered cars increased to 240 million in 2018 ( Statista, 2019B ). India too has rapidly growing car ownership and on a lesser scale this is replicated across the developing world.

For our purposes, two well-known concepts and a further resource dependence risk seem to apply here. First, there is patently a ‘fallacy of composition’ issue. That is, the assumption that many can do what few previously did without changing the conditions or producing different (adverse) consequences than arose when only a few adopted that behaviour or activity. Those consequences are climatological and ecological. It remains the case that we are socialised to desire and appreciate cars and it remains a fact that private transport can be extremely convenient. It can also, given the commentary above, appear hypocritical to be suggesting shifting to a far greater reliance on public transport, since this implicitly involves denying to developing country citizens a facet of modernity enjoyed previously by developed country citizens. But this is a distraction from the underlying collective interest in reduced car ownership and use. It denies the basic premise that a Precautionary Principle applies to all and that societies that are not yet car dependent have the opportunity to avoid a problem, rather than have to manage it via either moving straight to private transport BEVs or a transition from fossil fuel-powered ICEs to BEVs with all that entails in terms of ingrained emissions. Policy may be mainly domestic, but climate change is global and aggregate effects do not respect borders, which brings us to a second concept or risk that may be exacerbated.

Second, a ‘quasi-Jevons’ effect’ may apply. Growth of vehicle use is a problem of resource use and this is a thermodynamic and emissions problem. However, it is, as we have noted, also the case that battery technology and energy mix for BEVs are improving. So, this may involve significant declines in relative cost, which in turn may create a tendency for BEV ownership to accelerate which could exacerbate net growth in numbers of vehicles. Net growth could ironically be to the detriment of emissions savings. Whether this is so, depends, in part, on what kind of overall transport policy countries adopt and whether consumers, corporations and markets are allowed to be the arbiter of which area of transport dominates. It also depends, in part, on what materials are required for future batteries. Current technology implies massive increases in costs based on securing sources of lithium and cobalt as battery demand rises. So even if a Jevons’ effect is avoided, a different issue may apply. Resource procurement is a Precautionary Principle issue since effective BEVs at the kind of numbers necessary to substitute for all vehicles seem to require technological transformation—without it, multiple problems apply whilst emissions remain ingrained.

For example, when the UK CCC announced its 2035 recommendation to accelerate the BEV transition, members of the Security of Supply of Mineral Resources (SSMR) project wrote a research note to the CCC (Webster, 2019). They pointed out that the current total European demand for cobalt is 19,800 tonnes and that producing the batteries to replace 2.3 million cars in the UK (in accordance with contemporary statistics for new registrations) would require 15,600 tonnes. The UK would also need 20,000 tonnes of lithium, which is 45% of the current total European demand. If we replicate this ramping up of demand across Europe and the globe for vehicles, recognising that there are other growing demands for the minerals and metals (including batteries for other purposes) then it seems unlikely that supply can respond, unless dependence on lithium and cobalt (and other constituents) falls sharply as technology changes. Clearly, the problem is also contingent on the uptake of BEVs. Over recent years, there has, in fact, been an oversupply of the main materials for battery production because several of the main mining corporations anticipated that battery demand would take off faster than it actually has. For example, global prices of cobalt, nickel and lithium carbonate have increased significantly over the last decade but have fallen in 2018 to the end of 2019. However, industry analysis indicates that current annual global production is the equivalent of about 10 million standard BEVs based on current technology, and as the previous statistics on global vehicle numbers (see also next section) indicate, this is far less than transition via substitution would seem to require in the next decade. 29

Shortages and price rises, therefore, are if not inevitable, at least likely. Currently, about 60% of the cost of a BEV is the battery and 80% of that 60% (about 50% of the vehicle) is the cost of battery materials. It is, therefore, important to achieve secure supply and stable costs. The further context here is the issue of UK domestic battery capacity. In 2013, the government created the Advanced Propulsion Centre (APC) with a 10 year £500 million investment commitment matched by industry. The APC’s remit is to address supply chain issues for electric vehicles. Not unexpectedly, the APC quickly identified lack of domestic battery production capacity as a major impediment. In response in 2016 another government initiative, Innovate UK set up the Faraday Battery Challenge to encourage domestic capacity and innovation. The Battery Industrialisation Centre was then set up in Coventry, to attract manufacturers in the supply chain for BEVs to locate there, focussed around a centre of research excellence. However, the APC has no control over the global supply and prices of battery materials, the investment and location decisions of battery manufacturers or the necessary infrastructure for BEVs to be a feasible technology. 30 For example, according to the APC, if domestic BEV demand were 500,00 per year by 2025, then the UK would need three ‘gigafactories’. Battery manufacture is currently dominated by LG Chem and Samsung in South Korea, CATL in China and Panasonic in Japan. None of these have current plans to build a gigafactory in the UK. In any case, there is a further problem here which raises a whole set of environmental and ethical issues explored in ecological circles under the general heading ‘extractivism’ (see, e.g. Dunlap, 2019 ). As time goes by, the UK and the world may become dependent on high price supplies of materials drawn from unstable or hostile regimes (the Democratic Republic of Congo, etc.), which is a risk in many ways (and a likely source of Dutch disease—the ‘resource curse’—for unstable regimes). So, not placing a relative emphasis on substituting BEVs for ICEs and not endorsing the current vehicle growth trend (which is different as a suggestion than rejecting BEVs entirely) avoid multiple problems and risks.

It is also worth noting that simple market decisions can have a further collective adverse consequence based on individual consumer preference and reasoning, which may also affect BEVs in the short term. Many current BEVs have smaller or low efficiency batteries and thus short ranges. These favour urban use for short journeys, but most people own cars with a view also to range further afield. As such, it seems likely that until the technology is all long range (and the charging infrastructure is pervasive) many consumers, if the choice exists and income allows, will own BEVs as an additional vehicle, not a replacement vehicle. 31 This may be a short-term issue, given the regulatory changes focussed from 2030 to 2040 in many countries. But, again, from a Paris point of view, taking the IPCC 1.5°C and UNEP Emissions Gap reports into consideration, this matters. This brings us to a final issue. What is the actual take-up of BEVs (and ULEVs)? How rapid is the transition? In the Introduction section, I suggested that the UK had reached a tipping point and that this mirrored a general trend globally. This, however, needs context.

3.4 How many electric vehicles?

The data emerging in recent years and stated in the Introduction section are a step-change, but as a possible tipping point it begins from a low base and BEVs (the least emitting of the low emission vehicles) are a subset, albeit a rapidly expanding one, of ULEVs. According to the UK Department for Transport statistical release for 2018, there were 200,000 ULEVs registered in total, of which 63,992 ULEVs were newly registered in that year ( Department for Transport, 2019 , p. 4). 93% of the total registrations were cars and the total constitutes a 39% increase on the year 2017 total and a 20% increase in the rate of registration—there were just 9,500 ULEVs at the beginning of 2010 (so, about 20 times greater in a decade). However, the 2018 data mean that ULEVs accounted for just 0.5% of all licensed vehicles and were still only 2.1% of all new registrations in that year. Preliminary data available early 2020 indicate continued growth with almost 38,000 new BEV registrations in 2019, a 144% year-on-year increase. As a recent UK House of Commons Briefing Paper notes, however, the government prefers to emphasise the percentage changes in take-up rather than the percentages of the absolute numbers or the absolute numbers themselves ( Hirst, 2019 ). The International Energy Agency (IEA) places the UK in its leading countries list by ULEV and BEV market share (measured by the percentage of total annual registration): Norway dominates, followed by Iceland, Sweden, the Netherlands and then a significant drop-off to a trailing group including China, the USA, Germany, the UK, Japan, France, Canada and South Korea. However, the market share in this trailing group is less than 5% in every case (see appended Figure 1 ). China, given its size (and because of the urgency of its urban air quality problems and its capacity for authoritarian implementation), dominates the raw numbers in terms of total ULEVs and BEVs. All this notwithstanding, the IEA confirms the general point that up-take is accelerating, but the base is low and so achieving total ULEV or BEV coverage is some way off:

The global electric car fleet exceeded 5.1 million in 2018, up by 2 million since 2017, almost doubling the unprecedented amount of new registrations in 2017. The People’s Republic of China… remained the world’s largest electric car market with nearly 1.1 million electric cars sold in 2018 and, with 2.3 million units, it accounted for almost half of the global electric car stock. Europe followed with 1.2 million electric cars and the United States with 1.1 million on the road by the end of 2018 and market growth of 385000 and 361000 electric cars from the previous year. Norway remained the global leader in terms of electric car market share at 46% of its new electric car sales in 2018, more than double the second-largest market share in Iceland at 17% and six-times higher than the third-highest Sweden at 8%. In 2018, electric buses continued to witness dynamic developments, with more than 460000 vehicles on the world’s road, almost 100000 more than in 2017…In freight transport, electric vehicles (EVs) were mostly deployed as light-commercial vehicles (LCVs), which reached 250000 units in 2018, up 80000 from 2017. Medium truck sales were in the range of 1000–2000 in 2018, mostly concentrated in China. ( IEA, 2019A , p. 9)

Over the next few years, it seems likely we will see rapid changes in these metrics. There is a great deal of discussion in policy analysis regarding bottlenecks and impediments and these, of course, are also important (consumer uncertainty, ‘range anxiety’, availability of sufficient infrastructure for charging and so on). 32 However, as everything argued so far indicates regarding transition and trends, underlying the whole is the conditionality of success and the potential for failure, involving avoidable ingrained emission and risks. There is a basic difference between a superior technology and a superior choice since the latter is a socio-economic matter of context: of rates of change, scales and substitutions. Ultimately, this creates deep concerns in terms of achieving the Paris goals. The IEA explores two forecast scenarios for the uptake of ULEVs. Both involve a projection of annual ULEV sales and total stock to 2030 ( IEA, 2019A ). First a ‘New Policies’ Scenario. This takes the current policy commitments of individual countries and extrapolates. By 2030, the scenario projects global ULEV sales at 23 million in that year and a total stock of 130 million. This is considerably less than 30% of all vehicles now and in 2030. Second, the EV30@30 Scenario. This assumes an accelerated commitment that adopts the @30 goals (notably 30% annual sales share for BEVs by 2030; IEA, 2019A , pp. 29–30). By 2030, the scenario projects global ULEV sales at 43 million in that year and a total stock of 250 million. Again, this is less than 30% of all vehicles now and in 2030.

The figures, of course, are highly conditional, but the point is clear, even the best-case scenario currently being anticipated has ULEVs and BEVs as a minority of all vehicles in 2030—and 2030 is a key year for achieving Paris, according to the October 2018 IPCC 1.5°C report. Moreover, it is notable that the projections assume continuous growth in the number of vehicles (and so continuous growth in ICE vehicles) and the major areas of numerical growth in BEVs continue to be China, so some significant part of the anticipated total will be new ingrained emissions that arguably did not need to exist. 33 Again, this is highly conditional but it at least creates questions regarding what is being ‘saved’ when the IEA claims that the New Policies Scenario results in 2.5 million barrels a day less demand for oil in 2030 and the EV30@30 Scenario 4.3 million barrels a day ( IEA, 2019A , p. 7). 34 Less of more is not a saving in an objective sense, if this is a preventable future, and it is not a rational way to set about ‘saving’ the planet. It remains the case, of course, that this is better than nothing, but it is deeply questionable whether in policy terms any of this is the ‘best that can be done’. As stated in the Introduction section, technocentrism distracts from appropriate recognition of this. At its worse, technocentrism fails to address and so works to reproduce a counter-productive ecological modernisation: the technological focus facilitates socio-economic trends, which are part of the broader problem rather than solutions to it. The important inference is that there are multiple reasons to think that greater emphasis on social redesign and less private transport avoids successful failure and is more in accordance with the Precautionary Principle.

I ended the introduction to this essay by stating that we would be exploring the foregrounding question: What kind of solution are BEVs to what kind of problem? It should be clearer now what was meant by this. Ultimately, the balance between private and public transport matters if the Paris goals are to be achieved. Equally clearly, this is not news to the UK CCC or to any serious analyst of electric vehicles and the transport issue for our climatological and ecological future (again, e.g. Chapman, 2007 ; Bailey and Wilson, 2009 ; Williamson et al. , 2018 ; Mattioli et al. , 2020 ). At the same time, the context and issues are not widely understood and the problems are often understated, at least in so far as, discursively, most weight is placed on stating progress in achieving a transition to ULEVs and BEVs. This is technocentric. Despite its general concerns and careful critical stance, the CCC is also partly guilty of this. For example, Ewa Kmietowicz, Transport Team Leader of the CCC Secretariat, refers to the UK Road to Zero strategy as a ‘lost opportunity’, and the CCC identifies a number of shortfalls in the strategy. 35 However, the general thrust of the CCC position is to focus on a rapid transition to BEVs and to overcoming bottlenecks. 36 Broader feasibility is subsumed under general assumptions about continued economic expansion and expansion of the transport system. So, there is more of a situation of complementarity (with caveats) between public and private transport, and the whole becomes an exercise in types of investment within expansionary trends, rather than a more radical recognition of the fundamental problems that we ought to think about avoiding. It is also worth noting that many of the major advocates of BEVs are industry organisations. The UK Society of Motor Manufacturers and Traders, for example, are not unconcerned but they are not impartial either; they have a vested interest in the vehicle industry and its growth. For industry, ULEVs and BEVs are an opportunity before they are a solution to a problem. There are, however, recognitions that a rethink is required. These range from direct activism, such as ‘Rocks in the Gearbox’ (along the lines of Extinction Rebellion), to analysis from establishment think tanks, such as the World Economic Forum 37 , and statements from government oversight committees. For example, the UK Commons Science and Technology Committee (CSTC) not only endorses the CCC 2035 accelerated BEV target but also states more explicitly:

In the long-term, widespread personal vehicle ownership does not appear to be compatible with significant decarbonisation. The Government should not aim to achieve emissions reductions simply by replacing existing vehicles with lower-emissions versions. Alongside the Government’s existing targets and policies, it must develop a strategy to stimulate a low-emissions transport system, with the metrics and targets to match. This should aim to reduce the number of vehicles required, for example by: promoting and improving public transport; reducing its cost relative to private transport; encouraging vehicle usership in place of ownership; and encouraging and supporting increased levels of walking and cycling. ( CSTC, 2019 )

This, as Caroline Lucas suggests, speaks to the need to coordinate public and private transport policy more effectively and clearly, and there is a need for broader informed debate here. In political ecological circles, for example, there is a growing critique of the tensions encapsulated in the concept of an ‘environmental state’ (see Koch, 2019 ). That is the coordination and coherence of environmental imperatives with other policy concerns. State-rescaling and degrowth and postgrowth work highlight the profound problems that are now starting to emerge as states come to terms with the basic mechanisms that have been built into our economies and societies (see also Newell and Mulvaney, 2013 ; Newell, 2019 ). 38 New thinking is required and this extends to the social ontology and theory we use to conceptualise economies (see Spash and Ryan, 2012 ; Lawson, 2012 , 2019 ) and political formations (see Bacevic, 2019 ; Patomäki, 2019. Covid-19 does not change this ( Gills, 2020 ).

In transport terms, there are many specific issues to consider. Some solutions are simple but overlooked because we are always thinking in terms of sophisticated innovations and inventions. However, we do not need to conform to the logics of ‘technological fixes’, that we somehow think will enable the impossible, to perhaps see some scope in ‘fourth industrial revolution’ transformations ( Center for Global Policy Solutions, 2017 ; Morgan, 2019B ). For example, public transport may also extend to a future where no individual owns a range extensive powered vehicle (perhaps just local scooters for the young and mobility scooters for the infirm) and instead a system operates of autonomous fleet vehicles that are coordinated by artificial intelligence with logistics implemented through Smartphone calendar access booking systems—and coordination functions could maximise sharing, where vehicles could also be (given no drivers are involved) adaptable connective pods that chain together to minimise congestion and energy use. This seems like science fiction now, and perhaps a little ridiculous, but a few years ago so did the Smartphone. And the technology already exists in infancy. Such a system could be either state-funded and run or private partnership and franchise, but in either case, it radically redraws the transport environment whilst working in conformity with the geography of living spaces we have already developed. Will is what is required and if the outcome of COP24 ( UNFCCC, 2018 ) and COP25 ( Newell and Taylor, 2020 ) with limited progress towards the Paris goals persists, then it seems likely that emissions will accumulate rapidly in the near future and the likelihood of a serious climate event with socio-economic consequences rises. At that stage, more invasive statutory and regulatory intervention may start to occur as the carbon budget becomes a more urgent target. Prohibitions, transport rationing and various other possibilities may then be on the agenda if we are to unmake the future we are currently writing and, to mix metaphors, avoid a road to nowhere.

None declared

Thanks to two anonymous reviewers for extensive and useful comment—particularly regarding the systematic statement of issues in the Introduction section and for additional useful references. Jamie Morganis Professor of Economic Sociology at Leeds Beckett University, UK. He coedits the Real-World Economics Review with Edward Fullbrook. RWER is the world’s largest subscription based open access economics journal. He has published widely in the fields of economics, political economy, philosophy, sociology, and international politics. His recent books include: Modern Monetary Theory and its Critics (ed. with E. Fullbrook, WEA Books, 2020), Economics and the ecosystem (ed. with E. Fullbrook, WEA Books, 2019); Brexit and the political economy of fragmentation: Things fall apart (ed. with H. Patomäki, Routledge, 2018); Realist responses to post-human society (ed. with I. Al-Amoudi, Routledge, 2018); Trumponomics: Causes and consequences (ed. with E. Fullbrook, College Publications, 2017); What is neoclassical economics? (ed., Routledge, 2015); and Piketty’s capital in the twenty-first century (ed. with E. Fullbrook, College Publications, 2014).

Bacevic , J . 2019 . Knowing neoliberalism , Social Epistemology , vol. 33 , no. 4 , 380 – 92

Google Scholar

Bailey , I. and Wilson , G . 2009 . Theorising transitional pathways in response to climate change: technocentrism, ecocentrism, and the carbon economy , Environment and Planning A , vol. 41 , no. 10 , 2324 – 41

CCC. 2019 . Net Zero: The UK’s Contribution to Stopping Global Warming , London , Author

Google Preview

Center for Global Policy Solutions. 2017 . Stick Shift: Autonomous Vehicles, Driving Jobs and the Future of Work , Washington DC , Author

Chapman , L . 2007 . Transportation and climate change: a review , Journal of Transport Geography , vol. 15 , no. 5 , 354 – 67

China Daily. 2018, December 1 . China has 325 million motor vehicles , China Daily

Christensen , J. and Olhoff , A . 2019 . Lessons from a Decade of Emissions Gap Assessments , Nairobi , UNEP

CSTC. 2019 . Clean Growth: Technologies for Meeting the UK’s Emissions Reduction Targets , London , Author

DBEIS. 2018 . Annex: 1990–2016 UK Greenhouse Gas Emissions, Final Figures by end User , London , Author

DECC. 2015 . Different Approaches to Reporting UK Greenhouse Gas Emissions , London , Author

Deloitte. 2018 . Battery Electric Vehicles. New market. New entrants. New challenges , London , Author

Dennis , K. and Urry , J . 2009 . After the Car , Cambridge , Polity

Department for Transport. 2018 . The Road to Zero: Next Steps Towards Cleaner Road Transport and Delivering our Industrial Strategy , London , Author

Department for Transport. 2019 . Vehicle Licensing Statistics: Annual 2018 , London , Author

Dunlap , A . 2019 . Wind, coal and copper: the politics of land grabbing, counterinsurgency and the social engineering of extraction , Globalizations vol. 17 , no. 4 , 661 – 82

Environmental Audit Committee. 2016 . Sustainability in the Department of Transport [Third Report of Sessions 2016–17], London , House of Commons

Faraday Institution. 2019 . UK Electric Vehicle and Battery Production Potential to 2040 , London , Author

Faulkner , P. and Runde , J . 2013 . Technological objects, social positions and the transformational model of social activity , MIS Quarterly , vol. 37 , no. 3 , 803 – 18

Frost & Sullivan. 2019 . Global Electric Vehicle Market Outlook, 2019 , Author , London

Fullbrook , E. and Morgan , J. (eds.). 2019 . Economics and the Ecosystem , London , World Economic Association Books

Georgescu-Roegen , N . 1971 . The Entropy Law and the Economic Process , Cambridge and London , Harvard University Press

Gills , B . 2020 . Deep Restoration: from the Great Implosion to the Great Awakening , Globalizations , vol. 17 , no. 4 , 577 – 9

Gills , B. and Morgan , J . 2019 . Global Climate Emergency: after COP24, climate science, urgency, and the threat to humanity , Globalizations

Gills , B. , Morgan , J. and Patomäki , H . 2019 . President Trump as status dysfunction , Organization , vol. 26 , no. 2 , 291 – 301

Hansen , J. et al.  2017 . Young people’s burden: requirement of negative CO2 emissions , Earth System Dynamics , vol. 8 , 577 – 616

Harvey , F . 2020, March 28 . Tackle climate crisis and poverty with zeal of Covid-19 fight scientists urge , The Guardian

Hirst , D . 2019 . ‘ Electric Vehicles and Infrastructure’ , Briefing Paper no. CBP07480, London , House of Commons Library

Hoekstra , A . 2019 . The underestimated potential of battery electric vehicles to reduce emissions , Joule , vol. 3 , no. 6 , 1412 – 4

Holt , R. , Pressman , S. and Spash , C. (eds.). 2009 . Post Keynesian and Ecological Economics , Cheltenham , Edward Elgar

Holtsmark , B. and Skonhoft , A . 2014 . The Norwegian support and subsidy policy for electric cars. Should it be adopted by other countries? Environmental Science & Policy , vol. 42 , 160 – 8

IEA. 2019A . Global EV Outlook 2019: Scaling up the Transition to Electric Mobility , Paris , Author

IEA. 2019B . World Energy Outlook , Paris , Author

IPCC. 2018 . Global Warming of 1.50C: Summary for Policymakers , Geneva , Author

IPCC. 2019A . IPCC Special Report on Climate Change, Desertification, Land Degradation Sustainable Land Management Food Security and Greenhouse Gas fluxes in Terrestrial Ecosystems , Geneva , Author

IPCC. 2019B . The Ocean and Cryosphere in a Changing Climate , Geneva , Author

Koch , M . 2019 . The state in the transformation to a sustainable postgrowth economy , Environmental Politics , vol. 29 , no. 1 , 115 – 33

Lawson , C . 2012 . Aviation lock-in and emissions trading , Cambridge Journal of Economics , vol. 36 , no. 5 , 1221 – 43

Lawson , C . 2017 . Technology and Isolation , Cambridge , Cambridge University Press

Lawson , T . 2019 . The Nature of Social Reality: Issues in Social Ontology , London , Routledge

Lea , R . 2019, September 6 . Tesla Model 3 enters sales chart at No3 , The Times

Lenton , T. , Rockstrom , J. , Gaffney , O. , Rahmstorf , S. , Richardson , K. , Steffen , W. and Schellnuber , H . 2018 . Climate tipping points too risky to bet against , Nature , vol. 575 , 592 – 5

Manzetti , S. and Mariasiu , F . 2015 . Electric vehicle battery technologies: from present state to future systems , Renewable and Sustainable Energy Reviews , vol. 51 , 1004 – 12

Mattioli , G. , Roberts , C. , Steinberger , J. , and Brown , A . 2020 . The political economy of car dependence: a systems of provision approach , Energy Research & Social Science , vol. 66 , 1 – 18

Morgan , J . 2016 . Paris COP21: power that speaks the truth? Globalizations , vol. 13 , no. 6 , 943 – 51

Morgan , J . 2017 . Piketty and the growth dilemma revisited in the context of ecological economics , Ecological Economics , vol. 136 , 169 – 77

Morgan , J . 2019A . Intervention, policy and responsibility: economics as over-engineered expertise?, pp. 145 – 63 in Dolfsma , W. and Negru , I. (eds.), 2019 The Ethical Formation of Economists , London , Routledge

Morgan , J . 2019B . Will we work in twenty-first century capitalism? A critique of the fourth industrial revolution literature , Economy and Society , vol. 48 , no. 3 , 371 – 98

Morgan , J. and Patomäki , H . 2017 . Contrast explanation in economics: its context, meaning, and potential , Cambridge Journal of Economics , vol. 41 , no. 5 , 1391 – 418

Nasir , A. and Morgan , J . 2018 . The unit root problem: affinities between ergodicity and stationarity, its practical contradictions for central bank policy, and some consideration of alternatives , Journal of Post Keynesian Economics , vol. 41 , no. 3 , 339 – 63

National Audit Office. 2019 . Department of Transport Sustainability Update , London , Author

Newell , P . 2019 . Transformismo or transformation? The global political economy of energy transitions , Review of International Political Economy , vol. 26 , no. 1 , 25 – 48

Newell , P. and Mulvaney , D . 2013 . The political economy of the “just transition” , The Geographical Journal , vol. 179 , no. 2 , 132 – 40

Newell , P. and Taylor , O . 2020 . Fiddling while the planet burns? COP 25 in perspective , Globalizations , vol. 17 , no. 4 , 580 – 92

ONS. 2019 . UK Environmental Accounts: 2019 , London , Author

Patomäki , H . 2019, July 9 . ‘The Climate Movement? What’s Next?’, available at https://patomaki.fi/en/2019/07/the-climate-movement-whats-next/

Petit , S . 2017 . World vehicle population rose 2.6% in 2016 , Ward Intelligence

Regett , A. , Mauch , W. and Wagner , U . 2019 . Carbon Footprint of Electric Vehicles – A Plea for More Objectivity , available at https://www.ffe.de/attachments/article/856/Carbon_footprint_EV_FfE.pdf

Ripple , W. , Wolf , C. , Newsome , T. , Barnbard , P. , Moomaw , W. and 11,258 signatories. 2019 . World Scientists’ warning of a climate emergency , BioScience , vol. 70 , no. 1 , 8 – 12

Romare , M. and Dahlöff , L . 2017 . ‘ The Life Cycle Energy Consumption and Greenhouse gas Emissions From Lithium-Ion Batteries’ , Report No. C243, Stockholm , IVL Swedish Environmental Research Institute

Royal Academy of Engineering. 2010 . Electric Vehicles: Charged with Potential , London , Author

Servigne , P. and Stevens , R . 2015 . Comment tout peut s’efondrer , Paris , Science Humaines , available at https://www.seuil.com/ouvrage/comment-tout-peut-s-effondrer-pablo-servigne/ 9782021223316

Smil , V . 2017A . Energy and Civilization , Boston , MIT Press

Smil , V . 2017B . Energy Transitions , Colorado , Praeger

SMMT. 2019 . UK Electric Car Registrations Surge in August but it’s a Long Road to Zero and Barriers Must be Addressed , Press Release September 5th, London , Author

Spash , C. (ed.). 2017 . Routledge Handbook of Ecological Economics: Nature and Society , New York , Routledge

Spash , C . 2020 . A tale of three paradigms: realising the revolutionary potential of ecological economics , Ecological Economics vol. 169 ,

Spash , C. and Ryan , A . 2012 . Economic schools of thought on the environment: investigating unity and division , Cambridge Journal of Economics , vol. 36 , no. 5 , 1091 – 121

Staffell , I. Green , R. Gross , R. and Green , T . 2019 . How clean is my car? , Electric Insights Quarterly , vol. Q2 , 7 – 10

Statista. 2019A . Number of Motor Vehicles Registered in the United States from 1990 to 2017 (in 1000s) , [data updated June 2019], available at https://www.statista.com/statistics/183505/number-of-vehicles-in-the-united-states-since-1990/

Statista. 2019B . Car “Parc” in China from 2007 to 2018 (millions) , [data updated August 2019], available at https://www.statista.com/statistics/285306/number-of-car-owners-in-china/

Steffen , W. et al.  2018 . Trajectories of the Earth System in the Anthropocene , Proceedings of the National Academy of Sciences of the USA , vol. 115 , 8252 – 9

Taylor , M . 2015 . The Political Ecology of Climate Change Adaptation , London , Routledge/Earthscan

UNEP. 2012 . Global Environmental Outlook Report 5: Environment for the Future We Want , New York , Author

UNEP. 2018 . Emissions Gap Report 2018 , 9th ed., New York , Author

UNEP. 2019A . Emissions Gap Report 2019 , 10th ed., New York , Author .

UNEP. 2019B . Global Environmental Outlook Report 6: Healthy Planet Healthy People , New York , Author

UNFCCC. 1992 . United Nations Framework Convention on Climate Change , New York , Author

UNFCCC. 2015 . Adoption of the Paris Agreement and Annex: Paris Agreement , Paris , Author

UNFCCC. 2018 . Katowice Texts , Katowice , Author

Webster , B . 2019, June 6 . Britain “could be held to ransom” on electric cars , The Times

Williamson , K. , Satre-Meloy , A. , Velasco , K. and Green , K . 2018 . Climate Change Needs Behaviour Change: Making the Case for Behavioural Solutions to Reduce Global Warming , Arlington, VA , Centre for Behaviour and the Environment

Zheng , S . 2017, April 19 . China now has over 300 million vehicles… that’s almost America’s total population , South China Morning Post

Global electric car sales and market share, 2013–18.

Global electric car sales and market share, 2013–18.

Source : IEA (2019, p. 10).

ULEV refers to vehicles that emit less than 75 gCO 2 per km. This essentially means BEVs, PHEVs, range-extended (typically an auxiliary fuel tank) electric vehicles, fuel cell (non-plug-in) electric vehicles and hybrid models (non-plug in vehicles with a main fuel tank but whose battery recharges and which drive short distances in electric mode).

Note, there is little sign of legislative and regulatory detail to plans as of early 2020. Furthermore, there is a difference between acknowledging that the uptake of alternatively fuelled vehicles, including BEVs, is growing and drawing the inference that UK government policy (channelled primarily via the Department for Transport) is as effective as it might be (see Environmental Audit Committee, 2016 ; National Audit Office, 2019 and also later discussions).

CEM is coordinated by the IEA and is an initiative lead by Canada and China (but including a steadily growing number of signatory countries). The EV30@30 initiative aims to achieve a 30% annual sales share for BEVs by 2030.

IEA headline statistics include plug-in hybrids so 2018 becomes 46% for Norway (IEA, 2019A, p. 10).

For example, Spash (2020) and Spash and Ryan (2012) . One might also note the work of John O’Neill at Manchester University. Perhaps the most prominent ‘realist’ working on transport and ecology is Petter Naess, at Norwegian University of Life Sciences.

The UNEP 9th Report calls for a 55% reduction by 2030.

The initial rationale in 2008 was that to achieve a maximum limit of 2°C warming global emissions needed to fall from the levels at that time to 20–24 GtCO 2 e with an implied average of 2.1–2.6 t CO 2 per capita on a global basis in 2050. This translated to a 50–60% reduction to the then global total. Since UK emissions were above average per capita, the UK reduction required was estimated at about 80%. Given that emissions then increased and atmospheric ppm has risen the original calculations are now mainly redundant.

For the work of the CCC, see: https://www.theccc.org.uk/about/ .

The report also provides useful context regarding the UN sustainable development goals ( CCC, 2019 : p. 66) and CCC thinking on growth and economics ( CCC, 2019 : pp. 46–7).

https://www.theccc.org.uk/2019/06/11/response-to-government-plan-to-legislate-for-net-zero-emissions-target/ .

And further methodological issues apply in economics (see; Morgan and Patomäki, 2017 ; Nasir and Morgan, 2018 ; Morgan, 2019A ).

For a full analysis, see https://www.carbonbrief.org/analysis-uks-co2-emissions-have-fallen-29-per-cent-over-the-past-decade . The Carbon Brief analysis omits shipping and aviation. As the campaign group Transport and Environment notes UK shipping was responsible for 14.4 MtCO 2 , which is the third highest in Europe (after the Netherlands and Spain) and shipping is exempt from tax on fossil fuels under EU law. See p. 20: https://www.transportenvironment.org/sites/te/files/publications/Study-EU_shippings_climate_record_20191209_final.pdf .

UK coal use for energy supply reduced by approximately 90% from 1990 to 2017 and in 2019 amounted to just 2% of the energy mix and in 2019 the UK went two weeks without using any coal at all for power production (the first time since 1882); 1990 to 2010 natural gas use steadily increased from a near-zero base but has declined since 2010 as use of renewables has grown. Coal use in manufacturing has decreased by 75% from 1990 to 2017 ( ONS, 2019 ). As noted, some assessments place the reduction in total emissions at around 40% based on other metrics and the tabulated figures I provide indicate yet another percentage— all however are trend decreases indicative of a general direction of travel.

‘Embedded emissions’ or the UK carbon footprint is addressed by the UK Department for Environment Food and Rural Affairs (Defra). To be clear, there is a whole set of further issues that one might address in regard of measurement of emissions—how they are attributed and what this means (where created, where induced through demand, which state, what corporation and so different ‘Cartesian’ claims regarding the significance of location are possible), and this is indicative of the conflict over representation and partition of responsibility (so whilst the climate does not care about borders, they have infected measurement and policy). There is no scientifically neutral way to achieve this, merely different sets of criteria with different consequences (I thank an anonymous referee for extended comment on this, see also Taylor, 2015 ; who argues that adaptation politics produces a focus on governance within existing political and economic structures based on borders, etc.).

Congestion charges in London or a plastic bag tax do not meet this threshold.

This is supported, for example, by The Climate Group’s EV100 initiative: a voluntary scheme where corporations commit to making electric the ‘new normal’ of their vehicle fleets by 2030 (recognising that over half of annual new registrations are owned by businesses) https://www.theclimategroup.org/project/ev100 .

Until recently Tesla had one main production centre in California. However, it now also has a $5 billion factory in Shanghai and plans for a factory in Berlin. Tesla is currently the world’s largest producer of BEVs (368,000 units in 2019), followed by the Chinese company BYD Auto (195,000 units in 2019). Tesla was founded in July 2003 by Martin Eberhard and Mark Tarpenning in response to General Motors scrapping its EV programme (as unprofitable). Elon Musk joined as a HNWI first-round investor in February 2004 (he put in $6.5 m of the total $7.5 m and became chairman of the Tesla board); Eberhard was initially CEO but was removed and replaced by Musk in 2007 and Tarpenning left in 2008. Tesla floated on the Nasdaq in June 2010 at $17 per share and exceeded $500 per share for the first time in January 2020. Tesla is the USA’s most valuable car manufacturer by market capitalisation (worth more than Ford and GM combined).

The European Commission’s collaborative research forum JEC has been producing ‘well-to-wheels’ analyses of energy efficiency of different engine technologies since the beginning of the century. The USA periodically publishes the findings of its GREET model (the Greenhouse gases Regulated Emissions and Energy use in Transportation model). See https://greet.es.anl.gov .

For example, since 1985 according to Carbon Brief global coal use in power production measured in terawatt hours only reduced in 2009 and 2015 (though it seems likely to do so in 2019); China notably continues to build coal-fired power plants though the rate of growth of use has slowed. (According to the IEA Coal report, 2019, China consumed 3,756 million tonnes of coal in 2018 (a 1% increase) and India 986 million tonnes (a 5% increase). Renewables are a growing part of an expanding global energy system.

https://www.carbonbrief.org/analysis-global-coal-power-set-for-record-fall-in-2019 .

Staffell et al . observe that the British electricity grid produces an average 204 gCO 2 per kWh in 2019 and a standard petrol car emits 120–160 gCO 2 per km.

This is a point made by Richard Smith. There are, of course, alternatives to aluminium. One should also note that manufacturers are responding to consumer preference by increasing the average size of models and this is increasing the weight and resource use. In February 2020, for example, Which Magazine analysed 292 popular car models and found that they were on average 3.4% or 67 kg heavier than older models and this was offsetting some of the efficiency gains for emissions.

And the argument this is leading to is that it makes far greater sense to default to greater dependence on prudential social redesign, rather than optimistic technocentrism, behind which is techno-politics.

For discussion of battery technology and scope for improvement, see Manzetti and Mariasiu (2015) and Faraday Institution (2019) . Currently, most BEVs use lithium-ion phosphate, nickel-manganese cobalt oxide or aluminium oxide batteries. Liquid electrolyte constituents require containment and shielding. Specifically, a battery creates a flow of electrons from the positive electrode (the cathode made of a lithium metal oxide, etc. from the previous list) through a conducting electrolyte medium (lithium salt in an organic solution) to a negative electrode (the anode made typically of carbon, since early experiment with metals tended to produce excess heating and fire). This creates a current. Charging flows to the anode and discharge oxidises the anode which must then be recharged. The batteries are relatively low ‘energy density’ and can be a fire hazard when they heat. Given the chemical constituents, battery disposal is also a significant environmental hazard (see IEA, 2019A: pp. 8, 22–3). A ‘solid-state’ battery uses a specially designed (possibly glass or ceramic) solid medium that allows ions to travel through from one electrode to another. The solid-state technology is in principle higher energy density, much lighter and more durable. The implication is higher kWh batteries with greater range, charging capacity and durability and efficiency. Jeremy Dyson has reportedly invested heavily in solid-state technology and though his proposed own brand BEV is not now going ahead, reports indicate the battery technology investment will continue.

One might also consider hydrogen battery technology. Hydrogen fuel cell technology for vehicles is different than BEV. The vehicle has a tank in the rear for compressed cooled gas, which supplies the cell at the front of the car whilst driving. Refuelling is a rapid pumping process rather than a long wait. The gas has two possible origins: natural gas conversion where ‘steam methane reformation’ separates methane into hydrogen and CO 2 or water electrolysis, where grid AC electricity is converted to DC, which is applied to water and using a membrane splits it into hydrogen and waste oxygen. Currently, over 95% of hydrogen is from the former. Major investors in hydrogen technology are Shell (for natural gas conversion), IMT Power (in partnership with Shell) for water conversion and Toyota whose Mirai model is hydrogen powered.

Though fewer new cars were registered than in previous years, this significant metric for the total number of vehicles is the cumulative number of registrations (taking into account cars no longer registered). There are, however, some underlying issues: uncertainty regarding the status of diesel cars and problems of availability, cost and trust in BEVs seems to be causing many people in the UK to delay buying a new car; the expansion of Uber meanwhile has had a generational and urban effect, reducing car ownership as an aspiration amongst the young.

And re aviation, a new runway at Heathrow between 2026 and 2050.

See: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/852708/provisional-road-traffic-estimates-gb-october-2018-to-september-2019.pdf .

See: https://greenworld.org.uk/article/budget-deeply-disappointing-says-caroline-lucas

For example, global production of cobalt in 2018 was 120,000 tonnes, and production of about 2 million BEVs currently requires around 25,000 tonnes, so 10 million BEVs would require all of the current output. Cobalt traded at more than US$90,000 per ton 2018 but had fallen to around US$30,000 at the end of 2019.

In the UK, the current daily consumption of petrol and diesel for road transport is about 125 million litres or about 45 billion litres per year. So, BEVs are essentially substituting for this scale of energy use, shifting demand to electricity generation. National Grid attempted to model this in 2017. Their forecast (highly contingent obviously) suggests that if all cars sold by 2040 were BEVs and thus the car market was dominated by BEVs by 2050 and if most vehicles were charged at peak times in 2050 then an additional 30 gigawatts of electricity would be required. This is about 50% greater than the current peak winter demand in 2017. This was widely reported in the press. This best/worst case, of course, does not allow for innovative solutions such as off-peak home charging pioneered by Ovo and other niche suppliers. However, even with such solutions, there will still be a net increase in required capacity from the system. This has been estimated at about 10 new Hinckley power stations.

One possible long-term solution currently in development is toughened solar panel devices that can be laid as a road or car park surfaces, enabling contact recharging of the vehicle (in motion or otherwise). There are, however, multiple problems with the technology so far.

For example, analysis from Capital Economics suggests a three-way charging split is likely to develop: home recharging is likely to dominate, followed by an on-route charging model (substituting for current petrol forecourts at roadside) and destination recharging (given charging is slower than filling a fuel tank it makes sense to transform car parks at destinations into charging centres—supermarkets, etc.). They estimate UK demand at 25 million BEV chargers by 2050 of which all but 2.6 million will be home charging. As of early 2020, there were 8,400 filling stations which might be fully converted. Tesco has a reported commitment to install 2,400 charging points. These are issues frequently reported in the press.

This point can also be made in other ways. Not only does the emissions saving relate to net new sources of cars, but the contrast is also in terms of trend changes in the size of vehicle. According to the recent IEA World Energy Outlook report ( IEA, 2019B ), the number of SUVs is increasing and these consume around 25% more fuel than a mid-range car. If current growth trends continue (SUVs are 42% of new sales in China, 30% in India and about 50% in the USA), the IEA projects that the take-up of ICE SUVs will more than offset any marginal gains in emissions from the transition to BEVs.

It is also the case that the projected ‘savings’ from ULEVs are likely inaccurate. Following the EU, most countries adopted (and manufacturers report using) the Worldwide Harmonised Light Vehicle Test Procedure (WLTP). This became mandatory in the UK from September 2018. The WLTP is the new laboratory defined test for car distance-energy metrics. Vehicles are tested at 23°C, but without associated use of A/C or heating. Though claimed to as realistic than its predecessors, it is still basically unrealistic. Temperature range for ULEVs has significant consequences for battery performance and for use of on-board services, so real distance travelled per unit of energy is liable to be less. For similar reasons, ICEs will also travel less distance per litre of fuel so this is not a comparative gain for ICEs, it is likely a comparative loss to all of us if we rely on the figures.

See https://www.theccc.org.uk/2018/07/10/road-to-zero-a-missed-opportunity/ .

See https://www.theccc.org.uk/2018/07/10/governments-road-to-zero-strategy-falls-short-ccc-says/ .

See https://www.weforum.org/agenda/2019/08/shared-avs-could-save-the-world-private-avs-could-ruin-it/ .

For practical network initiatives, see, for example, https://climatestrategies.org .

Email alerts

Citing articles via.

  • Contact Cambridge Political Economy Society
  • Recommend to your Library

Affiliations

  • Online ISSN 1464-3545
  • Print ISSN 0309-166X
  • Copyright © 2024 Cambridge Political Economy Society
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

The Economics of Electric Vehicles

We examine the private and public economics of electric vehicles (EVs) and discuss when market forces will produce the optimal path of EV adoption. Privately, consumer cost savings from EVs vary. Some experience net benefits from choosing gasoline cars, even after accounting for EV subsidies. Publicly, we survey the literature documenting the external costs and benefits of EVs and highlight several themes for optimal policy design including, 1) promoting regional variation in EV policies that align private incentives with social benefits, 2) pursuing a time-path of policies that reflect changing marginal benefits, and 3) rationalizing electricity and gasoline prices to reflect their social marginal cost. On the extensive margin, purchase incentives should ramp-down as learning-by-doing and network externalities (to the extent that they exist) diminish; on the intensive margin, gasoline should become relatively more expensive over time than electricity (per mile traveled) to reflect cleaner marginal emissions from electricity generation.

The authors declare that they have no relevant or material financial interests that relate to the research described in this paper. We thank Severin Borenstein, Jim Bushnell, Ken Gillingham, Joseph Shapiro, two anonymous referees and many seminar participants for their helpful comments. All errors are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

MARC RIS BibTeΧ

Download Citation Data

  • July 28, 2021

Published Versions

David S. Rapson & Erich Muehlegger, 2023. " The Economics of Electric Vehicles, " Review of Environmental Economics and Policy, vol 17(2), pages 274-294.

Conferences

More from nber.

In addition to working papers , the NBER disseminates affiliates’ latest findings through a range of free periodicals — the NBER Reporter , the NBER Digest , the Bulletin on Retirement and Disability , the Bulletin on Health , and the Bulletin on Entrepreneurship  — as well as online conference reports , video lectures , and interviews .

15th Annual Feldstein Lecture, Mario Draghi, "The Next Flight of the Bumblebee: The Path to Common Fiscal Policy in the Eurozone cover slide

Electric Car and the Environment Essay

Introduction, how electric cars conserve the environment, personal opinion.

An electric car refers to an automobile that runs on electric energy. Batteries and other energy storage devices attached to the car supply electrical energy. The manufacture of electric cars began in the 1880s (Boxwell, 2010). However, the development of internal combustion engines led to their popularity during the early years of the 20 th Century. The situation was eased by the energy crises that hit the global market during the 1970s and 1980s (Boxwell, 2010). The crisis led to a rise in the demand for electric cars among people. However, the demand was not enough to sustain mass production.

The demand for electric cars emerged again after the development of power management technologies that gave electric cars advantages over internal combustion cars (Boxwell, 2010). Other factors that contributed to the rise in demand of electric cars included a rise in oil prices and the need to conserve the environment by controlling the rate of greenhouse gas emission.

The main advantages of electric cars over internal combustion cars include reduction of air pollution, low maintenance cost, and reduction of overreliance on oil (Bullis, 2013). The high rate of the depletion of oil reserves has prompted many nations to invest in technologies that use other sources of energy. The demand and manufacture of electric cars have grown significantly in past years. However, high costs and the unreliability of batteries discourage many people from embracing electric cars.

One of the benefits of electric cars is that they conserve the environment because they do not release greenhouse gases, which are the main cause of environmental pollution (Bomford, 2013). In recent years, debates regarding the effects of internal combustion vehicles have dominated discussions on environmental conservation. The main issues frequently discussed include global warming, air pollution, and reliance on oil as the major source of energy.

One of the solutions to the challenges of air pollution and global warming is the manufacture of electric cars. Electric cars do not produce greenhouse gases, thus reducing the level of air pollution. Cars that run on oil products produce carbon monoxide, ozone, hydrocarbons, soot, and oxides of nitrogen that pollute the environment (Bomford, 2013).

Another benefit of electric cars is their ability to regulate noise pollution. The absence of a combustion engine means that they do not produce loud noises that pollute the environment (Bomford, 2013). Therefore, they prevent air and noise pollution. Electric cars that are charged using hydroelectric power further reduce pollution because the process of electricity production does not cause pollution.

People opposed to electric cars argue that the process of manufacturing them is a major concern because it significantly pollutes the environment. Materials used in manufacturing electric cars require high quantities of energy to produce. However, the net effect from the manufacture of electric cars is less than that of the manufacture and operation of gas as well as diesel vehicles (Bomford, 2013). A study conducted by Renault revealed that electric cars are better for the environment than cars that run on gas and oil products.

The study considered the effects of manufacturing and operating different types of vehicles. Factors considered during the study included emissions from cars, manufacturing plants, resources used in production, and the environmental impacts of the whole process. According to the study, the process of manufacturing electric cars pollutes the environment more than that of manufacturing other types of cars. However, the impact of using diesel and gas cars has a greater environmental impact than that of using electric cars (Bullis, 2013).

I think that electric cars are good for the environment because they do not produce gases that pollute the environment. Even though their manufacturing process has adverse effects on the environment, their operation does not affect the environment negatively.

Cars that operate on oil products produce greenhouse gases and other substances that pollute the environment and contribute to global warming. The gases released by internal combustion cars also cause acid rain that has adverse environmental effects. I also think that electric cars should be encouraged because they reduce dependence on oil as the main source of energy.

Electric cars have been in existence for more than hundred years. However, they are not as popular as internal combustion cars. Their manufacture commenced in the 1880s. However, after the development of internal combustion engines, their popularity waned. During the energy crises of the 1970s and the 1980s, they regained popularity again.

However, it was short-lived and did not lead to mass production of electric cars. Currently, their popularity is on the rise due to the instability of oil prices and a high depletion rate of oil reserves. Electric cars are advantageous because they do not produce gas emissions that pollute the environment. Opponents have criticized them because their manufacture includes processes that have adverse environmental effects. However, the net effect of manufacturing and using them is lower than that of internal combustion cars.

Bomford, A. (2013). How Environmentally Friendly are Electric Cars ? Web.

Boxwell, M. (2010). Owing an Electric Car . New York: Greensteram Publishing.

Bullis, K. (2013). Are Electric Vehicles Better for the Environment than Gas-Powered Ones? Web.

  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, October 31). Electric Car and the Environment. https://ivypanda.com/essays/electric-car-and-the-environment/

"Electric Car and the Environment." IvyPanda , 31 Oct. 2023, ivypanda.com/essays/electric-car-and-the-environment/.

IvyPanda . (2023) 'Electric Car and the Environment'. 31 October.

IvyPanda . 2023. "Electric Car and the Environment." October 31, 2023. https://ivypanda.com/essays/electric-car-and-the-environment/.

1. IvyPanda . "Electric Car and the Environment." October 31, 2023. https://ivypanda.com/essays/electric-car-and-the-environment/.

Bibliography

IvyPanda . "Electric Car and the Environment." October 31, 2023. https://ivypanda.com/essays/electric-car-and-the-environment/.

  • Electric vs. Internal Combustion Engine Vehicles: Comparison
  • Gas Combustion Plants Major Pollutants
  • Are Electric Vehicles Better for the Environment?
  • Internal Combustion Engine
  • Electric vs. Internal Combustion Engine Vehicle
  • Improving the Internal Combustion Engine Efficiency
  • How Bottles Pollute the Environment
  • Comparison of Electric and Gas-Powered Vehicles
  • Discussion: Electric Cars and the Future
  • Electric Cars: Types, Pros and Cons
  • Marine Ecosystems in Oceanography Studies
  • Oil-Spill in the Gulf of Mexico
  • Ocean Acidification: Marine Calcification Process
  • The Hurricane Katrina Disaster
  • Baby Boomers Positive and Negative Aspects

Band 9 IELTS Preparation

IELTS General Training

A hub for IELTS GT test takers to help them reach their goal.

Essay 77 – Advantages and disadvantages of having a car

Gt writing task 2 / essay sample # 77.

You should spend about 40 minutes on this task.

Write about the following topic:

Some people claim that there are more disadvantages to having a car than its advantages. Do you agree or disagree? Discuss the advantages and disadvantages of having a car.

Give reasons for your answer and include any relevant examples from your own knowledge or experience.

Write at least 250 words.

Model Answer 1: [Agreement]

The invention of automobiles was one of the most important events of the last century. However, some people argue that people who have cars have more drawbacks than its benefits. In this case, I agree with it. Furthermore, I will discuss both the positive and negative sides of car ownership.

Of late, people look for a way to feel more comfortable on the roads and for many, this can come with a car. In simple words, driving vehicles makes people’s life more convenient as this mode of transport takes all the hassles out of travel arrangements, like booking tickets for trains or buses and waiting in the long line, for example. Besides, personal vehicles have redefined the notion of empowerment for women and mobility for millions of individuals. Personal freedom derived from owning an automobile means people can go to work, shopping and other destinations whenever and at any time without depending on public transport’s fixed schedules.

On the contrary, all of these benefits have come at an enormous cost to the environment. Driving a motor vehicle contributes significantly to environmental damage. The first factor is air pollution as it releases greenhouse gases, like Nitrogen dioxide for example. According to the U.S. Environmental Protection Agency, car accounts for nearly 25 per cent of all greenhouse gases released into the ecology. The second factor is water pollution. Cars contaminate water sources in several ways. One is through deicing chemicals and oil, brake dust, and runoff of automotive fluids. In addition, the improper disposal of car oil is also a reason for groundwater pollution. Last but not least, cars contribute considerably to solid waste. This means millions of cars are scrapped every year. But regrettably, in most cases, these cars are not recycled. Ultimately, these are disposed of through a landfill site, which in turn leads to the destruction of the natural environment.

To wrap up, while the car is a convenient mode of transportation, it also has grave disadvantages. In my opinion, the negative impacts attached to having cars vastly outweigh any advantages. This is because it threatens the very existence of mankind.

Model Answer 2: [Disagreement]

In contemporary times, there are conflicting opinions about whether cars bring more harm than benefits, and some clearly express the view that owning cars brings more demerits. In my view, however, the advantages of owning a car significantly outweigh the disadvantages. This essay delves into this issue while also discussing both benefits and demerits of owning automobiles.

To begin with, having an automobile provides immense convenience and saves precious time. For instance, people who live far away from their workplaces or schools can avoid the hassles of public transportation and reach their destinations on time. Furthermore, cars provide freedom of movement, allowing people to travel and explore new places, and engage in outdoor activities such as camping, hiking, and skiing. These benefits contribute to a person’s overall quality of life. And perhaps this is why people who own cars would not want to live without them.

In addition, cars play a crucial role in the economy, providing numerous job opportunities in industries such as manufacturing, sales, maintenance and driving. Furthermore, the availability of cars enhances accessibility to essential services such as healthcare, grocery shopping, and emergency services. If someone, for example, does not own a car, it is less likely that he or she would go out and walk for several miles to get to a shopping mall in a city.

On the other hand, critics argue that cars can be a source of pollution, traffic congestion, and accidents. It is evident that car accidents claim thousands of innocent lives each year. Moreover, owning an automobile is expensive. It requires paying taxes, buying fuel, paying for the servicing and so on. This is why economically less affluent citizens in most countries can not afford a car.

In conclusion, the benefits of owning a car, including convenience, time-saving, mobility, and economic opportunities, outweigh the potential drawbacks. Since cars bring more advantages than disadvantages to their owners, I firmly disagree with the notion.

One Comment to “Essay 77 – Advantages and disadvantages of having a car”

On point!… Short and precise!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Privacy Overview

Home — Essay Samples — Life — Cars — The Fascinating History of Cars

test_template

The Fascinating History of Cars

  • Categories: Cars Self-Driving Cars

About this sample

close

Words: 583 |

Published: Jan 31, 2024

Words: 583 | Page: 1 | 3 min read

Table of contents

Introduction, invention and early development of cars, mass production and accessibility of cars, technological advancements in automobiles, cultural impact of cars.

  • Beauregard, R., & Parkhurst, H. (2017). The Impact of Automobiles on American Society: Introduction. Journal of Urban History, 43(3), 348-356.
  • Cho, S., & Lee, H. (2019). The invention of the automobile and its effects on society and culture. Applied Sciences, 9(2), 389.
  • Gross, D. (2018). A brief history of the pace-changing technology. The Washington Post.
  • Pacheco, G., Rossi, E., & Vajk, T. (2019). Autonomous and electric vehicles: A review on digitalisation and sustainable development. Journal of Cleaner Production, 235, 508-522.

Image of Dr. Oliver Johnson

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr. Heisenberg

Verified writer

  • Expert in: Life Science

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

2 pages / 772 words

7 pages / 2969 words

2 pages / 750 words

2 pages / 1013 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Cars

Is there ever a time that business should have precedent over the environment? Businesses of different types have been around since man’s beginning, and they have proven to be beneficial and profitable and at other times harmful [...]

The 1920s was a transformative decade for automobile technology and culture in the United States. The era saw a rapid increase in the popularity and availability of cars, as well as significant advancements in automotive [...]

The car of my dreams is a vehicle of the new generation that embodies ease of operation, power, safety, and impressive aesthetics. One of the most pressing concerns today is environmental friendliness, and I strongly share this [...]

Twenty years ago, if someone told you that self-driving vehicles would be driving us around on our roads, you would not have believed it. However, now this innovation does not seem as implausible. An autonomous car, also [...]

We’ve all seen flying cars in plethora of science fiction movies and always wondered when would we be able to fly in those three-dimensional transport vehicles. Recently, accelerated technological advancement is turning many [...]

Imagine living your daily life without cars. Cars are an essential part of our lives, cars have made transportation way easier, faster, and more efficient. Without cars, humans would have not been able to do a lot of the things [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

essay on benefits of cars

Logo

Essay on Electric Cars And The Environment

Students are often asked to write an essay on Electric Cars And The Environment in their schools and colleges. And if you’re also looking for the same, we have created 100-word, 250-word, and 500-word essays on the topic.

Let’s take a look…

100 Words Essay on Electric Cars And The Environment

Introduction to electric cars.

Electric cars are vehicles that use electricity instead of gasoline. They have a large battery that stores electricity. When you drive, the battery powers the motor, which moves the car. Electric cars are becoming more popular because they don’t produce harmful emissions like traditional cars do.

Electric Cars and Air Quality

Electric cars are great for the environment. They don’t release harmful gases into the air like cars that run on gasoline. This means cleaner air for everyone. When more people use electric cars, it can help reduce air pollution and improve public health.

Energy Efficiency of Electric Cars

Electric cars are more energy-efficient than gasoline cars. They convert a higher percentage of the electrical energy from the grid to power at the wheels. This means you get more mileage out of the same amount of energy, which is good for the environment.

Electric Cars and Noise Pollution

Electric cars are also quieter than gasoline cars. This means less noise pollution. In busy cities, noise pollution can be a big problem. So, electric cars can help make cities quieter and more pleasant to live in.

Challenges with Electric Cars

Despite the benefits, there are also challenges with electric cars. One is that the batteries they use can take a long time to charge. Also, the electricity to charge the cars often comes from burning fossil fuels, which can still harm the environment.

250 Words Essay on Electric Cars And The Environment

Introduction.

Electric cars are vehicles that use electric motors instead of traditional fuel engines. They are becoming more popular because they are better for the environment.

Why Electric Cars are Good for the Environment

Electric cars are good for the environment because they don’t release harmful gases. Regular cars burn fuel and release carbon dioxide, which is a major cause of global warming. Electric cars, on the other hand, don’t burn fuel, so they don’t release these harmful gases.

Battery Production and the Environment

Yet, it’s important to note that making electric cars can also harm the environment. The process of making batteries for these cars can produce a lot of pollution. But, once the car is made and being used, it is much cleaner than regular cars.

Electric Cars and Renewable Energy

Electric cars can also use renewable energy. This means they can run on power made from the sun, wind, or water. This is much better for the environment than using fossil fuels like oil or gas.

In conclusion, electric cars are better for the environment than regular cars. They don’t release harmful gases and can use renewable energy. But, it’s also important to remember that making electric cars can still harm the environment. So, we need to keep working on ways to make electric cars even more eco-friendly.

500 Words Essay on Electric Cars And The Environment

Electric cars are vehicles that use electricity instead of gasoline or diesel. They are becoming more popular because they are good for the environment. They don’t release harmful gases into the air like traditional cars do. This essay will talk about how electric cars help the environment and why they are a good choice for the future.

One of the biggest ways electric cars help the environment is by improving the air quality. Cars that run on gasoline or diesel produce exhaust fumes. These fumes are bad for the air and can make people sick. But electric cars don’t produce these harmful fumes. Instead, they run on clean electricity. This means they don’t pollute the air, making it healthier for everyone.

Reducing Greenhouse Gases

Electric cars also help to reduce the amount of greenhouse gases in the atmosphere. Greenhouse gases are gases that trap heat in the earth’s atmosphere, causing it to warm up. This is known as global warming, and it’s a big problem for our planet. Cars that run on fossil fuels, like gasoline or diesel, release a lot of these gases. But electric cars don’t. This means they help to slow down global warming.

Energy Efficiency

Electric cars are also more energy-efficient than traditional cars. This means they use less energy to do the same amount of work. For example, an electric car can travel the same distance as a gasoline car but use less energy. This is good for the environment because it means we need to produce less energy, which often involves burning fossil fuels and releasing more greenhouse gases.

Use of Renewable Energy

Another great thing about electric cars is that they can use renewable energy. Renewable energy is energy that comes from sources that won’t run out, like the sun or the wind. Many people who own electric cars also have solar panels on their homes. They can use these panels to charge their cars, making their driving even more environmentally friendly.

In conclusion, electric cars are a great choice for the environment. They don’t pollute the air, they help to reduce greenhouse gases, they are more energy-efficient, and they can use renewable energy. As more people start to use electric cars, we can hope to see big improvements in our environment. This is why electric cars are an important part of our future.

That’s it! I hope the essay helped you.

If you’re looking for more, here are essays on other interesting topics:

  • Essay on Electric Cars
  • Essay on Egypt Culture
  • Essay on Egypt

Apart from these, you can look at all the essays by clicking here .

Happy studying!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Question and Answer forum for K12 Students

Short Essay on Electric Vehicles – Advantages, Disadvantages of EVs 

Essay On Electric Vehicles: Electric vehicles are vehicles that are either partially or fully powered by electric power. The demand for EVs is increasing day by day. As we have several benefits for Electric Vehicles when compared to Gas Vehicles. Here in this informative essay on electric vehicles, we are giving complete details about them.

Check what is an electric vehicle, the differences between gas vehicles and electric vehicles, the advantages and disadvantages of electric vehicles, the importance of EVs, and many more in the following sections.

Define Electric Vehicle in Simple Words

The electric vehicle is a type of transportation vehicle which is powered by electricity. Unlike other gas vehicles that use gasoline or diesel-powered engine, electric vehicles use an electric motor powered by electricity from a battery or a fuel cell. EVs are cheaper as they have less maintenance and running costs. They are even eco-friendly vehicles.

Importance of Electric Vehicles in Future Transport

Electric vehicles are the most important evolution in the automotive industry. This new transportation technology has enabled the auto industry to meet worldwide pollution standards. Here we are giving the simple reasons why electric vehicles are the future of transportation.

  • The auto loan process is simple for electric vehicles.
  • The power of electric vehicles to offer sustainability to the environment, economy, and roadways is undeniable.
  • Battery prices are low making electric vehicles more economical.
  • The number of electric vehicle charging stations is increasing continuously.
  • The impact of electric vehicles on the environment is helpful to create a greener future.
  • With help of ultra-low emission zones in EVs, the emission of carbon is very low. It is clearly saying that they are environmental friendly and the perfect choice for future transportation.
  • The new technology in the EVs section makes they are available for lower prices.

Advantages of Electric Vehicles in 2023

EVs have become a viable and everyday mode of transport because of their benefits. The multiple advantages of electric vehicles are a cleaner environment, better driving experience, renewable electric traffic, no congestion charge, reduced noise pollution, and increased resale value.

  • Better Driving Experience: Electric vehicles have more acceleration and regenerate braking when easing off the acceleration. They also have a low centre of gravity, which improves comfort, handling, and safety.
  • Lower Running Costs: When compared to other gas vehicles electric cars have less maintenance costs. And they even have fewer costs for spare parts. We can even get Electric Cars under 150K .
  • No Congestion Charge: The primary benefit of an electric vehicle is being exempt from the congestion charge. A few key areas which are suffering from pollution are introducing Clear Air Zones with fees to discourage polluting vehicles from entering their areas. You can even get a lot of models of Electric Cars under 50K .
  • Better for Environment: This is one of the biggest advantages of owning electric vehicles. EVs emit lesser carbons thus making the environment green. Pore electric cars have no tailpipe thus they don’t emit exhaust gases which helps for the reduction of air pollution.
  • Increased Resale Value: Second-hand electric vehicles can be a great affordable if you want to switch from petrol.
  • Renewable Electricity Traffic: All EV electricity traffics are renewable. You can power your electric car at your home easily.

Disadvantages of Electric Vehicles

The drawbacks of electric vehicles are provided here.

  • Initial Investment is Steep: If you buying an electric car, then you need to have more money. The price of gas-powered vehicles is lesser than EVs. Though technology is advancing and the cost to produce cars continues to drop, still they have higher prices.
  • Short Driving Range and Speed: Electric vehicles are limited by speed and range. Most of these have a range of 50 to 100 miles and need to be recharged again. Which is not suitable for long drives.
  • Battery Replacement: Based on the type and usage of the battery, almost all vehicles need to change their batteries after 3 to 10 years.
  • Minimal Amount of Options: The truth here is there are a limited number of choices to customize and choose electric vehicles. But, a vast amount of customization is available in EVs.
  • Electricity isn’t Free: Here we also need to consider the electricity or charging costs. In a few cases, electric cars need a huge charge to work properly which increases your monthly electricity bill.
  • Recharge Stations: Electric recharge stations are still in the development stages. Not all places will have electric fuelling stations. So when you go for a long trip, then it might be difficult to find a charging station.

Difference Between Electric Vehicle and Gas Vehicle

From the name, we can say that electric cars are powered by electricity and gas cars requires gasoline to work. The amazing thing about EVs is that they have motors as the big moving part. It also has a pack of rechargeable batteries inside it, which powers the motor. Gas cars require combustion engines to move. Fuel is burnt inside which generates the needed energy to start the engine.

Gas vehicles have a hidden fuel tank. In electric vehicles, there is a set of batteries installed. Instead of filling the fuel, you need to recharge the battery in an EV. EVs don’t leave a trace of emissions when they are on the roads. They even don’t need a tailpipe

  • Volvo Electric Cars
  • Nissan Electric Cars
  • Polestar Electric Cars
  • Genesis Electric Cars
  • Hyundai Electric Cars

FAQs on Essay on Electric Vehicles in 250 Words

  • What are the 4 types of electric vehicles?

The 4 different types of electric vehicles are battery electric vehicles, hybrid electric vehicles, fuel cell electric vehicles, and plug-in hybrid electric vehicles.

  • What is the importance of electric vehicles?

Electric vehicles are more efficient, and that mixed with electricity cost means that charging an EV is cheaper than filling fuel for your travel requirements

  • What are the 3 benefits of electric cars?

The benefits of electric cars are low maintenance costs, better performance, and environmental friendly.

  • Why are electric vehicles the future?

Electric vehicles have zero tailpipe emissions and which helps to save the environment from smog and climate change. It is one of the great initiatives to say that electric vehicles are the future.

IMAGES

  1. The Multifaceted Benefits of Vehicle Ownership for Young Adults Free

    essay on benefits of cars

  2. The Benefits of Buying a New Car

    essay on benefits of cars

  3. Benefits Of Self Driving Cars Essay / Self Driving Cars

    essay on benefits of cars

  4. Benefits and Risks of Driverless Cars Free Essay Sample on Samploon.com

    essay on benefits of cars

  5. car essay writing in English

    essay on benefits of cars

  6. The Many Benefits of Electric Vehicles Free Essay Example

    essay on benefits of cars

VIDEO

  1. #193 BMW Art Cars : la saga par Me Hervé POULAIN !

  2. Why Cars has one of the best opening scenes

  3. 10 Lines On Car In English 🚗

  4. Write Essay on Advantages and disadvantages of car ~Car Essay for lower grades

  5. Why I rent cars from Drive lah in Singapore?

  6. My reaction after teacher asked essay on cars 😛🫡 #cars #shorts

COMMENTS

  1. Electric Cars Are Better for the Planet

    Electric vehicles are better for the climate than gas-powered cars, but many Americans are still reluctant to buy them. One reason: The larger upfront cost. New data published Thursday shows that ...

  2. Advantages and Disadvantages of Electric Cars Essay

    Benefits of Electric Cars. The most noteworthy attribute of electric cars is their eco-friendliness. They boast of having zero emissions of carbon dioxide, thus minimal environmental pollution. This is contrary to cars with internal combustion engines, which emit close to 20% of carbon dioxide into the atmosphere (Scoulos 162).

  3. Self-driving Cars: The technology, risks and possibilities

    Essentially, a self-driving car needs to perform three actions to be able to replace a human driver: to perceive, to think and to act (Figure 1). These tasks are made possible by a network of high-tech devices such as cameras, computers and controllers. Figure 1: Like a human driver, a self-driving car executes a cycle of perceiving the ...

  4. Electric Cars: Advantages and Concerns

    The units being sold by Nissan, General Motors, Tesla, and Fisker remain disproportionately expensive. General Motors' hybrid electric Chevy Volt, for example, is sold for a staggering $40,000. Nissan Leaf retails at $30,000, yet it is less capable than most car models that are powered by gasoline. The continuous decline of global oil prices ...

  5. Environmental Benefits and Challenges of Electric Vehicles: [Essay

    As a college student interested in environmental sustainability, I have been exploring the potential of electric vehicles (EVs) as an alternative to traditional gasoline-powered vehicles.In this essay, I will examine the environmental impact of EVs, including their benefits and challenges. Through a comparative analysis of their impact on greenhouse gas emissions, renewable energy sources used ...

  6. Why the Electric Vehicle Revolution Can Benefit Everyone

    In California, the state with the highest number of EVs, residents are already starting to benefit. In a recent study focused on California's EV transition, researchers found that increased EV ...

  7. Are electric vehicles definitely better for the climate than gas

    Battery-electric cars may not emit greenhouse gases from their tailpipes, but some emissions are created in the process of building and charging the vehicles. Nevertheless, says Sergey Paltsev, Deputy Director of the MIT Joint Program on the Science and Policy of Global Change, electric vehicles are clearly a lower-emissions option than cars ...

  8. Benefits of electric cars

    Here, we've summarised the main plus points that come with owning and driving an electric car. 1. Electric cars are simpler and more reliable. The electric motor and battery combination used to power electric cars is much simpler and has far fewer moving parts than a conventional petrol or diesel engine. This means there's a lot less that could ...

  9. Pros and Cons of Electric Cars: Everything You Need to Know

    Pros and Cons of Hydrogen Fuel-Cell Electric Vehicles PRO: The technology works. The California-only Toyota Mirai has a range of up to 402 miles and can be refueled nearly as quickly as a gasoline ...

  10. Are Electric Vehicles Better for the Environment? Essay

    Electric vehicles produce fewer emissions over the life cycle than traditional cars ('Benefits', n.d.). The owners can further reduce their emissions by generating electricity from renewable sources that do not pollute the air, such as wind and solar (Requia et al., 2018). Electric cars contain fewer moving components or parts than gasoline ...

  11. How the Automobile Changed the World, for Better or Worse

    Film still from Automania 2000. 1963. 35mm film transferred to video, 10 min. Directed by John Halas. Written by Joy Batchelor. Animated by Harold Whitaker. Art Directed by Tom Bailey. Composed by ...

  12. Car-free streets: here are the benefits from around the world

    This is where temporary interventions such as car-free days can unlock a whole new approach to movement and mobility. In the mid-1970s, Colombia's capital city, Bogotá, saw the birth of what would become a global movement to make streets safer, more inclusive and more appealing to city dwellers. It is called Ciclovia, often known as 'open ...

  13. Argumentative Essay on Electric Cars

    Additionally, as renewable energy sources such as solar and wind power become more prevalent, the environmental benefits of electric cars will only continue to grow. This environmental benefit is a strong argument in favor of electric cars and highlights their potential to contribute to a cleaner and healthier planet. ... Argumentative Essay On ...

  14. Electric vehicles: the future we made and the problem of unmaking it

    1. Introduction. According to the UK Society of Motor Manufacturers and Traders (SMMT), the Tesla Model 3 sold 2,685 units in December 2019, making it the 9th best-selling car in the country in that month (by new registrations; in August, a typically slow month for sales, it had been 3rd with 2,082 units sold; Lea, 2019; SMMT, 2019).As of early 2020, battery electric vehicles (BEVs) such as ...

  15. PDF Charging the Future: Challenges and Opportunities for Electric Vehicle

    Working Papers have not undergone formal review and approval. Such papers are included in this series to elicit ... is competitive with today's more efficient gasoline cars and could be sig-nificantly cheaper if a time-of-use electricity tariff, with lower prices in off-peak periods, is in place. More powerful home charging is sensitive to

  16. The Economics of Electric Vehicles

    Privately, consumer cost savings from EVs vary. Some experience net benefits from choosing gasoline cars, even after accounting for EV subsidies. Publicly, we survey the literature documenting the external costs and benefits of EVs and highlight several themes for optimal policy design including, 1) promoting regional variation in EV policies ...

  17. Electric Car and the Environment

    An electric car refers to an automobile that runs on electric energy. Batteries and other energy storage devices attached to the car supply electrical energy. The manufacture of electric cars began in the 1880s (Boxwell, 2010). However, the development of internal combustion engines led to their popularity during the early years of the 20 th ...

  18. (PDF) Electric cars. Advantages and disadvantages

    The advantages of the electric vehicle is attributed the environmental friendliness and the absence. of em issions, com pact car, the cheaper cost, cheap "fuel" - electricity. The car for 7-10 ...

  19. Essay 77

    In conclusion, the benefits of owning a car, including convenience, time-saving, mobility, and economic opportunities, outweigh the potential drawbacks. Since cars bring more advantages than disadvantages to their owners, I firmly disagree with the notion. Essay 76 - History is one of the most important school subjects.

  20. The Fascinating History of Cars: [Essay Example], 583 words

    The first automobile was invented by Karl Benz in 1886. This three-wheeled vehicle was the first successful gasoline-powered automobile. Soon after, other automobile pioneers, such as Henry Ford, contributed to the development of cars, making them faster, more efficient, and safer. The invention of cars revolutionized transportation, leading to ...

  21. Essay on Electric Cars And The Environment for Students

    Challenges with Electric Cars. Despite the benefits, there are also challenges with electric cars. One is that the batteries they use can take a long time to charge. Also, the electricity to charge the cars often comes from burning fossil fuels, which can still harm the environment. 250 Words Essay on Electric Cars And The Environment Introduction

  22. Short Essay on Electric Vehicles

    Essay On Electric Vehicles: Electric vehicles are vehicles that are either partially or fully powered by electric power. The demand for EVs is increasing day by day. As we have several benefits for Electric Vehicles when compared to Gas Vehicles. Here in this informative essay on electric vehicles, we are giving complete details about them.